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PREFACE 

This thesis investiga~es many aspects of Shellsort. A 

large number of experiments wer~ conducted and best 

sequences, which seem to minimize the number of comparisons 

for different sizes of lists and number of passes, are 

given. A proof that shows the average behavior of the 

original Shellsort, when N is a power of 2, is also 

presented. 
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CHAPTER I 

INTRODUCTION 

Sorting is worth studying not only because a large per­

cent of the running time on computers is spent on sorting, 

but-also because there are numerous methods to choose from, 

none of which can dominate all of others [9]. Of those 

methods Shellsort, proposed by D. L. Shell in 1959 [12], has 

the virtues of requiring n6 additional memory space and tak­

ing at most O(N**(3/2)) units of time for most suggested 

variations. 

Shell's method consists of several passes, each of 

which sorts h sublists of the list L(i), L(i+h), L(i+2*h), 

•.. , L(i+j*h) corresponding to i =l, 2, ..• , h, where j is 

the largest integer such that j*h <= N, by insertion sort; h 

decreases from pass to pass according to a prescribed pro­

cedure. In the final pass, his equal to -1, which ensures 

that the entire list Lis sorted. 

Insertion sort moves items only one position at a time 

and its worst case and average case running times are pro­

portional to N**2, since the av.erage displacement of each 

element from its final position is N/3 for a random list of 

N elements. However, in Shell's method, items can take long 

leaps instead of short steps during early passes, then 

1 



2 

shorter leaps later. Hence the average running time O(N**2) 

can be reduced. Each pass of Shell's method is operating 

not on a random sequence but on one which has been given a 

degree of order by previous passes. This leads to the ques­

tion of choice of an optimal sequence h. Though the method 

was proposed as early as 1959, nobody has been able to 

determine the best possible sequence h for large values of 

N. 

The objective of this thesis is to investigate 

Shellsort. Due to the complex mathematical problems in the 

analysis of Shellsort, w~ich are not yet completely 

resolved, most of the work will be done empirically. In 

order to determine what the best sequence is, we need to es­

tablish a criterion to measure its efficiency. Any measure­

ment using real time on a given computer has some inherent 

problems. The running time depends not only on the underly­

ing sequence but also on the characteristics of the comput­

er, and thus should not be used [l]. The number of com­

parisons or the number of moves are usually employed in 

analyzing sorting algorithms since both of these measures 

are often roughly proportional to the ,running time. For em­

pirical study, the number of comparisons may give better 

measurement since it consists of the number of in-order com­

parisons and the number of out-of-order comparisons (number 

of moves); it dominates the running time. However, the 

number of moves (inversions) is easier to use when analyzing 

the asymptotic average behavior mathematically, because 
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there exist many combinatorial theorems related to number of 

inversions (discussed in chapter 2) that can be applied to 

analyze the algorithm. 

Though there exist many interesting problems arising 

from Shellsort,. this thesis will concentrate on the follow­

ing problems which have not been solved yet. 

1. What are the optimum sequences of increments for 

Shellsort? The term "optimum sequence" causes certain ambi­

guity, since we are unable to examine all of the possible 

sequences; even the number of possible sequences for a 

moderate N, say N=lOO, is big enough that we cannot afford 

examining all of these and there are no proved theorems that 

allow us to elimin~te a large number of sequences from exam­

ination without taking a risk of discarding the real optimum 

one. Some assumptions, most based on empirical results, 

must be applied without proof to keep the number of exam­

inees of reasonable size. Here "optimum sequence" refers to 

some empirical values of h(t), h(t-1), ..• , h(l) which takes 

minimal average number of comparisons to sort, among all of 

the sequences we examine. 

2. What is the order of the asymptotic average 

behavior of the Shellsort? One well-known work about aver­

age behavior of Shellsort was done by Knuth's students [9]; 

they claimed that asymptotic average behavior of Hibbard's 

sequence is about O(N**l.26), though they also found that 

N*(ln N)**2 also gave a good fit to an observed data. Bauer 

[2] conducted a similar experiment and concluded that if the 
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average case of Shellsort has a time complexity that is 

asymptotically a power of N, then the power must be less 

than 1.20. Whether the exponential form or N*(ln N)**2 form 

gives the true asymptotic behavior is still open to 

research. We do not intend to solve it. Instead, we shall 

examine the simplest case, the original Shellsort when N is 

a power of 2, in detail; this helps us to dig out some in­

herent characteristcs behind the average behavior of 

Shellsort. 

The remainder of the thesis will be concerned with the 

following. In chapter 2, a short literature review is 

given. We also present methods of finding the optimal se­

quence. In chapter 3, we show all of the empirical results 

and attempt to explain why the sort behaved in this way. 

Suggestions about determining the best sequence are also 

given. In chapter 4, we discuss the average behavior of 

Shellsort. The original Shellsort, when N is a power of 2, 

will be examined in detail. Chapter 5 presents a more de­

tailed summary and unification of the results of chapter 2 

to 4 and suggests problems for further research. 



CHAPTER II 

LITERATURE REVIEW AND METHOD 

In this chapter, we introduce some theorems and, in the 

first three sections, present a literature review. In the 

last section we discuss the survey method and the hy­

pothesis. 

Terminology and Theorem 

Before going further, we need to introduce some termi­

nology and relevant theorems which provide the fundamental 

background for analyzing Shellsort. Most material in this 

section can be found in [8, 9]. 

Let a(l)a(2) ... a(n) be a permutation of the set {l, 

2, ... , n}. If i < j and a(i) > a(j), the pair (a(i), a(j)) 

is called an inversion of the permutation. For example, the 

permutation 3 1 4 2 has three inversions: (3,1), (3,2) and 

(4,2). Each inversion is actually a pair of elements that 

is out of order and the only permutation with no inversion 

is the sorted permutation 1 2 ... n. 

The inversion vector of a permutation is the sequence 

of integers 

d(l)d(2) .... d(n) 

obtained by letting d(j) be the number of a(i) such that 
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(a(i),a(j)) is an inversion. In other words, d(j) is the 

number of elements greater than a(j) and to its left in its 

sequence, so O<=d(j)<j. For example, the inversion vector 

of the permutation 3 1 4 2 is 

j 1 2 3 4 

d(j) 0 1 0 '2. 

So the number of inversions can be obtained by summing the 

inversion vector, which yields 3 in this case. 

6 

A p-chain of list Lis a sequence of elements of L oc­

curring at intervals of p. For example, if N = 8, then L 

has three 3-chains, namely, {L(l), L(4), L(7)}, {L(2), L(5), 

L(8)} and {L(3), L(6)}. In general, L has min(N,p) p­

chains, each of length E(N/p), or E(N/p)+l, where E(N/p) is 

an integral part of N/p. 

When each of L's p-chains is in ascending order, Lis 

said to be p-ordered. Top-sort Lis to sort all of L's p­

chains. 

The most fascinating theorem about Shellsort is perhaps 

the following: 

Theorem A : If a k-ordered list is h-sorted, it remains k­

ordered. 

An example of this remarkable property appears in TABLE I. 

After being 2-sorted, the list's three 3-chains 

(7,13,29,44), (5,18,24,63), (8,19,31,82) are still in as­

cending order; it remains 3-ordered. 



TABLE I 

AN EXAMPLE OF SHELL SORT 

7 19 24 13 31 8 82 18 44 63 5 29 

3-sort 
7 5 8 13 18 24 63 19 29 82 31 44 

2-sort 
7 5 8 13 18 19 29 24 31 44 63 82 

1-sort 
5 7 8 13 18 ·19 24 29 31 44 63 82 

Theorem~: Suppose that hand k are relatively prime; the 

largest integer which cannot be represented in the form a*h 

+ b*k, a,b >= 0, is h*k-h-k. 

7 

Proof. If n = h*k-h-k, which can be represented in the form 

a*h+ b*k , then a mod k = k-1, and b mod h = h-1; hence 

a*h+b*k >= (k-l)*h + (h-l)*k > h*k-h-k. This is a contrad­

iction. Conversely if n >= (h-l)*(k-1), choose a, b so that 

mod( a*h, k) = mod (n, k) O<=a<k and b = ( n-a*h)/k; hence 

n is representable. 

From Theorem A and Theorem B, we can conclude that if a list 

Lish-ordered and k-ordered, and gcd(h,k)=l, we have L(i) < 

L(j) whenever j-i >= (h-l)*(k-1). For the example in Table 

I where h=3 and k=2, we have 



L(i) < L(j) if j-i > 1. 

This led to the idea of Pratt's sequence, which we shall 

discuss in the next section. 

Families of Increments 

Shell originally suggested using the increments LN/~, 

, ... , 1, but this has a serious defect when the binary 

8 

representation of N contains a long string of zeros: there 

is little interaction among chains, which results in many 

sorted but distinct chains. For example, if N is a power of 

2, the worst permutation before the. last pass is processed 

is N/2, 1, N/2+1, 2, ••• , N, which needs about N**2/8 inve~­

sions to sort. Frank and Lazarus [6] first recognized this 

defect and suggested that the even elements in Shell's se­

quence be incremented by one. Table II, derived from Frank 

and Lazarus's paper, shows their empirical results. The 

original Shellsort performs as well as F & L's Shellsort 

when N is odd (eg. N=l2287). But in case the binary 

representation of N contains a lot of zeros, the use of F & 

L Shellsort takes a significant less time as compared to the 

use of the original Shellsort. 



Table II 

IBM 704 RUNNING TIMES FOR DIFFERENT VALUES OF N 
USING SHELL'S SEQUENCE OF INCREMENTS 

Number of 
Elements N 

127 

128 

1000 

7936 

12287 

12288 

18432 

24575 

24576 

32544 

Nin Octal Average Sorting Times 
in Seconds 

F &' L Shell 

177 .15 .16 

200 .16 .20 

1750 2.0 2.2 

17400 25 26 

27777 44 46 

30000 43 119 

44000 74 144 

57777 103 104 

60000 103 338 

77440 143 150 

Since then, many other sequences [cf. Hibbard 1963] 

have been suggested. Most of them have following proper-

ties: 

1. Sequences form fuzzy geometric progressions. 

2. Each element of a sequence is relatively prime to at 

least one of its nearby predecessors. 

9 
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Papernov and Stasevich (10] proved that an upper bound for 

Hibbard's sequence is O(N**(3/2)) arid later Pratt [11] ex­

tended it to sequences which have the above properties. 

Pratt's own sequence· certainly does not fall into the above 

category and its average asympototic behavior O(N*(Lg N 

)**2) is known to be the best so far. The idea behind 

Pratt's sequence is that each h(s)-chain in the sth pass is 

2-ordered and 3-ordered. Following the discussion above, 

for any h(s)-chain, we have 

L(i) < L(j) if j-i >= 2*h(s). 

For any element L(j) in the h(s)-chain, we need only compare 

it with L(j-h(s)) and swap two elements if they are out of 

order. At most N comparisons are needed in each pass and 

hence the running time is of order N*(Lg N)**2, since there 

are about (Lg N)**2 passes. The major drawback in using 

Pratt's sequence is that N has to be extremely large before 

Pratt's sequence is more efficient than the other popular 

sequences. This defect wps first pointed out by Pratt [11] 

and was confirmed by Bauer's experiment [2]. Of those sug­

gested sequences, Knuth's sequence and Hibbard's sequence 

are very similar and have been widely used. Bauer [2] com­

pared these two sequences and found that the use of Knuth's 

sequence results in approximately two or three percent fewer 

comparisons than the use of Hibbard's sequence. Table III 

summarizes the main families and their characteristics. 



Table III 

Families of Increments 

suggested h Upper Average 
by Bound case 

Shell hCt) = floor(N/2) O(N**2) unknown 
h(k) = floor(h(k-1)) 

Hibbard h = l,3,7, ••• ,2**J-l<N O(N**l.5) unknown 

Knuth h = 1,4, ..• , (3**t-l)/2 O(N**l.5) unknown 
where h(t+2) > N 

Pratt h = 1,2,3,4,6,... O(N*(Lg N)**2) same 
his of the form 2**p*3**q 
p, q > 0 

How to Code Shellsort 

In Shellsort, each pass of each sift consists of suc­

cessive pair swaps. Boothroyd [3] coded this method in a 

11 

way that a swap follows each out-of-order comparison while 

Hibbard [7] replac~d each set of n pair swaps by one "save," 

n-1 moves, and one insertion (see Program A, Figure 1.) 

Chandler and Harrison [4] reported that Hibbard's algorithm 

runs 17% faster than Boothroyd's algorithm, on a CDC 6400 

computer and coded in FORTRAN. 



procedure C(x,n); array x(l:n) 

comment Shell's method using Hibbard's increments 

begin integer d,i,j 

d := 2**entier(lg N) - l; 

Cl: if d<=O then go to exit.; i:=l; 

C2: j:=i; y:=x[i+d]; 

C3: if y<x[j] then go to C4; 

C5: x[j+d]:=y; i:= i+l; 

if i+d<=n then go to C2; 

d:=(d-1)/2; go to Cl; 

C4: x[j+d] ·-.- x[j]; j:=j-d; 

if j>O then go to C3; go to C5; 

exit: end; 

"entier" is an ALGOL function equivalent to "floor" 

Figure 1. Program A by T. N. Hibbard 

Bauer [2] noted that program A can be tuned by elim-

12 

inating "unconditional" saves (y:=x[i+d] in C2 in Program 

A). The saving in time achieved by this modification is 

about 9% for Hibbard's sequence. His experiment also indi­

cated that the initial increment, h(t), should not exceed 

about 0.24*N when Hibbard's increments are used and should 

not exceed about 0.50*N when Knuth's increments are used. 

Program B, in appendix A, is the FORTRAN implementation 
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based on Bauer's algorithms. Bauer's thesis [2] has a com­

plete treatment about how to code Shellsort. 

Methods of Investigation 

In this section, we are going to present our methodolo­

gy used to find the optimal sequence. We might view the 

problem of finding the optimal sequence as a constrained op­

timization problem - requiring the minimization of running 

time (number of comparisons) for a specific N and subject to 

1 = h(l) < h(2) < ••. < h(t-1) <h(t) < N, 

t, h(i) i=l,t are integers. 

Unlike traditional optimization problems, the number of 

variables is not fixed -- there are t variables ( h(l) is 

not a variable). The first decision we need to make is to 

choose some values of Non which the experiment will be 

based. Since there are some existing sorting algorithms, 

quicksort, for example, which have better performance than 

Shellsort when N becomes large (say, N=500), it is reason­

able to choose N from such range in which Shellsort is 

better than or at least equal to any existing sorting 

methods. The interval (20,500) seems to be a good choice 

since some simple straight sorting algorithms, insertion 

sort, for example, are better than Shellsort when N becomes 

small because of low overhead for bookkeeping. We choose 5 

points: 20, 50, 100, 250, 500. 

For a given N, we can fix the number of passes t (t=l) 

first and find some empirical values h(l), h(2), ... , h(t), 
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which seems to minimize the number of comparisons, in the 

sense that if one of the h's is varied while the others are 

fixed, the average number of comparisons increases. Later, 

we increment t by one and repeat the above search; in this 

manner, best sequences for different values oft can be ob­

tained. 

However, since t can be theoretically as large as N-1, 

another question immediately arises : when do we stop the 

above search? Unfortunately, we cannot find any theory to 

answer it. From Bauer's thesis, we know that it is unwise 

to have too many passes. Knuth, based on his MIX computer, 

also estimated that saving one pass is about as desirable as 

saving 10/9*N moves. Therefore the following convergence 

criterion seems to be a reasonable assumption. 

HYPOTHESIS~: Sequence h (with number of passes equal tot) 

is said to be the best possible if all of the possible se­

quences with the number of passes less than or equal to t+l 

require more comparisons than h does. 

We have already discussed how to choose N and- to deter­

mine the maximum limit of the number of passes t. For a 

given N and t, do we have to examine all of the possible se­

quences (there are about 5000 possible sequences of three­

pass Shellsort when N is equal to 100 ); can we eliminate 

some sequences, which are not likely to be the best se­

quence, without loss of generality? Theorem A and Theorem B 

show us that it is desirable to sort with relatively prime 



incements. Empirical results, shown in Table IV (see also 

Figure 2), .agree with Theorem A. 

Table IV 

BEHAVIOR OF THE NO. OF COMPARISONS AS A 
FUNCTION OF h(3) IN THREE-PASS SHELLSORT 

h(2)=3, N=50 

h(3) Average Number of 
Comparisons* 

4 3·40 

5 325 

6 344 

7 302 

8 292 

9 326 

10 292 

11 290 

12 314 

13 287 

14 291 

15 318 

* 20 random lists were sorted 

15 
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It is not too difficult to explain that the number of 

comparisons increases sharply when h(2) is not relatively 

prime to h(3). Let us use two specific sequences (1, 3, 11) 

and (1, 3, 12) (called sequence A and sequence B respective­

ly) as an example. Since the above two sequences differ 

only in h(3) by one, we can conjecture that the running time 

of the first two passes for sequence A and sequence Bare 

about equal, assuming that the original list is random; the 

final 1-sorting determines whi~h sequence is the best. In 

sequence B, the second pass, 3-sorting, is just a straight 

insertion sort on 3 (h(3)/3)-ordered chains which results in 

a random 3-ordered permutation; after the second pass,·each 

element of the inversion vector d(j) can be (j-1)/3*2 in the 

worst case. But in sequence A, d(j), independent of the 

value of j, can be at most equal to 10, since 

L(i} < L(j) if j-i >= 20 (Theorem A) 

L(j) > L(j-3) > L(j-6) > •••• > L(j-18) (Lis 3-ordered) 

and 

so 

L(j) > L(j-11) > L(j-14) > L(j-17) (Lis 11-ordered); 

L(j-1), L(j-4), L(j-7), L(j-10), L(j-13), L(j-16), L(j-19) 

L(j-2), L(j-5) and L(j-8) 

are the only possible elements to the left of L(j) which are 

greater than L(j). So sequence A is significantly better 

than sequence Bin the worst case. What is about the aver­

age behavior? The average value of d(j) is obtained by sum­

ming probabilities P( L(i) > L(j) ) for all i < J. 
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Although we are unable to figure out what the exact proba­

bility distributions in the two cases are, it is reasonable 

to conjecture that sequence A will outperform sequence Bin 

the average case as well. As shown in Table V, sequence B 

performs poorly in the final 1-sorting as compared to se­

quence A and sequence C. Sequence B requires the same 

number of comparisons in the final pass as sequence D does, 

although sequence D has one pass less than sequence B. 

A 

B 

c 

D 

Table V 

COMPARISONS PER PASS WITH N=50 

Increments 

1,3,11 

1,3,12 

1,3,13 

1,3 

Number of Comparisons 

pass 

1 

71 

64 

60 

236 

2 

119 

110 

120 

141 

3 

100 

140 

107 

total 

289 

314 

287 

377 



In order to assure that h's are relatively prime, let 

h(2) = any integer> 0, 

h(3) = any prime number> h(2), 

h(k) = any prime number> h(k-1). 
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Apparently we may suffer from the possibility of discarding 

some sequences of which increments are relatively prime and 

may give the best empirical results, for instance, (1, 3, 

10) in Table III. Note that the Figure 2 is almost horizon­

tal when h(3) >= 7, h(3) <= 14, except for a few values of 

h(3), which are a multiple of 3. This indicates that such 

criteria cam be applied without much loss of generality. 

Now we come to the problem of the choice of the test 

data. Throughout this thesis, all of the sorts are run 

against random lists: here we define a random list Las, for 

any two elements L(i) and L(j), 

P(L(i) > L(j) ) = P(L(i) < L(j)) 

and 

P(L(i) = L(j)) = 0. 

A random number generator, which can repeatedly generate un­

iformly distributed random numbers over the interval (0,1), 

satisfies our needs. Here the uniform distribution over the 

interval (0,1) is defined as 

f(x(O))=l 

F(x(O))=x(O) 

for O < x(O) < 1, 

for O < x(O) < 1, 

where the probability density function (P. D. F.) f(x(O)) = 

Probability (x=x(O)) and cumulative distribution function 

(C. D. F.) F(x(O)) = probability (x<=x(O)). Figure 3 shows 
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the probability density fnction and the cumulative distribu­

tion function. Our random number generator is based on a 

shuffled congruential method. To gather more accurate sta­

tistical data, the sorts are run against 20. different data 

lists of 5 sizes 20, 50, 100, 250, 500. All of the empiri­

cal results, shown in a later chapter, are the average of 20 

different runs. 



?=;.(~) 

I 

(A) P. D. F. 

(B) C. D. F. 

fig~re 3. P. D. F. and C. D. F. for Uniform Distribution Over Interval 1 

(0,1) 

21 



CHAPTER III 

TOWARD THE OPTIMAL SEQUENCE 

In this chapter, we study the problem of finding the 

optimal sequence h to ~inimize the running time. We examine 

the simplest ~ase, two-pass Shellsort, first in section 1, 

followed by generalizing to multiple-pass Shellsort in 

section 2. In section 3, we present a new variation of 

Shellsort, intended to speed up the inner loop, and 

empirical results are also given. 

Two-Pass Shellsort 

In this section, we examine the characteristics of 

two-pass Shellsort, which consists of a h(2)-sorting, 

followed by h(l)-sorting, where 

h(l) = 1, 

h(2) > h(l) and h(2) < N. 

Let us consider first the 2-ordered list. It is easy 

to see that the number of permutations a(l)a(2) •••• a(N) of 

{l ,2, •.• , N} such that a(i') <= a(i+2) for 1 <= i <= N-2 is 

( ~/2J) , ( 3 .1) 

since this equals the number of ways partitioning N elements 

into two groups; l.!:ll~ elements to put in even-numbered 

positions a(2}a(4) ..• , with the remaining ~/i elements to 
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put in odd-numbered positions. Each 2-ordered permutation 

is equally likely after a random list has been 2-sorted, 

since the number of permutations for a 2-ordered list (Eq. 

3.1) is a divisor of N!. 
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Let A(N) be the total number of inversions among all 

2-ordered of {l, 2, •.• , N}. Knuth [9] used a "lattice 

diagram" to compute A(N), which has the surprisingly simple 

form 

L!'T/2J *2** (N-2) ( 3. 2) 

Hence the average number of inversions in a random 2-ordered 

permutation can be obtained by dividing Eq. 3.2 by Eq. 3.1. 

By Stirling's approximation this is asymptotically 

0.15*N**(3/2) ( 3 • 4) 

Thus if a list is 2-ordered, the average running time to 

sort this list is proportional to N**(3/2). Now consider 

the general two-pass Shellsort, when the increments are h 

and 1. In the first pass, we need to sort h random chains 

by insertion sort, of which r chains are of length q+l and 

h-r of length q, where 

q is the integral part of N/h 

r is the remainder part of N/h. 

Since insertion sort takes on average n*(n-1)/4 inversions 

for a list of length n, the average number of inversions 

needed in the first pass is 

( 3. 5) 

Each inversion in the second pass comes from a pair of 
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distinct chains, and a given pair of distinct chains in a 

random h-ordered permutation constitutes a random 2-ordered 

permutation. For example, let L be a 3-ordered list of 

length 6. Inversion can only come from following three 

random 2-ordered lists, (L(l), L(2), L(4), L(S)), (L(l), 

L(3), L(4), L(6)) and (L(2), L(3), L(S), L(6)). The average 

number of inversions is therefore the sum of the average 

numbers of inversions between each pair of distinct chains, 

namely 

( 3. 6) 

Equation· 3.5 is approximately equal to 2*N**2/h, while 

equation 3.6 approximately equals J~·N**3*h. The best 

choice of h, which can be found by minimizing the summation 

of the above two approximations, is approximately 

l.72*N**(l/3). With this choice of h we can make a 

substantial improvement over straight insertion, from 

O(N**2) to O(N**(S/3)). 

To get a more clear view, let us look at some plots 

based on our empirical data. Figure 4 and- Figure 5 are 

plots of number of comparisons (or number of moves) vs. h(2) 

when N=lOO. It explores the following interesting facts: 

1. If we smooth the curve in Figure 4, it becomes 

convex with a minimum point h(2)=7. If we view straight 

insertion sort (one-pass Shellsort) as a two-pass Shellsort 

with a large value of h(2) (say, h(2)>N), then Figure 4 

clearly shows the improvement from insertion sort to two-
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pass Shellsort. 

2. In Figure 4, we use two different measurements -­

number of comparisons and number of moves; both give very 

similar curves. This indicates, in this case, that either 

one of these measurements can serve as the criterion to 

measure its efficiency. However, a defect using number of 

moves as the criterion , found in our later experiment, is 

that the use of number of moves can not completely reflect 

the overhead associated with an increase of one more pass, 

even though it asymptotically dominates the running time. 

Ast becomes larger, the number of moves will decrease while 

the pumber of comparisons increases ( that is, the number of 

in-order-comparisons increases). Accidentally, we find 

another reason to use the number of comparisons as the 

criterion. 

3. We decompose the number of moves into two parts: the 

number of moves in the first pass and the number of moves in 

the second pass as shown in Figure 5. The number of moves 

in the first pass is proportional to l/h(2) ( Eq. 3.5); its 

curve is monotonically decreasing as Eq. 3.5 suggests. The 

other curve, due to the complexity of Eq. 3.6, is not very 

smooth, but tends to go up as h(2) become larger. 
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The Multiple-Pass Shellsort 

We have seen that two-pass Shellsort can break the 

O(N**2) bound with the right choices of increments. Clearly 

we can do even better when more increments are used. But 

how much improvement can we make with more increments? 

Analysis of general Shellsort, unlike that of two-pass 

Shellsort, faces a difficult problem that has baffled 

everyone so far: the permutations in a given pass may not be 

equally probable, so that all of the combinatorics 

techniques in analysis of two-pass Shellsort seem useless. 

As an example, a 3-ordered list of length 4 has 12 

permutations which are equally likely. After 2-sorting, 

some permutations are obtained more often than others as 

shown in Table IV. Unless we can figure out the probability 

distribution for a list with given degrees of order, 

analyzing general Shellsort using mathematics will be very 

difficult. 

So our primary analysis of general Shellsort has been 

based on statistical results rather than on mathematical 

derivation. A large number of experiments (more than 50,000 

lists were sorted) were conducted based on the procedure 

described in Chapter II. Appendix B tabulates the best 

optimal sequences for different values oft and N. It 

should be noted that there are a lot of sequences which are 

not listed in Appendix B, but which take almost the same 

amount of time as the best sequences (the difference is less 
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than one percent) and the difference probably is due to 

sampling error. Thus we should not regard the sequences in 

Appendix Bas the only best sequences. 

TABLE IV 

PROBABILITY DISTRIBUTION FOR 
A 2- and 3-0RDERED LIST OF LENGTH 4 

PERMUTATION 

1234 

1324 

1243 

2143 

2134 

PROBABILITY 

3/12 

4/12 

2/12 

1/12 

2/12 

Perhaps the most fascinating observation is that all of 

the best sequences form geometric progressions (slightly 

perturbed), just like most existing Shellsorts. Nobody has 

commented on why geometric progressions were originally 

chosen for almost all Shellsorts except Pratt [11]. He 

suggested thinking of Shellsorting as progressively bringing 

each element closer to its final position, in jumps of 

decreasing size, then it is "natural" to arrange that 
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increments decrease geometrically: this is what happens in a 

binary search. Possibly such consideration has motivated 

the choice of a fuzzy geometric progression for almost all 

Shellsorts. Our empirical results show that it is 

necessary, at least for the range we searched, to make the 

sequence a geometric progression. 

So we focus our attention on sequences that form fuzzy 

geometric progressions which are parameterized by a common 

ratio. Our next observation is that Knuth's sequence 

(common ratio= 3) is almost optimum for the interval we 

examined. The sequence (1, 4, 13, 41) was observed to be 

the best possible sequence for N=lOO (Knuth's sequence: (1, 

4, 13, 40)). Note that Knuth's sequence, like most 

suggested sequences, requires only every consecutive pair of 

elements in the sequence are coprime, while in our 

experiment, 

gcd(h(l),h(2), ..•• h(t)) = 1 

One might wonder whether there is improvement if we perturb 

each of h(i), i > 2, of Knuth's sequence, to a nearest prime 

number. Figure 6 shows that perturbing h(4) from 40 to 41 

(or 37) in this case, can result in a 1.2% reduction in 

number of comparisons. We extend our experiment for 

different values of N as shown in Table VII, and results 

show that it is beneficial to make the elements of Knuth's 

sequence relatively prime. When the running time is a 

critical factor, it is worthwhile storing a perturbed 

Knuth's sequence in an auxiliary array (O(Lg N) storage). 
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TABLE VII 

COMPARISON BETWEEN KNUTH'S AND 
PERTURBED KNUTH'S SEQUENCE 

N t KNUTH 
s 

100+ 3 1,4,13 

100* 4 1,4,13,40 

250+ 4 1,4,13,40 

250* 5 1,4,13,40, 
121 

500+* 5 1,4,13,40, 
121 

1000+ 1,4,13,40, 
121 

1000* 6 1,4,13,40, 
121,364 

+: Knuth's criterion 
*: Bauer's criterion 

MODIFIED 
COMP s COMP 

771 1,4,13 771 

730 1,4,13,41 717 

2486 1,4,13,41 2434 

2442 1,4,13,41, 2378 
127 

5882 1,4,13,41, 5882 
127 

14219 1,4,13,41, 13977 
127 

13788 1,4,13,41, 13250 
127,367 

IMPROVEMENT 
9.: 0 

0.0 

1. 2 

2.1 

2.6 

1. 9 

1. 2 

4.0 

Table VII also suggests that Bauer's criterion to 

determine the number of passes t (that is, choose t such 

that h(t)<=O.S*N and h(t+l) > O.S*N) be preferable to the 
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Knuth's criterion (that is, choose t such that h(t), h(t+l) 

< N, and h(t+2) >= N), as far as the number of comparisons 

is concerned. When Knuth's criterion is used, the increment 

in the first pass h(t) can be only about N/9 in the worst 

case, which is apparently too small, since the average 
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displacement of each element from its final position is N/3. 

In conclusion, ther~ are actually a lot of sequences 

which are comparable to the best sequences we listed in 

Appendix B. All such sequences form fuzzy geometric 

progressions too. Fuzzy geometric progression with common 

ratio equ~l to 3 seems a good choice. Thus Knuth's sequence 

is recommended, with Bauer's modification which determines 

the number of pass t. 

A New Variation Of Shellsort 

Our previous discussion was based on standard 

Shellsort: in the s-th pass, we h(s)-sort the list by 

insertion sort and afterword the list is h(s)-ordered. Each 

pass faces more than O(N) r~nning time due to the 

characteristics of insertion sort. In this section, we want 

to present and experiment with a new variation of Shellsort, 

in which the running time of the first t-1 passes can be 

guaranteed to be O(N) each, at the expense of the final pass 

of which the running time is unknown. The algorithm is 

given as follows: 

For s=t downto 2 by -1 do 

for j= h(s)+l to N do 

if ( L(j-h(s)) > L(j) ) then 

swap(L(j-h(s)), L(j)) 

insertionsort(L, N) 
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The result of interchanges is not propogated~ no 

comparison between L(j-h(s}) and L(j-2*h(s)) is made. Thus, 

the list will not always be h(s)-sorted. The final 

insertion sort ensures that the whole list is sorted. In 

this case, the first t-1 passes take (t-l)*N comparisons ·and 

these preliminary passes help to decrease the running time 

of the final pass. If the running time of the final pass is 

proportional to O(N* (Lg N)**2) or even better, its average 

running time will beat any variation of Shellsort (assume t 

is roughly equal to Lg N.) 

The empirical results, shown in table VIII, discourage 

our optimistic guessing. The number of inversions required 

in the final pass is not decreased enough. It tends to be 

slower as compared to traditional Shellsort when N becomes 

larger. This indicates that an early comparison contributes 

more than a comparison in the final psss. The true 

asymptotic behavior is unknown. 



N 

20 

50 

100 

250 

500 

1000 

TABLE VIII 

COMPARISON BETWEEN SHELLSORT AND NEW VARIATION 
USING HIBBARD'S SEQUENCE 

NUMBER OF COMPARISONS 

SHELL SORT NEW 

81 79 

302 297 

787 834 

2567 3567 

6157 10588 

14747 35269 
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CHAPTER IV 

AVERAGE BEHAVIOR OF SHELLSORT 

In this chapter, we shall study the most difficult 

problem about Shellsort: asymptotic average behavior·. At 

the time of this writing, most work on average behavior has 

been based on data fitting. Here we present a simple 

analytical model that can be used to analyze some passes of 

Shellsort. We introduce Chandler's experiment first, and 

then show some of his comparison tables can be derived by 

the use of combinatorics. Finally, we prove that the 

asymptotic behavior of the original Shellsort, when N is a 

power of 2, is O(N**l.5). 

Usually the derivation of such "asymptotic" formulas 

involves higher mathematics and therefore may be hard or 

impossible to isolate, so one might think to solve this 

problem with the help of computer -- sort all permutations 

of N keys and compute the exact average running time (number 

of inversions). It is obvious that such a method can only 

be applied to small values of N since the number of 

permutations is N! that it takes too much computer time to 

experiment with moderate values of N ( 10! = 3628800). 

Experimenting on some small values of N, however, may give 

36 
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us insight into the average behavior of large values of N. 

Based on such idea, Chandler [5] conducted an experiment on 

original Shellsort for N up to 8. As shown in Appendix C, 

he tabulated number of out-of-order comparisons 

(horizontally) vs. number of in-order comparisons 

(vertically) in each pass of Shell's original algorithm. 

Given such tables, the average number of inversions can be 

easily computed by summing all p(i)*i, where p(i) is the 

probability of having i inversions (the number of 

permutations to have i inversions divided by total possible 

permutations). 

It is astonishing at first sight that a large common 

factor can be taken out of each of these tables, which 

afterword are in a fairly simple form. Tables of whose N/h 

equals 2 even form diagonal matrices (with diagonal line 

from northeast down to southwest) and coefficients on that 

diagonal line are binomial coefficients, namely 

( ~) where h is the increment in that pass 
i = 0, 1 I • • • f h. ( 4 .1) 

For example, 

0 1 2 3 
0 1 2 

N=4 N=6 0 0 0 0 1 
h=2 0 0 0 1 h=3 1 0 0 3 0 
CM=6 1 0 2 0 CM=90 2 0 3 0 0 

2 1 0 0 3 1 0 0 0 

CM=6 denotes a common factor of 6 that has been removed 
from that table, etc. 



But there is nothing amazing after we viewed it as a 

combinatorial problem; the common factor is equal to the 

number of ways to partition N into N/2 subgroups with 2 

elements each. For N = 4, common factor is 

. 
(~){~) = 6; 

while N=6, it is equal to 

= 90. 

In each subgroup, two elements are either in order (no 

inversion) or out of order (one inversion). There are 

therefore 

{ N{2) permutations to have 1 inve·rsions, 

38 

since there are N/2 subgroups. This explains the above two 

tables. 

Such analysis can be extended to some tables in which h 

is not a divisor of N. For example, if N=5, h=2, common 

factor is equal to the number of permutations for a 2-

ordered list of length 5, that is, 

( ~) = 10 

The list is split into two sublists now -- one of length 3 

(sublist 1) and the other of length 2 (sublist 2). Let 

x(O), x(l) and x(2) be the random variables representing the 

number of inversions for the list, sublist 1 and sublist 2 

respectively. Clearly, 

P(x(O)=O) = P(x(l)=O)*P(x(2)=0) = (l/6)*(1/2) = 1/12, 

P(x(0)=2) = P(x(l)=2)*P(x(2)=0) + P(x(l)=l)*P(x(2)=1) 
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= (2/6)*(1/2) + (2/6)*(1/2) = 4/12. 

Using similar concepts, we can compute all of the first-pass 

tables by hand. Also, the equations for the two-pass 

Shellsort (Eq. 3.6 together with Eq. 3.2) provide us with 

the capability to compute all of the two-pass tables (eg., 

N=6, h=l). 

Note that the above analysis is limited to lists in 

random order. Later passes of Shellsort, in which each of 

the possible permutations may not be equally likely, 

certainly do not have such property. Thus it is applicable 

only for the first pass. 

However, one exception occurs when N is a power of two. 

In this case, lengths of every sublists during a specific 

pass are the same and each permutation is equally likely, . 
since the number of permutations in any pass is always a 

divisor of N!. Recalling from chapter 3, where we have 

presented the average number of inversions for a 2-ordered 

list, we are able to show following theorem. 

Theorem C: The asymptotic average behavior of original 

Shell's algorithm, when N is a power of 2, is of order 

N**l.5. 

Proof. We have 2**t elements to be sorted. By using 

Shell's increments, it takes t passes to sort this list, 

with increments equal to 2**(t-l), 2**(t-2), .•• , 1. In each 

pass s=t, t-1, •.• ,1, there are 2**(t-l) sublists: each 

sublist is of same length 2**(t-s+l) and 2-ordered. From 

Eq. 3.4, for a list of length k, we have 



no. of inversions:::- 0.15*k**l.5 

The total average number of inversions can be obtained by 

summing the average number of inversions in each pass. 

Total 

= 

= 

t 

~ *0.15*(2**i)**l.5 * 2**(t-i). 

i=l 

t 

*0.15*2**(t+0.5*i). 

i=l 
t 

0.15*N* ~ *2**(0.5*i) 

i=l 

0.51*N*(J'N - 1) 
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We have just showed that the running time of a special 

case of original Shellsort, when N is a power of 2, is 

proportional to O(N**(3/2)). But can we extend it to the 

general Shellsorts? Does the exponential form give the true 

asymptotic behavior of Shellsort? This question has baffled 

everyone so far. We are unable to answer it. The main 

contribution of this chapter, if any, is to illustrate the 

importance of mathematics, especially combinatorics and 

probability, in analysis of algorithms. The analytical 

model we built may not be very useful for analysis of 

general Shellsort. 



CHAPTER V 

SUMMARY, CONCLUSION, AND SUGGESTIONS 

FOR FUTURE RESEARCH 

Summary and Conclusions 

For each chapter, we summarize its results and give our 

conclusions. 

In chapter II, we reviewed the previous work and 

presented our methodology used to find the optimal se­

quences. We also illustrated why the primeness of incre­

ments is necessary by showing empirical data and by giving 

theoretical analysis. 

In Chapter III, we discussed the characteristics of 

two-pass Shellsort, in which the optimum sequence can be 

derived by mathematics. We also pointed out why the 

analysis of algorithms in multiple-pass Shellsort is diffi­

cult -- the permutations in a given pass may not be equally 

probable. In addition, we presented our empirical results 

based on the procedure described in chapter III. In order 

to provide an easier view, some plots are given. Empirical 

results suggested that Shell's increments be in the form of 

geometric progression and the corresponding common ratio be 

3. All of the existing sequences perform about equally 

well; Knuth's sequence is slightly better than the other se-

41 
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guences. However, Knuth's criterion to determine the 

number of passes tis not so great and Bauer's criterion is 

recommended. 

In chapter IV, we introduced Chandler's comparison 

tables first and showed that some tables can be derived by 

hand rather by expensive experiment. We also noted that 

when N is a power of 2, the permutaions in any pass are 

eq-ually likely, if Shell's increments are implemented. This 

helps us to prove that the average behavior of original 

Shellsort, when N is a power of 2, is of order O(N**(3/2)). 

The exact form of the asymptotic average behavior of other 

varities of Shellsorts is still unknown. 

We hope that this thesis can provide a tutorial view of 

Shellsort, especially for people who are not mathematically 

inclined. We illustrated many characteristics of Shellsort 

by examples and plots, and also tried to explain it, using 

simple combinatorics and probability. Those with little 

mathematical background should find no difficulty with it. 

Suggestions for Future Work 

Study of Shellsort seems to be of academic interests 

only, since there exist sorting techniques which are better 

than Shellsort in most cases. But due to its simplicity and 

the good performance in the worst case, Shellsort can be ap­

plied for moderately large N (say, N<=500). Also, it pro­

vides an excellent case study in the analysis of an algo­

rithm. There are many suggestions for future research on 
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the Shellsort: 

1. If a sequence Sis found to be the best possible for 

N, will S be the optimum for any Nl, where Nl is not equal 

to N; that is, does there exist an optimal sequence for any 

N (with diffent t). 

2. We have briefly introduced Pratt's sequence in 

chapter II. It can be generalized to sequences of the form 

x**p*y**q. What is the average time for Shellsort using se­

quenc~s of the form 2**p*3**q, etc.? 
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c 
c 
c 

SUBROUTINE SHELL(JR,N) 
DIMENSION ARRAY(lOOO) 

C SHELLSORT 
C INPUT PARAMETERS 
C ARRAY ARRAY TO BE SORTED 
C N NUMBER OF ELEMENTS IN ARRAY 
c 
C RETURNS ARRAY IN ASCENDING ORDER 
c 
C HIBBARD'S INCREMENTS ARE IMPLEMENTED BUT MAY 
C BE MODIFIED TO USE KNUTH7S INCREMENTS 
c 
c 

IF ( N .LT. 4) RETURN 
JH=l 

C REPLACE .24 BY .50 IF KNUTH'S 
C INCREMENTS ARE USED 

JHMAX = .24*FLOAT(N) 
10 IF (JH .GE. JHMAX) GO TO 20 

c 
C REPLACE 2*JH BY (3*JH)-l IF KNUTH'S 
C INCREMENTS ARE USED 

JH = (JH-1)/2 
GO TO 10 

C REPLACE (JH-1)/2 BY (JH-1)/3 IF KNUTH'S 
C INCREMENTS ARE USED 

20 JH=(JH-1)/2 
30 NMJH=N-JH 

DO 60 K=l,NMJH 
JHPK=JH+K 
IF (ARRAY(JHPK) .GE. ARRAY(K)) GO TO 60 
TEMP=ARRAY(JHPK) 
ARRAY(JHPK)=ARRAY(K) 
J=K-JH 
IF (J .LE. 0) GO TO 50 

40 IF (TEMP .GE. ARRAY(J)) GO TO 50 
JHPJ=JH+J 
ARRAY(JHPJ)=ARRAY(J) 
J=J-JH 
IF (J.GT.O) GO TO 40 

50 JHPJ=JH+J 
ARRAY(JHPJ)=TEMP 

60 CONTINUE 
C REPLACE JH/2 BY JH/3 IF KNUTH'S 
C INCREMENTS ARE USED 
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JH =JH/2 
IF(JH .GE. 1) GO TO 30 
RETURN 
END 
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APPENDIX B 

BEST SEQUENCES 
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49 

N t Sequence No. of Comparisons 

20 1 1 114 
20 2 1,6 77 
20 3 1,4,11 75 
50 1 1 660 
50 2 1,7 330 
50 3 1,5,13 287 
50 4 1,4,13,41 285 

100 1 1 2526 
100 2 1,8 988 
100 3 1,4,19 754 
100 4 1,4,13,41 717 
100 5 1,3,11,31,59 729 
250 1 1 15812 
250 2 1,14 4449 
250 3 1,6,19 2839 
250 4 1,4,11,47 2442 
250 5 1,4,13,41,131 2370 
250 6 1,3,7,19,37,157 2371 
500 1 1 63238 
500 2 1,12 13645 
500 3 1,6,31 7521 
500 4 1,5,13,53 6144 
500 5 1,4,13,37,101 5685 
500 6 1,4,13,23,61,197 5537 



APPENDIX C 

CHANDLER'S COMPARISON TABLES 

50 



51 

Number of out-of-order Comparisons (horizontally) vs. number 
of in-order comparisons (vertically) in each pass of Shell's 
original algorithm, for all permutations of N distinct keys. 
12* denotes a common factor of 12 that has been removed from 
that table, etc. 

N=2 
l* 

N=3 
l* 

N=4 
h=2 
6* 

N=5 
h=2 
10* 

N=6 
h=3 
90* 

0 
1 

0 
1 
2 

0 
1 
2 

0 
1 
2 
3 

0 
1 
2 
3 

0 

0 
1 

0 

0 
0 
1 

0 

0 
0 
1 

0 

0 
0 
0 
1 

0 

0 
0 
0 
1 

1 

1 
0 

1 

0 
1 
1 

1 

0 
2 
0 

1 

0 
0 
2 
1 

1 

0 
0 
3 
0 

2 3 

0 1 
2 0 
0 0 

2 0 1 2 3 
h=l 

1 4* 2 0 1 1 1 
0 3 1 2 0 0 
0 

2 3 4 0 1 2 3 
h=l 

0 0 1 12* 3 0 1 2 1 
1 3 0 4 1 3 1 1 
3 0 0 
0 0 0 

2 3 

0 1 
3 0 
0 0 
0 0 
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0 1 2 3 4 5 6 7 8 9 
N=6 
h=l 3 0 0 0 1 2 3 3 3 2 1 
6* 4 0 1 5 10 10 9 6 4 0 0 

5 1 4 9 9 4 3 0 0 0 0 

0 1 2 3 4 5 
N=7 
h=3 0 0 0 0 0 0 1 
210* 1 0 0 0 1 4 0 

2 0 0 3 6 0 0 
3 0 3 4 0 0 0 
4 1 1 0 0 0 0 

0 1 2 3 4 5 6 7 8 9 
N=7 
h=l 4 0 0 0 1 3 6 6 4 3 l 
24* 5 0 l 6 16 23 21 16 9 3 1 

6 l 5 14 20 16 15 9 7 2 1 

0 l 2 3 4 
N=8 
h=4 0 0 0 0 0 l 
2520* l 0 0 0 4 0 

2 0 0 6 0 0 
3 0 4 0 0 1 
4 1 0 0 0 0 

0 1· 2 3 4 . 5 6 
N=8 
h=2 4 0 0 l 2 3 2 l 
1120* 5 0 2 6 6 4 0 0 

6 l 4 4 0 0 0 0 

0 1 2 3 4 5 6 7 8 9 10 
N=8 
h=l 6 0 1 5 7 7 4 4 3 2 1 l 
576* 7 1 6 10 8 6 2 2 0 0 0 0 
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