
INVESTIGATIONS OF
zs:r_,?

SHELL SORT
,,_,;"';:-

By

HONG-LEE YU
I I

Bachelor of Science

National Chiao Tung University

Taiwan, R. O. C.

1979

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fullfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1984

INVESTIGATIONS OF

SHELLSORT

Thesis Approved:

11~ n. 1L~
Dean 6£ the Graduate College

ii :1.202794

PREFACE

This thesis investiga~es many aspects of Shellsort. A

large number of experiments wer~ conducted and best

sequences, which seem to minimize the number of comparisons

for different sizes of lists and number of passes, are

given. A proof that shows the average behavior of the

original Shellsort, when N is a power of 2, is also

presented.

I wish to thank my committee members, Dr. D. w. Grace

and Dr. S. Thoreson, for their contributions and advice, and

Dr. Michael J. Folk for substituting during my oral

examination. A special thank goes to my major advisor, Dr.

J. P. Chandler, for his help on this thesis and for his

assistance throughout my studies at Oklahoma State

University.

A final thank is due to my dear wife, Tresie. This

thesis would not have been possible without her

encouragement and patience.

iii

TABLE OF CONTENTS

Chapter

I • INTRODUCTION -· . . .
II. LITERATURE REVIEW AND METHOD.

Terminology and Theorem.
· Families of Increments .••.•.

How to Code Shellsort . • • • · • . •
Methods of Investigation ••.••••

III. TOWARD THE OPTIMAL SEQUENCE ••

Page

1

5

5
8

11
13

22

Two-Pass Shellsort. • • • • 22
The Multiple-Pass Shellsort . • • • 28
A New Variation of Shellsort. . . . • • 33

IV.

v.
AVERAGE BEHAVIOR OF SHELLSORT ••••

SUMMARY, CONCLUSION, AND SUGGESTIONS
FOR FUTURE RESEARCH ••••••••••

Summary and Conclusion •••
Suggestions for Future work •

SELECTED BIBLIOGRAPHY.

APPENDIX A - BAUER'S S~ELLSORT.

APPENDIX B - BEST SEQUENCES ••

APPENDIX C - CHANDLER'S COMPARISON TABLE.

iv

36

41

41
42

44

45

48

50

LIST OF TABLES

Table Page

I. An Example of Shellsort • 7

II. IBM 704 Running Times for different Values of N
Using Shell's Sequence of Increments. • • . 9

I I I. Families of Increments •• 11

IV. Behavior of the No. of Comparions as a Function

v.
VI.

VII.

of h(3) In Three-Pass Shellsort h(2)=3, N=50. • 15

Comparisons Per Pass with N=50 •.•

Distribution of a 2- and 3-ordered
List of Length 4 •.•..•••

Comparison between Knuth's and
Perturbed Knuth's Sequence ••.

18

29

31

VIII. Comparioson between Shellsort and New Variation
Using Hibbard's Sequence. • • • • • • • 35

v

LIST OF FIGURES

Figure Page

1. Program A by T. N. Hibbard ••••••••••.• 12

2. Illustration of Importance of Relative Primeness. 16

3. P. D. F. and C. D. F.
for Uniform Distribution over Interval (0,1). 21

4.

5.

6.

Two-pass Shellsort (N=lOO} ••

Decomposition of Two-Pass Shellsort (N=lOO}

Behavior of Relative Running Time as
a Function of h(4} •..•••.•••••.

vi

26

27

31

CHAPTER I

INTRODUCTION

Sorting is worth studying not only because a large per

cent of the running time on computers is spent on sorting,

but-also because there are numerous methods to choose from,

none of which can dominate all of others [9]. Of those

methods Shellsort, proposed by D. L. Shell in 1959 [12], has

the virtues of requiring n6 additional memory space and tak

ing at most O(N**(3/2)) units of time for most suggested

variations.

Shell's method consists of several passes, each of

which sorts h sublists of the list L(i), L(i+h), L(i+2*h),

•.. , L(i+j*h) corresponding to i =l, 2, ..• , h, where j is

the largest integer such that j*h <= N, by insertion sort; h

decreases from pass to pass according to a prescribed pro

cedure. In the final pass, his equal to -1, which ensures

that the entire list Lis sorted.

Insertion sort moves items only one position at a time

and its worst case and average case running times are pro

portional to N**2, since the av.erage displacement of each

element from its final position is N/3 for a random list of

N elements. However, in Shell's method, items can take long

leaps instead of short steps during early passes, then

1

2

shorter leaps later. Hence the average running time O(N**2)

can be reduced. Each pass of Shell's method is operating

not on a random sequence but on one which has been given a

degree of order by previous passes. This leads to the ques

tion of choice of an optimal sequence h. Though the method

was proposed as early as 1959, nobody has been able to

determine the best possible sequence h for large values of

N.

The objective of this thesis is to investigate

Shellsort. Due to the complex mathematical problems in the

analysis of Shellsort, w~ich are not yet completely

resolved, most of the work will be done empirically. In

order to determine what the best sequence is, we need to es

tablish a criterion to measure its efficiency. Any measure

ment using real time on a given computer has some inherent

problems. The running time depends not only on the underly

ing sequence but also on the characteristics of the comput

er, and thus should not be used [l]. The number of com

parisons or the number of moves are usually employed in

analyzing sorting algorithms since both of these measures

are often roughly proportional to the ,running time. For em

pirical study, the number of comparisons may give better

measurement since it consists of the number of in-order com

parisons and the number of out-of-order comparisons (number

of moves); it dominates the running time. However, the

number of moves (inversions) is easier to use when analyzing

the asymptotic average behavior mathematically, because

3

there exist many combinatorial theorems related to number of

inversions (discussed in chapter 2) that can be applied to

analyze the algorithm.

Though there exist many interesting problems arising

from Shellsort,. this thesis will concentrate on the follow

ing problems which have not been solved yet.

1. What are the optimum sequences of increments for

Shellsort? The term "optimum sequence" causes certain ambi

guity, since we are unable to examine all of the possible

sequences; even the number of possible sequences for a

moderate N, say N=lOO, is big enough that we cannot afford

examining all of these and there are no proved theorems that

allow us to elimin~te a large number of sequences from exam

ination without taking a risk of discarding the real optimum

one. Some assumptions, most based on empirical results,

must be applied without proof to keep the number of exam

inees of reasonable size. Here "optimum sequence" refers to

some empirical values of h(t), h(t-1), ..• , h(l) which takes

minimal average number of comparisons to sort, among all of

the sequences we examine.

2. What is the order of the asymptotic average

behavior of the Shellsort? One well-known work about aver

age behavior of Shellsort was done by Knuth's students [9];

they claimed that asymptotic average behavior of Hibbard's

sequence is about O(N**l.26), though they also found that

N*(ln N)**2 also gave a good fit to an observed data. Bauer

[2] conducted a similar experiment and concluded that if the

4

average case of Shellsort has a time complexity that is

asymptotically a power of N, then the power must be less

than 1.20. Whether the exponential form or N*(ln N)**2 form

gives the true asymptotic behavior is still open to

research. We do not intend to solve it. Instead, we shall

examine the simplest case, the original Shellsort when N is

a power of 2, in detail; this helps us to dig out some in

herent characteristcs behind the average behavior of

Shellsort.

The remainder of the thesis will be concerned with the

following. In chapter 2, a short literature review is

given. We also present methods of finding the optimal se

quence. In chapter 3, we show all of the empirical results

and attempt to explain why the sort behaved in this way.

Suggestions about determining the best sequence are also

given. In chapter 4, we discuss the average behavior of

Shellsort. The original Shellsort, when N is a power of 2,

will be examined in detail. Chapter 5 presents a more de

tailed summary and unification of the results of chapter 2

to 4 and suggests problems for further research.

CHAPTER II

LITERATURE REVIEW AND METHOD

In this chapter, we introduce some theorems and, in the

first three sections, present a literature review. In the

last section we discuss the survey method and the hy

pothesis.

Terminology and Theorem

Before going further, we need to introduce some termi

nology and relevant theorems which provide the fundamental

background for analyzing Shellsort. Most material in this

section can be found in [8, 9].

Let a(l)a(2) ... a(n) be a permutation of the set {l,

2, ... , n}. If i < j and a(i) > a(j), the pair (a(i), a(j))

is called an inversion of the permutation. For example, the

permutation 3 1 4 2 has three inversions: (3,1), (3,2) and

(4,2). Each inversion is actually a pair of elements that

is out of order and the only permutation with no inversion

is the sorted permutation 1 2 ... n.

The inversion vector of a permutation is the sequence

of integers

d(l)d(2) d(n)

obtained by letting d(j) be the number of a(i) such that

5

(a(i),a(j)) is an inversion. In other words, d(j) is the

number of elements greater than a(j) and to its left in its

sequence, so O<=d(j)<j. For example, the inversion vector

of the permutation 3 1 4 2 is

j 1 2 3 4

d(j) 0 1 0 '2.

So the number of inversions can be obtained by summing the

inversion vector, which yields 3 in this case.

6

A p-chain of list Lis a sequence of elements of L oc

curring at intervals of p. For example, if N = 8, then L

has three 3-chains, namely, {L(l), L(4), L(7)}, {L(2), L(5),

L(8)} and {L(3), L(6)}. In general, L has min(N,p) p

chains, each of length E(N/p), or E(N/p)+l, where E(N/p) is

an integral part of N/p.

When each of L's p-chains is in ascending order, Lis

said to be p-ordered. Top-sort Lis to sort all of L's p

chains.

The most fascinating theorem about Shellsort is perhaps

the following:

Theorem A : If a k-ordered list is h-sorted, it remains k

ordered.

An example of this remarkable property appears in TABLE I.

After being 2-sorted, the list's three 3-chains

(7,13,29,44), (5,18,24,63), (8,19,31,82) are still in as

cending order; it remains 3-ordered.

TABLE I

AN EXAMPLE OF SHELL SORT

7 19 24 13 31 8 82 18 44 63 5 29

3-sort
7 5 8 13 18 24 63 19 29 82 31 44

2-sort
7 5 8 13 18 19 29 24 31 44 63 82

1-sort
5 7 8 13 18 ·19 24 29 31 44 63 82

Theorem~: Suppose that hand k are relatively prime; the

largest integer which cannot be represented in the form a*h

+ b*k, a,b >= 0, is h*k-h-k.

7

Proof. If n = h*k-h-k, which can be represented in the form

a*h+ b*k , then a mod k = k-1, and b mod h = h-1; hence

a*h+b*k >= (k-l)*h + (h-l)*k > h*k-h-k. This is a contrad

iction. Conversely if n >= (h-l)*(k-1), choose a, b so that

mod(a*h, k) = mod (n, k) O<=a<k and b = (n-a*h)/k; hence

n is representable.

From Theorem A and Theorem B, we can conclude that if a list

Lish-ordered and k-ordered, and gcd(h,k)=l, we have L(i) <

L(j) whenever j-i >= (h-l)*(k-1). For the example in Table

I where h=3 and k=2, we have

L(i) < L(j) if j-i > 1.

This led to the idea of Pratt's sequence, which we shall

discuss in the next section.

Families of Increments

Shell originally suggested using the increments LN/~,

, ... , 1, but this has a serious defect when the binary

8

representation of N contains a long string of zeros: there

is little interaction among chains, which results in many

sorted but distinct chains. For example, if N is a power of

2, the worst permutation before the. last pass is processed

is N/2, 1, N/2+1, 2, ••• , N, which needs about N**2/8 inve~

sions to sort. Frank and Lazarus [6] first recognized this

defect and suggested that the even elements in Shell's se

quence be incremented by one. Table II, derived from Frank

and Lazarus's paper, shows their empirical results. The

original Shellsort performs as well as F & L's Shellsort

when N is odd (eg. N=l2287). But in case the binary

representation of N contains a lot of zeros, the use of F &

L Shellsort takes a significant less time as compared to the

use of the original Shellsort.

Table II

IBM 704 RUNNING TIMES FOR DIFFERENT VALUES OF N
USING SHELL'S SEQUENCE OF INCREMENTS

Number of
Elements N

127

128

1000

7936

12287

12288

18432

24575

24576

32544

Nin Octal Average Sorting Times
in Seconds

F &' L Shell

177 .15 .16

200 .16 .20

1750 2.0 2.2

17400 25 26

27777 44 46

30000 43 119

44000 74 144

57777 103 104

60000 103 338

77440 143 150

Since then, many other sequences [cf. Hibbard 1963]

have been suggested. Most of them have following proper-

ties:

1. Sequences form fuzzy geometric progressions.

2. Each element of a sequence is relatively prime to at

least one of its nearby predecessors.

9

10

Papernov and Stasevich (10] proved that an upper bound for

Hibbard's sequence is O(N**(3/2)) arid later Pratt [11] ex

tended it to sequences which have the above properties.

Pratt's own sequence· certainly does not fall into the above

category and its average asympototic behavior O(N*(Lg N

)**2) is known to be the best so far. The idea behind

Pratt's sequence is that each h(s)-chain in the sth pass is

2-ordered and 3-ordered. Following the discussion above,

for any h(s)-chain, we have

L(i) < L(j) if j-i >= 2*h(s).

For any element L(j) in the h(s)-chain, we need only compare

it with L(j-h(s)) and swap two elements if they are out of

order. At most N comparisons are needed in each pass and

hence the running time is of order N*(Lg N)**2, since there

are about (Lg N)**2 passes. The major drawback in using

Pratt's sequence is that N has to be extremely large before

Pratt's sequence is more efficient than the other popular

sequences. This defect wps first pointed out by Pratt [11]

and was confirmed by Bauer's experiment [2]. Of those sug

gested sequences, Knuth's sequence and Hibbard's sequence

are very similar and have been widely used. Bauer [2] com

pared these two sequences and found that the use of Knuth's

sequence results in approximately two or three percent fewer

comparisons than the use of Hibbard's sequence. Table III

summarizes the main families and their characteristics.

Table III

Families of Increments

suggested h Upper Average
by Bound case

Shell hCt) = floor(N/2) O(N**2) unknown
h(k) = floor(h(k-1))

Hibbard h = l,3,7, ••• ,2**J-l<N O(N**l.5) unknown

Knuth h = 1,4, ..• , (3**t-l)/2 O(N**l.5) unknown
where h(t+2) > N

Pratt h = 1,2,3,4,6,... O(N*(Lg N)**2) same
his of the form 2**p*3**q
p, q > 0

How to Code Shellsort

In Shellsort, each pass of each sift consists of suc

cessive pair swaps. Boothroyd [3] coded this method in a

11

way that a swap follows each out-of-order comparison while

Hibbard [7] replac~d each set of n pair swaps by one "save,"

n-1 moves, and one insertion (see Program A, Figure 1.)

Chandler and Harrison [4] reported that Hibbard's algorithm

runs 17% faster than Boothroyd's algorithm, on a CDC 6400

computer and coded in FORTRAN.

procedure C(x,n); array x(l:n)

comment Shell's method using Hibbard's increments

begin integer d,i,j

d := 2**entier(lg N) - l;

Cl: if d<=O then go to exit.; i:=l;

C2: j:=i; y:=x[i+d];

C3: if y<x[j] then go to C4;

C5: x[j+d]:=y; i:= i+l;

if i+d<=n then go to C2;

d:=(d-1)/2; go to Cl;

C4: x[j+d] ·-.- x[j]; j:=j-d;

if j>O then go to C3; go to C5;

exit: end;

"entier" is an ALGOL function equivalent to "floor"

Figure 1. Program A by T. N. Hibbard

Bauer [2] noted that program A can be tuned by elim-

12

inating "unconditional" saves (y:=x[i+d] in C2 in Program

A). The saving in time achieved by this modification is

about 9% for Hibbard's sequence. His experiment also indi

cated that the initial increment, h(t), should not exceed

about 0.24*N when Hibbard's increments are used and should

not exceed about 0.50*N when Knuth's increments are used.

Program B, in appendix A, is the FORTRAN implementation

13

based on Bauer's algorithms. Bauer's thesis [2] has a com

plete treatment about how to code Shellsort.

Methods of Investigation

In this section, we are going to present our methodolo

gy used to find the optimal sequence. We might view the

problem of finding the optimal sequence as a constrained op

timization problem - requiring the minimization of running

time (number of comparisons) for a specific N and subject to

1 = h(l) < h(2) < ••. < h(t-1) <h(t) < N,

t, h(i) i=l,t are integers.

Unlike traditional optimization problems, the number of

variables is not fixed -- there are t variables (h(l) is

not a variable). The first decision we need to make is to

choose some values of Non which the experiment will be

based. Since there are some existing sorting algorithms,

quicksort, for example, which have better performance than

Shellsort when N becomes large (say, N=500), it is reason

able to choose N from such range in which Shellsort is

better than or at least equal to any existing sorting

methods. The interval (20,500) seems to be a good choice

since some simple straight sorting algorithms, insertion

sort, for example, are better than Shellsort when N becomes

small because of low overhead for bookkeeping. We choose 5

points: 20, 50, 100, 250, 500.

For a given N, we can fix the number of passes t (t=l)

first and find some empirical values h(l), h(2), ... , h(t),

14

which seems to minimize the number of comparisons, in the

sense that if one of the h's is varied while the others are

fixed, the average number of comparisons increases. Later,

we increment t by one and repeat the above search; in this

manner, best sequences for different values oft can be ob

tained.

However, since t can be theoretically as large as N-1,

another question immediately arises : when do we stop the

above search? Unfortunately, we cannot find any theory to

answer it. From Bauer's thesis, we know that it is unwise

to have too many passes. Knuth, based on his MIX computer,

also estimated that saving one pass is about as desirable as

saving 10/9*N moves. Therefore the following convergence

criterion seems to be a reasonable assumption.

HYPOTHESIS~: Sequence h (with number of passes equal tot)

is said to be the best possible if all of the possible se

quences with the number of passes less than or equal to t+l

require more comparisons than h does.

We have already discussed how to choose N and- to deter

mine the maximum limit of the number of passes t. For a

given N and t, do we have to examine all of the possible se

quences (there are about 5000 possible sequences of three

pass Shellsort when N is equal to 100); can we eliminate

some sequences, which are not likely to be the best se

quence, without loss of generality? Theorem A and Theorem B

show us that it is desirable to sort with relatively prime

incements. Empirical results, shown in Table IV (see also

Figure 2), .agree with Theorem A.

Table IV

BEHAVIOR OF THE NO. OF COMPARISONS AS A
FUNCTION OF h(3) IN THREE-PASS SHELLSORT

h(2)=3, N=50

h(3) Average Number of
Comparisons*

4 3·40

5 325

6 344

7 302

8 292

9 326

10 292

11 290

12 314

13 287

14 291

15 318

* 20 random lists were sorted

15

350--j
J
j +

340~+
J
...J

'
N ,.~,-.,(":; -,

.:. :.:) IC)

0 """. -;

0
F

c

~

~

320~

31 B_;
-,
1

0 ...J

M 328--i
p ~

4

+

6

+

+

+ +

8 10

THREE--P.ASS SHEUSORT
h(2)=3, !'1=56

+
+

+
+

+ +
+

12 14 16

HC3)

+

+
+

18 20

Figure 2. Illustration of Importance of Relative Primeness

+

+
+

22

+

24

+

I-'
Cl)

17

It is not too difficult to explain that the number of

comparisons increases sharply when h(2) is not relatively

prime to h(3). Let us use two specific sequences (1, 3, 11)

and (1, 3, 12) (called sequence A and sequence B respective

ly) as an example. Since the above two sequences differ

only in h(3) by one, we can conjecture that the running time

of the first two passes for sequence A and sequence Bare

about equal, assuming that the original list is random; the

final 1-sorting determines whi~h sequence is the best. In

sequence B, the second pass, 3-sorting, is just a straight

insertion sort on 3 (h(3)/3)-ordered chains which results in

a random 3-ordered permutation; after the second pass,·each

element of the inversion vector d(j) can be (j-1)/3*2 in the

worst case. But in sequence A, d(j), independent of the

value of j, can be at most equal to 10, since

L(i} < L(j) if j-i >= 20 (Theorem A)

L(j) > L(j-3) > L(j-6) > •••• > L(j-18) (Lis 3-ordered)

and

so

L(j) > L(j-11) > L(j-14) > L(j-17) (Lis 11-ordered);

L(j-1), L(j-4), L(j-7), L(j-10), L(j-13), L(j-16), L(j-19)

L(j-2), L(j-5) and L(j-8)

are the only possible elements to the left of L(j) which are

greater than L(j). So sequence A is significantly better

than sequence Bin the worst case. What is about the aver

age behavior? The average value of d(j) is obtained by sum

ming probabilities P(L(i) > L(j)) for all i < J.

18

Although we are unable to figure out what the exact proba

bility distributions in the two cases are, it is reasonable

to conjecture that sequence A will outperform sequence Bin

the average case as well. As shown in Table V, sequence B

performs poorly in the final 1-sorting as compared to se

quence A and sequence C. Sequence B requires the same

number of comparisons in the final pass as sequence D does,

although sequence D has one pass less than sequence B.

A

B

c

D

Table V

COMPARISONS PER PASS WITH N=50

Increments

1,3,11

1,3,12

1,3,13

1,3

Number of Comparisons

pass

1

71

64

60

236

2

119

110

120

141

3

100

140

107

total

289

314

287

377

In order to assure that h's are relatively prime, let

h(2) = any integer> 0,

h(3) = any prime number> h(2),

h(k) = any prime number> h(k-1).

19

Apparently we may suffer from the possibility of discarding

some sequences of which increments are relatively prime and

may give the best empirical results, for instance, (1, 3,

10) in Table III. Note that the Figure 2 is almost horizon

tal when h(3) >= 7, h(3) <= 14, except for a few values of

h(3), which are a multiple of 3. This indicates that such

criteria cam be applied without much loss of generality.

Now we come to the problem of the choice of the test

data. Throughout this thesis, all of the sorts are run

against random lists: here we define a random list Las, for

any two elements L(i) and L(j),

P(L(i) > L(j)) = P(L(i) < L(j))

and

P(L(i) = L(j)) = 0.

A random number generator, which can repeatedly generate un

iformly distributed random numbers over the interval (0,1),

satisfies our needs. Here the uniform distribution over the

interval (0,1) is defined as

f(x(O))=l

F(x(O))=x(O)

for O < x(O) < 1,

for O < x(O) < 1,

where the probability density function (P. D. F.) f(x(O)) =

Probability (x=x(O)) and cumulative distribution function

(C. D. F.) F(x(O)) = probability (x<=x(O)). Figure 3 shows

20

the probability density fnction and the cumulative distribu

tion function. Our random number generator is based on a

shuffled congruential method. To gather more accurate sta

tistical data, the sorts are run against 20. different data

lists of 5 sizes 20, 50, 100, 250, 500. All of the empiri

cal results, shown in a later chapter, are the average of 20

different runs.

?=;.(~)

I

(A) P. D. F.

(B) C. D. F.

fig~re 3. P. D. F. and C. D. F. for Uniform Distribution Over Interval 1

(0,1)

21

CHAPTER III

TOWARD THE OPTIMAL SEQUENCE

In this chapter, we study the problem of finding the

optimal sequence h to ~inimize the running time. We examine

the simplest ~ase, two-pass Shellsort, first in section 1,

followed by generalizing to multiple-pass Shellsort in

section 2. In section 3, we present a new variation of

Shellsort, intended to speed up the inner loop, and

empirical results are also given.

Two-Pass Shellsort

In this section, we examine the characteristics of

two-pass Shellsort, which consists of a h(2)-sorting,

followed by h(l)-sorting, where

h(l) = 1,

h(2) > h(l) and h(2) < N.

Let us consider first the 2-ordered list. It is easy

to see that the number of permutations a(l)a(2) •••• a(N) of

{l ,2, •.• , N} such that a(i') <= a(i+2) for 1 <= i <= N-2 is

(~/2J) , (3 .1)

since this equals the number of ways partitioning N elements

into two groups; l.!:ll~ elements to put in even-numbered

positions a(2}a(4) ..• , with the remaining ~/i elements to

22

put in odd-numbered positions. Each 2-ordered permutation

is equally likely after a random list has been 2-sorted,

since the number of permutations for a 2-ordered list (Eq.

3.1) is a divisor of N!.

23

Let A(N) be the total number of inversions among all

2-ordered of {l, 2, •.• , N}. Knuth [9] used a "lattice

diagram" to compute A(N), which has the surprisingly simple

form

L!'T/2J *2** (N-2) (3. 2)

Hence the average number of inversions in a random 2-ordered

permutation can be obtained by dividing Eq. 3.2 by Eq. 3.1.

By Stirling's approximation this is asymptotically

0.15*N**(3/2) (3 • 4)

Thus if a list is 2-ordered, the average running time to

sort this list is proportional to N**(3/2). Now consider

the general two-pass Shellsort, when the increments are h

and 1. In the first pass, we need to sort h random chains

by insertion sort, of which r chains are of length q+l and

h-r of length q, where

q is the integral part of N/h

r is the remainder part of N/h.

Since insertion sort takes on average n*(n-1)/4 inversions

for a list of length n, the average number of inversions

needed in the first pass is

(3. 5)

Each inversion in the second pass comes from a pair of

24

distinct chains, and a given pair of distinct chains in a

random h-ordered permutation constitutes a random 2-ordered

permutation. For example, let L be a 3-ordered list of

length 6. Inversion can only come from following three

random 2-ordered lists, (L(l), L(2), L(4), L(S)), (L(l),

L(3), L(4), L(6)) and (L(2), L(3), L(S), L(6)). The average

number of inversions is therefore the sum of the average

numbers of inversions between each pair of distinct chains,

namely

(3. 6)

Equation· 3.5 is approximately equal to 2*N**2/h, while

equation 3.6 approximately equals J~·N**3*h. The best

choice of h, which can be found by minimizing the summation

of the above two approximations, is approximately

l.72*N**(l/3). With this choice of h we can make a

substantial improvement over straight insertion, from

O(N**2) to O(N**(S/3)).

To get a more clear view, let us look at some plots

based on our empirical data. Figure 4 and- Figure 5 are

plots of number of comparisons (or number of moves) vs. h(2)

when N=lOO. It explores the following interesting facts:

1. If we smooth the curve in Figure 4, it becomes

convex with a minimum point h(2)=7. If we view straight

insertion sort (one-pass Shellsort) as a two-pass Shellsort

with a large value of h(2) (say, h(2)>N), then Figure 4

clearly shows the improvement from insertion sort to two-

25

pass Shellsort.

2. In Figure 4, we use two different measurements -

number of comparisons and number of moves; both give very

similar curves. This indicates, in this case, that either

one of these measurements can serve as the criterion to

measure its efficiency. However, a defect using number of

moves as the criterion , found in our later experiment, is

that the use of number of moves can not completely reflect

the overhead associated with an increase of one more pass,

even though it asymptotically dominates the running time.

Ast becomes larger, the number of moves will decrease while

the pumber of comparisons increases (that is, the number of

in-order-comparisons increases). Accidentally, we find

another reason to use the number of comparisons as the

criterion.

3. We decompose the number of moves into two parts: the

number of moves in the first pass and the number of moves in

the second pass as shown in Figure 5. The number of moves

in the first pass is proportional to l/h(2) (Eq. 3.5); its

curve is monotonically decreasing as Eq. 3.5 suggests. The

other curve, due to the complexity of Eq. 3.6, is not very

smooth, but tends to go up as h(2) become larger.

1800--l

~

N t600J
0 1

~ . ~ 0
F"

1400
M
0
v
E
S 1200
(

c
0
M
P 1000
)

800

\ ,,.,o--'
~ .,/0

\ ~fr~ p-<Y
~-<?IA,/ '.!{

r-n~·,-,.,-,,·1-y-~-rttT~·r·rrrttT·1--,-rr~·~ry.,.~-rr-rr1"T"f-r-rr~Tf"T'T~'j'"'Trf"t rt 11 I 111 ttr 111111 11111111

0 5 10 15 20 25

H(2)

30

STAR:COMP~ DIAMOND:MOVE

35

Figure 4. Two-Pass Shellsort (N=IOO)

40 45 50

N
CJ)

t10VE
-i
1 ...
l

1500-J
-;

I

~

*

+
*:" + +

~
j

1250~

* .i1; *'+4-* ***,f..:k.~;1,.;++
J, *++-t.+++·1· +

"' ** + <> ..,
....

: ..,
1 00f'j

. ~

-
' 1
~

750-~

,k

J, *+++
* * J, *..,,. + ++ +

** **** + ** *"" ++++
~*** * +++ +

.J. +
+·

<>
...
... +++·
...
i <> +

: + S0~).....;
.., <> +

++
-i
...; <>

+ .-<,
• ..,1 <)

-· r: : I <> ?•-...,J-~ . • <:;, .A.

L~ ' -o

.j.. ?f.

., + <>o<>o

1 °00
0000000000000000000000000000000

-~

~ . ', ,-, '' ,., rtt ,.,..,,..,?"'IT 0· '''"'"l'''''''''l""'''"''I I ,,,,,,1,1111 , ,., ' ' ' ' '1 ,. ,., ' ' ' ' ' ' I , r r,. ,··,·r, r T ' ' ' r ' ' r , ' T ,

0 5 1 k.1 15 20 25 30 35 40 45 5fJ

H(2)
STAR:SUM~DIAMOND:MOVES IN 1ST PASS~ +:MOVES IN 2ND PASSES

Figure 5. Decomposition of Two-Pass Shellsort (N=lOO)

..

N
-..J

28

The Multiple-Pass Shellsort

We have seen that two-pass Shellsort can break the

O(N**2) bound with the right choices of increments. Clearly

we can do even better when more increments are used. But

how much improvement can we make with more increments?

Analysis of general Shellsort, unlike that of two-pass

Shellsort, faces a difficult problem that has baffled

everyone so far: the permutations in a given pass may not be

equally probable, so that all of the combinatorics

techniques in analysis of two-pass Shellsort seem useless.

As an example, a 3-ordered list of length 4 has 12

permutations which are equally likely. After 2-sorting,

some permutations are obtained more often than others as

shown in Table IV. Unless we can figure out the probability

distribution for a list with given degrees of order,

analyzing general Shellsort using mathematics will be very

difficult.

So our primary analysis of general Shellsort has been

based on statistical results rather than on mathematical

derivation. A large number of experiments (more than 50,000

lists were sorted) were conducted based on the procedure

described in Chapter II. Appendix B tabulates the best

optimal sequences for different values oft and N. It

should be noted that there are a lot of sequences which are

not listed in Appendix B, but which take almost the same

amount of time as the best sequences (the difference is less

29

than one percent) and the difference probably is due to

sampling error. Thus we should not regard the sequences in

Appendix Bas the only best sequences.

TABLE IV

PROBABILITY DISTRIBUTION FOR
A 2- and 3-0RDERED LIST OF LENGTH 4

PERMUTATION

1234

1324

1243

2143

2134

PROBABILITY

3/12

4/12

2/12

1/12

2/12

Perhaps the most fascinating observation is that all of

the best sequences form geometric progressions (slightly

perturbed), just like most existing Shellsorts. Nobody has

commented on why geometric progressions were originally

chosen for almost all Shellsorts except Pratt [11]. He

suggested thinking of Shellsorting as progressively bringing

each element closer to its final position, in jumps of

decreasing size, then it is "natural" to arrange that

30

increments decrease geometrically: this is what happens in a

binary search. Possibly such consideration has motivated

the choice of a fuzzy geometric progression for almost all

Shellsorts. Our empirical results show that it is

necessary, at least for the range we searched, to make the

sequence a geometric progression.

So we focus our attention on sequences that form fuzzy

geometric progressions which are parameterized by a common

ratio. Our next observation is that Knuth's sequence

(common ratio= 3) is almost optimum for the interval we

examined. The sequence (1, 4, 13, 41) was observed to be

the best possible sequence for N=lOO (Knuth's sequence: (1,

4, 13, 40)). Note that Knuth's sequence, like most

suggested sequences, requires only every consecutive pair of

elements in the sequence are coprime, while in our

experiment,

gcd(h(l),h(2), ..•• h(t)) = 1

One might wonder whether there is improvement if we perturb

each of h(i), i > 2, of Knuth's sequence, to a nearest prime

number. Figure 6 shows that perturbing h(4) from 40 to 41

(or 37) in this case, can result in a 1.2% reduction in

number of comparisons. We extend our experiment for

different values of N as shown in Table VII, and results

show that it is beneficial to make the elements of Knuth's

sequence relatively prime. When the running time is a

critical factor, it is worthwhile storing a perturbed

Knuth's sequence in an auxiliary array (O(Lg N) storage).

R
F
L
A
T
J
v
F

i"<.
u
N
N
.L

f'l
('.'•
<'.1

T
1'

.J
,,1
I'

F

~
I .08

I .06

~

~
*

* :k

*

FOUR-PASS SHEU.SORT
H(2)•4~H<3)-13~N-100

*
*

1 . 04-:j * * * j * *
~ * * ~ * *
::j * * *

l .02~ * * *

* **
*

*

* *

::J * .ik
~ *

*

*
* *

~ * * *

I ' 00l, ''"I"" ,, I •·•·~.....-• ••r-• ••·• l • m·•p·• ~'T"'',-.~,~':""'...,'~~ .. ,....,........,:, • ' ' • • • '

15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

J-1(4)

Figure 6. Behavior of Relative Running Time As a Function of H(4}

. .

w

TABLE VII

COMPARISON BETWEEN KNUTH'S AND
PERTURBED KNUTH'S SEQUENCE

N t KNUTH
s

100+ 3 1,4,13

100* 4 1,4,13,40

250+ 4 1,4,13,40

250* 5 1,4,13,40,
121

500+* 5 1,4,13,40,
121

1000+ 1,4,13,40,
121

1000* 6 1,4,13,40,
121,364

+: Knuth's criterion
*: Bauer's criterion

MODIFIED
COMP s COMP

771 1,4,13 771

730 1,4,13,41 717

2486 1,4,13,41 2434

2442 1,4,13,41, 2378
127

5882 1,4,13,41, 5882
127

14219 1,4,13,41, 13977
127

13788 1,4,13,41, 13250
127,367

IMPROVEMENT
9.: 0

0.0

1. 2

2.1

2.6

1. 9

1. 2

4.0

Table VII also suggests that Bauer's criterion to

determine the number of passes t (that is, choose t such

that h(t)<=O.S*N and h(t+l) > O.S*N) be preferable to the

32

Knuth's criterion (that is, choose t such that h(t), h(t+l)

< N, and h(t+2) >= N), as far as the number of comparisons

is concerned. When Knuth's criterion is used, the increment

in the first pass h(t) can be only about N/9 in the worst

case, which is apparently too small, since the average

33

displacement of each element from its final position is N/3.

In conclusion, ther~ are actually a lot of sequences

which are comparable to the best sequences we listed in

Appendix B. All such sequences form fuzzy geometric

progressions too. Fuzzy geometric progression with common

ratio equ~l to 3 seems a good choice. Thus Knuth's sequence

is recommended, with Bauer's modification which determines

the number of pass t.

A New Variation Of Shellsort

Our previous discussion was based on standard

Shellsort: in the s-th pass, we h(s)-sort the list by

insertion sort and afterword the list is h(s)-ordered. Each

pass faces more than O(N) r~nning time due to the

characteristics of insertion sort. In this section, we want

to present and experiment with a new variation of Shellsort,

in which the running time of the first t-1 passes can be

guaranteed to be O(N) each, at the expense of the final pass

of which the running time is unknown. The algorithm is

given as follows:

For s=t downto 2 by -1 do

for j= h(s)+l to N do

if (L(j-h(s)) > L(j)) then

swap(L(j-h(s)), L(j))

insertionsort(L, N)

34

The result of interchanges is not propogated~ no

comparison between L(j-h(s}) and L(j-2*h(s)) is made. Thus,

the list will not always be h(s)-sorted. The final

insertion sort ensures that the whole list is sorted. In

this case, the first t-1 passes take (t-l)*N comparisons ·and

these preliminary passes help to decrease the running time

of the final pass. If the running time of the final pass is

proportional to O(N* (Lg N)**2) or even better, its average

running time will beat any variation of Shellsort (assume t

is roughly equal to Lg N.)

The empirical results, shown in table VIII, discourage

our optimistic guessing. The number of inversions required

in the final pass is not decreased enough. It tends to be

slower as compared to traditional Shellsort when N becomes

larger. This indicates that an early comparison contributes

more than a comparison in the final psss. The true

asymptotic behavior is unknown.

N

20

50

100

250

500

1000

TABLE VIII

COMPARISON BETWEEN SHELLSORT AND NEW VARIATION
USING HIBBARD'S SEQUENCE

NUMBER OF COMPARISONS

SHELL SORT NEW

81 79

302 297

787 834

2567 3567

6157 10588

14747 35269

35

CHAPTER IV

AVERAGE BEHAVIOR OF SHELLSORT

In this chapter, we shall study the most difficult

problem about Shellsort: asymptotic average behavior·. At

the time of this writing, most work on average behavior has

been based on data fitting. Here we present a simple

analytical model that can be used to analyze some passes of

Shellsort. We introduce Chandler's experiment first, and

then show some of his comparison tables can be derived by

the use of combinatorics. Finally, we prove that the

asymptotic behavior of the original Shellsort, when N is a

power of 2, is O(N**l.5).

Usually the derivation of such "asymptotic" formulas

involves higher mathematics and therefore may be hard or

impossible to isolate, so one might think to solve this

problem with the help of computer -- sort all permutations

of N keys and compute the exact average running time (number

of inversions). It is obvious that such a method can only

be applied to small values of N since the number of

permutations is N! that it takes too much computer time to

experiment with moderate values of N (10! = 3628800).

Experimenting on some small values of N, however, may give

36

37

us insight into the average behavior of large values of N.

Based on such idea, Chandler [5] conducted an experiment on

original Shellsort for N up to 8. As shown in Appendix C,

he tabulated number of out-of-order comparisons

(horizontally) vs. number of in-order comparisons

(vertically) in each pass of Shell's original algorithm.

Given such tables, the average number of inversions can be

easily computed by summing all p(i)*i, where p(i) is the

probability of having i inversions (the number of

permutations to have i inversions divided by total possible

permutations).

It is astonishing at first sight that a large common

factor can be taken out of each of these tables, which

afterword are in a fairly simple form. Tables of whose N/h

equals 2 even form diagonal matrices (with diagonal line

from northeast down to southwest) and coefficients on that

diagonal line are binomial coefficients, namely

(~) where h is the increment in that pass
i = 0, 1 I • • • f h. (4 .1)

For example,

0 1 2 3
0 1 2

N=4 N=6 0 0 0 0 1
h=2 0 0 0 1 h=3 1 0 0 3 0
CM=6 1 0 2 0 CM=90 2 0 3 0 0

2 1 0 0 3 1 0 0 0

CM=6 denotes a common factor of 6 that has been removed
from that table, etc.

But there is nothing amazing after we viewed it as a

combinatorial problem; the common factor is equal to the

number of ways to partition N into N/2 subgroups with 2

elements each. For N = 4, common factor is

.
(~){~) = 6;

while N=6, it is equal to

= 90.

In each subgroup, two elements are either in order (no

inversion) or out of order (one inversion). There are

therefore

{ N{2) permutations to have 1 inve·rsions,

38

since there are N/2 subgroups. This explains the above two

tables.

Such analysis can be extended to some tables in which h

is not a divisor of N. For example, if N=5, h=2, common

factor is equal to the number of permutations for a 2-

ordered list of length 5, that is,

(~) = 10

The list is split into two sublists now -- one of length 3

(sublist 1) and the other of length 2 (sublist 2). Let

x(O), x(l) and x(2) be the random variables representing the

number of inversions for the list, sublist 1 and sublist 2

respectively. Clearly,

P(x(O)=O) = P(x(l)=O)*P(x(2)=0) = (l/6)*(1/2) = 1/12,

P(x(0)=2) = P(x(l)=2)*P(x(2)=0) + P(x(l)=l)*P(x(2)=1)

39

= (2/6)*(1/2) + (2/6)*(1/2) = 4/12.

Using similar concepts, we can compute all of the first-pass

tables by hand. Also, the equations for the two-pass

Shellsort (Eq. 3.6 together with Eq. 3.2) provide us with

the capability to compute all of the two-pass tables (eg.,

N=6, h=l).

Note that the above analysis is limited to lists in

random order. Later passes of Shellsort, in which each of

the possible permutations may not be equally likely,

certainly do not have such property. Thus it is applicable

only for the first pass.

However, one exception occurs when N is a power of two.

In this case, lengths of every sublists during a specific

pass are the same and each permutation is equally likely, .
since the number of permutations in any pass is always a

divisor of N!. Recalling from chapter 3, where we have

presented the average number of inversions for a 2-ordered

list, we are able to show following theorem.

Theorem C: The asymptotic average behavior of original

Shell's algorithm, when N is a power of 2, is of order

N**l.5.

Proof. We have 2**t elements to be sorted. By using

Shell's increments, it takes t passes to sort this list,

with increments equal to 2**(t-l), 2**(t-2), .•• , 1. In each

pass s=t, t-1, •.• ,1, there are 2**(t-l) sublists: each

sublist is of same length 2**(t-s+l) and 2-ordered. From

Eq. 3.4, for a list of length k, we have

no. of inversions:::- 0.15*k**l.5

The total average number of inversions can be obtained by

summing the average number of inversions in each pass.

Total

=

=

t

~ *0.15*(2**i)**l.5 * 2**(t-i).

i=l

t

*0.15*2**(t+0.5*i).

i=l
t

0.15*N* ~ *2**(0.5*i)

i=l

0.51*N*(J'N - 1)

40

We have just showed that the running time of a special

case of original Shellsort, when N is a power of 2, is

proportional to O(N**(3/2)). But can we extend it to the

general Shellsorts? Does the exponential form give the true

asymptotic behavior of Shellsort? This question has baffled

everyone so far. We are unable to answer it. The main

contribution of this chapter, if any, is to illustrate the

importance of mathematics, especially combinatorics and

probability, in analysis of algorithms. The analytical

model we built may not be very useful for analysis of

general Shellsort.

CHAPTER V

SUMMARY, CONCLUSION, AND SUGGESTIONS

FOR FUTURE RESEARCH

Summary and Conclusions

For each chapter, we summarize its results and give our

conclusions.

In chapter II, we reviewed the previous work and

presented our methodology used to find the optimal se

quences. We also illustrated why the primeness of incre

ments is necessary by showing empirical data and by giving

theoretical analysis.

In Chapter III, we discussed the characteristics of

two-pass Shellsort, in which the optimum sequence can be

derived by mathematics. We also pointed out why the

analysis of algorithms in multiple-pass Shellsort is diffi

cult -- the permutations in a given pass may not be equally

probable. In addition, we presented our empirical results

based on the procedure described in chapter III. In order

to provide an easier view, some plots are given. Empirical

results suggested that Shell's increments be in the form of

geometric progression and the corresponding common ratio be

3. All of the existing sequences perform about equally

well; Knuth's sequence is slightly better than the other se-

41

42

guences. However, Knuth's criterion to determine the

number of passes tis not so great and Bauer's criterion is

recommended.

In chapter IV, we introduced Chandler's comparison

tables first and showed that some tables can be derived by

hand rather by expensive experiment. We also noted that

when N is a power of 2, the permutaions in any pass are

eq-ually likely, if Shell's increments are implemented. This

helps us to prove that the average behavior of original

Shellsort, when N is a power of 2, is of order O(N**(3/2)).

The exact form of the asymptotic average behavior of other

varities of Shellsorts is still unknown.

We hope that this thesis can provide a tutorial view of

Shellsort, especially for people who are not mathematically

inclined. We illustrated many characteristics of Shellsort

by examples and plots, and also tried to explain it, using

simple combinatorics and probability. Those with little

mathematical background should find no difficulty with it.

Suggestions for Future Work

Study of Shellsort seems to be of academic interests

only, since there exist sorting techniques which are better

than Shellsort in most cases. But due to its simplicity and

the good performance in the worst case, Shellsort can be ap

plied for moderately large N (say, N<=500). Also, it pro

vides an excellent case study in the analysis of an algo

rithm. There are many suggestions for future research on

43

the Shellsort:

1. If a sequence Sis found to be the best possible for

N, will S be the optimum for any Nl, where Nl is not equal

to N; that is, does there exist an optimal sequence for any

N (with diffent t).

2. We have briefly introduced Pratt's sequence in

chapter II. It can be generalized to sequences of the form

x**p*y**q. What is the average time for Shellsort using se

quenc~s of the form 2**p*3**q, etc.?

A SELECTED BIBLIOGRAPHY

[l] Aho, A. V., J. E. Hopcroft, J. D. Ullman. Data Struc
tures and Algorithms, Reading MA: Addison-Wesley Pub-
lishing Co., 1983 .

[2] Bauer, L. B~ "An Empirical Study of Shellsort." Unpub
.lished M. s. Thesis, Oklahoma State University, 1980.

[3] Boothroyd, J. "Shellsort: Algorithm 201." Communica
tions of the ACM, 6 (1963), 445.

[4] Chandler, J. P., W. C. Harrison. "Remark on Algorithm
201." Communications of the ACM, 6 (1970), 373-374.

[5] Chandler, J. P. Unpublished Notes, Oklahoma State.
University, 1981.

[6] Frank, j. M.,R. B. Lazaius. "A High-Speed Sorting Pro
cedure." Communications .2l. the ACM, 3 (1960), 20-22.

[7] Hibbard, Thomas N. "Ari Empirical Study of the Minimal
Storage Sorting." Communications of the ACM, 3 (1960),
206-213. - -- --

[8] Knuth, D. E. The Art of Computer Programming, Vol. 1:
Fundamental Algorithrns-,-2nd ed. Reading, MA: Addison
Wesley Publishing Co., 1973.

[9] Knuth, D. E. The Art of Computer Programming, Vol. 3:
Searching and 'sortT'ng,"'"'2nd ed. Reading MA: Addison
Wesley Publishing Co., 1973.

[10] Papernov, A. A., G. V. Stasevich. "A Method of Infor
mation Sorting in Computer Memories." Problems of In
formation Transmission, 3 (1965), 63-75.

[11] Pratt, v. R. Shell Sorting and Sorting Networks, Gar
land, New York, 1979.

[12] Shell, D. L. "A High-Speed Sorting Procedure." Commun
ications of the ACM, 2 (1959.), 30-32

44

APPENDIX A

BAUER'S SHELLSORT

45

c
c
c

SUBROUTINE SHELL(JR,N)
DIMENSION ARRAY(lOOO)

C SHELLSORT
C INPUT PARAMETERS
C ARRAY ARRAY TO BE SORTED
C N NUMBER OF ELEMENTS IN ARRAY
c
C RETURNS ARRAY IN ASCENDING ORDER
c
C HIBBARD'S INCREMENTS ARE IMPLEMENTED BUT MAY
C BE MODIFIED TO USE KNUTH7S INCREMENTS
c
c

IF (N .LT. 4) RETURN
JH=l

C REPLACE .24 BY .50 IF KNUTH'S
C INCREMENTS ARE USED

JHMAX = .24*FLOAT(N)
10 IF (JH .GE. JHMAX) GO TO 20

c
C REPLACE 2*JH BY (3*JH)-l IF KNUTH'S
C INCREMENTS ARE USED

JH = (JH-1)/2
GO TO 10

C REPLACE (JH-1)/2 BY (JH-1)/3 IF KNUTH'S
C INCREMENTS ARE USED

20 JH=(JH-1)/2
30 NMJH=N-JH

DO 60 K=l,NMJH
JHPK=JH+K
IF (ARRAY(JHPK) .GE. ARRAY(K)) GO TO 60
TEMP=ARRAY(JHPK)
ARRAY(JHPK)=ARRAY(K)
J=K-JH
IF (J .LE. 0) GO TO 50

40 IF (TEMP .GE. ARRAY(J)) GO TO 50
JHPJ=JH+J
ARRAY(JHPJ)=ARRAY(J)
J=J-JH
IF (J.GT.O) GO TO 40

50 JHPJ=JH+J
ARRAY(JHPJ)=TEMP

60 CONTINUE
C REPLACE JH/2 BY JH/3 IF KNUTH'S
C INCREMENTS ARE USED

46

JH =JH/2
IF(JH .GE. 1) GO TO 30
RETURN
END

47

APPENDIX B

BEST SEQUENCES

48

49

N t Sequence No. of Comparisons

20 1 1 114
20 2 1,6 77
20 3 1,4,11 75
50 1 1 660
50 2 1,7 330
50 3 1,5,13 287
50 4 1,4,13,41 285

100 1 1 2526
100 2 1,8 988
100 3 1,4,19 754
100 4 1,4,13,41 717
100 5 1,3,11,31,59 729
250 1 1 15812
250 2 1,14 4449
250 3 1,6,19 2839
250 4 1,4,11,47 2442
250 5 1,4,13,41,131 2370
250 6 1,3,7,19,37,157 2371
500 1 1 63238
500 2 1,12 13645
500 3 1,6,31 7521
500 4 1,5,13,53 6144
500 5 1,4,13,37,101 5685
500 6 1,4,13,23,61,197 5537

APPENDIX C

CHANDLER'S COMPARISON TABLES

50

51

Number of out-of-order Comparisons (horizontally) vs. number
of in-order comparisons (vertically) in each pass of Shell's
original algorithm, for all permutations of N distinct keys.
12* denotes a common factor of 12 that has been removed from
that table, etc.

N=2
l*

N=3
l*

N=4
h=2
6*

N=5
h=2
10*

N=6
h=3
90*

0
1

0
1
2

0
1
2

0
1
2
3

0
1
2
3

0

0
1

0

0
0
1

0

0
0
1

0

0
0
0
1

0

0
0
0
1

1

1
0

1

0
1
1

1

0
2
0

1

0
0
2
1

1

0
0
3
0

2 3

0 1
2 0
0 0

2 0 1 2 3
h=l

1 4* 2 0 1 1 1
0 3 1 2 0 0
0

2 3 4 0 1 2 3
h=l

0 0 1 12* 3 0 1 2 1
1 3 0 4 1 3 1 1
3 0 0
0 0 0

2 3

0 1
3 0
0 0
0 0

52

0 1 2 3 4 5 6 7 8 9
N=6
h=l 3 0 0 0 1 2 3 3 3 2 1
6* 4 0 1 5 10 10 9 6 4 0 0

5 1 4 9 9 4 3 0 0 0 0

0 1 2 3 4 5
N=7
h=3 0 0 0 0 0 0 1
210* 1 0 0 0 1 4 0

2 0 0 3 6 0 0
3 0 3 4 0 0 0
4 1 1 0 0 0 0

0 1 2 3 4 5 6 7 8 9
N=7
h=l 4 0 0 0 1 3 6 6 4 3 l
24* 5 0 l 6 16 23 21 16 9 3 1

6 l 5 14 20 16 15 9 7 2 1

0 l 2 3 4
N=8
h=4 0 0 0 0 0 l
2520* l 0 0 0 4 0

2 0 0 6 0 0
3 0 4 0 0 1
4 1 0 0 0 0

0 1· 2 3 4 . 5 6
N=8
h=2 4 0 0 l 2 3 2 l
1120* 5 0 2 6 6 4 0 0

6 l 4 4 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10
N=8
h=l 6 0 1 5 7 7 4 4 3 2 1 l
576* 7 1 6 10 8 6 2 2 0 0 0 0

Hong-Lee Yu

Candidate for the Degree of

Master of Science

Thesis: INVESTIGATIONS OF SHELLSORT

Major Field: Computing and Infomation Science

Biographical:

Personal Data: Born in Taiwan, R.O.C., January 11,
1958, The son of Yao-Nei and Jung-li Yu

Education: Graduated from Kaoshiung High School,
Taiwan, R.O.C., in May, 1975; received Bachelor
of Science degree in Management Science from Chiao
Tung University, Taiwan, R.O.C., in May, 1979;
completed requirements for the Master of Science
degree at Oklahoma State University in December,
1984.

Professional Experience: Planner at PEBEI; Kaoshiung,
Taiwan, R.O.C., from Jan., 1982 to August, 1982.
Graduate Teaching Assistant, Department of
Computing and Information Science, Oklahoma State
University, Stillwater, Oklahoma, August, 1983 to
July, 1984; member of the Association for
Computing Machinery.

