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INTRODUCTION 

This thesis is a complete manuscript to be submitted for 

publication. This manuscript is being submitted to Insect 

Biochemistry. This thesis appears in the format of the 

journal in which it is being submitted. 
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ABSTRACT 

Isolated tick salivary glands, permeabilized with 

digitonin in the presence of the mitochondrial and non

mitochondrial Ca2+ uptake inhibitors, sodium azide and 

vanadate, released Ca2+ in response to 20 µM inositol 1,4,5-

trisphosphate (IP3). Inositol 1-phosphate (IP1 ) and inositol 

1,4-bisphosphate (IP2 ) appeared to stimulate an uptake of 

Ca2+ into whole glands. IP3 caused release of· Ca2+ from a 

100,000 g microsome enriched pellet; however, IP1 and IP2 

were ineffective in stimulating an uptake or efflux of Ca2+. 

The combined 900 g and 11,500 g pellets showed no 

significant release of Ca2+ in response to addition of IP3 • 

IP3 concentrations as low as 1 µM are capable of stimulating 

a significant release of Ca2+ from microsomes. Results 

suggest that intracellular_Ca2+ is mobilized from microsomal 

intracellular stores in response to agonists which increase 

cytosol~c IP3 in tick salivary. glands. Results also suggest 

a possible role for IP1 or IP2 or both in stimulating an 

uptake of Ca2+ into vanadate and azide-insensitive 

intracellular pools. 
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INTRODUCTION 

Michell (1975) noted that plasma membrane-associated 

phosphoinositide metabolism correlates with many 

physiological agonists that raise intracellular calcium. 

Subsequently, a variety of intermediate products of hormone 

stimulated inositol lipid metabolism were proposed as 

agonists for mobilizing cytoplasmic calcium (Thomas et al., 

1984). Inositol 1,4,5-trisphosphate (IP3), a product of 

agonist-induced phosphatidylinositol 4,5-bisphosphate 

metabolism, was shown to release calcium rapidly from the 

endoplasmic reticulum of permeabilized cells such as rat 

pancreas and hepatocytes (Berridge, 1986; Streb et al., 

1984). Kinetic analysis has shown that [ 32P] IP3 binds 

rapidly to the microsomal membranes (Spat et al., 1986). 

Spat et al. (1986) further-demonstrated a specific, high 

affinity binding site for IP3 on the microsomal fraction of 

rat liver which corresponds with the ability of IP3 to 

release Ca2+. Inositol 1,4-bisphosphate (IP2 ) and inositol 

4,5-bisphosphate at 1 µM had no effect on IP3 binding (Spat 

et al., 1986). Berridge (1986) demonstrated that the vicinal 

phosphates on the 4 and 5 positions are essential for 

releasing calcium from intracellular stores and the 

phosphate on the opposite side of the ring enhances the 

affinity of IP3 for its putative receptor. Unlike inositol 

1,4,5-trisphosphate, neither inositol 1,3,4-trisphosphate 

nor inositol 1,3,4,5-tetrakisphosphate are able to mobilize 
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intracellular calcium (Tilly et al., 1987). 

Activation of an endoplasmic reticulum caz+_ATPase pump 

ensures rapid reloading of the endoplasmic reticulum with 

Caz+ even at low extracellular Caz+. ATP dependent Caz+ uptake 

into the endoplasmic reticulum of permeabilized IP3-

prestimulated cells is higher than that into the endoplasmic 

reticulum of unstimulated cells (Muallen et al., 1988). Non

mitochondrial calcium uptake in rat pancreatic acinar cells 

can be completely inhibited by 2 mM vanadate, (Streb and 

Schultz, 1983), and mitochondrial calcium uptake can be 

inhibited by azide (Streb et al., 1984). Ten micromolar GTP 

enhances IP3-induced calcium release from liver microsomes 

(Dawson, 1985; Ueda, 1986). 

Calcium is important in tick salivary gland function 

(Sauer and Essenberg, 1984). Dopamine and cyclic AMP 

stimulated fluid secretion by isolated salivary glands is 

inhibited by low extracellular Caz+ (Needham and Sauer, 

1979). Cyclic AMP-dependent phosphodiesterase activity is 

activated and inhibited by submicromolar and micromolar Caz+ 

respectively (McMullen et al., 1980), and protein 

phosphatase activity is inhibited by micromolar Caz+ 

(Williams et al., 1988). More recently a factor present in 

the tick's brain was shown to increase the level of inositol 

trisphosphate demonstrating the existence of the 

phosphoinositide signal transduction pathway in tick 

salivary glands (Mcswain et al., 1989). This study 

demonstrates that IP3 mobilizes Caz+ from intracellular 
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stores of permeabilized tick salivary glands and that the 

subcellular location is likely the microsomal fraction. 

Unexpectedly, it appears that the immediate products of IP3 

metabolism, IP1 and IP2 may stimulate an uptake of Ca2+ into 

a non-mitochondrial component of the salivary glands. 

6 



7 

MATERIALS AND METHODS 

Materials. D-myo-inositol 1,4,5-trisphosphate (95% or 

greater purity) and D-myo-inositol 1-phosphate were obtained 

from Boehringer Mannheim Biochemicals, Indianapolis, 

Indiana. D-myo-inositol 1,4-bisphosphate (98% pure), 

vanadium oxide, and digitonin were from Sigma Chemical 

Company, St. Louis, Missouri. TMB-8 [8-(diethylamino)-3,4,5-

trimethoxybenzoate] was from Calbiochem Corporation, San 

Diego, California. 

Tissue Preparation. Adult lone star ticks, Amblyomma 

americanum (L.), were reared following the methods of 

Patrick and Hair, (1975). Rapidly feeding female ticks (200-

800 mg) were dissected at 4 ·c in buffer containing 0.1 M 

MOPS and 20 mM EGTA at pH ~.8. 

Calcium determination in whole salivary glands and 

subcellular fractions. The whole salivary glands or 

subcellular tissue fractions were placed in a 1 ml reaction 

medium containing 20 mM HEPES (pH 7.4), 100 mM KCl, 5 mM 

MgC12 , 5 mM ATP, 10 µM GTP, 0.1 mM digitonin, 2 mM vanadate, 

and 0.1 M sodium azide following a modified procedure for 

measuring Ca~ release from microsomes (Enouf et. al., 

1987). With subcellular tissue fractions, digitonin was 

deleted from the reaction buffer. A miniature calcium 

electrode (MI-600, Microelectrodes, Inc., Londonderry, New 
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Hampshire) was pre-calibrated at 1 µM Ca2+ using a Corning 

calcium standard, and then placed into the medium with a 

micro-reference electrode (MI-402, Microelectrodes, Inc., 

Londonderry, New Hampshire). The reaction medium was 

continuously stirred. The IP1 , IP2 , IP3 , and calcium-free H20 

controls were separately added to the reaction medium to 

determine tissue responses. Inositol phosphates and H20 were 

added sequentially at 4 minute intervals. Except for dose 

response experiments, 20 µM IP1 , IP2 , and IP3 was used in all 

experiments. The free medium level of Ca2+ was monitored 

continuously with the use of a signal amplifier (Johnson 

Research Foundation, Philadelphia, Pa.) and a Bell and 

Howell oscillographic recorder (Figure 1). 

Subcellular fractionation. Fractions were prepared 

according to a modified procedure of Mcswain et al., 1987. 

Sixty glands were used in each assay. The glands were 

homogenized in 1 ml of medium containing 0.25 M sucrose, 10 

mM tricine buffer (pH 7.2), 10 mM MgC12 , 0.05% p-amino

benzamidine, and 5% (w/v) polyethylene glycol. The crude 

homogenate was centrifuged at 900 g for 10 min and the 

pellet was washed twice. The 900 g supernatant was 

centrifuged at 11,500 g for 10 min and the pellet was washed 

twice. The 11,500 g supernatant was centrifuged at 100,000 g 

for 60 min to yield the 100,000 g pellet. 

Electron microscopy. The 100,000 g pellet was collected 



as described above and fixed according to the procedures of 

Mcswain et al., 1987. Thin sections were obtained with a 

Sorvall MT-2 ultramicrotome and stained with methanolic 

uranyl acetate and lead citrate. Sections were examined and 

photographed with a JEOL ex 2 transmission electron 

microscope. 

9 
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RESULTS 

Determination of changes in free medium calcium in response 

to inositol phosphates added to permeabilized salivary 

glands and subcellular fractions 

Changes in medium Ca2+ were continuously monitored for 4 

minutes in the presence or absence of either single 

applications or sequential changes of IP1 , IP2 and IP3 

(Figure 1) • Water controls were subtracted from the observed 

changes. Each experiment was performed in triplicate except 

Figure 4b represents four replications. An analysis of 

variance procedure (Steel and Torrie, 1980) was used to 

evaluate statistical significance of data. A typical chart 

recording of one experiment after sequential additions of 

IP3 , H20, IP2 , H20, IP1 , and H20 respectively at 4 minute 

intervals is indicated in _Figure 2. Few oscillations in 

levels of medium Ca2+ (Berridge and Galione, 1986) were 

observed possibly because the Ca2+ uptake inhibitors 

vanadate and azide were present in the bathing medium. 

Inositol phosphate effects on whole permeabilized salivary 

glands 

IP3 stimulated a significant increase in bathing medium 

Ca2+ (p < 0.05) whereas IP1 and IP2 produced a significant 

decrease (p < 0.05) (Figure 3). Additions of IP3 followed by 

H20, IP2 and H20 at 4 minute intervals stimulated a release 

of Ca2+ in response to IP3 (Figure 4a), but not IP2 • TMB-8, a 
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calcium release inhibitor (Lydan and O'Day, 1988), 

completely inhibited the effect of IP3 (Figure 4b). When IP2 

was added to whole permeabilized glands prior to adding IP3 

(Figure 5), a significant (p < 0.05) decrease in medium ca2+ 

(tissue uptake) was observed while subsequent addition of 

IP3 stimulated a release of Ca2+ (p < 0.05). 

Inositol phosphate effects on fractionated salivary gland 

tissue 

The 100,000 g pellet (Figure 6) contained a homogenous 

mixture of free or attached ribosomes and small membrane-

bound vesicles (microsomes). These results are comparable to 

those observed by Mcswain et al. (1987) in the microsomal 

fraction of tick salivary glands. The addition of IP3 to the 

100,000 g pellet (Figure 7) resulted in a significant 
-

release of ca2+. There were no significant changes in the 

bathing medium Ca2+ after adding IP1 , IP2 or IP3 to combined 

non-microsomal fractions (900 g and 11,500 g pellets) 

(Figure 8). Sequential additions of increasing 

concentrations of IP3 to microsomal tissue (Figure 9) 

indicated that 1 µM IP3 stimulated a significant (p < 0.05) 

release of Ca2+ from microsomes although 20 µM 

concentrations were more effective. IP3 was ineffective in 

stimulating a release of Ca2+ from non-microsomal tissue 

(Figure 10). 



Figure 1. Method for determining release of calcium from 

tick salivary glands with the use of a microelectrode. 

Changes in free medium levels of calcium from fourteen 

permeabilized tick salivary glands (0.1 mM digitonin) or 

non-permeabilized microsomes prepared from sixty glands were 

monitored with a Ca2+ sensitive microelectrode in response 

to adding IP1 , IP2 , IP3 and H20. 
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Figure 2. A representative temporal trace of changes in free 

medium calcium after adding 20 µM IP1 , IP2 , IP3 and H20 to 

tick salivary gland microsomes. The times of IP1 , IP2 , IP3 

and H20 additions are indicated at arrows and experiments 

were performed sequentially, lext to right. A 10 mm recorder 

deflection corresponded to a 5 nmole change in bathing 

medium Ca2+. 
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Figure 3. Changes in free medium Ca2+ (see Figures 1 and 2) 

after adding IP1 ( O ) , IP2 ( O ) and IP3 ( !::::. ) to whole 

permeabilized tick salivary glands. Additions of the three 

inositol phosphate analogs were monitored in separate 

experiments and compared with a H20 control. An analysis of 

variance was used to determine significant differences at 

the p < 0.05 level. The effects_ of IP1 and IP2 were 

significantly different from all other additions after 2 

minutes. The effect of IP3 was significantly different from 

the effects of IP1 and IP2 at all times. Values represent 

the mean ± S.E.M. 
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Figure 4. Changes in free medium Ca2+ (see Figures 1 and 2) 

after adding IP2 (0) and IP3 (~) to permeabilized tick 

salivary glands. IP3 , H20, IP2 and H20; respectively, were 

added to the medium at 4 minute intervals. TMB-8 (75 µM) was 

used to inhibit IP3-sensitive calcium release. An analysis 

of variance was used to determine significant differences at 

the p < 0.05 level. Effects of IP3 were significantly 

different with and without TMB-8 after 1 minute. Values 

represent the mean ± S.E.M. 
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Figure 5. Changes in free medium Ca2+ (see Figures 1 and 2) 

after adding IP2 (0) and IP3 (~) to permeabilized tick 

salivary glands. IP2 , H20, IP3 and H20; respectively, were 

added to the medium at 4 minute intervals as illustrated in 

Figure 2. An analysis of variance was used to determine 
-

significant differences at the p < 0.05 level. This order of 

addition produced a significant difference with the IP2 when 

added before IP3 • Values represent the mean ± S.E.M. 
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Figure 6. Electron micrograph of the 100,000 g pellet from 

feeding lone star tick salivary gland tissue. A large number 

of free or attached ribosomes (R) and membrane-bound 

vesicles ( .... ) were present in the total 100, 000 g pellet. 

Figure B represents an enlargement of the indicated portion 

in Figure A (X19,268). 
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Figure 7. Changes in free medium Ca~ (see Figures 1 and 2) 

after adding IP1 ( O), IP2 ( O) and IP3 ( 6) to tick salivary 

gland microsomes. IP3 , H20, IP2 , H20, IP1 and H20; 

respectively, were added at 4 minute intervals as 

illustrated in Figure 2. An analysis of variance was used to 

determine significant differences at the p < 0.05 level. The 

effect of IP3 was significantly different from the effects 

of IP1 and IP2 after 2 minutes. Values represent the mean ± 

S.E.M. 
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Figure a. Changes in free medium Ca2+ (see Figures 1 and 2) 

after adding IP1 ( O ) , IP2 ( O ) and IP3 ( !::::. ) to non

microsomal (900 g and 11,500 g combined pellets) tick 

salivary gland tissue. Water, IP3 , H20, IP21 H20, and IP1 ; 

respectively, were added at 4 minute intervals as 

illustrated in Figure 2. Values represent the mean± S.E.M. 
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Figure 9. Dose response changes in free medium Ca2+ (see 

Figures 1 and 2) after adding IP3 to tick salivary gland 

microsomes. The IP3 concentrations of 1,2,5,10 and 20 µM; 

respectively, were added sequentially at 4 minute intervals 

as illustrated in Figure 2. An analysis of variance was used 
-

to determine significant differences at the p < 0.05 level. 

The effect of 1 µM IP3 was significantly different from the 

H20 control. Values represent the mean ± S.E.M. 
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Figure 10. Comparison of changes in free medium Ca2+ (see 

Figures 1 and 2) after adding IP3 to microsomal and non

microsomal tick salivary gland tissue. The IP3 and H20 were 

added at 4 minute intervals as illustrated in Figure 2. An 

analysis of variance was used to determine significant 

differences at the p < 0.05 lev.el. A comparison of tissue 

fractions showed a significant difference in the effects 

with 20 µM additions of IP3 • Values represent the mean ± 

S.E.M. 
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DISCUSSION 

A peptidergic factor from tick brain increases inositol 

phosphates in isolated whole salivary glands providing 

evidence that plasma membrane associated phosphoinositides 

are metabolized in response to an agonist in tick salivary 

glands (Mcswain et al., 1989). The final physiological 

consequence of this neuropeptide's action is unknown at this 

time. Inositol 1,4,5-trisphosphate (IP3), an immediate 

product of agonist induced metabolism of membrane associated 

phosphatidylinositol 4,5-bisphosphate, mobilizes ca2+ from 

intracellular stores, possibly the endoplasmic reticulum, in 

many cells (Berridge, 1987). Physiological levels of Ca2+ 

affect the activities of several key regulatory enzymes in 

tick salivary glands (Sauer et al., 1989). We sought to test 

the hypothesis that intracellular Ca2+ is mobilized by 

inositol phosphates in tick salivary glands. 

Digitonin selectively binds to membrane cholesterol 

which produces micelle channels allowing substances to move 

freely through the plasma membrane (Peppers and Holz, 1986; 

Tsien et al., 1982). Since the salivary glands of ticks are 

relatively small, Ca2+ released from whole salivary glands 

can be monitored in a support medium with the use of a Ca2+

sensitive microelectrode. Data indicate that release of Ca2+ 

takes place in response to IP3 but not to IP1 or IP2 when 

added to whole salivary glands and microsomes isolated from 

rapid feeding adult female ticks. TMB-8, a specific 
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inhibitor of IP3 stimulated release of Ca2+ from 

intracellular stores in Dictyostelium discoideum (Lydan and 

o' Day, 1988) , blocks IP3-stimulated Ca2+ release from 

salivary gland microsomal tissue. Sequential dose response 

experiments indicate that 1 µM IP3 can effect a significant 

release of Ca2+ from microsomes. 

The activation of Ca2+ mobilizing receptors can rapidly 

increase the levels of cytoplasmic Ca2+ by both releasing 

stored Ca2+ and stimulating an uptake (Hughes and Putney, 

1988). Berridge and Galione (1988) suggest that there are 

both receptor-controlled and second messenger oscillator 

mechanisms that effect Ca2+ uptake and Ca2+ release. In the 

presence of Ca2+ and ATP, the endoplasmic reticulum Ca2+ 

pumps form a 100 kDa phosphorylated intermediate which can 

be blocked by V04~ (Imamura and Schulz, 1985). Vanadate 
-

prevents non-mitochondrial Ca~ uptake by inhibiting Ca-

ATPase activity in pancreatic acinar cells and rabbit iris

ciliary body (Simons, 1979; Streb et al., 1983; Socci and 

Delamere, 1988). The uptake of mitochondrial calcium can be 

inhibited by sodium azide (Streb and Schulz, 1983). Although 

·vanadate and azide were included in the medium in all 

experiments it was surprising that IP1 and IP2 stimulated an 

apparent uptake of Ca2+ into whole tick salivary glands. Of 

all the inositol phosphates identified in cells to date, 

only IP3 has been clearly shown to have a "second messenger" 

function (Berridge, 1987). These results suggest a role for 

either or both IP1 and IP2 in stimulating an uptake of Ca2+ 



into ca2+ sequestering pools unaffected by vanadate or 

azide. IP1 and IP2 did not stimulate an uptake of Ca2+ into 

microsomal tissue. Clearly more research is needed to 

elucidate the physiological roles of IP1 and IP2 • 

34 

The sequential additions of IP2 and IP3 to whole glands 

produced a significant difference only when IP2 was added 

first. This could be due to unmetabolized IP3 remaining in 

the medium which continues to stimulate a release of Ca2+ 

when IP2 is subsequently added. When IP1 and IP2 were added 

without prior addition of IP3 to the bathing medium a 

significant uptake of Ca2+ into permeabilized whole glands 

was observed. GTP and polyethylene glycol (PEG) were 

included in the bathing medium when testing the effects of 

inositol phosphates on Ca2+ release in microsomal tissue. 

Preliminary data indicated that without their inclusion 

results were inconclusive (data not shown). Dawson et al. 

(1986) suggested that a protein, phosphorylated by GTP, 

binds to the microsomal membranes before IP3 can stimulate 

ca2+ release and that the binding of this protein is favored 

by the presence of PEG, a fusogen that forms membrane bound 

vesicles. Thomas (1988) concluded that GTP increases the 

proportion of the sequestered Ca2+ which is available for 

release by IP3 , either by unmasking latent IP3-sensitive Ca2+ 

release sites or by allowing direct Ca2+ movement between 

IP3-sensitive and IP3-insensitive Ca2+ storage pools. 

The role of IP3 in stimulating a release of Ca2+ from 

feeding tick salivary glands has been clearly demonstrated. 



35 

Although the formation of inositol phosphates and the signal 

transduction pathway exists in tick salivary glands (Mcswain 

et al., 1989), a possible physiological function for the 

breakdown products of IP3 is of additional interest. 

Functions for inositol phosphates other than IP3 are mostly 

unknown; however, because the enzymes which effect their 

formation are quite specific (Majerus, 1986), it is 

speculated that the various inositol phosphates should 

control or effect vital cellular functions. As discussed 

earlier, IP1 and IP2 appear to stimulate an uptake of ca2+ 

into vanadate and azide insensitive pools of permeabilized 

whole salivary glands. Many secretory cells use IP3 to 

generate the calcium signal required to control either ion 

permeability or the release of granules by exocytosis 

(Berridge, 1986) • Sequential events in the latter process 

are poorly understood. Tick salivary glands perform an array 

of functions during tick feeding (Kaufman, 1989) • Many of 

its cells are filled with granules which later disappear and 

are likely secreted as the tick progresses through feeding. 

If IP1 and IP2 stimulate an uptake of Ca2+ into the vesicular 

granules of tick salivary glands, one might speculate that 

there is a possible role for these molecules in granular 

secretion. Another possible explanation for the apparent 

uptake of Ca2+ in response to IP1 and IP2 is the complexing 

of free Ca2+ with phosphates derived from the metabolism of 

inositol phosphates. In this case the IP3 stimulated release 

of free Ca2+ would be much greater than observed. These 
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highly speculative proposals await further investigation to 

determine the cellular functions of Ca2+ in response to IP1 

and IP2 • 
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