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CHAPTER I 

INTRODUCTION 

The thermal energy in a solid may be present in a variety of forms 

corresponding to the mode of motion of its fundamental particles. Among 

these, one can find the vibration of the atoms around an equilibrium 

position, rotation of functional groups in a molecule, and translation 

of electrons. The lattice vibrations, i.e. the phonons, are directly 

involved in typical properties such as thermal conductivity and thermal 

diffusivity. 

The phonons are scattered by any lattice defect as well as by other 

phonons. The actual mobility of a phonon depends upon its velocity of 

propagation and the mean free path. At ordinary temperatures, most of 

the energy is associated with short-wavelength phonons and the 

structural scattering factor is almost independent of temperature. 

The knowledge of the thermal diffusivity is required for the 

prediction of the response of a rock body to a transient heat, source or 

sink. The thermal diffusivity is important in developing predictive 

models of the history of sedimentary basins and can be useful in thermal 

oil recovery process. The thermal diffusivity of a rock is not uniform. 

Within any rock unit there may be both random and systematic variations, 

depending on the degree of chemical differentiation, crystal or particle 

size, orientation and nature of crystal boundaries, and cooling history 

of the rock. A real rock is built from small crystals of lower purity 
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and crystalline quality with intercrystal boundary zones of which the 

properties and behavior are little known. The sandstones, for example, 

are generally rich in quartz (up to 60%) which can be found in small 

crystallites as well as in amorphous form. All these facts may change 

significantly the physical properties of the rock from those of the pure 

crystal. 

The thermal resistance (l/K) is the result of processes that allow 

the interchange of energy between the lattice waves (phonons). Real 

crystals contain irregularities of the lattice (impurities, vacancies, 

etc.) which can scatter the lattice waves. 

Fourier's law states the relationship between the heat current 

density, the temperature and the thermal conductivity [l]. 

j = -K VT (1) 

Let's choose a point P(X,Y,Z,t) where we want to know the 

temperature and draw a rectangular parallelepiped around it with edges 

parallel to the coordinate axes and 2dX, 2dY, 2dZ in length. The rate at 

which heat will flow into the parallelepiped through the plan X-dX can 

be written as 4(Jx-8Jx/8X dX)dYdZ were Jx is the X component of the 

heat flux at point P(X,Y,Z,t). 

The heat flow into the parallelepiped through the plan X+dX can be 

written in the same way as: 

-4(Jx+8JxJ8X dX)dY dZ 

The net heat flux that will enter the box from the X direction will 

therefore be the sum of heat flow through the two planes. 

-BaJx/ax dX dY dZ 

Using the same arguments on the other axes (Y and Z) will result in 

the same type of equation. Therefore the net heat entering the 



parallelepiped will be: 

-8(8Jxf8X+8Jy/8Y+8J2 /8Z) dX dY dZ = -8divJ dX dY dZ (2) 

The rate at which heat is gained in the paralleleiped can be 

written as: 

8C 8T/8t dX dY dZ (3) 

where C is the specific heat per unit volume. Since the flux of 

heat at a point across any surface is -K8T/8n (8/8n denotes 

differentiation in the direction of the outward normal). Therefore we 

can write: 

Jx = -K 8T/8X 

Jy = -K 8T/8Y 

J 2 = -K 8T/8Z 

In vector notation we get Fourier's law: 

j -K gradT (4) 

By equating the heat gained to that entering the paralleleipeped 

(3) with (2) we get: 

-8 divJ dX dY dZ = 8C 8T/8t dX dY dZ 

Or: C 8T/8t dX dY dZ + divJ dX dY dZ 0 (5) 

Substituting j from (4) into (5) and assuming the solid to be 

homogeneous and isotropic gives the thermal diffusion equation: 

v2T - c;K aT/at 0 (6) 

3 



4 

Thermal Diffusivity as a Function of Temperature 

Investigations done by Eucken [2],[3] showed that the thermal 

conductivity of dielectric solids is usually inversely proportional to 

the absolute temperature T. According to the kinetic theory, the thermal 

conductivity of a gas can be written as: 

K = 1/3 C V L (7) 

where K is the thermal conductivity, C is the specific heat per unit 

volume, V is the mean velocity of the molecules and L is their mean free 

path. Debye [4] treated the lattice vibrations of the solid as a gas of 

phonons and expressed the thermal conductivity of a dielectric crystal 

as: 

(8) 

where Cv is the specific heat of those phonons with frequency v, V is 

the velocity of sound in the crystal and Lv is the mean free path of the 

of frequency v. 

According to Debye's model the sound velocity (V) is considered to 

be constant for all polarizations. Provided that the temperature is 

about Debye's temperature or higher the specific heat approaches a 

constant value. Therefore the thermal conductivity is proportional to 

the phonon mean free path (L). It is easy to show that the mean-free­

path for phonon-phonon scattering should go as l/T and therefore Kal/T. 

The mean-free-path, L, is inversely proportional to the density of 

the scattering centers, n. Since the scattering centers are other 

phonons, the scattering density centers will be proportional to the 

number of the phonons: 

kT/nw for T >> nw/k 
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therefore, n is proportional to T. Lis inversely proportional to T and 

so is the thermal conductivity. 

The three phonon process in a crystal can be written as: 

(9) 

where q1 , q2 and q3 are wavevectors of the phonons and G is reciprocal 

lattice vector. 

When G=O the process is called normal; otherwise (G~O) it is called 

Umklapp process. The three phonon process can be helpful in explaining 

the thermal properties of the crystal. The normal process does not 

change the momentum of the phonon and therefore does not change the heat 

flow through the crystal, i.e., it does not produce thermal resistivity. 

The Umklapp process does not conserve the total momentum of the phonon, 

therefore changing the heat flow through the crystal. The Umklapp 

process is capable of bringing the distribution of phonons into local 

thermal equilibrium. At high temperature (room temperature and above) 

most phonons have enough energy fdr the Umklapp process to take place. 

Therefore, this is the dominant process that affects the thermal 

resistivity (l/K) of the crystal. 

The three phonon process is caused by the anharmonic coupling 

between different phonons. The theory of the anharmonic coupling 

predicts that the mean free path is proportional to l/T at high 

temperature. The total number of the exited phonons at high temperature 

is proportional to T. The collision frequency, l/r, (for a given phonon) 

is proportional to the number of phonons that it can collide with. 

Since L = Vr and V is constant 

L ~ l/T 



Therefore, the thermal conductivity of a crystalline substance is 

expected to be proportional to 1/T. 
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On the other hand in amorphous substances the heat conduction is 

due to localized phonons. By increasing the temperature the number of 

the local phonons increases. The local phonons can hop from one site to 

another and thus increase the thermal conductivity of the material. 

Therefore, as opposed to the inverse T dependence of K in a perfect 

crystal, mechanism in amorphous substances lead to dependence 

proportional to T. 

In a real rock the heat conduction can be affected by both the three 

phonon process (Umklapp process) as well as the localized phonons. 

The thermal conductivity is related to the thermal diffusivity by: 

~ = K/C = 1/3 V L (10) 

where ~ is the thermal diffusivity, K is the thermal conductivity and C 

is the specific heat per unit volume. 

Since the specific heat per unit volume of sedimentary rocks is 

about constant in the range 25-100 °c, the thermal diffusivity is 

predicted to vary as l/T. 

~ ex l/T 

Thermal Diffusivity as a Function of Pressure 

Petroleum reservoir rocks sometimes are found in great depths. 

Therefore, they are subjected to the pressure of the overlying rocks. 

The pressure on the rock at a depth of 1000 m will be about 230 At 

(assuming an average density of 2300 Kg/m3 for the overlying rocks). 

Therefore, it is important to measure the thermodynamical properties of 

rocks under stress. Measurements of thermophysical properties of a 
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sample under pressure are complicated. In nature the pressure on the 

rock is axial, but the rock is supported from its sides. In the 

laboratory when applying an axial pressure the sides of the rock have no 

support. The rock is composed of several minerals with pores between 

them. When pressure is applied to the rock the grains start to move 

toward each other, closing the pores. The mechanism is probably elastic 

but only to a certain point leading to micro cracks in the rock when 

additonal stress is applied. Applying more pressure leads to the 

collapse of the rock. 

The thermal diffusivity of a given rock depends, at a constant 

temperature and pressure, on the mineralogical composition as well as on 

its porosity and pore-filling [5]. It is customary to subdivide the bulk 

into contributions due to the rock matrix (pure crystalline) and due to 

the pore space. It can depend on the type of pore fill (air, water, 

hydrocarbons, etc.) and on the geometrical configuration of the pores. 

According to Ulrich [5] the porosity dependence of the thermal 

conductivity can be written as: 

K = K ¢ K (l-¢) 
p m 

where K is the bulk thermal conductivity, KP is the pore thermal 

(11) 

conductivity, ~ is the rock matrix (crystalline) thermal conductivity 

and¢ is the porosity. 

This equation (11) was derived by Woodside and Messmer [6] assuming 

that the rock contains a volume fraction ¢ of pores with thermal 

conductivity KP and 1-¢ pure crystalline grains with thermal 

conductivity of Km. Since KP < ~ we get KP < K < Km. By considering 

two phase distributions, the series and parallel, other limits may be 
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set on K. These distributions correspond to minimum and maximum values 

of K. 

In the series distribution, the two phases are thermally in series 

with respect to the direction of the heat flow. Therefore, the minimum 

value of the effective conductivity wiil be the weighted harmonic mean 

of the crystal and the pores. 

Krain=~ KP[~¢+ Kp(l-¢))-1 (12) 

In the parallel distribution, the phases are in parallel with 

respect to the heat flow direction. Therefore the weighted arithmetic 

mean of the two is the maximum value of the effective conductivity. 

(13) 

Taking the first derivative of K with respect to Km (at the point 

where ~ = KP) for both equations gives the same result. 

[dK/dKm] = 1-¢ (14) 

The fact that equation (14) is satisfied by the two distributions 

means that the conductivity equation for any phase distribution must 

also be satisfied by (14). 

Woodside [6] chose as an intermediate distribution (11) the 

weighted geometric mean to represent the contribution of the crystalline 

and the pore to the whole conductivity. Equation (11) satisfies the 

required condition expressed by (14) and therefore can be a valid 

equation for the thermal conductivity. 

Increasing the pressure on the rock will close the pores and 

decrease the thermal resistivity to heat flow, resulting in an increase 

in the thermal conductivity. Ulrich [S] also presented the same relation 

(11) between the thermal conductivity and the porosity. He showed a 

decrease in the thermal conductivity as the porosity increased. 



CHAPTER II 

EXPERIMENTAL PROCEDURES 

Thermal Diffusivity Measurement 

The thermal diffusivity can be measured directly using either one 

of two basic techniques: the steady-state [7] or the transient method 

[8], [9], [6]. The steady state method requires simultaneous 

measurements of the steady state heat flux and the temperature gradient 

across the sample. The divided-bar or thermal comparator is an example 

to this method [7]. The measurement requires relatively long times in 

order to get the steady state. In the transient method the sample is 

initially set in thermodynamic equilibrium. A pulse of heat (thermal 

energy) is supplied to one side of the sample creating a temperature 

gradient in the sample. The temperatures are measured at three different 

points and are used to calculate the thermal diffusivity. This method is 

much faster and has less restrictions on the sample. An example to this 

method is the needle-probe method [6] and the pulse method [8], [9]. 

The thermal diffusivity governs the temperature profile of a sample 

through the thermal diffusion equation (6). In our experiment we 

applied heat and checked the temperatures in one axis. Therefore, the 

thermal diffusion equation can be reduced to one dimension. 

dT/dt = ~d2T/dX2 

Using the pulse method [8], [9] the thermal diffusivity is 

determined. The heat losses through the lateral surface of the sample, 
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in the region of interest (about 10 mm) has little effect on the 

temperature distribution of the sample in the case of low thermal 

diffusion. Therefore, there was no need to correct for heat losses 

through radiation or convection. 

In the pulse method there are two possible sources of error: 

10 

1. Systematic error due to the error in measuring the distances between 

the thermocouples. It can be of the order of 10% (measuring 5 mm with 

accuracy of 0.5 mm). This affects only the absolute value of the 

diffusivity and does not change with temperature or pressure. 

2. Random errors due to the scattering of the experimental data with 

respect to the least square regression line. These can affect both, the 

relative and absolute values of the thermal diffusivity, and changes 

with temperature and pressure. The value of the random error (Sigma) was 

calculated for each experiment. The Sigma was 1% to 5% for the various 

experiments. 

Set-Up (Apparatus) 

The experimental set up, as illustrated in Fig. 1, includes: 

1. An H.P. Integral Personal Computer to set the measurement 

parameters, start and control the experiment, collect, reduce, 

store and plot the data. 

2. Digital Multimeter (x3) (Model 3478A) to measure the voltage 

produced by the thermocouples and output it, in digital form, to 

the computer (upon request). These D.V.M. allow measurement as 

sensitive as O.lmV (0.003 K) 

3. D.C. Power Supply (H.P. Model 16271B) to give the energy to the 

heater. 



4. Data Acquisition Control Unit (H.P. Model 4321A) to time the 

heater. 

5. Computerized Temperature Controller (Omega CN-2000) to set and 

control the temperature of the ambient , around the sample. 

11 

6. Hydraulic hand pump press (ENERPAC Model P-141) to set load on the 

sample. 

7. Thermocouples (x3) type K to measure the temperatures gradient at 

three different point on the sample. 

8. Electronic Ice Points (X3, Omega Model MCJ) to set an electronic 

reference point to the thermocouples. 

9. Cylindrical Furnace to heat the ambient (around the rock) and set 

the temperature of the whole rock. 

10. Heater to provide a pulse of heat to the sample and enable the 

thermal diffusivity measurement. 

11. Sample holder and housing. 

12. The sample itself. 
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Measurement Procedure 

A. System Preparation 

The system was built from two basic components: hardware and 

software. The hardware, as described in the previous section, contains 

the setups (hydraulic press, temperature controller) and the measuring 

devices (D.V.M., computer). The system described by French [9] was 

designed to measure the thermal diffusivity at atmospheric pressure 

only. For the present study it was necessary to modify the system and 

allow pressure to be applied to the sample with an hydraulic press. 

Heat conduction through the press head limited the temperature that 

could be safely reached on the sample to about 100 °c. The hydraulic 

press was brought to a mode were it can hold the pressure required to 

put on the sample for the measuring cycle. The temperature controller 

was also modified so that it could be remotely programmed using the 

computer. The temperature controller was wired to the computer and the 

heater as illustrated in Appendix C. In order to set and check the 

ambient temperature the operating program and several subroutines were 

modified and a subroutine (CONTSET) was added to it. Some other changes 

were made in the programs in order to simplify the names of the 

experiments, allow stronger interaction with the experiment conducted 

and record bigger records of information about the experiments 

performed. The programs and subroutines used in order to perform the 

measurement and reduce the data are added as Appendix D. 
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B. Sample Preparation 

The samples were sedimentary rocks in the shape of cylinders, 3 to 

5 cm in length and 2.5 cm in diameter. The bases of the cylinders were 

cut in parallel using a special holder designed to get parallel bases 

(Appendix B). Three thermocouple wells 0.9 mm in diameter and 8 mm deep 

were drilled at 5 mm intervals along the long axis of the rock. The 

distance between the thermocouples was chosen to be 5 mm in order to 

allow response to the pulse of heat by all three thermocouples, when 

measuring thermal diffusivity of the order of 0.01 cm2/s. A heat shrink 

sleeve (CLEAR FPS-096-4005-CLR) was used to support the sample and hold 

the rock to its place. The heat shrink sleeve, 2 inches in diameter, was 

cut 5 mm longer then the rock, set over the rock and heated (150 °c for 

25 minutes) in a furnace . Three holes were drilled in the heat-shrink 

above the wells in the rock. 

C. The Measurement 

The main program (TDFMl) was loaded and run. The parameters for the 

experiment (control and working set-ups) were chosen and set. The rock 

was brought to thermodynamic steady state at the temperature and 

pressure where the thermal diffusivity was requiered. The computer 

triggered the D.V.M and recorded the initial temperatures of the rock. 

The heater, located at one end of the rock, was turned on causing a heat 

flow through the rock. After a delay of 2 to 10 seconds a series of 

simultaneous temperature readings was collected for 40 s, in intervals 

of 0.5 s, and stored in the computer. When the heater was turned on a 

pulse of 2 W was applied to the heater causing a raise of 10 to 14 °c in 



the reading of the thermocouple nearest to the heater. Then the heater 

was turned off allowing equilibrium to be re-established in the rock. 

While awaiting equilibrium, the computer reduced the data of the 

temperatures, calculated the thermal diffusivity to be displayed, 

plotted (upon request) and stored them on a diskette. 
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The data reduction process started by converting the voltages to 

temperatures. To eliminate mismatch between the thermocouples, the 

initial temperature was subtracted from each point. Then the thermal 

diffusion equation, in one dimension, was numerically solved. The 

temperatures and the thermal diffusivity were stored on the diskette and 

we were able to see and plot them. Fig. 2,3 represent the temperature 

gradient in the sample and the thermal diffusivity calculated based on 

it. 
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Problems In Performing The Measurements 

The first problem we faced was the hand press not holding the 

pressure it was supposed to set on the sample. We found that within an 

hour the pressure dropped by about 50% from the initial pressure. To 

overcome this problem a needle valve, which can hold pressures up to 

10000 PSI (ENERPAC V-8), was added to the system. It was added in 

17 

series with the hydraulic press lines. By adding the valve the pressure 

set on the rock could be locked. 

The second problem was due to the heat we applied to the system. By 

heating the ambient around the sample the sample holder and part of the 

press expended. As a result the pressure on the sample increased. To 

overcome this problem the pressure needed to be reduced each time before 

making the measurements. This problem caused, once, the pressure to 

exceed the limits of the rock resulting in its collapse. 

The main problem we faced was the resistance of the rock to 

uniaxial pressures. Most of the rocks broke at pressures less than 200 

At. To protect the rocks and enable measurements, at limited pressures, 

up to 1500 PSI (without breaking the rock) we prepared the rocks in the 

following way: 

1. Cut the bases of the cylinders parallel. 

2. Cover the rock with heat shrink sleeve to support the outer walls and 

hold the rock to its base on the heater. 

These two steps, mentioned above, were done for each rock in the 

preparation phase. More detail in Appendix A. 



CHAPTER III 

RESULTS 

The thermal diffusivity of 10 different rocks was measured as a 

function of temperature and pressure. The settings of the various 

experiments is detailed in Table I. 

TABLE I 

SETTING OF THE EXPERIMENTS 

MEASUREMENT RANGES 
ROCK DESCRIPTION 

RANGE OF 
PRESSURES 
At 25 °c 

1PRESSURES WHERE TEMP (25-100 °C) 
I 
I 

SYMBOLl TYPE 14.5 400 
I ------,--------------- -----------
lBerea Sandstone 

BSHl lHorizontal bed 1 14.5-1500 + + 
------:--------------- -----------

:Berea Sandstone 
BSH4 :Horizontal bed 14.5-1500 + + 1 

------ --------------- ---------1--':'----

BSVl 
Berea Sandstone 
Vertical bed 

I 
I 

14.5-1500 : + 
I ------ --------------- ---------r-i----

C22.l sandstone 14.5-1500 : + 

+ 

------ --------------- ___________ l ____ I __ _ 

Ll50 1 Limestone 14.5-1500 + : 1 

------:--------------- ----------- ----:---
LI65 : Limestone 14.5-1500 + : 

------:--------------- ----------- ----:---
Ll66 : Limestone 14.5-1500 + l + 

------:--------------- ----------- ----:---
MCA362l Dolomite 14.5-2500 + : + 
------ :--------------- ----------- ----:---

MXNOll Dolomite 14.5-2500 + l + 
------:--------------- ----------- ----:---

MXN04 l Dolomite l 14. 5- 2500 + l 
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+ : I : 
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Rock BSHl 

The thermal diffusivity of rock BSHl as a function of pressure 

(14.5-1500 PSI) was measured at room temperature in two consecutive 

cycles (Fig. 4). The thermal diffusivity increased from 0.0081 to 

0.0090 cm2/s as the pressure increased and recovered to its initial 

19 

value upon reducing the pressure. The results maintained the same value 

in all the cycles. 
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Using equation (11) and assuming that the rock contains crystalline 

grains of Si02 and air at the pores the porosity was calculated. It 

decreased from 27% to 25% while the pressure increased from 14.5 to 1500 

PSI, and increased back to 27X upon reducing the pressure (Fig. 5). 
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At three pressures (14.5, 400 and 1000 PSI) the thermal diffusivity 

was measured as a function of temperature (25-100 °c). The thermal 

diffusivity decreased by 24%-28% . These slopes (Fig. 6) are slightly 

bigger than l/T. Plotting the function ryT also showed that the thermal 

diffusivity decreased faster than l/T. Normalizing the thermal 

diffusivity as function of temperature at 400 and 1000 PSI with the one 

measured at 14.5 PSI gave a negative slope of about 20% (400 PSl) for 

the first cycle and 10% for the other two (1000, 400 PSI). The bias 

factor decreased from 1.18 to 0.95 in the last two . 
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Rock BSH4 

The thermal diffusivity of rock BSH4 was measured as a function of 

pressure (14.5-1500 PSI) at room temperature in two consecutive cycles 

(Fig. 7). The thermal diffusivity increased from 0.012 to 0.016 cm2/s. 

By reducing the pressure back to 14.5 PSI the thermal diffusivity 

recovered to its initial value (0.012 cm2/s). 
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Using equation (11) and assuming that the rock contains crystalline 

grains of Si02 and air at the pores the porosity was calculated. It 

decreased by about 30% changing from 20% to 14% and recovered to 14% 

upon releasing the pressure (Fig. 8). 
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At three pressures (14.5, 400 and 700 PSI) the thermal diffusivity 

as a function of temperature (25-100 °c) was checked. It decreased by 

27% to 30% (Fig. 9). These slopes are bigger than l/T. Plotting the 

function ~T also showed that the thermal diffusivity decreased faster 

than l/T. Normalizing the thermal diffusivity as a function of 

temperature at 400 and 700 PSI wi~h the one got at 14.5 PSI gave a 

negative slope of 10% to 20%. The normalization factor was found to 

change from 1.4 to 1.2 for 400 PSI and from 1.3 to 1.2 for 700 PSI . 
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Rock BSVl 

The thermal diffusivity of rock BSVl as a function of pressure 

(14.5-1500 PSI) at room temperature was measured in 3 sequential cycles 

(Fig. 10). The thermal diffusivity increased as the pressure increased 

and decreased to its initial value, upon reducing the pressure. The 

thermal diffusivity increased by 20% from 0.0115 cm2/s at atmospheric 

pressure to 0.0138 cm2/s at 1500 PSI. 
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Using equation (11) and assuming that the rock contains crystalline 

grains of Si02 and air at the pores, the porosity was calculated. It 

decreased by about 20% (Fig. 11), from 21% to 17%. 
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At three pressures (14.5, 400 and 800 PSI) the thermal diffusivity 

was checked as a function of temperature (25-100 °c). The thermal 

diffusivity decreased by about 30%. These slopes (Fig. 12) are bigger 

than l/T. Plotting the function ~T also showed that the thermal 

diffusivity decreased faster than l/T. Normalizing the thermal 

diffusivity as a function of temperature at 400 and 800 with the one at 

14.5 PSI gave a constant with normalization factor of 1.1. 
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Rock C22 

The thermal diffusivity of rock C22 as a function of pressure (14.5-

1500 PSI) was measured at room temperature. Four cycles of pressure were 

applied to the rock (Fig. 13). The first 3 cycles were performed one 

immediately after the other, but the fourth was applied after 4 months. 

In all the cycles the thermal diffusivity increased as the pressure 

increased, but the increasing rate decresed in the sequent cycles (12%, 

6% and 3% in the third). In the last cycle which was performed after 

four months the rate came back to 10%. The thermal diffusivity at 

atmospheric pressure, increased in the subsequent cycles from 0.0103 

crn2/s in the first cycle to 0.0128 cm2/s in the last one. 
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Using equation (11) and assuming that the rock contains crystalline 

grains of Si02 and air at the pores, the porosity was calculated. It 

decreased by less than 10% each cycle, changing from 22.4% to 20.4% in 

the first cycle, from 20.9% to 19.8% in the second and from 20.8% to 

20.4% in the third cycle. In the fourth cycle the porosity decreased 

from 18.5% to 16.8% and was found to recover to 18% when the load was 

released (Fig. 14). 
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At two pressures (14.5 and 600 PSI) the thermal diffusivity was 

checked as a function of the temperature (25 to 100 °c). It decreased by 

26%-27%. These slopes (Fig. 15) are slightly bigger than l/T at that 

range. Plotting the function ~T also showed that the thermal diffusivity 

decreased faster than l/T. Normalizing the thermal diffusivity as a 

function of temperature at 600 PSI with the one got at 14.5 PSI gave a 

constant with normalization factor of 1.1 . 

..--. 
D'l 

........... • a u 

' 0 
T-1 ........ 

>-
e-. .... 
> .... 
fll 

:::::> 

rz. 
rz. .... 
c:l 

..:a 
< 
:::i:i 
~ 

l!i:1 

lrl 
E-< 

15 

10 

5 

0 
0 

'* ···+ .. 

' ·+· 14-.5 PSI 

"-* a.5 PSI 

-8-- 800 PSI 

D 

20 40 60 80 

TEMPERATURE 
100 

[ . c ] 
120 

Figure 15. Thermal Diffusivity as a Function of Temperature, at Various 
Pressures, for Rock C22. 



31 

Rock Ll50 

The thermal diffusivity of rock Ll50 as a function of pressure 

(14.5-1500 PSI) was measured at room temperature in two consecutive 

cycles (Fig. 16). The thermal diffusivity increased from 0.0088 to 0.012 

cm2/s in the first cycle and from 0.010 to 0.013 crn2/s in the second 

cycle, as an "hyperbola". At the end of the second cycle (after 

measuring the thermal diffusivity three times) at 1500 PSI the sample 

broke. 
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Using equation (11) and assuming that the rock contains crystalline 

grains of Caco3 and air at the pores the porosity was calculated. It 

decreased from 20% to 13% in the first cycle and from 17% to 12.5% in 

the other (Fig. 17). 
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The thermal diffusivity as a function of temperature (25-100 °c) 

was checked at atmospheric pressure. It was found to decrease by 36% 

(Fig. 18). This slope is bigger than l/T. Plotting the function ~T also 

showed that the thermal diffusivity decreased faster than ljT. It was 

found to decrease from 3.2 to 2.7. 
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Rock Ll65 

The thermal diffusivity of rock Ll65 as a function of pressure 

(14.5-1500 PSI) was measured at room temperature in three consecutive 

cycles (Fig. 19). The thermal diffusivity increased from 0.0071 to 

0.0113 cm2;s in the first cycle, from 0.0091 to 0.0111 cm2;s in the 

second and from 0.0096 to 0.0111 cm2/s in the last onE. The shape of the 

change was like an "hyperbola". The values of the thermal diffusivity at 

atmospheric pressure increaed in each sequent cycle (hysteresis). It 

increased by 28% between the first and the second cycles and by 5% 

between the second and the last cycle. 
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Using equation (11) and assuming that the rock contains crystalline 

grains of Caco 3 and air at the pores the porosity was calculated. The 

porosity decreased from cycle to cycle, at atmospehric pressure, and 

within each cycle. It decreased, as the pressure increased, from 24.4% 

to 15.3% in the first cycle, from 19.6% to 15.6% in the second and 

increased in the third cycle to 18.5% upon releasing the pressure (Fig. 

20). 
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At five pressures (14.5,500,800,1000 and 1300 PSI) The thermal 

diffusivity was checked as a function of temperature (25-100 °c). The 

thermal diffusivity decreased by 24% to 33%. These slopes (Fig. 21) are 

bigger than l/T. Plotting the function ~T also showed that the thermal 

diffusivity decreased faster than l/T. The factor as function of 

temperature changed from 2.2 to 2.1, for 14.5, and from 3.5 to 2.7 for 

1300 PSI. All the thermal diffusivities were normalized relativly to the 

thermal diffusivity at atmospheric pressure. The normalization factor 

changed from 1.4 to 1.6 as increasing the pressure but the slopes 

maintained about the same value for all pressures. The normalization 

factor changed by 25% in the range 25 to 100 °c. 
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Rock Ll66 

The thermal diffusivity of rock 1166 was measured as a function of 

pressure (14.5 to 1500 PSI) at room temperature (Fig. 22). The thermal 

diffusivity increased from 0.0065 to 0.00925 cm2/s like an "hyperbola" 

while the pressure increased, and decreased to 0.00755 cm2/s (with an 

hysteresis) upon releasing the pressure. 
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Using equation (11) and assuming that the rock contains crystalline 

grains of Caco3 and air at the pores the porosity was calculated. The 

porosity decreased from 26.2% to 19.2% when the pressure cycle was set 

and reduced to 23.2% upon reducing the stress (Fig. 23). 
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At three pressures (14.5, 400 and 1000 PSI) the thermal diffusivity 

as a function of the temperature (25-100 °c) was measured. The thermal 

diffusivity decreased by 32% to 38% as the temperature was increased. 

These slopes (Fig. 24) are bigger than l/T. Plotting the function ~T 

also showed that the thermal diffusivity decreased faster than l/T. The 

slopes were about constant but the bias changed with the pressure from 

2.3 to 2.8. Normalizing the thermal diffusivity as a function of 

temperature at 400 and 1000 PSI with the one got at 14.5 PSI resulted in 

two slopes. For 400 PSI the normalization factor changed from 1.1 to 

0.97 and for 1000 PSI it changed from 1.22 to 1.15. 
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Rock MCA362 

The thermal diffusivity of rock MCA362 was measured as a function of 

pressure (14.5-2500 PSI) at room temperature in 3 consecutive cycles 

(Fig. 25). The thermal diffusivity increased from 0.0115 cm2/s at 

atmospheric pressure to 0.013 cm2/s (at 2500 PSI). By reducing the 

pressure to 14.5 PSI the thermal diffusivity recovered to its initial 

value. 
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Using equation (11) and assuming that the rock contains crystalline 

grains of Caco3 and air at the pores the porosity was calculated. Upon 

increasing the pressure.to its maximum value (2500 PSI) the porosity 

decreased from 15% to 13% and recovered to 15% as the pressure was 

released (Fig. 26). 
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At six pressures (14.5,400,800,1000,1300 and 1500 PSI) the thermal 

diffusivity as a function of temperature (25-100 °c) was checked. The 

thermal diffusivity decreased by 25% to 32%. These slopes (Fig. 27) are 

bigger than l/T. Plotting the function ~T also showed that the thermal 

diffusivity decreased faster than l/T. It decreased from 3.6 to 3.3 

cm2/(s K) for 14.5 PSI and from 3.7 to 3.3 for 1000 PSI. Normalizing the 

thermal diffusivity as a function of temperature at the higher pressures 

with the one got at 14.5 PSI gave a normalization factor which changed 

from 1.1 to 0.9. 
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Rock MXNl 

The thermal diffusivity of rock MXNl as a function of pressure 

(14.5-2500 PSI) was measured at room temperature in 3 sequential cycles 

(Fig. 28). The thermal diffusivity changed by about 5% when pressure 

was applied to the sample. It increased from 0.0229 to 0.0235 cm2;s in 

the first cycle, slightly decreased fro~ 0.0180 to 0.0177 cm2;s in the 

second and increased from 0.0211 to 0.0224 cm2/s in the last cycle. 
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Using equation (11) and assuming that the rock contains crystalline 

grains of Caco3 and air at the pores the porosity was calculated. It 

decreased from 1.4% to 0.9% in the first cycle, increased from 6.2% to 

6.5% in the second and decreased again from 3.0% to 1.9%. It raised to 

2.8% when the load was released (Fig. 29). Within the experimental error 

we can say that it maintained the value of 4%, regardless of the 

pressure. 
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At seven pressures (14.5, 400, 500, 600, 1000, 1300 and 1800 PSI) 

the thermal diffusivity as a function of temperature (25-100 °c) was 

measured. The thermal diffusivity decreased by 30% to 36%. These slopes 

(Fig. 30) are bigger than l/T. Plotting the function ~T also showed that 

the thermal diffusivity decreased faster than l/T. The multiplication 

resulted in a slope of 10% around the value of 6 to 6.5. Normalizing the 

thermal diffusivities as a function of temperature at 400, 500, 600, 

1000, 1300 and 1800 PSI with the one got for 14.5 PSI resulted in values 

from 1 to 1.3. 
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Rock MXN4 

The thermal diffusivity of rock MXN4 was measured as a function of 

pressure (14.5-2500 PSI) at room temperature in two consecutive cycles 

(Fig. 31). The thermal diffusivity decreased in the first cycle from 

0.0238 to 0.0216 cm 2;s and from 0.0235 to 0.022 cm2/s in the second and 

maintained about the same value upon decreasing the pressure to 500 PSI. 
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Using equation (11) and assuming that the rock contains crystalline 

grains of Caco3 and air at the pores the porosity was calculated. It 

increased from 0.9% to 2.5% in the first cycle and from 1.2% to 2.7% in 

the last one (Fig. 32). 
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At a pressure of 14.5 PSI the thermal diffusivity as a function of 

the temperature (25-100 °c) was measured (Fig.33). The thermal 

diffusivity decreased by 247. with increasing the temperature to 100 °c. 

This slope (Fig. 33) is bigger than l/T. Plotting the function ~T also 

showed that the thermal diffusivity decreased faster than l/T. The 

result of the multiplication was a constant of 7.2. 
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The results are summarized and represented in the following Table. 

TABLE II 

SUMMARY OF THERMAL DIFFUSIVITY AS A FUNCTION OF 
TEMPERATURE AND PRESSURE 

Thermal Diff. % Porosity Thermal Diff. Values of 
ROCK as a function as a function as a function Thermal Diff. 

of Pressure of Pressure of Temperature Multiplied by 
Symbol 14.5 to Max. 14.5 to Max. 25 to 100 °c Temperature 

BSHl 

.0081-.0090 

.0082-.0090(B) 

.0082 

26.9-i4.9 
26.6-24.9 
26.6 

.0119-.0160 19.8-14.4 
BSH4 .0118-.0160(B) 20.0-i4.4 

BSVl 

C22.l 

Ll50 

. 0114-. 0135 

.0113-.0138 

.0116- .0138(B) 

. 0103- . 0115 

. 0112-. 0119 

. 0113-. 0115 

.0128-.0140 

.0134 

.0088-.0125 

.0102-.0130 
Sample broke 

20.6-17.5 
20.8-17.1 
20.3-17.1 

22.4-20.4 
20.9-19.8 

! 
20.8-20.4 
18.5-16.8 
17.6 

20.2-13.3 
17.3-12.5 

.0098-.0074 

.0104-.0075 

.0089-.0070 

.0083-.0063 

.0157-.011 

.0120-.0098 

.0144-.0108 

2.9-2.7 (14.5) 
3.1-2.8 (400) 
2 . 7 - 2 . 6 ( 1000) 
2.5-2.4 (400) 

4.7-4.2 (700) 
3.6-3.3 (14.5) 

14.3-4.0 (400) 
I 
I 

--------------·--------------
. 0114-. 0080 
.0120-.0083 
.0121-.0084 

. 0112-. 0083 

.0128-.0093 

. 0135-. 0097 

. 0104-. 0071 

3.4-3.l (14.5) 
3.5-3.l (400) 
3.6-3.1 (800) 

3.4-3.l (14.5) 
3.8-3.5 (14.5) 
4.0-3.7 (600) 

3.1-2.6 (14.5) 



ROCK 

Symbol 

Ll65 

Ll66 

I 
I 

: Thermal Diff. 
las a function 
: of Pressure 
l 14.5 to Max. 
I 
I 

. 0071-. 0113 

. 0091-. 0111 

.0096-.0lll(B) 

.0065-.00925 

.00755 

.0116-.0128 
MCA362 .0115-.0133 

.0119 

.0114-.0128 

.0229-.0235 

.0180-.0177 
MXNl .0211-.0224 

.0214 

Table II (continued) 

% Porosity 
as a function 
of Pressure 
14.S to Max. 

24.4-15.3 
19.6-15.6 
18.5-15.6 

26.3-19.2 
23.2 

14.8-12.8 
15.0-12.1 
14.3 
15.1-12.8 

1.4-0.9 
6.2-6.S 
3.0-1:9 
2.8 

I 
I 

Thermal Diff. :values of 
as a function :Thermal Diff. 
of Temperature:Multiplied by 

25 to 100 °c l Temperature 

.0095-.0072 

.0107-.0075 

. 0110-. 0075 

.0111-.0078 

.0097-.0065 

.0079-.0049 

.0093-.0060 

.0076-.0052 

.0116-.0079 

.0125-.0088 

.0119- .0089 

.0117- .0089 

. 0121-. 0090 

. 0121- . 0091 

.0118-.0093 

. 0122- . 0091 

.022-.014 

. 021-. 016 

. 021- .015 

.022-.016 

.022- .017 

.023-.016 

I 
I 

:2.9-2.6 (500) 
p.2-2.8 (800) 
r3.4-2.8 (1000) 
3.4-2.9 (1300) 
2.9-2.5 (14.5) 

2.4-1.8 (400) 
2.8-2.3 (1000) 
2 . 3 -1. 9 ( 14 . 5 ) 

3.5-2.9 (14.5) 
3.7-3.3 (1000) 
3.6-3.3 (14.5) 
3.5-3.3 (400) 
3.6-3.4 (800) 
3.6-3.4 (1000) 
3.5-3.5 (1300) 
3.7-3.4 (1500) 

6.6-5.2 (14.5) 
6.3-6.0 (400) 
6.3-5.6 (600) 
6.6-6.0 (1000) 
6.3-6.3 (1300) 
6.9-6.0 (1800) 

.0238-.0220 0.9-2.5 
MXN4 .0240-.0224 1.2-2.7 .024-.019 7.2-7.1 (14.5) 

so 



CHAPTER IV 

DISCUSSION 

Thermal Diffusivity ~s a Function of Pressure 

The thermal diffusivity as a function of pressure was checked for 

10 sedimentary rocks: sandstones (Berea: BSHl, BSH4, BSVl and C22), 

limestones (Ll50, Ll65, Ll66) and Dolomites (MCA362, MXNl, MXN4) (Table 

II). In general the thermal diffusivity positively followed the changes 

in the pressure. Similar response was also observed by Ashworth [10) who 

found in a limestone rock an increase of 6% (0.0257-0.02727 W(cm K)- 1 ) 

in the thermal conductivity upon increasing the pressure from 177 to 

2653 PSI. 

The thermal diffusivity of three Berea Sandstones (BSHl, BSH4, BSVl) 

was measured as a function of pressure at room temperature. All these 

rocks responded similarly. As the pressure increased the thermal 

diffusivity increased and decreased to the initial value upon reducing 

the pressure. The thermal diffusivity increased by 10% to 40% in the 

various rocks (BSHl, BSVl, BSH4) as the pressure increased to 1500 PSI. 

The value of the thermal diffusivity at atmospheric pressure was about 

the same (0.011, 0.012 cm2/s) for BSH4, BSVl and about 30% smaller 

(0.081 cm2/s) for BSHl. These differenecs in the response of the rocks 

can be related to the different histories they probably experienced. The 

different magnitude in the response of BSH4 and BSVl is probably due to 

experimental errors. In rock C22 the thermal diffusivity in the first 

51 



52 

cycle increased from 0.0103 to 0.0115 cm2/s by increasing the pressure 

to 1500 PSI, but reduced to 0.0112 upon reducing the pressure. This 

hysteresis was found to decrease and disappear in the consecutive 

cycles. The rate of increase (slope) of the thermal diffusivity 

decreased and disappeared in the sequential cycles. These two findings 

indicate the closing of the pores. Therefore, the thermal diffusivity 

did not change as the pressure on the rock was increased in the 

sequential cycles. In an experiment that was conducted after four 

months, the hysteresis and the change in thermal diffusivity as function 

of pressure were the same as in the first cycle. These findings may 

point to a recovery mechanism in the rock. 

In the group of Dolomites three rocks (MCA362, MXNl and MXN4) were 

checked. In the MCA362 rock the thermal diffusivity increased from 

0.0116 cm2/s by 10% when the pres~ure was increased to 2500 PSI and 

reduced to the initial value upon decreasing the pressure to atmospheric 

pressure. In the sequential cycles the same results were obtained. The 

same result was also obtained in the last experiment conducted five 

months later. These findings may point out that the motion of the grains 

within the rock was elastic up to 2500 PSI and that no plastic 

deformation or micro-cracks occured. The results for the MXN type were 

not consistent. The thermal diffusivity increased by 3% in the first 

cycle, decreased by 1% in the second and increased again by 5% in the 

last cycle. With rock MXN4 the thermal diffusivity decreased from 0.024 

cm2/s by 7% at 2500 PSI. The changes are in the experimental error of 

the measurement and, therefore, we can say that the thermal diffusivity 

is about 0.023±0.001 cm2/s (within the experimental error) regardless of 

the pressure. 
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The thermal diffusivities of 3 limestone rocks: 1150, 1165 and 1166 

were measured. Essentially the rocks responsed in a similar way. Two 

phenomena were observed: the thermal diffusivity increased as an 

"hyperbola" upon increasing the pressure and decreased to a higher value 

than the initial, when the pressure was reduced (hysteresis). The size 

of the hysteresis decreased in the sequential cycles from 30% to less 

than 5%. The thermal diffusivity at maximum pressure (1500 PSI) was 

similar in all cycles. Upon increasing the pressure to 1500 PSI the 

thermal diffusivity increased by 40% in the first cycle and 30% in the 

following cycles. The apparent differences in the thermal diffusivity 

measured for the three rocks may result from experimental errors. 

Assuming that the three rocks are from the same batch (place, depth and 

sharing the same history), the thermal diffusivity at standard 

conditions (room temperature and atmospheric pressure) was 0.0075±0.0009 

cm2/s. One of the rocks, 1150, broke during the experiment after being 

held under the high pressure (1500 PSI) for about 2 hours. Using all 

these facts one can try and explain what happens in the rock when 

pressure is applied. The grains ate probably condensed by the pressure 

closing the pores between them and thereby decreasing the thermal 

resistance to heat flow. This process is limited by the size of the 

pores. Increasing the pressure causes the grains to start touching each 

other. This process is probably elastic to a certain point where micro­

cracks start to appear. The elasticity of the process is, probably 

decreasing in the consecutive cycles. Additional increase in the 

pressure will not change the thermal diffusivity, but will result in 

breaking the rock, as happened in the case of 1150. The decrease in the 
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elasticity can explain why by reducing the pressure the thermal 

diffusivity reduced to a higher value than the initial one. Repeated 

pressure cycles probably closed most of the gaps and therefore, the 

hysteresis in the thermal diffusivity was reduced, the changes in the 

thermal diffusivity become smaller and finally vanished. 

The crystalline Si02 is the main mineral (60% to 70%) in sandstone. 

In limestones and Dolomites Caco3 is the main mineral (70%-80%). Both 

have about the same thermal conductivity [11]. The porosity was 

calculated by assuming that the main filling of the pores is air, using 

equation (11) and values from [11]. In general, the porosity changed in 

the opposite direction to the thermal diffusivity. The porosities in 

the first cycle at room temperature and atmospheric pressure were 20%-

27% for the sandstones, 20%-26% for the limestones and 1%-15% for the 

Dolomites. Woodside [6] obtained similar results for the porosity of 

Berea Sandstone (22%). By increasing the pressure the porosity of all 
I 

the rocks, except MXNl and MXN4, decreased as predicted. The rate and 

shape were different for the various rocks. In the Berea Sandstones the 

porosity decreased: from 20% to 14% for BSH4, from 21% to 17% for BSVl 

and from 27% to 25% for BSHl. These results lead to the previous 

conclusion: the history of BSHl is probably different (location, depth) 

from that of BSH4 and BSVl. In rock C22 the porosity decreased from 22% 

by 8% in the first cycle and increased to 21% upon releasing the 

pressure. In the following cycles the porosity maintained the same 

value, 20.5%, (within the error limits) regardless of the pressure . In 

the Dolomite, MCA362, the porosity decreased from 15% to 12% upon 

increasing the pressure. For the MXN the porosity changed around 4%, 

within the error limit of the measurements, with no distinct direction. 
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In the limestones the porosity in the first cycle, at room temperature 

and atmospheric pressure, varied from 20% to 26%. By increasing the 

pressure the porosity decreased with an hysteresis and increased to a 

lower value (than the initial) upqn releasing the pressure. In the 

sequential cycles the rate of decrease in the porosity was smaller. 

These results indicate a decrease in the volume fraction of the pores as 

pressure is applied. 

Thermal Diffusivity as a Function of Temperature 

The thermal diffusivity was found to decrease as the temperature 

increased from 25 to 100 °c. It decreased by 24% to 36% according to the 

rock and pressures. The mean-free-path in the solid can be approximated 

by the equation: 

L-3~~ 

where Lis the mean-free-path, ~·is the thermal diffusivity and Vis 

the wave velocity in the rock ( 5xl05 cm/S in quartz [12]). Using this 

equation and thermal diffusivities of lxlo- 2 cm2/s one can obtain the 

mean-free-path to be 0.6xlo~7 cm. !The grain size (10-30 µm) is 4 orders 

bigger, therefore, we can assume that most of the scattering occurs 

inside the crystal grains. Theref9re, we can predict the thermal 

diffusivity to decrease as l/T when raising the temperature. In the 

range 25-100 °c l/T decreases by 20% linearly. We found the thermal 

diffusivity to decrease, in the range 25-100 °c, by 24% to 36% for the 

different rocks and pressures. No simple relation was found between the 

the rate of decrease (slope) to the pressure set on the rock. The 

thermal diffusivity in all the rocks decreased as l/T or faster. 
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In an effort to understand the relationship between the thermal 

diffusivity and the temperature we plotted the thermal diffusivities 

multiplied by the temperature as a function of the temperature (Fig. 

34,35). The slopes were negative, indicating that~ changes faster than 

1/T, and varied from rock to rock and for each rock at the various 

pressures. No simple relation between the slopes and the pressure 

applied to the rock was found. 

Another relation we looked for was the nature of the change in the 

thermal diffusivity as a function of the pressure normalized with the 

value got at 14.5 PSI (Fig. 36,37). The slopes were found to be negative 

and to vary from 3% to 15%. No simple relation was found in this study. 

Another function we tried to fit to the set of data was 

~(T) = ~(300) [300/T]1 

looking for a relation between 1 and the pressure. Sweet [13] made 

measurements on rocksalt (NaCl) and found the value of 1 to be 1.2. For 

1165 we got 1 to increase from 1.47 (at 14.5 PSI) to 1.77 (at 1000 PSI). 

For 1150 1 was found to be 1.5 (at 14.5). For other rocks the value of 

the 1 did not show a simple relation to the pressure set. 

These findings lead to the conclusion that in all the rocks the 

grains were of the crystalline type (rather than amorphous) and that the 

thermal diffusivity was limited within the grains. 
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Figure 36. Thermal diffusivity at different pressures normalized with 
the one at 14.5 PSI, Rock Ll66 

.-="'=:.!'''=·r-··~ .. -~:···~·=···t····~ ... ::.:.::··i:·· .. =·~····~:::·· 
1 ... 

ic e 
CJ 
~ 0.8 ... 

z 
0 

~ 0.8 ... 

N 
:::; 
< 0.4 ~ 2 
ic 
0 
z 

0.2 -* -'00 PSI 

·+· 800 PSI 

o~~~!!!!!!~!_-L-~~--.J.~~~L-----~...1.-~~..J 
0 20 40 80 80 100 120 

TBU:PBRATURB [ •c ] 

Figure 37. Thermal diffusivity at different pressures normalized with 
the one at 14.5 PSl, Rock BSVl 



CHAPTER V 

SUMMARY, CONCLUSIONS AND SUGGESTIONS 

The thermal diffusivity of ten sedimentary rocks: sandstones 

(BSHl, BSVl, BSH4, C22), limestones (1150, 1165, 1166) and Dolomites 

(MCA362, MXNl, MXN4) was measured as a function of pressure and 

temperature (25-100 °c), using the pulse method [8], [9]. The pressure on 

the rock was increased (up to 1500 PSI for sandstones or limestones and 

up to 2500 PSI for the Dolomites) and the thermal diffusivity checked. 

For all the rocks (except MXNl, MXN4) the thermal diffusivity increased 

as the pressure increased. In the Dolomites MXN type it maintained the 

same value (within the experimental error) 0.023±0.001 cm2/s regardless 

of the pressure (14.5-2500 PSI). In the other Dolomite, MCA362, it 

increased from 0.0116 cm2/s by 10% while the pressure increased to 2500 

PSI. In the Berea Sandstones the thermal diffusivity increased from 

0.008 cm2/s by 12% in BSHl and from 0.012 cm2/s by 33% (upon increasing 

the pressure to 1500 PSI) in the other rocks. In the limestones the 

thermal diffusivity increased in the first cycle from an average value 

of 0.0075±0.0009 cm2/s by about 50% as an "hyperbola" upon increasing 

the pressure to 1500 PSI. The process was found to have an hysteresis 

upon releasing the pressure. The 4ysteresis decreased and disappeared in 

the sequential cycles. 

The porosity of the rocks was calculated assuming a simple 

structure (pure crystalline grains and pores filled with air) for the 
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rocks. The porosity changed oposite to the thermal diffusivity. For all 

the rocks, except the MXN type, the porosity decreased as the pressure 

increased. The porosity at room temperature and atmospheric pressure was 

4% for the MXN type, 15% for the MAC362 and 20% to 30% for all the 

other. In the limestones and C22 an hysteresis effect was found upon 

releasing the pressure in the thermal diffusivity as well as in the 

porosity. 

The thermal diffusivity as a function of the temperature (25-100 °c) 

was checked at several pressures. For all the rocks the thermal 

diffusivity decreased as l/T or faster, regardless of the pressure. No 

consistent corrolation between the pressure and the slope was found. 

This finding indicates that the grains are crystalline type (rather than 

amorphous) and that the heat conduction is limited within the grains. 

The results are reproducible within a random error (sigma) of less 

than 5%. 

Suggestions for Future Research: 

- Perform additional experiments with larger quantities of samples from 

the same type and batch (sharing the same history). This way the results 

and conclusions can be established to a greater accuracy. For each 

sample the results should be related to the history (location, depth, 

bed, etc.) of the sample. 

- Perform the measurements on the rocks as close as possible (within a 

month) to the time they were taken out from their natural place, before 

relaxation or recovery process can take place. 

- Conduct experiments of the thermal diffusivity as a function of the 

pressure at the same temperatures, for the different rocks and study the 



thermal diffusivity as a function of the pressure at the various 

temperatures. Check how the thermal diffusivity as a function of 

pressure varies with the temperature. 
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- Measure the thermal diffusivity as a function of temperature at higher 

temperatures (up to 300 °c). Study the response of thermal diffusivity 

as a function of temperature and pressure at elevated temperatures. 

Check whether the thermal diffusivity at these higher temperatures still 

decreases faster than l/T. 

- Conduct measurements on rocks saturated with liquid (water, oil, etc.) 

in the pores. Under these conditions the porosity can be calculated 

independently and more accurately by weighing the sample before and 

after setting pressure on it. This will allow us to test the results 

gotten by measuring the thermal diffusivity (Eq. 11). 

- In order to set and hold a desired pressure on the sample more 

accurately some work must be done .to improve the press. 

- In order to set, maintain and record the pressure set on the sample 

during the experiment computer controlled devices are required. It can 

be done by setting strain gauges , for example, on the rocks (to check 

the pressure) and using an electric pump, controlled by the computer, to 

add or reduce the pressure on the rock accordingly. 
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APPENDIX A 

WHY AND HOW THE ROCK BROKE 

The high pressure applied on the long axis of the rock caused it to 

break. The rock is build from layers of grains and pores. When load is 

applied to rock the grains tend to move toward each other closing the 

pores between them. This mechanism is probably elastic to a certain 

point were the forces between the grains does not hold them anymore. By 

increasing the pressure more the elasticity of the bond between the 

grains is lost and micro-cracks start to appear. Increasing the pressure 

a little more results in breaking the rock, as can be seen in Fig. 38-

40 . 

Figure 38. Limestone After 1500 PSI was Applied to the Long Axis 
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The various rocks broke at different pressures. The sandstone could 

not stand pressures bigger than 1500 PSI. The limestone broke at 2000 

PSI, after being at that point for about two hours. The Dolomite broke 

at about 4000 PSI. To improve the resistance of the rock to the pressure 

and enable maximum load on the rock we insured that the pressure is 

equally spread on the rock bases. We did it by cutting the bases of the 

rocks in perpendicular to the long axis of the cylinder. In order to 

support the external walls of the cylinder, and hold the rock to its 

base we used a plastic sleeve. The sleeve was a heat shrink tube 2 

inches in diameter and about 5 mm longer than the rock. The tube was set 

on the rock and heated to 150 °c. When the sleeve cooled back to room 

temperature it gained strength and supported the external walls of the 

rock. The elasticity and strength of the sleeve enabled us to raise the 

pressure a little bit, but the rock continued to break (tearing the tube 

as can be seen in Fig. 39). 

Various types of heat shrink tubes were checked, but the results 

were about the same. Even the heavy-duty heat shrink from 3M did not 

help. 

As a result we decided to limit the range of the pressures checked 

to 1500 PSI for the rocks we believed to be limestones or sandstones and 

to 2500 PSI for the harder rocks like Dolomites. 
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Figure 39. Sandstone After 1500 PSI was Applied to the Long Axis 

Figure 40. Dolomite After 2500 PSI was Applied to the Long Axis 



APPENDIX B 

SAMPLE HOLDER FOR THE SAW. 

In order to cut the rock in parallel bases perpendicular to the 

long axis of the cylinder a holder was designed. The holder is sketched 

in Fig. 41. 

I 

0.3~[ 
'!---------------<" 

-EP-
-------.f:s:---+f 

Figure 41. The Sample Holder for the Saw 
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APPENDIX C 

TEMPERATURE CONTROLLER - WIRING SCHEME 

In order to set and control the ambient temperature a temperature 

controller, OMEGA Model CN-2000, was used. This controller was designed 

to be computer controlled. It senses the temperature of the furnace (it 

is supposed to control) and supplies high voltage (120 V) to the heater 

when it's temperature is smaller than the set point. The set point can 

be set manually (with switches on the controller) or by the computer 

through the bus. The controller was wired to the System (Fig. 42). 

GRD 

r-----------------------, 
1 Temperature Controller ' 

I 
I 

,----------------------, 

-------98 
RS232C )

Computer 
H.D. 

~-,-~~~~~~~~~~, Bus 
L---------------------j 

7 6 5 
.,.-------
' 
' 4 H +; 

F--"--~----------------,---.... 

0 L __ --- ---- ----- -----~ 

r------ ---------- -----i r------------1 
I Sl 2KQ/8W I I 3 2 I 
',/ I 

---,~ ---- I /, 

: S2 ••---------L-----~:_4...,.~ 1--...,.~~~.,....--
' S.S.R 1 ~urnace 

~------------J L-------
1 Switching Box 
L-----------------------~ 

Figure 42. Temperature Controller Wiring to the System 
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APPENDIX D 

CONTROL, SAMPLING AND DATA ACQUISITION PROGRAMS 
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10 ! 2/2/88 PROGRAM FROM THE HARD DISC CD040> 
20 THE CHACHES WERE DONE IN THE PROGRAM " trange " 
30 !the naMe of the prograM is " TDFMl " 
40 ! THERMAL DIFFUSIVITY -- MAIN PGM 
50 COM t1C200>,t2C200>,t3C200>;dtdtC200),d2tdxC200),tdfsC200> 
60 COM eta<200>,xs<200>,ysC200>,tc(50),tbar(200) 

70 

70 COM runuM,jr,tint,deti,dlay,x12,x23,tl ,th,dt ,NT ,runtyp,etabar,sdC200) 
80 COM tau 
90 COM T1$C200>,T2$C200) 
100 DIM subtitle$[80J 
110 DISP "Enter a descriptive title for the experiMent" 
120 INPUT title$ 
130 DISP "Enter additional inforMation" @ INPUT subtitle$ 
140 
150 DISP "Choose a file naMe for data storage." 
160 OISP " USE THE SPECIAL FUNCTION KEYS" 
170 OD$=DATE$ @ TT$=TIME$ 
180 GOSUB 1710 
190 0$=00$[ 7 ,8 J&D0$[ 4 ,5 J&00$[ 1 ,2] 
200 ON KEY# 1 ,"CONOCO" GOTO 590 
210 ON KEY# 2,"0THER" GOTO 640 
220 KEY LABEL 
230 GOTO 230 
240 OFF KEY# 
250 ! 200-299 are reserved for alarMs 
260 WAIT 2000 
270 CLEAR 
280 OISP "*** CHOOSE THE TYPE OF EXPERIMENT *** " 
290 DISP 
300 DISP " <ft> Single teMperature only" 
310 DISP " <f2> N specified teMperatures" 
320 OISP " <f3> Range of teMperatures at regular intervals" 
330 OISP " (f4> Several teMperatures, Manual control" 
340 OISP " <f5> Auto" 
350 ON KEY# 1 ,"SINGLE" GOTO 440 
360 ON KEY# 2,"N TEMP" GOTO 530 
370 ON KEY# 3,"T RANGE" GOTO 560 
380 ON KEY# 4,"MANUAL" GOTO 470 
390 ON KEY# 5,"AUTOOATA" GOTO 500 
400 ~'.EY LABEL 
410 GOTO 410 
420 OFF KEY# 
430 GOTO 700 
440 runtyp$="singlet" 
450 runtyp=t 
460 GOTO 420 
470 runtyp$="s1nglet" 
480 runtyp=4 
490 GOTO 420 
500 runtyp$="AUTO" 



510 runtyp=5 
520 GOTO 420 
530 runtyp$="nteMp" 
540 runtypz2 
550 GOTO 420 
560 runtyp$="trange" 
570 runtyp=3 
580 GOTO 420 
590 ! set up Conoco file 
600 !0$=VAL$<DATEl 
610 L$="CONOCO"&D$ 
620 DISP "The data will be stored as ";L$ 
630 GOTO 240 
640 !0$=VAL$(0ATEl 
650 DISP "Enter the file naMe (up to 5 characters)" @INPUT L$ 
660 L$=L$&0$ 
670 DISP • The data will be stored as ";L$ 
680 GOTO 240 
690 ! 
700 ! Enter the experiMental paraMeters 
710 CLEAR @ DISP "SET THE PARAMETERS FOR THE DIFFUSIVITY MEASUREMENT" 
720 DISP 
730 DISP "TiMe between teMperature MeasureMents (Msecl" @INPUT tint 
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740 DISP "Total tiMe for a diffusivity MeasureMent (Msec)" @INPUT deti 
750 DISP ''TiMe delay before starting data acquisition (Msec )" @ INPUT dlay 
760 DISP "Distances between therMocouples: :•;12,>~23 (CM)"@ INPUT x12,:<~3 

770 runurr1=0 
780 tau=2•tint 
790 ! 
800 IF runtyp$="singlet" THEN 840 ELSE 970 
810 IF runtyp=l THEN 840 
820 CLEAR @ DI SP " I NS TRUCTI ONS FOR A MANUAL RUN" 
830 DISP " " @ GOTO 850 
840 CLEAR @ OISP "INSTRUCTIONS FOR A SINGLE TEMPERATURE RUN " @ DISP " " 
850 DISP " 1. Set the teMperature controller Manually to the desired " 
860 DISP " teMperature. NOTE THAT THE SETTINGS ARE IN DEG C." 
870 DISP 
880 DISP • 2. Wait for the systeM to equilibrate. 
890 DISP 
900 DISP " 3. Press CONT ~f4> when equilibr1uM has been reached." 
910 DISP " " 
920 DISP " 4. If the desired teMperature is rooM teMperature, you May", 
930 DISP " press CONT at once." @ DISP " " 
940 PAUSE 
950 runs=! 
960 GOTO 1200 
970 IF runtyp$="nteMp" THEN 980 ELSE 1060 
980 CLEAR @ DISP " INSTRUCTIONS FOR SETTING N TEMPERATURES '' 
990 DISP " " 
1000 DISP " I. Enter the nuMber of teMperatures. • @ INPUT NT 



1010 DISP " 2. Enter the "1NT1" teMperatures as proMpted" @ DISP " " 
1020 FOR jt=l TO NT@ DISP" TeMp #";jt;" (deQ C> "; @INPUT tc<Jt> 
1030 NEXT Jt 
1040 runs=NT 
1050 GOTO 1200 
1060 IF runtyp$="trange" THEN 1070 ELSE 1170 
1070 CLEAR @ DISP " INSTRUCTIONS FOR SETTING A RANGE OF TEMPERATURES " 
1080 DISP 
1090 DISP " 1. Enter the lowest teMperature. (deg C)"@ INPUT tl 
1100 DISP " " 
1110 DISP " 2. Enter the highest teMperature. (deg C>"@ INPUT th 
1120DISP 
1130 DISP " 3. Enter the teMperature interval between points. (deg C)" 
1140 INPUT dt 
1150 runs=<th-tl )/tint+l 
1160 GOTO 1200 
It 70 runs=l 
11 80 GOTO 1200 
1190 ! 
1200 ! Set up storage for the experiMent. 
1210 NR=6 
1220 IF runtyp$="nteMp" THEN NR=NR+NT+l 
1230 I~ runtyp$="trange" THEN NR=NR+3 
1240 LL$=L$&".TX" 
1250 MASS STORAGE IS "/data" 
1260 ON ERROR GOTO 1480 
1270 CREATE LL$,NR,256 
1280 ASSIGN# 1 TO LL$ 
1290 PRINT# runs 
1300 PRINT# title$ 
1310 PRINT# subtitle$ 
1320 PRINT# runtyp$ 
1330 PRINT# L$ 
1340 PRINT# tint ,deti,dlay 
1350 PRINT# x12,x23 
1360 IF runtyp$="trange" THEN PRINT# 1 ; tl,th,dt 
1370 IF runtyp$="nteMp" THEN 1380 ELSE 1400 
1380 PRINT# 1 ; NT 
1390 FOR jt=l TO NT @ PRINT# 1 ; tel jt) @ NEXT jt 
1400 ASSIGN# 1 TO * @ I Close the file 
1410 MASS STORAGE IS "/disc" 
1420 ASSIGN# 1 TO "naMe" 
1430 PRINT# 1 ; L$ 
1440 ASSIGN# 1 TO * 
1450 ICLEAR @ DISP USING 1810 
1460 IMAGE " TEMP " ,3X," DFSUTY ",3X," ETA ",3X, "STD DEV" 
1470 CHAIN runtyp$ 
1480 OFF ERROR 
1490 IF ERRN=63 THEN 1500 ELSE 1610 
1500 ASSIGN# 1 TO LL$ 
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I 510 READ# 1 ol drum; 
1520 READ# 1 oldtitle$ 
1530 ASSIGN# TO * 
1540 DISP " File: .";L$ 
1550 DISP title$ 
1560 DISP oldruns 
1570 DISP "IncreMent nuMber of runs? (y/n)" @ INPUT qM$ 
1580 IF qM$="y" THEN 1590 ELSE 1610 
1590 runs=runs+oldruns 
1600 IF title$=oldtitle$ THEN 1280 
1610 ERRM 
1620 IF ERRN<>63 THEN 1680 
1630 DISP "Old title: ";oldtitle$ 
1640 DISP "New title: ";title$ 
1650 OISP "Use old title? (y/n)" @ INPUT qM$ 
1660 IF qM$="y" THEN title$=oldt1tle$ ELSE 1680 
1670 GOTO 1280 
1680 DISP "This action will DESTROY data." 
1690 DISP "Execution of this prograM is terMinated." 
1700 BEEP @ GOTO 1700 
1710 ! CODING TABLE FOR MONTHS. 
1720 AAA=VAL(00$[4,5J) 
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1730 ON AAA GOTO 1740,1750,1760,1770,1780,1790,1800,1810,1820,1830,1840,185~ 

1740 00$[4,SJ="JA" @GOTO 1860 
1750 00$[4,SJ="FB" @GOTO 1860 
1760 00$[4,SJ="MS" @GOTO 1860 
1770 00$[4,SJ="AP" @GOTO 1860 
1780 00$[4,SJ="MY" @GOTO 1850 
1790 00$[4,SJ="JN" @GOTO 1860 
1800 00$[4,SJ="JL" @GOTO 1860 
1810 00$[4,SJ="AG" @GOTO 1860 
1820 00$[4,SJ="SP" @GOTO 1860 
1830 00$[4,SJ="OC" @GOTO 1860 
1840 00$[4,5J="NO" @GOTO 1860 
1850 00$[4,SJ="DE" @GOTO 1860 
1860 RETURN 

10 ! THE NAME OF THIS PROGRAM IS trange. Last chande 19/5/88 H.Y 
20 COM t 1C200 > ,t2C 200), t3< 200 > ,dtdt ( 200 > ,d2tdx( 200 >, tdfs< 200) 
30 COM eta<200),xs(200),ys(200>,tc<S0>,tbar(200),sd<200) 
40 COM runuM,Jr,tint,deti ,dlay,x12.~23,tl,th,dt ,NT,runtyp,etabar 
50 COM tau 
60 COM Tl$C200>,T2$!200) 
70 DIM subt1tle$[80J 
80 ASSIGN 7 TO "hpib" 
90 ASSIGN 9 TO "serial.b" 
100 ASSIGN# 1 TO "naMe" 



110 READ# 1 1 L$ 
120 ASSIGN# 1 TO * 
130 LL$=L$&".TX" @MASS STORAGE IS "/data" 
140 ASSIGN# 1 TO LL$ 
150 READ# runs 
160 READ# title$ 
170 READ# subtitle$ 
180 READ# runtyp$ 
190 READ# L$ 
200 READ# 
210 READ# 

tint ,deti ,dlay 

2~0READ# t1,th,dt 
230 ASSIGN# TO * 
240 DISP "SAMPLE# ";title$ 
250 PRINT "SAMPLE # ",L$,TIME$ 
260 PRINT "" 
270 PRINT "" 
280 DISP "STORED AS ";L$ 
290 runurr1=0 
300 DISP "DO YOU WANT TO SEE EVRY STEP ? IF YES TYPE Y" 
310 INPUT CON$ 
320 DISP "SET TIME IN MINUTES BETWEEN OBSERVATIONS" 
330 INPUT TOBS 
340 TOBS=TOBS•60000 
350 MASS STORAGE IS "/disc" 
360 FINDFROG "TAf<EDATM" 
370 FINDPROG "CONTSET" 
380 FINDPROG "TDREDUCE" 
390 FINDPROG "TDSTORE" 
400 NN=( INT\ ( th-t 1 )/cit H1 )•3 @ OISP "total # of rum will be ==:>" ,NN 
410 OFF TIMER# 1 
420 CALL "CONTSET" 
430 DISP TIME$," YOU HAVE TO WAIT",TOBS/60000,"MINUTES" 
440 NNIT=0 
450 NBB=0 
460 GOTO 640 
470 OFF TIMER# 1 @ OFF TIMER# 2 
480 runuM=runuM+l 
4 90 rnt $='JAL$•: runuM) @ L TB$=L$&". "&rnt $ 

sec PRINT US!NE 510 ; TIME$,LTB!,T085 1 50000 
510 IMAGE ~:.1X,",",4X,k1X,"," ,4X,"DELAY TIME WAS ",OD," MINUTES" 
520 OISP TIME$ @ CALL "TAkEDATA" @ t1Ml$=TIME$ 
530 IF NNI7=NN THEN GOTO 560 
540 DISP TIME$ @ CALL "CONTSET" @ tlMi$=TIME$ 
550 DISF TIME:!:,"# OF RUN",runur'1,"YOIJ HAlJE TO WAIT",TOBS/60000,"MINUTES" 
550 TB$=1IME$ 
51e, 1o:;:SF "pc·1nt1" 
5S0 Di SF TiME$ @ CAL.L "TOREOUCE" 
590 IQJSF "pornt2" 
600 DISP TIME$@ CALL "TDSTORE" (L$) 
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610 IOISP "po1nt3" 
520 MASS STORAGE IS "/disc" 
630 OFF KEY# @ tiM2$=TIME$ @ DISP t1M2$ 
640 IF NNIT=NN+l THEN GOTO 1480 @ TIM$=TIME$ @ DISP TIM$ 
650 NTBS=0 @ IF NNIT=0 THEN TOBSl=TOBS ELSE GOSUB 2770 
660 ON TIMER# 1 ,TOBSl GOTO 470 @ NNIT=NNIT+l 
670 ON TIMER# 2 ,300000 GOTO 810 @ I CHECK 
680 IF NNIT=NN+l THEN GOTO 1480 @ TIM$=TIME$ 
690 IF CON$#"Y" THEN GOTO 800 @ 1CHECK 
700 IF NNIT=l THEN GOTO 800 @ !CHECK 
71 ei OFF r'. EY# @ ON r:EY# 1 .• PARMS" GOTO 850 
720 ON f<E Y# 3, "CONT" GOTO 790 
730 ON KEY# 16,"STOP PROG" GOTO 1480 
740 BEEP 
750 IF NBB=0 THEN GOTO 740 
760 GOTO 760 
770 OFF f<EY# 
780 GOTO 780 
790 OFF l<EY# 
800 GOTO 800 
810 NTBS=NTBS+ 1 
820 DISP TIME$,"YOU HAVE TO WAIT" ,TOBS/60000-NTBS+5,"MINUTES" 
830 OFF TIMER# 2 
840 ON TIMER# 2 ,300000 GOTO 810 
850 GOTO 850 
860 OFF l<E f# 
870 ON r: EY# 1 , "PLOT" GOTO 950 
880 ON KEY# 2, "TOSS" GOTO 1290 
890 ON KEY# 3,"TINT" GOSUB 1350 
900 ON KEY# 4,"DETI" GOSUB 1390 
910 ON KEY# 5,"DELAY" GOSUB 1440 
920 ON KEY# 8,"RESUME" GOTO 2630 
930 ON r:EY# 16, "STOP PROG" GOTO 1480 
940 GOTO 940 
950 rn$=VAL$(runuMl@ LL$=L$&"."&rn$ 
960 I Set plotting option5 
970 tbar=tbar(runuM) @ tdf5=tdf5(runuM) @OFF KEY# 
980 L T$=L$&". TX" 
990 MASS STORAGE IS "/data" 
1000 ASSIGN# TO LT$ 
1010 READ# 1 rum 
1 02 0 READ# 1 t it le$ 
1030 ASSIGN# 1 TO * 
1040 ON ~:EY# 1 ,"TMP/TIM" GOTO 1150 
1050 ON f<E'v# :,"OEF;Il.'S" GCTO 1150 
1050 ON t<E Y# 8, "RETURN" GOTO 850 
1070 ON r'.E'I# i5,"STOP FFCiG'· GOTO 1600 
1 080 t<EY LABEL 
1090 CLEAR @ DISP " SELECT THE TYPE OF PLOT USING THE FUNCTION KEYS" 
11000ISF" 
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1110 DISP • <fl> TeMperatures vs. tiMe 
1120 DISP" <f2~ dT/dt vs. d2T/dx2 " 
1130 DISP " " @ DISP " <f8> Return to Main Menu. 
1140 GOTO 11 40 
1150 yMax•INTCtl(Jr))@ xMax~deti/1000@ fl=l 
1160 IF yMax=0 THEN yMax=l 
1170 xlbl$="TIME <sec)"@ ylbl$="TEMP. CHANGE CC>" 
1180 GOTO 1800 
1190 yMax=MAXAB<ys)@ xMax=MAXAB<xs)@ xMax=INT<xMa~>+l @ fl=2 
1200 IF yMax<I THEN 1210 ELSE 1260 
1210 :a=1 
1220 ::a=10•::a 
1230 IF za*yMax<I THEN 1220 
1240 yrr1a~:=INT< za*yMax+ 1 )/za 
1250 GOTO 1270 
1260 yMa:-:=INT<yrr1ax+I > 

1270 xlbl$="d2T/dx2" @ ylbl$="dT/dt" 
1280 GOTO 1800 
1290 DISP "SET TIME IN MINUTES BETWEEN OBSERVATIONS" 
1300 INPUT TOSS 
1310 TOBS=TOBS•60000 
1320 t iM2$=TIME$ 
1330 GOSUB 2770 
1340 OFF KEY# @ GOTO 690 
1350 DISP "SET TINT" 
1360 OISP "OLD TINT= ";t1nt 
1370 INPUT tint 
1380 RETURN 
1390 DISP " SET DETI -- TIME FOR EXPERIMENT" 
1400 DISP "OLD DETI = ";deti 
1410 INPUT deti 
1420 RETURN 
1430 MASS STORAGE IS "/disc" @ END 
1440 DISP "SET DELAY" 
1450 DISP " OLD DELAY= ";dlay 
1460 INPUT dlay 
1470 RETURN 
1480 CLEAR@ OISP "SAMPLE# ";title$ 
1490 PRINT "STORED AS ";L$ 

1500 PR I NT "TIME BETWErn MEASU~EMENTS " ; TOE S/60000 
1510 PRINT "LAST MEASUREMENT ENDED AT ";TB$ 
1520 PRINT USING 2690 
1530 FOR JU=! TO runuM 
1540 ON ERROR GOTO 1560 
1550 PR!NT USINE :750 ; JU,tbar<JU);tdfs 1 JUl;eta!JLJ);sd!JUl 
1560 OFF ERROR 
1570 ~tdfs=~tdfs+tdfs(JLJ) 
1580 NEXT JU 
1590 PF.INT "AiJERAGE VALUE IS" , . ..tdfs 1 runurri 
1600 MASS STORAGE IS "/d1sc" @ ASSIGN# 1 TO "naMe" @ READ# 1 L$ 
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1610 
1620 
1630 
1640 
1650 
1660 
1670 
1680 

ASSIGN# 1 TO * 
LL$=L$&".TX" @MASS STORAGE IS "/data" @ASSIGN# 1 TO LL$ 
READ# 1 runs 
READ# 1 title$ 
READ# 
READ# 
READ# 
READ# 

1690 READ# 

subtitle$ 
runtyp$ 

; L$ 
tint ,deti ,dlay 
'/': 12 ,x23 

1700 READ# t 1 , th, dt 
1710 PRINT# NNIT-1 
1720 PRINT# 1 ; TIME$ 
1730 PRINT# 1 ; TOBS/60000 
1740 DISP TIME$ 
1750 t1=0 
1760 dt=0 
1770 CALL "CONTSET" 
1780 ASSIGN# 1 TO * 
1790 GOTO 1430 
1800 I plotting routine 
1810 GCLEAR @ DEG @ CSIZE 4,0.6 
1820 LOCATE 0,200,0,100 
1830 SCALE ( -0. 5 )*xMa;r,, 1. 05*xMa.>:, ( -0. 2 }*yMax,, 1. 1 S*yMa"' 
1840 CLIP 0,xMax,0,yMax 
1850 AXES xMax/5,yMa.'/5,0,0@ AXES xMa~/S,yrviax/5,xMa•,yMax 

1850 LDIR 0 @ LORG 2 
1870 y=!-0.05l+yMax 
1880 FOR x=0 TO xMax STEP xMax/5 
1890 MOVE x,y 
1900 LABEL x 
1910 NEXT x 
1920 MOVE xMax/2,1-0.lZ)*yMax 
1930 LABEL ;dbl$ 
1940 x=0.32*xMax @ LORG 8 
1950 FOR y=0 TO yMax STEP yMax/5 
1960 MOVE x ,y 
1970 LABEL y 

1 980 NEXT y 

1990 LOIR 90@ LORG 5 
2000 MOVE (-0.1 l*:•rr1a• ,0.6*yf'"r.':L~ 

2010 LABEL ylbl$ 
2020 LDIR 0 @ LORG 2 
2030 MOVE 0.05•x,Ma•, 1.04*yrvia:•. 
2040 LABEL t1tle$ 
2050 MOVE 0.05•.'MB.' ,0.9•;Ma, 
2050 LABEL "T = " 

2070 MOVE 0. l·~Ma.' ,0.9•yrvia~ 
208e1 tbar=INT:. 100*ibar )/100 
2090 LABEL tbar 
2100 IF fl=l THEN 2130 
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2110 GOTO 2490 
2120 1 Plot the teMperature vs. t1l"le data 
2130 FOR jcl TO jr 
2140 x=j*tint*0.001 
2150 y=tlCj) 
2160 MOVE x,y © GOSUB 2570 
2170 y=t2( j) 
2180 MOVE x,y@ GOSUB 2610 
2190 y=t3( J) 

2200 MOVE x,y@ GOSUB 2570@ GOSUB 2610 
2210 NEXT j 

2220 1 Add additional data tc, the plot 
2230 LDIR 0@ LORG 2@ CSIZE 4,0.6 
2240 MOVE (-0.4l*xMax,1 .04*yMax 
2250 LABEL "DATA" 
2260 CSIZE 3,0.6 
2270 MOVE (-0.5)*xMax ,0.9*yMax@ 
2280 MOVE (-0.4)*xMax ,0.9*yMax@ 
2290 MOVE <-0.Sl*xMax ,0.8*yMax@ 
2300 MOVE (-0.4l*xMax,0.8*yMax@ 
2310 MOVE (-0.5)*xMax,0.7*yMax@ 
2320 tdfs=INT1tdfs*100000)/100000 

LABEL 
LABEL 
LABEL 
LABEL 
LABEL 

"DELAY 
dlay 
"T-INT 
tint 
"TDFSVTY 

2330 MOVE l-0.38)*xMax,0.7*yMax@ LABEL tdfs 
2340 MOVE l-0.5l*xMax,0.6*yMax@ LABEL "LS= " 
2350 MOVE (-0.42l•xMax,0.6*yMax@ LABEL LL$ 
2360 MOVE <-0.5l•xMax,0.5*yMa~@ LABEL "x12 
2370 MOVE (-0.4 l•xMax ,0.5*yMax @LABEL x12 
2380 MOVE l-0.5)*.•;Ma~'.,0.4*yMa:>.@ LABEL ">.23 
2390 MOVE C-0.4 l*xMa~ ,0.4*yMax @ LABEL x23 
2400 MOVE <-0.5l*xMax,0.3*yMax@ LABEL "TIME CONST. 
2410 MOVE l-0.3l*xMax ,0.3*yMax@ LABEL tau 
2420 MOVE (-0.Sl*xMax,0.2*yMax@ LABEL "STD. DEV. =" 
2430 sd=INTCscCrunuMl*1000000l/1000000 
2440 MOVE <-0.3l*xMax,0.2*yMax@ LABEL sd 
2450 MOVE (-0.5l*xMax ,0.l*yMax@ LABEL "ETA=" 
2460 etabar=INT(etabar*100000)/100000 
2470 MOVE (-0.4l*xMax ,0.1*yMax@ LABEL etabar 
2480 CLEAR @ GOTO 960 
2490 I dtdt vs d2tdx2 plots 
2500 FOR Jp=Z TO Jr-1 
2510 MOVE xslJP 1,ys(Jp)@ GOSUB 2570 
2520 NEXT JP 
2530 I Draw the regression line 
2540 MOVE 0,0@ y=tdfs*xMax 
2550 LINE TYPE 1 @ DRAW xMax ,y 

2560 GOTO 2230 
2570 1 plut syMbol 
2580 SETGU @ IDFiAW 1 ,0 @ IDRAW -2 ,0 @ IDRAli.I 1 ,e1 @ IDFA~J 0, 1 
2590 IDRAW 0,-2 @ IDRAW 0,1 
2600 SETUU @ RETURN 
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2610 1 x syMbol 
2620 SET GU @ IDRAW 1 , 1 @ IDRAW -2, -2 @ IDRAW 1 , 1 @ IDRAW -1 , 1 
2630 IDRAW 2 , -2 @ !DRAW -1 , 1 
2540 SETUU @ RETURN 
2650 !UPDATE THE DISPLAY 
2660 CLEAR@ DISP "SAMPLE# ";title$ 
2670 DISP "STORED AS ";L$ 
2680 DISP "TIME BETWEEN MEASUREMENTS ";TOBS/60000 
2690 DISP "LAST MEASUREMENT ENDED AT ";TB$ 
2700 DISP USING 2710 
2710 IMAGE " RUN TEMP ",3X," DFSVTY ",3X," ETA 
2720 FOR JU=l TO runuM 
2730 ON ERROR GOTO 2750 

",3X,"STO DEV" 

2740 DISP USING 2770 ; JU,tbar(JUl;tdfs(JLJ);eta(JLJ);sd(JLJ) 
:::750 OFF ERROF: 
2750 NEXT JU 
2770 IMAGE lX ,DD,4X,DDDD.DD,3<3X,DD.SD> 
2780 GOTO 700 
2790 tM1=VAL<trn1$[l ,2])*3600+VAL<tiM1$[4,5])*60+VAL<tiM1$[7,8J) 
2 800 t rvi2=VAL< ti M2$ [ 1 , 2] ) * 3600+VAL< t rn2$ [ 4 , 5 J > * 60+VAL< ti rvi2 $ [ 7 , 8 J ) 
2810 dts=(trvi2-trvi1 )/60 
2820 DISP tM1 ,trri2,dt5 
2830 TOBSl=<TOBS/60000-dts >*60000@ DISP TOBS1 
2840 ON TIMER# 1 I TOBS 1 GOTO 4 70 
2850 RETURN 

10 SUB "CONTSET" 
20 104-02-88 CONTROLER SET POINT SUBRUTINE ***** H. Y. **** 
30 COM tl(200>,t21200l,t31200l,dtdtC200l,d2td,(2001,tdfs(200J 
40 COM eta( 200) ,>:s( 200) ,ys( 200 ! , tc< 50 ! , tbar( 200) 
50 COM runuM,Jr,tint ,det1 ,dlay,>:12 ,:•:23,tl ,th,dt ,NT ,runtyp,etabar 
60 COM tau 
70 COM T1$(200>,T2$<200) 
80 INTEGER NN,Nl ,NCA 
90 DIM 8$( 100] 
100 NN=\INT<th-tl l/dt+l )*3 
110 N2=N2+1 
120 DISP "NZ=" ,N2, "Nl =" ,Nl 
130 IF NZ<4 THEN GOTO 160 
140 N2=1 
150 N1=N1+1 
150 ASSIGN 9 TO "serial.b" 
170 CONTROL 9,4 62 
180 CONTROL 9,3 ; 5 
190 STATUS 9,10 ; A10 
200 IF A10>31 THEN 210 ELSE 190 
210 CA=INT<tl+dt•Nl) 
220 U$=UAL$(CAJ@ IJ=LEN(V$l@ IF IJ:2 THEN U$=VAL$i01&V$ 
230 IF IJ<3 THEN V$=VAL$(0l&V$ 
240 8$="•00:WCSPl111:" 
2508$(10,12J=V$@ 8i=8$~CHRi( 131 
260 DISP TIME$,"THE NEW SET POINT IS=" ,CA 
270 OUTPUT 9 ; 8$ 
280 SUBEND 
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10 SUB "TDREDUCE" 
20 ! tdreduce 
30 COM t1<200),t2<200>,t3(200>,dtdt<200>,d2tdx<200>,tdfs(200> 
40 COM eta(200),xs(200>,ys<200),tc(50),tbar<200>,sdC200> 
50 COM runuM,jr,tint ,deti ,dlay,x12,x23,tl,th,dt ,NT,runtyp,etabar 
60 COM tau 
70 COM T1$(200),T2$(200) 
80 xbar=0.5*<x12+x23) 
90 at=25.33 @ bt=-0.352 @ ct=0.032 
100 I Convert voltages to teMperatures 
110 FOR J=0 TO Jr 
120 tt=tl<J)•l000@ tl(j)=tt*(at+tt•<bt+tt•ct>> 
130 tt=t2(j)•1000@ t2<J>=tt•(at+tt•<bt+tt•ct>) 
140 tt=t3(j )*1000@ t3(j l=tt•<at+tt•(bt+tt•ct)) 
150 NEXT j 
160 I Calculate the tiMe derivatives of t2 
170 n=8 
180 sJ=0@ sj2=0@ st=0@ SJt=0 
190 FOR J=l TO 2•n+l 
200 SJ=sj+j @ sJ2=sj2+j•j 
210 st=st+t2(j)@ sjt=sjt+j•t2(j) 
220 NEXT j 

230 dtdt(n+l )=1000•((2•n+1 )•sjt-sJ*st )/(tint*( (2•n+l )•sJ2-sj*SJ)) 
240 FOR j=n+2 TO jr-n 
250 SJ=sJ+n+n+l @ sj2=sJ2-( j-n-1 )•( j-n-1 )+( J+r: )•( j+n J 

260 st=st-t2( rn-1 Ht2\ J+n} @ sjt=sJt-< j-n-1 )•t2< rn-1 )+\ J+n )•t2( J+n) 

270 dtdt(j )=1000•((2•n+l )•sjt-sj•st )/(tint•((2•n+1 )*sJ2-sj•sj )) 
280 NEXT J 
290 ! Get the delta t's and the laplacian 
300 FOR J=l TO jr 
310 tl(j)=tl(j)-t1<0)@ t2(j)=t2(j)-t2<0)@ t3(j)=t3(j)-t3<0) 
320 d2td:d j )=( ( t3( J )-t2( j) )/:"23-( t2< j )-t 1<J)>h~12 )/:~bar 
330 NEXT j 
340 ! Get the therMal diffusivity by least squares 
350 sx=0 @ sx2=0 @ sy=0 @ sxy=0 @ st=0 @ set=0 @ sy2=0 
360 FOR J=n+l TO jr-n 
370 x=( d2td:--:( rl Hd2td.d J >+d2td:d j+l) )/3 
380 x s ( J )=;.; 

390 y=dtdt< J) 
400 ys( J )=y 
410 s:~y=sxy+;.;•y 

420 sx2=sx2+x•x 
430 sy2=sy2+y•y 
440 st=st+t2< J > 

450 eta( J )=y/.•. 
460 set=set+y/.>. 
470 NEl.T j 

480 tdfs(runuMl=s~y/s~: 
490 tbar(runu~)=st/1Jr-2•n)+t:c0) 
500 etabar=set/Cjr-2•n) 
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510 sd=SQR((sy2-sxy•sxy/sx2l/ljr-2))/x@ sdlrunuM)ssd 
520 ON ERROR GOTO 550 
530 DlSP USING 540 1 tbarlrunuM);tdfslrunuM);etabar;sd(runuM) 
540 IMAGE ODOD.DD,313X,OD.50> 
550 OFF ERROR 
560 eta(runuM>=etabar 
570 SUBENO 

10 SUB "TAKEOATA" 
20 !last adjestMent at 14/07/88 ,GOING BACK TO THE NEW SYS. 
30 ! 19/1/88 ADJESTING THE PROG. TO THE FACILITIES 
40 COM t 1 ( 200), t2< 200), t3< 200) ,dtdt ( 200 l ,d2td;d 200), tdfs( 200 > 
50 COM eta< 200) ,xs< 200) ,ys( 200), tc( 50), tbar( 200) ,sd( 200) 
60 COM runuM,Jr,tint ,deti ,dlay,x12,x23,tl,th,dt ,NT,runtyp,etabar 
70 COM tau 
80 COM Tl$(200l,T2$(200> 
90 DIM T31100>,T41100l 
100 INTEGER duMMy,Tint 
110 LOADBIN "tiMer" 
120 Tint=tint 
130 ON KYBD duMMy,··027T" GOSUB TIMEDOUT 
140 GOTO 230 
150 GOTO 150 
160 TIMEDOUT: TRIGGER vM1 ,vM2,vM3@ jr=jr+l 
170 ENTER vMl ; tlljr)@ ENTER vM2; t21jr)@ ENTER VM3 
180 RETURN 
190 OFF TIMER# 3 @ GOTO 390 
200 CALLBIN "offtiMer" C0) 
210 OFF TIMER# 1 
22e1 OUTPUT dac ; "cpn 0" @ GOTO 420 
230 I Set up instruMents 

t3( jr) 

240 dac=709 @ vM1=726 @ vM2=727 @ vM3=728 @ !hp1b addresses 
250 ! set up voltMeters 
260 FOR ji=0 TO 2 @ vM=vMl+Ji @OUTPUT vM "F1R-2T4Z0N5" @ NEXT Ji 
270 OUTPUT dac ; "opn 0 " 
280 ! get the teMperature baseline 
290 TRIGGER vrril ,vrri2 ,vM3 
300 ENTER VM 1 ; t 1 ( 0 ) 
310 ENTER VM2 j t2(0) 
320 !PRINT "START TIME=" ,TIME$,TlME 
330 ENTER VM3 ; t3(0) 
340 Jr=0 
350 OUTPUT dac ; "cl s 0" 
350 IF dlaytle THEN 390 
370 ON TIMER# 3,dlay GOTO 190 
380 GOTO 380 
390 ON TIMER# 1,deti GOTO 200 
400 CALLBIN "on_tiMer" <500> 
410 LOOP: GOTO LOOF 

420 FOR Ji=0 TO 2 @ vM=vM1+J1 @ OUTPUT VM ; "Tl" @ NE~T j1 

430 1 DT21=VAU1~$\ 1 i >-llAL< T 1 $( 1 1 i 

8.1 

440 IDT31=T3(1)-VALITJ$(1)/ @DT3.2=T4(1)-T3!J) @DT33=VAL<T;::$(J))-T4<1i 

450 'DISP USING 490 ; runuM,Jr 
460 I IMAGE "Run nuMber" ,3X ,20 ,3X, "Has ",3X ,30 ,3X, "SaMpling points." 
470 SUBEND 



10 SUB "TDSTORE" IL$l 
20 I last attach at 04/02/88 
30 1 last attach at 25/1/88 
40 I tdstore 
50 COM tll200l,t21200l,t31200l,dtdt<200>,d2td.d200l,tdfs1200l 
60 COM eta<200>,xs<200l,ysl200l,tc(50l,tbar<200> 
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70 COM runuM,Jr,tint ,deti ,dlay,x12,x23,tl ,th,dt ,NT ,runtyp,etabar,sd(200> 
80 COM tau 
90 COM T1$1200l,T2$1200> 
100 DIM SUBTITLE$[80J 
110 sd=sd( runuM l 
120 rn$=VAL$(runuMl 
130 LL$=L$&". "&rn$ 
140 MASS STORAGE IS "/data" 
150 CREATE LL$,jr+8,40 
160 ASSIGN# 1 TO LL$ 
170 PRINT# 
180 PRINT# 
190 PRINT# 
200 PRINT# 
210 PRINT# 
220 FOR js=0 
230 PRINT# 1 
240 NEXT js 

LL$ 
tbar(runuMl,tdfs(runuMl,etabar,sd 
)', 12 ,:.-:23 
tint ,det i ,dlay, tau 
Jr 

TO Jr 
; t 1 ( js) ,t2( JS) ,t3( JS) ,.·~s( js) ,ys( JS) 

250 1 MASS STORAGE IS "/data" 
260 ASSIGN# 1 TO * 
270 LL$=L$&".TX" 
280 ASSIGN# 1 TO LL$ 
2 90 REA[,# 1 RUNS 
300 READ# 1 TITLE$ 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
450 
470 
480 
490 

READ# 
READ# 
READ# 
READ# 
READ# 
READ# l 
ASSIGN# 
ASSIGN# 
PRINT# 
PRINT# 
PF IrH# 
PRINT# 
PRINT# 
PRINT# 
PRINT# 
PRINT# 
PRINT# 
ASSIGN# 
SIJBEND 

1 
1 

SUBTITLE$ 
RUNTYP$ 
L$ 
TIT ,DETI ,DELY 
X12,X23 
Tl, T2, T3 
TO * 
TO LL$ 

runuM 
TITLE$ 
SUBTITLE$ 
RUNTYP$ 
L$ 
TIT ,DETI ,DEL Y 
X 12 ,X23 
T1,T2,T3 
TITLE$ 

TO * 
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