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C~P~RI 

INTRODUCTION 

The most important geophysical technique used for petroleum explor­

ation is the seismic method. This is due to the fact that it has high 

accuracy, high resolution, and deep penetration. Although the seismic 

method has some applications in other fields such as civil engineering 

and radar technology, its most extensive use has been in oil and gas 

exploration. 

Exploration seismology is a by-product of earthquake seismology. 

During an earthquake sound waves travel outward from the fracture surface 

and recorded at various sites using seismometers. This data is then 

analyzed to provide some information about the elastic properties of the 

rock through which the sound waves travel. 

The basic technique of exploration seismology is essentially the 

same as the one used in earthquake seismology. It consists of generating 

controlled waves (by dynamites, mechanical impact or vibration) and mea­

suring the time needed for the waves to travel from the source to an 

array of geophones which detect vertical or horizontal ground motion. 

The data are usually recorded on magnetic tape and processed by computer 

in order to eliminate the noise and extract the desired information. 

Seismic technique falls into two different categories: 

1. Reflection Seismology, which is the most widely used method in 

geophysical prospecting techniques, deals with generating elastic waves 

1 
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and making surface measurements on the waves that are reflected from in­

terfaces between formations having different physical properties. Later 

these measurements are interpreted to give some information about the 

depths of the reflecting beds and the structural features of the subsur­

face formations. Thus with reflection methods one can locate and map 

some features of interest such as anticlines, faults, salt domes, and 

reefs which are generally associated with the accumulation of oil and 

gas. 

In reflection seismolog~ the reflections are recorded by seismo­

meters which are laid along the ground at distances from the source that 

are generally small compared with the depth of the bed. These seismo­

meters are either geophones which are responsive to ground motion or 

hydrophones which are responsive to water pressure. 

2. Refraction Seismology--it deals with the case where the detec­

tors of seismic waves are at a large distance from the source compared 

to the depth of the layer to be mapped. The refracted waves must thus 

travel large horizontal distances through the earth. The times of 

flight give some information about the velocity and depth of the sub­

surface formations along which they propagate. 

This method has some advantages. It can cover a given area in a 

shorter time and more economically than with the reflection method. It 

is particularly suitable to determine the shape and depth of some sedi­

mentary basin if it has a lower speed than the basement formation. 

In spite of these advantages, it is not employed as much as the 

refraction method in oil exploration. This is probably due to the 

greater amounts of dynamite needed for field operations, and the lower 

precision in the information of the structural features of the subsur-
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face formations. 

Statement of the Problem 

So far the reflection method has not been used for direct petroleum 

exploration, but instead limited to the mapping of structural features 

or stratigraphic conditions favorable for the accumulation of oil or 

gas. 

On the other hand the technique that has been used for direct indi­

cation for the presence of hydrocarbons is the drilling process and 

testing the core samples. 

Using seismic reflection method for direct detection of hydrocar­

bons has not been achieved yet. So, our problem is to relate the reflec­

tion amplitudes to the acoustic impedance of the buried interfaces. 

Knowing the physical properties (velocity and density) of the stratum 

will help in locating oil or gas. 

In this study the concern will be with reflection and refraction of 

plane waves incident on plane interfaces. The solution of a boundary 

value problem of an incident plane wave at some interface is obtained. 

Then the angular dependence of all reflected and transmitted waves is 

found. All possible cases of interfaces are taken, that is solid/vacuum, 

liquid/liquid, liquid/solid, and solid/solid interfaces. 

Importance of the Study 

Most of the seismic work that has been done deals with normal inci­

dence only and with one type of elastic wave, which is the longitudinal 

or pressure wave. In the present study, I will be dealing with oblique 

incidence as well and with both types of elastic waves which would be 
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generated at the boundary interface due to mode conversion. This occurs 

with either type of elastic wave; pressure (p) wave or shear (s) wave. 

Knowing the reflected and transmitted amplitudes of the p-wave and 

s-wave will give information about the elastic properties of the subsur­

face formation. This would add a new dimension in geophysics prospect­

ing, to have an idea not only about the structure of the bedrock but 

also about some physical parameters such as velocity and density. 

This method can be applied to Common Depth Point analysis as de­

scribed in Chapter VI, and utilize the information given about the 

relative amplitudes of the reflected waves as a direct indication of the 

relative speeds and densities of strata about the reflecting surface. 

Due to the high directivity of the reflected s-wave some analysis 

of its amplitude can be done more economically than the analysis needed 

for the reflected p-wave. The p-wave and s-waves are easily separated 

due the considerable difference in their speeds of propagation. 

Procedure of the Study 

The writer will start with some theoretical background for the sub­

ject which is the theory of elasticity, then the wave equation is derived 

for the pressure wave and shear wave. These are two independent elastic 

waves which propagate with different velocities and are governed by the 

elastic properties of the medium. In Chapter II the theoretical boundary 

value problem is solved for the most general case of two solids. Then 

mode conversion is discussed in Chapter III, where one type of wave inci­

dent on a discontinuity will generate the other type of wave in order to 

satisfy the boundary conditions. 

Different cases are taken of solid/vacuum, liquid/liquid, liquid/ 



solid, and solid/solid interfaces, and all data used represent familiar 

rocks and fluids. 
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In Chapter III we limited our discussion to the non-critical situa­

tions. The solutions are found by using numerical analysis to solve 

four equations and four unknowns (or less for simpler cases). Normal 

and grazing incidence are solved algebrically to avoid any singularity. 

After solving for the amplitudes, some modified factors are introduced 

to get the square root of the normal energy flux. The physical require­

ment of conservation of normal energy flux is used as a check for our 

results. 

In Chapter IV critical angles are discussed thoroughly, and the 

associated sharp discontinuities in reflected, mode converted, and 

transmitted amplitudes. At and beyond critical angles the z-component 

of the wave vector k of the transmitted wave becomes imaginary, so that 

will lead to an exponential decay of the amplitude as a function of the 

distance from the interface. This transmitted wave propagates parallel 

to the interface with a phase velocity that is determined by the inci­

dent wave velocity and the angle of incidence and it does not transfer 

any energy across the barrier. 

In Chapter V results from Chapter III, and Chapter IV for critical 

and non-critical situations are presented in polar form which shows the 

angular dependence of the reflected and transmitted pressure and shear 

waves. These plots have very definite features which reflect the 

dependence on the relative acoustic parameters (velocity and density) of 

the reflecting interface. 

Some application of our results on Common Depth Point data evalua­

tion is discussed in Chapter VI. Useful information about the relative 



amplitudes from offshore and onshore measurements is explained and how 

we can use that as a direct measure of the relative velocity or density 

especially for the case when there are sharp discontinuities in the 

reflection amplitudes due to critical angles. 

6 

An attempt for expanding the relative reflected amplitudes in terms 

of some orthonormal set is illustrated in Appendix A where we used three 

different sets of orthogonal functions; these are Legendre, Associated 

Legendre, and Sinusoidal Functions. 

Using the first few terms the approximation was good enough for 

smooth reflections, but for the case when we have sharp discontinuities 

more terms are needed, or may be some other set of orthogonal functions. 

Finally, some suggestions for further investigations are discussed. 

Limitation of the Study 

In our study we assumed plane interfaces, but in reality one hardly 

can find such regular interfaces, especially for a large region of field 

measurements. Some regions of uniform depositions of sediments such as 

those at the bottom of the ocean can be approximated as plane interfaces. 

Also, we assumed flat interfaces, but some interfaces are inclined, 

so that will affect the magnitude of the reflections and hence the loca­

tion of maximum reflection points. 

We have limited our analyses to primary reflections, but it can be 

extended for multiple reflections where we have to use the idea of suc­

cessive image points to give the right reflections. 

As far as the speed is concerned we assumed an isotropic medium, 

and hence the speed is equal in all directions, but in reality there is 

a measurable difference in the speed along the bedding planes from that 



normal to them. Also there is some frequency dependent in the velocity 

that we haven't put into consideration. 

The attenuation effect of the amplitudes from energy loss due to 

internal friction is not considered, but this effect is reduced since 

we are dealing with relative amplitudes, and all reflected amplitudes 

have nearly suffered from the same attenuation. 

Finally, even though our results are obtained for all range of 

angles (normal to grazing incidence) , but when they are applied to CDP 

(Common Depth Point) analysis the relative amplitudes are plotted for a 

limited range of angles; that is from normal incidence to about 30° 

(angles are measured from horizontal). Practically taking all range of 

angles is impossible, because at grazing incidence some detectors have 

to be at infinite in order to respond to the reflected p-wave. 

Review of Related Literature 

7 

Energy densities of seismic waves reflected and refracted at an 

interface of two elastic media has been studied by various authors, such 

as Knott (11) , Stoneley (9) , Muskat and Meres (16) , Ergin (3) , and Koe­

foeld (12). 

C. G. Knott (11) derived formulas for the reflection coefficients 

for plane waves incident on a boundary between two elastic media, per­

mitting their values to be computed when the elastic constants of the 

media are known. He considered the cases of: solid-air, solid-water, 

and solid-solid interfaces. 

R. Stoneley (19) concentrated on the dissipated energy, at a dis­

continuity, due to internal viscosity and on the existence of surface 

waves analogous to Rayleigh and Love waves. 



M. Muskat and M. w. Meres (16) computed the reflection and trans­

mission coefficients for the elastic waves due to an incident p-wave or 

s-wave for a range of densities and longitudinal velocities ratio. 

8 

Their analysis was limited to the assumption that in both media the 

Poisson ratio was equal to 0.25, and that the angle of incidence did not 

exceed 30°. 

Kazim Ergin (3) investigated the energy ratios of the seismic waves 

reflected and refracted at a rock-water boundary. He has determined the 

angles (if any) that lead to the extreme values of energy, and the 

dependence of these angles on the elastic constants of the media 

involved. 

0. Koefoeld (12) calculated the reflection coefficients of plane 

longitudinal waves incident at oblique angles on boundary planes between 

elastic media. He discussed the effect of Poisson's ratios of rock 

strata on the reflection coefficients. 

When the angle of the incidence exceeds a certain value (the criti­

cal angle), the phenomena of total reflection occurs. Such a phenomena 

has been a subject of many papers. 

Among these papers F. G. Friedlander (5) considered the reflection 

and refraction of transverse plane waves, at an interface parallel to 

the direction of polarization. The incident wave is of arbitrary shape 

and the angle of incidence is allowed to exceed the critical angle. 

J. N. Goodier and R. E. Bishop (7) discussed the critical reflec­

tions of elastic waves at free surfaces. By applying suitable limiting 

processes, they were able to obtain the wave motion of a p-wave or an 

s-wave incident at grazing incidence. 

B. Gutenberg (8) applied the method for calculating the amplitudes 
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for bodily waves in earthquakes to the study of amplitude of longitudinal 

waves produced by an artificial explosion. He related the discontinuity 

in the energy of the reflected longitudinal wave to the critical refrac-

tion angle. 

C. Y. Fu (6) discussed the complex behavior of the reflected and 

refracted amplitudes beyond critical angles, and their analogy to Ray-

leigh wave. He, also, derived the equations for the reflected and re-

fracted amplitudes due to an incident dilational or distortional wave at 

the interface o£ two semi-infinite media. 

As far as using the reflection method in the field w. Harry Mayne 

(15) described some technique for multiple coverage of the subsurface. 

He assumed an average velocity that increases with depth, and he has 

arranged the detectors spreads and the shotpoints so that when the chan-

nels which have a common reflection point are combined or stacked a min-

imum ratio of noise to signal is obtained. 

C. S. Clay and H. Menell (2) made some comparison between the mea-

sured and calculated amplitudes of two seismic events which have 

traveled through a two layer seismic model, and they found that the 

relative amplitudes of the reflected waves are in agreement to the cal-

culation based on reflection theory of plane waves with correction for 

the ! spherical divergence of the amplitude. 
r 



CHAPTER II 

THEORY OF ELASTICITY 

The seismic method uses waves propagating through the earth to ob­

tain information about subsurface geological structure, propagation of 

the wave causes a local disturbance of the particles of the medium. The 

deformation due to the wave is determined by the elastic properties of 

the medium and the type of wave. 

Elasticity is a measure of the ability of some substance to resist 

any deformation in size or shape (size only in case of fluids) to some 

applied external force. This reaction is due to some internal forces 

which exist whenever the body is distorted from an equilibrium configu­

ration. The theory of elasticity relates the deformation of the body in 

shape or size to the applied forces. The elasticity is the proportion­

ality constant between the applied force (stress) and the resulting 

deformation (strain). 

Stress 

Stress is defined as the force per unit area. It is normal if the 

applied force is normal to the area, and it is tangential stress if the 

force is tangential to the area. Any other stress can be resolved into 

normal and tangential components. 

Consider an infinitesimal rectangular parallelipied inside the 

stressed body with three sides along three mutually perpendicular axes 

10 
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Ox, Oy, Oz. There are stresses acting on each of the six faces which 

can be resolved into components, as shown in Figure 1 for the two faces 

that are perpendicular to the x-axis. The shear stress parallel to the 

y-axis (cr ) acts on a surface perpendicular to the x-axis. Nhen the 
yx 

stress indices are the same (as cr ) it is normal to the surface while 
XX 

if they are different (as cr ) it is tangential or a shearing stress. 
yx 

When the body is in static equilibrium (no whole body rotations or trans-

lations), the stresses must be balanced, so by taking moments it is 

easily shown that cr = cr and generally cr .. = cr .•• This will reduce 
yx xy l.J Jl. 

the number of independent stress components into only six. 

Strain 

Strain is a measure of the relative change in dimensions of the 

body that is subjected to stress. If we consider a rectangle ABCD in 

x-y plane as in Figure 2, let A'B'C'D' be the new positions of A,B,C,D 

when it is under some stress. Let the displacement AA' have u,v cam-

ponents along x, y-axis respectively. If the whole rectangle is dis-

placed by the amounts u and v, then there is no change in size nor shape 

so there does not exist any stress. However, if the displacements of 

the vertices are not identical, then the rectangle does undergo change 

in shape and size. So stress does exist. 

Let the coordinates of A and an adjacent point B for the unstrained 

rectangle be given as: 

A B 
(x,y)' (x+ox, y) 

After the rectangle is strained by u,v, then A,B become 



z 

X 
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,, 

Figure 1. Components of Stress on a Small Rectangular Parallel­
pieped 
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A(x+u,y+v)' B(x+ox+u+ou, y+v+ov) 

If u = u(x,y) and v = v(x,y) , then 

ou = 
au i' Clu i' 

Clx ux + Cly uy (2 .la) 

and 

Clv Clv Clv 
Clx Clx + Cly Cly. (2.lb) 

That is 1st order expansion assuming Clx, Cly are very small. We can see 

from Figure 2 that: 

a) The fractional elongation in x and y directions (normal strains) 

are 
au 
Clx 

b) 

and av . 1 ay , respect~ve y. 

6 ~ tan 8 = au/Cly. 
2 2 

c) The rectangle has rotated about the z-axis counterclockwise 

through the angle (6 -6 ) = (~- ~) = 8 . It doesn't involve any 
1 2 ax ay z 

change in size or shape and hence it is not a strain. 

d) The right angle at A has decreased by an amount = o1 + o2 

av + au -- so it is a measure of the change in shape of the medium and it ax ay' 

is denoted by ~ as shearing strain. 
xy 

If our analysis is extended to three dimensions in which A has been 

displaced by u, v, w in the x, y, and z-direction respectively the 

strains are as follows: 

Normal strains 
au av 

~XX = ~~ Eyy = 3y' E 
zz 

aw 
az 

(2.2a) 
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av au 
E: = E = -+ 
xy yx ax <ly 

Sharing strains Clw av (2. 2b) E: = E: = -+ 
yz zy ay az 

au aw 
E: E: = -+ zx xz az ax 

Beside that, the body is subjected to rotational deformations about the 

three axis as follows: 

8 
X 

8 
y 

8 
z 

= 

= 

aw dV l 
ay az 

au aw 
(2.2c) (lz ax 

av au --ax ay 

There is a volume change due to the changes in dimensions which are 

given by the normal strains. This relative change in volume is called 

dilation and denoted by 

b. = 
o (1 + E: ) 0 (1 + E: ) (1 + E ) o 

X XX Y YY ZZ Z 

0 0 0 
X y Z 

b. = E: + E: + £ (2. 3) 
XX yy zz 

to the 1st order approx. So, 

6 
au av aw 

= -+ -+ ax ay az 

Generally we can decompose strain into dilation and shearing strains 
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(Love, P. 45, Theory of Elasticity) • _ 

Hooke's Law 

When the strains are small (limited stress) they are related to 

stress according to Hooke's Law which states that strain is linearly 

related to the applied stress. When several stresses exist, each pro-

duces strains independently of the others. This means each strain is 

a linear function of all of the stresses and vice versa. 

So, in general for an anisotropic medium the six components of 

stress are related to the six components of strain by the following 

(generalized form of Hooke's Law) matrix equation. 

a ell c12 cl3 cl4 c1s cl6 E 
XX XX 

a c21 c22 c23 c24 c2s c26 E 
yy yy 

a c31 c32 c33 c34 c35 c36 E 
zz zz (2.4) = a c41 c42 c43 c44 c45 c46 E 
yz yz 

a CSl c52 cs3 c54 css c56 E 
zx zx 

a c61 c62 c63 c64 c65 c66 E 
xy xy 

where the coefficients are the elastic constants of the material. For 

the elastic energy to be a univalued function of the strain c c 
rs sr 

(see Love, Fourth Edition, P. 99). This reduces the number of inde-

pendent coefficients from 36 to 21. 

For an isotropic solid, the values of the coefficients are inde-

pendent of the set of axes chosen. Applying this condition to the above 

matrix equation reduces the coefficients into just two independent con-

stants denoted by A and ~. where 
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= = = ~23 = 031 °32 • A l 
(2. 5) = = 

= = = A + 2", and the other 24J 

coefficients vanish due to the high degree of symmetry so that stress 

and strain are related by the following simple relations 

(J •. = /.../), + 211 E: • • I i = x,y,z 
~~ ~~ 

(2. 6a) 

and (J •. = f.JE: • • I i = x,y,z; ir'j 
~J ~J i,j 

(2.6b) 

where /), = e: + e: + e: 
XX yy zz 

and A,f.J are known as Lame's constants. This completely defines the 

elastic properties of an isotropic solid. The reaction to shearing 

strain is proportional to 11 which is often referred to as the modulus of 

rigidity or shear modulus. 

Wave Equation 

So far we have been discussing a medium in static equilibrium. Now, 

we shall concern ourselves with a media experiencing stress gradient. 

Let us assume that the stresses on the rear face of the parallelepiped 

are as shown in Figure 1 

(J (J (J 
xx' yx' zx 

but that the stresses on the front face are respectively 



(J 
XX 

+ 
3cr acr 

xxo (J +~.r (J + 
3x x' yx 3x ux' zx 

so the net unbalanced stresses are 

dO dO 
XX ~ 

--~-- 0 I ~ 0 I ax x ax x 

dO' 
zx 0 

ax x 

acr 
zx 0 

dX X 

these stresses act on a face having an area of o o and affect the 
y z 

volume (o 6 o ). So, the net force per unit volume in the x, y, and 
X y Z 

z-directions are 

3cr cr cr 
XX _.1.?!. ZX 

~, ax ' a;-' 

18 

respectively. Similar expressions hold for the other faces. The total 

force in the x-direction is 

acr acr a 
(~ + _2S'J_ + xz) 

ax 3y dZ 

and the equation of motion according to Newton's second law is 

F = m a x net x 
(2. 7) 

or F t per unit volume 
x ne 

a2u 
= P --2-, where p is the density. 

3t 

The net acceleration due to the difference in stress on the faces 

of the rectangular parallelpiped are given by 

do do acr 
~ + ___lEY_ + __£ 

dx dY az ( 2. 8a) 
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a2v Clcr a a a a 
and similarly, p = _:E!. + _:a_ + ~ 

at2 ax ay ()z , (2.8b) 

a2w 
a a a a a a 
~+ ____E.. zz 

p = +--
at2 ax ay Clz 

(2.8c) 

These equations of motion will hold, whatever the stress-strain behavior 

of the medium. In order to solve these equations, we must use the elas-

tic relations. For an isotropic medium these relations are given by 

Hooke's Law (Equation 2-6) and the definition of strain components 

(Equation 2.2). From these relations we can rewrite the stress in terms 

of the strain components yielding the following equations of motion • 

..1_ (A~ + 2\.le: ) + ~ (\.le: ) + 2._ (\.le: ) 
ax XX 8y xy az XZ 

A at~ 
ae: ae: ae: 

2\.1 
XX _EL+ xz 

= -+ --+ 11 \.1 ax ax ay az 

A~+ 
a2 a2v 

2 
a2w 

2 
= 2\.1 _\.1_ + 

\.l(ayax + ~) + 11 <azax + ~) ax ax2 ay2 az2 

A~+ 2 a (au av au) = uV' \.1 + l1 -+-+-
ax ax ax ay az 

[p a2u at~ 2 
-2- = (A + Jl) -+ ]lV' u] . 
at ax ( 2. 9a) 

where = 

By analogy we can write the following equations: 
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CJ 2v 
(A + ].1) 

()/:). 2 
p = -+ ].l'i7 v, 

Clt2 Cly 
(2. 9b) 

2 
()/:). 2 d (J) 

(;\ + \.l) p -+ ].l'i7 w 
Clt2 Clz 

( 2. 9c) 

To obtain the wave equation, we differentiate equations (2.9a,b,c) with 

respect to x, y, and z, respectively and then by adding them \ve get 

2 
P _a _ [ Clu + Clv + Clw] 

Clt2 Clx Cly Clz 

"2 "2 2 
(A+].l) {-a- + _a_2 + _Cl -}/:). + l1 17 2 (Clu + Clv + Clw) 

Clx2 Cly Clz2 Clx Cly Clz 

or 
2 

[l~ 
2 "' 2 ex at 

(2 .lOa) 

which is the wave equation for a dilational wave propagating through the 

medium with a speed ex where 

2 
ex (2 .lOb) 

By subtracting the derivative of Eq. (2.9b) w.r.t.z from the derivative 

of Eq. (2.9c) w.r.t.y we get 

= 

that gives 

= 

where 8 is a rotation about x-axis given by Eq. (2.2c), or 
X 

(2 .lOc) 



where 

= H. 
p 

21 

(2.10d) 

That represents a rotational wave about the x-axis that is propagating 

through the medium with speed 

s = (]1/p)~ • 

Similar equations may be obtained for 6 and 6 . So generally we can 
y z 

write 

(2 .11) 

For a purely rotational wave (the dilations is zero) Equations (2. 9a,b 

and c) become 

d2jl 2 
p 

at2 
= ]l'il u (2 .12a) 

similarly, 

a2v 2 (2.12b) p = ]l'il v 
at2 

and 

a2w 2 
(2 .12c) p = ]l'il w 

at 
2 
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The conditions for a purely dilational wave that is when all the rota-

tions e ' e and e vanish is satisfied if u, v and w satisfy the follow-
x y z 

ing conditions 

u = a<j> 
v = a<j> 

w = ax' ay' 

where 4> is some potential function, thus 

b. 
au au aw = -+ -+ ax Cly Clz 

= V2cj> 

and 
at::. v2 l:t v2u = = ax ax 

So by substituting in Eq. (2.9a) we get 

= 2 
(A + 21.1) V u 

~ 
az 

and similarly for v and w in Eqs. (2.9b) and (2.9c) we get 

2 
(A + 2l.I}'V v, 

(2.13) 

(2.14a) 

(2.14b) 

(2.14c) 

So we see that for an unbounded isotropic elastic solid two and only two 

waves can exist. Waves involving no rotation travel with a speed 

[ (:>..+21.1}/p]~. These are called irrotational waves or dilational, longi-

tudinal, compressional, or pressure (p-) waves. Waves involving no 
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dilation travel with speed (~/P)~. These are called rotational, distor­

tion,transverse, or shear (s-) waves. 

Bounded Medium and Boundary Conditions 

If the medium to which the equations of motion are applied is 

bounded, some other kinds of elastic waves may also occur. These waves 

are called surface waves, since they are confined to the vicinity of one 

of the surfaces which bound the system. The most important type of sur­

face waves is a Rayleigh wave which was discovered by Lord Rayleigh 

(1887). This wave travels along the surface of the earth with a velocity 

that is always less than the shear wave velocity. The amplitude of this 

wave decreases exponentially with depth. Another type of surface wave is 

called a Love wave which is observed in earthquake seismology. It in­

volves transverse motion parallel to the surface of the ground and some­

times is called an SH wave. Love waves have velocities intermediate 

between the s-wave velocity at the surface and that in deeper layers. 

There are conditions on the stress and strain that must be satisfied 

for a bounded medium. These expressions express the behavior of stresses 

and displacements at the boundaries. For solid elastic media we assume 

that they are welded together at the surface of contact implying contin­

uity of all stress and strain components across the boundary. At a 

solid-liquid interface slippage can occur, so continuity of only normal 

stresses and displacements is required. Since liquids don't resist tan­

gential stress (i.e., rigidity vanishes in the liquid), tangential 

stresses in the solid must vanish at the interface and for a full surface 

of a solid or fluid (ideally a surface in vacuum where there can be no 

refracted waves), all stress components vanish; and the boundary condi-



24 

tions can't be satisfied by assuming that only one wave type is re-

fleeted. But rather another type of wave is needed to satisfy the 

boundary conditions. In the most general case for any incident wave 

(p-wave or s-wave) four separate waves are generated. A wave of each 

type is reflected, and a wave of each type is refracted. 

General Solution for the Reflection and Refrac-

tion of Plane Waves at an Interface 

For an incident plane wave on a plane interface of two semi-infin-

ite isotropic media (assumed to be two elastic solids in the general 

case) it produces compressional and distortional waves in both media. 

Four boundary conditions must be satisfied, requiring continuity of nor-

mal and tangential components of displacements and stresses across the 

interface. 

We start with an incident p-wave in the x-z plane, so all waves 

have no dependent on y, z is positive into the first medium. This inci-

dent p-wave will generate two reflected and two refracted waves at the 

boundary interface as shown in Figure 3. 

Let the displacement vector ~; ~ = ui + vj + wk be expressed in 

terms of a scalar potential ~. and a vector potential n. 
-+ -+ -+ -+ 
s = \!~ + \JxQ (2 .15) 

The scalar and vector potentials represent two independent wave 

types propagating in an unbounded medium. For a pure dilational wave 

-+ 
that involves no rotation, Q vanishes and the displacement vector is 

given by 
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Figure 3. Reflection and Refraction of Incident P-Wave at an Inter­
face of Two Elastic Solids 
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-+ 3¢ :- 3¢ : 3¢ ~ 
s = -~ + ay J +-k 

ax ()z 

and the wave equation is 

\72¢ 1 a2¢ 
(2 .16a) = 2 ()t2 a. 

which is a dilational wave propagating with a phase velocity a., where 

2 
a. = 

For a rotational wave that involves no dilation <jl vanishes, 

-+ 
~ = (~ 1 , ~2 , ~ 3 ) in general, and the displacement vector is 

+ 
s = 

and the wave equation is 

= 1,2,3 (2.16b) 

which is a rotational wave propagating with a phase velocity S, where 

= ~ p 

Equations (2.16a) and (2.16b) show that ¢ is associated with the 

dilation produced by the disturbance while ~- is associated with the 
~ 

rotation, and the introduction of the scalar and the vector potentials 

has thus enabled us to separate the effects of dilation and rotation in 

the medium. 
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For the case when the motion is in the x-z plane, let us assume 

-+ 
that ~ is a function of x and z only, and Q = (0, $, 0) where $ is a 

function of x and z. 

and 

The displacement corresponding to both the waves is given by 

-+ -+-+ 
s = 'il~ + 'ii'xQ 

= c21- ~>i + 21 j + c2.2. + ~>k ax az ay az ax 

u 

v = 2.2. = 0 (~?'~ (y)) ay 

where ~ and $ satisfy the wave equations 

and 

(2.17) 

(2 .18a) 

(2.18b) 

(2.18c) 

(2 .19a) 

(2 .19b) 

The form of a pressure wave ~ propagating with a phase velocity ~, 

and having a phase velocity c along the x-direction is 

-i (k x-wt) 
~· = f(z) e px (2. 20a) 

where k 
w and k w = = px c p ~ 
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The form of a shear wave ~ propagating with a phase velocity S, and 

having a phase velocity c' along the x direction is 

where k 
SX 

= 

= 

g(z)e 

w 
c' 

-i (k x-wt) 
sx 

and k 
s = w 

s 

(2.20b) 

It will be shown later that both waves have the same phase velocity 

along the x-direction (c=c'), and hence both waves have the same phase 

factor. To solve for f(z) and g(z) we substitute the expressions of 

f(z) and g(z) from Equations (2.20a,b) into Equations (2.19a,b). 

f (z) 

f(z) = 

= 
1:... 32¢ 

2 " 2 a at 

- k2 f(z) + f"(z) 
px 

2 
w = -- f(z) 

2 
a 

d 2f(z) + k2 f(z) 0 = 2 pz 
dz 

ik z -ik z 
A.e 

pz +A e pz 
if k 'f 0 (8 

r pz ~ 

if k pz 

p 

0 (8 
p 

'f 0) 

0) 

(2. 2la) 

(2.2lb) 

In a physical solution c2=o, but if c2~o; f(z) + oo as z + oo which has 

no physical meaning. Similarly, 

g(z) = B. e 
~ 

ik z 
sz + B 

r 
e 
-ik z 

sz (2.22) 



<P = 

lJJ = 

-i(k x- k z - wt) 
A. e 

1. 

B. e 
1. 

px pz 

-i(k x-k z - wt) 
sx sz 

+A 
r 

+ B 
r 

e 
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-i(k x + k z - wt) 
e 

px pz , (2.23a) 

-i(k x - k z - wt) 
sx sz (2.23b) 

and similar expressions for the transmitted waves except that there are 

no reflected waves in the second medium. So, the transmitted p-wave <P' 

has the form 

<P I 

where 

= 

k' 
px = 

-i(k' x- k' z- wt) px pz 

w 
k' 

c' px = 
w 

a.' 

and a.' is the phase velocity for the transmitted p-wave. 

where 

The transmitted s-wave lJJ' has the form 

= 

k' 
sx = 

-i(k' X- R' Z - wt) 
SX SZ 

w k' c' sx = w 

S' 

and S' is the phase velocity for the transmitted s-wave. 

(2.23c) 

(2. 23d) 

The reflected and transmitted waves of either kind must satisfy 

some boundary conditions (B.C.) on the stress and strain. 

Before we solve for the boundary conditions we are going to develop 

a generalized form for Snell's Law that relates different angles of 

emergence to the different wave velocities. 

Assuming a steady state solution, then B.C. are independent of time 
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t ~ frequency w = constant and B.C. are independent of position x ~ the 

x-component of the wave vector k = canst. 

or 

or 

where 

k = k = k' k = k' = canst. 

k case 
p p 

w case = a. p 

c = 

px px SX SX 

k' case• = k case = k' case• 
p p s s s s 

(e = e . e > pr p1 p 

case• 
a.' p 
w 

case 
p 

= 

= w S cases = 

a.' 
cos6' 

p 
case 

s 

w 
S' case~ 

S' 
cose• 

s 

= 

and c is the phase velocity along the interface. 

w 
c 

(2. 24a) 

(2.24b) 

This generalized Snell's Law can be derived also as a result of re-

quiring that the projections of the wave fronts on the x-axis travel with 

the same phase velocity c along the interface. 

Consider a special example of liquid/liquid interface. An incident 

p-wave of wave length A., which is the distance between successive wave 

fronts, meets the x-axis which represents a discontinuity in the medium. 

Part of the wave is reflected, and the other part transmitted such that 

wave fronts have the same projections along the interface. Let t be the 

time interval between successive wave fronts which are shown in Figure 4. 

For the reflected p-wave consider the two triangles QPO and STO. 

QO so = ct 
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Refracted 

Liquid c 

Incident Reflected 

Figure 4. Phase Velocity Along the Interface of Mode Converted Waves 



and 

and 

or 

and 

and 

or 

PO = TO = at 

tane 
p 

e = e . = e 
pr PJ. p 

= !:2. = 
PO 

cos(8 ) 
p 

at a = ct c 

a = c 
cos(8 ) 

p 

For the transmitted p-wave consider the triangle ORS 

tane' = 
p 

= 

OS = ct 

OR = a't 

RS 

RO = 
/ 2 2 ,2 2 c t -a t 

a't 

~r.~) 2_1 
a' 

COS8 I = a't 
ct 

a' = 
p 

c = a' 
cos8' 

p 

c 
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(2.25a) 

(2.25b) 
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Similar expressions will be found for the reflected and transmitted 

s-wave for the general case of solid/solid interface. So, 

tan8 = ~ (2.25c) s s 

or, 

and 

or, 

s c = cos8 
s 

tan8' = /<...£..) 2-1 
s S' 

c = s· 
cos8' 

s 

(2. 25d) 

So, by using simple geometry we were able to derive the generalized 

Snell's Law 

c = a. 
cos8 

p 
= a.' 

cos8' 
p 

= cos8 
s 

Boundary Conditions 

= S' 
cos8' 

s 

The reflected and transmitted waves of both kinds (pressure-wave 

and shear-wave) have to satisfy the following B.C. on stress and strain 

along the interface of both media, i.e., the x-axis (z=O) in Figure 3. 

Continuity of Tangential Displacement u 

ulz=O = u' I z=O (2.26a) 

where 

u = ~-2.1 ax Clz 



-ik(Ai+Ar) - ik b(Bi-Br) = (A'+b'B') (-ik) 

or Ai + Ar + b(Bi-Br) = A'+b'B' 

Continuity of Vertical Displacement w 

where 

or 

w 

w' I z=O 

= ~+~ 
Clz Clx 

ik a(Ai-Ar) - ik(Bi+Br) = ika'A' - ikB' 

a(Ai-Ar) - (Bi+Br) = a'A'-B' 

Continuity of Tangential Stress 

a = a' zx zx 

where a = ]1£ zx zx 

= 11 (~ + ~) 
Clx Clz 

= {.1._(~ + ~) + 2(~- ~)} 11 . Clx Clz Clx Clz Clx Clz 

= 

= 

34 

(2.26b) 

(2.27a) 

(2.27b) 

(2.28a) 
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Continuity of Normal Stress at z 

C5 = zz CJ ZZ I i 
(2.29a) 

where C5 = A.t. + 2f.l E zz zz 

= A.62¢ + 2f.l (~) ()z 

A.v 2¢ + 
32¢ a2w 

= 2f.l (--2 + -·-) 

Clz ClzClx 

f.lb 2 -p(B.-B) 
P 1. r 

= 

or p[c?a2 (A.+A) + ~ r/CA.+A)- 2bS 2 (B.-B )] 
1.r f.! 1.r 1.r 

= [ 2 2 A 1 2 2 
p' a' a' A' + ~ B' A' - 2b'B' B'] 



but 

So, 

but 

Similarly, 

A.+2]J -
2 

),_ a 
2 ::::; 2 = , 

11 ]J 2 
B 

2 
[ 2 2 2 

- 2bS2 (B.-B )] 
a 

p a a (A. +A ) + (-- 2)B (A.+A ) 
J. r B2 J. r J. r 

= [ 2 2 
p' a' a' A' + 

a• 2 2 2 (-- - 2) B I A I - 2b I B I B I J 
B'2 

[ 2 2 2 2 2 p' A'{a' a' +a' - 213' } - 2b'B' B'] 

2 2 
a +1 = tan 8 + 1 

p 
2 

sec 8 , 
p 

2 2 2 2 2 a (a +1) = a sec 8 = C 
p 

2 2 
a' (a' +1) 

2 2 2 
a' sec 8' = C 

p 

36 



but 

and 

2 
p( (A1+Ar) {1 - 2 ~} 

c 

2 
2b _L (B. -B ) ] 

2 J. r c 

(3 ,2 012 
= p '(A' {1-2 -} - 2b' _IJ- B'] 

c2 c2 

2 = 

c2 2 
--- 2 = b' -1 
(3'2 -

= 

37 

(2.29b) 

It seems that we have six unknowns and four equations, but 

1. We have one type of incident wave, so for an incident p-wave 

B. = o, and for an incident s-wave A.=o. 
l. l. 

2. We can normalize the amplitudes to the incident wave amplitude 

so we have ratios w.r.t. A. or B .• 
l. l. 

So for an incident p-wave (B.=o) we have the following equations: 
l. 

A.+A - bB = A'+b'B' 
J. r r 

a(A.-A ) - B = a'A'-B' 
J. r r 

2 2 
p'(3' (2a'A' + {b' -l)B'] = 

2(3'2 = p'(A' (1- -- B'] 
2 c 

(2.30a) 

(2.30b) 

(2.30c) 

(2.30d) 

and for an incident s-wave {A.=o) so we have the following equations. 
l. 



A +b(B.-B ) = A'+b'B' 
r ~ r 

aA - (B.+B ) = a'A'-B' 
r ~ r 

p·St-2aA +(b2-l) (B.+B )] 
r ~ r 

= 

38 

(2.3la) 

(2.3lb) 

(2.3lc) 

Q ,2 Q ,2 
= p'[A'{l-2 -~-'-}- 2b' _...,_ B'] (2.3ld) 

c2 c2 

Partioning of Energy 

The disturbance caused by the traveling waves induces the particles 

of the medium to possess both types of energy (kinetic and potential). 

Because the displacement is harmonic, the total energy can be found using 

maximum potential energy (i.e. when the displacement is maximum in magni-

tude) or the maximum kinetic energy. The total energy then is 

= (Ek) max 
= (2. 32) 

where this is the kinetic energy per unit volume for the dilation mode. 

Incident p-wave $. 
~n 

ik(ct-x+az) = A. e 

• (p) 
u. 
~ 

= 

~ 

(p) 
u. 
~ 

au 
at = 

(d) 
w = 

= ax 

= 

acp. 
~ az- = 

= -ik $i 

-C(ik) 2 c/>. 
~ 

a(ik)c/>. 
~ 

2 = ck 4>. 
~ 

(2.33a) 



• (d) 
w. 
~ 

aw ~d) 
~ 

at ac(ik) 2 cp. 
~ 

= 
2 

-cak <P. 
~ 
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(2.33b) 

E~d) (E~~)) = ~ p( (ck2 ) 2 + (-cak2 ) 2 ]A~ 
~ max 

1 2 4 2 2 2 pc k (l+a )Ai 

Power incident per unit area= U 1 ·E. 
norma ~n 

For the reflected p-wave: 

so similarly, 

and 

1 w4 2 
=-2p-A,. a ~ 

A eik(ct-x-az) 
r 

1 4 2 = - p ~A 
2 2 r 

a 

2 2 
sec 8 A. 

p ~ 

(2.33c) 

(233d) 

(2.34a) 



For the transmitted p-wave: 

<Pt 

and 

For the reflected s-wave: 

1jir 

E (s) 
r 

P (s) 
r 

For the transmitted s-wave: 

1jit 

1 4 2 = - p ~sinS A 
2 a p r 

= 

= 

= 

= 

= 

= 

A 
c 

ik(ct-x+a'z) 
e 

1 4 2 = - p' ~A 
2 ,2 t 

a 

1 4 2 
= - p ' ~ sinS ' At 

2 a' p 

B 
ik(ct-x-bz) 

e 
r 

1 4 2 
-p ~B 
2 s2 r 

1 
4 

B2 w . s -p S s~n s 2 r 

ik(ct-x+b'z) 
B' e 

1 4 2 
'_w B' -p 

2 S'2 

40 

(2.34b). 

(2.34c) 

(2.34d) 

(2.35a) 

(2.35b) 

(2.35c) 
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= 
1 w4 2 
- p' sine' B' 
2 s· s 

(2.35d) 

Due to conservation of energy the power per unit area in the z-direction 

is conserved. 

= (2.36) 

or 

4 2 1 
4 4 2 w w 1 A2 1 sine sine w sine• -p A. = -p + - p' At 2 Cl. p l. 2 Cl. p r 2 a.' p 

1 
4 

B2 1 
4 

B'2 w sine w sine• + 2p s + - p' S' s r 2 s 

or by normalizing the energies w.r.t. the incident energy 

1 = 

= 

where: 

A 2 
(...£) 
A. 

l. 

£;2 + r 

sine• 
p' Cl. +-- p 
p a.' sine 

p 

£;2 2 2 
+ n + nt t r 

A 

E;r 
r = ' A. 
l. 

A 2 
(.....!.) 
A. 

l. 

~t = 

!~ sine 
s 

n = r s sine p 

sine 
+ ~ __ s;:.. 

.., sine 
p 

!?-· sine• 
a p 

p a.' sine 
p 

sine• L E:_ __ s:::;. 
+ P a' . e .., s1n 

p 

A 
r 

A. 
l. 

B fi·E:._ sine• 
B' r s 

' nt = A. p s I sine A. 
l. p l. 

B' 2 
(-) 
A. 

l. 

(2.37) 

(2.38) 

where E;r' ~t' nr' and nt are the square root of energy for the reflected 
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p-wave, transmitted p-wave, reflected s-wave and transmitted s-wave re-

spectively for an incident p-wave of unit energy. But since 

c = 

a. 
= 

i3 

a. 
cos8 

p 
= 

cos8 
-~P;;:... a. 
cos8 ' a.' 

s 

a.' i3 
cos8' 

p 
cos8 

s 

cos8 
---'P:- a. 
cos8' ' i3' 

p 

= 

= 

i3 I 

cos8' 
s 

cos8 
p 

cos8' 
s 

so we can write the relative square root energies as follows: 

~r = 

~t 

= 

and 

= 

A 
r 

A. 
~ 

/P 'a' At 
pa A. 

~ 

~ a 

B 
_E. 

A. 
~ 

~Bt 
pa A. 

~ 

(2.39a) 

(2.39b) 

(2.39c) 

( 2. 39d) 

After solving for the square root of energies of the reflected and 

transmitted plane waves as a function of the corresponding angles, i.e. 

I; (8 ), ~t(8'), n (8 ), and n (8') 
rp p rs ts 

we will present them in polar plots to show their directivity patterns 

in a concise way. 
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Then some linear plot is presented of the geophone response of the 

reflected waves as a function of offset, as discussed later for differ­

ent interfaces. 



CHAPTER III 

MODE CONVERSION DUE TO AN INCIDENT 'P-WAVE' 

AT A PLANE INTERFACE 

When a plane wave of either type (pressure-wave or shear-wave) 

meets a discontinuity in the medium in which it is propagating part of 

it is reflected and part of it is transmitted, besides that a wave of 

the other type (shear wave for an incident pressure wave and a pressure 

wave for an incident shear wave) is reflected and transmitted as well. 

This mode converted wave is necessary to satisfy the boundary conditions 

at the interface. 

I will be discussing all possible cases of interfaces, starting 

with the simple case of solid/vacuum interface where all waves are re­

flected and no waves are transmitted, then to liquid/liquid interface 

where only p-wave exists then to liquid/solid interface where no s-wave 

is reflected, next to solid-liquid interface where no s-wave is trans­

mitted and finally to the most general case of solid/solid interface 

where an incident 'p-wave' will produce four waves; reflected and trans­

mitted waves of both types of waves. 

In this chapter all cases are taken where the incident wave has a 

phase velocity that is higher than all other wave-velocities, so we 

avoided the possibility of any critical angle, but the following chap­

ter, Chapter IV, is devoted for critical angles and the associated total 

reflections. 

44 
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Solid/Vacuum Interface 

Boundary conditions that must be satisfied are: 

1. Vanishing of tangential stresses, and 

2. Vanishing of normal stresses. 

In other words, no disturbance can transfer across the boundary so 

there are no transmitted waves as shown in Figure 5. Using solutions that 

were found for the general case: 

or 

l. cr = cr' ; cr' = o in the liquid. 
zx zx zx 

B. = o for an incident p-wave. 
~ 

2a(A.-A ) + (b2-l)B = 0 
~ r r 

2. cr = cr' ; cr' = o in the liquid. 
zz zz zz 

. 82[ 2 J • • p (A. +A ) (b -1) + 2b B 
~ r r 

(A.+A ) (b2-l) + 2b B = 0 
~ r r 

A 

0 

we can solve for __!:. and 
A. 

B 
r 

A. 
~ 

from these equations (3.la,b). 
~ 

A 
4ab- (b2 -1) 2 r = ' A (b2-l)2 i 4ab + 

B 2 
r 4a (b -1) = A. (b2-l)2 ~ 4ab + 

(3.la) 

(3.lb) 

(3. 2a) 

(3. 2b) 



46 

z 

Figure 5. Reflection of Incident P-Wave at Free Surface of Elastic 
Solid 



Using Equation (2.12) (relations for square roots of energies), 

11 
r 

!;r 

A 
= _£. = A. 

~ 

/li Br = 
a A. 

~ 

4ab - (b2-1) 2 

4ab + (b2-1) 2 I 

47 

(3. 3a) 

(3. 3b) 

Noting that 1; 2 + 11 2 should be equal to 1. Use Equation (3.3a and 3.3b) 
r r 

to show this. 

{4ab - (b2-l) 2' 2 lh 2 ( 2 ) 2 ~;;_,___:;~,;;;;,:.,-=-.1' + ( _ i =-) { 4 a b -1 } 
2 2 a 2 2 

4ab + (b -1) 4ab + (b -1) 
= 

(4ab) 2 - 8ab(b2-1) 2 + (b2-1) 4 + 16ab(b2-1) 2 
= 

{4ab + (b2-1) 2 }2 

= 1 (conservation of normal energy flux) (3.3c) 

The above equations were derived for any general elastic solid, but in 

some literature they took the special case where A = ~, or 

Poisson's ratio a 

as the case for most solids. 

If A = 11, then 

but since 

0.25 

A + 2~ 

jJ 

(a = 

= 3 

A 
2(A+~)) 

( 3. 4a) 



c = asece 

or 

so, 

and 

p 

B 
r 

A. 
~ 

A 
r 

A. 
~ 

= 

Bsece (Generalized Snell's Law) 
s 

2 a 2 2 sec e = -sec e 
132 p s 

= 3sec2e 
p 

(l+b2) = 3(1 + a2) 

b2 

= 

- 1 1 3a2 

4ab- (1 + 3a2)2 

4ab + (1 + 3a2)2 

2 4a (l + 3a ) 
2 2 • 

4ab + (l + 3a ) 

For normal incidence (8 = 90°) 
p 

or 

cose 
s 

(13/a)cose = o ~ e = 90° 

2 2 
(a + l)a. 

2 2 
a ct 

b 

p s 

2 2 
(b +1) 13 

ct 
"' -a 

13 

lim 4ab- (b2-1)2 
a,b-+oo 2 2 

4ab + (b -1) 

48 

(3. 4b) 

(3. Sa) 

( 3. Sb) 

( 3. 6a) 

{3.6b) 



lim 
= a-+<» 

= -1 

2 2 2 2 
4a(a/S)a- {(a /S )a} 

2 2 2 2 
4a(a/S a) + {a /S a ) 

2 B 
e 1~ 90° __!:. = 

p A. 

lim -4a (b -1) 

a,b-+<x> 4ab + (b2-1) 2 
l. 

lim 
2 2 2 

- 4a(a /S )a 
= a-+<xl 

4a(a/8 a) + (a2 /S2 a2)2 

= lim a3(-a2L82) 
= 

a-+<» 2 + a4(a4/84) a (4a/8) 
0 

For grazing incidence: 

= 

so 

2 
tan e 

s 

e = 0 + a = tane = o, 
p p 

case = (8/a)cose = 8/a or sece = a/8 
s p s 

= 
2 

sec e - 1 s 

b 

lim A 
e +o __!:. 
p A. 

l. 

= 

= 

= 

2 2 2 
a /S - 1 + b - 1 = 

fa_2 ;s2 - 1 > 0 

lim 4ab - (b2 -1) 2 
e +o 
p 4ab + (b2 -1) 2 

-1 

2 

49 

(3.7a) 

{3. 7b) 

:\ 
- > 0 
~ 

(3.7c) 

{3.8a) 
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= 0 (3. Sb) 

So we have total reflection for grazing and normal incidence, and the 

mode converted "S-wave" vanishes in these two cases. 

Reflected "P-Wave" Vanishes 

If 

for the special case when A = ~ (b2 - 1 = 3a2 + 1) it reduces to 

16a2 (3a2+2) = (3a2+1) 4 which has two positive roots 

al = 0.2272 + e = 12° 48' , 
p1 

a2 = 0. 5773 + e = 30° 
p2 

Liquid/Liquid Interface 

Liquids don't resist any shear stress (~ = ~· = o) so S-wave can't 

propagate in liquids (S = S' = o). Hence all s-wave coefficients 

vanishes B. = B = 
1 r 

2 2 2 . 2 B' = o but b + oo as S ~ o such that b S ~ a s1n6 =c 
p 

2 
since c 2 . 26 =a s1n 

p 
= s2sin2e = B2 Cl+b2) = 6' 2 Cl+b' 2 ) while bS 2 + o, 

s 

b'S• 2 + o. 

Boundary Conditions 

1. Continuity of normal displacement, and 

2. Continuity of normal stress. 

So, from the equations that we have derived for the general case (2.27b) 

a(A.-A ) - (B? + B0 ) 
1 r 1 r 

= a'A' - B0 , or 
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Figure 6. Reflection and Refraction of Incident P-Wave at Liquid/ 
Liquid Interface 
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Eq. (2. 29b) 

or 

a(A.-A ) = a'A' , 
~ r 

2 2 
PB (b -1) (A.+A ) 

~ r 

since as b ~ oo, b' ~ oo 
2 

c = 

Solving 3.9a and 3.9b we have 

and 

A 
r 

A. 
~ 

A' 
A. 
~ 

p(A.+A) = p'A' 
~ r 

= 

= 

= 

= 

p'a- pa' 
p'a + pa' 

P'/P - a'/a 
p'jp + a'/a 

2ap 
pa' + p'a 

2 
p'/P + a'/a 

Partioning of the energy for the reflected P-wave: 

52 

(3. 9a) 

(3. 9b) 

(3 .lOa) 

(3.10b) 



i;r = 

For the transmitted "P-wave", 

/P 'a' 
pa 

A 
r 

A, 
~ 

= P'/P - a'/a 
P '/P + a' /a 

= ~ P'/P ! a'/a 

To insure the conservation of normal energy flux, 

= 
2 

(p 'jp - a 1 /a) p 'a 1 4 
2 + -- 2 

(p'jp + a'/a) pa (p'jp + a'/a} 

53 

(3 .lla} 

(3.llb) 

= 
2 2 

(p '/P) + (a' /a) - 2 (p '/P) (a' /a) + 4 (p '/P) (a' /a) 

(p '/p + a' /a) 
2 

= 1 

(That verifies the conservation of normal energy flux). 

For normal incidence: 

8 = 
p 

so as 

so since 

90°-+ cos8' 
p 

a' = - cos8 
a p 

8 I = 90° 
p 

= 0 

8' -+ 90° and a, a' -+ oo 
p 

(3.12) 



or 

so 

or 

2 2 
a sec 8 

p 
2 2 

a' sec 8' 
p 

2 2 2 2 
a (l+a ) = a' (l+a' ) 

2 2 ,2 ,2 
a a = a a 

a' a = -a a' 

lim A 
lim P'/P e +9o0 

p 
r 

A. 
~ 

A 
r 

A. 
~ 

= 

= 

= 

= 

a,a'-+oo p '/P 

P'/P - a./a' 
p'/p + a/a' 

p'a' - pa 
p'a' + pa 

Z'-Z z pa 

- a'/a 
+ a'/a 

is the 
Z'+Z 

the medium 

lim A 
lim 2 e· +90° t = p A. a,a'~ p'/P + a'/a 

~ 

2 
= p'/p +a/a' 

2 pa' 
= p'a' + pa 

For grazing incidence: 

54 

(3 .13a) 

(3 .13b) 

(3.14a) 

impedance of 

(3.14b) 



8 = o ~ cos8' = 
p p 

a tan8 
p 

o, 

a' 
case 

a' 
a p a 

2 
tan 8' = 

p 
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2 
(E:..._) - 1 
a' 

We are considering the case for a> a'. The other case is delayed 

to the discussion of total reflection in the next chapter. 

lim 
8 ~0 

p 

A 
r 

A. 
J. 

= lim 
a~o 

(a' is finite) 
=/: 0 

= -1 

p'a- pa' 
p'a + pa' 

(3.15a) 

(so we have a total reflection for grazing incidence and a > a' with a 

phase shift of n); 

lim At 
8 ~o A. 

p l. 

lim 2ap 
a~o a'p + ap' 0 (3.15b) 

(a' is finite) 
=/: 0 

Liquid/Solid Interface 

For the case of liquid solid interface slippage can occur, so tan-

gential displacement is not continuous and tangential stresses has to 

vanish at the boundary. 

From the equations that we derived for the general case: 

1. Continuity of normal displacement. 

a(A.-A ) - (B.~o + B ~) 
J. r J. r 

a(A.-A ) = a'A' - B' 
J. r 

a'A' - B' 

(3.16a) 
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Figure 7. Reflection and Refraction of Incident P-Wave at Liquid/ 
Solid Interface 
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or 

or 

2. Continuity of tangential stress 

a = a' = o at z = o zx zx 

2a'A' + (b' 2-l) B' = 0 .... 

3. Continuity of normal stress 

••• pf3 2[(A.+A )(b2-l)- 2b(B.-+o- B -+o) 
~ r 1. r 

S -+ o but b -+ oo such that Sb -+ c 

2 
pc (A.+A ) 

l. r 

A.+A 
~ r = 

I s I 2 2 
£._-[A' (b' -1) - 2b'B'] 
p 2 

c 

These equations can be written as follows: 

Ar a' A' +---;;-: a A. 
l. ~ 

= 1 

A 
r A' 2 B' 

0 - + 2a' - + (b' -1) = 0 A. A. A. 
~ l. ~ 

57 

(3.16b) 

(3 .16c) 

(3.17a) 

(3.17b) 



A 
r 

A, 
~ 

or is the matrix 

·Where: 

all = 1 , 

a31 = 1 , 

2 
p' B I 

= 
2 

pc 

form A X = 

al2 

a22 

a32 

a = a'/a 12 

= 2a' 

(b I 2 -1) A' -+ 
A, 
~ 

B 

al3 A /A. r ~ 

a23 At/Ai 

a33 B'/A. 
~ 

2 
-p' _13• 2 = (b' -1), 

P c2 

2b'p' 8' 2 B' 

= 

----p 2 A. 
c ~ 

1 

0 

-1 

a = - 1/a 
13 
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= 1 (3.17c) 

(3.18) 

(3.19) 

Noting the following that we are dealing here with just three cases that 

is: 

1. For normal incidence, 

2. For grazing incidence, 

3. For oblique incidence; but we are considering the case when 

all the coefficients (a', b') are real. 

The first two cases [(a) and (b)] are solved algebraically avoiding 

any singularity that may happen for 8 = TI/2 or 8 = 0°. 

The other two cases where a' is imaginary but not b' or both a' and 

b' are imaginary are treated in the next chapter of total reflections 



and critical angles. 

As an illustration we solve for A , A' and B' to obtain 
r 

A.+A = 
~ r 

A, - A 
~ r 

B' 

a' 1 = -A'--B' 
a a 

-2a' ----A' 
(b' 2-l) 

p'S' 2 2 p' s• 2 
(b' -1) A' - 2b' --- B' 

sc2 0 c2 
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(3. 20a) 

(3. 20b) 

(3.20c) 

By adding Equations (3.20a) and (3.20c) and substituting for B' from 

(3.20b) 

or 

2A, 
~ 

= 

A,{2apC2 (b 12-l)} 
~ 

A' 
or 

A. 
~ 

B' 
A. 
~ 

Is I 2 2 I 

A 1[P (b 1 -1) + a 
2 a 

pC 

P I (312 1 2 I 

(2b' -- + -) (- ~ >], 
P c2 a b 1 -1 

= 
[ 2 2 2 2 2 A' p 1i3 1 (b 1 -1) a+a 1pC (b' -1) 2 2] + 4aa 1b 1p 1i3 1 +2a 1pC 

2 2 
2apC (b 1 -1) 

(3. 2la) = 
2 2 2 J 2 2 

p 1S 1 a[(b 1 -1) + 4a 1b 1 + a' pC (b 1 +1) 

2aoc2 (b 12-l) 
2 2 

a'pC (b' +1) + ap'S' 2{(b 12-1) 2 + 4a 'b'} 

4aa' pC 
2 

= (3.2lb) 
2 2 

+ ap•S• 2{Cb' 2-1) 2 + 4a'b'} a'pC (b' +1) 



A 
r 

A. 
~ 

= 

= 

a' A' 1 B' 
1- --+ 

a A. a A. 
~ ~ 

2 2 2 2 2 
-pa'C (b' +1) + ap•S• {(b' -1) + 4a'b'} 

2 2 2 2 2 
a'pC (b' +1) + ap•S• {(b' -1) + 4a'b'} 

For normal incidence: 

e 
p 

'IT = --+ e• and e• 
2 p s 

'IT as e -+-a-+oo, a' -+coandb' -+oo. 
p 2 

'IT 
= 2 

So the identity c2 2 2 = Cl. sec e 
p 

2 2 
=a.' sec e• 

.. 

= 

2 2 
a. a '2 '2 a. a 

p 

S•2b,2 . 

2 2 2apC (b' -1) 
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(3.21c) 

'IT -+-
2 

(3.22) 

lim 
e -+ 
p 

'IT 

2 
A' 
A. 
~ 

lim 
a,a' ,b'-+co 2 2 2 2 2 ] a'pC (b' +1) + ap•S• [(b' -1) + 4a'b' 

= 

= 

lim 
a -+co 

lim 

2 2 a.2 2 2p a(a. a ) (-2- a ) 
S• 

2 2 2 a 2 
(a./a.' a)p(a. a) (a. --2-> + 

s• 

a-+co 2 a.4 5 4a.2 3 a.5 5 
p' S' [--2- a +~a] + p 2 a 

S' f.' Cl. I 8' 

Cl. Cl. J + 4 (~ a) (-.-, a) 
8 



lim 
a -;.a> 2 

, 0 ,2[ 4 01 2 ~] 
P ~ a 1~ + a•B• 

A' 2 
= 

elim o B' lim 
-+ 90 - = = p A. a,a' ,b'-;.<:o 

2 
4a a' pC 

lim 
= a -;.a> 

lim = a-;.<:o 

= 

0 

~ 

a 2 2 
-4a(-, a)p (a a ) 

p(aja' 

5 pa 

a' 6• 2 
a 

2 2 a 2 2 
a) (a a ) (--2 a ) 

B• 

-4p 3 
a ja' 

5 4 5 
+ p'a a 

3 
-4p a ja' 

4 
a 

+ 4a 
2 

a 

+ p'b' 

b' 
P 'a 

a' 

5 
pa a 4 2 _P' 
-- + p 'a a+ 4a b' 
a' B• aa' 

2 
2 2 2 

r (a a ) al--
B•2 

3 

a 
+ 4(-, a) 

a 

So, there is no transmitted s-wave at normal incidence. 

A 
r 

A. 
~ 

= 

= 

lim 

1 -
a• 

a' A' 1 B' 
1- --+ 

a A. a A. 
l ~ 

2 
(pI jp + aja I ) 
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(3. 23a) 

aa] 
b' 

(3.23b) 



= 

= 

1 - __ 2.;...cv.~p __ 
cv.'p' + cv.p 

a'p' - cv.p 
a'p' + ap 

Z' - Z 
Z' + Z 

Partioning of energy at normal incidence is as follows: 

= 

.;t = 

= 

= 

A 
r 

A. 
~ 

p'a' + pcv. 
p'a' + pa 

I~~ 2 
P a' P'/P + afa' ' 

0 

The total normal energy flux is given by 

.;2 + .;2 + n2 
r t t = 

p'a'-pcv. 2 p'a 
(p'cv.'+pcv.) + pa' 

4 
2 

(p t jp + ajex t) 
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(3.23c) 

(3.24a) 

(3.24b) 

(3. 24c) 

2 2 p 'ex 2 2 
(p'a') - (pex) - 2(p'ex') (pex) + 4 (p ex' ) 

pex' = (p'a'+ pa') 

2 2 
(p 'ex') + (pcv.) + 2 (p 'a') (pex) 

(p I ex I + pCY.) 
2 

= 1 (3.25) 
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This assures the conservation of normal energy flux. 

For grazing incidence: 

For a > a' if 8 = o 
p 

e' 
p 

-1 
cos (a'ja), e• = 

s 
-1 

cos (6'/a) 

-+ a > S' so a = o but a' , b' :1 o. 

So 

So 

A' e -+ o 
p A. 

lim 

elim 
-+o 

p 

elim 
-+0 

p 

B' 
A. 
~ 

~ 

A 
,__;:, 
A, 
~ 

= 

lim 
a-+o 

o, 

lim 
a -+a 

0 2 2 
2a pC (b' -1) 

2 2 0 2 2 2 
a'pC (b' +1) +a p'S' {(b' -1) + 4a'b'} 
'----v------" 

'I 0 

0 2 
4a a' pC 

= 0 • 

= 
lim [ 1 _ a' 
a-+o a 

1 _ lim 
a -+a 

a' 
a 

A' 
A. 
~ 

A' 
A, 
~ 

+ 

+ 

1 
2 
~] 
A. 
~ 

lim 
a-+o 

1 B' 
a A. 

~ 

A' a' A' 
Although --A.-+ o as a-+ o, but-----+ finite :1 o as a-+ o 

a A. 
~ ~ 

B' 1 B' 
Similarly,---+ o as a-+ o, but----+ finite :1 o 

A. a A. 
~ ~ 

lim a' A' ---- = a-+o a A. 
~ 

lim 
a -+a 

2 2 
2a':lo pC (b' -1) 

2 2 2 2 2 
a'pC (b' +1) +a p'S' {b' -1) + 4a'b'} 
~ 0 

'I 0 

(3.26a) 

(3.26b) 

(3.26c) 



= 

= 

lim 1 B' 
a-+o a A. 

~ 

A 

2(b' 2-1) 

(b' 2 + 1) 

2(a?;s• 2 -

(a.2/S'2) 

= 

4 = 

4 = 

lim 
a+o 

_£ = 
A. 
~ 

= 

= 1 

2) 

2 
4a'p'C 

4 
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(3.27a) 

(3.27b) 

(3.27c) 

We have a total reflection with phase shift of TI. The partioning of 

energy at grazing incidence is 

1;;2 
A. 2 

(-1) 2 = (-2:.) = = 1 
r A 

(3.28a) 
r 

1;;2 ~ 
A2 

L 
0 a' A 2 

t a _j:,) = = (- = 0 
t pa 2 p a' a A. A. ~ ~ Finite 

(2.28b) 



65 

B2 B 
2 

2 L~ pI 
nt = _t = -b'a' c! _t> = 0 (3.28c) 2 a A. p a p 

A. ~ ~ 

Finite 

where ~ 2 + ~ 2 + n2 
r r t = 1 indicating conservation of normal energy flux. 

Solid/Liquid Interface 

Slippage occurs at the solid/liquid boundary, so the tangential 

stress vanishes at the boundary (no shear wave is transmitted to the 

liquid medium), and the tangential displacement is not continuous. 

The boundary conditions are: 

1. Continuity of normal displacement. 

2. Continuity of tangential stress. 

3. Continuity of normal stress. 

For an incident p-wave, S. = o, S' 
~ 

o (nos-wave is transmitted), 

using the corresponding equations for the boundary conditions from the 

general solution we have continuity of normal displacement; 

a(A.-A ) - (B.+B ) a'A' - B' 
~ r ~ r 

or a(A.-A ) - B = a'A' 
~ r r 

(3. 29a) 

Continuity of tangential stress (a =a' = o); 
zx zx 

2 2 J PS [2a(A.-A ) + (b -l)B 
~ r r = 0 

or 2a(A.-A ) + (b2-l)B 
1. r r = 0; (3.29b) 

continuity of normal stress 
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Figure 8. Reflection and Refraction of Incident P-Wave at Solid/ 
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or 

2 2 J pS [(A.+A) (b -1) - 2b(B.-B) 
J. r J. r 

2 
S'+o but b'S'+e, b'S' +o 

2 2 J pS ((A.+A ) (b -1) + 2b B 
J. r r = 

67 

(3.29c) 

Solving for the reflected, transmitted, and mode converted amplitudes 

(Ar' At' Br) we find the following: 

and 

B 
r 

A. 
J. 

A 
r 

A. 
J. 

= 

= 

2 2 
-4aa' (b -1) p S 

2 2 2 2 2 2' 
p'C a(b +1) + pS a' (b -1) + 4aa'b pS 

2 4 
2api3 (b -1) 

·2 2 2 2 2 2 
p'C a(b +1) + PS a' (b -1) + 4aa'b PS 

(3.30a) 

(3. 30b) 

(3.30c) 

For normal incidence: 

8 -+90° 8 I -+ 
p p' 

2 . 8 S sJ.n as 8 
s 

Slim Tf 
-+-

p 2 

p 

8 I Tf 
a,a' ,b-+co, since c2 2 . 28 a• 2sin28• -+ --+ = a SJ.n = s 2 p p 

Tf -+ --+ 

B 
r 

A. 
J. 

2 
c2 2 

"" a a 

lim 
a,a',b-+co 

= o, 

2 ,2 ,2 S2b2. (3.31) "' a a "' 

2 2 
-4aa' (b -l)pS 

2 2 2 2 2 2 
p'C a(b +1) + pS a' (b -1) + 4aa'bpi3 



eli~ n 
p 2 

A' 
A. 

l 

lim 
= a,a' ,b+oo 

2 4 
2ap6 (b -1) 

2 2 2 2 2 2 
p'C a(b +1) + p6 a' (b -1} + 4aa'bp6 
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2 
(3. 32a) = P'/P + a/a' 

61im ~ 
A 

r = p + 2 A, 
1 

lim 
a,a' ,b+oo 

p'a' - pa 
p'a' + pa 

Z' - Z 
Z' + Z 

2 2 
p'C a(b +1) 

2 2 
p 'C a (b +1} 

a'p6 2 (b2-1) 2 

2 2 2 
+ a'p6 (b -1) 

Solid/Solid Interface 

2 
+ 4aa'p6 b 

2 
+ 4aa'p6 b 

(3.32b) 

This interface is subject to the most complex set of boundary condi-

tions which leads to both transmitted and reflected mode converted shear 

waves consisting of the reflected and transmitted p-wave, and the re-

fleeted and transmitted s-wave. 

All of the boundary conditions that were found for the general case 

are satisfied, namely the continuity of the normal and tangential 

stresses as well as continuity of the normal and tangential displace-

ments. Using the equations that were derived for the general case for 

an incident p-wave (B. = o). 
l 

A.+A - bB 
1 r r 

A'+b'B' 

a(A.-A ) - B = a'A' - B' 
1 r r 

(3. 33a) 

(3.33b) 



z 

Figure 9. Reflected, Transmitted, and Mode Converted Waves Due to 
an Incident P-Wave at Solid/Solid Interface 
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2 2 = p'S' [A' (b' -1) - 2b'B'] 

We can rewrite these equations as 

A 
r A' 

A, A. 
~ ~ 

A 
_£ + a' 
A. a 
~ 

A 2 
(b' 2-l) r pIs I 

A. pS2 (b2 -1) ~ 

or in the matrix form 

A e 

where: 

all = l al2 = - l 

a' 
a2l = 1 a22 =-

a 

B 
B' b_E.-b' 

A. A, 
~ ~ 

A' l -+­
A. a 
~ 

Br l 

A. a 
~ 

B 

= 

A' 2b _E.+ -+ 
(b2-l) 

A, A. 
~ ~ 

= ~++ a .. X, 
~J J 

al3 - b 

l 
a23 = a 

B' 
A. 
~ 

- l 

= 

p'S'2 

pS2 

b. 
~ 

al4 

a24 

l 

2b' B' 
-= 

(b 2 -1) A. 
~ 

= - b' 

1 
= 

a 
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(3.33c) 

(3. 33d) 

(3.34a) 

(3.34b) 

(3.34c) 

- l 

(3.34d) 

(3.35) 

(3.36) 
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pI (312 2 p'(3'2 (b I 2-1) 
1 

a' a - (b -1) 
a31 a32 = = a34 = 

Pi32 a 33 2a p(32 2a 

1 
p'i3'2(b'2-1) 2b p'B'2 2b' 

a41 = a42 =- a43 a44 2 2 
(b2 -1) p (32 (b 2 -1) p(3 (b -1) 

bl = - 1 b2 = 1 b3 = 1 and b4 = -1 (3.37) 

For normal incidence: 

8 
p 

7T 
+ -+ 

2 
7T 

8' 8 , 8' +-and a, a', b, b' + oo. 
p' s s 2 

equations as follows: 

We can rewrite the above 

A. +A 
~ r 

a 
(Sa) Br = A' + (a/S' a)B' 

by dividing by a (terms with!+ o). 
a 

~B 
S r 

= ~ B' orB 
13' r 

~ B'· 
B' o' 

2[2a 2 J p'S' -- aA' + (a/B' a) B' a• 

dividing by a 2 (terms that have! vanish). 
a 

or 

from 3.e(5) and 3.e(6) 

B 
r 

La• 
p 



B = B' = 0 
r 

(p,p' ,B,B' are arbitrary numbers), from 3-3(2) 

a(A.-A ) - B = (a/a' a)A'-B' 
1 r r 

dividing by a 

3.e(4). 

A.-A 
1 r = ~A' a' ' 

pB2 [(A.+A) (a/B a) 2 + 2(a/B a)B] 
1 r r 

= 

2 
or dividing by a we have 

or 

and 

2 2 2 
PB (a. /B ) (A.+A ) 

1 r 

A, +A 
1 r 

A. -A 
1 r 

A' = A. 
1 

A 
r = A. 
1 

= 

= 

= 

aja' 

1 -

1 -

p'a' 
p'a' 

= 

P'/P A' 

~A' 
a' 

2 
+ pI /P 

a A' 
a' A. 

1 

2 

' 

1 + p'a'jpa 

- pa 
+ pa 

72 



= Z' - Z 
Z' + Z 
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Noting that in all of the solutions we have derived we used the coeffi-

cients a,a' ,b,b' which are defined earlier as 

! 2 2 
a = tane = Vc ja -1., 

p 
(3.38a) 

a' = tane• = "};a•2 - 1 
p 

(3.38b) 

/ c 2;s2 b = tane = - 1 , 
s 

(3.38c) 

b' = tane' = /c2;s• 2 - 1 
s 

(3.38d) 

So far we have considered cases where all the coefficients are real 

quantities. The possibility that some of these coefficients being 

imaginary is delayed to the following chapter on total reflection. 



CHAPTER IV 

TOTAL REFLECTION 

In the previous chapter we have limited our discussion to the case 

where the incoming wave velocity is greater than all other velocities, so 

all the coefficients were real quantities for all angles of incidence. 

However, when the velocity of propagation for the transmitted wave is 

c 
higher than that of the incident wave, there will be some angle 6 at 

p 

which the transmitted wave is propagating parallel to the interface. 

This angle ec is called the critical angle, and for any incident angle 
p 

less than this critical angle it is impossible to satisfy Snell's Law 

with real angles (since sin62 cannot exceed unity), so we will have 

imaginary coefficients that will lead to an exponential decay of the 

amplitude of the wave which is propagating parallel to the interface. 

This wave carries no energy across the barrier and moves with a velocity 

that is determined by the properties of the first medium the angle of 

incidence and the type of the incident wave. 

For the case of an incident p-wave the phase velocity of the trans-

mitted p-wave·decreases from 

c = a' = ~at e = eP 
k'p c 

to c = a = 
w 
-at 
kp 

e = 0°C 

as shown in Figure 10. 

74 



c a 
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Figure 10. Phase Velocity of the Transmitted P-Wave for Incident 
P-Wave With a Lower Velocity (a < a') 
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In the most general case (for no solids) we have two possible crit-

ical angles for an incident "P-wave" and three possible critical angles 

for an incident "S-wave". For an incident "P-wave": 

Case 1: If a > a' (hence a > B' since a' > S' always), there is no 

possible critical angle. 

and 

a' 
= c = cos6 

p 
cos6' 

p 

cos6 
s = 

cos8' = 
p 

cos8' = 
s 

B 1 
a cos6 

p 

a' 
a 

pI 
a 

1 
cos8 

p 

1 
cos8 

p 

< 

< 

< 

= 
B I 

cos6' 
B 

1 always 

1 

1 

= s 
cos8 

s 

So,for all angles of incidence 6 , 8' and 8' are real angles. 
r p s 

(3.39) 

Case 2: If B' < a < a', we have one critical angle for the trans-

mitted "P-wave", that is when 6' = o as in Figure lla. 
p 

or 

a' = = 
cosecp' 

p 
cos8' 

p 

-1 cp' a 
cos 6 = 

p a' 

Case 3: If a < B' < a' 

a' (3. 40a) 

(3. 40b) 

We have two critical angles, one for the transmitted "P-Wave" 

8 (cp') 
p 

-1 a = cos (-,) and the other for the transmitted "S-Wave" 
a 



(a) (cs) < e 
e - P p 

~ e<cp) 
p 

BT 

(b) o < e 
- p 

:s 8 <cs) 
p 

BT AT 

Figure 11. Critical Reflections for an Incident P-Wave at Solid/Solid Interface 

-...I 
-...I 



78 

8 (cs') 
p 

= 
-1 a 

cos (S'). Noting that 8 (cs') < 8 (cp') (since a' > B') as in 
p p 

Figure 11. 

For an Incident "S-Wave". 

Case 1: If B >a' (and hence S > B' since a' > B') but B <a 

always, so we have one critical angle for the reflected P-wave, 8(cp) 
s 

as shown in Figure 12a. 

Where: 8 (cp) 
s 

-1 B cos (-) 
a 

(3. 4la) 

Case 2: If B' < B < a', then we have two critical angles, one for 

the reflected p-wave 8(cp) and one for the transmitted p-wave 8(cp') 
s s 

as shown in Figure 12b. 

Where: 8 (cp') 
s 

-1 
cos CB/a') (3.4lb) 

Case 3: If S < S' (and hence S < a' since S' < a'), then we have 

(cp) three critical angles, the first one for the reflected p-wave 8 and 
s 

(cp') the second one for the transmitted "P-Wave" 8 and the third one for s 
8 (cs') the transmitted s-wave , as shown in Figure 12c. 

s 

Where: 

Noting that 

8 ( CS I ) 

s 
-1 

cos. CS/S') 

8(cs') < 8(cp') (since B' <a') . 
s s 

(3.4lc) 

The coefficients a, b, a' and b' are defined for all cases as follows: 

For an Incident P-Wave: 

c 
a ----::-- c 2:. a 

cos8 
p 

a=~- 1 
a 



(a) e (cp•) 
s < e s 

~ e(cp) 
s 

BR 

AT I 

(b) 
(cs) ( e < e < e cp') 
s s - s 

A 
R --,.,. 

t:l 

(c) 0 .::: e <; e (cs} 
s ·s 

I B A 
T T 

I - ._ 

B 

A 

R 

Figure 12. Critical Reflections for an Incident S-Wave at Solid/Solid Interface 
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and (hence C > S) 

for C :::. a' a' = R--,2 
a 

land for C > S' b' 

for C < a.' a' - i /1 c2 
= 

,2 
a 

for C < B' b' - i /1- c2 
= 

6'2 
(3.42) 

For an Incidents-wave: 

c 
s so c > B and b R,- 1 for all angles of incidence = case 

s B 

for C 2: a a = R-1 2 , for C < a a= ih 
c2 

2 
a. a 

If:_ 
for C > a' a' = 1, C < a' a' - i ii- C2/a'2 

,2 
Cl. 

for c > j3 I b' = fc 2 /S •2 -1, c < B I b' = - i A - c2 /B ,2 (3.43) 

For an Incident "S-Wave" on a free boundary the boundary conditions that 

must be satisfied are the vanishing of normal and tangential stresses. 

So, the corresponding equations as we derived them in Equation (2.10) 

are: 

l. cr o 
zx 

or 

+ (b2-l) (B.+B )] 
J. r 

2 
2a A - (b -1) (B.+B ) = 0 

r J. r 

0 

(4. 2) 



2. cr = o 
zz 

2 2 
p B [A (b -1) 

r 
2b(B.-B )] = 0 

J. r 

or A (b2-l) - 2b(B.-B ) = 0 
r J. r 

from 4.2 and 4.3 we have 

A 
r 

and B = 
r 

1. For the case c > a > 

and the discussion is similar 

2. For the case a > C > 

1 , a 

B. 
J. 

B. 
J. 

B, 

to 

B, 

4b(b2-l) 

4ab + (b2-1)2 

4ab - (b2-l) 2 

4ab + (b2-1)2 

c = B all the coefficients are 
cose 

s 
what we did in the last chapter. 

1 
2 

cos e 
s 

so the reflected amplitudes are as follows: 

and 

A = B. 
r J. 

= 

4b(b2-l) 

e 

iO (p) 
r 
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(4. 3) 

real 



= 

So the reflected P-wave experiences a phase shift of o(p) r . 

B = 
r 

= 

B = B. 
r ~ 

B. 
i11 i2o2 

e e 
~ 

iO (s) 

B. r e 
~ 

-i4lalb (b2-1) 2 

-i4lalb + (b2-1> 2 

0 tan 
-1 ( 4lalb) = = 

2 (b2-1)2 

o (s) = 1T + 2 8 (p) 
r r 
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0 (p) 
r 

So the reflected s-wave experiences a phase shift of 11 + 2o(p). Now due 
r 

to the fact that a is pure imaginary for 0 ~ e ~ e~cp), by replacing the 

new value for a in the wave function, that is a= -ilaJ, we have 

= 

= 

A 
r 

A 
r 

ik(ct-x-az) e 

e -klallzl ik(ct-x) 
e 

that is a wave propagating parallel to the interface with a variable 

velocity depending on the shear wave velocity and its angle of incident, 

so it decreases from the p-wave velocity ate" = e(cp) to the s-wave 
s s 

velocity at 8 = 0° as shown in Figure 13. Beyond the critical angle, 
s 

the p-wave carries no energy acorss the barrier, and hence the shear 

wave experiences a total reflection with some phase shift and p-wave 

amplitude decreases exponentially with the distance from the interface 

with skin depth Y where 



c 

Velocity 

a 

s 
cos8 '\,s 

I 

I 

e (cp) 
s 

I 
I 
I 
I 
I 
I 

e 
s 

Figure 13. Phase Velocity of the P-Wave for an Incident s-wave 

83 



where: 

y (8 ) 
s 

y = 

= 

1 1 = k!a! ky{ (32 
--2--2--

for 0 ::; 8 
s 

a cos 8 

< 8(cp) 
s 

s 

k 
w B cases 

cos8 
s 

(o ::; 8 
s 

§_ 2: a 

< 8(cp)) 
s 

84 

So for 8 2: 8(cp) (cos8(cp) =~)we have a plane wave moving with a phase 
s s a 

velocity c =a without any decaying, then for 8 < 8(cp), Y starts 
s s (8 8 ) 

decreasing from infinite at 8 = 8(cp) to a minimum value Y at 8 
s s 0 s 

as shown in Figure 14. 

where: 

Yo = /3 1 

;v{ _£_ 
2 

a 

s ---;::::;::1== 
w V A+ll 

A+2].l 

2 
a = 

/.. 

.!!.. 
p 

+ 2].l 
p 

= o, 



y 
Skin Depth 

Figure 14. P-Wave Skin Depth Dependence on the Incident Angle of 
S-Wave at Free Solid Interface 
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;::; B /A. + 211 
w V. A.+Jl 

2 
a. 
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= 

and the frequency dependence is now obvious, so the wave will attenuate 

more for higher frequency. 

For an incident "P-wave" at a liquid-liquid interface for a.' > a 

and e(cp) < e < ~(cose(cp) = ~) all the coefficients are real, and the 
p - - 2 p · a' 

solution is very similar to what we did earlier for a' < a. While for 

a I > a. and 0 !:. e p !:. e ~cp) , a I = -i I a I I so the reflected "P-wave" has the 

form 

A 
r 

A. 
l. 

= P'/P - ila•l;a 
P'/P + ija' j/a 

-i28 ;: ;::; e u 
-1 <p Ia• I> 

tan P, Ia! (3. 44) 

So the reflected p-wave experiences a total reflection with a phase 

Shift that varies from 0 at 8 = 8(cp') to TI at 8 0 ;::; 0 . 
p p 

P-wave foro!:_ 8 !:_ 8(cp) will have the form 
p 

<P ( t) = 

= +ik (ct-x) 
e 

The transmitted 

(3.45) 

which is a wave propagating parallel to the interface with a variable 

velocity that depends on the incoming wave velocity a. and the incident 

angle C = a so it varies from a' the speed in the second medium cose , 
p 
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(a) Transmitted P-Wave 
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p 
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p- p 

Figure 15. Transmitted P-Wave Due to an Incident P-Wave at Liquid/Liquid Interface Beyond the 
Critical Angle 
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when e = e(cp) to a the speed of p-wave in the first medium when e = o, 
p p p 

and the amplitude of this wave decreases exponentially with distance from 

the interface as shown in Figure 15 with a skin depth y(S) where 

= 

= a 
w 

1 
, k = 

1 

w cos8 , 
a p Ia' I 

2 
a 

2 2 
a' cos 8 

p 

where Y(e) varies from infinity at ep e(cp) toy ate =o; 
p 0 p 

= 
a 1 w/r --;l==a=2= 

,2 a 

(3.46) 

The frequency dependent of the skin depth is clear and the wave will 

attenuate more for higher frequency. The transmitted amplitude for this 

wave is 

= 

= 

and ~t 

2ap 
ija• jP + ap' 

hi.: 
2 

a 

0 
t 

A 
r 

A. 
~ 

-1 Ia• IP tan (. , ) 
ap 

(3.47a) 
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= o(sin8' 
p 

= 0 for 0 ::: 
e < e (cp)) 

p 
(3. 47b) 

even though the transmitted amplitude doesn't vanish the energy trans-

mitted across the boundary is zero. 

So that wave has no contribution as far as energy partitioning is 

conserned. 

For a P-wave incident on liquid/solid interface, we have for C > 

a' > s I j the discussion is very similar to what we did in the previous 

chapter, but for a' > c > B' which is the case when e (cs) ::: e < e (cp) . 
p p p 

The transmitted p-wave propagates along the interface with c = a' at 

e 
p 

e(cp) then decreases to c =a at 8 
p p 

0° as was shown in Figure 10. 

For c < S' <a' that is the case for 0 < 8 ~ 8(cs). The transmitted 
p 

a s-wave travel along the interface with speed = c = , it varies 
cos8 

p 

from C = S' at 8 
p 

8(cs) to C =a at 8 = o as shown in Figure 16. 
p p 

For 8 < 8(cs) we have a total reflection for the p-wave with a phase 
p p 

shift that varies from zero at 8 = 8(cs) to TI at 8 
1 p p 

0. 

For an incident p-wave on solid-liquid interface we have just one 

(cp) (cp) -1 a critical angle 8 where 8 =cos (---,) and that is only if a' > 
P P a 

a. So for e(cp) < 8 < 90° (i.e. C >a') we have the same results as 
p p 

was discussed in the previous chapter, but for a' > C > a that is for 

0 ::: 8p ~ 8~cp), and we have both p-wave and s-wave reflected in the 

solid-medium as shown in Figure 17. The transmitted p-wave propagates 

along the interface. 

For an incident p-wave at a solid-solid interface we have two 

critical angles e(cp) and 8(cs) if a' I S' >a where 
p p I 
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Figure 17. 
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Reflection and Refraction of Incident P-Wave at Solid/ 
Liquid Interface Beyond the Critical Angle e(cp) 
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and 

8 {cp) 
p 

-1 
cos {a./a') 
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{3. 48a) 

{3. 48b) 

{cp) IT 
So for 8P < e ~ 2 the waves are as was shown in Figure 9, and the cal-

culations are as we did in the previous chapter. 

For 8{cs) < 8 < 8{cp) the transmitted p-wave propagates along the p p p 

interface with a decaying amplitude {a' = -ila' I>, and the reflected 

waves are as was shown in Figure Figure lla. 

{cs) . For o < e < 8 , both transm~tted waves, and the reflected waves - p - p 

are as was shown in Figure llb. 

Noting that for this case, the transmitted p-wave, and the mode 

convert.ed s-wave propagates along the same direction with the same phase 

velocity C. While the p-wave and s-wave which are reflected in the 

first medium are reflected with phase shifts o(p) and o(s) respectively 
r r 

as shown in Figure 18 and in Figure 19. 
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Figure 18. Phase Angle of Reflected P-Wave for an Incident P-Wave on Sand­
stone/Limestone Interface 

\!) 
w 



18t) 

p 12t) 
H 
A 
s 
E 

A 
1-l 
G 
L 
E 

fJ '3C ~c 

~WGLE OF I~CIOE~CE 

,---- -1 

9t) 

Figure 19. Phase Angle of Reflected S-Wave for an Incident P-Wave on Sand­
stone/Limestone Interface 

\!) 
.1» 



CHAPTER V 

DIRECTIVITY OF REFLECTED AND TRANSMITTED WAVES 

The angular dependence of the reflected, mode converted, and trans­

mitted waves resulting from an incident p-wave of unit amplitude is 

obtained by solving the boundary value problem for angles of incidence 

ranging from normal incidence to grazing incidence. A polar representa­

tion of the amplitude of each generated wave is obtained by plotting it 

as a function of the emergent angle. A circular scale is used that 

represents a unit amplitude p-wave being incident on a plane at differ­

ent angles. A horizontal line passing through the center of this circle 

represents the plane interface boundary. The vertical axis that passes 

the center of the circle represents a normal line to the plane of inter­

face and intersects the common reflection point (CDP). Due to symmetry 

about the vertical axis the plots are reflected about it. The upper 

hemisphere is the reflected regime in the upper medium while the lower 

hemisphere is the transmitted regime in the lower medium. The p-wave 

and s-wave are plotted separately. 

Directivity patterns are presented for realistic examples involving 

liquid/air, solid/air, liquid/solid, and solid/solid interfaces. In 

each case several values of velocities and densities are used, this 

allowing for critical and non-critical situations. Elastic properties 

of some rocks and fluids that are used are listed in Table I. 

In order to have more understanding of these directivity patterns, 
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TABLE I 

ELASTIC PROPERTIES OF ROCKS AND FLUIDS 

Type of Fluid Density Pressure Wave Shear Wave 
or Rock (gr/cm3) Velocity (km/sec) Velocity (km/sec) 

Air 0.00129 0.3444 0.0 

Water 1.00 1.50 0.0 

Oil 0.8794 1.4554 0.0 

Mercury 13.5 1.45 o.o 

Dry Sandstone 
(Porosity = 5.1%) 2.543 4.87 2.85 

Wet Sandstone 
(Porosity = 5.1%) 2.606 4.55 3.10 

Limestone 
(Solenhofer) 2.656 6.05 3.01 

Shale 2.38 2.743 1.509 

Calcite 2.712 6.53 3.36 

Granite 2.634 6.16 3.56 

Basalt 2.586 5.66 3.25 
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a contract is made, for any interface, between two plots. These two 

plots refer to the two possibilities that the plane wave can be incident 

at either side of the interface. 

By examining these plots we notice the following: 

1. In the case of solid/vacuum interface, the reflected p-wave 

has two total reflections, at normal and grazing incidence. Most of its 

energy is confined in a region of 30° about the normal. It vanishes at 

0 0 
two angles, 13 and 30 from the horizontal at which all the energy is 

transfered to the mode-converted reflected s-wave. The reflected s-wave 

has a high directivity about an angle 30° from normal, and in this 

region, almost all of the energy is carried by the reflected s-wave. The 

angle beyond which the s-wave vanishes, 8 , is related to the velocities 
0 

in the solid as follows: 

cos6 
0 

which is about 54° for sandstone. 

vacuum as shown in Figure 20a. 

s 
a 

There is no wave transmitted into the 

2. In the case of liquid/vacuum interface, which is the simplest 

interface, no wave is transmitted into the vacuum, and no s-wave is 

generated in the fluid, so the p-wave is totally reflected for all 

angles of incidence as shown in Figure 20b. 

3. In the case of solid/air interface, when the p-wave is incident 

from the solid side, the situation is very similar to solid vacuum inter-

face for the reflected p-wave as shown in Figure 2lb, and for the re-

fleeted s-wave as shown in Figure 22b. When the p-wave is incident 

from the air side, it is totally reflected for all angles of incidence 
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as shown in Figure 2la, and so s-wave is generated as shown in Figure 

22a. 

4. For water/air interface the p-wave is almost totally reflected 

because of the large contrast in impedence of the two media, and the 

fact that no mode-converted wave is generated as shown in Figure 23. 

The only difference between the two reflections from either side of the 

interface is a phase shift of ~ for the p-wave incident at the surface 

backed by water. The phase shift is not seen in Figure 23b because we 

are taking the absolute value of the wave amplitude. 

5. For water/oil interface the reflected energy at normal inci-

dence is less than 1% for a p-wave incident at either side of the 

interface. That is due to fact that both media have nearly the same 

impedence. Also the p-wave incident from water side is almost complete-

ly transmitted for all angles of incidence, except at grazing incidence 

where it is totally reflected as in Figure 24a. Similarly, the p-wave 

incident from the oil side is almost completely transmitted until it 

gets to the critical angle beyond which it is totally reflected as in 

Figure 24b. The clear distinction between the two cases is that for the 

case when the p-wave is incident at the surface backed by water (the 

medium with higher velocity} the total reflection appears in a region, 

while for the other case the total reflection is just at a point of 

grazing incidence. The critical angle is related to the p-wave veloci-

ties of both media as follows, 

= 
-1 a 

COS (-,}I 
a 

which is about 14° for the case of oil/water boundary. 

6. For water/mercury interface, the two media have very different 



99 

densities and nearly equal velocities. The large contrast in impedence 

leads to more than 70% of the energy is reflected for a wide range of 

angles of incidence. Total reflection appears at grazing incidence for 

the p-wave incident from the water side as in Figure 25a; and at some 

critical angle when the p-wave incident from mercury side as in Figure 

25b. We notice that the critical angles for mercury/water and oil/water 

are nearly equal because both media (mercury and oil) have nearly the 

same p-wave velocity. 

7. Water/sandstone interface. The p-wave velocity is less than 

both waves velocities of sandstone. This leads to two critical reflec-

tions for the p-wave incident at the interface backed by sandstone. 

The first critical reflection is at an angle 8cp which is related to 
p ' 

the ratio of p-wave velocities as follows: 

which is about 72°. The second total reflection is at and beyond the 

other critical angle 8cs, which is related to the p-wave velocity of p 

water and the s-wave velocity of sandstone as follows: 

which is about 58°. The transmitted p-wave varies smoothly from 40% 

at normal incidence to 16% just before the first critical angle. This 

corresponds to a transmitted angle of 18° as in Figure 26a. 

The transmitted s-wave is centered about an angle 60° from normal 

and it carries less than 50% of the energy. It has a minimum at an 

angle corresponds to the first critical angle, and it vanishes at and 

beyond another angle which corresponds to the second critical angle. 
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There is no s-wave reflected in the water side as shown in Figure 27A. 

When the p-wave is incident from the solid side the reflected p-wave 

with 60% of the energy is confined about the normal. 

There are. two angles at which the reflected p-wave is minimum, and 

most of the energy is carried by the reflected s-wave. The transmitted 

p-wave is confined in a very narrow region about the normal and it 

varies smoothly from 40% at normal incidence to about 17% at grazing 

incidence corresponding to 18° from normal. I would like to emphasize 

the point here that the transmitted p-wave does not vanish for any angle 

of incidence. What is shown in the lower part of Figure 26B is the 

transmitted p-wave plotted against its real emergent angle which is 

limited between 72° and 90° according to the relation 

cos8' 
p 

a' = ---- cos8 a p 

So for normal incidence 8' = 90°, and for grazing incidence 8' = 72°. 
p p 

The reflected s-wave has a high directivity about an angle 30° 

from the normal, and it is not as broad as the transmitted s-wave in 

the solid for the other case. There is no transmitted s-wave in the 

water as shown in Figure 27B. 

8. Water/limestone interface--when the p-wave is incident from the 

water side, the general behavior of the reflections is similar to that 

for water/sandstone interface as shown in Figures 28A and 29A. The 

location of the critical reflections has changed according to the rela-

tive velocities of the emergent waves to the incident one. The magni-

tude of the reflection is also governed by the relative densities of 

both media. Where the p-wave is incident from the solid side, the 
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reflection is generally similar to that for water/sandstone interface. 

The reflected p-wave here has one minimum instead of two, and hence it 

is missing the miniloop that was there in water/sandstone interface. 

The transmitted p-wave carries less energy here, and more confined than 

was before as shown in Figure 28B. 

The reflected s-wave, still, has a high directivity; but now about 

angle closer to the normal than before due to the difference in wave 

velocities of limestone and sandstone as shown in Figure 29B. 

9. Water/shale interface--the p-wave is incident from the water 

side. The situation is similar to the water/sandstone case but due to 

the large difference in wave velocities of the two media (sandstone and 

shale) the critical angles changed considerably; the first angle is 

about 58° and the other is 6°, so that a very broads-wave is trans­

mitted as shown in Figure 31A. The transmitted p-wave carries energy 

that varies smoothly from 60% at normal incidence to 30% at grazing 

incidence, as shown in Figure 30A. When the p-wave is incident from the 

solid side, there is no critical angle, and the reflection is generally 

similar to that of water/sandstone with some changes in the location of 

extreme values of energy as shown for the reflected and transmitted 

p-wave in Figure 30B, and for the reflected s-wave in Figure 31B. 

10. Sandstone/limestone interface--when the p-wave is incident 

from the sandstone, it is almost completely transmitted until it gets 

to the critical angle where it is almost totally reflected as shown in 

Figure 32A, and no energy is carried by the transmitted p-wave across 

the boundary. The reflected and transmitted s-waves carries very little 

energy peaked at an emergent angle which corresponds to the critical 

angle as shown in Figure 33A. Mode converted waves that are generated 
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are mainly governed by the relative s-wave velocities and the relative 

densities. So, when the two media have nearly the same s-wave velocity 

and density, the mode converted waves almost vanish, as they do in this 

case. When the p-wave is incident from limestone, there is no critical 

angle, and it is almost completely transmitted for all angles of inci-

dence except at grazing incidence where it is totally reflected as shown 

in Figure 32B. The reflected and transmitted s-waves have less energy 

than the first case, where there was some critical reflection, and thus 

carry negligible energy as shown in Figure 33B. 

11. Sandstone/shale interface--when the p-wave is incident from 

sandstone, which has a higher velocity than that of shale, the p-wave 

is almost totally transmitted for all angles of incidence except at 

grazing incidence where it is totally reflected. The p-wave has a peak 

about the normal incidence where it carries 8% of the energy as shown 

in Figure 34A. The reflected and transmitted s-waves have high direc-

tivity as shown in Figure 35A, and they have more energy than it was 

with sandstone/limestone because the two media here have considerably 

different values in s-wave velocities and densities. 

When the p-wave is incident frorn shale, there are two critical 

reflections. 
0 

The first critical angle, at about 55 , corresponds to the 

p-wave starts propagating parallel to the interface carrying no energy 

across the boundary, and the second critical angle corresponds to the 

transmitted s-wave propagating parallel to the interface carrying no 

energy across the barrier. The p-wave is totally reflected as shown in 

Figure 34B. 

The reflected s-wave has a minimum which corresponds to the first 

critical angle, and it has more energy than the reflected s-wave in 
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sandstone in the first case, this occurs because the p-wave drops to 

zero earlier than before. The transmitted s-wave carries considerable 

energy between the two critical angles, and it is broader than before 

(transmitted s-wave in limestone) as shown in Figure 35B. 

12. Sandstone/granite interface--when the p-wave is incident from 

sandstone, the situation is similar to that of sandstone/limestone. 

Beyond the critical angle the p-wave is not totally reflected, as shown 

in Figure 36A, and a considerable amount of energy is carried by the re­

flected and transmitted s-waves as shown in Figure 37A. When the p-wave 

is incident from granite, the p-wave is almost completely transmitted 

except at grazing incidence where it is totally reflected as shown in 

Figure 36B. The reflected and transmitted s-waves are less in amplitude 

than before, where there was critical reflection, as shown in Figure 

37B. 

13. Sandstone/basalt, and sandstone/calcite interfaces--since 

basalt, calcite and granite are igneous rocks with similar acoustic 

properties, the general reflections for them are similar too. For the 

case of sandstone/basalt, when the p-wave is incident from sandstone to 

basalt the reflected and transmitted p-waves are shown in Figure 38A, 

while the reflected and transmitted s-waves are shown in Figure 39A. 

The critical angle has shifted away from normal since the p-wave velocity 

of basalt is less than that of granite. When the p-wave is incident 

from basalt to sandstone the reflected and transmitted p-waves are shown 

in Figure 38B, while the reflected and transmitted s-waves are shown in 

Figure 39B. For the case of sandstone/calcite interface, when the 

p-wave is incident from sandstone to calcite the reflected and trans­

mitted p-waves are shown in Figure 40A while the reflected and trans-
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mitted s-waves are shown in Figure 41A. The critical angle has shifted 

toward the normal, since the p-wave velocity of calcite is greater than 

that of granite. When the p-wave is incident from calcite to sandstone 

the reflected and transmitted p-waves are shown in Figure 40B, while 

the reflected and transmitted s-wayes are shown in Figure 41B. 

14. For sandstone (wet)/limestone interface, the general reflec­

tion is similar to that of sandstone/limestone. When the p-wave is 

incident from sandstone (wet) the reflected and transmitted p-waves are 

shown in Figure 42A, while the reflected and transmitted s-waves are 

shown in Figure 43A. The critical angle here has shifted away from 

normal, since the p-wave velocity of sandstone (wet) is less than that 

of sandstone. 

When the p-wave is incident from limestone to sandstone (wet) the 

reflected and transmitted p-waves are shown in Figure 42B, while the 

reflected and transmitted s-waves are shown in Figure 43B, which shows 

almost zero energy carried by the mode-converted waves. That is due to 

the fact that limestone and sandstone (wet) have almost the same den­

sity and shear velocity. 

15. Sandstone (wet)/shale interface--the general reflection here 

is similar to that of sandstone/shale interface. The distinction 

between the two situations is that when the p-wave is incident from 

sandstone (wet) to shale the reflected p-wave has two minima causing a 

mini loop as shown in Figure 44A, and the transmitted s-wave carries 

more energy at its peaked value as shown in Figure 45A. 

When the p-wave is incident from shale to limestone the reflected 

p-wave has less amplitude at the first critical reflection as shown in 

Figure 44B, and the transmitted s-wave carries more energy than that 



was transmitted in sandstone as shown in Figure 45B. 

General Comments on the Directivity of Reflected 

and Transmitted Waves 

1. There is no mode-converted waves at grazing and normal inci­

dence. 

2. There is always a total reflection for the p-wave at grazing 

incidence. 
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3. Mode-converted waves have high directivity about an angle, away 

from normal incidence, determined by the relative velocities. 

4. If both media have nearly the same density and s-wave velocity, 

the mode converted waves have very small amounts of energy and they al­

most vanish when there is no critical reflection. 

5. Critical angles exist when the incident wave has less velocity 

than the generated ones. 

6. The first critical angle occurs when the incident p-wave has 

less velocity than the emergent p-wave, at which the transmitted p-wave 

drops to zero and hence a sharp increase is noticed for the other waves. 

7. The second critical angle occurs when the incident p-wave has 

less velocity than the transmitted s-wave, beyond which no energy is 

transmitted and all the energy is carried by the reflected p-wave and 

s-wave (if it exists). 

8. At normal incidence the reflected energy is equal for the p-wave 

incident from eithe~ way of the interface. 

9. At normal incidence, the larger the difference in impedence 

between the media, the more the p-wave is reflected. 



10. The relative velocities govern the critical angles, and the 

relative density affects the general behavior of the reflection. 
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Figure 20. Polar Directivity of Reflected P- and S-Waves for an Incident P-Wave on 
(A) Sandstone/Vacuum Interface and (B) Liquid/Vacuum Interface 
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Figure 21. Polar Directivity of Reflected and Transmitted P-Wave for an Incident P-Wave on 
(A) Air/Sandstone Interface and (B) Sandstone/Air Interface 
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Figure 22. Polar Directivity of Reflected and Transmitted S-Wave for an Incident P-Wave on 
(A) Air/Sandstone Interface and (B) Sandstone/Air Interface 
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Figure 23. Polar Directivity of Reflected and Transmitted P-Wave for an Incident P-Wave 
on (A) Water/Air Interface and (B) Air-Water Interface 
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Figure 24. Polar Directivity of Reflected qnd Transmitted P-Wave for an Incident P-Wave 
on (A) Water/Oil Interface and (B) Oil-Water Interface 
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Figure 25. Polar Directivity of Reflected and Transmitted P-Wave for an Incident P-Wave 
on (A) Water/Mercury Interface and (B) Mercury/Water Interface 
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Figure 26. Polar Directivity of Reflected and Transmitted P-Wave for an Incident P-Wave on 
(A) Water/Sandstone Interface and (B) Sandstone/Water Interface 
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Figure 27. Polar Directivity of Reflected and Transmitted s~wave for an Incident P-Wave on 
(A) Water/Sandstone Interface and (B) Sandstone/Water Interface 
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Figure 28. Polar Directivity of Reflected and Transmitted P-Wave for an Incident P-Wave on 
(A) Water/Limestone Interface and (B) Limestone/water Interface 
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Figure 29. Polar Directivity of Reflected and Transmitted S-Wave for an Incident P-Wave on 
(A) Water/Limestone Interface and (D) Limestonc~1ater Interface 
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Figure 30. Polar Directivity of Reflected and Transmitted P-Wave for an Incident P-Wave on 
(A} Water/Shale Interface and (B) Shale/Water Interface 
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Figure 31. Polar Directivity of Reflected and Transmitted S-Wave for an Incident P-Wave on 
(A) Water/Shale Interface and (B) Shale/Water Interface 
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Figure 32. Polar Directivity of Reflected and Transmitted P-Wave for an Incident P-Wave on 
(A) Sandstone/Li~cstone Interf~ce and (B) Linestone/S~•dston~ Interfac~ 
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Figure 33. Polar Directivity of Reflected and Transmitted S-Wave for an Incident P-Wave on 
(A) Sandstone/Limestone Interface and (B) Limestone/Sandstone Interface 
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Figure 34. Polar Directivity of Reflected and Transmitted P-Wave for an Incident P-Wave 
on (A) Sandstone/Shale Interface and (B) Shale/Sandstone Interface 
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Figure 35. Polar Directivity of Reflected and Transmitted s-wave for an Incident P-Wave on 
(A) Sandstone/Shale Interface and (B) Shale/Sandstone Interface 
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Figure 36. Polar Directivity of Reflected and Transmitted P-Wave for an Incident P-Wave on 
{A) Sandstone/Granite Interface and {B) Granite/Sandstone Interface 
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Figure 37. Polar Directivity of Reflected and Transmitted S-Wave for an Incident P-Wave on 
(A} Sandstone/Granite Interface and (B) Granite/Sandstone Interface 
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Figure 38. Polar Directivity of Reflected and Transmitted P-Wave for an Incident P-Wave on 
(A) Sandstone/Basalt Interface and (B) Basalt/Sandstone Interface 
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Figure 39. Polar Directivity of Reflected and Transmitted S-Wave for an Incident P-Wave on 
(A) Sandstone/Basalt Interface and (B) Basalt/Sandstone Interface 
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Figure· 40. Polar Directivity of Reflected and Transmitted P-Wave for an Incident P-Wave on 
(A) Sandstone/Calcite Interface and (B) Calcite/Sandstone Interface 
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Figure 41. Polar Directivity of Reflected and Transmitted S-Wave for an Incident P-Wave on 
(A) Sandstone/Calcite Interface and (B) Calcite/Sandstone Interface 
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Figure 42. Polar Directivity of Reflected and Transmitted P-Wave for an Incident P-Wave on 
(A) Sandstone (Wet)/Limestone Interface and (B) LimestonejS~1dstone (iJet) 
Interface 

I-' 
!\) 

\0 



Reflected 

Transmitted 

A B 

Figure 43. Polar Directivity of Reflected and Transmitted s-wave for an Incident P-Wave on 
(A) Sandstone (Wet)/Limestone Interface and (B) Limestone/Sandstone (Wet) 
Ipterface 
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Figure 44. Polar Directivity of Reflected and Transmitted P-Wave for an Incident P-Wave on 
(A} Sandstone (Wet)/Shale Interface and (B) Shale/Sandstone (Wet) Interface 

I-' 
w 
I-' 



Reflected 

Transmitted 

A B 

Figure 45. Polar Directivity of Reflected and Transmitted S-Wave for an Incident P-Wave on 

(A) Sandstone (Wet)/Shale Interface and (B) Shale/Sandstone (Wet) Interface 
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CHAPTER VI 

SEISMIC DATA GATHERING METHOD AND CDP ANALYSIS 

After the polar directivity of the reflected and transmitted waves 

is found, a further step in the analysis is considered; to apply these 

results to field measurements, such as common depth point (CDP) analysis. 

The polar plots are transformed to linear plots showing detector's re­

sponse to reflected amplitudes as a function of offset; with the consid­

eration of the spherical divergence of the amplitude as well as the 

polarization sensitivity of the detector. The linear plots can be com­

pared directly with seismic measurements. 

Since seismic analysis is strongly dependent on quality of data; a 

brief discussion of noise and noise reduction is introduced. An idea 

is also given about CDP gathering method, and how it is used in cancel­

lation of multiple reflections. 

The main purpose in improving the quality of seismic data is to 

get rid of noise which is defined as the unwanted signals that inter­

fer with primary reflections. 

Noise can be classified into two kinds. One kind is coherent or 

regular noise, such as surface waves and multiple reflections. The 

other kind is the incoherent or random moise such as scattered signals 

from irregularities and inhomogeneities in layers, and signals due to 

wind, traffic or some other sources of background noise. 

Basically, there are three ways to minimize noise. 
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1. Developments in recording instrumentation allow frequency fil­

tering which limits noise that has appreciable energy outside the prin­

ciple frequency range of the signal. However, the spectrum of the noise 

often overlays the spectrum of the signal so other techniques are needed. 

2. Set up recording arrangements that will cancel unwanted signals 

before they are recorded in the field. When frequency filters alone do 

not yield good discrimination between noise and signal then velocity dis­

crimination is used in which multiple geophones or multiple shots are 

used with the proper spacing that gives the optimum cancellation; that 

is specially used for eliminating ground roll motion and multiple reflec­

tions. 

3. Signal processing technique in which the noise is eliminated 

from recorded data by appropriate filtering. 

Common depth point (CDP) is a seismic technique that utilizes mul­

tiple coverage of the subsurface to reduce multiple reflections. The 

main purpose of CDP analysis and other multi-channel techniques is to 

improve the signal-to-noise ratio of seismic signals. Common-depth­

point shotting is illustrated in Figure 46. 

We have equally spaced geophone groups which are numbered by their 

sequence along the seismic line instead of the trace which they repre­

sent on the seismic record. Geophone groups 1 to 24 are connected to 

the amplifier inputs in the recording truck and shot A is fired. If a 

horizontal surface is assumed, geophone 1 will record the reflection 

due to point a, and geophone 24 will record reflection due to geophone 

g. So that results in a subsurface coverage from a to g. 

Geophone groups from 3 to 26 are then connected to the amplifier 

inputs and shot B is fired that results in a subsurface coverage from b 
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to h. Next, shotpoint C is fired int~ geophones 5 to 28 results in a 

coverage from C to i and so on down the seismic line. Noting that point 

f is the reflection point for the energy coming from shot A into gee­

phone group 21, also it is the reflection point for energy coming from 

shot B into geophone group 19, from C into 17, from D into 15, from E 

into 13, and from F into 11. 

After removal of normal movement which are discussed later in this 

chapter, these traces will be combined (stacked) together in a subse­

quent data processing operation. Thus the reflecting point f is sampled 

six times, and the coverage is called '6-fold' recording. 

Most present-day recording uses at least 6-fold multiplicity and 

12 and 24-fold multiplicity are also common, especially in marine shoot­

ing. 

The Normal Moveout Correction 

Normal moveout (NMO) is a term used for the extra time that a re­

flected signal take due to the horizontal distance from geophone to 

source (offset) compared with another signal that is reflected from just 

underneath the source; under the assumption that the reflecting surface 

is horizontal. 

The normal moveout is easily calculated for the case of constant 

speed and horizontal reflecting surface, simply by referring to Figure 

47. 

The horizontal bed AB is at depth h below the shotpoint s. Accord­

ing to Snell's Law of reflection, the energy leaving S along the direc­

tion SC will be reflected along CR such that the angle of reflection 

equals to the angle of incidence. 
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Figure 47. Traveltime Curve for Horizontal Reflector 
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-The image source S can b~ located by the intersection of the exten-

sion of RC and the nor.mal line SO. As a result the image is at the same 

distance below the bed as the source S is above it; keeping in mind that 

this is only when we are dealing with constant speed for both regions. 

Denoting this constant speed by v, the traveltime t for the reflected 

-wave is (SC + CR)/V. However, SC = CS so that SR equals in length to 

the actual path SCR. Therefore t = SR/V, and in terms of the offset x, 

we apply Pythagorean theorem to the triangle SSR 

or 

2 2 
v t ---
4h2 

= 

= 1 

(6.1) 

which is an equation of a hyperbola with vertix at (o,t ), by substi­
o 

tuting in the above equation for x=o we have t = 2h/V, which is the 
0 

time needed for a signal reflected from point 0 directly below the 

source S. The geophone at R will also record the direct wave, so 

t 0 =~which is an equation of a straight line with slope equals the 

reciprocal of the velocity. 

Equation (6.1) can be written as 

= x2 4h2 
-+--

2 2 
v v 

(6.2) 
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if we plot t 2 against x 2 , we obtain a straight line of slope (l/V2) and 

2 
intercept t • Then by solving for t we have 

0 

t = 

The normal moveout ~tNMO is define by 

= t - t 
X 0 

t is the travel time of the reflected signal from S to R. 
X 

= 

2 
X 

+ 2- to 
v 

2 

+ ~2-1} 
tv 

0 

Then by using binormal expansion for the case where x is much smaller 

than 2h 

= 

or 

1 x 2 
t (1 + - __;;__;;~2 - 1) 

o 2 (vt ) 

= 
2 

X 

0 

2 
2t v 

0 

so we note that the normal moveout increases as the square of the offset 

x. 



As we mentioned before, normal ~oveout must be eliminated before 

stacking (adding together) connnon-depth-point records. 

Cancellation of Multiple Reflections 

by CDP Processing 
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Figure 48 illustrates a rather typical example, assuming that the 

shot and the near-surface velocity contrast generating the multiples are 

at the same level. A hypothetical velocity that increases with depth 

is assumed. Since the travel path of the multiple is confined to a 

lower velocity zone, it will exhibit the stepout shown by the upper curve 

of Figure 48. The deep primary reflection will follow the stepout shown 

in the middle curve. The lower curve shows the difference in stepout, 

showing the delay time of the multiple reflection from the primary one. 

Hence, if a number of channels with different shotpoint-to-detector dis­

tances are combined so that the primaries are in coincidence, the multi­

ples will be out of phase as indicated by the lower curve. So, if we 

add traces after moveout corrections using the primary velocities, all 

primary reflections are in phase so they have accenuated amplitudes for 

such events. However, the multiples will be out of phase and they will 

be attenuated by adding signals for equally distributed distances. 

Actually, the cancellation of multiples will be more complete if the 

shot geophone distances were such as to allow equal time intervals be­

tween successive samples along the difference curve. The estimated 

distances required for a five-unit pattern array are indicated in Figure 

48 by circled points numbered one through five on the lower curve. 

In CDP analysis we used the image method, and we assumed that the 

results are identical if we let the image act as a source of spherically 
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symmetric radiation. 

As far as the velocity analysis; by which geometric information about 

the subsurface structure is achieved, that assumption was valid. However, 

due to mode conversion, the reflected waves are not spherically symmetric, 

about the reflecting point, instead they have some certain directivity; 

so that assumption is not valid for amplitude analysis. 

To be more realistic there are three different angular distributions 

that govern the final recorded amplitude. 

1. The directivity pattern of the source itself. It is not spheri-

cally symmetric, but has some favorable directions. 

2. The directivity pattern of the reflected waves, which is governed 

by the relative acoustic parameters of the two media. 

3. The directivity pattern of the geophones which also have some 

favorable directions. In fact, most of geophones are sensitive to normal 

component of ground motion which depends on the offset of the geophones. 

For simplicity we assume that the source generates spherical waves 

without any directivity pattern, and we consider two cases for the gee-

phones: 

a) The land surveying case, where geophones are sensitive to the 

normal direction of ground motion. 

b) The marine surveying case, where hydrophones are equally sensi-

tive to fluid pressure in all directions. 

So we are left with the directivity f(6) of the reflected waves, 

beside the ! spherical divergence of the spherical wave amplitude; where 
r 

r is the traveling distance of the wave from source to the geophone. 

a) For land surveying a spherical p-wave is generated from a source 

S at a distance x from 0, and a geophone G, which is sensitive to normal 
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displacement of ground motion, is detecting the reflected wave from a bed 

at point Q, which is at a distance h below 0 as shown in Figure 49. 

i) The p-wave is reflected according to Snell's Law with an angle 

6 equals to the angle of incidence, and hence G is at distance x equals 
p p 

to x. The normal component of the reflected p-wave amplitude is 

A (x ,e ) = A(x ,e )sine 
y p p p p p 

A 
= 2° f (6 )sine ; 

r p p p 

The original amplitude of the spherical wave is A and f (6 ) is the 
0 p p 

angular distribution of the reflected p-wave due to mode conversion at 

point Q, or 

or 

A (x, e ) 
y p 

A 
y = 

= 

h 

2(h2+x2) 
p 

A 
0 

2h 
[ 1 + 

f (6 ) A 
p p 0 

1 f (6 ) 

(x /h) 2 ] 
p p 

p 

or normalized to a total reflection for a source just above Q with the 

same height h. 

= 
A 
.....£ 
2h 



144 

A 
y A 

s 

Q 

Figure 49. Geophone Response to Reflected P-Wave 



1 f (8 ) 
[1 + (X /h) 2] p p 

p 
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ii) The S-wave is reflected with an angle 8 , so G is at a distance 
s 

x less than x. The normal displacement of the reflected s-wave is 
s 

B (x ,e ) = B(x ,e )case 
y s s s s s 

Since the displacement of the shear wave is transverse to the direction 
B 

of propagation as in Figure 50, where B(x ,e)=_£ f (6 ); f (6) is the 
ss r ss ss 

directivity of the reflected s-wave at point Q. 

B 
B = 0 f (8)cos8 

y r s 

B 

or normalized to 0 
h 

= 

= 

B 
--Y~,...= 
(B /h) 

0 

B 
--...::0:;__-,-- f < e > 
(x2+h2)1/2 s s 

s 

B 
0 

h 

X ----=s ___ f (8 ) 

[1 + (x /h)2] s s 
s 

X 

---....:5'---~- f ( e ) 
[1 + (x /h)2] s s 

s 

X 
s 

Noting that we have separated the analysis for p-wave and s-wave 

sense they can be detected separately due to the fact that they have 

different velocities and hence arrive at different times. 
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Q 

Figure 50. Geophone Response to Reflected S-Wave 
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b) For marine surveying consider a spherical p-wave generated from 

a source S at a distance x from 0, and a hydrophone H, which is sensitive 

to fluid pressure equally in all directions, detecting the reflected 

p-wave from a bed at point Q. This point is at a distance h below 0 as 

shown in Figure 51. 

The amplitude of the reflected p-wave is 

or normalized to A /2h 
0 

A 

= 

= 

(A /2h) 
0 

A 
0 

2h 

= 

1 f (6 ) 
[1 + (x /h)2]1/2 p p 

p 

1 f (6) 
[ 1 + (x/h) 2]1/2 p 

Acoustic Impedance and CDP Gathers 

Separating the reflected p-wave from the reflected s-wave and 

normalizing each with its maximum amplitude leads to a plot displaying 

the CDP gather amplitudes as a function of offset. This curve has 

valuable information about the characteristic of the physical properties 

of the interface. The general behavior of this curve reflects the (1/r) 

divergence of the spherical wave amplitude and the polarization sensi-

tivity of the receiver beside the directivity pattern of the reflected 

wave.Hydrophone response of the reflected p-wave from fluid/solid inter-

face is shown for air/sandstone in Figure 52, for water/sandstone in 
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Figuer 51. Hydrophone Response to Reflected P-~lave 
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Figure 53, for water/limestone in Figure 54, and for water/shale in 

Figure 55. 

l The general behavior of the curve in Figure 53 reflects the -
r 
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divergence of the reflected wave amplitude. The offset to depth ratio 

is limited to 2. Beyond this direct signals and multiple reflections 

interfer strongly with primary reflections. 

The two peaks in water/solid reflection refers to the two critical 

reflections at the two critical angles (p-wave and s-wave) which are 

discussed earlier. 

Geophone response of the reflected p-wave from solid/solid inter-

face is demonstrated for sandstone/limestone in Figure 56, for sand-

stone/shale in Figure 58, and for limestone/shale in Figure 60. While 

the geophone response of the reflected s-wave from solid/solid inter-

face is demonstrated for sandstone/limestone in Figure 57, for sandstone/ 

shale in Figure 59, and for limestone/shale in Figure 61. 

In each case two plots are presented referring to the two ways in 

which a p-wave is incident at the interface. These plots show how the 

relative amplitudes of the reflected p-wave and s-wave depend on the 

acoustic properties of rock strata about a interface. 

They have definite features due to mode conversion and critical 

reflections, which are discussed in details in the previous chapter 

when they were presented in the polar form. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Reflection of acoustic waves from plane interfaces illustrates fea-

tures which are characteristic of the acoustical properties of rock 

strata about a certain interface. This information is contained in the 

relative amplitudes of the reflected waves, which has not been utilized 

up to this time in CDP gathering method. 

The amplitudes of the reflected and transmitted waves are determined 

from the solution of a p-wave of unit amplitude incident on an interface 

of two semi-infinite media. The angular dependence of the reflected, 

mode converted, and transmitted waves is obtained by varying the angle of 

incidence from normal to grazing incidence. 

There are three methods which are complementary to each other of 

displaying some information about the physical properties of the two 

media. 

First, by displaying the results in polar form, these polar presen-

tations show the directivity patterns of the reflected and transmitted 

plane waves. By this method the results can be recognized concisely. 

For the special case when we have critical angles, they provide us with 

definite values of the transmitted p-wave and s-wave velocities. Using 

the generalized Snell's Law 

a 
cos8 

p 
= 

a' 
cos8' 

p 
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S' 
cos8' ' 

s 



at critical angles the transmitted p-wave velocity 

a' = a 
e (cp) , 

cos 
p 

where e(cp) is the first critical angle, and the transmitted s-wave 
p 

velocity 

S' = 
a 

e (cs)' 
cos 

p 
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h 8 (cs) · h d · · l 1 w ere ~s t e secon cr~t~ca ang e. 
p 

The incident p-wave velocity 

can be found by knowing its time of flight. 

Second, by plotting the relative amplitudes which are detected by 

geophones or hydrophones as a function of offset of the receiver. A 

curve is obtained for each reflected wave, which vary significantly, due 

to mode conversion and total reflection, as we vary the physical proper-

ties (velocities and densities) of either side of the interface. 

The general behavior of the offset curve reflects both the (1/r) 

decrease in amplitude and the polarization sensitivity of the receiver. 

If the incident p-wave velocity is less than the transmitted p-wave 

velocity, a sharp peak is recognized showing the first critical reflec-

tion. This peak gets closer to the normal as the relative velocity of 

transmitted p-wave to the incident one is increased. 

If the incident p-wave velocity is less than the transmitted s-wave 

velocity, two peaks are recognized showing the two critical reflections. 

These peaks also get closer to the normal as the velocities of the 

transmitted waves are increased with respect to the incident p-wave 

velocity. 
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The relative velocity affects the general behavior of the reflec­

tion, while the relative density affects the amount of reflection. 

The mode converted s-wave with its sharp definite feature adds 

another dimension of knowing the acoustic properties of the two materials 

composing the interface. Something typical about the reflected s-wave 

is that it is confined to a vary narrow angular region. 

Third, an attempt is made to expand the directivity patterns of the 

reflected amplitudes as a finite expansion of some orthonormal functions, 

such as associated Legandre polynomials, normal Legandre functions and 

siniosoidal functions. The coefficients of the expansion will be depend­

ent on the relative acoustic properties as well as the emergent angle. 

This method will be helpful in solving the inverse scattering problem 

where the relative amplitudes are known and the relative densities and 

velocities are needed to be found. This approach is more likely to work 

with non-critical cases where sharp discontinuities are avoided and fast 

convergence is assumed. An illustration on how to use this method is 

given in the Appendix. The phase shifts of the reflected waves also 

change sharply at critical angles where they provide a double check on 

the values of critical angles. 

Suggestions for Further Study 

This theoretical work illustrates the important information that 

can be extracted from the relative amplitudes of CDP gathering data. 

A display of the relative amplitudes as a function of offset and~in a 

polar form, can provide a general idea about the relative acoustic 

properties of the reflecting surface. 

The fact that a fast convergence was not achieved using Legendre 
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polynomials and sinisoidal functions suggests that there might be another 

set of orthonormal functions that will converge fast, so more theoretical 

work is needed to be done to solve the inverse scattering problem, and 

if possible to find the proper functions that will work in both critical 

and non-critical cases. 

We limited our discussion to investigation of primary reflections 

and used a single image in describing the reflections. A more general­

ized image method should be developed to solve the more realistic problem 

of multiple reflections. If the time delay is involved, the multiple 

image method could be used to generate synthetic seismograms which 

could be compared directly with field measurements. 

Finally, we have dealt with a horizontal interface, but when the 

reflecting surface is inclined, it will affect our analysis, so it may be 

possible to use the location of the maxima of the reflected s-wave as an 

indication of that inclination of the reflecting bed. This inclination 

or dip is a valuable parameter in petroleum exploration to indicate 

migration directions. 

All of these methods can be integrated to give a comprehensive idea 

about the structure of the subsurface formation, to identify the bed 

rocks, and finally to locate oil or gas reservoirs. 
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APPENDIX A 

ORTHOGONAL EXPANSION 

A set of orthogonal functions, {f. (x)}, are used to expand a given 
l. 

function; 

+ 
y(a,x) = 

N a 
.E1 a. f. (x), 
J.= l. l. 

where N is the number of independent functions needed for the expan­
a 

sion. This orthogonal set is used to fit a tabulated data set having 

N points (x. , y (x. ) ) • 
X l. 0 l. 

Let us define a set {y . li=l,2, ... ,N }; where N is number of data 
OJ. X X 

points. Such that 

+ 

y o2 ' • • • ' yo (xN ) = 
X 

For a given choice of a the error between tabulated data and 

fitting function is defined as 

2 + 
D (a) = 

N + 2 
.E1 {y(a,x.)-y .} 
J.= l. OJ. 

+ + -+ 2+ 
Demand that a chosen, a = a , so that D (a ) is an extremum. 

0 0 

+-+ 
a= a 

0 
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0 



N 
X 

,2::1 J,= 

Nx 
• 2: 
J.=l 

Nx Na 
or . 2::1 {k:h J.= 

Na N 
X 

k~l {i~l 

Define A. and g. as 
J J 

g, 
J 

= 

= 

+ I ay Ca ,x.) + . J. 
{y (a ,x. ) -y . } = 0 . J. OJ. .aa. I++ J a=a 

0 

N. + X 
{y(a ,x,)}f.(x.) = ,2:1 Yoi f. (x.) 

0 J. J J. J.= J J. 

N 
X 

ak fk (x. ) }f . (x. ) = ,2:1 yoi f. (x.) 
J. J J. J.= J J. 

Nx 
fk(xi) f. (x.)} aok = .r.l y . f. (x.) 

J J. J.= OJ. J J. 

The above equations become 

or in matrix notation 

N 
a 
k~l Ajk aok = gi 

+ [~ 

+ + 
Aa = g 

0 

= 
0 

-1 +] A g 
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Three different sets are used for the orthogonal expansion. These 

sets are seniosoidal functions, Legendre polynomials, and associated 

Legendre functions. When we used the first seven terms of any set to 
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fit a tabulated data set, {8., ~. (8.}, of the reflected p-wave amplitude 
~ ~ ~ 

as a function of the angle of incidence; the results were as follows: 

1. The case, when there is no critical reflection; siniosoidal 

and Associated Legendre functions gave better fits than that using the 

Legendre polynomials. 

2. When there exists some critical reflections, more terms are 

needed for the expansion of any set, to get acceptable fit for most 

data points. 

3. It is very difficult, with a reasonable number of terms, to 

fit all data points including points at which critical reflections 

occur, which are of major interest for us. 

4. With that many number of terms needed for the expansion to fit 

all cases we found it impractical to relate each term of the expansion 

to the relative acoustic properties of strata about the interface. 



APPENDIX B 

LEGENDRE POLYNOMIALS 

Generating formula for the Legendre polynomials is 

P (x) 
1 dn 

{(x2-l)n} = n 2n ' dxn n. 

where X = ·case . 
The first five terms of p (x) are: 

n 

p (x) = 1 
0 

Pl (x) = X 

P 2 (x) 
1 2 

= (3x -1) 
2 

P3 (x) 1 3 = (Sx -3x) 
2 

P4 (x) 1 4 2 
= (35x - 30x +3) 

8 

P5 (x) 1 5 3 
and = (63x - 70x + Sx) . 

8 

The Legendre Polynomials, P (x), are orthogonal on the interval 
n 

-1 ~ x ~ 1, that is 

f 1 P (x) P (x) dx = 
-1 n m 
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_2_ 0 
2m+l mn 



APPENDIX C 

ASSOCIATED LEGENDRE FUNCTIONS 

Generating Formula: 

m 
PL (x) = 

dHm 2 Q. 
(x -1) 

dx!l.+m 

where x = cose and Q. is a positive integer. The first few terms of 

Associated Legendre Functions are: 

0 1 2 
P 2 (x) = 2(3x -1) 

= 

= 2 
3(1-x ) 

P~ (x) = - ~(l-x2 ) l/2 (15x2 -3) 
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= 

2 
P 3 (x) = 

2 
15x(l-x ) 
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m 
For fixed m the function P~(x) forms an orthogonal set in the index~ on 

the interval -1 ~ x ~ 1. 

·!-~ P~(x) P~,(x) dx = 
2 

2.£.+1 
(.Q.+m) ! 
(~-m)! 0H' 

m 
In general {p~} does not form an orthogonal set of functions. When 

we use them for the expansion we have to remove the degeneracy first. 

Lower order terms can be written as a linear combination of higher order 

terms in the following manner: 

0 
P (x) 

0 

1 
Pl (x) 

= 

= 

= 

When we used the first seven independent terms of Associated 

Legendre polynomials (L = 2, M = 0,1,2, L = 3, m = 0,1,2,3) we elimin-

ated the lowest order terms (L=O, L=l) by using the above linear combin-

ations. 



A 

A, 
1 

A 
r 

a' 

B. 
1 

B 
r 

= 

= 

= 

= 

= 

= 

= 

= 

APPENDIX D 

SYMBOLS 

Vector potential field 

Amplitude of incident p-wave 

Amplitude of reflected p-wave 

Amplitude of transmitted p-wave 

Speed of incident p-wave 

Speed of transmitted p-wave 

Amplitude of incident s-wave 

Amplitude of reflected s-wave 

Bt Amplitude of transmitted s-wave 

S = Speed of incident s-wave 

S' = Speed of transmitted s-wave 

C = Phase velocity along interface 

o(p) = Phase shift of reflected p-wave 
r 

o(s) = Phase shift of reflected s-wave 
r 

E = Strain 

w = Scalar potential field 

y = Skin depth 

+ 
K = Wave vector of incident p-wave 

p 

+ 
K' = Wave vector of transmitted p-wave 

p 

+ 
K = Wave vector of incident s-wave 

s 
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-+ 
K' 

s 

p 

n 
r 

-s 

(J 

(J •• 
~J 

e 
p 

e' p 

e(cp) 
p 

e<cs) 
p 

e 
s 

)l 

w 

z 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 
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Wave vector of transmitted s-wave 

Laroe constant 

Density 

Square root energy of reflected s-wave 

Square root energy of retransmitted s-wave 

Square root energy of reflected p-wave 

Square root energy of transmitted p-wave 

Displacement 

Poisson's ratio 

Stress 

Incident angle of p-wave 

Refracted angle of p-wave 

Critical angle of transmitted p-wave 

Critical angle of transmitted s-wave 

Incident angle of s-wave 

Refracted angle of s-wave 

Shear modulus 

Angular frequency 

Acoustic iropedence 
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