
REPRESENTING IMAGES USING THE QUADTREE DATA

STRUCTURE (HEBREW CONSONANTS AND VOWELS)

By

ISRAEL SHUVAL
It

Bachelor of Science

Oklahoma City University

Oklahoma City, Oklahoma

1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1989

lff/o Si S
,q ~'1

S5&i ~ r
CAp '2.

Oklahoma State Univ. Lihrar

REPRESENTING IMAGES USING THE QUADTREE DATA

STRUCTURE (HEBREW CONSONANTS AND VOWELS)

Thesis approved:

Dean of the Graduate College

ii

PREFACE

This thesis is a discussion and application of the

quadtree data structure for storing images and in

particular, representing the Hebrew consonants and vowels.

The study includes a design and implementation using the

Amdek 286A microcomputer system (Amdek Corporation, 1901

Zanker Road, San Jose, CA 95112 USA).

I would like to express my sincere appreciation and

gratitude to my major advisor Dr. M. H. Samadzadeh, for his

guidance, motivation, encouragement, and invaluable

assistance. I am also thankful to Drs. G. E. Hedrick and

J. P. Chandler for serving on my graduate committee.

I am also grateful to Dr. D. D. Fisher for his constant

faith and guidance during my studies.

I am grateful to Mr. and Mrs. Locke for their moral

encouragement and direction.

Finally, my wife, Alexandria, my parents, Mr. and Mrs.

Shvili, deserve my deepest appreciations for their love,

understanding, and sacrifices throughout my studies.

iii

Chapter

I.

II.

III.

TABLE OF CONTENTS

INTRODUCTION • • • . • • .

Objectives • • . ••
Thesis Organization •

REGION DATA

page

1

4
4

5

Alternative Ways to Represent Quadtrees . 7
Bintree 8
Linear Quadtree • • • • • . • • • . 10

Encoding Black Pixels . . . 10
OF-Expression . • . • . • • 14
Forest Quadtrees . . • . • . . • 14
TID Structures •••.••••••• 17
Cain Code · • • . . • • • . . • . . • 18
Run Length Code . . • • • • 19
Treecode • . . • • . 20
Leafcode • • . . • • . • . • 21

Conversions • • • • • • • . • • . • • 23

OPERATIONS PERFORMED ON QUADTREES • • • 25

Set Operations . • • • • • • . • • • • • 25
Intersection • • . • • • . • • . 25
Union • • • • • • • . • 26
Complement • • • • • • • • • 26

Geometric Transformation • • • . 28
Rotation • • 28
Scaling . • • • . • • . • • • • 28
Windowing . • • • • 30

Computation • • • • • • • . • . • • • 30
Area • • • • • • • 30
Perimeter . . • • • • . . . • • • . 31
Centroid . . • • • • . • • • • 32

Connected Component Labeling • 33
Top-Down Quadtree Traversal • • • . . . • 35
The Space Efficiency of Quadtrees • • 36
Pyramid 39

iv

Chapter

IV.

v.

SELECTED

page

PROBLEM DESIGN . • 40

Objectives • • . . . 40
Program Design and Implementation • • 40

Terms • • • . • • • . . • • . . 40
Pixel • . . • . • • • • • . 41
Screen • • . • • 41
Object-Oriented and Bit-Mapped

Images 42 • . 42
Implementation Steps • 42

Drawing the Image • • • • 43
Building Complete Quadtree . . . • . 43
Scanning the Image Pixels . 46
Merging Groups of Four Pixels of

Uniform Color . . . • . • . . . 48
Saving the Resulting Quadtree . • . 49

Software Development 49
Analysis and Comparison . • • . 50
Consonant Representation . • . • . . 53

Bitmap Representation 54

SUMMARY AND CONCLUSIONS
Summary . • . • • .
Conclusions . . . • .
Suggested Future Work .

BIBLIOGRAPHY . • . • . . •

• 57
. 57

• • • • 58
• 58

. 60

APPENDIXES • • . . . 64

APPENDIX A - PROCEDURES AND FUNCTIONS . . • . • . . 65

APPENDIX B - TABLES AND FIGURES • • • 7 6

v

LIST OF TABLES

Table Page

I. Number of Leaf nodes and Number of Total Nodes
of Each Consonant Quadtree • • • • • . • • • . 78

II. Number of Leaf nodes and Number of Total Nodes
of Each Vowel Quadtree . . • • • • • 79

vi

LIST OF FIGURES

Figure

1.

2.

A Region, its Binary Array, its Maximal
Blocks, and the Corresponding Quadtree

A Region and its Corresponding Bintree • •

Page

3

9

3. A Region and its Corresponding Linear Quadtree • . 13

4. A sample Image and its Quadtree Illustrating
the Concept of a Forest . • • • . • . • • . 16

5. Example of TID ••

6. Block Decomposition of a Region

7. An Image and Its Run Length Encoding

8. Quadtree Image from Treecode

9. Leafcode Representation

10. Union and Intersection of Quadtrees

11.

12.

13.

14.

15.

16.

Rotation of Quadtree •

Perimeter Concept

Connected Components Illustration

A Checkboard and Its Quadtree

Space Efficiency of Quadtree .

Binary Representation and Corresponding
Complete Quadtree . . . • . • • •

17. Scanning Coordinates •

18. Raster Labeling

19. The Consonant BET

vii

17

19

20

21

23

27

29

32

34

37

38

45

47

53

55

Figure

20. Quadtree for the Hebrew Consonant BET

21. The Hebrew Consonants

22. The Hebrew Vowels

23. Examples of Hebrew Words

24.

25.

Examples of Hebrew Words •

Examples of Hebrew Words •

viii

.
.

Page

56

79

80

81

82

83

CHAPTER I

INTRODUCTION

The use of hierarchical data structures is becoming

increasingly important in the areas of computer graphics,

image processing, computational geometry, geographic

information systems, and robotics.

Hierarchical data structures are being used because of

their efficient representation, improved execution times and

ease of implementation. They are useful particularly for

performing set operations. According to Samet[32],

hierarchical data structures are currently used for point

data, regions, curves, surfaces, and volumes. One example of

a hierarchical data structure is a quadtree. Samet (32]

defined the term quadtree as follows:

The term quadtree is used to describe a class
of hierarchical data structures whose common
property is that they are based on the principle
of recursive decomposition of space. They can be
differentiated on the following bases:

1. the type of data that they are used to
represent;

2. the principle guiding the decomposition;
3. the resolution (variant or not).

1

The region quadtree is the most studied quadtree

approach for region representation. It is based on the

successive subdivision of the image array into four equal­

size quadrants.

The following illustrative example is from [32].

Consider the region shown in Figure la. The region is

represented by the 23 by 23 binary array in Figure lb. The

l's correspond to pixels that are in the region and the O's

correspond to the pixels that are outside the region.

If the region does not cover the entire array, it is

subdivided into quadrants, subquadrants, etc. until blocks

(possibly single pixels) that consist entirely of O's are

obtained; that is, each block is entirely contained in the

region or entirely disjoint from it.

2

The resulting blocks for the array of Figure lb are

shown in Figure le. The process described above is

represented by a tree of degree 4 (i.e., each nonleaf node

has four sons). The root node corresponds to the entire

array. Each son of a node represents a quadrant (labeled in

order NW, NE, SW, SE) of the region represented by that

node. The leaf nodes of the tree correspond to those blocks

for which no further subdivision is necessary (i.e., blocks

consisting entirely of l's or entirely of O's).

A leaf node is considered a BLACK node if its

corresponding block is entirely inside of the represented

region, WHITE otherwise. All nonleaf nodes are said to be

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 I I I I

0 0 0 0 I I ' I

0 0 0 I ' I I I

0 0 I I l I I I

0 0 I I I j 0 0

0 0 I I I 0 0 0

(Q.) U,)

F ' a
H :I

:I
37 98

N 0 3, JfO

L "1
S'I .S'S

Q ,, ,0
(CJ

(Samet, H., "The quadtree and related hierarchical data
structures." ACM Comput. Survevs, vol. 16, no. 2, Jun.
1984, pp. 190-235.)

Figure 1. (a) A region (b) Binary array (c) Block
decomposition of the region (d) Quadtree
representation of the blocks in (c).

3

GRAY. The quadtree representation for Figure le is

shown in Figure ld.

Objectives

4

The goal of this thesis is to use the quadtree data

structure to represent the Hebrew consonants and vowels. In

addition, a software will be developed to familiarize the

beginning student of the Hebrew language. The programs were

written in Turbo Pascal and were implemented on the Amdek

286A microcomputer system (Amdek Corporation, 1901 Zanker

Road, San Jose, CA 95112 USA).

Thesis Organization

Chapter II presents the concept of region quadtree and

alternative ways to represent quadtrees. Operations

performed on quadtree are presented in Chapter III. Chapter

IV illustrates the design and the implementation of thesis's

goals described above. A summary and conclusions are

included in Chapter V.

CHAPTER II

REGION DATA

A region can be represented in two major approaches:

1. those that specify the boundaries of a region

2. those that organize the interior of a region

The region quadtree, commonly referred to as a

quadtree, is a hierarchical data structure that is

characterized as being a collection of maximal blocks that

partition a given region, for example, the run length code

representation, where the blocks size is restricted to 1 by

m rectangles. Another general representation treats the

region as a union of maximal square blocks (or blocks of any

other shapes) that may possibly overlap. In this

representation, the blocks are usually specified by their

centers and radii. This type of representation is called

medial axis transformation (MAT) [32]. Samet [32] gives the

following definition for a quadtree:

The region quadtree is a variant on the
maximal block representation. It requires
that the blocks be disjoint and have standard
sizes (i.e., sides of lengths that are powers
of two) and standard locations. The motivation
for its development was a desire to obtain a
systematic way to represent homogeneous parts of

5

an image. Thus, in order to transform the data
into a region quadtree, a criterion must be
chosen for deciding that an image is homogeneous
(i.e., uniform). One such criterion is that the
standard deviation of its GRAY level is below a
given threshold t. By using this criterion the
image array is successively subdivided into
quadrants, subquadrants, etc. until homogeneous
blocks are obtained. This process leads to a
regular decomposition[32].

The blocks of the quadtree do not necessarily

correspond to maximal homogeneous regions in the image.

Most likely there exist unions of the blocks that are still

homogeneous. To obtain a partition of the image into

maximal homogeneous regions, merging of adjacent blocks (or

unions of blocks) should be performed as long as the

resulting region remains homogeneous.

6

Another method is to use a decomposition method that is

not regular (i.e., rectangles of arbitrary size rather than

squares). This alternative method may require less space,

but it requires a search to determine the optimal partition

points. The homogeneity criterion on which the subdivision

process is done depends on the type of the region data.

From now on, the region quadtree (termed a quadtree in

the rest of this paper) is assumed to have a domain of 2" by

2" binary images with 1 or BLACK corresponding to foreground

and o or WHITE corresponding to background.

7

Alternative Ways to Represent Quadtrees

As is shown in Chapter I the most natural way to

represent a quadtree is to use a tree structure. In this

case each node is represented as a record with four pointers

to the records corresponding to its sons. If the node is a

leaf node, it will have four pointers to the empty record.

Sometimes, in order to facilitate certain operations (e.g.,

merge) that require a reference of a node to its father, an

additional pointer is included from a node to its father.

This greatly eases the implementation of algorithms that

perform basic image processing operations.

The problem with the tree representation of a quadtree

is that it has a considerable amount of overhead associated

with it. For example, a (B + W - 1)/3 additional nodes are

necessary for the internal, i.e., GRAY, nodes (B ,W for the

number of BLACK and WHITE, respectively). Moreover, each

node requires additional space for the pointers to its sons.

This is a problem when dealing with large images that cannot

fit into core memory.

In order to solve the memory problem described above,

there has been a considerable amount of interest in

pointerless quadtree representations. These representations

can be grouped into two categories [32]:

1. the image is treated as a collection of leaf node;

2. the image is represented in the form of a

traversal of the nodes of its quadtree.

8

Bin tree

The bintree structure reduces the number of pointers in

each node. The space is always subdivided into two equal­

sized parts alternating between the x and the y axes. Thus

each node requires space only for pointers to its two sons

instead of four sons (in the case of a qUadtree). In

addition, its use generally leads to fewer leaf nodes.

Figure 2 is an example of a region· and its corresponding

bintree.

v w
E

T v

37 y Q s
3 '1

H
58

N z - R
60

(Samet, H., "The quadtree and related hierarchical data
structures." ACM Comput. Surveys, vol. 16, no. 2,
Jun. 1984, pp. 190-235.)

Figure 2. (a) Block decomposition
(b) Bintree representation of the blocks in (a)

9

10

Linear Quadtree

In his paper [7], Garantini introduced a new structure,

called "linear quadtree", with the following

characteristics:

1. only BLACK nodes are stored;

2. the encoding used for each node incorporates

adjacency properties in the four principal

directions, namely NW, NE, SE, and SW;

3. the node.representation implicitly encodes the

path from the root to the node.

The main advantages of linear quadtrees, with· respect

to quadtrees, are:

1. space and time complexity depend only on the

number of BLACK nodes (Garantini claimed a saving

of 66 percent);

2. pointers are eliminated.

Encoding Black Pixels.

following conventions [7]:

Garantini adopted the

1. the NW quadrant is encoded with o, the NE with 1,

The SW with 2, and the SE with 3. Each BLACK

pixel is then encoded in a weighted quaternary

code, i.e., with digits o, 1, 2, 3 in base 4,

where each successive digit represents the

quadrant subdivision from which it originates.

Thus, the digit of weight 4n-h, 1 < h < n,

11

identifies the quadrant to which the pixel belongs

at the hth subdivision (Figure 3).

2. The pair of integers (I,J), with I,J=0,1, ••••. ,2~ 1

identifies the position of a pixel in the 2"x2"

array. The encoding procedure consists of mapping

the pair (I,J) into an integer K in base 4, which

expresses the successive quadrants to which the

(I,J) pixel belongs. For example, if n=3 and

(I,J)=(6,5), K will be 321. This means that the

pixel (6,5) belongs to the SE quadrant in the

first subdivision, to the SW quadrant in the

second, and to the NE in the third (final)

subdivision (see Figure 3)

To find K, we first write I and J as

I = C 2"-1 + C 2"-2 + ••••••• +C0 n-1 n-2

J = D 2n-1 + D 2n-2
n-1 n-2 + •• ••••• +Do

where Ci' D; is either o or 1. Thus C; and D; indicate which

quadrant (I,J) belongs to at each level of subdivision.

once the first (largest) quadrant is identified, we

partition it into four quadrants and repeat the procedure

for (n-2) and so on, until the last quadrant consists of

only four elements.

In the previous example

I = 1 x 22 + 1 x 21 + O x 2°

J = 1 x 22 + 0 x 21 + 1 x 2°

and thus, k=321.

12

After encoding all the BLACK pixels into their

corresponding quadrant codes, we sort them and store them

into an array. Then condensation is applied as follow: if

four pixels have the same representation except for the last

digit, we eliminate them from the list and replace them with

a code of (n-1) quaternary digits followed by some kind of

marker, here denoted by x.

For instance, if pixels 310, 311, 312, and 313 are all

in the array, they are replaced by 31X. Similarly, if 30X,

31X, 32X, 33X are present, we replace them by 3XX and so

forth. After condensation is complete, we obtain an array

(containing only BLACK pixels or a covering thereof) which

is still sorted if we suitably encode marker X with an

integer greater than 3. This sorted array is referred to as

the linear quadtree. The region shown in Figure 3b, for

example, is encoded by the sequence, 003 021 023 03X 122 21X

3XX. Note that the linear quadtree corresponds to the

postorder traversal of BLACK nodes of a quadtree, i.e.,

Figure 3b.

13

003

0 :l.I 0?,0 0~1

0~3 O)'l 03~ &~'l

~10 •U 300 301 a10 3\l

~·~ ~·3 3oa 30) a1~ 313
,

32.0 ~t 330 33l

322 3.1.3 33:2 :J~3

(0.)

(Garantini, I., "An effective way to represent quadtrees."
Commun. ACM, vol. 25, no. 12, Nov. 12, Dec. 1982,
PP· 905- 910.)

Figure 3. (a) Quadrants Labeling and Generating
Quaternary Codes
(b) Quadtree for region in (a)

14

OF-expression

Kawaguchi [13] introduced another pointerless

representation of a quadtree. This representation is in the

form of a preorder traversal (i.e., depth first) of the

nodes of the quadtree. The result is a string consisting of

the symbols "(", "B", and "W" corresponding to GRAY, BLACK,

and WHITE nodes, respectively. For· example, the image of

Figure 4. has

((W W W (W W B B (B B B W (W (.B B W W W W W

as its OF-expression (assuming that sons are traversed in

the order NW, NE~ SW, SE). The original image can be

reconstructed from the OF-expression by observing that the

degree of each nonterminal (i.e., GRAY) node is always 4.

Kawaguchi [14] shows how a number of basic image

processing operations can be performed on an image

represented by a OF-expression. In particular, he

demonstrates centroid computation, rotation, scaling,

shifting, and set operations.

Forest Ouadtree

The concept of a forest quadtrees (introduced by Roman

[18]) is a decomposition of a quadtree into a collection of

subquadtrees. Each subquadtree corresponds to a maximal

square. The maximal squares are identified by refining the

concept of a nonterminal node that indicate some information

15

about its subtrees. Samet defines a forest quadtree as

follows: "An internal node is said to be of type GB if at

least two of its sons are BLACK or of type GB. Otherwise,

the node is said to be of type GW" [32].

For example, in Figure 4, nodes c, E, and F are of type

GB and nodes, A, B, and D are of type GW. Thus the forest

corresponding to Figure 4. is {C,E,F}.

Samet further defined the quadtree concept as follows:

Each BLACK node or an internal node with
a label of GB is said to be a maximal square.
A forest is the set of maximal squares that
are not contained in other maximal squares
and hat span the BLACK area of the image. The
elements of the forest are identified by base
4 locational codes. Such a representation can
lead to a saving of space since large WHITE
items are ignored by it [32].

I l 8 9

ll 5'
3 lO ll

' 7

13 '"' Jl
!S '" I ~

l7 18 -.

'f s ' 'J 19

(Samet, H., "The quadtree and related hierarchical data
structures." ACM Comput. Surveys, vol. 16, no. 2, Jun.
1984, pp. 190-235.)

16

Figure 4.

1-
A sample image and its quadtree illustrating the
concept of a Forest

17

TID Structures

Scott and Iyengar [35) propose a translation invariant

data structure (TID) . This structure is not effected by

translating or rotating an image. The idea is to examine an

image and determine the maximal black squares. That is,

finding the largest possible squares completely covering an

image.

For example, if an image consisted of a 5 x 10 pixel

rectangle, two 5 x 5 BLACK squares would completely cover

the area; if the rectangle were 5 x 11, however, it would

require 3 squares to cover the area (overlapping squares are

permitted).

The TID is a list of triples (i, j, s) where (i, j) is

the coordinate of the upper left-hand corner of the square

and s is the length of the side of the square. The image in

Figure 5 is completely defined with six triples:

(0,1,3)
(0,4,2)
(1,0,1)
(1,1,3)
(3,3,2)
(5,3,1)

'1-.(Glass, · D. J., "Data structures for storing images: region
quadtrees." Dep. Comput. Sci., Oklahoma State University,
Stillwater, Tach. Rep., osu-cis-tr-87-10, De c 1987.)

Figure 5. Example of a TID

8

To shift the image in Figure 5 by (x, y) pixels only

requires the following assignment:

for k := 1 to number_of_triples

(i, j, S)k := (i + X, j + y, Sh

Chain Code

18

The chain code representation (also known as a boundary

or border code) is very commonly used in cartographic

applications. As Samet points out in one of his papers,

"Chain codes provide a very compact region representation,

and make it easy to detect features of the region boundary,

such as sharp turns ("corners") or concavities" (5]. On the

other hand, it is difficult to perform operations such as

union and intersection on a region represented by chain

codes.

The chain code can be specified, relative to a given

starting point, as a sequence of units vectors (i.e., one

pixel wide) in the principal directions. The directions

can be represented by numbers.

The following illustrative example is from [5]. Let i,

an integer ranging from O to 3, represent a unit vector

having a direction of 90 x i degrees • Thus, the direction

sequence for the boundary of the region in Figure 6, moving

clockwise starting from the left of the uppermost border

point (5], is

o 3 o2 35 23 1 2 33 o 3 2 5 16 o 1 o 1 o 3 o 1 o 1

r
I I
I l
~

I

I

(Samet, H., "Region representation:boundary codes from
quadtrees." Commun. ACM, vol. 23, no. 3, Mar. 1980, pp.
171-179.)

Figure 6. Block Decomposition of a Region
9

Generalized chain codes, involving more than four

directions, can also be used. A general introduction to

chain codes can be found in [5].

Run Length code

The run length code is an example which makes use of

one-dimensional coherence (as opposed to the quadtree

encoded image which uses two-dimensional coherence).

A run length encoded image is described in scanline

order as a sequence of pairs of values (x,y) where x

represents the number of consecutive pixels of value y in

each run. According to Wieseman and Oliver "run length

19

encoding gives reasonably good compression in many cases (a

20

factor of ten may be typical) but the image is not easily

manipulated in its coded form" [40]. Therefore, it is

particularly useful for image storage and transmission but

not much else.

For example, consider the image in Figure 7. The run

length encoding is as follows:

3W,5B
2W,4B,2W
1W,3B,4W
SB
1B,6W,1B
24W 1

~t

Figure 7. An Image and its Run Length Encoding
n r
'

Treecode

Oliver and Wiseman [40] described a linear code which

specifies a quadtree in depth first order. This linear code

has found use in several different projects.

Each node, whether non-terminal or leaf, has a value

given in 4 bits. One additional bit indicates which sort of

node it is. These 5 bit are stored in byte field in memory.

A sequence of bytes is read as follows:

1. think of a square area;

2. get next byte;

3. if leaf, color the square with value in 4 bit field;

4. if non-terminal, subdivide the square and return to

step 2 four times for the bottom left, top left,

bottom right, and top right squares.

21

Thus the code·20, 4, 18, 2, o, 5, 1, 7,3 is understood

to represent the quadtree of Figure 8. The non-terminals

are 20 and 18 in this case, representing the average value

of the whole image (16 + 4) and the top left quadrant (16 +

2), respectively.

20

0 1
3

2 5

4 7

(Wiseman, N. E., and Oliver, M. A., "Operations on quadtree
encoded images." The Comput. J., vol. 26, no. 1, May 1983,
pp. 83-93.)

Figure)f. Quadtree Image from Treecode 20 4 18 2 O 5 1 7 3

II
Leaf code

Wiseman and Oliver described the leafcode method as

follows: "the basic idea in leafcodes is to treat the square

image areas represented by the leaves in quadrant as

entities separate from the structure of the treecode while

retaining the relation to quadtrees by requiring that only

square areas corresponding to possible quadtree leaves be

22

permitted; in general, arbitrary square areas must be broken

into the leaves that cover them" [40].

The size and the position of a particular leaf is

determined by the recursive structure of the treecode. In

leaf codes this information is carried directly in the code

for each leaf together with its color. The size of the leaf

can be given by the number of pixels along the edge of the

square (which will be a power of two) or implicitly by the

recursive depth in_ the quadtree. the position of the leaf

is determined by the (x, y) co-ordinates of the pixel in the

lower left hand corner of the leaf which will be called the

origin of the leaf. Thus, a 512 x 512 picture has a number

space as shown in Figure 9a.

the

The following algorithm determines the specification of

position of a pixel [40]:

1.

2.

3.

divide the image into quadrants;

choose the quadrant containing the pixel and repeat

steps 1, 2 until no further subdivision is possible;

write the sequence of quadrant numbers out in base

four using o, 1, 2, 3 to identify the bottom left,

top left, bottom right and top right quadrants,

respectively.

When the leaves of a treecode are represented in this

way, the leaf co-ordinates are seen to be in strictly

increasing order. In the example shown in Figure 9b the

shaded square has leaf co-ordinates 031 (001101 in binary).

23

Oliver and Wiseman have found that the space

requirement for leafcode can compare favorably with that for

the corresponding treecode. For line images on a uniform

background the space requirement is then only about 15%

greater than for the corresponding treecode.

o,o (a)

(Wiseman, N. E.,
encoded images."
pp. 83-93.)

(b)

and Oliver, M. A., "Operations on quadtree
The comput. J., vol. 26, no. 1, May 1983,

Figure;/.

t:l.
(a) Number space for 512 x 512 picture
(b) Leaf with Leafcode 001101 is shaded

Conversions

The quadtree is proposed as a representation for binary

images because its hierarchical nature facilitates the

performance of a large number of operations. however, most

images are traditionally represented by use of methods such

as binary arrays, rasters (i.e., run lengths), and chain

codes (i.e., boundaries), some of which are chosen for

hardware reasons (e.g., run lengths are particularly useful

for rasterlike devices such as television). Techniques are

therefore needed that can efficiently switch between these

various representations.

24

Some of these techniques are described in the following

papers:

treecode into leafcode [40];

quadtrees from binary arrays [9];

boundary codes from quadtrees [10];

quadtrees from boundary codes [11];

quadtrees to rasters [28].

CHAPTER III

OPERATIONS PERFORMED ON QUADTREES

Set Operations

The quadtree is especially useful for performing set

operations such as the union (i.e., overlay) and

intersection of several images. The ability to perform set

operations quickly is one of the primary reasons for the

popularity of quadtrees over alternative methods.

Intersection

The intersection operation involves traversing two

given quadtrees as follows: when one tree has a son that is

a BLACK leaf, while the other has a corresponding son that

is not BLACK, the BLACK leaf is replaced by the

corresponding subtree. If one tree has a leaf that is

WHITE, the intersection tree will have a corresponding WHITE

leaf. Finally, if both trees have GRAY nodes in

corresponding positions, the nodes' sons are examined

recursively, using the same process. Figure lOd illustrates

the intersection of Figures lOa and lOb. (See Appendix A for

detailed procedure).

25

26

Union

The union operation is very similar to the intersection

operation. The two given quadtrees are traversed in

parallel as follows: when a BLACK leaf is encountered, this

becomes the subtree at the current position in the union

tree. A WHITE leaf in one tree results in the corresponding

subtree of the other tree becoming the subtree at the

current position of the union tree-. When there are two GRAY

nodes, the procedure is called recursively for the subtrees

rooted at these nodes.

Figure lOc illustrates the union of figures lOa and lOb

(see Appendix A for detailed procedure).

Complement

The complement operation is a very simple operation in

a quadtree, and does not change the structure of the tree at

all. It involves changing BLACK nodes (or pixels) into

WHITE, and WHITE nodes (or pixels) to BLACK.

A for detailed procedure).

(see Appendix

1 2 11 12 15 16
5

3 4 13 14 17 18

7 8
6 19 20

9 10

,., I q to 11 1'1. I) "I~ IS" I' l'l Ii

(a) (b)

29 30
21 22 28

31 32

24 25
23 33 34

26 27

2A :Jo il 'It.

(c) (d)

(Samet, H., "The quadtree and related hierarchical data
structures." ACM Comput. Surveys, vol. 16, no. 2,
Jun. 1984, pp. 190-235.)

Fiqure lOa. Image and its Figure lOb. Image and its
Quadtree Quad tree

Fiqure lOc. Union of the Figure lOd. Intersection of
images in Figures the images in
lOa and lOb Figures lOa and

lOb

27

Geometric Transformations

As Samet points out in one of his papers, "One of the

primary motivations for the development of the quadtree

concept is a desire to provide an efficient data structure

for computer graphics" [32]. Therefore, one needs to

develop a system that has the capability of performing a

number of basic transformations.

Rotation

Rotation by multiples of 90 degrees is quite simple.

28

The operation involves a recursive rotation of sons at each

level of the quadtree. Figure lla and Figure llb illustrate

the rotation operation. Figure llb is the result of rotating

Figure lla by 90 degrees counterclockwise. Notice how the

NW, NE, SW, SE sons have become SW, NW, SE, and NE sons,

respectively, at each level in the quadtree (see Appendix A

for detailed procedure).

Scaling

Scaling by a power of two is also a simple operation

when using quadtrees. When traversing the quadtree from the

root down to its leaves, the resolution is increased by

power of two at each level down. Therefore, we can control

the size of the image by simply determining the size at the

root level (remember that the size is a power of two).

A

1 ·2

4 5

3 7 8
6

9 10

(a)

., • er lo

A

8 10
5

7 9
2

4 6

1 3

(b) • (0

(Samet, H., "The quadtree and related hierarchical data
structures." ACM Comput. Surveys, vol. 16, no. 2,
Jun. 1984, pp. 190-235.)

Figure ll. Rotating (a) by 90 degrees
counterclockwise yields (b)

29

30

Windowing

Windowing is another operation that is useful in

graphics applications. The process involves extracting a

rectangular window from an image represented by a quadtree

and building a quadtree for the window. Rosenfeld et al.

[19 as cited in 22] introduced an algorithm that extracts a

square window of size 2k by 2k at an arbitrary position in a

2n by 2n image. Samet gives the following explanation:

In essence, the new quadtree is constructed
as the input quadtree is decomposed and
relevant blocks are copied into the quadtree.
The execution time of this process depends
both on the relative position of the center
of the window with respect to the center of
the input quadtree, and the sizes of the
blocks in the input quadtree that overlap the
window. For rectangular windows, windowing
is simple to implement if the squarcode
representation of Wiseman and Oliver
is used [32].

Computation

In order to find the area of an image represented by a

quadtree, it is necessary to traverse the quadtree in

postorder and accumulate the sizes of the BLACK blocks.

Samet calculates the area as follows: "Assume that the

root of a 2nby 2n image is at level n and the number of

pixels in such an image is 22n for a BLACK block at level k,

the contribution to the area is 22k" [32]. (See Appendix A

for detailed procedure).

Perimeter

Computing the perimeter of an image represented by a

quadtree can be carried out as follows: A postorder tree

traversal is performed, and for each BLACK node that is

encountered its four adjacent sides are explored in the

search for adjacent WHITE nodes. Then, for each adjacent

WHITE node that is found the length of the corresponding

shared side is included in the perimeter.

31

The algorithm involves a certain amount of duplication

because each adjacency between two BLACK blocks is explored

twice, and neither of these adjacency explorations

contributes to the value of the perimeter. Samet [32]

suggested an alternative algorithm that performs adjacency

exploration only for southern and eastern neighbors. That

is, for each BLOCK node a search is made for adjacent WHITE

southern and eastern neighbors, and for each BLACK southern

and eastern neighbors. But the problem with such a method

is that the northern and western boundaries of the image are

never explored. The problem can be solve by embedding the

image in a white region, as shown in Figure 12.

image

(Samet, H., "The quadtree and related hierarchical data
structures." ACM Comput. Surveys, vol. 16, no. 2,
Jun. 1984, pp. 190-235.)

Figure 12. An Image totally surrounded ·by background

Samet claimed that both formulations of the

algorithm have expected execution times that are

proportional to the total number of nodes in the quadtree.

Centroid

32

The centroid of a binary image is a point (x,y) such

that x is the average value of the x-coordinates of all the

BLACK points of the image and y is the average of the y­

coordinates of the BLACK points. In other words, if there

are m BLACK points in the image, (x1,y1), •••• , (X...,Ym), the

centroid is

(x, y) = (~xi/m, ~Yi/m) •

The centroid procedure can be found in [36].

33

Connected Component Labeling

"Connected component labeling is one of the basic

operations of an image-processing system" [32]. The process

is analogous to finding the connected components of a graph.

Consider the image of Figure 13 which has two components.

A common method for performing this process [20], is the

"breadth-first" approach: given a binary representation of

an image, the image. is scanned row by row from left to right

and the same label is assigned to adjacent BLACK pixels that

are found to the right and in the downward direction.

During this process, pairs of equivalences may be generated,

thus two more steps are needed: one to merge the

equivalences and the second to update the labels associated

with the various pixels to reflect the merger of the

equivalences.

Samet [21] uses a quadtree to perform the same

operation. The algorithm involves an analogous three-step

process. Samet claimed [32] that the algorithm has an

average execution of O(B log B), where Bis the number of

black nodes in the quadtree that represent the image.

-

(0.)

q

(b)

(Samet, H., "The quadtree and related hierarchical data
structures." ACM comput. suryeys, vol. 16, no. 2,
Jun. 1984, pp. 190-235.)

Figure 13. (a) An Image
(b) Block Decomposition of the image in (a)

34

Top-Down Quadtree Traversal

Many standard image processing operations can be

implemented using quadtrees as a simple tree traversal.

Computation is performed at each terminal node involving

some of that node's neighbors. Most of these operations

involve the use of bottom-up neighbor-finding techniques

which search for a nearest common ancestor.

35

Several top-down techniques have been proposed which

make use of a neighbor vector as the tree is traversed. A

simplified version of the top-down method for a quadtree can

been found in a paper by Samet (33]. Samet claims that his

algorithm differs in part from prior work in its ability to

compute diagonally adjacent neighbors rather than just

horizontally and vertically adjacent neighbors. The

algorithm builds a neighbor vector for each node using a

minimal amount of information. Analysis of the algorithm

shows that its execution time is directly proportional to

the number of nodes in the tree. However, it does require

some extra storage. As stated by Samet, "Use of the

algorithm leads to lower execution time bounds for some

common quadtree image processing operations such as

connected component labeling" (33].

36

The Space Efficiency of Quadtrees

The problem of space efficiency has been a crucial

factor in the development of quadtrees. According to Samet:

The prime motivation for the development of the
quadtree has been the desire to reduce the amount of
space necessary to store data through the use of
aggregation of homogeneous blocks [32].

But the quadtree is not always the ideal

representation. The worst case for a quadtree of a given

depth in terms of storage requirements occurs when the

region corresponds to a checkerboard pattern as shown in

Figure 14. The number of nodes in the quadtree is obviously

a function of the number of levels in the quadtree (i.e.,

the resolution).

A tree implementation of a quadtree has overhead in

terms of the number of internal nodes. Samet [32] claimed

that for an image with B and W BLACK and WHITE blocks,

respectively, (4 / 3) (B + W) nodes are required. A binary

array representation of a 2n by 2n image requires only 22n

bits~ however, this quantity grows quite quickly.

Furthermore, if the amount of aggregation is minimal (e.g.,

a checkerboard image~ one leaf node for every pixel), then

the quadtree is not very efficient. Pointerless

representations, such as linear quadtree and the OF-

expression, are used to avoid the overhead of a large number

of internal nodes. In fact, the OF-expression requires at

most two bits per node.

(Samet, H., "The quadtree and related hierarchical data
structures." ACM Comput. Survevs, vol. 16, no. 2,
Jun. 1984, pp. 190-235.)

Figure 14. A checkerboard and its quadtree

37

38

The main disadvantage of quadtrees is that they are

shift variant. That is, two identical regions differing

only by a translation in an image may have quite different

quadtrees. The following example is illustrated in a paper

by Dyer [3]. A 2m by 2m square region may be represented by

a single node or as many as 0(2m) nodes depending on its

position in the image. Dyer investigated the best, average,

and the worst case quadtree encoding efficiencies of a 2m by

2m region in a 2" by 2" image.

Dyer claims that the best case occurs when the region

can be represented by a single BLACK node at level m, and

that only O(n - m) nodes are required when the region is in

any of 2n·m+1 positions.

The worst case occurs when shifting the region to the

right and down one pixel from the best case. Dyer [3] has

shown that the average case required 0(2m+2 + n -m) quadtree

nodes.

I
H'I

(Dyer, c. R., "The space efficiency of quadtrees."
Comput. Gr. Image Process., vol. 19, no. 4, Aug. 1982,
pp. 335-348.)

Figure 15. Best case position of a 2m by 2m region
in a 2" by 2" binary image

Pyramids

Samet defines a pyramid as follows: "Given a 2" by 2"

image array, say A(n), a pyramid is a sequence of arrays

{A(i)} such that A(i-i) is a version of A(i) at half the

resolution of A(i) is a single pixel" [32]. Pyramid can

also be defined in a more general way by permitting finer

scales of resolution than the power of two scale.

39

Giving a 2" by 2" image, a recursive decomposition into

quadrants is performed, just as in quadtree construction.

The only difference is that we keep subdividing until we

reach the individual pixels. The leaf nodes of the

resulting tree represent the pixels, whereas the nodes

immediately above the leaf nodes correspond to the array

A(n-1), which is of size 2""1 by 2"· 1 • The nonterminal nodes

are assigned a value that is a function of the nodes below

them such as the average GRAY level.

The above definition of a pyramid is based on

nonoverlapping 2 by 2 blocks of pixels. The difference

between pyramids and quadtrees, is stated by Samet as

follows:

Pyramids and quadtrees, although related, are
different entities. A pyramid is a
multiresolution representation, whereas the
quadtree is a variable resolution representation.
Another analogy is that pyramid is a complete
quadtree [32].

CHAPTER IV

PROBLEM DESIGN

Objectives

Chapters II and III described the concepts of using

quadtrees to represent an image and various operations

performed on such a data structure. This chapter describes

the program design and implementation and how some of the

concepts discussed in Chapters II and III were implemented.

Analysis and comparisons are also included.

Since the quadtree can be used to represent an image,

the idea is to build and store each consonant and vowel from

the Hebrew language in a quadtree. Then, some of the

operations described in chapter III (e.g., scaling) can be

implemented on these quadtrees.

Program Design and Implementation

Terms

Before presenting the program design and

implementation, one needs to understand the following terms:

• pixel

• screen

40

41

• object-oriented and bit-mapped images

pixel. The term pixel is an acronym for picture

element. Pixels, in fact, are the basic elements that make

up a video display. The pixels are combined to make the

text and graphic images on the computer monitor. Pixels can

be displayed as black or white with a monochrome card, or in

any color supported by a color card.

screen. A screen is the configuration of pixels that

make up displayed text or graphic images. Depending on the

type of graphics card installed in the microcomputer system,

the screen display will be made up of different horizontal­

by-vertical pixel dimensions. The Amdek system was

configured with the Hercules (Hercules Technology, 2550

Ninth st., Berkeley, CA 94710) graphics card.

Note that by convention, the upper left corner of the

graphics screen is (O,O). Thus, in Hercules mode, the

screen look like this:

(O,O) (719,0)

(349,0) (719,349)

Object-Oriented and Bit-Mapped Images. Graphics

programs create two types of images: object-oriented

(sometimes called vector graphics) and bit-mapped images.

42

An object-oriented graphic is built from lines and shapes; a

bit-mapped image is composed of dots (i.e., pixels).

Implementation Steps

As mentioned before, the main goal is to build a

quadtree for each consonant and vowel. To accomplish this,

the following steps were taken:

1. drawing the image (i.e., consonant or vowel) on

the screen using any available graphics software

2. building a complete quadtree

3. scanning the image pixels in a predetermined order

and "coloring" the corresponding quadtree's leaf

nodes

4. merging groups of four pixels or four blocks of a

uniform color

5. saving the resulting quadtree constructed in step

four above

A detailed description is given below for each step

stated above.

43

Step 1. Drawing the image. Each consonant or vowel is

drawn using some available graphics software. The

consonants and vowels are subsequently imported into the

program which scans and builds the corresponding quadtrees.

Note that the language being used (i.e., Turbo Pascal) must

be able to import the images drawn by the graphic software

(as previously mentioned, graphic programs create two types

of images: object-oriented and bit-mapped images).

The image must be displayed in the upper left corner of

the graphics screen at coordinates (1,1). This restriction

is due to the fact the image is scanned starting at

coordinate (1,1). This coordinate was selected only for

ease of implementation.

step 2. Building a complete quadtree. The binary array is

probably the most common method to represent an image.

There are many methods to construct a quadtree from a binary

array (22). The simplest approach is one which converts the

array to a complete quadtree.

For example, consider the image in Figure la, repeated

for ease of reference on the following page. The image size

is 23 by 23 pixels (i.e., 64 pixels). The binary

representation and the corresponding complete quadtree of

the image are illustrated in Figure 16.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 ' I l I

0 0 0 0 I I I a

0 0 0 I ' I I I

0 0 I I I I t I

0 0 I I I I 0 0

0 0 ' ' I 0 0 0

(Q.} tb)

F G

e
H I

:J
3? 98

N 0 a, JtO

L ~
5"'1 S8

Q ,, 60

(C)

(Samet, H., "The quadtree and related hierarchical data
structures." ACM Comput. Surveys, vol. 16, no. 2,
Jun. 1984, pp. 190-235.)

Figure 1. (a) A region (b) Binary array (c) Block
decomposition of the region (d) Quadtree
representation of the blocks in (c).

44

1

3

9

11

33

35

41

43

Figure 16.

2 5 6 17 18 21 22

4 7 8 19 20. 23 24

10 13 14 25 26 29 30

12 15 16 27 28 33 32

34 37 38 49 50 53 54

36 39 40 51 52 55 56

42 45 46 57 58 61 62

44 47 48 59 60 63 64

(a)

(b)

(a) Binary representation of the image
in Figure la
(b) Complete quadtree of the image in (a)

45

Thus, a complete quadtree has a leaf node for every

pixel. In general, for a 2" by 2" image, a complete

quadtree is of height n with 22" leaf nodes.

46

Step 3. Scanning the image pixels. The image is scanned

in the order defined by the labels in Figure 16a. This

order corresponds to a postorder traversal of the quadtree

in Figure 16b. That is, the nodes of the quadtree are

visited recursively in the following order: NW, NE, SW, and

SE.

The image is displayed on the screen starting at

coordinate (1,1) (as stated earlier, this coordinate was

chosen for ease of implementation). Thus, label 1 of Figure

16a corresponds to coordinate (1,1), label 2 corresponds to

coordinate (1,2), label 3 corresponds to coordinate (2,1),

and so on.

In order to generate the above coordinates, a special

function was developed (see Appendix A). The function

stores the coordinates in an index file that was used by the

program performing the scanning. One should note, that, in

fact, there is no need to generate all the coordinates. It

is enough to generate only the coordinates correspond to the

NW leaf nodes.

For example, if coordinate (1,1) is given (i.e., label

1 in Figure 16a), it is easy to compute labels 2, 3, and 4

as follows:

47

let coordinate (1,1) corresponds to (x, y) , then

coordinate (1,2) (i.e., label 2) = (x,y+l) = (1,2)

coordinate (2, 1) (i.e., label 3) = (x+l,y) = (2, 1)

coordinate (2,2) (i.e., label 4) = (x+l,y+l) =(2,2)

Therefore, for the region of Figure 16a, only the

following coordinates need to be generated:

1,1 1,3 1,5 1,7

3,1 3,3 3,5 3,7

5,1 5,3 5,5 5,7

7,1 7,3 7,5 7,7

Figure 17. Scanning coordinates

Note that the scanning region must be of size

2" by 2" (i.e., powers of two). Therefore, the image must

be displayed within a predetermined region.

The "coloring" (i.e., scanning) process is as follows:

starting with the root node, the complete quadtree is

recursively traversed in postorder. Whenever a leaf node is

encountered, its corresponding pixel color is obtained by

using the corresponding coordinate in the index file. The

process is terminated when all leaf nodes are visited (see

Appendix A for the scanning function).

Step 4. Merging groups of four pixels of Uniform Color.

48

At this point, the "coloring" process of the complete

quadtree is completed. Each leaf node of a complete

quadtree corresponds to exactly one·pixel of the image. As

mentioned in Chapter II, the quadtree is a collection of

maximal blocks that partition a qiven region (note that the

blocks may possibly overlap). The emphasis is on maximal

blocks. Therefore, the purpose of step four, is to merge

groups of four pixels or four blocks of a uniform color,

until no further merging is possible. Therefore, the

merging process may reduce the number of nodes in the

quadtree significantly.

For example, the following leaf nodes of the complete

quadtree in Figure 16b would be merged:

nodes 1, 2, 3, and 4 (all four nodes are WHITE)

nodes 5, 6, 7, and 8 (all four nodes are WHITE)

nodes 9, 10, 11, and 12 (all four nodes are WHITE)

Upon completion of step four, the resulting quadtree is

given in Figure ld on page 45. Observe, that the number of

nodes in the quadtree of Figure ld is 25. This is a savings

of over 40 percent over the total number of nodes (i.e., 64

nodes) in the original complete quadtree.

49

Step 5. Saving the resulting quadtree. To save the

quadtree constructed in step four, the OF-expression method

described in Chapter II is implemented. When saved in a

file, the quadtree can then be reconstructed from the DF­

expression (see Appendix A for detailed functions).

Software Development

The purpose for developing the software, was to

familiarize a beginning student with the Hebrew consonants

and vowels. The software contains about 2000 lines of code

in Turbo Pascal, and 7 new functions related to quadtrees

(see Appendix A). Four months of designing, coding, and

debugging were spent.

The software makes use of the quadtree theory by

representing each consonant and vowel in a specific

quadtree. For each consonant and vowel a corresponding

quadtree was built and stored (as explained in the

implementation section of this chapter). When executed, the

program automatically reconstructs the original quadtree for

each consonant and vowel from its corresponding file. Note

that the storage for these quadtrees is dynamically

allocated during program execution. At termination, these

quadtrees no longer exist and the storage space used by

these quadtrees is returned to the system's free storage

space. Appendix B contains tables indicating the storage

requirements for each file and for each quadtree. Also

included are various screens generated by the software.

50

Analysis and Comparison

Region representation is an important issue in image

processing. As stated in Chapter III, the prime motivation

for the development of the quadtree has been the desire to

reduce the amount of space required to store images. It was

also explained that the quadtree is not always the ideal

representation.

The approach in this thesis was to convert the image

binary array to a complete quadtree (i.e., one node per

pixel) then to reduce the quadtree size through repeated

attempts at merging groups of four pixels or four blocks of

a uniform color. The major disadvantage of this approach is

the extreme waste of storage space, because many nodes may

be created needlessly. In fact, the complete quadtree may

not fit in the available memory, whereas the resulting

quadtree may fit. In particular, for a 2" by 2" image, 22"

BLACK and WHITE nodes (i.e., leaf nodes), and an additional

(BLACK+ WHITE - 1)/3 GRAY nodes [32] (i.e., nonterminal

nodes) are needed to construct the corresponding complete

quadtree. This is clearly undesirable when compared with a

maximum of 22" bits required by the binary array

representation.

The minimum storage requirements for a complete

quadtree is analyzed as follows. Each node has at least

five fields. Four pointer fields, one to each son-quadrant

(i.e., NW, NE, SW, and SE), and one field for the node color

51

(i.e., BLACK, WHITE, or GRAY). That is, at least five bytes

per node.

Lets us assume that an image of size 28 by 28 is given.

To construct a complete quadtree for this image, the

following storage is needed:

leaf nodes: 256 x 256 x 5 = 327,680 bytes

internal nodes: 1/3 x 327,680 = 109,227 bytes (see last

page)

Thus, about 437 KB is required. Some microcomputer

systems are not equipped to handle such amount of memory

requirement.

In addition to the extreme waste of storage, the

merging process involves an extra overhead. Thus, the

complete quadtree approach may be simple, but obviously it

has some major disadvantages. Therefore, a better approach

should be used.

Consider the following approach. The elements of the

binary array are visited in the order defined by Figure 16a.

However, in order to avoid the needless creation of nodes in

the case of the complete quadtree, a leaf node is created

only if it is known to be maximal. Samet points out an

analogous situation: "An equivalent statement is that the

situation does not arise in which four leaves of the same

color necessitate the changing of the color of their parent

from GRAY to BLACK or WHITE as is appropriate" [32].

52

For example, consider pixels 25, 26, 27, and 28 in

Figure 16a. All these pixels are BLACK, therefore, only one

node should be created for these four pixels. That is, node

H in Figure ld on page 45.

A similar approach is presented by Hanan Samet [28].

He developed an algorithm for converting rasters to

quadtrees. That is, obtaining an in-core quadtree

representation given the row-by~row description of a binary

array. Thus, the pixels of the image of Figure la on page

45 would be visited in the order defined by the labels on

the array of Figure 18. Samet stated in one of his papers

that "One of the algorithm's key features is that at any

instant of time (i.e., after each pixel in a given row has

been processed) a valid quadtree exists with all unprocessed

pixels presumed to be WHITE" [28]. That is, as the quadtree

is built, nodes are merged to yield maximal blocks.

Samet has shown that the algorithm's execution time has

time complexity proportional to the number of pixels in the

image. The algorithm is also space efficient because

merging is attempted whenever possible. That is, after

processing each pixel in a row, the resulting quadtree

contains a minimal number of nodes.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

(Samet, H., "The quadtree and related hierarchical data
structures." ACM Comput. Surveys, vol. 16, no. 2,
Jun. 1984, pp. 190-235.)

Figure 18. Raster labeling

Consonant Representation

The software developed, used the quadtree

53

representation for displaying the Hebrew consonants and

vowels. The question which might arise is whether there are

alternative methods to represent the alphabet other than the

quadtree representation. For purposes of comparison,

consider the bitmap method discussed below.

54

Bitmap Representation

The bitmap is a complete digital representation of an

image. Each pixel in the image corresponds to one or more

bits in the bitmap. Monochrome bitmaps require only one bit

per pixel whereas color bitmaps require additional bits to

indicate the color of each pixel.

Bitmaps have two major drawbacks. First, they are

highly sensitive to problems involving device independence,

of which the most obvious is color. Dis~laying color bitmap

on a monochrome device is often unsatisfactory. Another

problem is that although bitmaps can be stretched or

compressed, this generally involves duplicating or dropping

rows or columns of pixels and can lead to distortion in the

scaled image. The second major drawback of bitmaps is that

they require a large amount of storage space. For instance,

a bitmap representation of an entire 640-by-350, eight-color

EGA screen requires 84 KB.

For a monochrome bitmap, the format of the bits is

relatively simple and can be derived almost directly from

the image to be created. For instance, consider the Hebrew

consonant BET on the next page:

55

Figure 19. The Hebrew consonant BET

The consonant BET above, can be represented as a series

of b i ts (0 for BLACK and 1 for WHITE). Reading these bits

from left to right one can then assign each group of 8 bits

a hexadecimal byte. If the width of the bitmap is not a

multiple of 8, the bytes are padded to the right with zeros

to get an even number of bytes. Thus, the bitmap

representation of the consonant BET is:

1 1 1 1 1 1 0 0 = FC
1 1 1 1 1 1 0 0 = FC
0 0 0 0 1 1 0 0 = oc
0 0 0 0 1 1 0 0 = oc
0 0 0 0 1 1 0 0 = oc
0 0 0 0 1 1 0 0 = oc
1 1 1 1 1 1 1 1 = FF
1 1 1 1 1 1 1 1 = FF

Thus, 8 bytes are required to store the consonant BET

in a file.

Now, consider the quadtree in Figure 20 for the same

consonant BET. It has 21 nodes, thus 21 bytes are required

to store the quadtree using the OF-expression, and

additional 105 bytes (21 x 5, assuming 5 bytes per node)

need to be dynamically allocated to construct the quadtree.

56

Figure 20. Quadtree for the consonant BET in Figure 19

From the example above it seems that the bitmap

representation is better spacewise than the quadtree

representation. But this is not always true. Given a

different image size and shape, the quadtree representation

might be better. For example, if the image in FigUre 19 was

all black, a quadtree of only one node would represent the

image, and only 5 bytes would be needed to store the

quadtree.

CHAPTER V

SUMMARY AND CONCLUSIONS

This thesis was logically divided into two parts. In

the first part, functions that scan a given image and build

its corresponding quadtree were developed. In part two, a

software, whose purpose it is to familiarize a beginning

student to the Hebrew consonants and vowels, was developed.

The software makes use of the functions developed in the

first part.

Summary

At the onset of the thesis, the complete quadtree

approach was used. This approach is probably the simplest

one, but it has two major drawbacks. The extreme waste of

storage space (i.e., the needless creation of nodes), and

the additional overhead that the merging process creates.

As to operations performed on quadtrees, the fact that

an image can be scaled only by powers of two and rotated by

multiples of 90 degrees, may prevent some application

programs from using the quadtree representation. As opposed

to the complete quadtree approach, two other approaches were

57

given. Both methods avoid the needless creation of extra

nodes.

Conclusions

58

As to representing an image by a quadtree, it was

mentioned in Chapter II that there are alternative methods

to represent quadtrees. Each method has its strong and weak

points regarding time complexity and space requirement. The

ease of performing operations on quadtrees, such as

rotation, may vary from one method to another.

In Chapter IV, the bitmap representation was compared

with the quadtree representation. The comparison example

supports the conclusion that an analysis is required before

choosing one method over the other. Thus, when searching

for a particular method to represent an image, the following

points should be taken into consideration:

. the image size;

storage space required to store the image;

. operation performed on the image;

. monochrome or color representation;

. execution time.

Suggested Future Work

As explained in Chapter IV, the scanning process

employed postorder traversal of the complete quadtree. For

each leaf node, its corresponding pixel color was obtained.

59

To do so, a special index file was created, for mapping each

leaf node to its corresponding pixel (i.e., coordinate).

It would be an interesting topic to develope a function

(i.e., formula) that will generate these coordinates. That

is, a function to map each label in Figure 16a to its

corresponding coordinate in Figure 17. Thus saving the

storage required to store the index file.

An alternative topic is to scan the image binary array

by rows or by columns (or any other order) and then to

develope an algorithm to traverse the complete quadtree in

that order.

In Chapter III, it was explained that the main

disadvantage of the quadtree is that it is shift-variant.

That is, shifting a given image may significally change the

size of the corresponding quadtree. A potential research

topic would be to develop an algorithm that will determine

the best location of an image in a given region, so that the

corresponding quadtree constructed would have minimum size.

SELECTED BIBLIOGRAPHY

[l] Burt, P. J., "Tree and pyramid structures for coding
hexagonally sampled binary images."
Ccimput. Gr. Image Process., vol. 14; no. 3, Nov. 1980,
pp. 249-270.

[2] Burton, F. w., "Comment on the explicit quadtree as a
structure for computer graphics." Comput. J., vol. 26,
no. 2, May 1983, p. 188.

[3] Dyer, c. R., "The space efficiency of quadtrees. 11

Comput. Gr. Image Process., vol. 19, no. 4,
Aug. 1982, pp. 335-348.

[4] Finkel, R. A., and Bentley, J. L., "Quadtrees: a data
structure for retrieval on composite keys."
Acta Informatica, vol. 4, Apr. 1974, pp. 1-9.

[5] Freeman, H., "Computer processing of line drawing
6 images." ACM Comput. Surveys., vol. 6, no.l,

Mar. 1974, pp. 57-97.

[6] Garantini, I., "Translation, rotation, and
superposition of linear quadtree. 11

Int. J. Man-Mach. Stud., vol. 18, no. 3, Mar. 1983,
pp. 253-263 •

..;{7] Garantini, I., "An effective way to represent
:L quadtrees." Commun. ACM, vol. 25, no. 12, Nov. 1982,

pp. 905-910.

[8] Glass, D. J., "Data structures for storing images:
region quadtrees." Dep. Comput. Sci., Oklahoma state
University, Stillwater, Tech. Rep., OSU CIS TR-87-10,
Dec. 1987.

[9] Grosky, w. I., "Optimal quadtrees for image segments."
IEEE Trans. Pattern Analysis Mach. Intelligence,
vol. 5, no. 1, Jan. 1983, pp. 68-74.

[10] Hunter, G. M., "Properties and application of pictures
represented by quadtrees. 11 Comput. Gr. Image Process.,
vol. 10, no. 3, Jul. 1979, pp. 289-296.

60

[11]

./[12]

"(13]
3

[14]

[15]

[16]

[17]

v [18]
Ir

[19]

[20]

[21]
q

Jones, L., "Space and time efficient virtual
quadtrees. 11

IEEE Trans. Pattern Analysis Mach. Intelligence,
vol. 6, no. 2, Mar. 1984, pp. 244-247.

Kawaguchi, E., "On the method of binary-picture
representation and its application to data
compression."
IEEE Trans. Pattern Analysis Mach. Intelligence,
vol. PAMI-2, no. 1, May. 1980, pp. 27-35.

61

Kawaguchi, E., "OF-expression of binary-valued picture
and its relation to other pyramidal representations."
In Proceeding of the 5th International Conference on
Pattern Recognition (Miami Beach, Fla, Dec.). IEEE,
New York 1980, pp. 822-827.

Kawaguchi, E., "Depth-first expression viewed from
digital picture processing."
IEEE Trans. Pattern Analysis Mach. Intelligence,
vol. 5, no.4, Jul. 1983, pp. 374-384.

Klinger, A., "Organization and access of image
data by areas."
IEEE Trans. Pattern Analysis Mach. Intelligence,
vol. 1, no. 1, Jan. 1979, pp. 50-60.

Milford, D. J., "Quad encoded display."
IEE Proceedings, vol. 131, no. E3, May 1984,
pp. 70-75.

Nagy, G., "Geographic data processing."
ACM Comput. Surveys., vol. 11, no. 2, Jun. 1979,
pp. 139-181.

Raman, v., "Properties and applications of forest
quadtrees for picturial data representation."
BIT, vol. 23, no. 4, 1983, pp. 472-486.

Rosenfeld, A., and Pfaltz, J. L., "Sequential
operations in digital image processing."
J. ACM, vol. 13, no. 14, Oct. 1966, pp. 471-494.

Rosenfeld, A., Samet, H., Shaffer, c., and Webber, R.
E., "Application of hierarchical data structures to
geographical information systems." TR-1197, Comput.
Sci. Dept., University of Maryland, College Park, Md.,
Jun. 1982.

Samet, H., "Connected component labeling using
qudtrees." J. ACM., vol. 28, no. 6, Nov. 1981,
pp. 487-501.

62

[22) Samet, H., "Region representation: quadtrees from
binary arrays." Comput. Gr. Image Process.,
vol. 13, no. 1, May 1980, pp. 88-93.

[23) Samet, H., "Region representation:boundary codes from
quadtrees." Commun. ACM, vol. 23, no. 3, Mar. 1980,
pp. 171-179.

[24) Samet, H., "Region representation:quadtrees from
boundary codes." Commun. ACM, vol. 23, no. 3,
Mar. 1980, pp. 163-170.

[25) Samet, H., "Deletion in two-dimensional quad trees."
Commun. ACM, vol. 23, no. 12, Dec. 1980, pp. 703-710.

[26) Samet, H., "Neighbor finding techniques for images
represented by quadtrees."

[27)

[29)

[30)

[31)

v-- [32)
1

[33)
8

Comput. Gr. Image Process., vol. 1, no. 1, Jan. 1982,
pp. 37-57.

Samet, H., "Distance transform for images
represented by quadtrees. 11

'IEEE Trans. Pattern Analysis Mach. Intelligence,
vol. 4, no. 3, May 1982, pp. 298-303.

Samet, H., "Algorithms for converting rasters to
quadtrees to rasters."
IEEE Trans. Pattern Analysis Mach. Intelligence,
vol. PAMI-3, no. 1, Jan. 1981, pp. 93-95.

Samet, H., "Computing geometric properties of images
represented by linear quadtrees."
IEEE Trans. Pattern Analysis Mach. Intelligence,
vol. 7, no. 1, Jan. 1985.

Samet, H., "On encoding boundaries with quadtrees. 11

IEEE Trans. Pattern Analysis Mach. Intelligence,
vol. 6, no. 3, May 1984, pp. 365-369.

Samet, H., "Data structures for quadtree approximation
and compression." Commun. ACM, vol 28. no. 9,
Nov. 1985, pp. 973-993.

Samet, H., "The quadtree and related hierarchical data·
structures." ACM Comput. Surveys, vol. 16, no. 2,
Jun. 1984, pp. 187-260.

Samet, H., "A top-down· quadtree traversal Algorithm."
IEEE Trans. Pattern Analysis Mach. Intelligence,
vol. PAMI-7, no. 1, Jan. 1985, pp. 94-97.

[34] Samet, H., "Computing perimeters of images
represented by quadtrees."
IEEE Trans. Pattern Analysis Mach. Intelligence,
vol. 3, no. 6, Nov. 1981, pp. 683-687.

63

[35] Scott, D. s., and Iyengar, s. s., "TID - a translation
S invariant data structure for storing images."

Commun. ACM, vol. 29, no. 5, Dec. 1986, pp. 418-429.

[36] Shneier, M., "Calculations of geometric properties
using quadtrees. 11 Comput. Gr. Image Process.,
vol. 16, no. 3, Jul. 1981, pp. 296-302.

[37] Shu-xiang, L., "Adjancy detection using quadcodes. 11

Commun. ACM, vol. 30, no. 7, Jul. 1987, pp. 627-632.

[38] Shu-xiang, L., "The quadcode and its arithmetic."
Commun. ACM, vol. 30, no. 7, Jul. 1987, pp. 621-626.

[39] Tamminen, M., "Encoding pixel trees."
Comput. Vision. Gr. and Image Process., vol. 28,
Jun. 1984, pp. 44-57.

[40] Wiseman, N. E., and Oliver, M. A., "Operations on
'1- quadtree encoded images."

The Comput. J., vol. 26, no. 1, May 1983, pp. 83-93.

[41] Wiseman, N. E., and Oliver, M. A., "Operations on
quadtree leaves and related image areas."
The Comput. J., vol.26, no. 4, Mar. 1983, pp.375-380.

APPENDIXES

64

APPENDIX A

PROCEDURES AND FUNCTIONS

Set Operations

Intersection

This procedure finds the logical AND of the two binary

images represented by quadtrees. Input to the procedure is

a pointer to the root of each quadtree [36].

quadtree procedure INTERSECTION(TRRE1,TREE2)
/* returns the intersection of TREEl and TREE2 */

begin

end;

node TREE1,TREE2,INTERSECT;
quadrant I;
if BLACK(TREEl) or WHITE(TREE2) then

return(COPY(TREE2));
else

if BLACK(TREE2) or WHITE(TREEl) then
return(COPY(TREEl));

INTERSECT:=CREATENODE(); /*create a root node*/
for I in {NW<NE<SW<SE} do

begin
SON(INTERSECT,I):=INTERSECTION(SON(TREEl,I);

SON(TREE2,I));
FATHER(SON(INTERSECT,I):=INTERSECT;

end;
return(INTERSECT);

65

66

Union

Union of two quadtrees. Input to the procedure is

a pointer to the root of each quadtree [36].

quadtree procedure UNION{TRRE1,TREE2)

/* returns the union of TREEl and TREE2 */
begin

end;

node TREE1,TREE2,UNI;
quadrant I; ·
if BLACK{TREEl) or WHITE{TREE2) then

return{COPY{TREE2));
else

if BLACK{TREE2) or WHITE(TREEl) then
return(COPY(TREEl)); -

UNI:=CREATENODE(); /*create a root node*/
for I in {NW<NE<SW<SE} do

begin
SON(UNI,I):=UNION(SON{TREE1,I),SON(TREE2,I));
FATHER(SON(UNI,I):=UNI;

end;
return(UNI);

quadtree procedure COPY(TREE);
/* creates a tree structure identical to TREE */

begin

end;

quadtree TREE, NEWTREE;
quadrant I;
NEWTREE:=CREATENODE();

/* create a node with NULL FATHER, SON,and
TYPE nodes*/

TYPE(NEWTREE):=TYPE(TREE);
for I in {NW,NE,SW,SE} do

if SON(TRRE,I)=NULL then
SON(NEWTREE,I):=NULL;

else begin
SON(NEWTREE,I):=COPY(SON{TREE,I));
FATHER{SON{NEWTREE,I)):=NEWTREE;

end;
return(NEWTREE);

67

Complement

Complement of a given quadtree (i.e., changing BLACK

nodes into WHITE, and WHITE nodes into BLACK). Input to the

procedure is a pointer to the root of the quadtree [36].

procedure COMPLEMENT(QUADTREE);
/* change a quadtree into its complement */

begin

end;

node QUADTREE;
quadrant I;
if GRAY(QUADTREE) then

else

for I in {NW,NE,SW,SE} do
COMPLEMENT{QUADTREE,I);

if BLACK(QUADTREE) then
TYPE(QUADTREE):=WHITE;

else /* WHITE node */
TYPE(QUADTREE):=BLACK;

68

Geometric Transformation

Rotation

The following procedure [8] rotates the image in the

quadtree by 90 degrees in the clockwise direction.

procedure ROTATE(var node: node_ptr);
var

old-NWest, old NEast: node_ptr;
old SWest, old-SWest:·node_ptr;

begin - -

end;

Old NWest := nodeA.NWest;
Old-NEest := nodeA.NEest;
Old-SWest := nodeA.SWest;
Old-SEest := nodeA.SEest;

nodeA.NWest :=old SWest;
nodeA.NEest := old:NWest;
nodeA.SWest := old_SEest;
nodeA.SEest := old_NEest;

if (node A • NWest <> Nil) then
if (nodeA.NEest <> Nil) then
if (node A .swest. <> Nil) then
if (nodeA.SEest <> Nil) then

ROTATE
ROTATE
ROTATE
ROTATE

(nodA.NWest);
(nodA.NEest);
(nodA.SWest);
(nodA.SEest);

This procedure [36] finds the area of an image

represented by a quadtree.

integer procedure AREA(QUADTREE,N);
begin

node QUADTREE;
integer BLACKAREA;
level N;
quadrant I;
BLACKAREA: =O; .
if GRAY(QUADTREE) then

for I in {NW,NE,SW,SE} do
BLACKAREA:=BLACKAREA+AREA(SON(QUADTREE,I),Nl);

else if BLACK(QUADTREE) then
BLACKAREA:=B;LACKAREA+2A(2*N);

return(BLACKAREA);
end;

Procedures and Functions Developed
During Software Development

Constructing a Complete ouadtree

This function constructs a 11 1 11 levels complete

quadtree. The root is at level 111-1 11 and the leaf nodes at

level zero. The function returns a pointer to the root.

function build_quadtree(l:integer):node_ptr;
var

node:node_ptr;

begin

new(node);
if l=O then

(* if at leaf nodes level *)

begin
nodeA.color:=black;
nodeA.nw:=nil;
nodeA.ne:=nil;
nodeA.sw:=nil;
nodeA.se:=nil;

end

else
(* internal node level *)

begin

end;

nodeA.color:=gray;
nodeA.nw:=build quadtree(l-1);
nodeA.color:=gray;
nodeA.ne:=build_quadtree(l-1);
nodeA.color:=gray;
nodeA.sw:=build_quadtree(l-1);
nodeA.color:=gray;
nodeA.se:=build_quadtree(l-1);

build_quadtree:=node;

end;(* build_quadtree*)

69

Postorder Traversal of a Ouadtree

This procedure performs a postorder traversal of a

given quadtree (i.e., NW,NE,SW,SE). In addition, the

procedure prints the quadtree nodes as follows: "B", for

BLACK node, "W" for WHITE node, and "G" for GRAY node

(i.e., internal node)

procedure post_order(node:node_ptr);
(* node - root of the quadtree *)

begin

if nodeA.color=gray then
(* internal node *)

begin
write ('G ') ;
post_order(nodeA.nw);
post_order(nodeA.ne);
post_order(nodeA.sw);
post_order(nodeA.se);

end

else
(* leaf node *)

begin

end;

if nodeA.color =black then
write ('B ') ;

if nodeA.color =white then
write ('W ') ;

end; (* post_order *)

70

Plot Quadtree

This procedure displays the image represented by a

given quadtree. Three parameters are passed to the

procedure:

• the root of the quadtree

• the coordinate where the upper left corner of the

image is to be displayed on the screen

. the size of the image (size is in powers of two)

procedure plot_quadtree(node:node_ptr;
xl,yl,length:integer);

var

begin

x2,y2,hlength:integer;

hlength:=length div 2;
x2:=xl+hlength;
y2:=yl+hlength;

if node"'.color=gray then
(* internal node *)

begin
plot_quadtree(node"'.nw,xl,yl,hlength);
plot_quadtree(node"'.ne,xl,y2,hlength);
plot_quadtree(node"'.sw,x2,yl,hlength);
plot_quadtree(node"'.se,x2,y2,hlength);

end

else
(* leaf node *)

if node"'.color=black then
bar(xl,yl,xl+length,yl+length);

end; (* plot_quadtree *)

71

72

Create an Index File

This procedure generates the scanning coordinates

explained in Chapter IV. Three parameters are passed to the

procedure:

• pointer to the root of a complete quadtree

• number of levels in the complete quadtree

• coordinate (x,y), were x=l and y=l

procedure create_indexfile(node:node_ptr:
var indexfile:text:
l,x,y:integer):

(* power(n) returns 2" *)

begin

if l=l then
(* if the node is a leafnode parent *)

writeln(indexfile,x,' •,y):

if (nodeA.nw <>nil) and (1 >1) then
create_indexfile(nodeA.nw,indexfile,

1-1,x,y):

if (nodeA.ne <>nil) and (l>l) then
create indexfile(nodeA.ne,indexfile,1-1,

- x,y+power(l-1)):

if (nodeA.sw <>nil) and (l>l) then
create indexfile(nodeA.sw,indexfile,1-1,

- x+power(l-1),y):

if (nodeA.se <>nil) and (l>l) then
create_indexfile(nodeA.se,indexfile,1-1,

x+power(l-l),y+power(l-1)):

end:(* create indexfile *)

73

Scanning an Image and "Coloring" Its Ouadtree

This procedure scans an imaged displayed on the screen

and "colors" the leaf nodes of the given complete quadtree

as explained in Chapter IV. Two parameters are passed to

the procedure:

• pointer to the complete quadtree root

• index file name containing the scanning coordinates.

procedure scan_image_on_screen(node:node_ptr;
var indexf:text);

var
x,y:integer;

begin

end;

if nodeA.nwA.nw <>nil then
scan image on screen(nodeA.nw,indexf);

if nodeA.neA.ne-<>-nil then
scan_image_on_screen(nodeA.ne,indexf);

if nodeA.swA.sw <>nil then
scan_image_on_screen(nodeA.sw,indexf);

if nodeA.seA.se <> nil then
scan_image_on_screen(nodeA.se,indexf);

if nodeA.nwA.nw =nil then
begin

readln(indexf,x,y);
if getpixel(x,y)=O then

nodeA.nwA.color:=white
else

nodeA.nwA.color:=black;
if getpixel(x,y+l)=O then

node A. ne A • color: =whi t.e
else

nodeA.neA.color:=black;
if getpixel(x+l,y)=O then

nodeA.swA.color:=white
else

nodeA.swA.color:=black;
if getpixel(x+l,y+l)=Othen

nodeA.seA.color:=white
else

nodeA.seA.color:=black;

end;(* scan_image_on_screen *)

Saving Ouadtree Using OF-expression Method

This procedure saves a given quadtree in a text file

using the OF-expression method described in Chapter II.

Two parameters are passed to the procedure:

• pointer to the quadtree root

• file name

procedure save_quadimage(node:node_ptr;

begin

var imagefile:text);

if nodeA.color =gray then
(* internal node *)

begin
writeln(imagefile,'(');
save_quadimage(nodeA.nw,imagefile);
save_quadimage(nodeA.ne,imagefile);
save_quadimage(nodeA.sw,imagefile);
save_quadimage(nodeA.se,imagefile);

end

else
(* leaf node)

if nodeA.color =black then
writeln(imagefile,'B')

else
writeln(imagefile,'W');

end;(* save_quadimage *)

74

75

Reconstructing a Ouadtree from OF-expression Representation

This function reconstructs a quadtree from an image

that originally was represented by a quadtree and was saved

in a file using the OF-expression method. The function

returns a pointer to the quadtree root.

function quadimage_from_quadfile(var imagefile:
text):node_ptr;

var

begin

node:node_ptr;
ch:char;

new(node);
readln(imagefile,ch);
if ch = ' (' then

(* internal node *)

begin
nodeA.color:=gray;
nodeA.nw:=quadimage_from_quadfile(imagefile);
nodeA.ne:=quadimage_from_quadfile(imagefile);
nodeA.sw:=quadimage_from_quadfile(imagefile);
nodeA.se:=quadimage_from_quadfile(imagefile);

end

else
(* leaf node *)

begin
if ch = 'B' then

nodeA.color:=black
else

nodeA.color:=white;
nodeA.nw:=nil;
nodeA.ne:=nil;
nodeA.sw:=nil;
nodeA.se:=nil;

end;

quadimage_from_quadfile:=node;

end;(* quadimage_from_quadfile *)

APPENDIX B

TABLES AND FIGURES

In this appendix, two tables are given and various

screens, generated by the software, are also included.

For each consonant and vowel quadtree, the tables

include the following data:

. the number of leaf nodes in the quadtree

• the total number of nodes in the quadtree

Note that these quadtrees are the result of the merging

process described in Chapter IV (see implementation steps

section). The original complete quadtree had 1365 nodes!

(for a region of size 25 x 25 , 1024 leaf nodes and 341

interanl nodes).

Note also, that actually, only three vowel quadtrees

were constructed: the vowels KAMATZ, PATACH, and HIRIK. The

remaining vowels were displayed using combinations of the

three vowels as follows:

• the vowel TZAREH is the combination of two HIRIKs

• the vowel SEGOL is the combination of three HIRIKs

• the vowel SHEVAH is the combination of two HIRIKs

76

77

• the vowel KUBUTZ is the combination of three HIRIKs

• the vowel CHOI.AM is the combination of the consonant

VAV and the vowel HIRIK

• the vowel SHURUK is the combination of the consonant

VAV and the vowel HIRIK

The screens included are the consonants and vowels of

the Hebrew language, with a few examples of Hebrew words.

TABLE I

NUMBER OF LEAF NODES AND NUMBER OF TOTAL NODES
OF EACH CONSONANT QUADTREE

Consonant Name

ALEF
BET
GIMEL
DA LET
HAY
VAV
ZAIN
HET
TET
YOO
KAF
FINAL KAF
LAMED
MEM
FINAL MEM
NUN
FINAL NUN
SAMEH
AYIN
PAY
FINAL PAY
TZADEE
FINAL TZADEE
KOOF
RESH
SHIN
TAV

Number of
Leaf nodes

196
55

115
82
82
67

136
64
88
64
73
70

115
124

82
64
67

148
142

73
67

175
190
127

64
97
82

Number of
Total nodes

261
73

153
109
109

89
181

85
117

85
97
93

153
165
109

85
89

197
189

97
89

233
253
169

85
129
109

78

TABLE II

NUMBER OF LEAF NODES AND NUMBER OF TOTAL NODES
OF EACH VOWEL QUADTREE

Vowel Name
Number of
Leaf nodes

Number of
Total nodes

KAMATZ
PATA CH
HI RIK

256
256
304

341
341
405

79

80

[!je!J8~~
HAY OALET GIHEL BET ALEF

. -~· . f
-- -- -- --· - . I · .

~~~[!J:[j · 
Y'OD TET HET ZAYIN . UAV 

- ~; -.. · · : 

(g~[]]g 
FI NAL MEM 1 MEM LAMED FI NAL l<AF KAF 

PAY AYIN SAMEH FINAL NUH NUN 

-

o~~~,~ 
RESH KOOF FINAL lZAOEE TZAOEE FINAL PAY 

. -- - --- - - -- ------------- - ---- -

. . , i~~ : 
TAV SHIN 

-- ----------- ---------------- - ----- ---- ---

_ Figure 21. The Hebrew Consonants 



• 
HIRIK: EE 

• • 
SHEIJAH: silent 

SHURUK: 00 
- - -- ---- --

81 

.•. ., 
T 

PAlACH: A as in father KAttATZ: A as in fat 

•• • 
SEGOL: E as in wet 

CHOU~M: 0 as in no 

• • 
TZAREH: E as in wet 

• •• 
KUBUTZ: 00 

----------------· 

Figure 22. The Hebrew vowels 



T 

•• • 

A !ii 

•• • 

Figure 23. Examples of Hebrew words 

82 



T 

•• • 

Figure 24. 

• • • 

• • 

• • 

.,.--.. ; ~'ii-· ... * 

Examples of Hebrew words 

83 



84 

• 

T . 

• 

Figure 25. Examples of Hebrew .words 



VITA 

Israel Shuval 

Candidate for the Degree of 

Master of Science 

Thesis: REPRESENTING IMAGES USING THE QUADTREE DATA 
STRUCTURE (HEBREW CONSONANTS AND VOWELS) 

Major Field: Computing and information Sciences 

Biographical: 

Personal Data: Born in Israel, September 29, 1957, the 
son of David and Margalit Shvili. Married to 
Alexandria Shuval on August 8, 1982. 

Education: Graduate from Ort Givatime High school, 
Givatime, Israel, in July 1976; received Bachelor 
of Science degree in Computer Science from 
Oklahoma City University at Oklahoma City, in 
December, 1986; completed requirements for the 
Master of Science degree at Oklahoma State 
University in July, 1989. 

Professional Experience: Programmer, Phillips 
Petroleum Company, January 1989 to present; 
Adjunct Professor, Department of Computer Science, 
Central State University, August 1987 to December 
1988. 


