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CHAPTER I

INTRODUCTION

The most important geophysical technique used for petroleum explor-
ation is the seismic method. This is due to the fact that it has high
accuracy, high resolution, and deep penetration. Although the seismic
method has some applications in other fields such as civil engineering
and radar technology, its most extensive use has been in oil and gas
exploration.

Exploration seismology is a by-product of earthquake seismology.
During an earthquake sound waves travel outward from the fracture surface
and recorded at various sites using seismometers. This data is then
analyzed to provide some information about the elastic properties of the
rock through which the sound waves travel.

The basic technique of exploration seismology is essentially the
same as the one used in earthquake seismology. It consists of generating
controlled waves (by dynamites, mechanical impact or vibration) and mea-
suring the time needed for the waves to travel from the source to an
array of geophones which detect vertical or horizontal ground motion.

The data are usually recorded on magnetic tape and processed by computer
in order to eliminate the noise and extract the desired information.

Seismic technique falls into two different categories:

1. Reflection Seismology, which is the most widely used method in

geophysical prospecting techniques, deals with generating elastic waves



and making surface measurements on the waves that are reflected from in-
terfaces between formations having different physical properties. Later
these measurements are interpreted to give some information about the
depths of the reflecting beds and the structural features of the subsur-
face formaﬁions. Thus with reflection methods one can locate and map
some features of interest such as anticlines, faults, salt domes, and
reefs which are generally associated with the accumulation of oil and
gas.

In reflection seismology, the reflections are recorded by seismo-
meters which are laid along the ground at distances from the source that
are generally small compared with the depth of the bed. These seismo-
meters are either geophones which are responsive to ground motion or
hydrophones which are responsive to water pressure.

2. Refraction Seismology--it deals with the case where the detec-
tors of seismic waves are at a large distance from the source compared
to the depth of the laYer to be mapped. The refracted waves must thus
travel large horizontal distances Fhrough the earth. The times of
flight give some information about the velocity and depth of the sub-
surface formations along which they propagate.

This method has some advantages. It can cover a given area in a
shorter time and more economically than with the reflection method. It
is particularly suitable to determine the shape and depth of some sedi-
mentary basin if it has a lower speed than the basement formation.

In spite of these advantages, it is not employed as much as the
refraction method in oil exploration, This is probably due to the
greater amounts of dynamite needed for field operations, and the lower

precision in the information of the structural features of the subsur-



face formations.
Statement of the Problem

So far the reflection method has not been used for direct petroleum
exploration, but instead limited to the mapping of structural features
or stratigraphic conditions favorable for the accumulation of oil or
gas.

On the other hand the technique that has been used for direct indi-
cation for the presence of hydrocarbons is the drilling process and
testing the core samples.

Using seismic reflection method for direct detection of hydrocar-
bons has not been achieved yet. So, our problem is to relate the reflec-
tion amplitudes to the acdustic impedance of the buried interfaces.
Knowing the physical properties (velocity and density) of the stratum
will help in locating oil or gas.

In this study the concern will be with reflection and refraction of
plane waves incident on plane interfaces. The solution of a boundary
value problem of an incident plane wave at some interface is obtainéd.
Then the angular dependence of all reflected and transmitted waves is
found. All possible cases of interfaces are taken, that is solid/vacuum,

liquid/liquid, liquid/solid, and solid/solid interfaces.
Importance of the Study

Most of the seismic work that has been done deals with normal inci-
dence only and with one type of elastic wave, which is the longitudinal
or pressure wave. In the present study, I will be dealing with oblique

incidence as well and with both types of elastic waves which would be



generated at the boundary interface due to mode conversion. This occurs
with either type of elastic wave; pressure (p) wave or shear (s) wave.

Knowing the reflected and transmitted amplitudes of the p-wave and
s-wave will give information about the elastic properties of the subsur-
face formation. This would add a new dimension in geophysics prospect-
ing, to have an idea not only about the structure of the bedrock but
also about some physical parameters such as velocity and density.

This method can be applied to Common Depth Point analysis as de-
scribed in Chapter VI, and utilize the information given about the
relative amplitudes of the reflected waves as a direct indication of the
relative speeds and densities of strata about the reflecting surface.

Due to the high directivity of the reflected s-wave some analysis
of its amplitude can be done more economically than the analysis needed
for the reflected p-wave. The p-wave and s-waves are easily separated

due the considerable difference in their speeds of propagation.
Procedure of the Study

The writer will start with some theoretical background for the sub-
ject which is the theory of elasticity, then the wave equation is derived
for the pressure wave and shear wave. These are two independent elastic
waves which propagate with different velocities and are governed by the
elastic properties of the medium. In Chapter II the theoretical boundary
value problem is solved for the most general case of two solids. Then
mode conversion is discussed in Chapter III, where one type of wave inci-
dent on a discontinuity will generate the other type of wave in order to
satisfy the boundary conditions.

Different cases are taken of solid/vacuum, liquid/liquid, liquid/



solid, and solid/solid interfaces, and all data used represent familiar
rocks and fluids.

In Chapter III we limited our discussion to the non-critical situa-~
tions. The solutions are found by using numerical analysis to solve
four equations and four unknowns (or less for simpler cases). Normal
and grazing incidence are solved algebrically to avoid any singularity.
After solving for the amplitudes, some modified factors are introduced
to get the square root of the normal energy flux. The physical require-
ment of conservation of normal energy flux is used as a check for our
results.

In Chapter IV critical angles are discussed thoroughly, and the
assbciated sharp discontinuities in reflected, mode converted, and
transmitted amplitudes. At and beyond critical angles the z-component
of the wave vector k of the transmitted wave becomes imaginary, so that
will lead to an exponential decay of the amplitude as a function of the
distance from the interface. This transmitted wave propagates parallel
to the interface with a phase velocity that is determined by the inci-
dent wave velocity and the angle of incidence and it does not transfer
any energy across the barrier.

In Chapter V results from Chapter III, and Chapter IV for critical
and non-critical situations are presented in polar form which shows the
angular dependence of the reflected and transmitted pressure and shear
waves. These plots have very definite features which reflect the
dependence on the relative acoustic parameters (velocity and density) of
the reflecting interface.

Some application of our results on Common Depth Point data evalua-

tion is discussed in Chapter VI. Useful information about the relative



amplitudes from offshore and onshore measurements is explained and how
we can use that as a direct measure of the relative velocity or density
especially for the case when there are sharp discontinuities in the
reflection amplitudes due to critical angles.

An attempt for expanding the relative reflected amplitudes in terms
of some orthonormal set is illustrated in Appendix A where we used three
different sets of orthogonal functions; these are Legendre, Associated
Legendre, and Sinusoidal Functions.

Using the first few terms the approximation was good enough for
smooth reflections, but for the case when we have sharp discontinuities
more terms are needed, or may be some other set of orthogonal functions.

Finally, some suggestions for further investigations are discussed.

Limitation of the Study

In our study we assumed plane interfaces, but in reality one hardly
can find such regular interfaces, especially for a large region of field
measurements. Some regions of uniform depositions of sediments such as
those at the bottom of the ocean can be approximated as plane interfaces.

Also, we assumed flat interfaces, but some interfaces are inclined,
so that will affect the magnitude of the reflections and hence the loca-
tion of maximum reflection points.

We have limited our analyses to primary reflections, but it can be
extended for multiple reflections where we have to use the idea of suc-
cessive image points to give the right reflections.

As far as the speed is concerned we assumed an isotropic medium,
and hence the speed is equal in all directions, but in reality there is

a measurable difference in the speed along the bedding planes from that



normal to them. Also there is some frequency dependent in the velocity
that we haven't put into consideration.

The attenuation effect of the amplitudes from energy loss due to
internal friction is not considered, but this effect is reduced since
we are dealing with relative amplitudes, and all reflected amplitudes
have nearly suffered from the same attenuation.

Finally, even though our results are obtained for all range of
angles (normal to grazing incidence), but when they are applied to CDP
(Common Depth Point) analysis the relative amplitudes are plotted for a
limited range of angles; that is from normal incidence to about 300
(angles are measured from horizontal). Practically taking all range of
angles is impossible, because at grazing incidence some detectors have

to be at infinite in order to respond to the reflected p-wave.
Review of Related Literature

Energy densities of seismic waves reflected and refracted at an
interface of two elastic media has been studied by various authors, such
as Knott (11), Stoneley (9), Muskat and Meres (16), Ergin (3), and Koe-
foeld (12).

C. G. Knott (11) derived formulas for the reflection céefficients
for plane waves incident on a boundary between two elastic media, per-
mitting their values to be computed when the elastic constants of the
media are known. He considered the cases of: solid-air, solid-water,
and solid-solid interfaces.

R. Stoneley (19) concentrated on the dissipated energy, at a dis-
continuity, due to internal viscosity and on the existence of surface

waves analogous to Rayleigh and Love waves.



M. Muskat and M. W. Meres (16) computed the reflection and trans-
mission coefficients for the elastic waves due to an incident p-wave or
s-wave for a range of densities and longitudinal velocities ratio.

Their analysis was limited to the assumption that in both media the
Poisson ratio was equal to 0.25, and that the angle of incidence did not
exceed 300.

Kazim Ergin (3) investigated the energy ratios of the seismic waves
reflected and refracted at a rock-water boundary. He has determined the
angles (if any) that lead to the extreme values of energy, and the
dependence of these angles on the elastic constants of the media
involved.

0. Koefoeld (12) calculated the reflection coefficients of plane
longitudinal waves incident at oblique angles on boundary planes between
elastic media. He discussed the effect of Poisson's ratios of rock
strata on the reflection coefficients.

When the angle of the incidence exceeds a certain value (the criti-
cal angle), the phenomena of total reflection occurs. Such a phenomena
has been a subject cof many papers.

Among these papers F. G. Friedlander (5) considered the reflection
and refraction of transverse plane waves, at an interface parallel to
the direction of polarization. The incident wave is of arbitrary shape
and the angle of incidence is allowed to exceed the critical angle.

J. N. Goodier and R. E. Bishop (7) discussed the critical reflec-
tions of elastic waves at free surfaces. By applying suitable limiting
processes, they were able to obtain the wave motion of a p-wave or an
s-wave incident at grazing incidence.

B. Gutenberg (8) applied the method for calculating the amplitudes



for bodily waves in earthquakes to the study of amplitude of longitudinal
waves produced by an artificial explosion. He related the discontinuity
in the energy of the reflected longitudinal wave to the critical refrac-
tion angle.

C. Y. Fu (6) discussed the complex behavior of the reflected and
refracted amplitudes beyond critical angles, and their analogy to Ray-
leigh wave. He, also, derived the equations for the reflected and re-
fracted amplitudes due to an incident dilational or distortional wave at
the interface of two semi-infinite media.

As far as using the reflection method in the field W. Harry Mayne
(15) described some technique for multiple coverage of the subsurface.
He assumed an average velocity that increases with depth, and he has
arranged the detectors spreads and the shotpoints so that when the chan-
nels which have a common reflection point are combined or stacked a min-
imum ratio of noise to signal is obtained.

C. S. Clay and H. Menell (2) made some comparison between the mea-
sured and calculated amplitudes of two seismic events which have
traveled through a two layer seismic model, and they found that the
relative amplitudes of the reflected waves are in agreement to the cal-
culation based on reflection theory of plane waves with correction for

the %-spherical divergence of the amplitude.



CHAPTER II

THEORY OF ELASTICITY

The seismic method uses waves propagating through the earth to ob-
tain information about subsurface geological structure, propagation of
the wave causes a local disturbance of the particles of the medium. The
deformation due to the wave is determined by the elastic properties of
the medium and the type of wave.

Elasticity is a measure of the ability of some substance to resist
any deformation in size or shape (size only in case of fluids) to some
applied external force. This reaction is due to some internal forces
which exist whenever the body is distorted from an equilibrium configu-
ration. The theory of elasticity relates the deformation of the body in
shape or size to the applied forces. The elasticity is the proportion-
ality constant between the applied force (stress) and the resulting

deformation (strain).

Stress

Stress is defined as the force per unit area. It is normal if the
applied force is normal to the area, and it is tangential stress if the
force is tangential to the area. Any other stress can be resolved into
normal and tangential components.

Consider an infinitesimal rectangular parallelipied inside the

stressed body with three sides along three mutually perpendicular axes

10
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Ox, Oy, Oz. There are stresses acting on each of the six faces which

can be resolved into components, as shown in Figure 1 for the two faces
that are perpendicular to the x-axis. The shear stress parallel to the
y-axis (oyx) acts on a surface perpendicular to the x-axis. When the
stress indices are the same (as OXX) it is normal to the surface while

if they are different (as ny) it is tangential or a shearing stress.
When the body is in static equilibrium (no whole body rotations or trans-
lations), the stresses must be balanced, so by taking moments it is
easily shown that o < = ny and generally Gi' = Gji' This will reduce

J

the number of independent stress components into only six.
Strain

Strain is a measure of the relative change in dimensions of the
body that is subjected to stress. If we consider a rectangle ABCD in
x-y plane as in Figure 2, let A'B'C'D' be the new positions of A,B,C,D
when it is under some stress. Let the displacement AA' have u,v com-
ponents along x, y-axis respectively. If the whole rectangle is dis-
placed by the amounts u and v, then there is no change in size nor shape
so there does not exist any étress; However, if the displacements of
the vertices are not identical, then the rectangle does undergo change
in shape and size. So stress does exist.

Let the coordinates of A and an adjacent point B for the unstrained

rectangle be given as:

A(x,y)’ B(X+<5x, y)

After the rectangle is strained by u,v, then A,B become



ZX ”

XX

Figure 1.

Components of Stress on a Small Rectangular Parallel-
pieped

12
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A(x+u,y+v)' B(x+5x+u+6u, y+v+6v)

If u = u(x,y) and v = v(x,y), then

ou ou
fu = T §x + 5y Sy (2.1a)
and
ov ov
ov = % ox + 3y oy . (2.1b)

That is lst order expansion assuming 0x, dy are very small. We can see
from Figure 2 that:

a) The fractional elongation in x and y directions (normal strains)
oV .
are -— and —; , respectively.
b) 6, = tan &, = 9v/dx, &, = tan S§_ = du/dy.

c) The rectangle has rotated about the z-axis counterclockwise

_ oV ou, _ e s
through the angle (61 62) = (ax aY) = Sz. It doesn't involve any
change in size or shape and hence it is not a strain.

d) The right angle at A has decreased by an amount = 61 + 62

%% + %57 so it is a measure of the change in shape of the medium and it

is denoted by EXY as shearing strain.
If our analysis is extended to three dimensions in which A has been
displaced by u, v, w in the x, y, and z-direction respectively the

strains are as follows:

Normal strains exx = —, € = —, € = — (2.2a)
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oV ou
€ = € = —— 4 —
Xy yX 9xX Iy
, . ow oV
Sharing strains ¢ = € = — 4 — (2.2b)
vz zy dy 0z
Ju ow
f2x T fxz T 3z T ox )

Beside that, the body is subjected to rotational deformations about the

three.axis as follows:

g = oW _3v
b4 dy dz
= Ju_ dw
ey = 32" 3% (2.2¢)
g = ¥ _3u
z ox oy J

There is a volume change due to the changes in dimensions which are
given by the normal strains. This relative change in volume is called

dilation and denoted by

Sx(l + exx)éy(l + syy)(l + Ezz)sz

A =

§ § ¢
XYy
A = € + € + € (2.3)
XX vy zz
to the 1lst order approx. So,
du ov ow
T

Generally we can decompose strain into dilation and shearing strains
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(Love, P. 45, Theory of Elasticity)..
Hooke's Law

When the strains are small (limited stress) they are related to
stress according to Hooke's Law which states that strain is linearly
related to the applied stress. When several stresses exist, each pro-
duces strains independently of the others. This means each strain is
a linear function of all of the stresses and vice versa.

So, in general for an anisotropic medium the six components of
stress are related to the six components of strain by the following

(generalized form of Hooke's Law) matrix equation.

9 x (€12 C12 C13 S S5 Ci6 | |
vy €21 C22 23 C20 C25 Ca6 | | Fyy
%2z | _ | %1 32 %33 34 S35 C36 | | ez 2.0
vz a1 C42 C43 Caa Cas Cae | | Sy
zx €51 Cs52 Cs3 Csa Css5 Cse | | Cax
%%y 61 62 63 “6a Ce5 Ce6 | | Cxy
L1 L 4L

where the coefficients are the elastic constants of the material. For
the elastic energy to be a univalued function of the strain crs = csr
(see Love, Fourth Edition, P. 99). This reduces the number of inde-
pendent coefficients from 36 to 21.

For an isotropic solid, the values of the coefficients are inde-
pendent of the set of axes chosen. Applying this condition to the above

matrix equation reduces the coefficients into just two independent con-

stants denoted by A and u, where
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= = = = = X
C23 C13 C21 C23 C31 c32
C44 = C55 = C66 = u r (2.5)
C1l = C22 = C33 = A + 2u, and the other 24

coefficients vanish due to the high degree of symmetry so that stress

and strain are related by the following simple relations

= + 2 i = .
cii AL u Eii' i=zx,y,2 (2.6a)
and . 0,., = yuwe,.,, i = x,v,z; i#j (2.6b)
1j 1] i,3
where A = € + € + €
XX vy 2z

and A,y are known as Lame's constants. This completely defines the
elastic properties of an isotropic solid. The reaction to shearing
strain is proportional to u which is often referred to as the modulus of

rigidity or shear modulus.

Wave Equation

So far we have been discussing a medium in static equilibrium. Now,
we shall concern ourselves with a media experiencing stress gradient.
Let us assume that the stresses on the rear face of the parallelepiped

are as shown in Figure 1,

but that the stresses on the front face are respectively
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a0 90 " 30 <
c + XX 5 , O + =X s , O ZX 5
XX X X yxX. X X Zx 9x X

these stresses act on a face having an area of 6y6z and affect the
volume (6x6y62). So, the net force per unit volume in the x, y, and

z-directions are

o0 g o
XX VX ZX

9x ' Ox

14 4

ox

respectively. Similar expressions hold for the other faces. The total

force in the x-direction is

Boxx Boxy axz
AY
( ox * oy * 3z

and the equation of motion according to Newton's second law is

= ma (2.7)
X net X
32u
or F per unit volume = p —, where p is the density.
X net atz

The net acceleration due to the difference in stress on the faces

of the rectangular parallelpiped are given by

2 o0 0

o0
aXX + _ﬂ + Xz
X oy oz

(o5
[+

©
|

[\S)

(2.8a)



and similarly,

a2 ilo] 30 90
PIF T et et e
ot * Y
82w Bozx aozy o]
o = + +
2 9
St ox dy z
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(2.8b)

. (2.8c)

These equations of motion will hold, whatever the stress-strain behavior

of the medium.

tic relations.

In order to solve these equations, we must use the elas-

For an isotropic medium these relations are given by

Hooke's Law (Equation 2-6) and the definition of strain components

{Equation 2.2).

From these relations we can rewrite the stress in terms

of the strain components yielding the following equations of motion.

0 32u
2
ot

where

3 3 3
— + — ——
x (AD 2u€xx) + 5y (uexy) + (uexz)
J€E 3¢
9/ XX Xy X2z
A = + 2u Y. + u 3y + u
A Eé_+ 2 82u + u(azv + 82u (Bzw Bzu)
9x ax2 dyox 3y2 dzdx 5 2
oA 3 ,ou ov ou
A ox Fuvu 4w 9x (Bx oy 32)
32 3A 2
[0 == = G +w o=+l . (2.9a)
X
ot
2 2 2
V2u - 3 u + d u + 3 u

By analogy we can write the following equations:



20

2 oy
at
azw oA 2
p—5 = (A +u) —+ uwua (2.9¢c)
atz 3z

To obtain the wave equation, we differentiate eguations (2.9%a,b,c) with

respect to x, y, and z, respectively and then by adding them we get

2 , 2 2 2
—82[2—u+%‘1+g—“’] = () {32+82+32}A+uv2(g—u+§—v+%§)
ot x Y z ox dy oz X Y
2 2
or o 2L o puamvia [ 2L - v (2.10a)
2 2 2
ot a dt

which is the wave equation for a dilational wave propagating through the

medium with a speed o where

o = — (2.10b)

By subtracting the derivative of Eq. (2.9b) w.r.t.z from the derivative

of Eq. (2.9c) w.r.t.y we get

2
) ow oV 2.9w ov
b Gr - =) = wEE - )
at2 dy dz oy oz
that gives
2
0 é—-é-(ex) = uvzex (2.10¢)
at

where Gx is a rotation about x-axis given by Eq. (2.2c), or
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where

u
= - 2.
8 0 (2.104)

That represents a rotational wave about the x-axis that is propagating

through the medium with speed

8 = (we)t.

Similar equations may be obtained for ey and Gz. So generally we can
write
2
iz-a—‘g = 7% (2.11)
B~ 3t
For a purely rotational wave (the dilations is zero) Equations (2.9a,b

and c) become

2
? 2
0 ——‘21— = uvy (2.12a)
ot
similarly,
2
o X = wiy (2.12b)
ot
and
2
5 2
0 ——‘;_’ = uww (2.12¢)
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The conditions for a purely dilational wave that is when all the rota-
tions ex, Gy and Gz vanish is satisfied if u, v and w satisfy the follow-

ing conditions

where ¢ is some potential function, thus
A o du, Bu 3w
Ix oy 0z
= %
and —g% - VZ%;% = v (2.13)
So by substituting in Eg. (2.9a) we get
péz—‘;— = O+ 2172 (2.14a)
ot

and similarly for v and w in Egs. (2.9b) and (2.9c) we get

52 2

P = (+ 207, (2.14b)
ot
2

o é—%— = (A + 2u)V2w (2.14c)
5t

So we see that for an unbounded isotropic elastic solid two and only two
waves can exist. Waves involving no rotation travel with a speed
[(A+2u)/p]%. These are called irrotational waves or dilational, longi-

tudinal, compressional, or pressure (p-) waves. Waves involving no
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dilation travel with speed (u/o)%. These are called rotational, distor-

tion, transverse, or shear (s-) waves.
Bounded Medium and Boundary Conditions

If the medium to which the equations of motion are applied is
bounded, some other kinds of elastic waves may also occur. These waves
are called surface waves, since they are confined to the vicinity of one
of the surfaces which bound the system. The most important type of sur-
face waves is a Rayleigh wave which was discovered by Lord Rayleigh
(1887). This wave travels along the surface of the earth with a velocity
that is always less than the shear wave velocity. The amplitude of this
wave decreases exponentially with depth. Another type of surface wave is
called a Love wave which is observed in earthquake seismology. It in-
volves transverse motion parallel to the surface of the gfound and some-
times is called an SH wave. Love waves have velocities intermediate
between the s-wave velocity at the surface and that in deeper layers.

There are conditions on the stress and strain that must be satisfied
for a bounded medium. These expressions express the behavior of stresses
and displacements at the boundaries. For solid elastic media we assume
that they are welded together at the surface of contact implying contin-
uity of all stress and strain components across the boundary. At a
solid-liquid interface slippage can occur, so continuity of only normal
stresses and displacements is required. Since liquids don't resist tan-
gential stress (i.e., rigidity vanishes in the liquid), tangential
stresses in the solid must vanish at the interface and for a full surface
of a solid or fluid (ideally a surface in vacuum where there can be no

refracted waves), all stress components vanish; and the boundary condi-
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tions can't be satisfied by assuming that only one wave type is re-
flected. But rather another type of wave is needed to satisfy the
boundary conditions. In the most general case for any incident wave
(p-wave or s-wave) four separate waves are generated. A wave of each

type is reflected, and a wave of each type is refracted.

General Solution for the Reflection and Refrac-

tion of Plane Waves at an Interface

For an incident plane wave on a plane interface of two semi-infin-
ite isotropic media (assumed to be two elastic solids in the general
case) it produces compressional and distortional waves in both media.
Four boundary conditions must be satisfied, requiring continuity of nor-
mal and tangential components of displacements and stresses across the
interface.

We start with an incident p-wave in the x-z plane, so all waves
have no dependent on y, z is positive into the first medium. This inci-
dent p-wave will generate two reflected and two refracted Waves at the

boundary interface as shown in Figure 3.

. > = N ~ ~
Let the displacement vector s; s = ui + vj + wk be expressed in

terms of a scalar potential ¢, and a vector potential ﬁ.
-> -> > >
s = V¢ + VxQ (2.15)

The scalar and vector potentials represent two independent wave
types propagating in an unbounded medium. For a pure dilational wave
. . + .
that involves no rotation, ! vanishes and the displacement vector is

given by
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Figure 3.

Reflection and Refraction of Incident P-Wave at an Inter-
face of Two Elastic Solids
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T - 27, 245, 39
s = 5% 1+ 3y J+ ™ k
and the wave equation is
2
V2¢ = 4%- 3—% (2.16a)
o ot

which is a dilational wave propagating with a phase velocity o, where

a2 - A+2u .
p

For a rotational wave that involves no dilation ¢ vanishes,

>
Q= (wl, w2’ w3) in general, and the displacement vector is

U R N

> _ A ~
s = <3y T %z 1t o+ (82 X )1+ (Bx T 3y VK
and the wave equation is
2
2 1 i lpi .
Vy, = - 3 i= 1,2,3 (2.16Db)
* g 2t

Equations (2.16a) and (2.16b) show that ¢ is associated with the
dilation produced by the disturbance while wi is associated with the
rotation, and the introduction of the scalar and the vector potentials
has thus enabled us to separate the effects of dilation and rotation in

the medium.
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For the case when the motion is in the x-z plane, let us assume
-
that ¢ is a function of x and 2z only, and @ = (0, ¥, O) where ¥ is a
function of x and z.

The displacement corresponding to both the waves is given by

; = V¢ + %xﬁ
3¢ _ dys 3¢ 2 . 3¢ 3yn-
(Bx az)l + By 3 (Bz + 'k (2.17)
. - % _ 3
- uo= o oy (2.18a)
9¢
v = 5;‘ = 0 (¢#¢(y)) (2.18b)
and w o= é-d—)-+ L) (2.18c)
0z oxX
where ¢ and y satisfy the wave equations
2
v2 = =3¢ (2.19a)
2 2
o dt
2
and Vzw = L3 (2.19b)
2 2
B~ ot

The form of a pressure wave ¢ propagating with a phase velocity o,

and having a phase velocity c along the x-direction is

-i(k x-wt)
b = £(z) e px (2.20a)

where k = £ and k = 2
o34 c P o
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The form of a shear wave Y propagating with a phase velocity B, and

having a phase velocity c¢' along the x direction is

-i{k =x-wt)
y = glz)e % (2.20b)
where k = J% and k= <
Sx c s R

It will be shown later that both waves have the same phase velocity
along the x-direction (c=c'), and hence both waves have the same phase
factor. To solve for £(z) and g(z) we substitute the expressions of

f(z) and g(z) from Equations (2.20a,b) into Equations (2.19a,b).

2
o odt
2 w2
- k7 £(z) + £"(z2) = -~ — f(2)
px 2
a
2
4 £(2) , kzz £(z) = 0
dz p
ik Zz -ik =z
L f(z) = Ae PP o4+ aA e if k _#0 (6 #0) (2.21a)
i r Pz P
f(z) = Cl + CZZ if k z =0 (ep = Q) (2.21b)

In a physical solution C_=0, but if Czéo; f(z) » » as z + » which has

2

no physical meaning. Similarly,

g(z) = B, e + B e (2.22)
i r
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-i(k x-k z - wt) -i(k xx + k Zz - wt)
.0 =12, e px pz +A e P p , (2.23a)
i Y
-i(k =x-k z - wt) -i(k x -k 2z - wt)
V=3B, e sx sz +B_e sx sz (2.23b)

and similar expressions for the transmitted waves except that there are
no reflected waves in the second medium. So, the transmitted p-wave ¢'

has the form

' = A 2.23
¢ e © ( c)
where k! = 93 k! = J%
|24 c’ "px o
and o' is the phase velocity for the transmitted p-wave.
The transmitted s-wave ' has the form
, -i(k' x - R'Zz - wt)
¥'o= B e T 0B (2.23d)
k! = _(1_). ' = .12__
where sx P ksx X

and B' is the phase Vélocity for the transmitted s-wave.

The reflected and transmitted waves of either kind must satisfy
some boundary conditions (B.C.) on the stress and strain.

Before we solve for the boundary conditions we are going to develop
a generalized form for Snell's Law that relates different angles of
emergence to the different wave velocities.

Assuming a steady state solution, then B.C. are independent of time
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t > frequency w = constant and B.C. are independent of position x - the

x-component of the wave vector k = const.

k = k = k! = k = ' = const. (2.24a)
pPX pPxX sX sxX
or k cosb = k' cosf' = k cosb = k' cosf'
p b p p s s ] s
] = 8, = 6)
pr pL P
or L cosb = L cos0' = 2 cosd = 27 cosf' = &
o p a’ P B S B8 s c
o _ o' _ B _ g'
where cos® T cosf' = cos® cosé’ (2.24b)
jo) P s s

and c is the phase velocity along the interface.

This generalized Snell's Law can be derived also as a result of re-
quiring that the projections of the wave fronts on the x-axis travel with
the same phase velocity c along the interface.

Consider a special example of liquid/liquid interface. An incident
p-wave of wave length A, which is the distance between successive wave
fronts, meets the x-axis which represents a discontinuity in the medium.
Part of the wave is reflected, and the other part transmitted such that
wave fronts have the same projections along the interface. Let t be the

time interval between successive wave fronts which are shown in Figure 4.

For the reflected p-wave consider the two triangles QPO and STO.
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0L2 / ;-(
Liquid (2) o 2
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M /p
Y1
ol
A \(
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Figure 4.

Phase Velocity Along the Interface of Mode Converted Waves
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and PO = TO = at

= 22 .
tanep 50 oy
2
= V& (2.25a)
o
and cos(8 ) = at . &
P ct c
o —c
o cos (6 )
p
For the transmitted p-wave consider the triangle ORS
0os = ct
and OR = a't
2
tand' = RS _ c2t —a'2t2
anp = o 3Tt
- V&2 (2.25b)
L} L}
and COSG' - u - .a_'_...
ct c
al
or c =




33

Similar expressions will be found for the reflected and transmitted

s-wave for the general case of solid/solid interface. So,

c, 2
tanes = (B) -1 (2.25¢)
or c = B
! cos6f
s
c.,2
and taneé = (ETQ -1 (2.254)
Bl
oL, ¢ = osd?
s

So, by using simple geometry we were able to derive the generalized

Snell's Law

_ a _ o' _ B - R

cos® cosbB' ~  cosh cosH!'
P P s S

Boundary Conditions

The reflected and transmitted waves of both kinds (pressure-wave
and shear-wave) have to satisfy the following B.C. on stress and strain

along the interface of both media, i.e., the x-axis (z=0) in Figure 3.

Continuity of Tangential Displacement u

z=0 _ % lz=0 (2.26a)

where
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-ik (Ai+Axr) - ik b(Bi-Br) (A'+b'B'") (-ik)

1]

or Ai + Ar + b(Bi-Br) = A'+b'B’ (2.26b)
Continuity of Vertical Displacement w
w = w'l
z=0 z= (2.27a)
9 2
where w = 29 +-—-‘Ji
0z 9x

ik a(Ai-Ar) - ik (Bi+Br)

ika'A' - ikB'

or a(Ai-Ar) - (Bi+Br) a'a'-B' (2.27b)

Continuity of Tangential Stress

g = ¢! (2.28a)
zx zx

where g = UE€ .
ZX zZX

= pL oy
= ¥Gxt 3

_ 9.8y oY, . _9.0b 3y
GxGz * 3% * 329w 32!

= uf2 azw + aZw - 32q)}
9xX02Z 2 2
ox 92
S M S I O LA A a1
L 2 2 H 9%z 2 2
X 0Z oxX 9z

w{2(iKk) 2 (-a) (A, -A ) + (-ik)2(B,+B ) - (ik)’b>(B,+B)}
1 by h hay 1 r
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= u'{2(ik)2(-a')A' + (-ik)zB‘ - (ik)zb'zB'}

L. pBZ[Za(Ai-Ar) + (bz—l)(Bi+Br)] = p'B'2[2a'A'+(b'2—l)B'] (2.28b)

Continuity of Normal Stress at z

where

or

. = o . (2.29a)

Q
]

AN + 2u €
zZ

ZZ
e
= A%+ 2u(93%-+ %;%;)
0z
KV2¢ + 2U(§§%'+ gigx) = A'Vzw' + 2u'(§§%i'+ 2ig;)

' 2
A{(—kz)(1+a2)(A.+A Y} o+ 2u{(-k2)a2(A.+A ) + (=k ) (-b) (B,-B )}
1 X 1 r 1 r

A‘{(—kz)(1+a'2)A'} + 2u'{(~k2)a'2A' + (-k2)(-b')B'}

il

. A+2u, 2 u A 1b
. — '+A + — — .+ - — .
o ( 5 )a (Al r) o U p(Al Ar) 2 5 p(Bl Br)
A'+2u! 2 u'at u'
= ______) atar + p' A' = 2 — Db'p'B!
( pl p plul pl p

2 2 A2 2
pha(ﬁmg4ﬁjgm;%)—mm(%%g]

v
= pl[alzalel + %'_BIZAI - 2b'8'2B']
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but
A A+2u cx2
T A
B
2
2 2
So, ola’a®a +a) + & - 2)8%(a +a ) - 2bg%(B,-B )]
ir 62 i'r i'r
2 .2 a'2 2 2
= o'far"ar"ar + (=5 - 208" ar - 2078 "]
BI
. 22 2 2
ool +a ) {a%a“+a“-28°) - 2b82(B.—B )]
i i'«r
2 .2
= ofar{e®ar® + ar? - 2802} - 2prpripr]
2, 2 2
ol (a,+a ) {a®(a”+1) - 28%} - 2b8%(B.-B )]
1 hay 1 r
= pl[Al{aiz(al2+l) - 28'2} - 2b'6'2B']
but
2 ‘
a+l = tan26 + 1 = sec26 '
b Y
2,2
a (a +1) = azsecze = C2
Similarly,

2 2
a'“(a'"+1) = a'25e026§ = C
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2 2

. B 8
Coel@aga) {1-25) - 25 (Bi—Br)]
C C
l2 l2
= p'[a{1-2 §5—4 - 2b' 32 B']
C C
2
but S -2 = v
2
B
2
and E—E" 5 = b,z_l
Bl
. 2 2 2 2
. pB [(Ai+Ar)(b -1) - 2b(Bi—Br)] = p'g'"“[A'(b'“-1) - 2b'B']  (2.29b)

It seems that we have six unknowns and four equations, but

1. We have one type of incident wave, so for an incident p-wave
Bi = o0, and for an incident s-wave Ai=o.

2. We can normalize the amplitudes to the incident wave amplitude
so we have ratios w.r.t. Ai or Bi.

So for an incident p-wave (Bi=o) we have the following equations:

A.+A -DbB = A'+b'B' (2.30a)
1 r h oy
a(A.,-A ) - B = a'A'-B' (2.30Db)
1 X xr
2
082[2a(Ai-Ar) + ®°-1B_] = 0'8'[2a'a" + ®'2-1)8']  (2.300)
2 2 2
28 ,
o[ a;+a) {1 - ;5—} + 2b iE.Br] - ofarq - 2§5_.B.] (2.30d)
C

and for an incident s-wave (Ai=o) so we have the following equations.
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A +b(B.-B ) = A'+b'B' (2.31a)
r 1 r
aA - (B.+B ) = a'A'-B' (2.31b)
r 1 r

082[—2aAr+(b2—1)(Bi+Br)] = 0'6'2[2a'A' + (b'2-1>B'] (2.31c)

52 52 gr2 gr2
o[a {1-2 ==} - 2b == (B.-B )] = p'[a'{1-2 —} - 2b' ==— B'] (2.314)

r c? 2 ir c? c?

Partioning of Energy

The disturbance caused by the traveling waves induces the particles
of the medium to poscess both types of energy (kinetic and potential).
Because the displacement is harmonic, the total energy can be found using
maximum potential energy (i.e. when the displacement is maximum in magni-

tude) or the maximum kinetic energy. The total energy then is

) = = p(u + w2 ) (2.32)

where this is the kinetic energy per unit volume for the dilation mode.

i ik (ct=-x+
Incident p-wave win = a, ot (ct-x+az)

oy,
® _ ‘i _ _
el = = - Tk
2
979,
.(p) _ du _ - _ .2
i T Bt T 3tex C(ik) ™ ¢, = ck'¢; (2.33a)
3¢,
WL = auns,
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(d) 2
dw, 37 ¢,
@ _ i i_ )26 = —cak? 2.33
i = =5 Eyary. ac (ik) ¢i = -cak ¢i (2.33b)

2
!

3]
[

of (cx®)? + (-cakz)z]Ai

N |-

pc2k4(l+a2)Ai

N

2.2 2
= = pck w_ c0326 sec26 A?
p P 1

[

2 2
w o

3]

A, (2.33c)

1

Power incident per unit area

m4 2
= (asinb ) Ep—EAi
o
= !"'ﬁ'ﬁ Az 233
- 2 o i . ( 3 d)
For the reflected p-wave:
v = A elk(ct—x-az)
r r
so similarly,
4
P) _ 1 w 2
Er = 360 dz Ar (2.34a)

and



(p)

For the transmitted p-wave:

P(P)

d)t
and

t

For the reflected s-wave:
Il"r
E(s)

r
P(s)

r

For the transmitted s-wave:

™
2 |e

sinb A2 .
p r

eik(ct-x+a'z)

ik (ct-x-bz)
e

N
™ |
NS0 Y
RN

|

eik(ct—x+b'z)
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(2.34b) -

(2.34c¢)

(2.344)

(2.35a)

(2.35Db)

(2.35¢)
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sineé B' (2.35d)

Due to conservation of energy the power per unit area in the z-direction

is conserved.

p® | @ L (s @) () (2. 36)
i r t t
or
4 4 4
1 w 2 1 w 2 1 W 2
— — 1 - - — 3 + = v : ]
5P 3 s1n6p A, 5 P g 51n6P Ar 5 P 51n6P At
4 4
1 2 1 w 2
—_— — 1 + — P 9 ) )
30 B 51n65 Br 5 P & 51nes B

or by normalizing the energies w.r.t. the incident energy

A 2 . sinb' A 2 sin6 B 2 ' sinb! , 2
1 = (5 +8& Pt L2 & L2 s B
A, p o' sint A, B sinf A, p B' sin®_ A,
i p i p i P i
2 2 2 2
= + £+ 0+ (2.37)
gr gt nr nt
where:
A . sinf' A
£ = L £ - [ xr
r A, ' "t p o' sind A
i i
(2.38)
3 L]
. B /9i sinb -B__ ) ~ /BL @ 51nes B'
r Bsind A, " 't p B' sinb_ A
p i

where Er, Et, nr' and nt are the square root of energy for the reflected
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p-wave, transmitted p-wave, reflected s-wave and transmitted s-wave re-

spectively for an incident p-wave of unit energy. But since

c o _ alt _ B _ B!
T cos®  cosB' = cosB cosb'
b P S s
cosf cosf cos6
A R 2 _ p o _ __P
TR cosf ' a! cosf'’ B!’ cosH'?
s P s

so we can write the relative square root energies as follows:

Ar
T &
i
A
g _ plal—t_
t pa Ai
_ /E 3
nr a A,
i
and
B
n _ plbl_t
t pa A,
i

(2.39a)

(2.39Db)

(2.39¢c)

(2.394)

After solving for the square root of energies of the reflected and

transmitted plane waves as a function of the corresponding angles, i.e.

Er(ep), Et(eé)' nr(es), and nt(eé)

we will present them in polar plots to show their directivity patterns

in a concise way.
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Then some linear plot is presented of the geophone response of the
reflected waves as a function of offset, as discussed later for differ-

ent interfaces.



CHAPTER III

MODE CONVERSION DUE TO AN INCIDENT 'P-WAVE'

AT A PLANE INTERFACE

When a plane wave of either type (pressure-wave or shear-wave)
meets a discontinuity in the medium in which it is propagating part of
it is reflected and part of it is transmitted, besides that a wave of
the other type (shear wave for an incident pressure wave and a pressure
wave for an incident shear wave) is reflected and transmitted as well.
This mode cqnverted wave is necessary to satisfy the boundary conditions
at the interface.

I will be discussing all possible cases of interfaces, starting
with the simple case of solid/vacuum interface where all waves are re-
flected and no waves are transmitted, then to liquid/liquid interface
where only p-wave exists then to liquid/solid interface where no s-wave
is reflected, next to solid-liquid interface where no s-wave is trans-
mitted and finally to the most general case of solid/solid interface
where an incident 'p-wave' will produce four waves; reflected and trans-
mitted waves of both types of waves.

In this chapter all cases are taken where the incident wave has a
phase velocity that is higher than all other wave-velocities, so we
avoided the possibility of any critical angle, but the following chap-
ter, Chapter IV, is devoted for critical angles and the associated total

reflections.

44
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Solid/Vacuum Interface

Boundary conditions that must be satisfied are:

1. vanishing of tangential stresses, and

2. Vanishing of normal stresses.

In other words, no disturbance can transfer across the boundary so
there are no transmitted waves as shown in Figure 5. Using solutions that
were found for the general case:

1. Ozx = Oéx; G;x = o in the liquid.

08 2a(a,-a ) + (b%-1)(B,+B )] = O
1 r 1 r

Bi = o for an incident p-wave.

.. 2a(a.,-A ) + (b2—l)B = o (3.1a)
ir r

2. © = 0' ; o' = o in the liquid.
44 2z  zz

L. 962[(A.+A )(b2—l) +2bB ] =0
1 r r

or (A, +A )(b2—l) +2b B =0 (3.1b)
1 r r

A B
we can solve for XE and XE from these equations (3.1a,b).

B gab - (p2-1)°

Z_\— = P P ’ (3.2&)
i 4ab + (b"-1)

B 2

_pTz_'_ - 4a(b -1) (3.2b)

i 4ab + (b2—l)2
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Figure 5.

Reflection of Incident P-Wave at Free Surface of Elastic
Solid
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Using Equation (2.12) (relations for square roots of energies),

2 .2
g = £ - 423- -1 (3.3a)

i 4ab + (b°-1)2

Lo /RER L f_dan’y
A,

r a a

> (3.3b)
i 4ab + (b -1)

2

2
Noting that Er + ni should be equal to 1. Use Equation (3.3a and 3.3b)

to show this.

2

[\S]
RN

2 2 2 2 2
B ) @) (b=t
4ab + (b -1) 4ab + (b -1)

(4ab) % - 8ab(b>-1)% + B3-1)? + 16ab(b>-1)2
{4ab + (b2-1)2}

1 (conservation of normal energy flux) (3.3c)

The above equations were derived for any general elastic solid, but in

some literature they took the special case where A =y, or

A
. . . - A
Poisson's ratio o 0.25 (o 2(K+u))
as the case for most solids.
If X = u, then
2
N a_ _ A+ _ o5 (3.4a)
g2 H

but since



c = asecep = BSeCGS (Generalized Snell's Law)
2
‘. sec’ 9 = secze
S 2 o)
B
= 3sec26
or (l+b2) = 3(1 + a2)
. . b2 -1 = 1 = 3a2
S0, fz_ _ 4ab - (1 + 3a2)2
Ai 4ab + (1 + 3a2)2
and By 4a@ + 339
Ay 4ab + (1 + 3252
(o]

For normal incidence (SP = 90")

cos® = (B/a)cosd = o-+6 = 90°
s P s
2
(a2 + Do’ = ®°+1)8>
2 2 22

or b =

: 1im - 2 2
5 lim 90° K; = 4 4ab (b”-1)

i 4ab + (b>-1)2

48

(3.4b)

(3.5a)

(3.5b)

(3.6a)

(3.6b)
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lim 4a(a/B)a - {(a2/8%)a%}?

o0 3 3 2.2
a da(o/B a) + (a°/8° a°)
= =1 (3.7a)
o Lim ol _ lim ~4a(b°-1)
i -
> 2
p By 7% b+ (b2-1)
2
 lim - 4a(a’/g%)a’
T oaw 2. 2 2.2

4a(o/B a) + (o /B a)

3 2. 2
- lim a (o /8 ) = 0 (3.7b)
> 2 4a/8) + at 0?8t

For grazing incidence:

6 = o0 >a = tanb = o,
b b
cosb = (B/a)cost = B/o or secf = a/B
s o) s
2 2 2 2,2 2 az A
b = tan 6 = sec -1 = o /B -1>b -1 = —4=-2 = —>0
s s 2 u
B
so b = Vuz/B2 -1>0 (3.7¢c)
lim 2 lim - B2
6 -o KE = 6 -o 4ab (b2 1)2
PAy P 4ab + (©°-1)
= =1 (3.8a)
lim Cr _ lim —4a(b2-1)
8.0 7~ =

aro
p A 4ab + (b>-1)2
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= 0 (3.8b)

So we have total reflection for grazing and normal incidence, and the

mode converted "S-wave" vanishes in these two cases.
Reflected "P-Wave" Vanishes

If 4ab = (bz—l)2

for the special case when A = u (b2 - 1= 3a2 + 1) it reduces to

2
16a (3a2+2) = (3a2+l)4 which has two positive roots

a, = 0.2272+6_ = 12°48' ,
1 p
1
(o)
a, = 0.5773 +- 6 = 30
2 P
2
Liquid/Liquid Interface
Liquids don't resist any shear stress (4 = p' = o) so S-wave can't
propagate in liquids (B = B' = o). Hence all S-wave coefficients

vanishes Bi = Br = B' = o but'b - ® as 8 > o such that b282 - azsine =02
2 2 2 2
since c2 = azsin Gp = stin SS = B (l+b2) = 6'2(1+b' ) while b62 -+ o,

b'8'" > o.

Boundary Conditions

1. Continuity of normal displacement, and
2. Continuity of normal stress.
So, from the equations that we have derived for the general case (2.27b)

aa,-a ) - 82 +38%) = aa' - B°, or
1 by 1 r



Figure 6.

Reflection and Refraction of Incident P-Wave at Liguid/
Liquid Interface
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a(A,-A ) = a'a' , (3.9a)
i«

Eq. (2.29b)
06 (a2 ) (0%-1) - 2b(83-62)]
=08 ar %1 - 2v' 5°]
or p8° %1 (a4 = o'8 i1l
since as b > », b' + = c2 = 82b2 = B'zb'z
p(Ai+Ar) = p'A' (3.9b)

Solving 3.%a and 3.9b we have

A 1 1
r _ B a-~=-pa
] + 1
Ai p'a pa
_ p'/p -a'/a
= o T a/a (3.10a)
and
A' 2ap
A, pa' + p'a
1
- —2 (3.10b)

p'/p + a'/a

Partioning of the energy for the reflected P-wave:



53

b

_ x _ p'/p-a'va
&, = A, p'/p + a'/a (3.11a)
For the transmitted "P-wave",
£ = pla’ ﬁE
t pa A,
i
13 L
= yE2 2 ; (3.11b)

pa p'/p + a'/a

To insure the conservation of normal energy flux,

g2 4 g2 o lel/o - a'/a)’ L+ plal 4

(p'/p + a'/a)2 pa (0'/0 + a'/a)2

[ I V)
N

(D'/O)2 + (a'/a)2 - 2{(p'/p)(a'/a) + 4(p'/p) (a'/a)
2
(0'/p + a'/a)

Il
o

(3.12)

(That verifies the conservation of normal energy flux).

For normal incidence:

]
0 = 90o -+ cosb' = — cosb = 0
p p
. o= ' = 90°
P
so as 0, > 90° o > 90° and a, a' >

so since
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azsecze = a'zsecze'
P P
2 2 2 2
o (I+a') = a' (l+a'’) (3.13a)
22 2,2
. .0 a = q a
1]
or a_ _ .O‘_| (3.13b)
a o
lim o P lim p'/p - a'/a
so 8 =90 — ' T
jo) Ai a,a'» p'/p + a'/a
_ p'/p - o/a’
p'/p + o/a!
or Ar p'a' - po
A " o'a T oo (3.14a)
i
Z'-2 . R
= - ;7 2 = pa is the impedance of
Z'+2 .
the medium
1 A
e‘lf;o" Pt _ lim 2
p A a,a'»° p'/p + a'/a

2
T p'/p + o/l
_ 2 po'
T p'a' + pa (3.14b)

For grazing incidence:
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1 al
6 = o0 > cosb' = — cosb = —
P a
2 o 2
a = tan6 =o, a' = tan §' = (370 -1
We are considering the case for a > a'. The other case is delayed

to the discussion of total reflection in the next chapter.

lim ﬁg _ lim p'a - pa'
6 ~o Ai a“>o p'a + pa'
p (a' is finite)
# 0
= -1 (3.15a)

(so we have a total reflection for grazing incidence and o > o' with a

phase shift of w);

A
Ilim 't _ 1lim 2ap -
6 >0 A, a0 2o + a0’ 9 (3.15b)
+ (a' is finite)
# o

Liquid/Solid Interface

For the case of liquid solid interface slippage can occur, so tan-
gential displacement is not continuous and tangential stresses has to

vanish at the boundary.

From the equations that we derived for the general case:
1. Continuity of normal displacement.
a(A,-A ) - (B,%0 + B »0) = a'A' - B'
1 X i r

. .a(A,-A) = a'a' - B (3.16a)
ir



Figure 7.

Reflection and Refraction of Incident P-Wave at Liquid/
Solid Interface
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2. Continuity of tangential stress

g = ! = oat z = o
ZX zX
.0 = p'B'z[Za'A' + 2-1)8']
or 2a'A' + (b'%-1) B' =0 .... | (3.16b)

3. Continuity of normal stress

-

.. 082[ (A.+A )(bz-l) - 2b(B.70 - B -0)
1 r 1 Y

p'B'z[A' (b'2—l) - 2b'B']

B - o but b -+ © such that fb > ¢

pc2<Ai+Ar) = 08" {ar(®'%-1) - 20'8']
o' 8'2 2
or AR = 5——:2——[A' (b'“-1) - 2b'B'] (3.16¢)

These equations can be written as follows:

A L ] ]
r a' A - _]; B _
Ve + Pai-we A 1 (3.17a)
i i i
Ar Al 2 B'
04 + 2a ol (b'"-1) 2 = 0 (3.17b)
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A v ] v 1 L ] ]
I . ple (br2-1y AL, 2b0' B' B' _ (3.17c)
pc

a7 3, 23 || AR L
= o 3.18
31 % 33 || ARy (3.18)
' -1
331 33 333 || BV/A
-where:
= = ! = -
all 1, a12 a'/a ’ a13 1/a
2
= = ' = ' .
a21 o, a22 2a ’ a23 (b 1) (3.19)
2 2
_ _-ot B2 oo RUBYT
aj =1, a3 =7, 2 (b'"-1), aj3 = 2b' 7 2

Noting the following that we are dealing here with just three cases that
is:

1. For normal incidence,

2. For grazing incidence,

3. For oblique incidence; but we are considering the case when
all the coefficients (a', b') are real.

The first two cases [ (a) and (b)] are solved algebraically avoiding
any singularity that may happen for 6 = /2 or 6 = Oo.

The other two cases where a' is imaginary but not b' or both a' and

b' are imaginary are treated in the next chapter of total reflections
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and critical angles.

As an illustration we solve for Ar' A' and B' to obtain

L}
a, -a = 2a _Lg (3.20a)
1 r a a
- '
B' = —22_  ar (3.20b)
(b'"-1)
2 2
L} 1 1) 1
AR = E—EE— (b'2-1) A' - 2b° 9—-§5— B (3.20c)
* BC ° ¢

By adding Equations (3.20a) and (3.20c) and substituting for B' from

(3.20Db)

2 2
A RtBT 02 a' et BT 1 -2a'
28, = al=— ® -1) + S (2b 5+ D )1,

pC b' -1

©
Q

or

A'[p'8'2(b'2—l)2a+a'pC2(b'2-1) + 4aa'b'p'3'2+2a'pC2]

Ai{ZapC2(b'2—l)}

2,2
1 LI

or %— = > 5 Z;OC (b 1) 3 5 (3.21a)

i o' %a[®'-1)° + 4a'b'] + a'pC” (b'“+1)

B 2apC2(b'2—l)
a'pCz(b'2+l) + ap‘B'z{(b'2-1)2 + 4a'b'}
B' 4aa’ C2

.. X— = 2 (3.21b)

i a'pcz(b'2+l) + ap'B'z{(b'z-l)2 + 4a'b'}
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1

=

!
m‘m

+
T
> |

o g
i

) vre2 2 .2 '
_ -pa'CT (' +1) + ap'B' {(b'"-1)" + 4a'b'} (3.21c)

a'pC2(b'2+l) + ap'B'z{(b'z--l)2 + 4a'b'}

For normal incidence:

m m
8 = —-->0' d 6' = —
o ) p an s >

as 0 Ta>m®, a' >=and b >

2 2 2 2 2 2 2 T
So the identity C° = a“sec™® = a'“sec”8' = B'“sec™0' as 6 > —
p p s p 2

o~ % s arlar? s B2, (3.22)
C e oA lim 2a0c® ' %-1)
N ] ]
P2 A ara' b’ %4l + a0'B [0 %-1)2 + 4a'b']
2
2 2 2
20 a(a“a’) (= a")
_ lim Bt
- 2 2
2 2 2 2
(/o' a)p@a’) (@ ) + a8 [E5 a®) + 4Er a) G- a)]
B Bt o B
4
20 '9'L—2'a5
_ lim B
ae 2. 5 4a 3, .5
P8 2@ Toig @ P 2
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4 2
_ lim 20 o /B
2F 4 2 4
o'8 [ /B + =] + o
a'B?’ a'B'z
. A' 2
. Ai = 5/ % oja (3.23a)
. . 2
lim_ o B' lim da a'pC
&> 30 A = a,a' ,b'r» = 2 2 2 2 2
i i a'pC (' “+1) + ap'b' [ (1'“-1)° + 4a'b']
a 2 2
1im -4a(ET'a)D(d a’)

a>o 2 222

2 2 2 2
p(a/a' a)(a a )(2—— a) + p'b!’ a[(a 2 o+ 4(97-a) 2%
8'2 812 a b
_ lim -4p a3/a' a4
T o 5 .
pa a5 + p'a4a5 + 4&2 ET p'a3
alBlz o
. 3
_ lim -4p o /o’
= e z '
o a | 1gts + sadpr &
a' B an'
= 0 (3.23Db)

So, there is no transmitted S-wave at normal incidence.

plimpo “r _ lim , _a'A’ 1B' .
p+ A a,a'»e a A, a A,
1 1 1
- 2
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= 1- ] ?Oﬂp
a'p! + ap
_a'p' - ap
a'p' + op
z' - 2
= iz (3.23c)
Partioning of energy at normal incidence is as follows:
Ar p'a' + po
r TR, T otw v ou (3.242)
A
e = Jelal t
t P a A,
i
= et 2
= o o' o'/o + ajar ' (3.24b)

The total normal energy flux is given by

p'a'-pa) p'a 4

( 1 1) ] /
pratteat ot (g v azan)?

2 2 2
+ +
Er Et nt

(p'a')2 - (pa)2 - 2(p'a') (pa) + 4 %é$ (oza'z)

(p'a' + pat)

lan? + pa)? + 2(0'a) (pa)

2
(p'a' + pa)

= 1 (3.25)



This assures the conservation of normal energy flux.

For grazing incidence:
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-1 -1
For o > a' if 6P = o 8' = cos " (a'/a), 8' = cos ~(B'/a)

+~ o > B' so a=o0 but a', b' # o.

; . 2 2
lim ! lim 2a°pC (b'"-1)
So 6 >0 —@™ = a»o > 5 p. 5 5 >
i a'pC (' +1) + a p'B*{(®'"-1)” + 4a'b'}
\‘——'\/\—-/
# o
= O,
. . o 2
lim B' lim 4a a'pC
7% a7 T ao 2 2 o 2 2.2
P i a'pC(b'“#1) + a '8 {(®b'°-1)° + 4a'b'}
= 0
lim 2y Lim [, _a' & 1 By
—— = —-— — — + — ——
So 80 T ao L1 -7 7 2 A,
i i 1
- 1 - tim a' A" lim 1 B'
a*o g A, a*0 a A,
kR 1

A’ a' A' ..
Although Z—-+ o as a » o, but g—-z—-+ finite # 0o as a - o
i .

. B' 1 B' .
Similarly, Z—-+ o as a > o0, but 2 - finite # o
5 .

lim a' A" lim 2a'#o pC2(b'2—l)

a>*o a A, = 2
i aro a'pcz(b' +1) + aop'B'z{b'z—l)2 + 4a'b'}
Ny ——
# o

(3.26a)

(3.26b)

(3.26c)
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2(b'2-1)

(b‘2 + 1)

2,2
- 2 /8 -2 (3.27a)

/8%

4a’o'C2

[ el
H-
=}
u

i pa'Cz(b'2+l) + aoo'B'z{(b'z—l)z + 4a'b'}

o
S
o [
>

—4
(' 2+1)

= -4 (3.27b)

(a2/8'2)

A 2(a°/8'%-2) " (-a)

@2/8'%) @2/8'%)

lim

r

—_ 1 -
aro A,
1

4 4
1 =2 ¢ = — T
@%/8'%) 2/8'%)

= 1 (3.27¢)

We have a total reflection with phase shift of m. The partioning of

energy at grazing incidence is

2 Ai 2 2
gr = (K_) = (-1) = 1 (3.28a)
Y
2
[ A ' © ! a2
52 = a3 t _ e a a & _ 4 (2.28b)
t pa 2 s} a' a A,
A, L

Finite
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2 2
B B
2 p' b' "t o' ., 17t
= .2 £ _ £e_ (= = 0 3.28
N o a A2 5 b'a (a Ai) ( c)
i /
Finite

i

2 2
where Ei + gr + nt 1 indicating conservation of normal energy flux.

Solid/Liquid Interface

Slippage occurs at the solid/liquid boundary, so the tangential
stress vanishes at the boundary (no shear wave is transmitted to the
liquid medium), and the tangential displacement is not continuous.

The boundary conditions are:

1. Continuity of normal displacement.

2. Continuity of tangential stress.

3. Continuity of normal stress.

For an incident p-~wave, Bi = o, B' = 0o (no s-wave is transmitted),
using the corresponding equations for the boundary conditions from the

general solution we have continuity of normal displacement;

a(A,.-A ) - (B,.+B ) = a'a' - @
i'r ir
or a(A,-A ) - B = a'aA'l (3.29a)
i« r
Continuity of tangential stress (0 = o' = 0);
zZX zX
2 2
o8 [2a(a,-a ) + ®°-1)B ] = O
i r r
or 2a(a,-A ) + (b2-1)B = 0; (3.29Db)
1 r r

continuity of normal stress



Figure 8.

Reflection and Refraction of Incident P-Wave at Solid/
Ligquid Interface
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p82[(A.+A )(b2—l) - 2b(B.-B )] =
1 Y 1 r

67

o'B'ZEA‘(b'2-1)2 - 2b'Bé]

2
B'+o but b'R'>C, b'B' o

or

Solving for the

2 2
0B [(Ai+Ar)(b -1) + 2b Br] =

2

p'c A’ (3.29c)

reflected, transmitted, and mode converted amplitudes

(A, A, B ) we find the following:
r t r
2 2
B ~4aa’ (b°=1)p8 30
A, 2 2 2 2 .2 2’ (3.30a)
i p'C a(b +1) + pB a'(b -1) + 4aa'b pR
2 4
By 2apB8° (b"-1)
A, T2 2 2 2 .2 2 (3.30b)
i p'C alb +1) + p87a'(b -1) + 4aa'b pB
2 2,2 2 2
and Ar o'CZa(b +1) - a'pB (b -1) + 4aa'b pB
'A— = > 5 5 3 5 5 (3.30¢)
i p'C a(b +1) + a'pB (b ~-1) + 4aa'b pB
For normal incidence:
6 ->9Oo - 6!, 8! » AN a,a',b>», since C2 = azsinze = a‘zsinze' =
p p s 2 p p
2 2 2.2
B2sin6 as 6 -~ LEN C2 = uza = a'2a‘ = 8 b . (3.31)
S o) 2
2
plin B lim ~daa' (b°-1)p8°
>2 a. ' 2 2 2 _ 2 2
P2 A asal, b2 020 0%501) + p8%a’ 0°-1)° + daa'boB
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Jin T A _ lim 22082 (b%-1)
2 ,a', b 2 2 2 2 2 2
P Ai aray p'C a(b +1) + pB a'(b -1) + 4aa'bpf
2
= m (3.32a)

. A , 2 2 2 2 2
plim ™ r lim p'Ca(b +1) - a‘sz(b -1)" + 4aa'oB’b
P T2 A a,a',brw

2 2 2. 2 2 2
p'Caf(b +1) + a'pB (b -1) + 4aa'pB b

-

_ p'a' - po
p'a' + pa
zZ' - Z
= ey (3.32b)

Solid/solid Interface

This interface is subject to the most complex set of boundary condi-
tions which leads to both transmitted and reflected mode converted shear
waves consisting of the reflected and transmitted p-wave, and the re-
flected and transmitted s-wave.

All of the boundary conditions that were found for the general case
are satisfied, namely the continuity of the normal and tangential
stresses as well as continuity of the normal and tangential displace-
ments. Using the equations that were derived for the general case for

an incident p-wave (Bi = 0).

A, +A - DbB A'+b'B! (3.33a)
ir r

I
m—
o

|
w

a(a,-A ) - B (3.33b)
ir r



Figure 9.

Reflected, Transmitted,
an Incident P-Wave at

and Mode Converted Waves Due to
Solid/solid Interface
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p82[2a(A.—A ) + (b2-1)B ]
1 X ko

pBZE(A_+A ) (b°~1) + 2bB ]
1 r r

We can rewrite these equations as

or in

where:

11

21

2
plB! (blz_l) _A_I

2

pB

(b2-1)

the matrix form

12

22

A,

1

13

23

i

0'3'2[2a'A' + (b'z—l)B’]
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(3.33c)
2 2
'8 [a' (b'°-1) - 2b'B'] (3.334d)
BI
i - -1 (3.34a)
1
1 B'
_E A—‘ = 1 (3.34b)
1
0182 iy
B' =1 (3.34c)
2 2a
pB
Ex;+p'6'2 2b' B—‘-:—l
2 2
B 0% wt-n A
(3.344)
X, = Db, (3.35)
J 1
[ ]
a14 b
L1 (3.36)
24 a
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2 2 2
W o1 . ooslar W oz _prer? iy
31 32 2 a 33 2a 34 2 2a
pB pB
a,. =1 a, =~ plslz(blz_l) a_ = —2_ a, = 018'2 2b’
h 2,2 ) 4 2 2
* 2 st 8oty M 8 o’
bl = -1 b2 = 1 b3 = 1 and b4 = =1 (3.37)

For normal incidence:

ep - %-+ eé, es, 6; - %-and a, a', b, b' > », We can rewrite the above

equations as follows:

Q.

A, +A - (=-a)B =A4A'+ (0/B' a)B!'
i r B r

by dividing by a (terms with §-+ o).
o o

- = = —B' = - —B';
B Br B or Br B

2 2 2 20 - 2
pB“[2a(a,-a ) + (az/B a)B ] = p'B'ZE—% aA' + (a/B' a)“ B']
i'r r (o]
o 2 1 ,
dividing by a (terms that have ;-vanlsh).

O LML T OV S EY

or B = — B'

from 3.e(5) and 3.e(6)
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(0,0",B,B8" are arbitrary numbers), f£rom 3-3(2)

a(A,.-A ) - B
ir r

dividing by a

3.e(4).

2 2
B [(Ai+Ar)(a/B a)® + 2(a/8 a)B_

2
or dividing by a we have

2,2 2
pB (a /B )(Ai+Ar)

or A, + A =
i r
and A, - A =
i r
Al
Ef. = a/al
5 /
Ar
A,
i
= 1 -
plal

plul

(a/a' a)a'-B'

1 = 0'8'%[(a/8' a)2 a'-2b'B"]

plelz(az/Rlz)Al

pl/p Al

1+ p'a'/pa

- po
+ po
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z' - 2
Z' + Z

Noting that in all of the solutions we have derived we used the coeffi-

cients a,a',b,b' which are defined earlier as

—_—

a = tan® = vcija’-1, (3.38a)
2 2

a' = tanb' = c Jo' -1 (3.38b)
/ 2 2

b = taneS = c /B -1, (3.38¢c)
J 2 2

b' = taneé = c /B' -1 (3.384)

So far we have considered cases where all the coefficients are real
quantities. The possibility that some of these coefficients being

imaginary is delayed to the following chapter on total reflection.



CHAPTER IV
TOTAL REFLECTION

In the previous chapter we have limited our discussion to the case
where the incoming wave velocity is greater than all other velocities, so
all the coefficients were real quantities for all angles of incidence.
However, when the velocity of propagation for the transmitted wave is
higher than that of the incident wave, there will be some angle 6; at
which the transmitfed wave is propagating parallel to the interface.
This angle 6; is called the critical angle, and for any incident angle
less than this critical angle it is impossible to satisfy Snell's Law
with real angles (since sine2 cannot exceed unity), so we will have
imaginary coefficients that will lead to an exponential decay of the
amplitude of the wave which is propagating parallel to the interface.
This wave carries no energy across the barrier and moves with a velocity
that is determined by the properties of the first medium the angle of
incidence and the type of the incident wave.

For the case of an incident p-wave the phase velocity of the trans-

mitted p-wave- decreases from

to c = a4 = —at 6 = OOC

as shown in Figure 10.
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Figure 10.

Phase Velocity of the Transmitted P-Wave for Incident
P-Wave With a Lower Velocity (o < a')
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In the most general case (for no solids) we have two possible crit-
ical angles for an incident "P-wave" and three possible critical angles
for an incident "S-wave". For an incident "P-wave":

Case 1l: If a > o' (hence a > B' since o' > B' always), there is no

possible critical angle.

a o' B! B
c cos6 cosb' = cosb' ~  cosb (3.39)
P P B S

cosf = g _1 < 1 always

s o cosb

P

cosf' = ol L < 1

P o cosb

1
and cosf' = fi— L 1
s o cosb

So, for all angles of incidence Sr, eé and 6; are real angles.

Case 2: If B' < a < o', we have one critical angle for the trans-

mitted "P-wave", that is when Gé = 0 as in Figure 1lla.

. a o'
.. = = q (3.40a)
1 ]
coseCP cos®
b
- ]
or cos le;p = %T (3.40b)

Case 3: If a < B' < a'
We have two critical angles, one for the transmitted "P-Wave"

(CP') -1 0 : " "
ep = cos (ETO and the other for the transmitted "S-Wave



p(cs) . g < gloP) (b) 0<®

Figure 11. Critical Reflections for an Incident P-Wave at Solid/Solid Interface

LL
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1 - ] 1
e(cs )2 cos 1(27)- Noting that e(cs ) < G(CP ) (since a' > B') as in
p B p p
Figure 11.

For an Incident "S-Wave".

Case 1: If B > o' (and hence B > B' since a' > B') but B < a

always, so we have one critical angle for the reflected P-wave, eécP)
as shown in Figure 12a.
Where: eécP) = cos'l(go (3.41a)

Case 2: If B' < B < a', then we have two critical angles, one for

1)
(cp) and one for the transmitted p-wave e(CP )

the reflected p-wave es <

as shown in Figure 12b.

Ll —
Where: e;CP )2 cos7lig/an) (3.41b)
Case 3: If B < B' (and hence B < o' since B' < a'), then we have

(cp)
S

three critical angles, the first one for the reflected p-wave 6 and

(cp')
S

the second one for the transmitted "P-Wave" 0 and the third one for

1
the transmitted S-Wave eécs ), as shown in Figure 1l2c.
' -1
Where: Oécs - cos, (B/B') (3.41c)
1 !
Noting that eécs ) < eécP ) (since B' < a')

The coefficients a, b, a' and b' are defined for all cases as follows:

For an Incident P-Wave:




(cp')
S

(a) ©

< plcs)

Figure 12. Critical Reflections for an Incident S-Wave at Solid/Solid Interface
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2
C
and (hence C > B) b = V(:; -1

B
C2 C2
for C > a' a' = — -1l and for C > R' b' =y —~1
.2 2
o B'
S, C2
for C <a' a' = -1i 1 - —
a'2
C2
for ¢ < B' b' = -1 1 - —= (3.42)
g2
For an Incident S-wave:
5 Jl
C = soC>BRBand b = —= - 1 for all angles of incidence
cosb 2
s B
\/Cz . C2
for C > a a= = - l, for C <o a=-1/¥l - —
a o
/ 2
/ 2
for ¢ > o' a' = 9—§-~ l, C<a' a'=-1¥Yl1-2¢C /a'z

al

VC2/B'2—1, C<B' b'"=-1iVY1l - C2/8'2 (3.43)

for C > gv b

For an Incident "S~Wave" on a free boundary the boundary conditions that
must be satisfied are the vanishing of normal and tangential stresses.
So, the corresponding equations as we derived them in Equation (2.10)

are:

p62[-2a A + (bz—l)(B,+B y] = o
r 1 X

or 2a A - (bz—l)(B.+B )y = O (4.2)
r ir
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L. 082EA (bz-l) - 2b(B,-B )] =
X 1 by

or A (b2—l) - 2b(B,-B_) = 0O (4.3)
r i'«r

from 4.2 and 4.3 we have

2
A = B 4b (b —;) .
r 1 4ab + (b°-1)
2 .2
and 5 = p A4ab- (®°-1)
X 1

4ab + (bz-—l) 2

l. For the case C > a > B, C = all the coefficients are real

coses
and the discussion is similar to what we did in the last chapter.

2. For the case o > C > 8,

cos 6
so the reflected amplitudes are as follows:

ab (b>-1)
-ir|a|b + (b2-1)2

r i

. < (p)
4b lér

B, e ;
l.y{'+ Jblalzb2

(b2-1)2

and =
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-1 { 4]a|b'}

= tan
2
(b2-1) 2

(p)

So the reflected P-wave experiences a phase shift of 5r .

ialalp - (3-1)2

B = B

i Y oiglalb + %)
. B, = B elwelzdz; 62‘= tan"t (—E%EJE%? = 6:9)
(b -1)
8 (®
=B, e T ; 6% = 14+28% |
. i r r
So the reflected S-wave experienceé a phase shift of 7 + 26£p). Now due

(cp)

to the fact that a is pure imaginary for O < 6 < es

, by replacing the

new value for a in the wave funct<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>