
A SYSTEMATIC APPROACH TO INSTALLING

A COMPUTER PRODUCT

By

SUE-FONG CHRISTINE SHEN

Bachelor of Science in Agriculture
National Taiwan University

Taiwan,. R.o.c.
1974

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1980

Submitted, to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fullfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1984

.
-cheS!.:3

1qii,~
:) ' s 5. ~)4..

CDP·
j f''

A SYSTEMATIC APPROACH TO INSTALLING

A COMPUTER PRODUCT

Thesis Approved:

ii

11.s12<17 I

PREFACE

This study is cocerned with the approach to installing

a computer product. In separate chapters, it describes

procedures to install a hardware device and a software

package. An extensive discussion about techniques for

testing and debugging, which are two important proceudres

in a software package installion process, is also included~

The author wishes to express her sincere appreciation

to her major adviser, Dr. Sharilyn A. Thoreson, for her

invaluable guidance, assistance, and understanding

throughout this study. Appreciation is also expressed to

the other committee members, Dr. Michael J. Folk and

Dr. John P. Chandler, for their advice since the proposing

stage of this study.

Finally, a note of thanks is given to my husband,

Zie-Chiang, who applied the admission for me from the

beginning and kept "pushing" and "encouraging" me throughout

my graduate studies at the Computing and Information

Sciences Department of Oklahoma State University.

iii

Chapter

I.

TABLE OF CONTENTS

INTRODUCTION . . .
Statement of the Problem
Motivation and Purpose ..•..
Definitions of Terms .•••
Organization of Study . • ••

Page

1

1
1
2
2

II. HARDWARE INSTALLATION 4

4
5

Installation Plan •
Installation Procedures •

III. SOFTWARE INSTALLATION 10

IV.

v.

Overview 10
Portability of the Software Products • • • 11
Package Installation Process • • • 17

TESTING, DEBUGGING AND DOCUMENTING OF
THE SOFTWARE PRODUCT. . •.

Overview ••.•
Test Case Design .••...•••..••
Testing Techniques .•.
Debugging Techniques •.••••.•••.
Documentation ••••••••.•••.

SUMMARY, CONCLUSIONS AND SUGGESTIONS
FOR FURTHER RESEARCH .•.•.•.••

19

19
22
30
40
42

45

Approach to Installing the Hardware. • 45
Approach to Installing the Software • • • • 46
Testing, Debugging and Documenting 47
Conclusions and Suggestions for

Further Research . • • . . • • • 51

A SELECTED BIBLIOGRAPHY ••..••••• 52

iv

Figure

1.

2.

3.

4.

5.

6.

7.

LIST .OF FIGURES

Hierarchy of Programs and Program Users •

Procedures for T~sting a Software Product •

Control-flow Graph of a Program ••

Basic Cause-effect Graph Symbols

A Fortran Program •••

A Program Inserted With Counters
Hierarchy Structure Between Modules

in a Program ••••••••

v

Page

15

21

22

27

32

34

36

CHAPTER I

INTRODUCTION

Since the world's first all-electronic computer went

into operation over a quarter of a century ago, computers

have had a more and more profound effect on our lives. Many

people who have never used computers try to learn and use

these products of modern technology, and more of those who

have used computers try to get greater benefits from their

computer systems. New computer products appear on the mark­

et every day and for those who like to get advantages from

these products, installing them becomes an inevitable task.

Statement of the Problem

It is not uncommon that a computer product does not

function as it is expected to after first being installed.

Most of the time, when the product is found malfunctioning

lots of efforts already been invested. Furthermore, detect­

ing t~e causes of problems and correcting these problems

consume even more effort.

Motivation and Purpose

For a successful and efficient installation, it is

necessary for one to pay full attention to every step of the

1

2

installation procedure. The problems encountered and the

accumulated experiences of searching for solutions during

the installation of a plotter and a software package in the

Computing and Information Science Department of Oklahoma

State University in the summer of 1983 have given me the

motivation to write this thesis. The primary goal of this

thesis is to explore a systematic approach to installing a

computer product. I hope this thesis can give those who en­

counter similar problems a little help.

Definitions of Terms

A computer system consists of a collection of component

elements, and every element performs its specific function.

The system must be able to sense information from and pro­

vide information to its environment, that is, it must have

inputs and outputs (3). The componept elements which have

independent functions, and without which the system can

still execute some other functions, are called computer

products.

The installation of a computer product is defined as

the integration of the product into the computer system.

Computer products can be various devices, such as computer

peripherals; they also can be software packages.

Organization of Study

Chapter I introduces the problems, the motivation and

purpose of the study, and some definitions of related terms.

Chapter II presents the procedures needed to install

the hardware of a product. It also discusses interfacing -

an important factor of installing the hardware. The final

step of installing, which is the installation test, is

described in three progressive sequences, namely static,

dynamic standalone, and dynamic integrated testing.

3

Chapter III describes the portability of the software

products, which contains the descriptions about the rela­

tionship among product designer, installer and the installa­

tion, and the techniques for enhancing the portability.

This chapter also presents general procedures for installing

a software product.

Chapter IV mainly talks about the software

installation's final steps - testing, debugging and documen­

tation. The description and comparison of testing and

debugging techniques are presented. It also mentions the

criterion of sound documentation for the software product,

and what the installer should do about the documentation.

Chapter Vis the summary and conclusion of the computer

product installation.

CHAPTER II

HARDWARE INSTALLATION

A computer product can be many things. It may be pure

hardware or has little interaction with software, for in­

stance, a modem, a CRT display device, a line printer, etc.,

or it may be pure software, such as a software package. In

this chapter, the installation of the products which have

little interaction with software is presented.

The installation of products, especially those new and

attractive products appearing on the market everyday, may or

may not be in the initial system design plan. It sometimes

didn't come to the designer's knowledge when the system was

designed. Therefore, it is possible that a desired product

and the computer mainframe are from different manufacturers,

which may make the installation more demanding.

Installation Plan

The installation plan should oe started as soon as the

decision is made to purchase a product. The purchaser's

specified requirements should be met. To attain this goal,

it is necessary to have a study about the best-fit products.

When the product is ordered and in transit, a suitable en­

vironment for it should have been prepared. A computer

4

product needs a cool, clean and safe environment to avoid

damage (11).

Installation Procedures

First Check-out

5

The individual parts of the product are supposed to

have been inspected before the unit was shipped to the

buyer, but it never be too careful to inspect the device and

accessories for any physical damage sustained in transit.

One also needs to make sure all the items that should accom­

pany the device are present.

A Consideration of Hardware Interface

An interface is a system which connects the computer

and its peripherals. Selection of appropriate interface

hardware has a direct impact on ease of system integration

and efficiency of communication between the computer and the

outside world. Ideally, all peripherals and computers

should conform to some standard that specifies all the

characteristics of their connections, making all such

devices plug-to-plug compatible. Unfortunately, no such

standard exists at the present time. In actuality, there are

four areas of compatibility that must be satisfied in order

to successfully interface a device and a computer. They

are:

1. Mechanical Compatibility

Mechanical compatibility implies that male connector

and female connector on the computer and peripheral device

respectively be of the same number of pins and fit to each

other.

2. Electrical Compatibility

6

Data is passed between devices over the data lines us­

ing two voltage levels to represent the two possible states

(1 or 2) of a binary digit or bit. Electrical comp~tibility

means that the voltage levels must be compatible for the two

devices.

The line voltage selected for the device should have

been identified on the device panel. It can be changed, but

usually by qualified service personnel only.

3. Data Compatibility

Once an interface has made the computer and its peri­

pheral device mechanically and electrically compatible, they

are capable of exchanging messages in the form of electrical

signals, but in order to understand and execute these mes­

sages, certain conventions must be followed regarding the

formatting of the data to be exchanged. For internal

communication, devices may use any data format, but each

usually will input and output data in one of two standard

representations, namely EBCDIC or ASCII. It is not the

author's interest to discuss the difference between these

two data representations, but using the same representation

is a must to make two devices data compatible.

4. Communication Compatibility

Data transmission speeds of computers and their peri­

pheral devices are often different. The peripherals are

7

usually slower in their ability to execute instructions

than computers are in their ability to generate them. It is

necessary to provide some means to ensure the transmission

and receipt of data between devices without loss of any

data.

Baud rate is an important factor to consider in estab­

lishing communication compatibility between two devices.

The baud rate is approximately equal to the number of bits

transmitted per second. By setting the baud rates of the

computer and its peripherals equal, the data transmission

between the interfacing devices won't be lost.

It is necessary to refer to the computer's manual to

determine its baud rate and set the peripheral's baud rate

accordingly. For example, the baud rate selection switch of

HP7470A plotter in Oklahoma State University is set at 4800

to synchronize with the Perkin-Elmer mini-computer.

So far, all these check-outs discussed are static check­

outs.

Dynamic Standalone Check-out

After the principle aspects of the computer product's

hardware being taken care of, the user can start operating

the device. The following action, of course, is to plug the

power cable, then turn on the power.

At this point, refer to the manual to check if the

specified lights, cursor, ..• etc. are functioning as expect­

ed. Sometimes some basic defects can be revealed and be

8

replaced, avoiding unnecessary testing later on.

If everything goes fine so far, keep carrying on the

procedures stated on the device manual. Usually the manual

will give straight-forward instructions to operate, for in­

stance, a plotter. The manual will indicate how to use pens

correctly, load paper, etc.

Before the device integrates with other devices, it is

wise to have a confidence test about the device. The confi­

dence test provides the user a visual indication that the

device is operating properly. This confidence test can

always be repeated whenever the hardware defect of the device

is suspected.

For example, when the HP7470A plotter is first in­

stalled in OSU, this self-test checks the mechanical and

electronic functions. It does so by selecting alternative

pens, moving between scaling points 1 and 2, drawing an

asterisk with the second pen, and moving specified spaces

along the X-axis. The second pen is then stored and the pen

holder returns to the first pen, indicating the confidence

test is completed.

Dynamic Integrated Check-out

After the device is done with the dynamic standalone

check-outs without any problem, it should then be integrated

with the other devices, for instance, the mainframe, to en­

sure that its dynamic operation is correct when it is driven

by the rest of the system. This systematic progression from

static check-out to standalone dynamic check-out to

integrated dynamic check-out provides an efficient way to

detect, isolate, and correct errors in the hardware.

It is obvious that identifying and correcting problems

is easier when it is in static check-out stage, than it is

in dynamic check-out stage; it is cost-effective that

problems being taken care of as early as possible.

9

CHAPTER III

SOFTWARE INSTALLATION

Overview

Previously mentioned check-out procedures are enough to

complete the installation for computer products which con­

sist of pure hardware, that is, products that have little or

no interaction with the software. Disc drives, line

printers, card readers, graphic displays, etc., which are

I/0 devices interact less with the software and often con­

tain a large amount of pure hardware belong to this group,

but many of the computer products are pure software and are

called software products, or software packages. In this

thesis, the terms software product and software package will

be used interchangeably.

Software products capture what practitioners of a field

need, in a form that requires far less knowledge of comput­

ers, and of the field itself, than that required to program

a problem directly. Obviously, such facility is why they

have become so popular in recent years.

Before an end user is able to use a software product,

he/she encounters a problem in installing it into the com­

puter system. An installation guide which describes

10

11

installation procedures step by step always accompanies the

product when the product is delivered to a user; this makes

the installation an easier task. As mentioned in the last

chapter, new computers and computer products appear on the

market everyday; therefore the product designer can not pos­

sibly have the designs updated to fit a list of target com­

puters into which the product may be installed. This would

give the future installer difficulty in installing the pro­

duct. It also may decrease the product's popularity.

Portability of the Software Products

The pace of change in computer hardware technology is

such that computing machinery becomes obsolete long before

the programs which execute on that machinery (19). Besides,

huge sums of money are spent on moving programs from machine

to machine. Therefore, it is very important that programs

be written in such a manner that they may be implemented

under more than one computer/operating system configuration.

In Poole and Waite's paper (16), portability is defined

as a measure of the ease with which a program can be

transferred from one environment to another; they consider

if the effort required to move the program is much less than

that required to implement it initially, and the effort is

small in an absolute sense, then that program is highly

portable.

Although it is desirable to have programs written in

such a way that they do not depend on the underlying comput­

er hardware/operating systems, in practice, complete

12

independence is impossible. Portability's definition, ·as we

may have noticed, does not exclude rewriting small parts of

programs.

Relationship Among Product Designer,

Installer and the Installation

The product designer's responsibility is to develop the

portable software, document it, provide support material,

and transmit the results to the installer. Theoretically

the designer has the responsibility for providing the in­

staller with all the information about the portable software

that is needed to carry out the installation. In actuality,

the designers of typical software products are experts in

the application field, but often not so expert in computers

(7). The designer must have at least general knowledge

about the properties of the intended range of target

machines and their environments. He/she should not only to

be able to properly design the software product itself, but

also to provide the material needed to support the installa­

tion process. Without this knowledge, the designer may very

possibly make fundamental errors in design, and overlook

small, but crucial matters affecting portability.

Unlike the designer, the installer may not be able to

study the software product in order to understand its porta­

bility before he/she receives the product. The installer

has much less flexibility and fewer options than the

designer. He/she must accept what is provided and do the

best to make the installation efficient.

13

Information must be exchanged in the installation

process, this includes program material and supporting docu­

mentation being provided for the installer by the designer.

However, there is frequently a discrepancy between what is

offered and what is needed. Usually what is missing is the

implicit knowledge that the designer has about the tran­

sportable software product and it is often not made explicit

to the installer. Two-way communication between the

designer and the installer can speed installation, especial­

ly for products which are defective in design or documenta­

tion (6).

Techniques for Enhancing Portability

The techniques for enhancing portability are primarily

those generally applicable in software development. Because

of the nature of the installation process, the emphases are

some what different. Listed in the following subsections

are desirable qualities which the software product should

posses to attain portability.

1. Simplicity

A good software product should meet the "simplicity"

criterion. The ideal is, after the user has read the manual

he/she is able to employ the product for application without

further reference to any written document. In practice,

this goal has not yet successfully been attained. Something

a designer can do is concentrate all the necessary informa­

tion for normal use of the product onto a single page.

14

Another important aspect is that the designer does not try

. to write complex packages providing a wide range of services

and satisfying all user's fantasies. Instead, only those

performance requirements and design features necessary to

meet the requirements of usability should be included in the

design. Extra features that might be nice to have, but are

not really needed can be deleted (12).

2. Self-contained

A characteristic of a portable program is that it be

self-contained. The program should not rely on the existence

of some external agency to supply required functions. In

practice, complete self-containment is almost impossible to

achieve and the designer intending to produce a portable

product must compromise by isolating necessary references to

the external environment. When the environment is changed,

those dependent parts of the program can be easily identi- ·

fied and modified.

For example, the software package HP-ISPP contains 22

subroutines; 13 of them are user callable and 9 are internal

subroutines which are not callable by the users. In these 9

subroutines, one called ZZINIT specifies local configuration

parameters for the host processor. When the computer to

which the HP-ISPP is installed changes, the installer needs

only concentrate on the ZZINIT subroutine to have all the

parameters changed.

We shall refer to the programs which call the software

package as application programs, and users will be those in­

dividuals (or programs) who (which) run application programs

15

(12). The application program/ software package/ system

hierarchy is pictured in Figure l; of course other levels

may exis.t. As can be seen, there is at least one level,

that of an application program, between users and the

software package, therefore, self-containment of the package

is necessary. The more invisible and self-contained the

package is to users the simpler the diagnosis would be if

there has been an error.

User

Application
program

Package

System (compiler,
un-time system,

operating
system,
etc.)

/

Source: Myer, B., "Principles of Package Design." Communi­
cations of the ACM. Vol. 25, No. 7 (July 1982).

Figure 1. Hierarchy of Programs and Program Users

3. Use Standard Language Features

It is better to use only standard language features

rather than to use a dialect unique to a particular instal-

lation. A program written in one dialect may have to be

modified somewhat before being processed by a compiler for

16

another computer or operating system. The work involved

in implementing a package on more than a single system is

significantly increased if non-standard language

'extensions' are used in the initial coding of the package.

It is suggested that the source code of a package be

restricted to ISO (International Standard Organization) or

ANSI (American National Standard Institute) standard to im­

prove the portability (17).

4. Structured Internal Design and Others

If it is inevitable that some modifications be done

when installing a software product, the readability and un­

derstandability of the product's source program usually

makes the task easy. Methods to make a package easy to

understand include dividing the package program into several

smaller modules, using structured programming techniques,

and organizing the documentation in terms of simplicity and

clearness.

There are many structured programming techniques. In

some languages, for example, PL/I, PASCAL, etc., structured

programming means programming without GOTO's, in others it

may mean top-down design.

Meyer (12) in his paper says that subprograms in his

package written in Fortran are subroutines rather than func­

tions, at least for the following reasons:

a. In many systems, Fortran functions cannot be called from

COBOL programs while subroutines can.

b. A function type must be declared in the calling program,

except when it is an integer or single-precision real and

follows the Fortran default rule. This would be a

source of error in systems with no checking at link or

load time.

17

This suggestion of Meyer needs to be considered in regard to

the portability of packages written in Fortran.

Package Installation Process

As we know a detailed step-by-step installation manual

is very helpful. Such manuals are not easy to write, but

they are worthwhile. The installer must gain full under­

standing of the installation manual before he/she starts

installing the product.

Since there are a bewildering variety of physical dev­

ices, recording techniques, tape densities, file formats,

and so on, only general procedures of installation will be

described:

Step 1: Loading or mounting the package:

For the products residing in magnetic tape media,

load the package distribution tape files into ap­

propriate disc files. For those residing in flexi­

ble diskette media, mount the diskette.

Step 2: Adapting the package to its environment:

For example, many parameters describing the host

processor of the software package needs to be

modified.

Step 3: Compiling the package subprograms:

The package subprograms may need to be compiled into

a single object file. Some bugs may appear in this

step.

18

Step 4: Preparing a relocatable library file containing the

package module.

Step 5: Debugging and testing problems:

This step is usually the most difficult one, espe­

cially if the product and the computer are not com­

patible. It will be discussed extensively in

Chapter IV.

Step 6: Documenting:

The installation procedure and the modifications

made during the installing process should be record­

ed. This would make the future maintenance much

easier. Chapter IV will have more detailed discus­

sion about it.

CHAPTER IV

TESTING, DEBUGGING AND DOCUMENTING OF

THE SOFTWARE PRODUCT

Overview

It is not desirable to use a software product without

testing it after the product is installed. Although we

assume the product was thoroughly tested before it ws

delivered by the manufacturer, unless the product is

designed for some specified computer configurations and is

installed into those computer systems, there are almost

always some errors.

Myers (14) gives the definition of testing as follows:

"Testing is the process of executing a program with the in­

tent of finding errors." (p.5) It is noticeable that the

goal of testing is to uncover an error, and it is always

possible that undetected errors exist even after the most

comprehensive testing. Therefore, it is important to real­

ize that testing can never show that a program is correct

(19).

Software testing can be very complex depending on the

project's size and characteristics. Researchers claim that

testing should be incorporated into each phase of a software

19

20

development project, not just isolated in the final stage.

The later errors are found the more costly they are to

correct (1, 2, 18). It is sometimes considered that program

testing and debugging are the same thing. Although closely

related, they are actually distinct processes. As presented

above, testing is the process of establishing the existence

of program errors; while debugging is the process of locat­

ing where these errors occurred in the program and removing

them (19, 21). There are three causes of an unsuccessful

installation: human errors, hardware errors, and software

defects. Before the installer starts testing and debugging

software products, he/she must fully understand and do what

the installation manual says. By doing so, he/she can avoid

most errors caused by human mistakes (4). Next he/she must

go through the checking steps of the hardware portion's in­

stallation to eliminate the hardware's errors, then do the

testing and debugging work.

All testing methods involve determining the expected

behavior of the program, actually or conceptually executing

the program and observing its behavior, and finally compar­

ing that behavior with the expected behavior (1). Testing a

software product starts with recognizing the expected

behavior of the product, running the product with a set of

designed test cases in the computer into which it is in­

stalled, and then comparing the resulting behavior with the

expected behavior. If they match, the installation is said

to be successful. When the resulting behavior is not the

same as what was expected, one starts testing the program.

Fig. 2 shows the procedure for testing a product.

Recognizing the product's
expected resulting behavior

Designing test cases

Running the product in
the computer system

v

Yes
v

Finish­
ing all test

No cases?

I Yes
v

Stop

No

Debugging

r
Testing

Figure 2. Procedure for Testing a Software Product

21

22

Test Case Design

To attain the primary objective of testing, which is

uncovering errors in the program, one may think that passing

through every possible path in the program is a good method.

The problem is that this method, which is called exhaustive

testing, ,is often not feasible because of the infinite

number of paths in a program (1, 14, 17). Consider a cited

example (14): A short program with a loop having up to 20

iterations in it, and within this loop are a set of nested

IF statements. Shown in Fig. 3 is its control-flow graph.

h b f . . bl h . 5 ,lQ " 1 • Te num er o its poss1 e pats 1s +5 + ••• +5 , approx1-
1• mate 10 •

loop$ 20

Figure 3. Control-flow Graph of a Program

23

If a processor can develop a test case, execute it, and

evaluate the results in one millisecond, the processor would

take 3170 years to test this program. From this example we

can easily understand the importance of designing effective

test cases when testing a program. In the next section some

practical test case design methods will be introduced.

Black-Box vs. White-Box Method

In black-box testing, the tester is unconcerned about

the internal organization, logic, control or data flow of

the program being tested. He/she views the program as a

black box. The opposite method, namely, white-box method,

involves the tester's understanding of the internal struc­

ture of the program.

Black-box testing. If the function of the software pro­

gram is known, one can conduct a black-box test which will

demonstrate whether or not the function is fully operation­

al. This method is used to design test cases which can

demonstrate that input is properly accepted and then output

is correctly produced; or input is invalid and output is

erroneous. To find all errors in the program, one may con­

sider using every possible input condition as a test case,

which is exhaustive input testing, but very often that ex­

haustive input testing needs the tester to produce virtually

an infinite number of test cases, and this is impossible in

practice (1, 9, 14, 17). Since it is impossible to produce

an infinite number of test cases, one has to search for a

24

way to test a program which is equivalent to exhaustive input

testing. "Equivalent" here is in a sense that it is reliable

and valid; Goodenough and Gerhart (5) give explanations of

reliability and validity as follows:

In general, reliability refers to the consistency
with which results are produced, regardless of
whether the results are meaningful •••• Validity,
in contrast to reliability, customarily refers to
the ability to produce meaningful results, regard­
less of how consistently such results are produced
(p.19).

Three test data generation techniques, namely,

equivalence partitioning, boundary-value analysis, and

cause-effect graphing, which are considered "equivalent" to

the exhaustive input testing are introduced in the following

sections.

1. Equivalence partitioning

Since exhaustive-input testing of a program is imprac­

tical, one is limited to a small subset of all possible

inputs. Selecting the subset which has the highest proba­

bility of finding the most errors becomes important. The

principle of equivalence partitioning is that the input

domain of a program can be partitioned into a finite number

of equivalence classes such that a test of a representative

of each class is equivalent to a test of the entire class.

That is, if one test case in an equivalence class detects an

error, all other test cases in the equivalence class are ex­

pected to find the same error.

The partitioning of input domain of the program is not

easy. It depends on the requirement, the program domain,

and the problem understanding of the tester. Myers (14)

25

thinks that it is a heuristic process. The basic way to

identify equivalence classes is to consider each input con­

dition and partition it into at least two groups: valid

equivalence classes and invalid equivalence classes. The

former group represents valid input to the program, and the

latter one represents all other possible states of the input

condition. For instance, if an input condition specifies

that the input value Xis an integer and a<X<b, two groups

of equivalence classes can be identified: one valid

equivalence class (a<X<b), and two invalid equivalence

classes (X<=a and X>=b).

2. Boundary-value analysis

Boundary-value analysis leads to a selection of test

cases that exercise bounding values. Many software errors

occur just below, at, or just above the bounding value of

indices, data structures, and scalar values. Therefore,

test cases that explore boundary conditions have a higher

probability for uncovering errors than test cases that do

not.

This method differs from equivalence partitioning in

the following respects:

a. Boundary-value analysis requires that one or more ele­

ments be selected so that each edge of the equivalence

class is the subject of a test; while equivalence parti­

tioning randomly selects on element in an equivalence

class as a representative.

b. Instead of just considering the input conditions, its

test cases are also derived by considering the output

26

equivalence classes.

Consider the same example used in the equivalence par­

titioning subsection where the input value Xis an integer

and is specified as a<X<b. Boundary-value analysis would

select X=a+l, and X=b-1 to represent valid input classes,

and X=a and X=b as invalid input classes. If the outputs

are expected to be greater than 0, considering the output

equivalence classes, boundary-value analysis would also

select the input values that can drive the outputs to be

greater, less than, and equal to 0, respectively.

3. Cause-effect graphing

Cause-effect graphing is a technique for developing

test cases for programs from the high-level specifications.

It provides a concise representation of logical conditions

and corresponding actions (1, 14, 17). This technique fol­

lows four steps:

1) List causes (input conditions) and effects (actions) for

a module, and assign each an identifier.

2) Develop a cause~effect graph.

3) Convert the graph to a decision table.

4) Convert decision table rules to test cases.

One may refer to Myers (14) for details of these steps.

Fig. 4 shows the basic cause-effect graph symbols. No­

tice that nodes on the left-hand side represent causes, and

those on the right-hand side represent effects.

27

@ rd @ >
Identity Not Or And

Source: G. J. Myers, The Art of Software Testing (1979).

Figure 4. Basic Cause-effect Graph Symbols

Cause-effect graphing explores combinations of input

circumstances, while the previous two techniques do not. It

requires the translation of a specification into a Boolean

logic network; this translation gives one an additional in­

sight into the specification, and is a good way to uncover

ambiguities and incompleteness in specifications. But it is

difficult to convert the graph into the decision table. The

whole process of cause-effect graphing is inefficient in

every respect; especially when testing a software product

which usually does not bother to perform such a series of

complex tasks.

White-box testing. This method involves the understand­

ing of the internal structure of the program being inspect­

ed. Generally speaking, it is more complex than black-box

testing. Software products are usually lengthy, and their

purpose is to serve the end users so that they can use the

product without understanding its internal logical

28

structure. Therefore, one generates test cases by the white­

box testing method only when the black-box testing method .is

used and it uncovers errors, but can not help locating er­

rors in the product.

White-box testing concerns the degree to which test

cases exercise or cover the logic of the program. To test

the program structure completely, the test data chosen

should, ideally, cause the execution of all paths. Because

many paths in a program are not finite, as explained before

(see page 22), some other methods with similar spirit to

exhaustive-path testing are studied.

1. Statement coverage method

This method is concerned with the generation of the

test data set whose execution would cover every statement of

the program. That is, by using this data set, every state­

ment will be executed at least once. Some researchers claim

that it is a weak method to detect errors in the program (5,

14). The following example shows its weakness. Suppose

IF((A ~ B) & C=O) THEN X=Y;

is a statement in a PL/I program, and its Boolean operator

'&' should be 'I'. If the test data satisfy the condition

that A>B and C=O, then the statement is executed, but we can

see the error is undetected. So the decision coverage

method is proposed.

2. Decision coverage method

This method requires that the test cases are designed

such that each decision has a true and false outcome when

executing the program. There are still some weakness within

29

the method; for instance, using the same statement used in

the statement coverage method section as an example, the '&'

still was intended to be a 'I'. If two test cases are

designed so that they satisfy the following conditions

respectively:

1) A< B, C • 0

2) A= B, C = 0

then the result in the decision outcome for 1) is false, and

2) is true. These results are the same as those of testing

IF ((A~ B) I C=O) THEN X=Y;

That is, using these two test cases to test an erroneous

statement one gets the same results as that when he/she

tests the correct statement. Obviously, the error is not

detected by using this method.

3. Condition coverage method

In this method, one designs enough test cases to make

each condition in a decision take on all possible outcomes

at least once. Again we use the same example, but add one

test case as follows:

3) A> B, C = 0

thereby, each condition in a decision takes on all possible

outcomes at least once. We still find that the error is un­

detected.

4. Combination of decision and condition coverage method

This method requires sufficient test cases to ensure

that each condition in a decision takes on all possible out­

comes at least once, and each decision takes on all possible

outcomes at least once. A set of test cases for previous

30

example is shown as follows:

1) A > B, c = 0

2) A > B, c ~ 0

3) A = B, c = 0

4) A = B, c ~ 0

5) A < B, c = 0

6) A < B, c ~ 0

By using this set of test cases, which were designed by the

combination of decision and condition coverage method, the

error is detected. Goodenough et al. further suggest using

condition tables to analyze ~ondition combinations (5).

It seems that we have come out with a good test-case­

design strategy, but it is widely admitted that no testing

can be thorough enough to test all the errors in a program.

Methods introduced in this white-box testing section are not

able to detect coincidental correctness, or missing path er­

rors; this is just one of the many examples (22).

Testing Techniques

It is easy to realize that the objective of testing a

software product is to make sure that the product works as

expected in the computer system into which the product is

installed. This is analogous to removing all the bugs in

the product. For this special objective, the techniques

adopted to test a software product are not as numerous as

those adopted to general software development projects.

31

Static vs. Dynamic Analysis

Static analysis may involve some form of conceptual ex­

ecution, but not actual program execution, whereas dynamic

testing does involve the actual execution of program code.

Static Analysis: Desk checking, code inspection and

walk-throughs are examples of static analysis. Desk check­

ing is a method in which a person reads a program, checks it

with respect to an error list, and/or walks test data

through it (14). Code inspection also involves a step-by­

step reading of the program, with each step checked against

a predetermined list of criteria, but it is done by a team.

Walkthrough involves a person leading the team through a

manual simulation of the program, but teams are composed of

a software designer and other persons who are involved in

the program's implementation. These manual methods are

found to be effective in finding from 30% to 70% of the log­

ic design and coding errors in typical programs (15). They

are usually performed during the product construction stage.

If it is a small sized product, or a product at retesting

stage, and the testing object is already narrowed down, then

these methods are applicable.

Two other methods, which are different from previous

ones, are also classified by Adrion et al. (1) as static

methods. They are flow analysis and symbolic execution.

Flow analysis consists of data-flow and control-flow.

Both methods use graphical representation. In control~flow

32

analysis, the program graph has nodes, representing a

statement or segment, that possibly end in a branch predi­

cate. The edges represent the allowed flow of control from

one segment to another. The control-flow is used to analyze

the program behavior, to locate instrumentation break­

points, to identify paths, and to perform static analysis

activities. Errors about unreachable program statements are

usually detected by control-flow analysis. In data-flow

analysis, each node corresponds to a variable, and the edges

indicate the dependence between variables. By tracing the

behavior of program variables as they are initialized and

modified during the program execution, data-flow analysis is

able to discover program anomalies such as undefined or un-

referenced variables, or inconsistent interfaces among

modules, etc.

Symbolic execution uses variable names that hold the

INTEGER I,J,X
READ, I, J
X = I+J
IF (X.GE. 0) GO TO 10
x = x * x
GO TO 20

10 X = X + X
20 STOP

END

Figure 5. A Fortran Program

33

input values, instead of actual data values, as input

values. The effect of assignments during a symbolic execu­

tion is to replace the value of the left-hand side variable

by the unevaluated expression on the right-hand side, and

all variable manipulations and decisions are made symboli­

cally. For example, symbolic execution the Fortran program

in Fig. 5 will result in the following expressions:

if (I+J) ~ 0 then X = (I+J)+(I+J)
else X = (I+J)*(I+J)

As we can see, if the program is a little larger or

more complicated, the result of its symbolic execution may

become strings of complex expressions. In addition, all de­

cision points are indeterminate: that forces the execution

to go through every possible path and makes the program very

lengthy and difficult to compute. In general it was found to

be difficult to apply symbolic execution to all but the

modules at the lowest level of the software program. A sym-

bolic execution is considered to be reliable in catching

errors if the symbolic output for a selected path revealed

the error in an obvious way. If the output is erroneous but

is in the same symbolic form as it appears in the path, then

the errors are not obvious for the tester and are very pos-

sible to be missed. This reveals the unreliability of the

symbolic execution for catching errors. Although the method

has the previously mentioned drawbacks, it can be relied on

for catching some subtle errors. For instance, the same se-

quence of statements may compute correct answers for some

data but not for others, and the symbolic execution can

Original program:

Program inserted
with counters:

10

20

30

10

20

30

IF(X.GT.O) GO TO 20
DO 10 J=M,N,I

CONTINUE
GO TO 30
statement

statement

KTBRNH=O
IF{X.GT.O) GO TO 20
KTLOOP=O
DO 10 J=M,N,I
KTLOOP=KTLOOP+l

CONTINUE
GO TO 30
KTBRNH=KTBRNH+l
statement

statement

Figure 6. A Program Inserted With Counters

catch this error (8).

34

Dynamic Analysis. The dynamic analysis procedure usual­

ly includes static analysis and actual program execution.

Adrion et al. (1) considered program execution as instrumen-

tation of the program, execution of the instrumented pro­

gram, and analysis of the instrumentation data.

Instrumentation of the program means "to tell what's

35

going on inside it" (13, p.4). One instrumentation tech­

nique is inserting codes at appropriate places in the

program, for instance, inserting a counter at a branch pre­

dicate, inside or outside of a loop construct. The Fortran

program in Fig. 6 is an example in which KTLOOP is a loop

counter and KTBRNH is a branch counter.

Code insertion techniques also can make the maximum and

minimum values of variables, the initial and final values,

etc., transparent to the observer. During the testing pro­

cess of installing the previously mentionedpackage HP-ISPP,

the installer has used this technique very often, and locat­

ed a potential area of errors by observing the change of

some variables' values.

An alternate implementation is to insert calls to rou­

tines in place of actual counters. Some commands are also

inserted in the code. The instrumentation is enabled when

the correct commands are set. Stucki (20) introduced another

similiar method with dynamic assertions. These assertions

can be considered as comments. But when the commands are

set, the specific assertions are enabled and the prepro­

cessor generates the instrumentations.

Techniques about execution of the instrumented program

and analysis of the instrumentation data are numerous. They

will be included in the following sections which are of dif­

ferent technique categories.

36

Incremental vs. Non-incremental Testing

One of the characteristics of software products is that

it is large - tens of thousands of lines of code are usual

(7). To ease the testing, experienced programmers all know

that it is better to test the smaller building blocks of the

program than to test the program as a whole. The process of

testing the individual subprograms, subroutines, or pro­

cedures in a program is called module testing. In this sec­

tion, two approaches to performing the process of module

testing, namely, incremental and non-incremental approaches

are discussed.

TT
Figure 7. Hierachy Structure Between Modules

in a program

37

Incremental Testing. If one combines the next module to

be tested with the set of previously tested modules before

it is tested, this is incremental testing. Consider the

program in Fig. 7 as an example. Each rectangle represents

a module, and each arrow specifies the control hierachy

between modules. In this diagram, module A calls module B,

C, and D; module C calls modules D and E; and module D calls

module F. Incremental testing starts either from the top

module A, or bottom module F. Once sa~isfied with the test­

ing of this first module the next module, in this case, B or

D, respectively, to be tested is combined with the first

module, then tested as a system. The process continues un­

til all six modules have eventually been integrated into a

complete system. If a module is introduced at some stage in

this process and tests which previously did not detect sys­

tem errors now detect system errors, it is certain that

these errors are due to the introduction of the new module.

The source of the error is localized, which simplifies the

task of debugging.

When one discusses incremental/non-incremental testing,

the concept that the testing of each module requires a spe­

cial driver module and one or more stub modules must be

introduced. For instance, to test module Fin Fig. 7, a

driver module must be set. It accepts test case data,

passes such data to module F, and displays the results pro­

duced by F. While testing module A, it is necessary to set

three stub modules which simulate the functions of module B,

38

C, and D, to receive control from A.

There are two philosophies, namely, top-down and

bottom-up, for performing incremental testing. The top-down

method starts with testing the top module, for example,

module A in Fig. 7, and proceeds with its subordinate

modules, in this example, B, C, and D, and their subordinate

modules. To accomplish this, one must first write stub

modules representing B, C, and D, and these stubs are ex­

pected to return meaningful results to A. After the top

module has been tested, one of the stubs is replaced by an

actual module, and the stubs required by that module are ad­

ded. If they are tested sequentially, many sequences are

possible. For instance, ABCDEF or ACEDFB, etc. are possible

sequences for the program in Fig. 7. If they are tested in

parallel, some other alternatives are possible, and several

programmers may be involved. For instance, one programmer

tests the combination A-B, another tests A-C, and the third

tests A-D.

The bottom-up method starts with the terminal modules,

which call no other modules in the program. Terminal

modules in Fig. 7 are modules B, E, and F. These modules

may be tested serially or in parallel. To do so, each

module needs a special driver to supply inputs, call the

module to be tested, and display the outputs. No multiple

versions of a driver are needed; even the module being test­

ed may have several superordinate modules, because the

driver can iteratively call this module; but in top-down

strategy,. if a module being tested has several subordinate

modules, it is usually necessary to set multiple versions

of the stub.

39

It is widely admitted that creation of drivers is

easier than creation of stubs (14, 19), but it does not

necessary mean the bottom-up is better. One of the reasons

is that when adopting the bottom-up strategy, if errors ex­

ist in high level modules they will not be detected until a

later stage in the incremental test (10). In the former

situation making corrections will involve rewriting and

consequent retesting of lower level modules. For testing a

software package, if one suspects the errors are hidden in

higher level modules, adopting the top-down method can be

advantageous: otherwise, adopting the bottom-up method is

efficient.

Nonincremental testing. For nonincremental testing, one

tests a program by testing each module independently and

then combining the modules to form the program. Consider

the program in Fig. 7 as an example. First, at least five

driver modules and six stub modules must be prepared. Next,

test each module, with a necessary driver and/or stubs, as a

stand-alone entity. Finally, the modules are combined to

form the program.

At the module-testing phase, nonincremental testing can

test all modules at the same time, which is efficient. The

disadvantage of nonincremental testing is that if there is

an error related to intermodule interfaces, the error will

not be uncovered until the entire program has been combined.

This drawback sometimes makes pinpointing the error

40

difficult.

In testing a software product, it is usually reasonable

to assume that the product itself is free of error if it is

not installed in the computer system, since it had been

tested thoroughly before being released form the manufactur­

er. If errors are revealed after the software product is

installed, one may be right in assuming that the errors come

from product modules which have connections with the en­

vironment. Therefore, one should perform the module testing

only on the selected modules which have connections with the

environment, then perform the nonincremental testing for a

complete testing process. If the relationships between the

modules in the software package are complicated then it may

be necessary to employ incremental testing. It is meaning­

less to conclude that one method is superior to the other

for testing a software product, because it is a case­

dependent matter.

Debugging Techniques

Debugging includes two processes, locating the error

and fixing the error. It is an activity which closely

follows the testing. Sometimes debugging and testing are

performed rotationally until no more errors are found.

Since fixing errors is a program, or a programmer

dependent matter, the purpose of this section will be to

focus on the techniques of locating errors. Three

categories for debugging techniques are proposed as follows:

41

1. Brute force

This category includes many methods: core dumps, sym­

bolic dumps and insertion of print statement in the program.

The former two methods are not efficient, because they dump

massive amounts of data to be analyzed. Many times the dump

is not produced at the exact point of the error, which does

not help much in locating errors.

Inserting print statements which output important data

values at appropriate places in the program is superior to

the other two methods. It is efficient in isolating errors,

especially when debugging a software product.

2. Cause elimination

Cause elimination is manifested by induction or deduc­

tion. The summary of their steps is as follows (14):

Steps for induction:

1) Locate the pertinent data.

2) Organize the data.

3) Devise a hypothesis.

4) Prove the hypothesis.

Steps for deduction:

1) Enumerate possible causes or hypotheses.

2) Use the data to eliminate all but one of the possi­

ble causes.

3) Refine the remaining hypothesis.

4) Prove the remaining hypothesis.

3. Backtracking

Backtracking is considered effective for locating er­

rors of small programs (14, 17). It starts at the point in

42

the program where the incorrect result was produced, then

the source code is traced backward manually until the cause

is found.

Debugging the software product usually starts with

erroneous output, then one uses backtracking combined with

cause elimination and inserting print statement methods. If

the debugging tool is available in the computer system, one

can even use that tool to do the job. For instance, under

UNIX, a debugging program is called adb; adb allows the pro­

grammer to request the values of variables by names, to exam

the contents of the machine registers and to display the

results in various formats.

Documentation

In the final phase of installing a software product,

documentation is unexciting but essential. The installer

may think that finishing the testing and debugging of the

product means the installation process is finished; yet, it

is not. The reason the installer must pay attention to the

product's documentation is that maintainability is con­

sidered to be one of the most important characteristics of a

software system, and it can be accomplished only if the

software system includes sound documentation (17, 19).

The documentation of a software product can be organized

into two categories: user documentation and logic documenta­

tion. User documentation is made up of those documents which

relate to the functions of the product, without reference to

how these functions are implemented. Logic documentation,

on the other hand, describes all aspects of the design,

implementation, and testing of the product.

43

User documentation usually contains these documents:

l} A functional description, which outlines what the system

can and can not do.

2) An installation guide which describes how to install the

product and modify it for particular hardware configura­

tions.

3) An introductory manual which explains how to use the pro­

duct.

4) A reference manual which describes in detail the

facilities available to the user and how to use these

facilities.

5) An operator's guide (if the software product requires an

operator}, explaining how the operator should react to

situations which arise while the product is in use.

These documents are usually separated from the source code

of the software product.

Logic documentation should describe:

1) An overall product specification showing how the require­

ments are decomposed into a set of modules, and what the

global variables are in the program.

2) The functions of each module, and what the local vari­

ables are in the module.

3) Some acceptance test cases, which serve as the criteria

for a successfully installed and usable product.

They may be written as either internal or external docu­

ments, depending on which one will make the program more

understandable and more convenient for the users to refer

to.

44

The task for the installer is to update these docu­

ments. During the installation process if he/she finds that

there are some omissions in the documentation, he/she should

fill them. No matter what the modifications are, whether

they are major or minor, in the source code of the product,

in the installation instruction, or in the test cases, etc.,

it is the installer's responsibility to record the modifica­

tions, and upgrade these documents. After the installer has

fullfilled that responsibility then, if there are any new

errors revealed, the end user can have a faster fixation

since he/she has got clues from the documentation.

The installation process is completed when the documen­

tation updating, which follows the testing and debugging, is

finished.

CHAPTER V

SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR

FURTHER RESEARCH

Installing a computer product is a task that is fre­

quently encountered by the computer owner, who may be a

person, a school, an agency, etc. If installation is in the

computer system development plan, it usually has fewer prob­

lems compared to one which is not in the plan. Although

manufacturers of products supply installation manuals, most

of the time if not always, it is buyers who actually do the

installing job and face the problems. This chapter summar­

izes a systematic approach to installing a computer product.

It also summarizes the techniques used in testing 'and debug­

ging which are two important procedures during the

installation.

Approach to Installing the Hardware

Preparing a suitable environment before the product

arrives is important. After the product arrives, it is neces­

sary to perform the following steps:

1. Perform static check-out

a. Inspect the device and accessories for any physical

damage.

45

46

b. Adjust the interface between the product and the com­

puter, make sure they are compatible in at least four

aspects: mechanically compatible, electrically compa­

tible, use same data representation, and same

communication speed.

2. Perform dynamic standalone check-out

a. Turn on the power.

b. Refer to the manual supplied by the manufacturer to

check the device's functions.

c. Perform the confidence test.

3. Perform dynamic integrated check-out

Integrate the product with the other devices in the

specified computer system and check the product's functions.

Approach to Installing the Software

A portable software product is a program which can be

transferred from one computer system to other systems

without requiring much effort to modify the program. There­

fore, portability is an important characteristic for a

software product. The product designer plays a more impor­

tant role in obtaining portability than the installer does.

The designer must have general knowledge about the proper­

ties of the intended range of target machines, and explicitly

transfer that knowledge to the installer by offering the

installer a complete installation manual.

47

Techniques for Enhancing Portability

1. Keep the product simple but include all necessary

functions.

2. Write the program in a self-contained manner.

3. Use standard language features.

4. Use structured progr.amming techniques.

Process for Installing a Software Product

1. Read through and understand all of the installation manual.

2. Load or mount the product.

3. Adapt the product to its environment.

4. Compile the subprograms of the product.

5. Prepare a relocatable library file containing the product

modules.

6. Test and debug the product.

7. Update the documentation.

Testing, Debugging and Documenting

Testing, debugging and documenting are works performed

in the later stages of software installation. They may

require lots of the installer's efforts. Testing and debug­

ging are hot topics in the software engineering field. The

purpose of testing is to uncover errors in the program; the

purpose of debugging is to locate and correct the errors.

Although the testing and debugging of the software product

48

are not as complex as those of the software development

project, it still demands good techniques to accomplish the

efficiency. The procedures of testing a software product

are:

1. Recognize the product's expected resulting behavior.

This includes recognizing what the correct results are

when inputs are valid, and what they are when inputs are

invalid.

2. Design test cases.

a. Black-box method

The programmer sees the product as a black box.

He/she designs valid inputs and invalid inputs to test

the product. Methods in this category are: (1)

equivalence partitioning~ (2) boundary-value analysis,

and (3) cause-effect graphing. The last one is a little

complex for testing a software product; the first two

methods are used most often.

b. White-box method

The programmer needs to understand the internal

structure of the software product being tested. This

demands more effort than the black-box method does, but

this method is able to give more clues about the nature

of the errors in the product's source code, while the

black-box method sometimes can not.

The white-box method includes the following methods:

(1) statement coverage, (2) decision coverage, (3) condi­

tion coverage, and (4) a combination of decision and con­

dition coverage. The last method is considered to be the

49

best among the four.

3. Run the product in the computer system.

4. Compare results with the expected resulting behavior.

When two results do not match, the tester needs to per­

form the step 5 to locate the errors. When they match, the

tester can go on to test the next case until finishing all

test cases.

5. Test the product.

When one suspects the product have errors, he/she may

need to use some techniques to reveal those errors. The

techniques applicable for testing a software product are

summarized as follows:

a. Static analysis

It includes desk checking, code inspection, and

walkthroughs, data-flow and control-flow analysis, and

symbolic execution. The first three methods are manual

methods; and they can be used for the small-sized pro­

duct, or when the possible range of errors in the product

is limited to certain modules. The flow analysis methods

involve graphical representation. Control-flow analysis

can detect unreachable program statements, while data­

flow analysis can discover program anomalies more easily.

The symbolic execution method is reliable in catching er­

rors which may not be caught if the inputs are real

values.

b. Dynamic analysis

It involves·the actual program execution, while the

static method involves conceptual program execution at

best, or perhaps not any execution at all. Dynamic

analysis includes the following aspects:

(1) Instrumentation of the program.

Techniques involved are code insertions, and call

insertions, etc.

(2) Execution of the instrumented program.

(3) Analysis of the instrumented data.

50

Techniques for the second and the third aspects can

be divided into incremental and non-incremental

categories. There are two philosophies for incremental

techniques, one is top-down, the other is bottom-up. One

adopts top-down strategy when the errors are suspected to

be hidden in higher level modules, otherwise, one adopts

bottom-up strategy.

Debugging Techniques

Testing and debugging are rotationally performed as one

big procedure in the process of installing a software pro­

duct. But since their objectives are different, as stated

in the preceding section, their techniques are different. A

summary of debugging techniques is as follows:

1. Brute force

It includes core dumps, symbolic dumps, inserting print

statement. Among them, only the inserting print statements

method is considered efficient.

2. Cause elimination

Use either induction or deduction.

51

3. Backtracking

Trace from erroneous results to the source code of the

product.

Conclusions and Suggestions

for Further Research

The hardware installation is more straightforward than

the software installation, and whether the software instal­

lation is efficient or not depends heavily on whether the

testing and debugging is efficient. There are numerous

techniques for testing and debugging, and each technique has

its own characteristics. It is hard to conclude which tech­

nique is the best. Only the combination of the installer's

knowledge, the software product's characteristics, and the

computer system into which the product is to be installed

can make a fair judgement possible.

A SELECTED BIBLIOGRAPHY

(1) Adrion, W.R., M.A. Branstad and J.C. Cherniavsky,
"Validation, verification and testing of computer
software." Computing Surveys, Vol .14, No. 2
(June 1982), 159-192.

(2) Boehm, B.W., "Seven basic principles of software en­
gineering." Softtware Engineering Techniques. In­
fotech State of the Art Report, Infotech, London,
1977.

(3) Freedman, M.D. and B.E. Lansing, Designing Systems
with Microcomputers:~ Systematic.Approach.
Prentice-Hall, Inc., Englewood Cliffs, N.J, 1983.

(4) Gilb, T., Reliable.EDP Application Design. Petrocelli
Books, N.Y. City, 1974. ·

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Goodenough, J.B. and E.I. Gerhart, "Toward a Theory of
Test Data Selection." IEEE Transactions on
Software Engineering, (June 1975), 156-173.

Griswold, R.E., "Engineering for Portability."
Software Portablity, an Advanced Course. Cam­
bridge University Press, Cambridge, London, 1977.

Hamlet, R.G. and R.M. Haralick, "Transportable Package
Software." Software-Practice and Experience, Vol.
10 (1980), 1009-1027.

Howden, W.E., "An Evaluation of the Effectiveness of
Symbolic Testing." Software-Practice and Experi­
~, Vol. 8 (1978), 381-397.

Huang, J.C., "An Approach to Program Testing." Comput­
ing Surveys, Vol. 7, No. 3 (Sep. 1975), 113-128.

Lauesen, s., "Debugging Techniques." Software-Practice
and Experience, Vol. 9 (1979), 51-63.

Longbottom, Roy, Computer System Reliability, J. Wiley
ltd., 1980.

Meyer, B., "Principles of Package Design." Communica­
tions of the ACM, Vol. 25, No. 7 (July 1982),

52

53

419-428.

(13) Miller, E. "Introduction to Software Testing Technolo­
gy." Tutorial: Software Testing & Validation
Techniques, 2nd ed., IEEE Computer Society.
1981, 4-16.

(14) Myers, G.J., The Art of Software Testing, John Wiley &
sons, Inc":""; 1979.

(15) Myers, G.J., "A Controlled Experiment in Program Test­
ing and Code Walkthroughs/inspections." Communi­
cations of the ACM, Vol. 21, No. 9 (1978), 760-
768.

(16) Poole, P.C. and W.M. Waite, "Portability and Adapta­
bility." Software Engineering, An Advanced
Course, Lecture Notes in Computer Science.
Springer-Verlag, 1975.

(17) Pressman, R.S., Software Engineering: A Practitioner's
Approach. McGraw-Hill, Inc., 1982. -

(18) Scherr, A.L., "Developing and Testing a Large Program­
ming Systems, OS/360 Time Sharing Option." Pro­
gram Test Methods, ed. by W.C. Hetze. Prentice­
Hall, Inc., N.J. 1973, 165-180.

(19) Sommerville, I., Software Engineering, Addison-Wesley
Co., 1982.

(20) Stucki, L.G. "New Directions in Automated Tools for
Improving Software Quality." R. Yeh (Ed.),
Current Trends in Programming Methodology, Vol.
II - Programming Validation, Prentice-Hall, En­
glewood Cliffs, N.J., 1977, 80-111.

(21) Van Tassel, D., Program Style, Design, Efficiency, De­
bu$ging and Testing. Prentice-Hall, Englewood
Clilffs, N.J., 1974.

(22) White, L.J. and E.I. Cohen, "A Domain Strategy for
Computer Program Testing." IEEE Transactions on
Software Engineering, Vol. SE-6, No. 3, May 1980.

VITAL

Sue-Fong Christine Shen

Candidate for the Degree of

Master of Science

Thesis: A SYSTEMATIC APPROACH TO INSTALLING
A COMPUTER PRODUCT

Major Field: Computer Science

Biographical:

Personal Data: Born in Taichung, Taiwan, R.o.c.,
January 1, 1952, the daughter of Wan-Li and
Guei-In Lin. Married to Zie-Chiang Shen.

Education: Graduated from Provincial Taichung Girls'
Middle School, Taiwan, R.O.C., in June, 1969;
received Bachelor of Science degree in
Agriculture from National Taiwan University in
June, 1974; received Master of Science degree in
Family Relations and Child Development from
Oklahoma State University in June, 1980;
completed requirements for the Master of Science
degree in Computing and Information Sciences
at Oklahoma State University in May, 1984.

Professional experience: Social worker of Christian
Children's Fund, Inc.; Taiwan, July, 1974 to
December, 1977. Teacher of Stillwater Child
Development Center, Stillwater, Oklahoma,
January, 1980 to January, 1981. Student clerk of
Admon Low Library, Stillwater, Oklahoma, May, 1981
to May, 1984.

