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CHAPTER I 

INTRODUCTION 

The use of hierarchical data structures is becoming 

increasingly important in the areas of computer graphics, 

image processing, computational geometry, geographic 

information systems, and robotics. 

Hierarchical data structures are being used because of 

their efficient representation, improved execution times and 

ease of implementation. They are useful particularly for 

performing set operations. According to Samet[32], 

hierarchical data structures are currently used for point 

data, regions, curves, surfaces, and volumes. One example of 

a hierarchical data structure is a quadtree. Samet (32] 

defined the term quadtree as follows: 

The term quadtree is used to describe a class 
of hierarchical data structures whose common 
property is that they are based on the principle 
of recursive decomposition of space. They can be 
differentiated on the following bases: 

1. the type of data that they are used to 
represent; 

2. the principle guiding the decomposition; 
3. the resolution (variant or not). 
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The region quadtree is the most studied quadtree 

approach for region representation. It is based on the 

successive subdivision of the image array into four equal­

size quadrants. 

The following illustrative example is from [32]. 

Consider the region shown in Figure la. The region is 

represented by the 23 by 23 binary array in Figure lb. The 

l's correspond to pixels that are in the region and the O's 

correspond to the pixels that are outside the region. 

If the region does not cover the entire array, it is 

subdivided into quadrants, subquadrants, etc. until blocks 

(possibly single pixels) that consist entirely of O's are 

obtained; that is, each block is entirely contained in the 

region or entirely disjoint from it. 
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The resulting blocks for the array of Figure lb are 

shown in Figure le. The process described above is 

represented by a tree of degree 4 (i.e., each nonleaf node 

has four sons). The root node corresponds to the entire 

array. Each son of a node represents a quadrant (labeled in 

order NW, NE, SW, SE) of the region represented by that 

node. The leaf nodes of the tree correspond to those blocks 

for which no further subdivision is necessary (i.e., blocks 

consisting entirely of l's or entirely of O's). 

A leaf node is considered a BLACK node if its 

corresponding block is entirely inside of the represented 

region, WHITE otherwise. All nonleaf nodes are said to be 
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(Samet, H., "The quadtree and related hierarchical data 
structures." ACM Comput. Survevs, vol. 16, no. 2, Jun. 
1984, pp. 190-235.) 

Figure 1. (a) A region (b) Binary array (c) Block 
decomposition of the region (d) Quadtree 
representation of the blocks in (c). 
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GRAY. The quadtree representation for Figure le is 

shown in Figure ld. 

Objectives 

4 

The goal of this thesis is to use the quadtree data 

structure to represent the Hebrew consonants and vowels. In 

addition, a software will be developed to familiarize the 

beginning student of the Hebrew language. The programs were 

written in Turbo Pascal and were implemented on the Amdek 

286A microcomputer system (Amdek Corporation, 1901 Zanker 

Road, San Jose, CA 95112 USA). 

Thesis Organization 

Chapter II presents the concept of region quadtree and 

alternative ways to represent quadtrees. Operations 

performed on quadtree are presented in Chapter III. Chapter 

IV illustrates the design and the implementation of thesis's 

goals described above. A summary and conclusions are 

included in Chapter V. 



CHAPTER II 

REGION DATA 

A region can be represented in two major approaches: 

1. those that specify the boundaries of a region 

2. those that organize the interior of a region 

The region quadtree, commonly referred to as a 

quadtree, is a hierarchical data structure that is 

characterized as being a collection of maximal blocks that 

partition a given region, for example, the run length code 

representation, where the blocks size is restricted to 1 by 

m rectangles. Another general representation treats the 

region as a union of maximal square blocks (or blocks of any 

other shapes) that may possibly overlap. In this 

representation, the blocks are usually specified by their 

centers and radii. This type of representation is called 

medial axis transformation (MAT) [32]. Samet [32] gives the 

following definition for a quadtree: 

The region quadtree is a variant on the 
maximal block representation. It requires 
that the blocks be disjoint and have standard 
sizes (i.e., sides of lengths that are powers 
of two) and standard locations. The motivation 
for its development was a desire to obtain a 
systematic way to represent homogeneous parts of 

5 



an image. Thus, in order to transform the data 
into a region quadtree, a criterion must be 
chosen for deciding that an image is homogeneous 
(i.e., uniform). One such criterion is that the 
standard deviation of its GRAY level is below a 
given threshold t. By using this criterion the 
image array is successively subdivided into 
quadrants, subquadrants, etc. until homogeneous 
blocks are obtained. This process leads to a 
regular decomposition[32]. 

The blocks of the quadtree do not necessarily 

correspond to maximal homogeneous regions in the image. 

Most likely there exist unions of the blocks that are still 

homogeneous. To obtain a partition of the image into 

maximal homogeneous regions, merging of adjacent blocks (or 

unions of blocks) should be performed as long as the 

resulting region remains homogeneous. 

6 

Another method is to use a decomposition method that is 

not regular (i.e., rectangles of arbitrary size rather than 

squares). This alternative method may require less space, 

but it requires a search to determine the optimal partition 

points. The homogeneity criterion on which the subdivision 

process is done depends on the type of the region data. 

From now on, the region quadtree (termed a quadtree in 

the rest of this paper) is assumed to have a domain of 2" by 

2" binary images with 1 or BLACK corresponding to foreground 

and o or WHITE corresponding to background. 
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Alternative Ways to Represent Quadtrees 

As is shown in Chapter I the most natural way to 

represent a quadtree is to use a tree structure. In this 

case each node is represented as a record with four pointers 

to the records corresponding to its sons. If the node is a 

leaf node, it will have four pointers to the empty record. 

Sometimes, in order to facilitate certain operations (e.g., 

merge) that require a reference of a node to its father, an 

additional pointer is included from a node to its father. 

This greatly eases the implementation of algorithms that 

perform basic image processing operations. 

The problem with the tree representation of a quadtree 

is that it has a considerable amount of overhead associated 

with it. For example, a (B + W - 1)/3 additional nodes are 

necessary for the internal, i.e., GRAY, nodes ( B ,W for the 

number of BLACK and WHITE, respectively). Moreover, each 

node requires additional space for the pointers to its sons. 

This is a problem when dealing with large images that cannot 

fit into core memory. 

In order to solve the memory problem described above, 

there has been a considerable amount of interest in 

pointerless quadtree representations. These representations 

can be grouped into two categories [32]: 

1. the image is treated as a collection of leaf node; 

2. the image is represented in the form of a 

traversal of the nodes of its quadtree. 
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Bin tree 

The bintree structure reduces the number of pointers in 

each node. The space is always subdivided into two equal­

sized parts alternating between the x and the y axes. Thus 

each node requires space only for pointers to its two sons 

instead of four sons (in the case of a qUadtree). In 

addition, its use generally leads to fewer leaf nodes. 

Figure 2 is an example of a region· and its corresponding 

bintree. 



v w 
E 

T v 

37 y Q s 
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N z - R 
60 

(Samet, H., "The quadtree and related hierarchical data 
structures." ACM Comput. Surveys, vol. 16, no. 2, 
Jun. 1984, pp. 190-235.) 

Figure 2. (a) Block decomposition 
(b) Bintree representation of the blocks in (a) 

9 
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Linear Quadtree 

In his paper [7], Garantini introduced a new structure, 

called "linear quadtree", with the following 

characteristics: 

1. only BLACK nodes are stored; 

2. the encoding used for each node incorporates 

adjacency properties in the four principal 

directions, namely NW, NE, SE, and SW; 

3. the node.representation implicitly encodes the 

path from the root to the node. 

The main advantages of linear quadtrees, with· respect 

to quadtrees, are: 

1. space and time complexity depend only on the 

number of BLACK nodes (Garantini claimed a saving 

of 66 percent); 

2. pointers are eliminated. 

Encoding Black Pixels. 

following conventions [7]: 

Garantini adopted the 

1. the NW quadrant is encoded with o, the NE with 1, 

The SW with 2, and the SE with 3. Each BLACK 

pixel is then encoded in a weighted quaternary 

code, i.e., with digits o, 1, 2, 3 in base 4, 

where each successive digit represents the 



quadrant subdivision from which it originates. 

Thus, the digit of weight 4n-h, 1 < h < n, 
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identifies the quadrant to which the pixel belongs 

at the hth subdivision (Figure 3). 

2. The pair of integers (I,J), with I,J=0,1, ••••. ,2~ 1 

identifies the position of a pixel in the 2"x2" 

array. The encoding procedure consists of mapping 

the pair (I,J) into an integer K in base 4, which 

expresses the successive quadrants to which the 

(I,J) pixel belongs. For example, if n=3 and 

(I,J)=(6,5), K will be 321. This means that the 

pixel (6,5) belongs to the SE quadrant in the 

first subdivision, to the SW quadrant in the 

second, and to the NE in the third (final) 

subdivision (see Figure 3) 

To find K, we first write I and J as 

I = C 2"-1 + C 2"-2 + ••••••• +C0 n-1 n-2 

J = D 2n-1 + D 2n-2 
n-1 n-2 + •• ••••• +Do 

where Ci' D; is either o or 1. Thus C; and D; indicate which 

quadrant (I,J) belongs to at each level of subdivision. 

once the first (largest) quadrant is identified, we 

partition it into four quadrants and repeat the procedure 

for (n-2) and so on, until the last quadrant consists of 

only four elements. 



In the previous example 

I = 1 x 22 + 1 x 21 + O x 2° 

J = 1 x 22 + 0 x 21 + 1 x 2° 

and thus, k=321. 
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After encoding all the BLACK pixels into their 

corresponding quadrant codes, we sort them and store them 

into an array. Then condensation is applied as follow: if 

four pixels have the same representation except for the last 

digit, we eliminate them from the list and replace them with 

a code of (n-1) quaternary digits followed by some kind of 

marker, here denoted by x. 

For instance, if pixels 310, 311, 312, and 313 are all 

in the array, they are replaced by 31X. Similarly, if 30X, 

31X, 32X, 33X are present, we replace them by 3XX and so 

forth. After condensation is complete, we obtain an array 

(containing only BLACK pixels or a covering thereof) which 

is still sorted if we suitably encode marker X with an 

integer greater than 3. This sorted array is referred to as 

the linear quadtree. The region shown in Figure 3b, for 

example, is encoded by the sequence, 003 021 023 03X 122 21X 

3XX. Note that the linear quadtree corresponds to the 

postorder traversal of BLACK nodes of a quadtree, i.e., 

Figure 3b. 
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003 

0 :l.I 0?,0 0~1 

0~3 O)'l 03~ &~'l 

~10 •U 300 301 a10 3\l 

~·~ ~·3 3oa 30) a1~ 313 
, 

32.0 ~t 330 33l 

322 3.1.3 33:2 :J~3 

(0.) 

(Garantini, I., "An effective way to represent quadtrees." 
Commun. ACM, vol. 25, no. 12, Nov. 12, Dec. 1982, 
PP· 905- 910.) 

Figure 3. (a) Quadrants Labeling and Generating 
Quaternary Codes 
(b) Quadtree for region in (a) 
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OF-expression 

Kawaguchi [13] introduced another pointerless 

representation of a quadtree. This representation is in the 

form of a preorder traversal (i.e., depth first) of the 

nodes of the quadtree. The result is a string consisting of 

the symbols "(", "B", and "W" corresponding to GRAY, BLACK, 

and WHITE nodes, respectively. For· example, the image of 

Figure 4. has 

( ( W W W ( W W B B ( B B B W ( W ( .B B W W W W W 

as its OF-expression (assuming that sons are traversed in 

the order NW, NE~ SW, SE). The original image can be 

reconstructed from the OF-expression by observing that the 

degree of each nonterminal (i.e., GRAY) node is always 4. 

Kawaguchi [14] shows how a number of basic image 

processing operations can be performed on an image 

represented by a OF-expression. In particular, he 

demonstrates centroid computation, rotation, scaling, 

shifting, and set operations. 

Forest Ouadtree 

The concept of a forest quadtrees (introduced by Roman 

[18]) is a decomposition of a quadtree into a collection of 

subquadtrees. Each subquadtree corresponds to a maximal 

square. The maximal squares are identified by refining the 

concept of a nonterminal node that indicate some information 
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about its subtrees. Samet defines a forest quadtree as 

follows: "An internal node is said to be of type GB if at 

least two of its sons are BLACK or of type GB. Otherwise, 

the node is said to be of type GW" [32]. 

For example, in Figure 4, nodes c, E, and F are of type 

GB and nodes, A, B, and D are of type GW. Thus the forest 

corresponding to Figure 4. is {C,E,F}. 

Samet further defined the quadtree concept as follows: 

Each BLACK node or an internal node with 
a label of GB is said to be a maximal square. 
A forest is the set of maximal squares that 
are not contained in other maximal squares 
and hat span the BLACK area of the image. The 
elements of the forest are identified by base 
4 locational codes. Such a representation can 
lead to a saving of space since large WHITE 
items are ignored by it [32]. 



I l 8 9 

ll 5' 
3 lO ll 
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13 '"' Jl 
!S '" I ~ 

l7 18 -. 
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(Samet, H., "The quadtree and related hierarchical data 
structures." ACM Comput. Surveys, vol. 16, no. 2, Jun. 
1984, pp. 190-235.) 
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Figure 4. 

1-
A sample image and its quadtree illustrating the 
concept of a Forest 
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TID Structures 

Scott and Iyengar [35) propose a translation invariant 

data structure (TID) . This structure is not effected by 

translating or rotating an image. The idea is to examine an 

image and determine the maximal black squares. That is, 

finding the largest possible squares completely covering an 

image. 

For example, if an image consisted of a 5 x 10 pixel 

rectangle, two 5 x 5 BLACK squares would completely cover 

the area; if the rectangle were 5 x 11, however, it would 

require 3 squares to cover the area (overlapping squares are 

permitted). 

The TID is a list of triples (i, j, s) where (i, j) is 

the coordinate of the upper left-hand corner of the square 

and s is the length of the side of the square. The image in 

Figure 5 is completely defined with six triples: 

(0,1,3) 
(0,4,2) 
(1,0,1) 
(1,1,3) 
(3,3,2) 
(5,3,1) 

'1-.(Glass, · D. J., "Data structures for storing images: region 
quadtrees." Dep. Comput. Sci., Oklahoma State University, 
Stillwater, Tach. Rep., osu-cis-tr-87-10, De c 1987.) 

Figure 5. Example of a TID 

8 



To shift the image in Figure 5 by (x, y) pixels only 

requires the following assignment: 

for k := 1 to number_of_triples 

(i, j, S)k := (i + X, j + y, Sh 

Chain Code 

18 

The chain code representation (also known as a boundary 

or border code) is very commonly used in cartographic 

applications. As Samet points out in one of his papers, 

"Chain codes provide a very compact region representation, 

and make it easy to detect features of the region boundary, 

such as sharp turns ("corners") or concavities" (5]. On the 

other hand, it is difficult to perform operations such as 

union and intersection on a region represented by chain 

codes. 

The chain code can be specified, relative to a given 

starting point, as a sequence of units vectors (i.e., one 

pixel wide) in the principal directions. The directions 

can be represented by numbers. 

The following illustrative example is from [5]. Let i, 

an integer ranging from O to 3, represent a unit vector 

having a direction of 90 x i degrees • Thus, the direction 

sequence for the boundary of the region in Figure 6, moving 

clockwise starting from the left of the uppermost border 

point (5], is 

o 3 o2 35 23 1 2 33 o 3 2 5 16 o 1 o 1 o 3 o 1 o 1 



r 
I I 
I l 
~ 

I 

I 

(Samet, H., "Region representation:boundary codes from 
quadtrees." Commun. ACM, vol. 23, no. 3, Mar. 1980, pp. 
171-179.) 

Figure 6. Block Decomposition of a Region 
9 

Generalized chain codes, involving more than four 

directions, can also be used. A general introduction to 

chain codes can be found in [5]. 

Run Length code 

The run length code is an example which makes use of 

one-dimensional coherence (as opposed to the quadtree 

encoded image which uses two-dimensional coherence). 

A run length encoded image is described in scanline 

order as a sequence of pairs of values (x,y) where x 

represents the number of consecutive pixels of value y in 

each run. According to Wieseman and Oliver "run length 

19 

encoding gives reasonably good compression in many cases (a 
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factor of ten may be typical) but the image is not easily 

manipulated in its coded form" [40]. Therefore, it is 

particularly useful for image storage and transmission but 

not much else. 

For example, consider the image in Figure 7. The run 

length encoding is as follows: 

3W,5B 
2W,4B,2W 
1W,3B,4W 
SB 
1B,6W,1B 
24W 1 

~t 

Figure 7. An Image and its Run Length Encoding 
n r 
' 

Treecode 

Oliver and Wiseman [40] described a linear code which 

specifies a quadtree in depth first order. This linear code 

has found use in several different projects. 

Each node, whether non-terminal or leaf, has a value 

given in 4 bits. One additional bit indicates which sort of 

node it is. These 5 bit are stored in byte field in memory. 

A sequence of bytes is read as follows: 

1. think of a square area; 

2. get next byte; 

3. if leaf, color the square with value in 4 bit field; 

4. if non-terminal, subdivide the square and return to 



step 2 four times for the bottom left, top left, 

bottom right, and top right squares. 

21 

Thus the code·20, 4, 18, 2, o, 5, 1, 7,3 is understood 

to represent the quadtree of Figure 8. The non-terminals 

are 20 and 18 in this case, representing the average value 

of the whole image (16 + 4) and the top left quadrant (16 + 

2), respectively. 

20 

0 1 
3 

2 5 

4 7 

(Wiseman, N. E., and Oliver, M. A., "Operations on quadtree 
encoded images." The Comput. J., vol. 26, no. 1, May 1983, 
pp. 83-93.) 

Figure)f. Quadtree Image from Treecode 20 4 18 2 O 5 1 7 3 

II 
Leaf code 

Wiseman and Oliver described the leafcode method as 

follows: "the basic idea in leafcodes is to treat the square 

image areas represented by the leaves in quadrant as 

entities separate from the structure of the treecode while 

retaining the relation to quadtrees by requiring that only 

square areas corresponding to possible quadtree leaves be 
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permitted; in general, arbitrary square areas must be broken 

into the leaves that cover them" [40]. 

The size and the position of a particular leaf is 

determined by the recursive structure of the treecode. In 

leaf codes this information is carried directly in the code 

for each leaf together with its color. The size of the leaf 

can be given by the number of pixels along the edge of the 

square (which will be a power of two) or implicitly by the 

recursive depth in_ the quadtree. the position of the leaf 

is determined by the (x, y) co-ordinates of the pixel in the 

lower left hand corner of the leaf which will be called the 

origin of the leaf. Thus, a 512 x 512 picture has a number 

space as shown in Figure 9a. 

the 

The following algorithm determines the specification of 

position of a pixel [40]: 

1. 

2. 

3. 

divide the image into quadrants; 

choose the quadrant containing the pixel and repeat 

steps 1, 2 until no further subdivision is possible; 

write the sequence of quadrant numbers out in base 

four using o, 1, 2, 3 to identify the bottom left, 

top left, bottom right and top right quadrants, 

respectively. 

When the leaves of a treecode are represented in this 

way, the leaf co-ordinates are seen to be in strictly 

increasing order. In the example shown in Figure 9b the 

shaded square has leaf co-ordinates 031 (001101 in binary). 
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Oliver and Wiseman have found that the space 

requirement for leafcode can compare favorably with that for 

the corresponding treecode. For line images on a uniform 

background the space requirement is then only about 15% 

greater than for the corresponding treecode. 

o,o (a) 

(Wiseman, N. E., 
encoded images." 
pp. 83-93.) 

(b) 

and Oliver, M. A., "Operations on quadtree 
The comput. J., vol. 26, no. 1, May 1983, 

Figure;/. 

t:l. 
(a) Number space for 512 x 512 picture 
(b) Leaf with Leafcode 001101 is shaded 

Conversions 

The quadtree is proposed as a representation for binary 

images because its hierarchical nature facilitates the 

performance of a large number of operations. however, most 

images are traditionally represented by use of methods such 

as binary arrays, rasters (i.e., run lengths), and chain 

codes (i.e., boundaries), some of which are chosen for 

hardware reasons (e.g., run lengths are particularly useful 

for rasterlike devices such as television). Techniques are 



therefore needed that can efficiently switch between these 

various representations. 
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Some of these techniques are described in the following 

papers: 

treecode into leafcode [40]; 

quadtrees from binary arrays [9]; 

boundary codes from quadtrees [10]; 

quadtrees from boundary codes [11]; 

quadtrees to rasters [28]. 



CHAPTER III 

OPERATIONS PERFORMED ON QUADTREES 

Set Operations 

The quadtree is especially useful for performing set 

operations such as the union (i.e., overlay) and 

intersection of several images. The ability to perform set 

operations quickly is one of the primary reasons for the 

popularity of quadtrees over alternative methods. 

Intersection 

The intersection operation involves traversing two 

given quadtrees as follows: when one tree has a son that is 

a BLACK leaf, while the other has a corresponding son that 

is not BLACK, the BLACK leaf is replaced by the 

corresponding subtree. If one tree has a leaf that is 

WHITE, the intersection tree will have a corresponding WHITE 

leaf. Finally, if both trees have GRAY nodes in 

corresponding positions, the nodes' sons are examined 

recursively, using the same process. Figure lOd illustrates 

the intersection of Figures lOa and lOb. (See Appendix A for 

detailed procedure). 
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Union 

The union operation is very similar to the intersection 

operation. The two given quadtrees are traversed in 

parallel as follows: when a BLACK leaf is encountered, this 

becomes the subtree at the current position in the union 

tree. A WHITE leaf in one tree results in the corresponding 

subtree of the other tree becoming the subtree at the 

current position of the union tree-. When there are two GRAY 

nodes, the procedure is called recursively for the subtrees 

rooted at these nodes. 

Figure lOc illustrates the union of figures lOa and lOb 

(see Appendix A for detailed procedure). 

Complement 

The complement operation is a very simple operation in 

a quadtree, and does not change the structure of the tree at 

all. It involves changing BLACK nodes (or pixels) into 

WHITE, and WHITE nodes (or pixels) to BLACK. 

A for detailed procedure). 

(see Appendix 
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(Samet, H., "The quadtree and related hierarchical data 
structures." ACM Comput. Surveys, vol. 16, no. 2, 
Jun. 1984, pp. 190-235.) 
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Fiqure lOc. Union of the Figure lOd. Intersection of 
images in Figures the images in 
lOa and lOb Figures lOa and 

lOb 

27 



Geometric Transformations 

As Samet points out in one of his papers, "One of the 

primary motivations for the development of the quadtree 

concept is a desire to provide an efficient data structure 

for computer graphics" [32]. Therefore, one needs to 

develop a system that has the capability of performing a 

number of basic transformations. 

Rotation 

Rotation by multiples of 90 degrees is quite simple. 
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The operation involves a recursive rotation of sons at each 

level of the quadtree. Figure lla and Figure llb illustrate 

the rotation operation. Figure llb is the result of rotating 

Figure lla by 90 degrees counterclockwise. Notice how the 

NW, NE, SW, SE sons have become SW, NW, SE, and NE sons, 

respectively, at each level in the quadtree (see Appendix A 

for detailed procedure). 

Scaling 

Scaling by a power of two is also a simple operation 

when using quadtrees. When traversing the quadtree from the 

root down to its leaves, the resolution is increased by 

power of two at each level down. Therefore, we can control 

the size of the image by simply determining the size at the 

root level (remember that the size is a power of two). 
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(Samet, H., "The quadtree and related hierarchical data 
structures." ACM Comput. Surveys, vol. 16, no. 2, 
Jun. 1984, pp. 190-235.) 

Figure ll. Rotating (a) by 90 degrees 
counterclockwise yields (b) 
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Windowing 

Windowing is another operation that is useful in 

graphics applications. The process involves extracting a 

rectangular window from an image represented by a quadtree 

and building a quadtree for the window. Rosenfeld et al. 

[19 as cited in 22] introduced an algorithm that extracts a 

square window of size 2k by 2k at an arbitrary position in a 

2n by 2n image. Samet gives the following explanation: 

In essence, the new quadtree is constructed 
as the input quadtree is decomposed and 
relevant blocks are copied into the quadtree. 
The execution time of this process depends 
both on the relative position of the center 
of the window with respect to the center of 
the input quadtree, and the sizes of the 
blocks in the input quadtree that overlap the 
window. For rectangular windows, windowing 
is simple to implement if the squarcode 
representation of Wiseman and Oliver 
is used [32]. 

Computation 

In order to find the area of an image represented by a 

quadtree, it is necessary to traverse the quadtree in 

postorder and accumulate the sizes of the BLACK blocks. 

Samet calculates the area as follows: "Assume that the 

root of a 2nby 2n image is at level n and the number of 

pixels in such an image is 22n for a BLACK block at level k, 

the contribution to the area is 22k" [32]. (See Appendix A 

for detailed procedure). 



Perimeter 

Computing the perimeter of an image represented by a 

quadtree can be carried out as follows: A postorder tree 

traversal is performed, and for each BLACK node that is 

encountered its four adjacent sides are explored in the 

search for adjacent WHITE nodes. Then, for each adjacent 

WHITE node that is found the length of the corresponding 

shared side is included in the perimeter. 
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The algorithm involves a certain amount of duplication 

because each adjacency between two BLACK blocks is explored 

twice, and neither of these adjacency explorations 

contributes to the value of the perimeter. Samet [32] 

suggested an alternative algorithm that performs adjacency 

exploration only for southern and eastern neighbors. That 

is, for each BLOCK node a search is made for adjacent WHITE 

southern and eastern neighbors, and for each BLACK southern 

and eastern neighbors. But the problem with such a method 

is that the northern and western boundaries of the image are 

never explored. The problem can be solve by embedding the 

image in a white region, as shown in Figure 12. 



image 

(Samet, H., "The quadtree and related hierarchical data 
structures." ACM Comput. Surveys, vol. 16, no. 2, 
Jun. 1984, pp. 190-235.) 

Figure 12. An Image totally surrounded ·by background 

Samet claimed that both formulations of the 

algorithm have expected execution times that are 

proportional to the total number of nodes in the quadtree. 

Centroid 
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The centroid of a binary image is a point (x,y) such 

that x is the average value of the x-coordinates of all the 

BLACK points of the image and y is the average of the y­

coordinates of the BLACK points. In other words, if there 

are m BLACK points in the image, (x1,y1), •••• , (X...,Ym), the 

centroid is 

(x, y) = (~xi/m, ~Yi/m) • 

The centroid procedure can be found in [36]. 
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Connected Component Labeling 

"Connected component labeling is one of the basic 

operations of an image-processing system" [32]. The process 

is analogous to finding the connected components of a graph. 

Consider the image of Figure 13 which has two components. 

A common method for performing this process [20], is the 

"breadth-first" approach: given a binary representation of 

an image, the image. is scanned row by row from left to right 

and the same label is assigned to adjacent BLACK pixels that 

are found to the right and in the downward direction. 

During this process, pairs of equivalences may be generated, 

thus two more steps are needed: one to merge the 

equivalences and the second to update the labels associated 

with the various pixels to reflect the merger of the 

equivalences. 

Samet [21] uses a quadtree to perform the same 

operation. The algorithm involves an analogous three-step 

process. Samet claimed [32] that the algorithm has an 

average execution of O(B log B), where Bis the number of 

black nodes in the quadtree that represent the image. 
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(Samet, H., "The quadtree and related hierarchical data 
structures." ACM comput. suryeys, vol. 16, no. 2, 
Jun. 1984, pp. 190-235.) 

Figure 13. (a) An Image 
(b) Block Decomposition of the image in (a) 
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Top-Down Quadtree Traversal 

Many standard image processing operations can be 

implemented using quadtrees as a simple tree traversal. 

Computation is performed at each terminal node involving 

some of that node's neighbors. Most of these operations 

involve the use of bottom-up neighbor-finding techniques 

which search for a nearest common ancestor. 
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Several top-down techniques have been proposed which 

make use of a neighbor vector as the tree is traversed. A 

simplified version of the top-down method for a quadtree can 

been found in a paper by Samet (33]. Samet claims that his 

algorithm differs in part from prior work in its ability to 

compute diagonally adjacent neighbors rather than just 

horizontally and vertically adjacent neighbors. The 

algorithm builds a neighbor vector for each node using a 

minimal amount of information. Analysis of the algorithm 

shows that its execution time is directly proportional to 

the number of nodes in the tree. However, it does require 

some extra storage. As stated by Samet, "Use of the 

algorithm leads to lower execution time bounds for some 

common quadtree image processing operations such as 

connected component labeling" (33]. 
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The Space Efficiency of Quadtrees 

The problem of space efficiency has been a crucial 

factor in the development of quadtrees. According to Samet: 

The prime motivation for the development of the 
quadtree has been the desire to reduce the amount of 
space necessary to store data through the use of 
aggregation of homogeneous blocks [32]. 

But the quadtree is not always the ideal 

representation. The worst case for a quadtree of a given 

depth in terms of storage requirements occurs when the 

region corresponds to a checkerboard pattern as shown in 

Figure 14. The number of nodes in the quadtree is obviously 

a function of the number of levels in the quadtree (i.e., 

the resolution). 

A tree implementation of a quadtree has overhead in 

terms of the number of internal nodes. Samet [32] claimed 

that for an image with B and W BLACK and WHITE blocks, 

respectively, (4 / 3) (B + W) nodes are required. A binary 

array representation of a 2n by 2n image requires only 22n 

bits~ however, this quantity grows quite quickly. 

Furthermore, if the amount of aggregation is minimal (e.g., 

a checkerboard image~ one leaf node for every pixel), then 

the quadtree is not very efficient. Pointerless 

representations, such as linear quadtree and the OF-

expression, are used to avoid the overhead of a large number 

of internal nodes. In fact, the OF-expression requires at 

most two bits per node. 



(Samet, H., "The quadtree and related hierarchical data 
structures." ACM Comput. Survevs, vol. 16, no. 2, 
Jun. 1984, pp. 190-235.) 

Figure 14. A checkerboard and its quadtree 
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The main disadvantage of quadtrees is that they are 

shift variant. That is, two identical regions differing 

only by a translation in an image may have quite different 

quadtrees. The following example is illustrated in a paper 

by Dyer [3]. A 2m by 2m square region may be represented by 

a single node or as many as 0(2m) nodes depending on its 

position in the image. Dyer investigated the best, average, 

and the worst case quadtree encoding efficiencies of a 2m by 

2m region in a 2" by 2" image. 

Dyer claims that the best case occurs when the region 

can be represented by a single BLACK node at level m, and 

that only O(n - m) nodes are required when the region is in 

any of 2n·m+1 positions. 

The worst case occurs when shifting the region to the 

right and down one pixel from the best case. Dyer [3] has 

shown that the average case required 0(2m+2 + n -m) quadtree 

nodes. 

I 
H'I 

(Dyer, c. R., "The space efficiency of quadtrees." 
Comput. Gr. Image Process., vol. 19, no. 4, Aug. 1982, 
pp. 335-348.) 

Figure 15. Best case position of a 2m by 2m region 
in a 2" by 2" binary image 



Pyramids 

Samet defines a pyramid as follows: "Given a 2" by 2" 

image array, say A(n), a pyramid is a sequence of arrays 

{A(i)} such that A(i-i) is a version of A(i) at half the 

resolution of A(i) is a single pixel" [32]. Pyramid can 

also be defined in a more general way by permitting finer 

scales of resolution than the power of two scale. 
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Giving a 2" by 2" image, a recursive decomposition into 

quadrants is performed, just as in quadtree construction. 

The only difference is that we keep subdividing until we 

reach the individual pixels. The leaf nodes of the 

resulting tree represent the pixels, whereas the nodes 

immediately above the leaf nodes correspond to the array 

A(n-1), which is of size 2""1 by 2"· 1 • The nonterminal nodes 

are assigned a value that is a function of the nodes below 

them such as the average GRAY level. 

The above definition of a pyramid is based on 

nonoverlapping 2 by 2 blocks of pixels. The difference 

between pyramids and quadtrees, is stated by Samet as 

follows: 

Pyramids and quadtrees, although related, are 
different entities. A pyramid is a 
multiresolution representation, whereas the 
quadtree is a variable resolution representation. 
Another analogy is that pyramid is a complete 
quadtree [32]. 



CHAPTER IV 

PROBLEM DESIGN 

Objectives 

Chapters II and III described the concepts of using 

quadtrees to represent an image and various operations 

performed on such a data structure. This chapter describes 

the program design and implementation and how some of the 

concepts discussed in Chapters II and III were implemented. 

Analysis and comparisons are also included. 

Since the quadtree can be used to represent an image, 

the idea is to build and store each consonant and vowel from 

the Hebrew language in a quadtree. Then, some of the 

operations described in chapter III (e.g., scaling) can be 

implemented on these quadtrees. 

Program Design and Implementation 

Terms 

Before presenting the program design and 

implementation, one needs to understand the following terms: 

• pixel 

• screen 

40 
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• object-oriented and bit-mapped images 

pixel. The term pixel is an acronym for picture 

element. Pixels, in fact, are the basic elements that make 

up a video display. The pixels are combined to make the 

text and graphic images on the computer monitor. Pixels can 

be displayed as black or white with a monochrome card, or in 

any color supported by a color card. 

screen. A screen is the configuration of pixels that 

make up displayed text or graphic images. Depending on the 

type of graphics card installed in the microcomputer system, 

the screen display will be made up of different horizontal­

by-vertical pixel dimensions. The Amdek system was 

configured with the Hercules (Hercules Technology, 2550 

Ninth st., Berkeley, CA 94710) graphics card. 

Note that by convention, the upper left corner of the 

graphics screen is (O,O). Thus, in Hercules mode, the 

screen look like this: 

(O,O) (719,0) 

(349,0) (719,349) 



Object-Oriented and Bit-Mapped Images. Graphics 

programs create two types of images: object-oriented 

(sometimes called vector graphics) and bit-mapped images. 
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An object-oriented graphic is built from lines and shapes; a 

bit-mapped image is composed of dots (i.e., pixels). 

Implementation Steps 

As mentioned before, the main goal is to build a 

quadtree for each consonant and vowel. To accomplish this, 

the following steps were taken: 

1. drawing the image (i.e., consonant or vowel) on 

the screen using any available graphics software 

2. building a complete quadtree 

3. scanning the image pixels in a predetermined order 

and "coloring" the corresponding quadtree's leaf 

nodes 

4. merging groups of four pixels or four blocks of a 

uniform color 

5. saving the resulting quadtree constructed in step 

four above 

A detailed description is given below for each step 

stated above. 
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Step 1. Drawing the image. Each consonant or vowel is 

drawn using some available graphics software. The 

consonants and vowels are subsequently imported into the 

program which scans and builds the corresponding quadtrees. 

Note that the language being used (i.e., Turbo Pascal) must 

be able to import the images drawn by the graphic software 

(as previously mentioned, graphic programs create two types 

of images: object-oriented and bit-mapped images). 

The image must be displayed in the upper left corner of 

the graphics screen at coordinates (1,1). This restriction 

is due to the fact the image is scanned starting at 

coordinate (1,1). This coordinate was selected only for 

ease of implementation. 

step 2. Building a complete quadtree. The binary array is 

probably the most common method to represent an image. 

There are many methods to construct a quadtree from a binary 

array (22). The simplest approach is one which converts the 

array to a complete quadtree. 

For example, consider the image in Figure la, repeated 

for ease of reference on the following page. The image size 

is 23 by 23 pixels (i.e., 64 pixels). The binary 

representation and the corresponding complete quadtree of 

the image are illustrated in Figure 16. 
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(Samet, H., "The quadtree and related hierarchical data 
structures." ACM Comput. Surveys, vol. 16, no. 2, 
Jun. 1984, pp. 190-235.) 

Figure 1. (a) A region (b) Binary array (c) Block 
decomposition of the region (d) Quadtree 
representation of the blocks in (c). 
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Figure 16. 
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(a) Binary representation of the image 
in Figure la 
(b) Complete quadtree of the image in (a) 
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Thus, a complete quadtree has a leaf node for every 

pixel. In general, for a 2" by 2" image, a complete 

quadtree is of height n with 22" leaf nodes. 
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Step 3. Scanning the image pixels. The image is scanned 

in the order defined by the labels in Figure 16a. This 

order corresponds to a postorder traversal of the quadtree 

in Figure 16b. That is, the nodes of the quadtree are 

visited recursively in the following order: NW, NE, SW, and 

SE. 

The image is displayed on the screen starting at 

coordinate (1,1) (as stated earlier, this coordinate was 

chosen for ease of implementation). Thus, label 1 of Figure 

16a corresponds to coordinate (1,1), label 2 corresponds to 

coordinate (1,2), label 3 corresponds to coordinate (2,1), 

and so on. 

In order to generate the above coordinates, a special 

function was developed (see Appendix A). The function 

stores the coordinates in an index file that was used by the 

program performing the scanning. One should note, that, in 

fact, there is no need to generate all the coordinates. It 

is enough to generate only the coordinates correspond to the 

NW leaf nodes. 

For example, if coordinate (1,1) is given (i.e., label 

1 in Figure 16a), it is easy to compute labels 2, 3, and 4 

as follows: 
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let coordinate (1,1) corresponds to (x, y) , then 

coordinate (1,2) (i.e., label 2) = (x,y+l) = (1,2) 

coordinate ( 2, 1) (i.e., label 3) = (x+l,y) = (2, 1) 

coordinate (2,2) (i.e., label 4) = (x+l,y+l) =(2,2) 

Therefore, for the region of Figure 16a, only the 

following coordinates need to be generated: 

1,1 1,3 1,5 1,7 

3,1 3,3 3,5 3,7 

5,1 5,3 5,5 5,7 

7,1 7,3 7,5 7,7 

Figure 17. Scanning coordinates 

Note that the scanning region must be of size 

2" by 2" (i.e., powers of two). Therefore, the image must 

be displayed within a predetermined region. 

The "coloring" (i.e., scanning) process is as follows: 

starting with the root node, the complete quadtree is 

recursively traversed in postorder. Whenever a leaf node is 

encountered, its corresponding pixel color is obtained by 



using the corresponding coordinate in the index file. The 

process is terminated when all leaf nodes are visited (see 

Appendix A for the scanning function). 

Step 4. Merging groups of four pixels of Uniform Color. 
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At this point, the "coloring" process of the complete 

quadtree is completed. Each leaf node of a complete 

quadtree corresponds to exactly one·pixel of the image. As 

mentioned in Chapter II, the quadtree is a collection of 

maximal blocks that partition a qiven region (note that the 

blocks may possibly overlap). The emphasis is on maximal 

blocks. Therefore, the purpose of step four, is to merge 

groups of four pixels or four blocks of a uniform color, 

until no further merging is possible. Therefore, the 

merging process may reduce the number of nodes in the 

quadtree significantly. 

For example, the following leaf nodes of the complete 

quadtree in Figure 16b would be merged: 

nodes 1, 2, 3, and 4 (all four nodes are WHITE) 

nodes 5, 6, 7, and 8 (all four nodes are WHITE) 

nodes 9, 10, 11, and 12 (all four nodes are WHITE) 

Upon completion of step four, the resulting quadtree is 

given in Figure ld on page 45. Observe, that the number of 

nodes in the quadtree of Figure ld is 25. This is a savings 

of over 40 percent over the total number of nodes (i.e., 64 

nodes) in the original complete quadtree. 



49 

Step 5. Saving the resulting quadtree. To save the 

quadtree constructed in step four, the OF-expression method 

described in Chapter II is implemented. When saved in a 

file, the quadtree can then be reconstructed from the DF­

expression (see Appendix A for detailed functions). 

Software Development 

The purpose for developing the software, was to 

familiarize a beginning student with the Hebrew consonants 

and vowels. The software contains about 2000 lines of code 

in Turbo Pascal, and 7 new functions related to quadtrees 

(see Appendix A). Four months of designing, coding, and 

debugging were spent. 

The software makes use of the quadtree theory by 

representing each consonant and vowel in a specific 

quadtree. For each consonant and vowel a corresponding 

quadtree was built and stored (as explained in the 

implementation section of this chapter). When executed, the 

program automatically reconstructs the original quadtree for 

each consonant and vowel from its corresponding file. Note 

that the storage for these quadtrees is dynamically 

allocated during program execution. At termination, these 

quadtrees no longer exist and the storage space used by 

these quadtrees is returned to the system's free storage 

space. Appendix B contains tables indicating the storage 

requirements for each file and for each quadtree. Also 

included are various screens generated by the software. 
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Analysis and Comparison 

Region representation is an important issue in image 

processing. As stated in Chapter III, the prime motivation 

for the development of the quadtree has been the desire to 

reduce the amount of space required to store images. It was 

also explained that the quadtree is not always the ideal 

representation. 

The approach in this thesis was to convert the image 

binary array to a complete quadtree (i.e., one node per 

pixel) then to reduce the quadtree size through repeated 

attempts at merging groups of four pixels or four blocks of 

a uniform color. The major disadvantage of this approach is 

the extreme waste of storage space, because many nodes may 

be created needlessly. In fact, the complete quadtree may 

not fit in the available memory, whereas the resulting 

quadtree may fit. In particular, for a 2" by 2" image, 22" 

BLACK and WHITE nodes (i.e., leaf nodes), and an additional 

(BLACK+ WHITE - 1)/3 GRAY nodes [32] (i.e., nonterminal 

nodes) are needed to construct the corresponding complete 

quadtree. This is clearly undesirable when compared with a 

maximum of 22" bits required by the binary array 

representation. 

The minimum storage requirements for a complete 

quadtree is analyzed as follows. Each node has at least 

five fields. Four pointer fields, one to each son-quadrant 

(i.e., NW, NE, SW, and SE), and one field for the node color 
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(i.e., BLACK, WHITE, or GRAY). That is, at least five bytes 

per node. 

Lets us assume that an image of size 28 by 28 is given. 

To construct a complete quadtree for this image, the 

following storage is needed: 

leaf nodes: 256 x 256 x 5 = 327,680 bytes 

internal nodes: 1/3 x 327,680 = 109,227 bytes (see last 

page) 

Thus, about 437 KB is required. Some microcomputer 

systems are not equipped to handle such amount of memory 

requirement. 

In addition to the extreme waste of storage, the 

merging process involves an extra overhead. Thus, the 

complete quadtree approach may be simple, but obviously it 

has some major disadvantages. Therefore, a better approach 

should be used. 

Consider the following approach. The elements of the 

binary array are visited in the order defined by Figure 16a. 

However, in order to avoid the needless creation of nodes in 

the case of the complete quadtree, a leaf node is created 

only if it is known to be maximal. Samet points out an 

analogous situation: "An equivalent statement is that the 

situation does not arise in which four leaves of the same 

color necessitate the changing of the color of their parent 

from GRAY to BLACK or WHITE as is appropriate" [32]. 
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For example, consider pixels 25, 26, 27, and 28 in 

Figure 16a. All these pixels are BLACK, therefore, only one 

node should be created for these four pixels. That is, node 

H in Figure ld on page 45. 

A similar approach is presented by Hanan Samet [28]. 

He developed an algorithm for converting rasters to 

quadtrees. That is, obtaining an in-core quadtree 

representation given the row-by~row description of a binary 

array. Thus, the pixels of the image of Figure la on page 

45 would be visited in the order defined by the labels on 

the array of Figure 18. Samet stated in one of his papers 

that "One of the algorithm's key features is that at any 

instant of time (i.e., after each pixel in a given row has 

been processed) a valid quadtree exists with all unprocessed 

pixels presumed to be WHITE" [28]. That is, as the quadtree 

is built, nodes are merged to yield maximal blocks. 

Samet has shown that the algorithm's execution time has 

time complexity proportional to the number of pixels in the 

image. The algorithm is also space efficient because 

merging is attempted whenever possible. That is, after 

processing each pixel in a row, the resulting quadtree 

contains a minimal number of nodes. 



1 2 3 4 5 6 7 8 

9 10 11 12 13 14 15 16 

17 18 19 20 21 22 23 24 

25 26 27 28 29 30 31 32 

33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 

57 58 59 60 61 62 63 64 

(Samet, H., "The quadtree and related hierarchical data 
structures." ACM Comput. Surveys, vol. 16, no. 2, 
Jun. 1984, pp. 190-235.) 

Figure 18. Raster labeling 

Consonant Representation 

The software developed, used the quadtree 
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representation for displaying the Hebrew consonants and 

vowels. The question which might arise is whether there are 

alternative methods to represent the alphabet other than the 

quadtree representation. For purposes of comparison, 

consider the bitmap method discussed below. 
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Bitmap Representation 

The bitmap is a complete digital representation of an 

image. Each pixel in the image corresponds to one or more 

bits in the bitmap. Monochrome bitmaps require only one bit 

per pixel whereas color bitmaps require additional bits to 

indicate the color of each pixel. 

Bitmaps have two major drawbacks. First, they are 

highly sensitive to problems involving device independence, 

of which the most obvious is color. Dis~laying color bitmap 

on a monochrome device is often unsatisfactory. Another 

problem is that although bitmaps can be stretched or 

compressed, this generally involves duplicating or dropping 

rows or columns of pixels and can lead to distortion in the 

scaled image. The second major drawback of bitmaps is that 

they require a large amount of storage space. For instance, 

a bitmap representation of an entire 640-by-350, eight-color 

EGA screen requires 84 KB. 

For a monochrome bitmap, the format of the bits is 

relatively simple and can be derived almost directly from 

the image to be created. For instance, consider the Hebrew 

consonant BET on the next page: 
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Figure 19. The Hebrew consonant BET 

The consonant BET above, can be represented as a series 

of b i ts (0 for BLACK and 1 for WHITE). Reading these bits 

from left to right one can then assign each group of 8 bits 

a hexadecimal byte. If the width of the bitmap is not a 

multiple of 8, the bytes are padded to the right with zeros 

to get an even number of bytes. Thus, the bitmap 

representation of the consonant BET is: 

1 1 1 1 1 1 0 0 = FC 
1 1 1 1 1 1 0 0 = FC 
0 0 0 0 1 1 0 0 = oc 
0 0 0 0 1 1 0 0 = oc 
0 0 0 0 1 1 0 0 = oc 
0 0 0 0 1 1 0 0 = oc 
1 1 1 1 1 1 1 1 = FF 
1 1 1 1 1 1 1 1 = FF 

Thus, 8 bytes are required to store the consonant BET 

in a file. 

Now, consider the quadtree in Figure 20 for the same 

consonant BET. It has 21 nodes, thus 21 bytes are required 

to store the quadtree using the OF-expression, and 

additional 105 bytes (21 x 5, assuming 5 bytes per node) 

need to be dynamically allocated to construct the quadtree. 
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Figure 20. Quadtree for the consonant BET in Figure 19 

From the example above it seems that the bitmap 

representation is better spacewise than the quadtree 

representation. But this is not always true. Given a 

different image size and shape, the quadtree representation 

might be better. For example, if the image in FigUre 19 was 

all black, a quadtree of only one node would represent the 

image, and only 5 bytes would be needed to store the 

quadtree. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

This thesis was logically divided into two parts. In 

the first part, functions that scan a given image and build 

its corresponding quadtree were developed. In part two, a 

software, whose purpose it is to familiarize a beginning 

student to the Hebrew consonants and vowels, was developed. 

The software makes use of the functions developed in the 

first part. 

Summary 

At the onset of the thesis, the complete quadtree 

approach was used. This approach is probably the simplest 

one, but it has two major drawbacks. The extreme waste of 

storage space (i.e., the needless creation of nodes), and 

the additional overhead that the merging process creates. 

As to operations performed on quadtrees, the fact that 

an image can be scaled only by powers of two and rotated by 

multiples of 90 degrees, may prevent some application 

programs from using the quadtree representation. As opposed 

to the complete quadtree approach, two other approaches were 
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given. Both methods avoid the needless creation of extra 

nodes. 

Conclusions 

58 

As to representing an image by a quadtree, it was 

mentioned in Chapter II that there are alternative methods 

to represent quadtrees. Each method has its strong and weak 

points regarding time complexity and space requirement. The 

ease of performing operations on quadtrees, such as 

rotation, may vary from one method to another. 

In Chapter IV, the bitmap representation was compared 

with the quadtree representation. The comparison example 

supports the conclusion that an analysis is required before 

choosing one method over the other. Thus, when searching 

for a particular method to represent an image, the following 

points should be taken into consideration: 

. the image size; 

storage space required to store the image; 

. operation performed on the image; 

. monochrome or color representation; 

. execution time. 

Suggested Future Work 

As explained in Chapter IV, the scanning process 

employed postorder traversal of the complete quadtree. For 

each leaf node, its corresponding pixel color was obtained. 
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To do so, a special index file was created, for mapping each 

leaf node to its corresponding pixel (i.e., coordinate). 

It would be an interesting topic to develope a function 

(i.e., formula) that will generate these coordinates. That 

is, a function to map each label in Figure 16a to its 

corresponding coordinate in Figure 17. Thus saving the 

storage required to store the index file. 

An alternative topic is to scan the image binary array 

by rows or by columns (or any other order) and then to 

develope an algorithm to traverse the complete quadtree in 

that order. 

In Chapter III, it was explained that the main 

disadvantage of the quadtree is that it is shift-variant. 

That is, shifting a given image may significally change the 

size of the corresponding quadtree. A potential research 

topic would be to develop an algorithm that will determine 

the best location of an image in a given region, so that the 

corresponding quadtree constructed would have minimum size. 
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APPENDIX A 

PROCEDURES AND FUNCTIONS 

Set Operations 

Intersection 

This procedure finds the logical AND of the two binary 

images represented by quadtrees. Input to the procedure is 

a pointer to the root of each quadtree [36]. 

quadtree procedure INTERSECTION(TRRE1,TREE2) 
/* returns the intersection of TREEl and TREE2 */ 

begin 

end; 

node TREE1,TREE2,INTERSECT; 
quadrant I; 
if BLACK(TREEl) or WHITE(TREE2) then 

return(COPY(TREE2)); 
else 

if BLACK(TREE2) or WHITE(TREEl) then 
return(COPY(TREEl)); 

INTERSECT:=CREATENODE(); /*create a root node*/ 
for I in {NW<NE<SW<SE} do 

begin 
SON(INTERSECT,I):=INTERSECTION(SON(TREEl,I); 

SON(TREE2,I)); 
FATHER(SON(INTERSECT,I):=INTERSECT; 

end; 
return(INTERSECT); 
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Union 

Union of two quadtrees. Input to the procedure is 

a pointer to the root of each quadtree [36]. 

quadtree procedure UNION{TRRE1,TREE2) 

/* returns the union of TREEl and TREE2 */ 
begin 

end; 

node TREE1,TREE2,UNI; 
quadrant I; · 
if BLACK{TREEl) or WHITE{TREE2) then 

return{COPY{TREE2)); 
else 

if BLACK{TREE2) or WHITE(TREEl) then 
return(COPY(TREEl)); -

UNI:=CREATENODE(); /*create a root node*/ 
for I in {NW<NE<SW<SE} do 

begin 
SON(UNI,I):=UNION(SON{TREE1,I),SON(TREE2,I)); 
FATHER(SON(UNI,I):=UNI; 

end; 
return(UNI); 

quadtree procedure COPY(TREE); 
/* creates a tree structure identical to TREE */ 

begin 

end; 

quadtree TREE, NEWTREE; 
quadrant I; 
NEWTREE:=CREATENODE(); 

/* create a node with NULL FATHER, SON,and 
TYPE nodes*/ 

TYPE(NEWTREE):=TYPE(TREE); 
for I in {NW,NE,SW,SE} do 

if SON(TRRE,I)=NULL then 
SON(NEWTREE,I):=NULL; 

else begin 
SON(NEWTREE,I):=COPY(SON{TREE,I)); 
FATHER{SON{NEWTREE,I)):=NEWTREE; 

end; 
return(NEWTREE); 
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Complement 

Complement of a given quadtree (i.e., changing BLACK 

nodes into WHITE, and WHITE nodes into BLACK). Input to the 

procedure is a pointer to the root of the quadtree [36]. 

procedure COMPLEMENT(QUADTREE); 
/* change a quadtree into its complement */ 

begin 

end; 

node QUADTREE; 
quadrant I; 
if GRAY(QUADTREE) then 

else 

for I in {NW,NE,SW,SE} do 
COMPLEMENT{QUADTREE,I); 

if BLACK(QUADTREE) then 
TYPE(QUADTREE):=WHITE; 

else /* WHITE node */ 
TYPE(QUADTREE):=BLACK; 
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Geometric Transformation 

Rotation 

The following procedure [8] rotates the image in the 

quadtree by 90 degrees in the clockwise direction. 

procedure ROTATE(var node: node_ptr); 
var 

old-NWest, old NEast: node_ptr; 
old SWest, old-SWest:·node_ptr; 

begin - -

end; 

Old NWest := nodeA.NWest; 
Old-NEest := nodeA.NEest; 
Old-SWest := nodeA.SWest; 
Old-SEest := nodeA.SEest; 

nodeA.NWest :=old SWest; 
nodeA.NEest := old:NWest; 
nodeA.SWest := old_SEest; 
nodeA.SEest := old_NEest; 

if (node A • NWest <> Nil) then 
if (nodeA.NEest <> Nil) then 
if (node A .swest. <> Nil) then 
if (nodeA.SEest <> Nil) then 

ROTATE 
ROTATE 
ROTATE 
ROTATE 

(nodA.NWest); 
(nodA.NEest); 
(nodA.SWest); 
(nodA.SEest); 

This procedure [36] finds the area of an image 

represented by a quadtree. 

integer procedure AREA(QUADTREE,N); 
begin 

node QUADTREE; 
integer BLACKAREA; 
level N; 
quadrant I; 
BLACKAREA: =O; . 
if GRAY(QUADTREE) then 

for I in {NW,NE,SW,SE} do 
BLACKAREA:=BLACKAREA+AREA(SON(QUADTREE,I),Nl); 

else if BLACK(QUADTREE) then 
BLACKAREA:=B;LACKAREA+2A(2*N); 

return(BLACKAREA); 
end; 



Procedures and Functions Developed 
During Software Development 

Constructing a Complete ouadtree 

This function constructs a 11 1 11 levels complete 

quadtree. The root is at level 111-1 11 and the leaf nodes at 

level zero. The function returns a pointer to the root. 

function build_quadtree(l:integer):node_ptr; 
var 

node:node_ptr; 

begin 

new(node); 
if l=O then 

(* if at leaf nodes level *) 

begin 
nodeA.color:=black; 
nodeA.nw:=nil; 
nodeA.ne:=nil; 
nodeA.sw:=nil; 
nodeA.se:=nil; 

end 

else 
(* internal node level *) 

begin 

end; 

nodeA.color:=gray; 
nodeA.nw:=build quadtree(l-1); 
nodeA.color:=gray; 
nodeA.ne:=build_quadtree(l-1); 
nodeA.color:=gray; 
nodeA.sw:=build_quadtree(l-1); 
nodeA.color:=gray; 
nodeA.se:=build_quadtree(l-1); 

build_quadtree:=node; 

end;(* build_quadtree*) 
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Postorder Traversal of a Ouadtree 

This procedure performs a postorder traversal of a 

given quadtree (i.e., NW,NE,SW,SE). In addition, the 

procedure prints the quadtree nodes as follows: "B", for 

BLACK node, "W" for WHITE node, and "G" for GRAY node 

(i.e., internal node) 

procedure post_order(node:node_ptr); 
(* node - root of the quadtree *) 

begin 

if nodeA.color=gray then 
(* internal node *) 

begin 
write ( 'G ' ) ; 
post_order(nodeA.nw); 
post_order(nodeA.ne); 
post_order(nodeA.sw); 
post_order(nodeA.se); 

end 

else 
(* leaf node *) 

begin 

end; 

if nodeA.color =black then 
write ( 'B ' ) ; 

if nodeA.color =white then 
write ( 'W ' ) ; 

end; (* post_order *) 
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Plot Quadtree 

This procedure displays the image represented by a 

given quadtree. Three parameters are passed to the 

procedure: 

• the root of the quadtree 

• the coordinate where the upper left corner of the 

image is to be displayed on the screen 

. the size of the image (size is in powers of two) 

procedure plot_quadtree(node:node_ptr; 
xl,yl,length:integer); 

var 

begin 

x2,y2,hlength:integer; 

hlength:=length div 2; 
x2:=xl+hlength; 
y2:=yl+hlength; 

if node"'.color=gray then 
(* internal node *) 

begin 
plot_quadtree(node"'.nw,xl,yl,hlength); 
plot_quadtree(node"'.ne,xl,y2,hlength); 
plot_quadtree(node"'.sw,x2,yl,hlength); 
plot_quadtree(node"'.se,x2,y2,hlength); 

end 

else 
(* leaf node *) 

if node"'.color=black then 
bar(xl,yl,xl+length,yl+length); 

end; (* plot_quadtree *) 
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Create an Index File 

This procedure generates the scanning coordinates 

explained in Chapter IV. Three parameters are passed to the 

procedure: 

• pointer to the root of a complete quadtree 

• number of levels in the complete quadtree 

• coordinate (x,y), were x=l and y=l 

procedure create_indexfile(node:node_ptr: 
var indexfile:text: 
l,x,y:integer): 

(* power(n) returns 2" *) 

begin 

if l=l then 
(* if the node is a leafnode parent *) 

writeln(indexfile,x,' •,y): 

if (nodeA.nw <>nil) and (1 >1) then 
create_indexfile(nodeA.nw,indexfile, 

1-1,x,y): 

if (nodeA.ne <>nil) and (l>l) then 
create indexfile(nodeA.ne,indexfile,1-1, 

- x,y+power(l-1)): 

if (nodeA.sw <>nil) and (l>l) then 
create indexfile(nodeA.sw,indexfile,1-1, 

- x+power(l-1),y): 

if (nodeA.se <>nil) and (l>l) then 
create_indexfile(nodeA.se,indexfile,1-1, 

x+power(l-l),y+power(l-1)): 

end:(* create indexfile *) 
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Scanning an Image and "Coloring" Its Ouadtree 

This procedure scans an imaged displayed on the screen 

and "colors" the leaf nodes of the given complete quadtree 

as explained in Chapter IV. Two parameters are passed to 

the procedure: 

• pointer to the complete quadtree root 

• index file name containing the scanning coordinates. 

procedure scan_image_on_screen(node:node_ptr; 
var indexf:text); 

var 
x,y:integer; 

begin 

end; 

if nodeA.nwA.nw <>nil then 
scan image on screen(nodeA.nw,indexf); 

if nodeA.neA.ne-<>-nil then 
scan_image_on_screen(nodeA.ne,indexf); 

if nodeA.swA.sw <>nil then 
scan_image_on_screen(nodeA.sw,indexf); 

if nodeA.seA.se <> nil then 
scan_image_on_screen(nodeA.se,indexf); 

if nodeA.nwA.nw =nil then 
begin 

readln(indexf,x,y); 
if getpixel(x,y)=O then 

nodeA.nwA.color:=white 
else 

nodeA.nwA.color:=black; 
if getpixel(x,y+l)=O then 

node A. ne A • color: =whi t.e 
else 

nodeA.neA.color:=black; 
if getpixel(x+l,y)=O then 

nodeA.swA.color:=white 
else 

nodeA.swA.color:=black; 
if getpixel(x+l,y+l)=Othen 

nodeA.seA.color:=white 
else 

nodeA.seA.color:=black; 

end;(* scan_image_on_screen *) 



Saving Ouadtree Using OF-expression Method 

This procedure saves a given quadtree in a text file 

using the OF-expression method described in Chapter II. 

Two parameters are passed to the procedure: 

• pointer to the quadtree root 

• file name 

procedure save_quadimage(node:node_ptr; 

begin 

var imagefile:text); 

if nodeA.color =gray then 
(* internal node *) 

begin 
writeln(imagefile,'('); 
save_quadimage(nodeA.nw,imagefile); 
save_quadimage(nodeA.ne,imagefile); 
save_quadimage(nodeA.sw,imagefile); 
save_quadimage(nodeA.se,imagefile); 

end 

else 
(* leaf node) 

if nodeA.color =black then 
writeln(imagefile,'B') 

else 
writeln(imagefile,'W'); 

end;(* save_quadimage *) 
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Reconstructing a Ouadtree from OF-expression Representation 

This function reconstructs a quadtree from an image 

that originally was represented by a quadtree and was saved 

in a file using the OF-expression method. The function 

returns a pointer to the quadtree root. 

function quadimage_from_quadfile(var imagefile: 
text):node_ptr; 

var 

begin 

node:node_ptr; 
ch:char; 

new(node); 
readln(imagefile,ch); 
if ch = ' ( ' then 

(* internal node *) 

begin 
nodeA.color:=gray; 
nodeA.nw:=quadimage_from_quadfile(imagefile); 
nodeA.ne:=quadimage_from_quadfile(imagefile); 
nodeA.sw:=quadimage_from_quadfile(imagefile); 
nodeA.se:=quadimage_from_quadfile(imagefile); 

end 

else 
(* leaf node *) 

begin 
if ch = 'B' then 

nodeA.color:=black 
else 

nodeA.color:=white; 
nodeA.nw:=nil; 
nodeA.ne:=nil; 
nodeA.sw:=nil; 
nodeA.se:=nil; 

end; 

quadimage_from_quadfile:=node; 

end;(* quadimage_from_quadfile *) 



APPENDIX B 

TABLES AND FIGURES 

In this appendix, two tables are given and various 

screens, generated by the software, are also included. 

For each consonant and vowel quadtree, the tables 

include the following data: 

. the number of leaf nodes in the quadtree 

• the total number of nodes in the quadtree 

Note that these quadtrees are the result of the merging 

process described in Chapter IV (see implementation steps 

section). The original complete quadtree had 1365 nodes! 

(for a region of size 25 x 25 , 1024 leaf nodes and 341 

interanl nodes). 

Note also, that actually, only three vowel quadtrees 

were constructed: the vowels KAMATZ, PATACH, and HIRIK. The 

remaining vowels were displayed using combinations of the 

three vowels as follows: 

• the vowel TZAREH is the combination of two HIRIKs 

• the vowel SEGOL is the combination of three HIRIKs 

• the vowel SHEVAH is the combination of two HIRIKs 
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• the vowel KUBUTZ is the combination of three HIRIKs 

• the vowel CHOI.AM is the combination of the consonant 

VAV and the vowel HIRIK 

• the vowel SHURUK is the combination of the consonant 

VAV and the vowel HIRIK 

The screens included are the consonants and vowels of 

the Hebrew language, with a few examples of Hebrew words. 



TABLE I 

NUMBER OF LEAF NODES AND NUMBER OF TOTAL NODES 
OF EACH CONSONANT QUADTREE 

Consonant Name 

ALEF 
BET 
GIMEL 
DA LET 
HAY 
VAV 
ZAIN 
HET 
TET 
YOO 
KAF 
FINAL KAF 
LAMED 
MEM 
FINAL MEM 
NUN 
FINAL NUN 
SAMEH 
AYIN 
PAY 
FINAL PAY 
TZADEE 
FINAL TZADEE 
KOOF 
RESH 
SHIN 
TAV 

Number of 
Leaf nodes 

196 
55 

115 
82 
82 
67 

136 
64 
88 
64 
73 
70 

115 
124 

82 
64 
67 

148 
142 

73 
67 

175 
190 
127 

64 
97 
82 

Number of 
Total nodes 

261 
73 

153 
109 
109 

89 
181 

85 
117 

85 
97 
93 

153 
165 
109 

85 
89 

197 
189 

97 
89 

233 
253 
169 

85 
129 
109 

78 



TABLE II 

NUMBER OF LEAF NODES AND NUMBER OF TOTAL NODES 
OF EACH VOWEL QUADTREE 

Vowel Name 
Number of 
Leaf nodes 

Number of 
Total nodes 

KAMATZ 
PATA CH 
HI RIK 

256 
256 
304 

341 
341 
405 

79 



80 

[!je!J8~~ 
HAY OALET GIHEL BET ALEF 

. -~· . f 
-- . . .. -- -- --· - . I · . 

~~~[!J:[j · 
Y'OD TET HET ZAYIN . UAV 

- ~; -.. · · : 

(g~[]]g 
FI NAL MEM 1 MEM LAMED FI NAL l<AF KAF 

PAY AYIN SAMEH FINAL NUH NUN 

-

o~~~,~ 
RESH KOOF FINAL lZAOEE TZAOEE FINAL PAY 

. -- - --- - - -- ------------- - ---- -

. . , i~~ : 
TAV SHIN 

-- ----------- ---------------- - ----- ---- ---

_ Figure 21. The Hebrew Consonants 



• 
HIRIK: EE 

• • 
SHEIJAH: silent 

SHURUK: 00 
- - -- ---- --

81 

.•. ., 
T 

PAlACH: A as in father KAttATZ: A as in fat 

•• • 
SEGOL: E as in wet 

CHOU~M: 0 as in no 

• • 
TZAREH: E as in wet 

• •• 
KUBUTZ: 00 

----------------· 

Figure 22. The Hebrew vowels 
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•• • 

A !ii 

•• • 

Figure 23. Examples of Hebrew words 
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Figure 24. 

• • • 

• • 

• • 

.,.--.. ; ~'ii-· ... * 

Examples of Hebrew words 
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T . 

• 

Figure 25. Examples of Hebrew .words 
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