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PREFACE 

In an hydrotreatment processes of coal derived liquid, the problem 
of the catalyst deactivation by metal deposition has been received much 
attention. Titanium is one of the metals that survives the servere coal 
liquefaction process. It is present in coal derived liquid as an 

organometallic compound. Titanocene dichloride is a good representative 
of this compound. When titanocene dichloride is added to the coal 
derived liquid and hydrotreated, it shows an increase in hydrotreatment 
activities. 

In order to study this phenomena in pure compound, titanocene 
dichloride is added to Tetralin and a mixture of 5 wt% phenanthrene in 
Tetralin and hydrotreated in a two-stage trickle bed reactor over a 
commerical Ni-Mo/alumina catalyst. The effect of titanocene dichloride 
on the hydrogenation activity and the coking of the catalyst are 

measured and studied. The hydrogen to carbon ratio of the products 
increases when titanocene dichloride is added to the feedstock. 
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CHAPTER I 

INTRODUCTION 

One of the major problems in catalytic hydrotreatment processes is 

that the catalyst does not maintain its high activity and selectivity 

for a long period of time. 

Process design and operating conditions have been studied in order 

to extend catalyst life and maintain its high activities. Deactivation 

mechanisms have also received considerable attention. The main factors 

for catalyst deactivation are: coking by carbonaceous material 

deposited on the catalyst surface, adsorption of basic nitrogen 

containing compounds, deposition of metal impurities in feedstock, and 

sintering of the catalyst. 

The coke deposited on the catalyst can be burned off in a 

regeneration process. Metal deposition can cause a permanent loss of 

catalyst activity. Deposited metals can react with active metals during 

catalyst regeneration process and cause a permanent loss of catalyst 

activity due to structural changes of catalyst. 

Chan (1) studied the changes in catalyst activities in 

hydrotreatment of coal derived liquids due to the pressure of titanocene 

dichloride. He doctored an SRC-II coal liquid with titanocene 

dichloride and hydrotreated with a Shell-324 catalyst. Instead of a 

loss in activities, he observed drastic improvements in 



catalyst activities and a decrease in coke formation on the catalyst 

surface. 

2 

Following those early observations, in this project, the role of 

titanocene dichloride on the hydrogenation of pure hydrocarbons is 

studied. A low coking and a high coking hydrocarbons are considered in 

this study. 

Tetralin, which is a common hydrogen donor solvent in coal 

liquefaction processes (2-7), is selected as the low coking hydrocarbon; 

and phenanthrene, a compound commonly found in coal-derived liquids, is 

selected as the high coking hydrocarbon. 

Tetralin and a mixture of 5 wt% of phenanthrene in Tetralin are 

doctored with titanocene dichloride and hydrotreated in a two-stage 

trickle-bed reactor system over a commercial Ni-Mo/alumina catalyst. 

The results are compared with the runs made without titanocene 

dichloride. The effect of titanocene dichloride on hydrogenation of the 

feedstocks, catalyst coking, titanium deposition on catalyst, and 

distillation characteristics of feedstocks and product oils are measured 

and studied. 

The study shows that titanocen dichloride reacts with Titralin 

resulting in the formation of an insoluable titanium compound. 

The effects of titanocene dichloride on the hydrogen activity and 

the coke formation of the catalyst depend on the type of the hydrocarbon 

feedstocks. 



CHAPTER II 

LITERATURE REVIEW 

The literature will be reviewed on the following subjects. 

1. Trickle bed reactor. 

2. Catalyst Deactivation. 

3. Reaction of Tetralin and Phenanthrene. 

4. Titanocene Dichloride. 

Trickle Bed Reactor 

A trickle bed reactor is a fixed catalyst bed reactor in which 

usually a liquid and a gas flow concurrently downward. Trickle bed 

reactors are used in many chemical processes, such as hydrotreatment of 

heavy petroleum crudes. The commercial development of these reactors 

was mainly for the processing of petroleum fractions, particularly 

hydrodesulfurization and hydrocracking of heavy or residual oils and 

hydrotreating of lubricating oils. 
. 

In a trickle bed reactor, the flow pattern can usually be 

approximated by a plug flow model. The liquid trickles over the packing 

in essentially a laminar film and -the gas continuously flows through the 

voids of the bed. The gas dissolves in the liquid and penetrates to the 

catalyst surface. After the reaction between adsorped species, the 

product gases and liquids desorb and transport to the bulk liquid where 

gas products evaporate into the gas phase. 

3 
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In hydrodesulfurization, the liquid flow rates range from 1 to 10 

kg/m2. sec for heavy fractions to 10 to 25 kg/m2. sec for naphtha, while 

hydrogen flow rates range from 0.470 m3/kg for heavy gas oil to 0.840 

m3/kg for heavy residual oils. In hydrocracking, this ratio may be 1.7. 

Liquid and Gas Distribution 

The performance of a trickle bed reactor is a function of liquid 

and gas distributions. Satterfield (9} reported that in a narrow 

diameter trickle bed reactor, liquid migrates to the wall and the 

fraction flowing down the wall increases up to a steady state value 

typically reached in about 1/3 to 2/3 meters. When the ratio of the 

reactor diameter to the particle diameter is as high as 10, the steady 

state wall fraction is as much as 30-60%. 

Liquid holdup (volume of liquid/volume of empty reactor} is a 

measure of the effectiveness of contacting between liquid and solid 

catalyst (9}. It consists of the liquid held in the pores of the 

catalyst, which is called internal holdup, and outside the catalyst 

pellets called external holdup. The external holdup can be divided into 

free draining holdup and residual or static holdup. The fraction of the 

liquid remained on the packing after the bed has drained is called 

static holdup. The maximum internal holdup corresponds to the total 

pore volume of the catalyst and ranges from 0.15 to 0.40. The residual 

holdup varies from 0.02 to 0.05. The free draining holdup is a function 

of the gas and liquid flow rates, the fluid properties, and the catalyst 

characteristics. Ross (10} reported that the commercial reactor holdup 

was only about 2/3 that of the pilot reactor. 
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The external holdup is considered to be proportional to Ln or Ren, 

where L is the liquid superficial flow rate and Rel is the Renolds 
number for liquid flow. Davidson et al. (11) and Pelossof (12} reported 
n=1/3 for laminar film flow over a column of spheres and with no drag 
effect by flowing gas. 

Henry and Gilbert (13} assumed that the reaction rate was 

proportional to liquid holdup and this holdup was proportional to the 
liquid superficial velocity to 1/3 power. 

Mears (14) suggested that the reaction rate was proportional to the 
fraction of the outside catalyst surface which was effectively wetted by 
the flowing liquid. Puranik and Vogelpohl (59) reported that the wetted 
are was proportional to the 0.32 power of the liquid velocity. 

Diffusion Resistance 

Mass transfer from the bulk of the gas to the active sites of the 
catalyst involves several steps. Each step has its diffusion resistance 
which controls the amount of transferred reactants and products. The 
diffusion occurs both in the gas and the liquid phases and inside the 
pores of the catalyst. 

In hydrotreating processes, hydrogen gas is used in an excess 

amount. It is assumed that vapor-liquid equilibrium is established 
between the gas and the gas-liquid interface, so that there is no 
significant mass transfer resistance in the gas phase. The dissolved 
gas must be transported from the gas-liquid interface to the bulk liquid 
and to the liquid-solid interface. Therefore, the liquid phase 
resistance is expected to be the rate controlling step (17}. 
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Satterfield (18) showed that the liquid film surrounding the 

catalyst particles has an average thickness in the range of 0.01-0.1 

millimeter under typical hydrotreating conditions. The average film 

thickness is so much less than the radius of the usual catalyst particle 

that it will not be a significant resistance unless the effectiveness 

factor of the catalyst pellets is quite low. Van Deemter (19) and 

Adlington and Thompson (20) concluded that the effectiveness factor in 

catalyst under industrial operating conditions was low. Satterfield (9) 

showed that the film resistance was negligible for these conditions. 

Catalyst Deactivation 

In the catalytic processes, catalysts usually lose their activities 

while in operation due to a) structural changes in the catalyst, b) 

irreversible chemisorption of some impurity in the feed stream which is 

called poisoning, c) deposition of carbonaceous residue from a reactant, 

product, or some intermediate which is called coking. 

The effects of deactivation by metal poisoning and coking are 

received more attention than the structural changes. The following 

literature will be reviewed only on coking of catalyst in hydrotreatment 

processes and some metal poisoning. 

In catalytic hydrotreatment processes, a portion of the feedstock 

is converted to a carbonaceous material or coke and deposited on the 

catalyst surface. The mechanism of the coke formation is difficult to 

establish even when working with pure compound feeds (8, 21). The 

composition, chemical structure, and molecular weight of the deposited 

material are not well understood. The main precursors of coke deposit 

are believed to be aromatic and S-, N-, and 0- containing heterocyclic 



compounds (22). Catalytic coke is apparently a hydrocarbon of 

relatively low hydrogen content left over from the reactions. Thomas 

(25) reported a formula for the coke as (C3H4ln· 

7 

Appleby et al. (23) concluded from their catalytic cracking of pure 

compounds that aromatic components from the catalytic cracking 

feedstocks were the source of the coke. They also suggested that the 

aromatics adsorbed on the catalyst surface and the adsorbed species 

reacted to from aromatic or unsaturated ions by condensation and 

hydrogen elimination. Thomas (24) reported that hydrogen elimination 

reactions could proceed by olefins interacting with adsorbed aromatics 

to form paraffins and hydrogen deficient coke. 

Voorhies (26) correlated a relation for coking in the catalytic 

cracking of gas oil as 

C = At" c wi th 0. 5 L n ...::: 1. 0 

where A = a constant, depending on catalyst, feedstock, and 

temperature. 

Cc = carbon, weight percent on catalyst. 

t = catalyst residence time, minute. 

n = constant, depending only slightly on catalyst, feedstock, 

and temeprature. 

The origin of coke was not considered in Voorhies correlation. 

Froment and Bischoff (27, 28) considered that the coke was formed 

either by a reaction path parallel to the main reaction 

reactant ---- product 
• intermediates coke 

or by a reaction path consecutive to the main reaction. 
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reactant - product ---intermediate --- coke 
They were the first to relate the composition of the reaction mixture, 
the temperature, and the catalyst activity, to the rate of coking. 

Haldeman (29) studied the coke structure by X-ray diffraction. He 
showed that half of the carbon phase was in pseudo graphitic, or 

turbostratic structure. The remainder consisted of unorganized aromatic 
systems and of aliphatic and alicyclic appendager to polynuclear 

aromatic systems. 

Eberly (8) used Infrared Spectroscopic techniques to study the 
structure of the coke deposit on silica-alumina cracking catalysts. He 
observed the presences of condensed ring aromatic structures and 

identified -CH3, -CH2, and aromatic -CH groups. He also concluded that 
the hydrogen elimination from adsorbed hydrocarbons could be because of 
either direct dehydrogeneration producing hydrogen gas or transfer of 
hydrogen to an unsaturated acceptor molecule. The direct 

dehydrogenation occurred when metal contaminants, such as nickel, were 
present on the catalyst surface. 

Ternan et al. (30) suggested that two types of coke were present on 
the catalyst, a reactive coke which was converted to reaction products 
and an unreactive coke which blocked the active sites. 

Hydrogen partial pressure and operating temperature have strong 
effects on coking rate (27, 31). Coking rate decreases with an increase 
in hydrogen partial pressure. 

Coke deposition causes a decrease in catalyst activity due to a 
decrease in the active surface area (32, 33, 34). Coke catalysts can be 
regenerated by burning off the coke. 
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Metal deposition by the irreversible chemical reaction on the 

catalyst surface can cause a permanent loss in catalyst activity. The 

metal is usually present in the liquid feed in the form of 

organometallic or inorganic compounds. Chiou and Olson (35) showed that 

most organic metals deposit on the outer surface of the catalyst, 

whereas organometallics could penetrate into the catalyst pores and 

deposit inside the pores. Some investigators have indicated that the 

metal deposition could accelerate the coke formation. Habil (36) found 

that the metal deposition on the catalyst increased the coke content in 

a cracking process. 

There are some arguments about the promoter on the catalyst. Ahmed 

(17) found that Ni was a better promoter that Co on Mo/alumina catalyst 

while Ternan et al. (30) found that the molybdenum content of the 

catalyst controlled the coke level rather that the promoter. 

Reaction of Tetralin and Phenanthrene 

In catalytic hydrotreatment of coal derived liquids, the processes 

are based on catalysts containing molybdenum promoted by cobalt or 

nickel and supported on alumina (2, 37, 38). Many investigators have 

studied hydrotreatment reactions using these catalysts under different 

operating conditions. 

Badilla-Ohlbaum et al. (40) studies the hydrogenation of a model 

feedstock containing phenanthrene on nickel-molybdate-based catalysts at 
400°C and 6.89 MPa. The main products of phenanthrene were mixtures of 

di-, tetra-, octa-, and perhydrophenanthrenes. 

Skowronski (41) found that a molten alkali metal hydroxide

carbonate mixture was an effective catalyst for the hydrgenation of 
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phenanthrene. It was shown that both the hydrogenation and ring-opening 

reactions were occurring and the products were 6-butyl-, 1, 2, 3, 4-

tetrahydronaphthalene, 9, 10-dihydrophenanthrene and 1, 2 , 3, 4-

tetrahydrophenanthrene. 

Sullivan et al. (42) reported that the prevailing products from the 

hydrocracking of phenanthrene on a NiS/Al 2o3 catalyst at 293°C were 

Tetralin and methyl cyclohexane. They indicated that hydrocracking of 

phenanthrene could occur at low temperature, but it also depended on 

other operating conditions. Huang et al. (43), using Co-Mo/Al 2o3 

catalyst, reported that the main products of the hydrocracking reaction 

of phenanthrene were perhydrophenanthrene isomer. 

Penninger and Slotboom (44) investigated the uncatalyzed thermal 

high-pressure hydrogenolysis of phenanthrene at a hydrogen pressure of 

8.3 MPa and a temperature of 475°C. They concluded that the products of 

uncatalyzed hydrogenation of phenanthrene were 1, 2, 3, 4-

tetrahydrophenanthrene and 9, 10-dihydrophenanthrene. 

Friedman et al. (45) also observed the same products and 

octahydrophenanthrene when they used alkali metals, alkalie metal 

alloys, and alkali metal-alkali metal salt combinations as the catalyst. 

Sullivan et al. (42), from their hydrocracking studies, suggested 
' that three types of reactions occurred: 

1. Cleavage of one of the terminal rings to form an alkane and a 

bicyclic compound such as Tetralin, 

2. Ring saturation and cleavage of the central ring, which 

accounts for appreciable amounts of methylcyclohexane and 

ethylcyclohexane produced, and 



3. An unusual cracking reaction that produced bicyclic 

hydrocarbons, principally Tetralin, without producing an equivalent 

amount of light alkanes. 

Wiser {46) suggested that phenanthrene was an excellent model of 

one of the principal structures found in coal. 

11 

Tetralin is commonly employed as a hydrogen-donor solvent. In coal 

liquefaction process, Tetralin is considered a reasonably good hydrogen

donor for the hydrogenation of coal. Potgieter {39) studied the 

conversion of Tetralin during hydrogenation of coal and suggested that 

Tetralin coverted to naphthalene. 

Dziewiecki et al. {47) studied the catalytic activities of aNi

Mo/Alumina catalyst in dehydrogenation of Tetralin. They showed that 

the activities of a Ni-Mo/Alumina catalyst could be predicted in 

hydrogenation of coal-extract solution from its activities in 

dehydrogenation of Tetralin. 

Curran et al. {6) observed that Tetralin decomposed to 11 C4 benzenes 

and indane 11 • Whitehurst et al. {48) pointed out that rearrangement of 

Tetralin occurred with the formation of !-methyl indane. 

Penninger and Slotboom {49, 50) heated Tetralin in hydrogen 

atmospheres o 1 to 10 MPa and temperatures of 460 to 560°C. They 

identified butyl benzene, !-methyl indane, styrene, ethylene, and o

propyltoluene as primary products. They also postulated the mechanism 

for the formation of !-methyl indane and that hydrogen was required for 

initiation of the reaction. 

Hooper et al. {7) studied the thermal cracking of Tetralin without 

hydrogen or coal. The main products formed were naphthalene and the 

Tetralin isomer !-methyl indane. The reaction to produce !-methyl 
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indane was shown not to occur until some dehydrogenation of Tetralin to 

naphthalene had occurred. 

Flinn et al. (51) studied the catalytic hydrocracking of some 

compounds over 3% nickel supported on a Houndry silica-alumina 

catalyst. Their results showed that Tetralin converted to isoparaffins, 

benzene, alkyl benzenes and naphthalene. 

Wu et al. (56) summarized the available literature and suggested 

that the reaction paths of phenanthrene could be represented by: 

+ other alkylbenzenes 

\. 

~loJ @ 
-~- ©J ~;---- @f----- @ 
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Titanocene Dichloride 

Titanium is one of the metals found in coal. It can survive the 
severe conditions of coal liquefaction processes and is present in coal 
liquid both in organic and inorganic forms. Many researchs have been 
conducted to identify the form and structure of titanium in coal 

liquid. Filby et al. {58) suggested that the formation of stable 
organometallic compounds, like titanocene dichloride, could occur under 
the highly reactive conditions and the complex chemical system in the 
coal liquefaction processes. 

Titanocene dichloride is an organometallic compound with a chemical 
name of bis{cyclopentadienyl) titanium dichloride. It can be hydrolyzed 
in moist air to form {C5 H5)2 Ti{OH)Cl. It is soluble in dilute acid 
and is decomposed by aqueous base with the formation of hydrated 

titanium dioxide {57). 

Complexes formed by the reaction of titanocene dichloride with an 
alkylaluminum compound in nonaqueous solutions have been used as a 
soluable catalyst for polymerization of ethylene. The polyethylene 

prepared with these catalysts is highly linear and has a narrow 

molecular weight distribution {52, 53, 54, 55). 

Chan {1) doctored an SRC-II coal drive liquid with titanocene 

dichloride and hydrotreated over a Ni-Mo/alumina catalyst. He concluded 
that the addition of titanocene dichloride improved the hydrotreatment 
activities of the catalyst and suppressed the coke formation on the 

catalyst. He also showed that the catalyst activity improvement 
depended on the concentration of titanocene dichloride. Titanium 
concentration of 100 to 200 ppm appeared to promote the catalyst. 



Literature Summary 

1. The factors that affect the performance of the trickle bed reactor 
are liquid and gas distributions and diffusion resistance. 

2. The catalyst usually loses its activities due to the structural 
changes, metal poisoning and coking. 

14 

3. Coke is believed to be formed by the reaction between the 
hydrocarbon molecules adsorbed on the catalyst surface resulting in 
aromatic or unsaturated groups by condensati~n or hydrogen 
elimination. 

4. The products of phenanthrene hydrogenation can be a mixture of 
di-, tetra-, octa, and perhydrophenanthrenes~ 6-butyl-, 1, 2, 3, 4-
tetrahydronaphthalene, -g, 10-dihydrophenanthrene and 1, 2, 3, 4-
tetrahydrophenanthrene. 

5. In hydrogenation processes,. Tetralin can form cis- and trans
dicalin, 1-methly indane and styrene. Tetralin may also be 
dehydrogenated to naphthalene. 



CHAPTER III 

EXPERIMENTAL APPARATUS AND ANALYSiS TECHNIQUES 

Figure 1 shows a schematic diagram of the trickle bed ractor system 

used in this study. The system was designed and used by an earlier 

investigator at Oklahoma State University (16). It has a capability to 

be used as a one- or two-stage reactor. No modification was made in 

this study. 

Hydrogen gas flows into the top of reactor 1 from a hydrogen 

cylinder through valve 1. Hydrogen pressure is maintained unchanged by 

means of a 11Mity-Mite 11 regulator valve. The upstream pressure of the 
11 Mity-Mite 11 is controlled by a pressure regulator at the hydrogen 

cylinder. The flow rate of gas into the reactor is measured by a high 

pressure flow meter. A Heise pressure guage is used to monitor the 

inlet gas pressure. Oil is charged into the feed tank and then into the 

reactor by a Ruska feed pump. The feed oil pressure is monitored by 

pressure gauge 41. Oil and hydrogen gas flow concurrently through 

reactor 1, which is packed with catalyst and glass beads. A sampling 

system is installed at the bottom of reactor 1. This sampling system 

has the capability to take small liquid samples at any time without 

disturbing the operation. The fluids flow into reactor 2, which is 

packed with the same type of catalyst as in reactor 1. Product oil and 
gas flow through sample bomb 1 into sample bomb 2 where they are 

separated. The pressure of sample bomb 1, which is used as the reactor 

15 
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downstream pressure, and is measured by pressure gauge 43. The pressure 

of sample bomb 2 is measured by pressure gauge 44. 

Sample bomb 3 is used to condense liquid. Sample bomb 4 is packed 

with alumina spheres and is used to trap liquid mist in the outlet gas 

stream. The outlet gas flow rate is controlled by valve 10. A scrubber 

filled with ethanolamine solution (60 vol% ethanolamine in water) is 

located after valve 10. The flow rate of outlet gases is measured by a 

bubble flow meter and is monitored by a low pressure flow meter. 

Temperatures of the reactors are separately controlled by two 

temperature programmer/controllers, and are also measured inside the 

catalyst beds and outside the reactor walls. 

Detailed discriptions of the main components of the system and the 

experimental procedures are given in Appendix A and B. 

The oil samples were taken every 12 hours during each experiment. 

The samples from the sampling system at the bottom of reactor 1 were 

called the interstage samples and the accumulated product oil in the 

sample bombs at the bottom of reactor 2 were called the product 

samples. After each run, the reactors were cut and the catalyst in each 

reactor were divided into three sections called top, middle, and 

bottom. Each oil sample and catalyst sample were labeled and kept for 
analyses. 

Sample Analyses 

Catalyst samples are analyzed for coke content, titanium content, 

and titanium distribution. Liquid samples are analyzed for carbon and 

hydrogen content, titanium concentration, chloride concentration, 

conversion of Tetralin and phenanthrene, and ASTM distillation curve. 
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Catalyst Characterization 

The catalysts from each reactor are separated into top, middle, and 

bottom sections. Each sample is extracted with tetrahydrofuran in a 

Soxhlet extraction unit for 60 hours. The washed catalysts are dried 

and degassed at 82.2°C (180°F) for 6 hours. 

Coke Content Determination: The coke content in this study is 

defined as the weight percent of loss of carbonaceous material by 

burning the catalyst at 550°C (1022°F) for 60 hours. The catalyst 

samples are weighed at room temperature and placed in a furnace at 550°C 

(1022°F) to burn off their carbonaceous material for 60 hours. The 

samples are allowed to cool down to room temperature then weighed. The 

amount of coke is calculated by: 

weight% of coke content = (W1 - W2) X (100/Wl) 

where 

w1 = Weight of spent catalyst 

w2 = Weight of burned catalyst 

Titanium Content Determination: A Phillips X-ray Spectrometer 

PW 1410/70 equipped with an XRG-3000 generator is used to measure the 

weight percent of titanium deposited on the spent catalyst and glass 

beads. The principle of this method is that the analyte-line intensity 

IA,M from analyte A in a thick specimen having matrix M would be a 

simple function of weight fraction of A in M. 

The standards of known titanium concentration are prepared by 

grinding fresh Shell-324 catalyst pellets and mixing the powder with 

titanium dioxide. The standards for glass beads are also prepared 

similarly using fresh glass beads and titanium dioxide. The catalyst 

and glass bead samples are grinded into powder and shaped into 
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pellets. The titanium analyte-line intensity is measured and compared 

with the calibration curves. These intensities can be converted into 

weight percent of titanium in the samples. 

Titanium Distribution Determination: A JEOL Model JFM-35 Electron 

Scanning Microscope equipped with an Energy Dispersive X-ray Analyzer is 

used to determine the titanium distribution in spent catalysts. The 

catalyst sample is cut and placed in a vacuum chamber. The metals in 

the catalyst are analyzed by the X-ray beam of different energies. The 

catalyst samples are analyzed at several points from the edge to the 

center of pellets. 

Product Characterization 

Nitrogen, Carbon, and Hydrogen Analysis: A Perkin Elmer elemental 

analyzer Model 2408 is used to determine the amounts of carbon and 

hydrogen in the liquid samples. The analyzer consists of three major 

sections, which are combustion furnace, reduction furnace, and a 

detection system. In combustion furnace, the sample is combusted at 

high temperatures of approximately 960°C (1760°F) in a purified oxygen 

atmosphere catalyzed by silver tungstate and magnesium oxide. The gases 

are carried through the combustion tube by purified helium gas. Sulfur 

oxides and halogens in the gas are removed in the combustion tube by 

silver vanadate, silver oxide, and silver tungstate. The gases are 

passed through a reduction tube, operating at 600°C (1112°F), where 

nitrogen oxides are reduced to N2. The remaining gases, which are co2, 

N2, water vapor, and helium gas, are collected in a mixing volume at a 

constant temperature until equilibrium is reached. The gases are passed 

through a series of gas traps and thermal conductivity cells. 
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Water is trapped by magnesium perchlorate and the difference of 

thermal conductivity before and after the trap gives the water content 

which corresponds to the hydrogen content in the sample. Carbon dioxide 

is trapped in a special absorbent called Colorcarb and carbon signal is 

read by the same method. The remaining gases, N2 and helium, are passed 

through a thermal conductivity cell where the nitrogen content is 

measured by comparing the signal with that of another cell measuring the 

thermal conductivity of the purified helium. 

Titanium Concentration Determination: A Perkin Elmer 403 double 

beam Atomic Absorption Spectrometer is used to measure the titanium 

concentration in the feedstock and product oils. 

Atomic absorption is a chemical analysis technique which uses light 

absorption by atoms in the gas phase to analyze the metal atoms. It is 

used to analyze metal samples in solutions in the range of parts-per

million (ppm). Although it is a very sensitive and quantitative 

technique, it can treat only one element at a time. 

In atomic absorption spectroscopy, a solution of the sample is 

introduced into a chemical flame as a fine aerosol or mist. Here the 

solution droplets first undergo desolvation, and the resulting particles 

are dissociated into atoms. These atoms are in their normal electronic 

configuration, the 11 ground state 11 or zero energy state. An external 

light source is employed to emit the atomic line spectrum of the atom to 

be analyzed. The light from this source passes through the flame 

containing the sample and is absorbed by the ground state atoms in the 

flame cell. The photons emitted by the element in the external source 

have exactly the energy required to excite the same ground state element 



in the flame. The intensity of radiation emitted or absorbed by an 
element is proportional to the atomic concentration of that element. 
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The emission intensity is detected by a detector which generates 
the electric signal. A monochromator is usually employed in this 
process. The signal is then amplified and displayed or recorded by the 
read out system. The unknown signals are compared with the signal of 
standard solutions. 

The titanium standard used in this study is a titanium-organic 
standard supplied by Continental Oil Company. It is mixed with Tetralin 
and diluted with methyl-isobutyl ketone to make standard solution with 
titanium concentrations of 100 ppm and below. A blank standard which is 
a solution of Tetralin and methyl-isobutyl ketone is also prepared and 
used to set the analyzer at zero titanium concentration. 

The product oils are diluted with methyl-isobutyl ketone at the 
same ratio as the standard solution. Both the standard and the sample 
solutions have to be fresh in order to avoid any decomposition of 
titanium compounds. 

Chloride Determination: Chloride in oil samples is extracted into 
water and analyzed by ASTM D-512 technique, the standard test method for 
analysis of chloride ion in water. 

The oil samples are mixed with distilled water to extract chloride 
from oil phase to water phase. The water samples are then titrated with 
silver nitrate solution using potassium chromate as an indicator. 
Chloride concentration can be obtained from the amount of silver nitrate 
used in the titration. Details of the analysis and calculation 
techniques are described in ASTM D-512. 
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Gas Chromatographic Analysis of Tetralin, phenanthrene and 

products: A Varian Model 3700 Gas Chromatograph equipped with Analabs 
capillary column Model GB-5 is used to determine the amount of Tetralin, 
phenanthrene and their hydrogenation products in the liquid samples. 
The samples are mixed with tridecane which is used as a reference 
compound. Approximately 1 microliter of liquid sample is injected into 
the Gas Chromatograph. The sample is vaporized at a high temperature 
and mixed with a carrier gas. Part of the gas mixture is split and 
vented to the atmosphere, only a small portion of the gas mixture flows 
into the capillary column. Compounds in the gas mixture adsorb and 
desorb in the capillary column at different rates. Lighter compounds 
adsorb and desorb faster than heavier compounds. The desorbed gas is 
added to the make up gas to increase the gas flow rate. The gas mixture 
flows through a tip where the compounds are burned in a hydrogen 

flame. Flame Ionization Detector is used to detect the signal. The 
signals are plotted and integrated by a Hewlett-Packard reporting 
integrator Model 3390A. 

ASTM D-1160 Distillation: Feed oil and selected product samples 
are fractionated following ASTM D-1160. The temperatures are recorded 
at every 10 cm3 of distillate. The distillations are performed at a 
pressure of 1.34 kPa (10 mmHg), and the temperatures are converted to 
those of 102 kPa (760 mmHg). The detailed procedures can be found in 
ASTM D-1160. 



CHAPTER IV 

EXPERIMENTAL RESULTS 

The results of analyses of the liquid and catalyst samples will be 

presented in this chapter. There were a total of five experimental 

runs, labeled 1 through 5, in this study. 

Tetralin is a hydrogen-donor solvent commonly used in coal 

liquefaction processes. It is considered to be a low coking feedstock 

in the study of catalytic cracking over the silica-alumina cracking 

catalysts (8). Phenanthrene serves as an excellent model of the 

principal structure found in coal (46). It is a relatively high coking 

feedstock in catalytic cracking study over the synthetic silica

zirconia-alumina cracking catalyst (23). 

Tetralin at high temperatures, approximately 500°C (932°F), 

decomposes by thermal cracking. At lower temperatures, 400°C (752°F), a 

very small fraction of Tetralin dicomposes (7, 15). In the operating 

temperatures of hydrotreatment, 350-450° (662-842°F), thermal cracking 
' 

is expected to be minimal. 

A set of preliminary experiments was conducted to study the coking 

ability of some hydrocarbons on Shell 324 hydrotreatment catalyst. The 

experiments were do~e at atmospheric pressure and the normal boiling 

point of each hydrocarbon. 

Approximately 80 cm3 of a pure hydrocarbon or hydrocarbon mixture 

and 2 gm of Shell 324 catalyst were placed in a flask and connected to a 

23 
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condenser. The mixture was boiled for 2 hours. The catalyst was washed 

with methyl-isobutyl ketone to remove the hydrocarbon liquid on the 

surface and dried in a furnace at 100°C (212°F) for 5 minutes. The 

catalyst was weighted at room temperature and then placed in a furnace 

to burn off the coke at 500°C (932°F) for 60 hours. The weight loss is 

considered as coke on the catalyst. 

The preliminary coking results are shown in Table I. It indicates 

that the coke formation on the catalyst depends on the type of 

hydrocarbons. It also shows the effect of titanocene dichloride on the 

coke formation. Tetralin is an aromatic compound that gives less coke 

than other aromatic compounds such as anthracene and phenanthrene. 

In this study, Tetralin and a mixture of 5 wt% phenanthrene in 

Tetralin were used as the low coking and high coking feedstocks, 

respectively. 

Properties of Shell-324 catalyst, titanocene dichloride, Tetralin 

and phenanthrene are given in Table II, Ill, IV, and V. 

The hydrotreatment experiments were conducted at a pressure of 10.4 

MPa (1500 psig) and a temperature of 350°C (662°F). A liquid volume 

hourly space time of 0.20 hour and hydrogen to oil ratio of 1000 

standard m3H2;m3 oil (5620 SCF/bbl) were used. Each reactor was packed 

with 10 grams of Shell-324 catalyst to a height of 15.24 em (6 

inches). Table VI summaries the experimental conditions used in this 

study. 

A pressure drop of 140 kPa (20 psig) across the reactors was 

observed in all runs. There was a hot spot at the entrance to the 

catalyst bed section. The temperature of the hot spot was approximately 

40°C (113°F) higher than the normal operating temperature when oil and 



TABLE I 

PRELIMINARY COKING RESULTS 

Coke wt% Catalyst 

without with 
titanocene titanocene 

n-Hexadecane 

Tetralin 

Tetralin + 1% Anthracene 

Tetralin + 8% Phenanthrene 

Tetralin + 10.5% 
1-methylnaphthalinene 

Catalyst: Shell 324 
{1/16 inch extrudate) 

Contact Time: 2 hrs. 

4.45 9.40 

12.24 11.75 

13.90 13.43 

17.83 10.76 

19.29 

25 

Approx. Temp., °C 

287 

207 

207 

207 

207 



TABLE II 

PROPERTIES OF SHELL-324 CATALYST* 

Chemical Composition wt% 

NiO 

Mo03 

3.4 

19.3 

26 

Physical Properties 

Geometry 

Surface area, m2/kg 

Pore Volume, m3/kg 

1. 6 mm (1/16 11 ) extrudate 

146 X 103 

4.2 x w-4 

Most frequent pore diameter, nm 11.8 

Pore size distribution, 

% pore volume in pore 

diameter, nm % 

3.5- 7.0 12 

7.0-10.0 21 

10.0-15.0 57 

15.0-20.0 2 

20.0-40.0 1 

40.0-60.0 1 

60.0 6 

Total 100 

*From Supplier 



TABLE III 

PROPERTIES OF TITANOCENE DICHLORIDE* 

Formula 

Sturcture 
6 Cl 
~~. 
~Ti~ 
U Cl 

Chemical Name Bis(cyclopentadienyl) titanium dichloride 

Physical Properties 

Molecular Weight 

Form 

Color 

Melting Point 

Titanium Content 

Chloride Content 

Oxidation Potential 

Solubility 

Supplier 

*From Supplier 

249.0 

Crystallin~ solid 

Red 

287-289°C (with decomposition) 

19.24% 

28.48% 

(CsHs>2H2o + (CsHsl2Ti++ 

Moderately soluble in toluene and 

chloroform and in alcohol and other 

hydroXYlic solvents. Sparingly 

soluble in ether, benzen, carbon 

disulfide, carbon tetrachloride, 

pretroleum ether, and water 

Alpha Products 
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Formula 

Structure 

Chemical Name 

Physical Properties 

Molecular Weight 

Form 

Color 

Melting Point 

Boiling Point 

Specific gravity 

Solubility 

Purity 

Supplier 

TABLE IV 

PROPERTIES OF TETRALIN* 

1, 2, 3, 4-tetrahydronaphthalene 

132.2 

1 i quid 

yellow 

-31°c 

206°C 

0.973 

insoluble in water 

soluble in alcohol and ether 

99% (by supplier) 

Alfa Products 

*From Chemical Engineering Handbook 
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Formula 

Structure 

Physical Properties 

Moleuclar Weight 

Form 

Color 

Melting Point 

Boiling Point 

Specific gravity 

Solubility 

Purity 

Supplier 

TABLE V 

PROPERTIES OF PHENANTHRENE* 

178.22 

plate solid 

white 

99-100°C 

340°C 

1.179 

insoluble in water 

soluble in ether 

98% (by supplier) 

Aldrich Chemical Company, Inc. 

*From Chemical Engineering Handbook 

29 
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TABLE VI 

EXPERIMENTAL CONDITIONS 

Feedstock: Run 1 - Tetralin (Reference run) 

Run 2 - Tetralin + 100 ppm of titanium (as titanocene 
dichloride) 

Run 3 - Tetralin + 5 wt% Phenanthrene 

Run 4 - Tetralin (Duplicate of reference run) 

Run 5 - Tetralin + 5 wt% Phenanthrene + 100 ppm of 
titanium (as titanocene dichloride) 

Operating Conditions: 
Reactor Temperature: 350°C (663°F) 

Pressure: 10.4 MPa (1500 psig) 

Feedstock fl owrate: ',JO cm3 /hour 

Hydrogen flowrate: 500 cm3/minute 

Duration of run: 60 hours 

Sampling: every 12 hours 
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gas contacted the catalyst. The temperature of this hot spot gradually 
decreased to the normal operating temperature within 3-4 hours after 
start-up. The temperature in each reactor was almost constant (~ 4°C) 
along the catalyst bed, except at the hot spot. In run 4, there was a 
hot spot in the middle section of reactor 2 that brought the temperature 
up to 20°C (68°F) higher than the normal operating temperature. These 
hot spots were the results of exothermic hydrogenation reaction. 

The plots of the temperature profile in the catalyst bed for each 
run and the temperature profile of the hot spot are presented in 
Appendix C. 

Experimental Data 

The data for liquid samples includes H/C atomic ratio, titanium 
concentration, chloride concentration, and ASTM distillation. The 
analysis for titanium concentration and titanium distribution on the 
catalyst show no titanium deposited on the catalyst. The data for 
catalyst samples will indicate only the coke content. The top section 
glass beads of run 2 and 5 are analyzed for titanium deposition. Coke 
content and titanium concentration of glass beads are shown in Table VII 
and VIII, respectively. 

Table IX, X and XI show the hydrogen to carbon atomic ratio, 
titanium concentration, and chloride concentration in the products of 
each run. Table XII-XVI are the ASTM distillation data of the feedstock 
and the products at 48 hours. 

A Perkin Elmer Elemental Analyzer Model 240B was used to analyze 
the coke on the catalyst. The summation of the weight percents of 
carbon and hydrogen is considered as the weight percent of coke. The 
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TABLE VII 

COKE CONTENT ON THE CATALYST 

Wt% COKE IN SECTION RUN # REACTOR # TOP MIDDLE BOTTOM 

1 1 4.30 3.28 5.30 
1 2 2.87 4.18 5.25 
2 1 5.97 8.23 7.21 
2 2 7.31 6.89 5.34 
3 1 6.30 5.52 5.72 
3 2 4.18 5.65 5.47 
4 1 4.25 3.20 4.97 
4 2 0.78 1.12 1.23 
5 1 3.41 2.59 1. 73 
5 2 2.95 2.46 1.90 
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TABLE VIII 

RESULTS OF THE GLASS BEADS ANALYSIS 

RUN # REACTOR # SECTION MASS OF TITANIUM CONC. 
GLASS BEADS (wt. percent) 

(gram) 

2 1 TOP . 17.3 0.327 

2 1 BOTTOM 20.5 0.05 

2 2 TOP 20.8 0.0 

5 1 TOP 14.2 0.430 

5 1 BOTTOM 16.9 0.07 

5 2 TOP 17.1 0.0 
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TABLE IX 

RESULTS FROM RUNS 1 AND 2 

SAMPLE # HOURS H/C atomic ratio · Ti cone. Cl. cone. 
IN OIL interstage product (ppm) (gm/liter) 

R1-0 0 1.26 0 0 

R1-12 12 1.36 1.55 0 0 

R1-24 24 1.34 1.52 0 0 

R1-36 36 1.35 1.47 0 0 

R1-48 48 1.35 1.45 0 0 

R1-60 60 1.35 1.44 0 0 

R2-0 0 1.26 100* 0.145 

R2-12 12 1.46 1.57 0 0 

R2-24 24 1.40 1.52 0 0 

R2-36 36 1.37 1.50 0 0 

R2-48 48 1.35 1.46 0 0 

R2-60 60 1.35 1.46 0 0 

* - initial concentration 
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TABLE X 

RESULTS FROM RUNS 3 AND 5 

SAMPLE # HOURS H/C atomic ratio Ti cone. Cl. cone. 
IN OIL interstage product (ppm) (gm/liter) 

R-3-0 0 1.26 0 0 

R-3-12 12 1.35 1.41 0 0 

R3-24 24 1.35 1.42 0 0 

R3-36 36 1.34 1.39 0 0 

R3-48 48 1.34 1.38 0 0 

R3-60 60 1.35 1.39 0 0 

R5-0 0 1.26 100* 0.152 

R5-12 12 1.36 1.53 0 0 

R5-24 24 1.31 1.46 0 0 

R5-36 36 1.30 1.40 0 0 

R5-48 48 1.31 1.37 0 0 

R5-60 60 1.31 1.37 0 0 

* - initial concentration 
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TABLE XI 

RESULTS OF RUN 4 

SAMPLE # HOURS H/C atomic ratio Ti cone. Cl. cone. IN OIL interstage product (ppm) (gm/liter) 

R4-0 0 1.26 0 0 
R4-12 12 1.39 1. 79 0 0 
R4-24 24 1.37 1. 91 0 0 
R4-36 36 1.33 1.93 0 0 
R4-48 48 1.34 1.90 0 0 
R4-60 60 1.33 1.90 0 0 
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TABLE XII 

DISTILLATION DATA FOR RUN 1 

Vol% Feedstock Product @ 48 hr. 
c F c F 

IBP 199 390 188 370 

10 203 397 202 396 

20 203 397 202 396 

30 204 399 203 397 

40 205 401 204 399 

50 206 403 205 401 

60 206 403 206 403 

70 206 403 207 405 

80 207 405 208 406 

90 207 405 209 408 

END POINT 208 406 214 417 

Recovery 99 99 

Residue 1 1 

Lost 0 0 
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TABLE XIII 

DISTILLATION DATA FOR RUN 2 

Vol% Feedstock Product @ 48 hr. 
c F c F 

IBP 199 390 190 374 

10 203 397 197 387 

20 203 397 199 390 

30 204 399 199 390 

40 205 401 200 392 

50 206 403 201 394 

60 206 403 202 396 

70 206 403 203 397 

80 207 405 204 399 

90 207 405 206 403 

END POINT 208 406 211 412 

Recovery 99 98 

Residue 1 2 

Lost 0 0 
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TABLE XIV 

DISTILLATION DATA FOR RUN 3 

Vol% Feedstock Product @ 48 hr. 
c F c F 

IBP 200 392 202 396 
10 202 396 203 397 
20 202 396 204 399 
30 202 396 205 401 
40 203 397 206 403 
50 203 397 207 405 
60 204 399 207 405 
70 205 401 208 406 
80 206 403 209 408 
90 211 412 223 433 
END POINT 213 415 237 459 
Recovery 95 96 

Residue 4 2 

Lost 1 2 
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TABLE XV 

DISTILLATION DATA FOR RUN 4 

Vol% Feedstock Product @ 48 hr. 
c F c F 

IBP 199 390 174 345 

10 203 397 193 379 

20 203 397 201 394 

30 204 399 203 397 

40 205 401 204 399 

50 206 403 204 399 

60 206 403 204 399 

70 206 403 205 401 

80 207 405 206 403 

90 207 405 208 406 

END POINT 208 406 210 410 

Recovery 99 93 

Residue 1 1 

Lost 0 6 
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TABLE XVI 

DISTILLATION DATA FOR RUN 5 

Vol% Feedstock Product @ 48 hr. c F c F 

IBP 200 392 201 394 
10 202 396 202 396 
20 202 396 203 397 
30 202 396 204 399 
40 203 397 204 399 
50 203 397 205 401 
60 204 399 206 403 
70 205 401 207 405 
80 206 403 208 406 
90 211 412 218 424 
END POINT 213 415 224 435 
Recovery 95 93 
Residue 4 5 
Lost 1 2 



results of the analysis show the interference of moisture adsorbed on 

the catalysts which increase the hydrogen content of the catalyst 

sample. In this technique the combusted catalysts still contain some 

coke inside their pores. 

Direct combustion of catalyst in an oven and measurement of the 

weight loss give a more accurate coke percentage results. Table XVII 

shows the results of the analysis in carbon weight percent of the 

catalyst. 
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The liquid samples were analyzed for the concentrations of 

Tetralin, decalin, and phenanthrene by Gas Chromatography. The results 

are shown in Tables XVIII and XIX. The calculation techniques of the 

concentration of each component is not well developed yet in our 

laboratory. The results of the calculation showed that the summation of 

the mass fractions exceed unity. 

A study of titanocene dichloride concentration in the feedstocks 

was conducted to determine the decomposition of titanocene dichloride in 

Tetralin. A homogeneous reaction between titanocene dichloride and 

Tetralin was observed. Four Tetralin samples were doctored with 100 ppm 

of titanium as titanocene dichloride at different times. The solid 

particles that were formed fr~m the reaction were separated, washed with 

acetone, and dried at 82°C (180°F) for 2 hours. 

The liquid samples were analyzed for titanium concentration using 

X-ray Spectrometer. The dried solid particles were analyzed for carbon 

and hydrogen using elemental analyzer and for titanium using X-ray 

Spectrometer. The results are shown in Table XX. The homogeneous 

reaction between titanocene dichloride and Tetralin will be dicussed in 

Chapter V. 
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TABLE XVII 

CARBON CONTENT ON THE CATALYST 

WT% CARBON IN SECTION RUN # REACTOR # TOP MIDDLE BOTTOM 

1 1 1.40 1.20 1.80 
1 2 1.40 1.67 1.72 

2 1 1.47 1.07 0.68 

2 2 0.85 0.75 0.70 

3 1 1. 70 1.52 1.13 
3 2 1.45 1.21 1.04 
4 1 1.35 1.07 1.38 

4 2 

5 1 1.43 1.30 1.47 

5 2 1.20 1.08 1.11 

* - indicates that there is no data available 



RUN # 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

TIME 

TABLE XVII I 

CONVERSION OF TETRALIN AND PHENANTHRENE 
OF INTERSTAGE PRODUCTS 

% TETRALIN % PHENANTHRENE 

44 

(HOUR) WEIGHT CONVERSION WEIGHT CONVERSION 

0 100 0 

12 80 20 

24 84 16 

36 89 11 

48 92 8 

60 94 6 

0 100 0 

12 84 16 

24 91 9 

36 96 4 

48 99 1 

60 99 1 

0 95 0 5 0 

12 88 7 0.6 88 

24 89 6 1.3 74 

36 90 5 1.0 80 

48 90 5 1.8 64 

60 92 3 2.1 58 
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TABLE XVIII (Continued) 

RUN # TIME % TETRALIN % PHENANTHRENE (HOUR) WEIGHT CONVERSION WEIGHT CONVERSION 

4 0 100 0 

4 12 78 22 

4 24 82 18 

4 36 94 6 

4 48 96 4 

4 60 97 3 

5 0 95 0 5 0 

5 12 88 7 0.8 84 

5 24 86 9 1.1 78 

5 36 85 11 1.2 76 

5 48 84 12 1.6 68 

5 60 86 9 1.9 62 



RUN # 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

TIME 

TABLE XIX 

CONVERSION OF TETRALIN AND PHENANTHRENE 
OF PRODUCT OIL 

% TETRALIN % PHENANTHRENE 
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(HOUR) WEIGHT CONVERSION WEIGHT CONVERSION 

0 100 0 

12 63 37 

24 77 23 

36 76 24 

48 81 19 

60 84 16 

0 100 0 

12 67 33 

24 68 32 

36 73 27 

48 91 9 

60 86 14 

0 95 0 5 0 

12 79 17 0.5 90 

24 80 16 0 100 

36 79 17 0 100 

48 81 15 0 100 

60 76 20 0 100 
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TABLE XIX (Continued) 

RUN # TIME % TETRALIN % PHENANTHRENE (HOUR) WEIGHT CONVERSION WEIGHT CONVERSION 

4 0 100 0 

4 12 21 79 

4 24 10 90 

4 36 18 82 

4 48 11 89 

4 60 11 89 

5 0 95 0 5 0 
5 12 67 30 0 100 

5 24 82 14 0 100 
5 36 81 15 0 100 

5 48 90 5 0 100 

5 60 90 5 0 100 



TABLE XX 

RESULTS OF THE HOMOGENEOUS STUDY 

Titanium Concentration 

TIME 
(hour) 

18 

45 

69 

114 

2600 

Composition of the Solid Particles 

Element 

Hydrogen 

Carbon 

Titanium· 

Ti CONC 
(ppm) 

60 

40 

30 

20 

5 

% by weight 

4.65 

29.90 

65.45 

The expected formula of the solid particles is Ti(CH2l 2• 

' 48 
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In Hydrogenation processes, the unsaturated hydrocarbon compounds 
can be hydrogenated resulting in an increase in hydrogen content of the 
oil. The phenomenon can be observed by an increase in hydrogen to 
carbon atomic ratio of the hydrogenated product. 

Figures 2, 3, 4, 5, 6 and 7 show the plots of hydrogen to carbon 
atomic ratio as a function of both time and oil to catalyst mass ratio. 

Figures 8, 9, 10, 11, 12 and 13 show the weight percent of coke on 
the catalyst as a function of reactor zone. 

Feedstock and product oils at 48 hours of each run were 
fractionated following ASTM D-1160 procedure. The distillations were 
done at 1.34 kPa (10 mmHg) and the temperatures were converted to the 
temperatures required at 101.3 kPa (760 mmHg). 

Figures 14, 15 and 16 show the distillation curves of runs 1 and 2, 
runs 3 and 5, and runs 1 and 4, respectively. Some of the hydrogenated 
products were observed to have lower boiling point ranges than the 
feedstocks, however, some high boiling point products raised the 
distillation curve up to higher temperature ranges. 

Each point in the figures is the average of at least 3 analyses. 
The bar represents the ranges of the data points. The bar is not drawn 
when the data are in the point. 
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CHAPTER V 

DISCUSSION 

Homogeneous Reaction 

Our studies showed that a homogeneous reaction occurred between 
Tetralin and titanocene dichloride. This reaction resulted in 

decomposition of titanocene dichloride and formation of an insoluble 
titanium compound which precipitates as small solid particles. The 
analysis of the particles showed that they mainly consisted of titanium, 
carbon and hydrogen. This homogeneous reaction also resulted in a 
decrease in the concentration of dissolved titanium in the feedstock. 
The analysis of the top section -of glass beads showed that titanium was 
completely removed by the glass beads. There was no titanium found in 
the catalyst nor in the product oils. Therefore, the changes in 

hydrogen to carbon atom ratio in oils and the coke formation on 
catalyst, when titanocene dichloride was added to the feedstock, were 
not the results of interaction of titanium with catalyst • . 

Chloride ion was another product of this homogeneous reaction which 
remained in the feedstock. The chloride concentration in the feedstock 
was constant throughout the experimental period. A small amount of 
chloride was found at the top section of the glass beads. The analyses 
of catalysts showed that only a trace amount of chloride was deposited 
on the catalyst surface. No chloride was found in the oil products. 
Chloride in the feedstock is believed to have reacted with hydrogen gas 
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and formed hydrogen chloride which has emitted to the atmosphere. via the 

outlet gas stream. 

Our data showed that the products collected during the first 36 

hours of the experiments were different when titanocene dichloride was 

added to the feedstocks. However, these differences could not have 

resulted from the presence of chloride, because the chloride 

concentration remained constant throughout the runs. 

This indicated that the differences occurred due to another factor 

besides chloride ions or titanium. Since titanocene dichloride 

undergoes a homogeneous reaction in the feed tank, the feedstock 

initially contained more titanocene dichloride than at the end of the 

run. The homogeneous reaction of titanocene dichloride and Tetralin was 

expected to generate some active organic molecules or free radicals in 

addition to the insoluble titanium compound and the chloride ion. The 

concentration of this free radi~al gradually decreased due to a decrease 

in the soluble titanium concentration in the feed. The initial 

difference in the hydrogen to carbon atom ratio and coke formation 

between runs with and without titanocene dichloride could be explained 

by the presence of this free radical. 

Run 1 and Run 2 

Run 1 is a reference run. The data on the amount of coke formed on 
the catalyst, the hydrogenation activity, and the distillation curve are 

used as a basis of comparison with the other runs. 

In run 2, 100 ppm of titanium as titanocene dichloride was added to 

Tetralin. The feedstock was hydrotreated at the same operating 

conditions as in run 1. The analyses show that the hydrogen to carbon 
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atom ratio of the products increase when titanocene dichloride is added 
to Tetralin. This is confirmed by the shift of distillation curve to 
the lower boiling point range when the products of the two runs are 
compared. 

When the distillation curves of the products and the feedstock are 
compared, it is shown that the products of both runs consist both of 
lighter components and heavier components. The Gas Chromatograph 
analyses show that the lighter components are cis- and trans- decalin 
(b.p. 193°C, and 185°C respectively), the products of Tetralin 
hydrogenation reaction, and the heavier component is naphthalene (b.p. 
218°C), the product of Tetralin dehydrogenation reaction. As shown by 
the Gas Chromatograph analysis, the conversion of Tetralin is low. This 
conversion is expected to be about 20 percent. Figure 17 shows the 
results from Gas Chromatograph analysis. 

More coke is formed on the_catalyst when titanocene dichloride is 
present in the feedstock. Coke is believed to form by polymerization 
and dehydrogenation or hydrogen elimination reactions of the absorbed 
hydrocarbon molecules on the catalyst. The eliminated hydrogen atoms 
from coke formation reactions are probably more active and react with 
Tetralin easier than the hydrogen gas. It is possible that the increase 
in hydrogen to carbon atom ratio of the products of run 2 is not the 
result of hydrogenation reaction only, but it is also the product of 
coke formation reactions. 

Run 1 and Run 4 

The effect of temperature on hydrogenation of Tetralin is clearly 
shown by run 4. The hydrogen to carbon atom ratio of the products of 
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run 4 are much higher than the products of run 1 and that the amount of 
coke formed on the catalyst is much less. The increase in hydrogen to 
carbon atom ratio is expected to be the result of higher hydrogenation 
reaction rather than the hydrogen elimination reaction. The adsorbed 
hydrocarbon molecules on the catalyst react with hydrogen and form the 
hydrogenated products. Gas Chromatograph analysis show that the main 
products are again cis- and trans-dicalin (Figure 18). The change in 
hydrogen to carbon atom ratio is the result of higher conversion which 
is about 80 percent. 

The high temperature zone in reactor 2 of run 4 is expected to be 
the result of higher hydrogenation reaction caused by localized liquid 
holdup. A nonuniform packing of the catalyst creates a spacial 
restriction in the reactor which causes a localized increase in the 
liquid holdup. 

The reaction rate is proportional to the liquid holdup (13). An 
increase in the localized liquid holdup causes an increase in the 
reaction rate in reactor 2, which results in the temperature zone due to 
an exothermic hydrogenation reaction. 

The coke formation in reactor 2 of run 4 is less than the one in 
run 1. Turan et al. (30) suggested that two types of coke were present 
on the catalyst, a reactive coke and an unreactive coke. In run 4, the 
coke that is formed on the catalyst surface may be the reactive coke 
which is converted to reaction products rather than the unreactive coke. 

Run 3 and Run 5 

In runs 3 and 5, the feedstock is a 5 wt% mixture phenanthrene in 
Tetralin. The amount of coke formed on the catalyst in run 3 is higher 
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than that of run 1. Phenanthrene has a higher tendency to form coke 
than Tetralin because of its larger molecular size and higher 
aromaticity. 
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In run 5, when titanocene dichloride is added to the feedstock, the 
amount of coke decreases. The interference of titanocene dichloride 
with coke formation mechanism is not yet known. The effect of 
titanocene dichloride on hydrogenation activity is shown by the change 
in the hydrogen to carbon atom ratio. The hydrogen to carbon atom ratio 
of the products increases when titanocene dichloride is added to the 
feedstock. Titanocene dichloride also affects the distillation 
curves. The distillation curve shifts down to the lower boiling point 
ranges when titanocene dichloride is present. 

Gas Chromatographic analyses showed that most of phenanthrene was 
hydrogenated. The hydrogenated products of phenanthrene were not 
clearly detected by the analyzer. Figure 19 shows the Gas 
Chromstographic analyses of runs 3 and 5. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The following conclusions can be drawn from the experimental 
results: 

1. In the hydrogenation of Tetralin over Ni-Mo/alumina catalyst 
the addition of titanocene dichloride to Tetralin results in an increase 
in hydrogen to carbon atom ratio. 

2. The increase in hydrogen to carbon atom ratio at the low 
temperature of 350°C (662°F) is believed to be the results of coke 
formation reaction rather than hydrogenation reaction. 

3. Titanocene dichloride affects the coke formation on the 
catalyst. The effects depend on the type of hydrocarbon feedstocks. 

4. A homogeneous reaction between titanocene dichloride and 
Tetralin results in the decomposition of titanocene dichloride and 
formation of an insoluble titanium compound. 

5. The differences in the hydrogenation activity and the coke 
formation are expected to be the results of the organic part or the free 
radicals, generated form homogeneous reaction of titanocene dichloride. 

Recommendations 

1. The same set of studies should be done using other types of 
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organometallic compounds such as ferrocene or nickelocene to study the 
effect of the other metal compounds. 

2. Hydrochloric acid should be used instead of organometallic 
compounds to stuqy the effects of chloride ions. 

3. The same set of study should be conducted at a higher operating 
temperature to study the effect of temperature on the hydrogenation 
reaction. 

4. A homogenous reaction between titanocene dichloride and 
Tetralin should be studied. The product oil and solid particles from 
the homogeneous reaction should be analyzed to identify the compounds 
and structures. 
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Reactor System 

The reactor system consists of two trickle bed reactors ~onnected 

in series and equipped with temperature programmer/controllers and 

heating system. 

Reactor 1 

Reactor 1 consists of a 43.2 em (17 inch} long, 1.27 em (0.5 inch} 

O.D., and 0.089 em (0.035 inch} thick, 316 stainless steel tube, fitted 

with a 1/2 inch Swagelok cross at the top and union at the bottom. The 

effective reactor length is 40.6 em (16 inch} as shown in Figure 20. A 

1/2-inch Swagelok cross is connected to the top of the reactor. Two 

1/2-inch to 1/4-inch reducers are connected to both sides of the 

cross. A 1/8-inch O.D., 316 stainless steel tube, with one end welded 

shut is used as a thermowell. The thermowell is secured in the middle 

of the reactor by means of a 1/4-inch to 1/8-inch reducing union which 

is drilled for inserting the thermowell. The 1/4-inch to 1/8-inch 

reducing union is connected to 1/2-inch cross by means of a 1/2-inch to 

1/4-inch reducing union. Two stainless steel screens of 50 mesh are 

used to support the catalyst bed. The bottom of the reactor is fitted 

with a 1/2-inch to 1/4-inch reducer to enable it to be connected to the 

sampling system. 

Reactor 2 

Reactor 2 is the same as reactor 1 except it is a 45.7 em (18 inch} 

long. The effective reactor length is 43.2 em (17 inch} as shown in 

Figure 21. A 1/2-inch Swagelok tee is connected to the top of this 
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reactor. The thermowell is secured in the middle of reactor 2 by the 

same system used in reactor 1 except the open end of the thermowell is 

put through the side of the tee. The top of reactor 2 is connected to 

an interstage sampling system through which oil and gas from reactor 1 

flow. The bottom of the reactor is fitted with a 1/2-inch to 1/4-inch 

reducer and is connected to the sample bomb 1. 

Reactor Heating System 

Two monolithic aluminum blocks, with grooves of reactor diameter 

running across their entire length are used as the heating blocks. The 

blocks are secured and bolted together around the reactor tubes. The 

heating blocks for reactor 1 are 35.6 em (14 inch) long and the heating 

blocks for reactor 2 are 40.6 em (16 inch) long. The heating blocks are 

made to be fitted with 10.2 em (4-inch) heating bands which are placed 

around the assembled block. Three heating bands, 15.24 em (5 inch} 

long, rated at 300 watts are secured around each reactor. The power is 

supplied to the heating band from two temperature programmer/controllers 

which allow separate temperature control for each reactor. Two platinum 

resistance thermocouples are placed in the holes drilled in the aluminum 

blocks. The output signal of these thermocouples are fed into the 

temperature programmer/controllers for precise temperature control. 

Felt material in the form of cylinders, split in the middle, are 

used for insulating the reactors. In addition to the felt insulation, 

fiberglass is also wrapped around the reactors. 

Oil Feed System 

The oil feed system consists of a tank, Ruska positive displacement 
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pump, and safety line. The feed tank is a stainless steel tank, 20.32 

em (8 inch) in diameter and 35.56 em (14 inch) high. The tank is 

designed to handle highly viscous liquids. The liquid can be stirred 

and mixed inside the tank before transferred to the Ruska pump. A set 

of baffles is fitted inside the tank to provide better mixing. Two 

heating bands wrapped around the tank are used to warm the feed oil to 

any desired temperature. The feed tank can be sealed and pressurized up 

to 208 kPa (30 psig). A thermocouple fitted in a thermowell can be used 

to monitor the temperature in the tank. 

/ 

Liquid is fed to the reactor with the Ruska positive displacement 

pump which can be operated at pressures as high as 68 MPa {10000 

psig). The pump can be heated in case of highly viscous liquids for 

easier flow. Feed lines are wrapped with flexible heating tapes. In 

this study, most of the heaters in the oil feed are not used. Output 

pressure is measured by pressure gauge 41. The liquid flow rate is 

preset at the desired value before the pump is started. 

In order to protect the oil feed system from excessive pressure, a 

switch set at 17 MPa (2500 psig) is used to shut off the Ruska pump 

power supply when the pressure exceeds the set limit. In case the 

pressure switch fails to operate, the system is still protected by the 

safety line, which is equipped with two rupture disks, rated at 18.4 MPa 

(2700 psig) and 21.8 MPa (3200 psig), respectively, and a surge tank. 

Gas Feed System 

Hydrogen gas from bottles flows directly through a manifold, which 

allows the changing of hydrogen cylinders without interrupting the 

run. The hydrogen gas is metered through a high pressure flow meter 
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which can be operated up to 34 MPa {5000 psig). A 11 Mity-Mite 11 pressure 
regulator is used to regulate upstream hydrogen pressure. The regulator 
is preset at the desired operating pressure, and a Heise pressure gauge 
is used to measure the pressure. 

An excessive gas flow-check valve is installed close to the 

manifold to shut off the hydrogen gas supply in case of a line 

ruptures. A guarter-turn valve is also installed for rapid manual cut 
off of the hydrogen supply to the system. 

Two check valves are installed at the entrance to the reactor to 
prevent oil to flow in reverse direction. 

Pressure and Flow Control 

The upstream pressure of the system is monitored by a 0-20.8 MPa 
{0-3000 psig} Heise pressure gauge. The downstream pressures are 

indicated by pressure gauges 43 and 44, which are connected to sample 
bomb 1 and sample bomb 2, respectively. The upstream pressure is 

considered as the reactor or system pressure. The system pressure is 
controlled by means of a 11 Mity-Mite 11 pressure regulator. Upstream 
pressure of the regulator is maintained by the manifold pressure 
regulator. 

The gas flow rate is maintained byomeans of micrometer valve 10. 
The gas flow is monitored downstream from the micrometer valve by means 
of a 0-500 cm3 bubble flow meter. A bypass line is connected between 
the bubble flow meter and the low pressure rotameter to avoid continuous 
gas flow through the bubble flow meter. 



The exit gas is scrubbed in a 60 vol% ethanolamine solution. 

Liquid traps, containing alumina spheres, are used to prevent liquid 
particles from flowing into the gas measuring devices. 

Temperature Measurement 
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Temperatures are measured inside the catalyst beds and outside the 
reactors walls. Three iron-constantan thermocouples (J-type), of 1/8-
inch diameter, are used for each reactor. The thermocouples are placed 
over a 7.62 em (3 inch) intervals to measure the outside temperature at 
the reactor wall. The temperatures inside the catalyst bed for each 
reactor are measured with three thermocouples, 0.0254 mm (0.001 inch) 
diameter, which are placed at 7.62 em (3 inch) intervals along the 

catalyst bed inside the thermowell. The output from the thermocouples 
is fed to an Omega digital indicator through a multipoint temperature 
selector switch. 

Sampling System 

There are two sampling systems used in the experiment. These are 
the product sampling system and the interstage sampling system. 

Product Sampling System 

The system consists of four sample bombs. Two sample bombs are 
used for the liquid sampling, whereas the other two are used to avoid 
liquid entrainment into the gas outlet line. 

First sample bomb, a 180 cm3 and 34 MPa (5000 psig) maximum 

pressure bomb, is connected to the bottom end of the reactor with a 1/4-
inch stainless steel tube. The top of the sample bomb is connected to 
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the gas outlet line. The bottom of the first sample bomb is connected 

to the second sample bomb with a high pressure valve. This valve is 
kept closed during the sampling process so that the system is not 

interrupted. 

Liquid and gasous products flow into the second sample bomb of 600 
cm3 capacity where they are separated. The gasous from the second 
sample bomb flow into the third sample bomb where the condensed vapors 
are collected and separated. The third sample bomb is connected to the 
second sample bomb through a bottom line and valve 7 to return the 
collected liquids into the second sample bomb. 

The gas from the third sample bomb passes into a fourth sample 
bomb, where any entrained liquid is removed. This sample bomb can be 
kept at low temperatures by placing it in an ice bath. 

The gas from the fourth sample bomb flows through a metering valve, 
a gas scrubber, and a low pressure rotameter before exhausting to the 
atmosphere. 

Interstage Sampling System 

The interstage sampling system is installed between reactor 1 and 
reactor 2. It is designed to collect 3-5 cm3 of liquid sample without 
disturbing the normal operation of the system. The system consists of a 
three way valve, a pressure gauge, and a high pressure liquid-sample 
holder (Figure 22). 

Gas and liquid products from reactor 1 normally flow through the 
three way valve into the top of reactor 2. During sampling, the valve 
is closed and the liquid product is allowed to accumulate in the bottom 
part of reactor 1 for approximately 5-10 minutes, depending on the 
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liquid flow rate. The flow is then diverted into the liquid-sample 
holder where liquid sample is collected in a small sample vial. The 

liquid-sample holder is depressurized after the flow is diverted back to 
normal path. 

The three way valve is maintained at the high temperature of the 
system by a heating tape and is insulated with fiberglass insulations. 

Gas Detector 

A combustible gas detector, MSA Model 501, is installed in the 
laboratory, with two detector heads located over the hydrogen cylinders 
and the reactor system. A red light and audible alarm will come on once 
the hydrogen concentration in the room reaches 40% of the lower 

explosive limit. 

A portable hydrogen sulfide detector is also used during catalyst 
presulfiding. The warning alarm will sound when the hydrogen sulfide 
concentration exceeds 17-20 ppm. It also provides a digital output of 
the instantaneous, average, and maximum hydrogen sulfide concentrations 
during a specified time interval. 

Inert Gas Purging Facility 

The liquid product samples are p'ruged with nitrogen gas in sample 
bombs 2 and 3 to remove gases that may be dissolved in the liquid 
samples. Nitrogen gas is also used to pressurize the sample bomb in 
order to remove liquid sample. Nitrogen is directly supplied to the 
bottom of sample bomb 2 from the supply cylinder and its pressure is set 
by the pressure regulator on the cylinder. The nitrogen gas flows into 
the sample bomb through a flow-check valve and is vented to the 
atmosphere through valve 8. 



APPENDIX B 

EXPERIMENTAL PROCEDURES 



The experimental procedure consists of the following steps: 
catalyst preparation and loading, catalyst calcination, catalyst 
presulfiding, start-up, normal operation, sampling and shut down. 
Detailed description of each step follows. 

Catalyst Preparation and Loading 
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The catalyst used in this study is a commercial 1/16-inch extrudate 
/--~-------

/ Shell-324 Ni-Mo/alumina. The catalyst is precalcined at \.J.l._9_~j;_(230°F) ljO.rt(UJ vvL 
aCU.J5 • • • for 2 hou'rs 1 n an oven and kept 1 n a des1 ccator before 1 oadi ng into the 

reactor. The catalyst is packed only in the middle section of the 
reactor to avoid the end effects. Both ends of the reactor are packed 
with glass beads. The upper layer of the glass beads acts as a 
preheater and provides uniform liquid distribution. The bottom layer of 
the glass beads i6 used as a catalyst support. The reactor is packed 
according to the following steps: 

Reactor 1 

1. A 50 mesh size screen is wedged at the bottom of the reactor. 
2. The thermowell is held centrally inside the reactor. 
3. The glass beads are poured into the reactor while gently tapping 

the reactor for uniform packing around the thermowell. The 
glass beads are packed to a height of 15.24 em (6 inch) in the 
bottom section. 

4. While gently tapping the reactor, the catalysts are poured into 
the reactor. In all runs, 10 grams of catalyst is packed to a 
height of 15.24 em {6 inch). 



92 

5. The glass beads are poured into the reactor while gently tapping 

the reactor for uniform packing. The height of glass beads is 

12.7 em (5 inch}. 

6. A 50 mesh size screen with a 1/8-inch diameter hole in the 

center is slid down the thermowell, until it touches the top of 

the glass beads section. 

7. The packed reactor is then fitted with a 1/2-inch Swagelok cross 

fitting, as shown in Figure 20. 1he thermowell is secured by a 

1/8-inch Swagelok fitting. The bottom of the reactor is fitted 

with a 1/2-inch to 1/4-inch reducer so that it can be connected 

to the three way interstage sampling valve. 

8. The reactor is placed in the middle of the heating blocks. The 

heating blocks are tightened to the reactor and three 12.7 em 

(5-inch} heating bands are wrapped around it. The heating 

blocks are then insulated. 

9. Two side legs of the Swagelok cross on the top of the reactor 

are connected to the hydrogen gas and the oil feed lines. The 

bottom of the reactor is connected to the three way valve used 

for interstage sampling system. 

Reactor 2 

1. A 50 mesh size screen is wedged at the bottom of the reactor. 

2. A thermowell is placed and held centrally inside the reactor. 

3. Glass beads are poured into the reactor while gently tapping the 

reactor for uniform packing around the thermowell. The glass 

beads are packed to a height of 15.24 em (6 inch} in the bottom 

section. 
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4. While gently tapping the reactor, the catalysts are poured into 

the reactor. In all runs, 10 grams of catalyst is packed to a 

height of 15.24 em (6 inch). 

5. The glass beads are poured into the reactor while gently tapping 

the reactor for uniform packing. The height of glass beads in 

the top section is also 15.24 em (6 inch). 

6. A 50 mesh size screen with a 1/8-inch diameter hole in the 

center is slid down the thermowell until it touches the top of 

the glass beads. 

7. The thermowell is bent 90 degrees and the top of the packed 

reactor is fitted with a 1/2-inch union tee, as shown in Figure 

21. The thermowell is secured by a 1/8-inch Swagelok fitting. 

The bottom of the reactor is fitted with a 1/2-inch to 1/4-inch 

reducer so that it can be connected to the first sample bomb. 

8. The reactor is placed in the middle of the heating blocks. The 

heating blocks are tightened to the reactor. Three 12.7 em (5-

inch) heating bands are wrapped around the heating blocks. The 

heating blocks are then insulated. 

9. The top of the Swagelok tee is connected to the three way 

valve. The bottom of the reactor is connected to a 1/4-inch 

stainless steel tube which is connected to the first sample 

bomb. 

Each fitting in the reactor system is checked for leaks by 

gradually pressurizing the system with nitrogen gas. The pressure test 

is done at 11.09 MPa (1600 psig) which is 693.33 kPa (100 psig) higher 

than the reactor operating pressure. A pressure drop of 138.67 kPa (20 

psig) in one hour is the maximum acceptable leak. 
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Finally, the electrical wires of the heating bands are connected to 

the corresponding temperature programmer/controllers. 

Catalyst Calcination 

The catalyst has to be calcined to remove the remaining moisture 

and adsorbed gases on the surface. Calcination procedure is described 

as below: 

1. Close valves 2, 3, 13, 14, 24, 32, 35, 51. 

Open valves 1, 11, 12, 15, 31, 33, 34, 36, 50. 

2. Turn the temperature programmer/controllers on and control the 

heating rate at 120-150°C (248-302°F) per hour. 

3. When the temperatures inside the reactors reach 200°C (392°F), 

start nitrogen flow through the reactors to carry moisture and 

gases out of the system. Nitrogen flow rate is set at 400 cm3 
H l-J 20 C,'{ 

per minute at a pressure of 1730-2080 kPa (250-300 psig). 
~-~"''~ :rs 2°\:' 

4. When the reactor temperatures reach 400°C r~), set the 

temperature programmer/controllers to control the temperature 

i sotherma 11 y for 1 hour. ~ -'I 
( t~,'6T'\-- I 5. Then set the temperature programmer/controllers at 250°C and 

wait until the temperatures reach the set points. 

6. Nitrogen may be cut off now, since the calcination is completed 

and the catalyst can be sulfided. 

Catalyst Sulfiding 

In this study, a mixture of 5 vol% H2s in H2 was used for 

sulfiding. Catalyst sulfiding steps are described below: 

1. Turn on the H2S detector. 
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2. To avoid and protect the Heise gauge from H2s corrosion, close 

valve 1. 

3. Open valve 2, and start the H2s-H2 flow through the reactor at a 

pressure of 555 kPa (80 psig) and a flow rate of 400 cm3 per 

minute. 

4. Maintain the reactor temperatures around 250°C (482°F) during 

sulfiding. After 60 minutes of sulfiding, cut off H2s-H2 gas by 

closing the main valve on the H2s-H2 bottle and wait until the 

gas flows out of the system. This is indicated by the pressure 

gauge on the H2s-H2 bottle and the pressure gauge 43 which will 

read zero. 

5. Close valve 2. 

6. Flush the system with nitrogen gas for 20 minutes by opening 

valve 1 and the main valve of nitrogen bottle. The nitrogen 

flow rate is set at 400 cm3 per minute at a pressure of 1730-

2080 kPa (250-300 psig). 

Start up Procedure 

When the catalyst calcination and sulfiding are completed, the 

temperature programmer/controllers are set at ~bout 10°C (18°F) lower 
than the desired operating temperature. At the same time, the feedstock 
is charged into the feed tank. Ruska pump feed rate is set at the 
desired 1 i quid flow rate of 30 cm3 ,'per hour. Then the 1 i sted steps are 
followed: 

1. Charge the feedstock into Ruska pump by opening valve 23, and 

traverse the pump to suck the feedstock into the pump. 



2. Close valve 23 and open valve 22. Make sure that valve 24 is 

closed. 

3. Traverse the pump manually until the pressure of the pump is 

10.4 MPa (1500 psig). 

4. Close valve 11. Make sure valve 3 is closed. 

5. Pressurize the reactor with H2 to 10.4 MPa (1500 psig). 

6. Open valves 4 and 9. Make sure valves 5, 7, 8, and 13 are 

closed. 
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7. Pressurize the sample bombs with nitrogen to 10.06 MPa (1450 

psig) by opening valve 6. After the pressure reaches 10.06 MPa 

(1450 psig), close valves 4 and 6. 

8. Open valves 1, 3, 9, and 13. Adjust the hydrogen flow rate at 

500 cm3 per minute by means of the needle valve 10 and bubble 

flow meter. 

9. Start Ruska pump and open valve 24. 

10. Adjust the temperature programmer/controllers at the desired 

operating temperature. 

Normal Operation 

The system is considered to be at normal operation when temperature 

and pressure are stable. A maximum variation of 138.67 kPa (20 psig) in 

the pressure is tolerable. A temperature variation of 3°C (5.4d) along 

the catalyst bed is the maximum for normal operation bef~oil hits the 

catalyst. 

After the start-up, the temperature profile inside the reactor and 

the temperature of the heating blocks, pressure gauge reading, pump 

scale reading, inlet gas flow rate, off gas flow rate, and hydrogen gas 



bottle pressure are recorded at every hour. The temperature profile 
,.J'.? 

inside the catalyst beds e!~ measured at 7.62 em (3 inch) intervals. 

.g] 

Under normal operation, the reactor upstream pressure indicated by 

the Heise pressure gauge should be equal to the downstream pressure 

indicated by pressure gauge 43. If the reactor is clogged, the 

downstream pressure will gradually drop down. Depressurization of 

sample bombs should generate a large pressure difference between 

upstream and downstream of the reactor which could open the clogging. 
/'"" n," The system is operated manually so the positi~)of the valves ~e'7 

very important and must be checked right after start-up and after every 

sampling and refilling of the feedstock. 

A summary of the valve throttle position during normal operation is 

given in Table XXI. 

Sampling Procedure 

Samples are taken every 12 hours from the interstage sampling 

system at the bottom of reactor 1 and accumulated sample in the sample 

bomb. To minimize the possible operational disturbances due to 

sampling, the steps below are followed: 

1. Close valves 3, 13 and 50. 

2. Very slowly open valve 8, allowing the pressure on sample bomb 2 

gauge (gauge 44) to drop to the atmospheric pressure. 

3. Connect the interstage sampling system to valve 51. 

4. After 5 minutes, there will be an approximately 2-3 cm3 of 

liquid sample accumulated at the bottom of reactor 1. Very 

slowly open valve 51. The interstage sampling system can be 

pressurized with nitrogen gas to any desired pressure. Open 

.I 



Position 

Open 

Closed 

TABLE XXI 

VALVE THROTTLE POSITION SUMMARY 
DURING NORMAL OPERATION 

Valve Number 
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1, 3, 9, 10, 13, 15, 21, 22, 24, 
31, 33, 34, 36, 50. 

2, 4, 5, 6, 7, 8, 11, 14*, 20, 
23, 32, 35, 51. 

* Opened when measuring the hydrogen gas flow rate. 



valve 51 until the pressure gauge at the interstage sampling 

sytem indicates a pressure rise which means hydrogen gas is 

flowing into the sampling system. Close valve 51 and 

depressurize the sampling system. 

5. Take the sample out and label. 

6. Open valve 50. 
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7. Open valve 11 (this allows the hydrogen to flow out of sample 

bomb 1 while valve 12 is already adjusted at a set flow rate). 

8. Make sure the pressure in sample bomb 1 is at the operating 

pressure. 

9. Adjust the pressure of nitrogen purge cylinder to 1040 kPa (150 

psig). Open valve 6 and then valve 4. This allows the flow of 

nitrogen into sample bombs 2, 3 and 4. 

10. Purge for 5 minutes. 

11. Close valve 8. The pressure in sample bombs 2, 3 and 4 will 

rise to 1040 kPa (150 psig). Close valve 6. 

12. Place the sampling jar in the sampling port and gently open 

valve 5 to allow the liquid sample to flow out. 

13. Open valve 7 and let the liquid sample from sample bomb 3 to 

flow out (if there is any sample). 

14. Close valves 5 and 7. Make sure valve 8 is closed. 

15. Pressurize the sample bombs to 9.71 MPa (1400 psig). 

16. Close valves 4 and 6, and check that valves 5 and 7 are closed. 
17. Open valves 3 and 13. 

18. Close valve 11. 

19. The system is back to normal operation. Check and make sure 

that each valve is at its correct throttle position. 
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20. Label the sample and keep for analyses. 

Shutdown Procedure 

1. Turn off the feed pump switch. 

2. Close valve 24. 

3. Turn off the temperature programmer/controllers. 

4. Depressurize the pump and drain left over liquid from the pump 

by using valve 20. 

5. When the temperatures inside the catalyst beds drop down to 

250°C (482°F), cut the hydrogen flow. 

6. Depressurize the reactor to 1730 kPa (250 psig) and start 

nitrogen flow to purge the reactor and help it cool down faster. 

7. When the reactor is at room temperature, the sampling procedure 

is followed to collect the last sample. 

8. The reactor system is depressurized and the insulators are 

removed. 

9. The reactors are pulled out from the heating blocks after 

disconnecting from oil and gas feed lines, three way valve, and 

sample bomb 1. 

10. Each reactor is cut with a saw into five parts and the 

catalyst is separated into top, middle, and bottom sections and 

removed from the reactor pieces. 

11. The catalyst samples are labeled and kept for analysis. 



APPENDIX C 

TEMPERATURE PROFILE OF EACH RUN 
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Figure 23. Temperature Profile in Catalyst Bed for Run 1 
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Figure 24. Temperature Profile in Catalyst Bed for Run 2 
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Figure 25. Temperature Profile in Catalyst Bed for Run 3 
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Figure 26. Temperature Profile in Catalyst Bed for Run 4 
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Figure 27. Temperature Profile in Catalyst Bed for Run 5 
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