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CHAPTER I
AN OVERVIEW OF FATIGUE

Fatigue1is the failure of»a cbmponent subjected to
alternating st:esses, often below tﬁé'Yield»stress of
the material in use. This failuré’ié.in the fbrm of the
initialization and propagation 6f a cfack'in the
component; For years, fatiguejhasvbeén recognized as a
problem. First, fatigue 1is resﬁonsibie for the delayed
failure in components subjected to loads which would not
cause failure under static conditions. Second, once the
'problem was recognizéd, techniques had to be developed
to deal with fatigue in the design stage in order to
prevent component failure: Third, in addition to
modifying design techniques, it was soon realized that
fatigue resistant materials Qere needed to reduce
cumbersome designs. | » _

Traditionally, fatigue has been‘déalt;with in the
désign phase in an empirical fashion. This is obviously the

case in Shigley's Mechanical Engineering Design in

which design calculations utilize empirical factors to
account for conditions affecting the fatigue life, such
as surface roughness, size, reliability, temperature,

stress concentration, and other miscellaneous



conditions. This approaéh is continued in the most recent
edition of Shigley's text (Shigley and Mishke, 1988). This
method is effective but can easily lead to over-designed
products. This désign philosophy is partly a result of a
lack of knowledge of the.fatigﬁe proceés.

More recently, designersvhave concludea)that more
efficient product design could take place ifafatigue
Considerations@wete dealf with in a less empirical
manner. This wbuld’require a mﬁchjmore detailed
knowledge of the fatigue process. vAs was stated above,
fatigue failure may be broken into Crack initiation and
propagation. Either of these ﬁayidominate during componeﬁt
life; however, the‘propagation*of the fatigue crack often
takes place over a muchbgfeater_portion of the component life
than the initiation. Research has produced some accurate
models for crack grdwth{ however the initiation is not yvet
well defined. With this greatepbknowledge, designers could
predict the useful life bf a compbnent based on assumed
loadings. The United States Air Force has adopted this
design philosophy (Gallagher et al, 1984). However, one main
problém'femains, /This;technique assumes the brésénce of pre-
existing flaws in the components pripr to use. There are two
maln reasons for this aSsumptioﬁ; ’The first is that
inspection techniques. are notkfool—proof. For any specified
inspection technique, thére is a lower limit to its flaw
detection ability. Therefore, to be prudent, one must assume

the existence ot flaws just smaller than the smallest flaw



detectable by the spécified inspection technique. The second
reason is less obvious and has already been mentioned.
Although the fatigue crack growth characteristics have been
‘well modeled, the_inifiation of fatigue cracks is not
completely Qnderstood. Thérefore{ to avoid designing for the
initiation of fatigue cracks, the'acceptedvtechnique is
simply to assume that véry small cracks already exist in the
new part. | |
Fatigue ctéck growth can_be‘di?idedvinto three

stages. Stage 1 involves the :growth of very shoft
cracks immediatelyffollowing’initiation;'Stage II
involVes the stable growth of long cracks; and Stage 1II
involves the unstablevcrack growth to failure. The
second and third of thesé'stagés have been the subject
of considerable study and are well understood. Accurate
models for crack growth in these‘stages have been
developed and supported by countless experiments. The
models in fthese stages assume‘that the material's
microstructure has no effect on the crack growth. 1In
other :words, Stage II and Stage III c:ack growth are
macrosébpic phenomena rather'than microscopic. u

bHowever, it is not‘prudent to assume that fhis
holds true for short cracks,‘which haﬁe a length on the
order of one grain diameter. Ip'faét,_Stage I crack
growth behavior is véry different from either Stage I1
or Stage IIT crack growth. One must recognize that, for

cracks of this small size, the grain size and



orientation must play a critical role in the crack
growth characteristics. This concept is what separates
Stage I crack growth from other crack growth modes.
This idea has only recently gained significant
attention. Therefore, very few Stage I crack growth
models have been developed.

Fatigue has also been dealt with in the development
of materials. Many materials have been developed
specifically asva result of the need for fatigue
resistance. Initial development of corrosion resistant
alloys was centered, primarily, on corrosion resistance
and, secondarily, on strength. It was soon obvious that
fatigue resistance was needed in these alloys. As a
result of this research, the Inconel alloys, and more
specifically Inconel 625 (N06625), were developed.
Inconel 625 is often selected when both corrosion- and
fatigue-resistance are needed. Therefore, any efforts
to understand better the fatigue process and how it
relates to this material are welcomed. That makes
Inconel 625 an ideal candidate for fatigue research.

- This thesis will examine one of the existing
Stage 1 crack growth models, comment on its problems,
and propose modifications which will improve the model.
These modifications will be justified by comparing the
model to experimental data. Because of the material
selected for this study, the information generated

should be both useful and relevant.



CHAPTER 11
TESTING AND MEASUREMENT PROCEDURES
Specimen Preparation

The material selected for testing was Inconel 625.
The specific heat used was NX 76A6AS having a chemical
composition by weight percent as follows: 61.38 Ni,
22.02 Cr, 9.27 Mo, 3.63 Cb and Ta, 2.52 Fe, 0.26 Ti,
0.22 al, 0.16 si, 0.10 5, 0.02 C, 0.02 Mn, and 0.02 Cu.
The material was supplied in sheet form with a 0.062
inch thickness in the cold rolled annealed condition
with a grain size of approximately 25 um and a hardness of
HRB 96. Microstructural examination of the material shéwed
substantial stringers. For this reason, although the
material had been annealed, it was not isotropic.
Therefore, both L-T and T-L specimens were machined for
testing. Specimens had nominal dimensions of 0.5 inches
wide x 5 inches long x 0.062 inches thick. To study the
microstructural aspects of short fatigue crack
propagation, the grain size as supplied was much too
small. The grain size was enlarged to approximately 100 um
by soaking the specimens at 1200°C for one hour in an Argon
environment. The resulting hardness was HRB 86. A notch was

cut into one side of the specimen using a low speed diamond



saw. This notch, being the primary stress concentration,
served as the initiation point for any fatigue cracks which
would develop. The notch depth was approximately 0.04
inches. Thejspecimen‘geometry with'hominal dimensioﬁs is
shown in Figure 1. Exéminationvof the notch root showed it
to be nearly‘rodnd, ‘To simplify meaSuremenf of the notch
root‘radius,*the notch root was assumed to be round.
Therefore the notch rodt radius was taken to be half the
notch width of approximately 0:016 inches. In ordér to
protect the surface‘of the specimens during'in—test
inspection, only Qhe side was used for méasurement’purposes.
For each specimen, this side was specified prior to testing
and only this side was poliShed,for inspection. These |
surfaces were mechanically polished through 5 micron alumina
‘using flooded wheels at iow'épeeds and minimal pressure for
the final stages. To hélp prevent corner cracks from forming
in the opposite side, the reverse side was ground smooth
using 600 grit grindihg paper. The specimens were now ready

for testing.
Testing Prdcedqte o

The specimens were individually subjected to
alternate tensile ]oadingvot sdch magnitude as to
provide a life of apbroximaﬁely<250,QOO cycles. An MTS
testing machine was used to perforh the tests under
constant load range using a sinusoidal loading wave form

at 40 Hz. Specimen lives near the target were obtained
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when the applied loads varied from 725 to 1275 lb. This
loading was selected after preliminary testing primarily out
of convenience since it repeatedly provided specimen lives
near the target life. The target life of 250,000 cycles was
selected because it put the specimens in the high cycle
fatigue regime with sufficient life as to simplify the
distinction between crack growth stages and with a life short
enough that specimens could be tested to failure without

requiring excessive testing time.
Measurement Technique

Periodically, the specimen being tested was removed
from the apparatus, the number of loading cycles noted,
and then examined under Nomarsky interferometry. This
high resolution technique would allow the observation of
slip prior to cracking in addition to easy measurement
of the cracks themselves. Cracks were photographed
through the Nomarsky interferometer using color slide
film and the magnification of each photograph was noted.
Photographs were also taken of a reference scale at
various magnifications. A set of rulers was made using
the projections of this reference scale. These rulers
were used to measure the projection of the cracks.
Construction of a new set of rulers was necessary each
time a measurement session began since the positioning
of the projector could not be accurately duplicated day

to day.



By comparison to continuous tests, if conducted with
care, the interrupted loading was determined not to have any

discernéble effects on the fatigue life of the specimens.



CHAPTER II1

IMPROVEMENT OF AN EXISTING SHORT

CRACK GROWTH MODEL
Short Crack Growth Model

Researchers have recognized short crack propagation as a
unique problem for some time; however, as was previously
mentioned, very few models of short fatigue crack growth have
been developed. Much of the work done to this point is
centered on modification of linear elastic fracture mechanics
(LEFM) so as to incorporate short crack growth. Since
microstructural effects are ignored by LEFM and short crack
growth apparently is dominated by microstructural effecfs,
this approach seems illogical. One of the more elegant
models that have been developed that breaks this link to LEFM
is that of Hobson (Hobson, 1982). His equation describing
short c;ack growth is:

da

— = C(d-a)i-age, (1)

dN
This model assumes that crack arrest will occur when the
crack length, a, réaches a length corresponding to the
termination of short crack growth characteristics, d.
Strictly speaking, d is the disftance between microstructural

barriers which inhibit crack growth. This is often taken to

10
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be one grain diameter. The model also accounts for two
factors judged critical to short crack growth. Specifically,
these are the slip band plastic zone, (d-a), and the fatigue

crack length, a.

Crack Data Collection

Although Hobson's model seems rather simple, its
application can be intricate. Even Hobson showed that use of
this model often requires some questionable assumptions
(Hobson, 1986). In his 1986 paper, he deals only with
surface cracks on cylindrical specimens. This presents a
problem. The crack front shape is not determined.

Therefore, very little is actually known about the crack.
Modeling the growth of the crack front would provide a much
more useful result. This problem centers around the specimen
geometry selected. For this type of analysis, a cylindrical
specimen would not provide the most desirable information.
Choosing a specimen geometry such that surface crack data is
more relevant is a necessity. For this reason, a flat
notched specimen was selected for this analysis. The cracks
were assumed to be through-thickness. This assumption gave
the surface crack data taken greater significance. The
assumption would hold provided no corner cracking occurred.
Scanning electron microscope inspection of failed specimens
showed no evidence of corner cracking. Therefore, surface
crack data could be used to provide an analysis with results

that are much more informative.
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Calculation of Paramefter d

Hobson's technique for calculating the parameter d is
briefly desoribed. The fatigue crack is measured at certain
points durihg_the testinor At these points the corresponding
number of loading cycles is nored. This séﬁ of data is then
used to calculate‘a,crack growth’rate over eaoh interval
using the secahtumethod. It Ls,asSumed that this average
crack growth rate‘oorrespondsfto a craok léngth midway
between the data points. The points generdted‘are then
plotted. During'Sfage I crack growth, the growth rate
continually decreases. This rq_supported by experimental
data and is a key aésdmption in short crack growth models.
Therefore, the sequéntial points which show a continual
decrease in growth rate are thén approximated by a line using
the least squares technié@e;' The parameter d 1s taken to be
the intersection of this line with the abscissa. This would
correspond to a crack growth rate of zero when the crack
length is equal to d. 'A schematic representation of‘this
technique is given in Figure 2.

Hobsoﬁ'é technique deScribéd-ébOvévhaS‘much room .for
improvement. The selection‘of the sécant ﬁéthod of
approximating crack grthh‘rato data is a poor one. For even
a well-behaved function, secant data ig only acceptable as a
first-pass approximation. ‘When the crack length approachés
d, corresponding to a transition from Stage I to Stage 1I1I
growth, growth rates are extremely low and there is'no

indication that the growth function should be well behaved.
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— Actual

o Recorded Data

da az —ai

dN a’ N2 -N1

a' = 3(a;taz)

Figure 2. Hobson's Technique for Determining d



14

Since two distinctly different phenomena play roles in the
proximity of this transitional crack length, there is no
reason to expeét the growth functipn to be well-behaved.
Therefore,fit is veryllikely that secant data calculated
usihg crack lengths very near or, in pafticglar, bounding the
d value are susceptible to significant error. These errors
would tend tb'lead to estimates of d larger than the actual
value. | ’ | |

This study_fevised Hobson'é technique of applying his
short crack growth model in an effort to reduce the errors
previously mentioned. This ahalysis fiéted a polynomial of
at least fourth order to the first few points of the original
crack length data. The points to be used in the fitting were
determined after initial examination of the data using secant
method approximations of the,grbwth rafe. Whenever possible,
the points used’were the initiai‘point through the ending
point of the first rangé showing an increase in crack growth
rate. This polynomial was then differentiated. The
resulting polynomial provided an approximation of the crack
gro&tﬁ rate as a function of fatigue cycles; ~This growth
rate could be relatedvto the cféék length’b§‘way of the
original polynomial. In most cases, the crack growth rate
curve did not cross the abscissa. This was expected since
the growth rate»approximatiOHVWaé the derivative of a fitted
curve. The value of d was taken to be the minima of the
growth rate curve. 1In general, these values were

significantly lower than the values calculated by the
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technique presented by Hobson. Figure 3 gives a graphic

comparison of the two techniques.
Determination of «

Hobson showed in his analysis that, for the particular
material he was studying, the parameter « was nearly zero.
This was demonstrated by plotting da/dN vs. (d—-a) on a log-
log scale for various specimens. The resulting plots all had
a slope of nearly unity. This meant that the term {l1-a«) had
a value of nearly one. Therefore, a had a value very near
zero. The assumption that this parameter had a value of zero
significantly simplified the remaining analysis. However,
his 1986 study was based on stéel alloys. Duplication of
Hobson's technique showed that the parameter a did not have a
value near zero for the material in this study. Therefore,
it was necessary to develop a technique of determining the
value of «a.

Taking the logarithm of both sides of (1) gives:

da

In{(—) = In(C) + (l-a)ln(d-a) + (a)ln(a). (2)

dN
At this point in the analysis, a function has been developed
which approximates the growth rate as a function of crack
length and a value has been determined for the parameter d.
With the equation in the above form, it is easy to see that
the term involving the factor C is merely an offsetting term.
with this information, a method of determining a is quickly

developed.
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-—— Actual
o Recorded Data

— — Fitted Curve

a
N.
d: Hobson
ds Current
da Study
dN

Figure 3. Comparison of Techniques for Determining d
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Pata points of the c¢rack growth rate at various crack
lengths can be generated using the polynomial previously used
to determine the value of d. This is done at twenty equally
spaced crack lengths from zero to d. A value of « is then
assumed. The first of the data points is used to determine
the offset 1In(C). For the remaining points the error is
determined as follows:

da
Error = In{(—) - 1In(C) - (l-a)ln(d-a) - (a)ln{(a). (3)
dN ,
These errors were squared to avoid cancellation and summed.
The estimation of a was then modified and fhe process
repeated. The value of a was taken to be the value providing

the lowest error sum. A Pascal program was written to speed

these computations.

Formation of a Functional

Relationship for C

Hobson suggests that the parameter C in the crack growth
rate model should vary with the applied stress range.
Thefefore, for all specimens tested under the same loading
conditions, the same value of C would apply. HobSon
determined the function representing C by the following
pfocedure. The value of C was calculated using the crack
growth rate model for each successive pair of data points
where a < d. For all specimens tested, the Qalues of C were
plotted against the stress range on a single plot. The

resulting plot showed significant scatter in C for any given
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stress range. The function used to represent C was the line
given by the 95 per cent confidence intervals at the lowest
and highest stress ranges used.

The technique stated above has some problems, the most
notable of which is the scatter in the values of C. As a
result of the analysis in this study, it is noted that the
values of C rise dramatically when the crack length
approaches d. Hobson showed that the values of C for a given
stress range may vary by as much as three orders of
magnitude. One of the primary reasons is that the selected
value of d may, in fact, be too large as was discussed
previously. It is expected that the crack growth rate will
increase after the transition from Stage I growth to Stage 11
growth. By using a value of d in the calculations which is
larger than the actual value, the analysis is attempting to
incorporate early Stage II growth. With the term (d-a)
decreasing rapidly as the crack length increases, the value
of C must increase very rapidly to meet the increasing crack
growth rate. 1In other words, the value of C is very
sensitive to small changes in the crack growth rate behavior
for crack lengths approaching d. It has been shown that the
scatter in C comes primarily from data having crack lengths
very near d. It has also been shown that this 1is precisely
the area where results are least reliable. Therefore the
selection of the 95 per cent confidence interval 1s not
logical. This gives unreasonably large results for C. A

more logical choice would have been to select the mean value
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of C at each stress range for use in determining the function
representing C. This would have reduced the values of C from
llobson's function by an order of magnitude.

In attempting to improve on the technique of determining
a relationship for C, many factors must be examined. First
is the selection of a value of d. This topic has been
discussed previously and an improved technique has been
presented which tends to give values significantly lower than
Hobson's technique. |

Second is the crack growth rate information. Hobson
used the secant technique for his growth rate information
which gives rise to two problems. First, the secant
technique assumes that the average growth rate value over the
selected range applies to the midpoint of the range, which
tends to reduce the features of the curve being represented,
particularly in areas of discontinuities. It is conceivable
that two points might be selected that bound the transition
crack length d yet having a midpoint less than d. These
phenomena are depicted schematically in Figure 4. This would
mean that the crack growth rate specified by the secant
technique could incorporate both Stage I and Stage II growth
for crack lengths very near d while the information is
perceived as Stage I crack growth. This could lead to
unreasonably high crack growth rates being used for crack
lengths very near d. Second, as has already been discussed,
the secant technigue, by its nature, does not provide the

most accurate information available. A polynomial fitted to
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Figure 4.

a

Errors in Secant Method
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the crack length data and differentiated will provide more
accurate information. As was alluded to previously, this
polynomial 1s not completely accurate. Therefore, crack
growth rate information generated by this polynomial for
crack lengths near d should be used with great care. The
third factor to be examined is the decision that C should
vary only with the applied stress range. The specimen
loading is a necessary consideration; however, loads seen at
the crack front are much more significant than overall
specimen loading.

The stress intensity range, aK, is generally used in
fatigue analyses to account for the effects of both the
applied stress range and the specimen geometry, both specimen
shape and crack length, in a single factor. Since crack
-growth behavior varies with both loading and crack length, it
is not unreasonable to assume that the stress intensity range
is a good parameter to include in the crack growth model. It
was decided that, for this study, the parameter C will be
allowed to vary as a function of stress intensity range.

This means that, in contrast to Hobson's technique, the value
of C will be allowed to vary for a given specimen as the
fatigue crack length changes. A good selection for the
function representing C would then improve the accuracy of
the crack growth model.

Before this analysis could continue, the stress
intensity range function for the given specimen geometry had

to be determined. As was previously stated, the specimen
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geometry selected for this study was flat strips with a notch
midway along one edge. Radhakrishnan and Mutoh
(Radhakrishnan and Mutoh, 1986) showed that an accurate
representation for the stress intensity for flat notched

specimens with short cracks is as follows:
K = {1 + 1.472T(D/p)}1/2KSEN (4)

where D is the notch depth, 0 is the notch root radius, and

Ksen 1s
Ksgn = of (ma)(1.12 - 0.23a + 10.55¢2- 21.72a3+30.39a4)

taking @« = a/W, W being the specimen width. The stress
intensity can easily be converted to a stress intensity range
by substituting the stress range for the stress in the above
equation defining Ksgn. It 1s interesting to note that the
definition for Ksgen 1s the same as the stress intensity
factor for an edge-cracked finite width plate as defined by
the U.S.A.F. Damage Tolerant Design Handbook (Gallagher et
al, 1984).

Using a Pascal program, values of C were calculated for
twenty equally spaced crack -lengths between zero and d. The
values of d and a used in the calculations d were taken to be
those determined by the techniques already developed in this
study. The function representing da/dN was the polynomial
already determined. The resulting values of C were plotted
versus the corresponding stress intensity ranges. An example

of one of these plots is given 1in Figure 5.
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The upward turn as aK approached aKdq, oK corresponding
to a=d, was quite unexpected. This warranted examination
before this result would be accepted. The problem was traced
back to the polynomial used to represent da/dN. This
polynomial, as was stated previously, usually did not cross
the abscissa. Therefore, at a=d the polynomial gave a
positive, non-zero value for da/dN. Equation (1) states that
the crack growth rate must be zero at a=d. To compensate for
this inconsistency, the value of C was forced to approach
infinity as (d-a) approached zero such that their product
could rpsult in a positive, non-zero result. It can be shown
that the error in the resulting value of C is positive and
that it increases as a approached d. The more accurate
values for C correspond to the smaller values of a. Since
the plot of C vs. aK 1s decreasing as a increases in this
range, the actual function of C vs. aK must also be
decreasing. It 1is unknown how this function actually behaves
as a approaches d. Therefore, it is assumed that C behaves
linearly in aK. The line is taken to be that defined by the
first two points generated by the program. This assumption
meets both criteria already determined. Specifically, the
function is decreasing, at least initially, and the error in
the data generated by the computer program increases as a,

hence aK, increases,.



CHAPTER 1V
COMPARISON OF RESULTS -
Determination of Model Parameters

Of the specimens tested.as'prescribed above, six were
chosen for analysis. The experimental data collected for
these specimens is listed in Appendix A. To obtain an
overview of the crack growth rate behavior, rough crack
growth rate data was then generated using the secant method.
This data is supplied in Appendix B. On preliminary
examination of the secant data, half of these specimens
(specifically, specimens 1, 2, and 6) showed evidence of
multiple retardations. It was decided that only the fifst
retardation would be studied in this study.

As is specified by the modified analysis procedure
presented in this study, curves were fit to approximate the
crack growth rates. A Pascal program was used to perform the
curve fits and its output for each specimen is listed in
Appendix C. Both Hobson's technique and the technique
developed in this study were used to calculate d. 1In
performing the curve fits for some of the specimens, it was
not appropriate to use the data points as defined by the
guideline given in Chapter 11I. The secant data showed that,

for many of the specimens, the crack growth rate increased

25
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before decreasing. This was not unexpected since the first
secant data point was calculated using the first measured
data point and a zero crack length prior to loading. Since
crack initiation may not occur immediately, this first value
1s expected to be inaccurately low. For this reason, the
data points showing an initial increase in crack growth rate
were assumed to be inaccurate and eliminated from the curve
fit. The program output in Appendix C indicates the range
over which each curve was fit.

The spacing of the data points for specimens 4 and 6 was
such that curves could not be fit to the data in such a
manner as to provide reasonable results as defined by the
prescribed technique. Therefore, for these two specimens,
the technique was modified. For specimen 4, a cubic was
- fit to the experimental data rather than a quartic. The
spacing of the data for specimen 6 required the order of the
approximation to be reduced further. A quadratic Lagrange
polynomial was fitted to the three data points taken from
45,000 cycles to 55,000 cycles. This polynomial is provided
in Appendix C in lieu of the_program output. The resulting
curves were differentiated and the value of d was determined
for each of the specimens. these values, along with those
calculated by Hobson's technique are listed in Table I.

The values of a were then calculated for the six
specimens. As the order of the approximation of the curves
decreased, 1t was expected that more error would be

introduced into the approximations which may propagate
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TABLE I
COMPARISON OF VALUES OF d FOR SPECIMENS
ANALYZED
Specimen d (um;'
Number Hobson This Study
1 6l.4 39.2
2 67.2 42.5
3 76.6 71.6
4 135.3 152.5
5 225.7 214 .5
6 101.7 70.7

through the subsequent calculations. This was evident in the
value of a calculated for specimen 6; however, 1t was
encouraging to see that, for the most part, the values of «
were fairly well grouped. The calculated values are listed
in Table ITI.

Since all specimens saw similar loading, Hobson's
technique would provide a single value of C for all

specimens. This value was found to be as follows:

¢ =17.71 * 10-%cycle-1t.

Following the prescribed technique, values of C andaK were
calculated at different crack lengths for each specimen. The

results of these calculations are listed in Appendix D. At
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TABLE II

VALUES OF « FOR
SPECIMENS ANALYZED

Specimen Q

Number
1 0.282
2 0.425
3 0.580
4 0.482
5 0.503
6 0.926

this point, the functional relationship representing C could
be obtained. Assuming the function to have the

following form:

C = c1 + cz(aK),

the unknown parameters ¢1 and ¢z were found for each of the
six specimens. These calculations were made taking a in pm
and da/dN in um/cycle. Table I11 summarizes the results of
the calculations. At this poilnt, the crack growth rate model
had been fully defined by both Hobson's technique and the
technique presented in this study. The two applications of

the model could now be compared.
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TABLE III

PARAMETERS DEFINING FUNCTIONAL
RELATIONSHIP FOR C

Specimen ol Cé~~"uﬁ__
Number

1 0.0775 ~0.0143

2 0.1005 -0.0296

. 0.3791 0.0448

1 0.2219 ~0.0140

5 0.1715 ~0.0096

6 0.3515 ~0.0434

Comparison of Results

The results of both techniques were integrated using the
Fourth Order Runge-Kutta technigque. Since the point of crack
initiation was not known, the integration algorithm assumed
the c¢racks to initiate immediately upon loading.
Additionally, because of the nature of the Runge--Rutta
technigue and the nature of the model, 1t was necessary to
assume an initial non-zero crack length. TFor all specimens,
this was taken to be 1 um. The curves resulting from the
integrations were superimposed over the original data. The
resulting plots are given in Figures 6 through 11. As was
expected, the results showed immediate crack initiation.

Since this may not be the actual case, and the actual point
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of initiation was not known, the curves were translated
horizontally, keeping the initiation point the same for both
curves, until the curves best [it the experimental data.
Upon visual inspection, the curve best matching the data is
taken to be the better approximation.

The results showed that the modified technique of
applying the model, in general, improved the accuracy
somewhat. For specimens 1 and 2, the technigque presented in
this paper clearly improved the results of the model. For
specimen 5, the two techniques provided very similar results;
however, the technique presented here provided a slightly
better result. For specimens 3 and 4, the results, again,
were similar; however, Hobson's technique proved to be
slightly better. As was feared, neither technique provided a
good approximation for specimen 6. For this specimen,

neither technique can be judged better.



CHAPTER V
SUMMARY AND CONCLUSIONS

Researchers are just beginning to study the growth of
short fatigue cracks. Few original models have been
developed to simulate this phenomenon. Of those proposed,
their application is often complex. Simplification of their
application can reduce the quality of the model. This was
the case in Hobson's 1986 application of his own model
proposed in 1982. This thesis examined the model and the
recommended technique of application and proposed
modifications and enhancements to both the model and its
application in an effort to improve the model.

For the specimens examined, the new technique shows some
improvement over the original model and application technique
prescribed by Hobson; however, the improvement is, in |
general, significant yet somewhat costly. One must
ultimately decide whether the improvement of the model
justifies the additional effort required. This justification
must be made on’an individual basis, considering the need for
improved accuracy and the availability of accurate data.

As an aslde, it is interesting to note that neither
technique showed a prejudice toward specimen type. 1In

addition, from the data gathered here, while specimen

37
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orientation significantly affected Stage II growth and
fractography, there is no conclusive evidence that the
specimen orientation plays a significant role in the short
fatigue crack growth. It deduced that if stringers are the
only microstructural feature making the material isotropic,
they could greatly affect the crack growth behavior of long
cracks while not affecting short crack growth. This is
subject to the provision that the stringers are located
sufficiently far from the point of crack initiation. It is
believed that this was the case in this study.

One of the remaining questions concerns the specimens
showing multiple growth retardations prior to long crack
growth behavior. It would be interesting to determine
whether or not these subsequent retardations are the result
of short crack growth behavior re-emerging following the
initial retardation. There was also inconclusive evidence
suggesting a single microstructural feature that determines
the value of 4. 1If this feature could be pin-pointed, the
study of short crack growth behavior could advance with a

much higher level of certainty and confidence.
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Experimental Data -- Specimen 1

Specimen Type -- T-L

D = 1.05 mm p= 0.20 mm
N _ a
{thousands) : (um)
75 42.5
85 45.0
100 55.0
115 ‘ 70.0
130 112.5
150 157.5
170 : -190.0
190 - 233.3
210 270.0
230 325.0
250 ' 365.0
270 435.0
290 455.0
320 518.3
350 635.3
380 313.3
410 1030.0



Experimental Data -- Specimen 2

Specimen Type —-- L-T

D = 1.00 mm p=10.20 mm
N a

(thousands) . (um)
25 16.5
50 35.5
75 47.5
100 73.0
125 92.0
150 128.5
175 154.5
200 192.5
225 221.0
250 253.0
- 275 264.2
- 325 293.5
350 ; - 373.5
450 ’ 575.0
500 » 811.5
550 996.5
600 v 1140.0
650 1720.0
700 3530.0



Experimental Data -- Specimen 3

Specimen Type -- T-L
D=1.63 mm P = 0.20 mm
N a
{thousands) {am)
15.21 11.8
22.72 18.8
27.75 50.6
30.76 60.0
33.27 04.7
38.27 ’ 72.0
43.27 ' 98.8
48.27 101.2
53.30 114.6
58.31 153.7



Experimental Data -- Specimen 4

Specimen Type -~ L-T

D =1.63 mm e: 0.20 mm
N a

{ thousands) {um)
15 15.3
20 24.7
25 40.0
30 96.5
35 - 119.5
40 '153.7
45 222.0
50 258.5
55 331.7
60 400.0



Experimental Data -- Specimen 5

45 ~207.
50 239.

Specimen Type -- T-L
D = 1.87 mm f= 0.19 mm
N | a
(thousands) (um)
15 51.8
20 82.4
25 131.7
30 161.0
35 185.4
40 - 200.0
3
0



Experimental Data -- Specimen 6

Specimen Type -- L-T
D = 1.54 mm ?: 0.21 mm
N a
(thousands) _(um)
45 41.5
50 58.5
55 . 70.7
60 107.3
65 122.0
70 - .148.8
75 214.6
80 243.9
85 _ 258.5
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Secant Data —-- Specimen 1
a' da/dN

(um) (*10-19m/cycle)
21.3 5.7
43.8 2.5
50.0 6.7
62.5 10.0
91.3 28.3
135.0 22.5
173.8 16.3
211.7 21.7

Indicates points used to
calculate a value of d via
Hobson's technique.

Indicates points which could be
used to calculate an alternate
value of d via Hobson's technique.
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Secant Data -- Specimen 2

a' da/dN

(um) (*10-10m/cycle)
8.3 6.6
26.0 7.6
41.5 4.8
60.3 10.2
82.5 7.6
110.3 14.6
141.5 10 .4
~173.5 15.2
- 206.8 . 11.4
237.0 4.5
258.6 . 4.5
278.9 ©5:9
5 32.0

333.

- Indicates pcints-usedvto
calculate a value of-d via
Hobson's technique.

Indicates points which could be
used to calculate an alternate
value of 'd via Hobson's technique.

Indicates points which could be used
to calculate another alternate value
of d via Hobson's technique.
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Secant Data -- Specimen 3

a' da/dN
(um) (¥10-19m/cycle)

5.9 7.8
15.3 9.3
34.7 63.2
55.3 31.2
62.4 18.7
68.4 14.6
85.4 53.6

Indicates points used to
calculate a value of d via
Hobson's technique.
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Secant Data -- Specimen 4
a’ da/dN

{ pm) (*10-10m/cycle)
7.7 10.2
20.0 18.8
32.4 30.6
68.3 113.0
108.0 46.0
136.6 68.4

Indicates points used to -
calculate a value of d via -
‘Hobson's technique. '



* % % F F

Secant Data —- Specimen 5

a' da/dN
- {(pm) (*10-19m/cycle)

25.9 ~34.5

67.1 61.2
107.1 98.6
.146 .4 ' 58.6
173.2 48.8 -
192.7 29.2
203.7 14.6
223.2 "63.4"

Indicates points used to
calculate a value of d via
. Hobson's technique.
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Secant Data -- Specimen 6

a’ da/dN
(um) (*¥*10-10m/cycle)

~20.8 9.2
50.0 34.0
64.6 24 .4
89.0 - 73.2

114.7 29.4

4 53.6

135.

Indiéates points: used to
calculate a value of . d via
Hobson's technique.

Indicates;points which could be
used to calculate an alternate
value of d via Hobson's technique.

o+
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56
Specimen 1

Curve 1 is good from 0.0000< (N/1000) <115.0000.
The coefficients .for curves relating to range 1 are:

a da/dN
a0 = 4.35368660255335E-0002 a0 = 1.07860305900249E+0000
al = 1.07860305900249E+0000 al = ~1.73534427307800E-0002
a2 = -8.67672136538999E-0003 a2 = -2.50159896907354E-0005
a3 = -8.33866323024512E-0006 a3 = - 1.67784764255538E-0006
ad = : - )

4.19461910638845E-0007

variance = 0.00000000000000E+0000



Curve 1 is good from 0.0000<

a0 = -4
al = 7
az = 3
a3 = -1
ad = 9
var iance

Specimen 2

“ 3

.56765386043116E-0001

.19972423251420E-0001
.27499145399202E-0003
.28403021662171E-0004
.69142832686620E-0007

= 0.00000000000000E+0000 "

a0
al
a2
a3

(N/1000)

(L E R 1A

57

<100.0000.
The coefficients for curves relating to range 1 are:

wwo

da/an

.19972423251420E-0001
.54998290798403E-0003
.85209064986292E-0004
.87657133074648E-0006



Curve 1 1is good from 22.7200<

a0 = -1
al = 1
az = -3
a3 = -3
a4 = -3
ab = 1
variance

Specimen 3

a

.97837147174403E+0002
.22385524562415E+0001
.04613717489701E-0002
.52463842754602E-0003
.72991782121579E-0005
.57178838783821E-0006

ao
al
az
a3
a4

= 0.00000000000000E+0000

(N/1000)

58

<43.2700.
The coefficients for curves relating to range 1 are:

,da/dN

.22385524562415E+0001
.09227434979402E-0002
.05739152826345E-0002
.49196712848632E-0004
.85894193917891E-0006
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Specimen 4

Curve 1 is good from 25.0000< (N/1000) <40.0000.
The coefficients for curves relating to range 1 are:

a da/dN
a0 = -2.23019646690693E+0002 a0 = 1.04186977297068E+0001
al = 1.04186977297068E+0001 al = 1.42525479250480E-0001
a2 = 7.12627396252401E-0002 a2 = —-7.27516530033512E-0003
a3 = -2.42505510011171E-0003

variance = 0.00000000000000E+0000



Curve 1 is good from 20.0000<

a0 = -1
al = 1
a2 = -1
a3 = -3
a4 = 4
variance

Specimen 5

a

.75210585939232E+0002

.68117060106306E+0001
.41781668082558E-0001
.04617485153713E-0003
.86729351528159E-0005

= 8.05634252751479E+0001

a0
al
a2
a3l

(N/1000)

WoHoHoH

60

<50.0000.
The coefficients for curves relating to range 1 are:

da/dN

.68117060106306E+0001
.83563336165116E-0001
.13852455460074E-0003
.94691740611264E-0004



Specimen 6

a

a0 = -357.2

al = 13.72
az = -0.1080
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Calculated Data -- Specimen 1

a delta K C
(m) ( MPaym ) (1/cycles)

3.54 1.5770 0.054895

6.84 2.1920 0.046092

9.95 2.6436 0.041903
12.87 3.0065 0.039357
15.60 3.3099 0.037634
18.14 3.5690 0.036404
20.50 3.7940 0.035512
22.68 3.9905 0.034881
24.70 4.1643 0.034478
26.56 4.3181 0.034306
28.27 4.4549 0.034396
29.84 4.5768 0.034818
31.28 4.6859 0.035696
32.62 4.7851 0.037241
33.85 4.8744 0.039823
35.01 4.9571 0.044147
36.10 5.0337 0.051743
37.15 5.1063 0.066788
38.17 5.1758 0.107402
39.19 5.2445 4.279800
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Calculated Data -- Specimen 2

a delta K C
{um) { MPaim ) (1/cycles)

1.91 1.1455 0.066538

4,33 1.7247 0.049385

6.76 2.1549 0.042624

9.20 2.5138 0.038831
11.62 2.8251 0.036366
14.02 3.1030 0.034641
16.37 3.3529 0.033392
18.66 3.5796 0.032492
20.90 3.7883 0.031879
23.07 3.9800 0.031534
25.18 4.1579 0.031468
27.23 4,3237 0.031725
29.21 4.4780 0.032386
31.14 4.6235 0.033587
33.02 4,7609 0.035564
34 .87 4,8923 0.038751
36.69 5.0183 0.044038
38.51 5.1411 0.053666
40.35 5.2624 0.075968
42 .22 5.3828 0.244640
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Calculated Data

-~ Specimen 3

a delta K C
(pm) ( MPaim ) (1/cycles)
26,49 4.7736 0.165189
30.06 5.0848 0.151245
33.46 5.3645 0.140005
36.68 5.0165 0.130723
39.74 5.8458 0.122931
42 .64 6.0552 0.116328
45, 39 6.2472 0.110717
47 .99 6.4234 0.105976
50.44 6.5852 0.102041
52.77 6.7354 0.098892
54.98 6.8749 0.096558
57.07 7.0042 0.095121
59.07 7.1257 0.094729
60.98 7.2399 0.095637
62.82 7.3482 0.098272
64.60 7.4514 0.103406
66.34 7.5510 0.112595
68.05 7.6476 0.129668
69.76 7.7430 0.168567
71.48 7.8377 0.525155
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Calculated Data -- Specimen 4

a delta K C
{(um) ( MPaim ) (1/cycles)
51.06 6.6255 0.129014
57.90 7.0549 0.122991
64.60 7.4514 0.118270
~71.16 7.8202 0.114543
77.58 8.1649 0.111609
83.84 8.4876 0.109338
89.95 8.7911 0.107645
95.88 9.0759 0.106482
101.65 9.3448 0.105830
107.24 9.5981 . 0.105700
112.65 9.8370 0.106135
117.87 10.06022 0.107222
122.89 10.2741 0.109113
127.72 10.4739 0.112065
132.33 10.6612 0.116528
136.73 10.8369 0.123345
140.92 11.0017 0.134290
144 .88 11.1552 0.153900
148.60 11.2975 0.199210
152.09 11.4295 0.566159
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Calculated Data -- Specimen 5

a delta K C
(um) ( MPa¥ym ) (1/cycles)

98.22 9.5998 0.079772
108.13 10.0720 0.075258
117.47 10.4977 0.071410
126.25 10.8827 0.068079
134.50 11.2325 0.065168
'142.23 11.5507 0.062615
149 .47 11.8411 0.060384
156.23 12.1060 0.058457
162.54 12.3482 0.056837
168.44 12.5704 0.055548
173.95 12.7746 0.054634
179.11 12.9629 0.054168
183.96 13.1375 0.054264
188.52 13.2996 0.055099
192.84 13.4515 0.056957
196.97 13.5950 0.060325
200.95 13.7320 0.066133
204.83 13.8643 0.076474
208.65 13.9934 0.097678
212.48 14.1216 0.168950



Calculated Data —-- Specimen 6
a delta K C
(um) ( MPaim ) (1/cycles)
43.45 5.9642 0.092740
45,35 6.0930 0.087153
47.20 6.2160 0.082076
49.00 6.3333 0.077438
50.74 6.4446 0.073181
52.43 6.5509 0.069256
54.06 6.6519 0.065624
55.65 6.7489 0.062252
57.18 6.8409 0.059110
58.65 6.9282 0.056177
60.08 7.0121 0.053434
61.45 7.0915 0.050865
62.77 7.1672 0.048460
64.03 7.2387 0.046215
65.25 7.3072 0.044130
66.41 7.3718 0.042218
67.51 7.4325 0.040519
68.57 7.4906 0.039130
69 .57 7.5450 0.038376
70.51 7.5957 0.040982
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