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PREFACE 

This study will concern itself with cellular spin resonance mainly as 

it applies to cells and to a lesser extent, particles. The procedure 

necessary for the studies as well as the apparatus necessary will also be 

discussed./ Appendix A (a manuscript for a chapter in press) with theory 

and additional information will be included in this thesis. 

The selection of cellular spin resonance as the topic for this thesis 

came about for a variety of reasons. Ny having a biological background, 

the conducting of a study on cells seemed to be a very logical and natural 

choice. My desi.re to do some work with some electrical apparatus and with 

computers and to learn a little applied physics also contributed to my 

choice. Ultimately, and most importantly, the chance to work in 

collaboration with Dr. Herbert Pohl 'who had started me off in research 

while I was still an undergraduate and has become a good friend made it all 

very appealing and worthwhile. It has been said that doing graduate work 

is like doing an apprenticeship in some trade. If this is so I have 

labored under one of the best in his trade. 

I also wish to express my sincere gratitude to Dr. L. Herbert Bruneau 

who advised me on the academic portion of my graduate degree. Hy thanks 

also go to Kent Pollock, who will soon become Dr. Kent Pollock, for 

answering my many questions as they pertained to physics. 

Special thanks go to the Pohl Cancer Research Laboratory for the 

iii 



financial support it provided while conducting this study. 

Hy parents Hiram and Gladys Rivera deserve my most sincere and deepest 

appreciation for their unending support and love. Finally a special thanks 

go to my wife Jean for encouraging me while I strove to finish this thesis, 

and for her support when it seemed it would never get done. 
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CHAPTER I 

INTRODUCTION 

Cellular spin resonance (CSR) is a new method that has the potential 

for some very exciting applications. This phenomenon of resonating 

spinning in response to an AC field was first observed by Pohl and Crane 

(1971) while they were studying the dielectrophoretic behavior of 

Saccharomyces cervesiae. They observed that cells were seen to spin while 

in the presence of an alternating current (ac) field. What is intriguing 

is that the cells are observed to rotate at only a few Hertz while the 

applied frequency of up to 1 MHz was applied. In addition, the cells 

responded very sharply to the frequency of the applied field. These cells 

can be made to spin, stop, or change direction of spinning in a resonant 

manner depending on what external frequency is being applied at the moment. 

Hence the name "cellular spin resonance". 

At the heart of CSR is the phenomenon known as dielectrophoresis. 

Dielectrophoresis (DEP) is defined as the motion of uncharged particles or 

fluid induced by a non-uniform electric field due to their induced, or 

permanent dipoles. It should be pointed out that dielectrophoresis should 

be distinguished from electrophoresis. Electrophoresis is the movement of 

a charged particle due to a uniform or non-uniform field. Figure 1 shows 

the difference between the movement of a charged particle and a neutral 
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Filgure 1 
Effect of a non-uniform AC field on 

a neutral and charged objects,., 
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particle while under the influence of an ac field. The charged particle 

will be attracted by its opposite charge. Inside a rapidly changing field 

(ac field) it will just shudder as it tries to always follow its attracting 

charge. In contrast, the neutral particle (or cell) will always be 

attracted by the region of stronger field. An interesting sidelight of 

dielectrophoresis is that when a particle or cell is attracted to and 

finally comes in contact with the electrode it still perturbs the field 

creating a new region of high field strength (Fig. 2.) Now if a cell or 

particle comes close to it, this new region of increased field strength 

divergence will attract the object. This phenomenon has been dubbed 

"pearl-chaining" since one may end up with chains of many "links". 

The response of the cells to CSR has been observed to be directly 

dependent on the physiological state of the cell. Culture age, cell 

health, and possibly even culture temperature all serve to change the CSR 

spectrum of that particular cell. Because of this, a standardized spectrum 

could be made up of a particular cell while in a healthy state. When 

another cell is compared to this standard spectrum, and a deviation is 

seen, it can be assumed that the cell is different in some way. This could 

be used as a diagnostic test between healthy cells and diseased cells. 

Particles have also been observed to display a certain CSR spectrum. 

In this case the governing factor for spinning, be it with the field(+ 

rotation) or against the field (- rotation), is the polarizability of the 

particular particle under study. 

Appendix A has a review on the literature as it pertains to cellular 

spin resonance. The reader is referred to that section for more details. 



Figure 2 
Particle or cell creating a new, 
higher area of field strength. 
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CHAPTER II 

APPARATUS ,,AND EXPERIMENTAL PROCEDURES 

Chamber 

The chamber used for the studies of CSR was that of a 4-pole 

configuration, (Figure 3). This chamber is connected to an electrical 

circuit which produces a rotating sinsoidal field (Appendix B). A "block" 

diagram illustration of the entire experimental set-up required is shown in 

Figure 4. 

Cells 

// 

Various/cells were used in this study, namely Saccharomyces cerevesiae 

(yeast), bovine kidney cells (BKC), African green monkey kidney cells 

(VERO), and Crandell feline kidney (CRFK) cells. The yeast cells were 

grown in Difeo Sabouraud liquid medium at room temperature (25°C) while 

being kept aerated by a magnetic stirrer. Mammalian cells were obtained 

from Mrs. Jill F. Dotson and were taken off their culture plates by the use 

of trypsin. 
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Figure J. 
Glass Chamber, The platinum electrodes 

are 100 microns in diameter, The spheres 
are approximately 150 microns and the 

spacing between spheres is 400 microns x 
450 microns, The glass slide is a 
standard slide, 3 inches long by 1 

inch wide, 
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Platinum electrodes 

Electrical connection 
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Filgure 4 
Experfmental apparatus lay out., 
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~ Preparation 

Cell preparation was done in two ways. In the first, cell 

preparations were spun out from their original medium at 2000g's for 2 

minutes. The cells were then washed in 300 Kohm/cm water three times to 

get a cell suspension of low conductivity. It is imperative to have a low 

conductivity solution since Ohmic heating must be minimized and the DEP 

spectrum is affected by the conductivity. The latter effect can be 

appreciated by Fig. 5. In the second, more rapid protocol, cells were spun 

down initially to achieve a high concentration per milliliter (ca. 10 9). 

These cells were then diluted by a factor of 250:l into high resisitivity 

solution, thus diluting the salts and achieving a favorable conductivity 

for the experiment, while retaining at least small amounts of critically 

necessary ions about the cells to be examined. The advantage to the second 

procedure is that it greatly improves the condition of cells. This is due 

partly to reduction in time that the cells are exposed to the 

physiologically unfavorable environment in which the studies are conducted. 

When a mammalian cell was used which required a physiological osmotic 

medium, sucrose was added at 330 mM concentration to the diluting liquid. 

Particle Preparation. Particle preparation was done in much the same 

way. In this case time was not a critical factor since there is no 

degradation of the particles as is encountered when working with live 

cells. Care must be taken though, to thoroughly wash the particles being 

tested to remove any extraneous material or coatings which might alter the 

CSR spectrum. 



Figure 5 
Effect of resistvity on CSR spectrum. 

Circles, barium titanate in pure 
water, 200Kohm. Squares, Barium 

titanate in 30 Kohm solution.· 
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Procedure. Measurement of the final resistivity of the solution was 

done with a bridge, General Radio Model 1650A. 

Once the cells or particles were placed in the chamber by using a 

Pasteur pipette, they were then covered with a cover slip. A magnification 

of 400X was used to observe rotation. A long focal length objective was 

needed to focus in to the chamber. The concentration that was used ranged 

from between 1 to 60 cells or particles inside the chamber. Actual 

performance of the experiment can be broken down as follows: 

1. Cells or particles are placed in a pre-washed chamber and 

covered. 

2. Power is then applied to the four pole circuit and 

"balancing" of the circuit is done. This is done by selecting the 

frequency range to be used and then balancing both the input voltage and 

ouput voltage by using the variable potentiomenter in the circuit. 

3. The observation of the cell rotation rate is made by either using 

a stopwatch to time one revolution of the cell or by using a stroboscope if 

spinning is too fast for an accurate determination by eye. 

4. Following the reading, the stopwatch is reset, the frequency 

generator is switched to the next desired frequency and the circuit is 

rebalanced as in step 2. 

5. In this way a series of spin rates versus frequency measuremets 

are obtained for the CSR spectrum. 
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Temperature. The effect of temperature was also studied. This was 

done in two ways. In the first, Saccharomyces cerevesiae was grown at room 

temperature for a day and then split into two groups. One group was placed 

in a refrigerator for 24 hours at approximately 3°c and the second group 

was left growing at room temperature. In the second procedure, cells were 

placed in the chamber and then cooled down using the apparatus shown in 

Figure 6 and 7. 



Figure 6 
Cooling chamber. 
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Figure 7 
The chamber was cooled via the use 

of a cooling/heating bath which 
pumped liquid through the copper 

tubing to get to the desired 
temperature. A thermocouple was 
set on the glass slide to monitor 

the temperature. 
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CHAPTER III 

RESULTS 

Cellular spin resonance can be appreciated to be a very sensitive 

measurement by studying Fig. 8 (in the ensuing figures, the log of 

frequency is in Hertz and the rotation rate in seconds -l.) which shows the 

effect of a polyelectrolyte sodium salt of poly (acrylic acid) 

(commercially known as Darvan) on Baso4• Almost incredibly, the addition 

of approximately 10 ppb is sufficient to cause an appreciable change in the 

CSR spectrum. This is a very encouraging result since the subject under 

study is an inanimate object, so variation which might be seen in a living 

organism cannot account for the change in spectrum. A change due to the 

polyelectrolyte in the spectrum of BaTi03 can also be seen in Fig. 9. 

Figure 10 and 11 illustrate the type of sensitivity that can be 

achieved when using CSR as a method to detect living cells among dead 

cells. A complete reversal in the direction of spinning direction between 

a dead and living cell can be observed. This phenomenon suggests the use 

of CSR as a "vital" test. Mixtures of live and dead cells were tested with 

this technique. Dead cells were stained deep blue with Nile Blue A and 

live ones were left colorless. Upon examination of the spectrum the live 

cells were seen to spin against the field while the dead cells were seen to 

go with the field. The signal applied was that of lOOKHz. This gives 

21 



Ftgure 8 
Effect of Darvan on the CSR of Baso4 
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Figure 9 
Effect of Darvan on the CSR of BaTi03• 
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Figure· 10 
CSR of a live yeast cell. 
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Figure 11 
CSR of a dead yeast cell (killed 

by heat treatment). 
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definite proof that the change in spectra is due to the difference in cells 

and not to an experimental error. 

Culture age also has a significant effect on the CSR spectrum. Figure 

12 demonstrates that in Saccharomyces cerevesiae there is a measurable 

difference between culture age of 16 hours which are in the growth phase, 

and culture age of 48 hours which are in the stationary phase. This is 

particularly readily observable at 300 Khz. Three types of response to the 

applied field of 300Khz is seen in the young culture. These are: (1) 

spinning clockwise, (2) spinning counter-clockwise, and (3) chaining. 

Cells that have been in a culture medium for 48 hours or more are seen on 

the other hand to only spin counter-clockwise at this particular frequency. 

Appendix A has the CSR spectrum of several cell lines showing the 

differences between them. 

Another phenomenon that was observed was that of cells spinning in a 

two-pole field. These cells were seen to spin while out in solution 

without any other cell or object nearby to cause any kind of interaction. 

This type of spinning is totally different from the 4-pole spinning. In 

the two-pole spinning it is theorized that the interaction of an internal 

ac field being produced by the cell is interacting with the externally 

applied field to create a net torque which then causes the spinning. It 

has been observed that a cell can spin in one direction while under the 

influence of a two-pole field and will change direction of spinning when a 

4-pole field is applied. This leads to speculation that the 4-pole 

spinning is one that is produced by an overwhelming effect of polarization 

by the field on the cell, whereas two-pole spinning is probably due more to 

an interaction of the natural ac oscillations of the cell with applied 

field. 



Figure 12 
CSR of 16 hour culture (circles) 
versus that of a 48 hour culture 

(squares). 
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Cellular spin resonance of yeast is also affected by temperature. It 

was observed that cells in the stationary phase (old culture) which spun 

counter-clockwise at 300Khz were not much affected by changes in 

temperature. This was found to be true while they were being cooled down 

while in the chamber or chilled in a refrigerator overnight. However, 

cells in the growth phase (young culture) that responded to an applied 

field of 300Khz in a variety of ways, such as the 16 hour culture age 

sample, were affected by changes in temperature. Cooling these cells down 

to 2°c while in the chamber caused them to all start spinning 

counter-clockwise at 300Khz. Cooling takes approximately 25 minutes in the 

metallic chamber. Upon seeing this effect the cells were then gradually 

0 warmed up to 20 c. It was thought that the cells might now revert to their 

original spinning state. This however, was not the case. The cells all 

remained spinning in the counter-clockwise direction as if they had aged 

into the stationary phase. 

Cooling down of the cells while in their medium produced the following 

results. Cells that were left at room temperature for two days were all 

observed to spin counter-clockwise at 300Khz. However the cells that had 

been put in the refrigerator for cooling down after one day of growth were 

observed to spin just as if they were a very young culture, even though now 

they have been in culture for a total of two days. This series of 

experiments was done to determine if cells would respond differently to a 

temperature change in relation to the type of cell. The type of cells 

chosen were those that spun in a particular direction at 300Khz. 

Remembering that the young culture spun clockwise while the old culture 

spun counter-clockwise it might be argued that any effect seen on the cells 

because of temperature change is due in fact to the interaction between 
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temperature and culture age. This in fact was observed to be true. It 

seems that a culture which is relatively young (cells spin clockwise) will 

react to the change in temperature. In our case, the cooling down of the 

sample on the microscope stage seems to age the culture irreversibly. 

Those that are old cultures are not affected. Also, cultures that were 

refrigerated while still young seemed to be halted at that stage, because 

when allowed to warm up they displayed a young culture's CSR while a 

control group that was allowed to grow, changed its CSR spectrum to that of 

an old culture. 

These observations lead us to speculate on the following. Young 

cultures are still very active since they still have an abundance of 

nutrients in their medium. Upon being cooled down they start preparing 

themselves for adverse conditions and shut down some of their activity. 

Upon being warmed up to ideal growing conditions they now start activities 

again. This only happens though, if they are still in a suitable growing 

environment. This is substantiated by the fact that the cells that were 

cooled down on the microscope stage (while in low conductivity water) never 

reverted to their previous CSR spectrum even after being warmed back up. 

Cultures that are "old" on the other hand already have shut down activities 

because of a lack of a suitable growing environment and are not affected by 

cooler temperatures, at least where a CSR spectrum is concerned. 



CHAPTER IV 

CONCLUSION 

Cellular spin resonance as we know it now is a very useful and 

powerful tool. It allows us to study the reaction of cells to age, 

physiological state, temperature, and type. Eventually the effect of 

certain contaminants to the medium will be studied. These studies might 

allow us to use CSR as a method for testing potentially hazardous chemicals 

before they are approved for human or animal use. CSR potentially will be 

able to detect differences in -cells that appear to be normal using standard 

tests but that may actually be the early stages of disease. CSR could be 

used to differentiate between organisms. For instance, it could be used to 

identify a particular strain of yeast which might be infecting a human or 

animal patient. Current methods of culturing take several days before a 

positive identification can be made. CSR could be used as single cells or 

on a clump of cells, say a micro-biopsy, to be tested for some malignant 

condition. 

An enormous improvement to CSR as a practical tool would be through 

automation. Automating the system to the point where it will be able to 

take a reading while under computer control would make it much speedier and 

more objective. Speed is important for two reasons. First, the condition 

of the cell is going to start degrading as soon as it is placed in the test 
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solution. Second, the cell itself will start to leak out ions which will 

change the parameters of the solution making it difficult to relate changes 

of spectra to the cell or to the conductivity of the solution. 

Looking Ahead 

There is still much to be done with CSR even if it means taking the 

measurements by eye. Additional avenues of study are: 

l. The effect of chemicals on cells. 

2. The difference in spectra between normal mammalian cells and 

their oncogenic state. 

3. Differences, if any, found between the spectra of one single 

cell and a clump of cells as in a biopsy. 

4. Continued study-between CSR in a four pole configuration and 

two pole system. 

s. Effects (correlation) with cell age or cell life cycle phase. 

These are but a few of the possible fields to study and explore with 

the use of Cellular Spin Resonance. 
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APPENDIX A 

CELLULAR SPIN RESONANCE (CSR) 

A chapter to be published in the book titled Modern 

Bioelectrochemistry. 

Figure captions are at the end of this appendix. 
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CELLULAR SPIN RESONANCE (CSR) 

ABSTRACT 

Small objects such as suspended live cells, organelles, tissue 

fragments, or even inanimate powder particles may be made to spin in an 

electromagnetic field. The spinning occurs in a resonant response to the 

applied frequency and reflects the dielectric properties (permittivity) 

of the suspension. 

There are three special cases: 

Spinning 

(1) in a static (de) field 

(2) in a simple oscillatory field, and 

(3) in a rotating field. 

The theory and examples for several interesting cases and their probable 

mechanisms are presented. 

The technique of cellular spin resonance (CSR) has several 

interesting applications. It sensitively detected alterations in surface 

properties due to a polyelectrolyte at concentrations of ca 100 ppb. The 

CSR spectra of cells reflect their type and physiological state. Data to 

date indicates that live cells spin oppositely from dead ones at some 

frequency, even in mixtures. The dielectric properties of tiny particles 

4I 
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can be readily determined. 

Introduction 

Living cells and other small particles in suspension can be observed 

to spin while in the presence of an alternating current (ac) electric 

field. The cellular spin rates-phenomenon can be correlated with various 

characteristics such as cell age, culture age, health of the cell (normal 

verses tumor, etc), and cell type. The spinning of inanimate particles 

can be informative as to their dielectric properties. The present 

account describes the studies being done to reach understanding of this 

exciting new technique. 

1. CELLULAR SPINNING 

1.1. In a Static Field 

Cells or other small particles may be observed to spin in an 

electric field that is either static, oscillatory, or rotating in 

d . . (l-6) 
1.rect1.on. The spinning of more or less spherical bodies in a 

static field has been known for some time. The theory and confirming 

experiments for that type due to surface charge depostion by ambipolar 

(bi-directional) current have been given. ( 4) 
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1.2 In a Simple Oscillatory Field 

The spinning of cells while in a two-pole oscillatory field has been 

reported by a number of researchers (l-lZ) The first account of 

resonant spinning was that of Pohl and Crane. ( 3) Their observations 

stemmed from the dielectrophoretic studies of baker's yeast, 

Saccharomyces cerevisiae. These studies were done while the cells were 

in between two parallel wire electrodes and subject to an ac field. The 

cells spun in a sharply resonant manner, in that each cell responded and 

spun only at a rather sharply defined specific applied frequency. 

Typically the cells were seen to spin at about 0.1 to 10 Hz while the 

applied field might be oscillating at, say 100 Hz to 10,000,000 Hz. The 

cells were observed to spin rapidly either against one or the other of 

the electrodes or even out in the suspension. The frequency being 

applied could be adjusted so as to stop the spinning of some cells while 

starting others, and to slow the spinning rate or even to change the 

direction of rotation. Later studies found that the spin rate was 

proportional to the intensity of the applied field (Fig. 13). The 

sharply resonant nature of the spinning response led to the use of the 

descriptive term "cellular spin resonance" (CSR). Since then, various 

investigators have quantitated the spin rate of budding yeast cells, (8) 

and the characteristic CSR of various cell lines, including human 

erythrocytes, Friend cells, and mesophyll protoplasts of~ sativa. 

(11) 
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Cellular spin resonance in the simple oscillatory field can be 

broken down into two major types. One, a common type in which cells spin 

while in close proximity to another cell or other polarizable objects; 

second, a rarer type in which cells spin while alone in suspension or 

against a smooth electrode. The observation of lone cells spinning out 

in the middle of the suspension is a rarer event than that of spinning 

alone against a smooth electrode or while interacting with other cells. 

Even so, there have been several research groups report observing and 

. . (3, 12, 13, 14) f studying this event. The act that lone cell rotation is 

a rarer event can be attributed in part to dielectrophoresis.(4) 

Dielectrophoresis (DEP) is the motion if bulk or particulate matter 

induced by the action of non-uniform electric fields. The movement of 

the particle will be towards the region of highest field intensity 

(positive dielectrophoresis) if the effective dielectric constant of the 

particle (or cell) exceeds that of the suspending medium. Conversely, 

the movement of the particle will be away from the region of higher 

intensity if the particle is of a lower dielectric constant of the 

medium. Normally, cells perturb the field and create a region of strong 

field intensity nearby, thereby attracting and linking other cells and 

forming "pearl chains". Because of this phenomenon of "mutual 

dielectrophoresis", any cell that is alone out in a suspension will tend 

to be attracted to other cells, thus preventing prolonged close 

examination of lone cell rotation. Also, there exist physical contraints 

such as thermal upsets, ionic injection, etc. causing field streaming. 

There exists however, another reason for the rarity of observation 

of lone cell rotation in a two-pole field. This laboratory has recently 
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done multiple field studies with Saccharomyces cerevisiae at dilute 

concentrations where only a few (2-10) cells were present in a rotating 

field provided by a four-pole electrode arrangment (Fig.14). Once a lone 

cell was observed to rotate freely in the rotating field, an ac field was 

then applied to only~ poles while the remaining two were shorted to 

avoid field induction. Only a small percentage of the cells (ca. 1%) are 

observed to be capable of spinning in the two-pole field in this 

arrangement while out in suspension. Furthermore the type of cells so 

far observed to be spinning while under these conditions was at the stage 

in its life cycle just before the splitting of the mother cell into two 

daughter cells. The frequency of the applied field at which the cells 

were observed to rotate was between lOkHz and lOOkHz. This raises the 

question; is lone cell rotation linked to a particular stage of the life 

cycle? 

What are the possible explanations for lone cell rotation in a 

simple oscillating field? The most compelling reason seems to be that of 

an internal dipolar oscillation within the cell. (lS) This oscillation 

would be present only with live cells since upon the death of the cell 

spinning ceases. This seems to be supported by the fact that the cells 

spin at a much lower rate than that being applied by the external field. 

The cell rotates at somewhere between 0.1-30.0 Hz while the external 

field oscillates at, say, 600kHz. The presence of an internal dipolar 

field oscillation would interact with the externally applied field to 

provide a rotational torque and thus induce the spinning. 

The cellular oscillations are not necessarily dipolar, but may 

oscillate as linear quadripoles or higher multipoles. In view of the 
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relatively weak character of the cellular oscillations it would also be 

expected that the externally applied oscillatory fields would serve to 

"pull" or change the frequency into resonance with that of the applied 

field. This would cause the CSR spectrum to be broadened by the external 

frequency pulling. 

1.3 • .fE. !. Rotating Field: 

Finally, there is the rotation of cells and other particles in 

rotating electric fields. If, for example, three or more electrodes are 

arranged in a ring and pulsed sequentially to produce a rotating 

electromagnetic field in the intervening space this produces a 

polarization on a particle in the mid region. Moreover, this 

polarization takes a finite time to establish. The angular lag between 

the direction of the dipole thus created and the direction of the 

exterior rotating field now gives rise to a torque. The spin of the 

particle can thus be correlated with the field and frequency dependent 

dielectric properties, or permittivity. The CSR technique has 

potentially broad applications in minerological, as well as biophysical 

and medical problems. 

Experimental evidence shows that there are correlations between the 

physiological state of the cell and its CSR spectrum. A comparison of 

the CSR of normal and cancerous fibroblasts was shown in an earlier 

paper. (l6) Fig •. 15 shows the difference, for example, between a live 

yeast cell and a dead one. It may turn out that the technique of CSR at 
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a :particular low frequency range will be useful as a "vital" test of 

cells. Each cell type has its own characteristic spectrum which 

identifies its state of being, in this case live or dead. Fig. 16 

illustrates the dependency of colony age. Fig. 17 through Fig. 19 show 

several examples of CSR spectra for different cell lines. 

2. PARTICLE SPINNING 

Inanimate :particles can also spin while in the presence of ac 

electrical fields. The use of particles provides a model with which to 

test theories on spin resonance without having to be concerned with the 

ever-changing state of live cells. As can be seen from Fig. 20 the 

conductivity of the solution is a critical factor in determining an 

accurate CSR. This is especially true at lower frequencies. 

The general assumption made about particles is that they will spin 

in the direction of the ac field if they are more polarizable than the 

medium they are suspended in, and will spin against the field if they are 

less polarizable. In our case, if spinning with the field is clockwise, 

it is denoted by a(+) value, and if spinning counter-clockwise it is 

denoted with a(-), that is, spinning against the rotation of applied 

field. As model particles of high polarizability we have used crystals 

of BaTi03 (ca. 2000) and of a low polarizability those of Baso4 (ca. 40). 

Fig. 21 shows the CSR spectrum of BaTi03 while in pure water. It can be 

observed that the particles follow the field as the frequency increases 

until approximately 10kHz. Thereafter it crosses over to the negative 
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region of spinning until about 600kHz where it again goes back to the 

positive side of the spectrum. Baso4 in pure water, conversely is not 

observed to spin at any frequency. As seen by Fig. 22 and 23 the 

addition of Darvan No. 7, a polymeric polyelectrolyte based upon 

polyacrylic acid (manufactured by R.T. Vanderbilt Company, Inc.) is shown 

to alter the CSR spectrum of both the BaTi03 and Baso4 • Almost 

incredibly low concentrations of it suffice to affect the CSR of 

suspended particles. It appears that concentrations as low as 100 parts 

per billion will substantially alter the CSR spectrum. This observation 

most readily points out two things. First, that the CSR spectrum 

technique is extremely sensitive and that it will detect small changes in 

the object being tested. Second that, the intrinsic properties of the 

models being tested can be altered at least as far as the CSR spectrum is 

concerned. We must conclude that the surface absorption of the 

polyelectrolyte, Darvan, appreciably modifies the exterior of the 

particles, causing a new set of parameters for the models to be set. 

3. THEORY 

To facilitate the application and the understanding of CSR a 

simplified analysis of the theory is presented below. Briefly stated, it 

is found that the CSR spectrum gives spin rates proportional to the 

magnitude and sign of the effective (differential) polarization of the 

body in the suspending medium. From the observed CSR spectra, then, the 

size and course of the effective permittivity spectra of small bodies can 



R 
0 
T 
A -T 
I 
0 
N 

R 
A 
T 
E 

.... 
,j 

~71 ~ _ -:::=-:::=-:::---_.__ • __ •. --, - ----------------~----------• 
-3 

-6 

-9 

. . 

-12.._--~----~-----~---'-----------'---
-12 -10 -8 -6 

LOG or CONCENTRATION 

• 

·._,· 

-4 

°' CXl 



70 



be determined and the nature of the polarizabilities can be interpreted. 

In the following analysis, friction between the body and the floor of the 

chamber is neglected as a first approximation since we are dealing with 

tiny objects usually visible in Brownian motion. 

Torque on a Pola.rizable Sphere in a Rotating Field 

-+ -+ -+ 
T ~ µ x E (1) 

T = µ Eo sin o; o= B8f~?±~~tfgfl1EeRtnahe (2) 
the phase of the field E (t). 

0. 

For a sphere the induced moment when in a medium is, after 
t -+ 00 

' ti -+ 3 
µ = 27T a Re ( £2 -

£2 + 2£1 

(3) 

Assuming a simple Debye dielectric of one characteristic relation 

time, T , of the form 

£= £ I _ j £II £00 + ( £ - £00) - j(E 
s s 

£00) w't' 
(4) 

l+ w 't 1 .+w -C 

where 

E = absolute dielectric permittivity (complex) 



e: - e: ' .,..je:n 

e:' = in-phase absolute dielectric constant 

e:" = out-of-phase dielectric constant 

j = 

w = angular frequency of applied field 

µ = induced moment 

D = dielectric replacement 

we may write 

D=e:E 

D(t)= e:oo E(t) + 

= e:oo E(t) + 

(e: - e:oo) E (t)e -io= (e: 1 -j e:")E (t) 

(e:s- e:oo) E(t) (cos o-j sin o1 
s 

From Eqs. 4, 5, and 6 we find 

sin o = w,: 

72 

(5) 

(6) 

(7) 
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for the angle of the phase lag, o • 

In a rotating field as from a four-electrode system with potentials 

V =V sin and V =V cos wt applied to the x and y electrode pairs, the 
X O y O 

magnitude of the maximum field, E, and the potential differences remain 
0 

constant in the mid-region of the symmetric electrodes. 

Combining Eqs. 2, 3, and 7, we obtain as an expression for the 

torque, and using K = e: /E 

T= µE sino= 2na3 Re 
0 

0 

W'r 

.2 .2 l 
(l+w 'r )~ (8) 

where Eo is the permittivity of free space. For a sphere slowly rotating 

in a fluid medium we may compute the frictional drag from Strokes 

formula. (l7) The electrical torque and the hydrodynamic drag will equal 

in steady state. 

or 
(9a) 
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(9b) 

where: 

~ = viscosity of the medium 

we= rotational (angular speed) of spherical body 

a = radius 

w = angular frequency of the applied field 

1' = characteristic relaxation time of the body dielectric K1 and K2 

are the complex constants of the medium and sphere, resp. 

K· = K.' - j IC = K'.-j a· 
l l. l 1_1_ 

E0 W 

(10) 

For the special case of a sphere of insulating character in a conductive 

fluid 

(lla) 

and if 02""' 0 then 



75 

(llb) 

and the rotational speed (in a direction opposite to the rotation of the 

field) is 

we=~ w-rEo2 

471 (l+w 2'T2 )1h 
(12) 

In this case, can be evaluated in advance. We can expect the 

relaxation time of the insulating sphere in the conducting medium to 

approximate ,. = RC where R~ Pl /2a; c = 4 1rE 0a or -r::i:: 4 11E()P 1 

We conclude that the simplified theoretical analysis predicts the 

rate of cellular rotation, w, to be proportional to the square of the 
c 

applied field intensity (as observed, Fig. 13); to be inversely 

proportional to the viscosity; to be proportional to the field frequency; 

to the relaxation time of the (presumed Debye-type) cell; and to the 

"effective polarizability", Keff" We expect and, so far, find we to 

reflect the magnitude and sign of Keff" 

For example, it is known from earlier studies of the DEP of yeast 
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the Keff is generally negative in the region of 500 to 70kHz for live 

cells, and positive for dead ones. This agrees with the observed sign of 

w_c· A plot of wcfw_E versus w E can be expected to provide a convenient 

method for obtaining dielectric spectra for single cells, to give 

relative values of Keff as a function of the applied frequency. 
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FIGURE CAPTIONS 

Figure 13: Spin rate of yeast (Saccharomyces cerevisiae) in a four-pole 

rotating electric field as a function of the square of the applied 

voltage 'on electrodes with a 1 mm gap. The frequency of the applied 

field was 60 kHz. Measurements of the spin rate (w) for cells in 
c 

various concentrations of sucrose in water. (Squares, circles, 

triangles, and diamond designate data for O, 100, 200, and 300 g sucrose 

per liter resp.) The resistivity of the solutions was adjusted to 133 

kOhm cm. The cells examined were from 10-day-old culture, and were 

classified as 98% viable by methylene blue stain test. 

Figure 14: The four-electrode CSR chamber. The distance between 

opposed (i.e. N-S or E-W) tips is 1.2 mm. The inner least width of the 

well is 8.2 mm. It is 1.0 mm deep. The Pt tips are ca. 130 min 

diameter on 75 m diameter Pt wire. All are mounted on a standard glass 

microscope slide. 

Figure 15: Spin rate spectra of living (triangles) and dead (circles) 

yeast (Saccharomyces cerevisiae). The live cells were from a 7-day-old 

culture; the dead cells were heat-killed by exposure to 70°c for 3 min. 

The applied voltage was 10 V p-p, and the resistivities of the 

suspensions were 250 to 460 kOhm cm. 

Figure 16: Dependence of the CSR spectrum of yeast (Saccharomyces 

cerevisiae) upon the colony age. (Circles, Triangles, and squares refer 

77 
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to data for colony ages of 2, 6, and 8 days respectively.) Note the 

shift of the 2-and the 20-kHz peaks to lower frequency as the colony age 

increases. 

Figure 17: The CSR spectrwn of one day old culture of bovine kidney 

cells. 

Figure 18: The CSR spectrwn of CRFK (Crandall feline kidney) cells from 

a four-day-old culture. 

Figure 19: The CSR spectrwn of green monkey (VERO) kidney cells from a 

5-dar-old culture. 

Figure 20: Effect of the conductivity of the suspension upon the CSR 

spectrum of single yeast (Saccharomyces cerevisiae) cells bearing a small 

bud and from a six-day old colony. Voltage 10 V p-p. Spinning was 

counter-field in direction. Dotted curve, cells in pure water, 2.4 

S/cm. Full curve, cells in 8.9 S/cm. Dashed curve, cells in 0.025 

S/cm. The conductivity was adjusted by adding NaCl. Note that the 

effect of increasing the conductivity is to shift the peaks to a higher 

frequency. 

Figure 21: The CSR spectrwn of barium titanate particles in high purity 

(5 micromho/cm) water. 

Figure 22: The CSR of bariwn titanate as affected by polyacrylate 

polyanions. The particle spin rate when driven by a rotating field at 

600 kHz is seen to be affected even by very dilute solutions. 

Figure 23: The CSR of barium sulfate as affected by polyacrylate 

polyanions. The particle spin rate when driven by a rotating field at 

600 kHz is seen to be affected even by very dilute solutions. 



APPENDIX B 

ELECTRICAL SCHEMATIC FOR FOUR POLE CIRCUIT 
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