
SIS: A SORTING INSTRUCTION SIMULATOR

By

JAMES STEPHEN RAMLET ~.
Bachelor of Science

Oral Roberts University

Tulsa, Oklahoma

1977

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1984

-n,e:1:) i ~.
) Cl~-'1 .
R ,1'=> s
to'?, d-

SIS: A SORTING

Thesis Approved:

ii

12027·10 j

PREFACE

This paper is a discussion of·a sorting instruction

simulator (SIS). In addition to a description of the

program modularity and simulation design, a study of the

command language developed for the system is presented.

Also included is a user's guide and module catalog.

I would like to express sincere gratitude to my major

advisor, Dr. Michael J. Folk for his guidance, motivation,

and invaluable help. I am also thankful to Dr. George E.

··Hedrick for his advisement in the.course of this work. A

special note of thanks is extended ·to· Dr. John P. Chandler,

not only for serving on my graduate c.ommi ttee, but also for

. his encouragement during my stay at Oklahoma State

University.

My wife, Sandy, my parents, my father-iri-law, and my

mother-in-law deserve my deepest appreciation f~r their

continual support, moral encouragement, and unders~anding.

iii

Chapter

I.

TABLE OF CONTENTS

INTRODUCTION

Impetus
Objectives

.

Page

1

1
2

II. Review of Literature 3

I I I.

CAI Overview . . • . • . • • • • • 3
Hi story . • • • • . . • • • • • • 3
Systems and Courses . • • • • • • 4
Course Design and Development • • • • 6

CAI in Computer Science • • • • • • • 10
Dynamic Program Visualization. 10

Methods and Procedures . 13

Hardware . . • • • • • • • . • • • 13
Simulator Design • . • • . • . • • • . • • 13

Menu Display. . • • . • • 13
Screen Layout . • • . • • • • . • . . 16
The Use of Color in Algorithm

Simulation • • • • • . • • • • . 20
Program Functions • • • • • • • . 22

Program Description • • • • • . • • 24
The Program Modules • • • . • 24
The SIS Command Language • • • • . • • 26
Two Examples of Source Code with

SIS Commands • • • . • • • • • • 30
An Example of Recursion and SIS

Commands • • . • . • . • . . • • • • 3 6
User's Guide Description • • . • • • . 40
Module Catalog Description • • • • • • . • 40

IV. Summary and Future Work . . • • . • • . . · • 41

SIS Synopsis • • • . • • . 41
Future Project Considerations . • • • • • • 42

SELECTED BIBLIOGRAPHY •

APPENDIX A - SIS Module Schematics

APPENDIX B - SIS Module Catalog .•

iv

44

49

53

Chapter

APPENDIX c - SIS User's Guide
APPENDIX D - VT125 Conversion Requirements

v

Page

90

101

Table

I •

II.

I I I.

IV.

LIST OF TABLES

SIS Display Color Codes •.•..•

Summary of the Program Functions

SIS Display Color Codes••

Summary of the Program Functions

vi

Page

21

23

96

98

LIST OF FIGURES

Figure

1.

2.

3.

4.

An Example of a SIS Menu Display •••••

Contrasting Simulator Displays of the Two
Execution Modes • • • • • . . ••

Array of Keys Representation •

SIS File Interrelationship.
. .
. . . .

5. Bubblesort PDLs
6.

7.

Insertion of Line Commands into Bubblesort •

Insertion of Variable Commands and Stack
Commands into Bubblesort •••••••

8. Bubblesort Algorithm in Single-Step Mode with
the Condition Commands Inserted ••••

9. The Completed Bubblesort Algorithms
10. An Alteration in the PDL of a Recursive Function

Page

14

17

19

27

31

32

34

35

37

to Accommodate SIS Commands • • • • • • • • • • 38

11. SIS Command Insertion into a Recursive

12.

13.

Function ••••••

Main Module Schematics •

Init Module Schematics •

. . .
. . .

.
. .

14. Options Module Schematics
15. Screen Module Schematics

16. Run sort Module Schematics • - .

17. The SIS Title Display . .
18. A Self-Run Mode Simulation Display ••

19. A Single-Step Mode Simulation Display •.

vii

39

49

50

50

51

52

92

95

95

CHAPTER I

INTRODUCTION

Impetus

This paper is a presentation of a Sorting Instruction

Simulator (SIS), a computer simulation model of visual

program execution for sorting algorithms. Many problems for

beginning programming students relate to program comprehen­

sion. The purpose of SIS is to aid the student in his abil­

ity to conceptualize the abstraction of a given algorithm

with the flow of the program code.

Chapter II is a discussion on how program visualization

in computer-assisted instruction (CAI) has evolved.

Chapter III describes SIS in detail. Its menu

displays, the screen layout, simulator execution, and pro­

gram functions are included. The SIS command language and

program modules are also covered. The chapter concludes

with descriptions of the SIS User's Guide and SIS Module Ca­

talog.

Chapter IV highlights the main features of the SIS sys­

tem. Future project considerations are also suggested in

this chapter.

1

Objectives

The goals of SIS parallel those of Herot (1982):

1. To aid programmers in the formation of clear and
correct mental images of the structure and func­
tion of programs.

2. To illustrate the dynamic behavior of programs.

3. To "open the side of the machine" so that the user
can form an accurate model of the program.

2

Herot's emphasis is placed upon the design of a program

visualization environment to support builders and main­

tainers of large, complex software systems, whereas SIS is a

visual display package of sorting routines. It allows a

student to select a sorting algorithm he or she is interest-

ed in viewing. As he interactively investigates the princi­

ples and details of the algorithm, his comprehensi~n is

enhanced.

CHAPTER II

REVIEW OF LITERATURE

CAI Overview

History

Beginning in the late 1950's, Computer Assisted In­

struction (CAI) was developed and applied to many problems

in education ranging from elementary to secondary to univer­

sity level (Suppes, 1978). Its history can be divided into

time periods beginning with a "primitive age" of programmed

instruction with workbooks, through today's "modern age" of

intelligent CAI (Goldstein, 1977). The level of interaction

between the student and computer has evolved from the limit­

ed, inflexible drill-and-practice systems to highly person­

alized interactive tutorial presentations (Suppes 1967,

Goldstein 1974). The educational promise of CAI is reflect­

ed in two trends: (1) the increasing emphasis on individu­

alized instruction, and (2) use of computers to simulate

experiences not otherwise readily available (Mag~dson,

1978). Results indicate that in the future, CAI will con­

tinue to be geared toward an· instructor supervised system.

Supplementary written material and personal support from the

3

teacher are necessary in order to achieve the maximum bene­

fits of CAI (Chambers, 1980).

Systems and Courses

CAI presentations can appear in many different forms.

The most common types of lessons are: drill-and-practice,

tutorial, simulation, and games.

4

In a drill-and-practice setting,·the teacher introduces

material in class. The student is then directed to work on

related exercises offered by the drill-and-practice program.

The degree of difficulty of the exercises changes according

to the student's performance. These systems are strictly

supplementary to the regular curriculum taught by the.·teach­

er. One of the first drill-and-practice programs was

developed at Stanford for teaching mathematics in elementary

schools (Suppes, 1972).

Tutorial systems take over the main responsibility for

developing skill in the use of a given concept. They may be

complete course sequences or special supplementary units in­

corporated by the teacher into his course program. Tutorial

programs are capable of real time decisions, with branching

contingent upon the student's responses. The SOPHIE system

developed by Brown (1975), is an example of a CAI tutorial

program.

Simulation systems provide the student with the illu­

sion of experiencing a real life occurrence. These systems

incorporate graphics routines for portraying a situation.

5

They are useful in a· wide variety of subject areas, includ­

ing scientific applications. For example, in a chemistry

simulation the student can proceed through a potentially

dangerous experiment in complete safety and without destruc­

tion to laboratory equipment. If he makes an error in

judgement he is able to view the results of his error

without experiencing physical harm. Examples of laboratory

simulation programs are given by Lagowski (1970) and Gelder

(n.d.). One of Gelder's simulators demonstrates the in­

terrelationship of pressure, volume, and temperature in a

closed system; another illustrates color titration.

The use of computer games for teaching has appeal

(Goldstein, 1977). The knowledge gained by the student is

learned actively, and with purpose (to improve his score).

As in a simulation, the results of a decision are immediate.

Computer games inspire motivation because they are enjoy­

able. However, Goldstein (1977) points out that a game has

limitations. A student, when using a game on his own will

reach a plateau of learning. At that time he needs a coach

in order to further improve his performance. Therefore,

Goldstein has combined a tutorial system with the computer

game concept to propel the student forward in his learning

endeavor.

The use of natural language processing within all forms

of CAI has led to the introduction of courseware whereby

students are not limited to responding in single words, word

phrases, or by making multiple choice selections. Rather,

6

students may reply in a conversational manner. It is under­

stood that success with natural language. is limited

(Shapiro, 1975). The user, though not specifically trained

in the system's input language, must know the capabilities

of the system and must adequately phrase input to the system

for satisfactory handling. Courseware using natural

language processing has been described by Brown (1975),

Wexler (1970), and Carbonell (1970).

CAI has been implemented in a wide variety of subject

areas. COALA is a computer-based learning system for an in­

troductory electrical engineering network theory course

(Gray, 1977). A case study is given by Peters (1982) on a

tutoring system for organic chemistry. Interactive CAI pro­

grams have been described for teaching elementary mathemati­

cal logic (Suppes 1981, Goldberg 1972). Lantz (1983) has

created a system for teaching equation solving. Other re­

lated uses of CAI include SIGI, a computer-assisted guidance

system (Katz, 1978), and on-line consultation systems

(Kehler 1981, Shapiro 1975). These are but a few examples.

Thus CAI has progressed from a rough and relatively unex­

plored theory to a broad field that involves a diversity of

systems tailored to the specific need at hand.

Course Design and Development

With any software development activity, risks are to be

considered. The user is concerned with the quality of the

software and the cost involved in getting the system "up and

running". On the other hand, the developer must have as­

surance that the hardware for which the software is

developed.will be widely used. He also needs protection

through copyrights and other incentives which increase the

probability of a return on his investment (Blaschke, 1979).

7

Regarding choice of hardware, Matthews (1978) believes

that in the education market, the microcomputer is a defin­

ite contender. It is simpler and l•ss expensive to operate

than a minicomputer. Bork (1979) discusses two ingredients

to consider when choosing a microcomputer: screen design

capabilities, and programming languages. Although the

display screen needs minimal resolution, it should be capa­

ble of displaying both alphanumeric information and pictori­

al or graphic information. Another plus is if the system

has the ability to "turn on" a full complex picture rather

than drawing it line by line. Bork regards BASIC as a less

than adequate language for developing CAI courseware and

prefers a PASCAL system. Schuyler (1979) agrees, noting

that the best programming language for a given task is one

whose structure allows an easy tranformation of the author's

ideas into a finished, debugged program, and PASCAL is a

good choice.

Once the feasibility of a software development project

is established, the specific role of CAI must be clarified.

Dimas (1978) suggests that the following questions may aid

in determining the direction that courseware development

should take:

1. Should courseware be developed as a complete in­
structional package or as a supplement and en­
richment to the present academic program?

8

2. Should the development of courseware be devoted to
one particular type of lesson,- i.e., drill-and­
practice, tutorial, simulation, o·r games, or
should different types of lessons be implemented?

When the role of CAI is established, the actual course·

·design may begin. Dean (1983) advises top-down approach,

that is, begin with general objectives and work down to de­

tailed objectives. To accomplish this goal he provides the

following strategy:

1. Begin with a course description.

2. Divide the course into sub-areas~

3. Divide each sub-area into task~:

4. Divide each task into steps.

With each.step .or frame well defined, the job of. preparing

the computer dialogue is simplified and work can begin.

Many consider a team approach of two to five authors

superior to a one man approach in lesson developmen.t (B(?rk

1981, Chambers 1980, Dimas 1978). A negative aspect o.f the

one man approach is that the courseware may reflect the

author Is idiosyncrasies. Users other than the· ~-uthor ·may.
view the lesson as inappropriate for use with their_$tu-

·dents. Although it is believed that group authorship.in.:..·

volves more man hours to create a given amoun.t of material,

less revision will be necessary after the material is used

with the students. Another important aspect of group

development i-s that it makes possible the involvement of

people with. teaching experience, who may lack expertise in

those skills necessary.for courseware development.

9

It is speculated that courseware is not likely to im­

prove in the immediate future (Sugarman, 1978)~ Therefore,

the most important explorations should be aimed not at

achieving specific learning goals, but at learning about

learning through interactive computer use (Skinner 1961,

Sugarman 1978). A current CAI issue centers around how to

build concepts within the student's mind. Achieving this

so-called "modeling" is explored by Suppes (1979). He

states that at the present tfme it is unclear how to model

the student and still retain a deep basis for individualiza­

tion •. Nor is it known, from a theoretical standpoint, how

to approach the practicalities involved in modeling. Howev­

er, Bayman (1983) reports. progress in teaching concepts of

BASIC. He discusses the formation of mental or conceptual

models by the beginning programmer in the process of learn­

ing the language, also describing the misconceptions the

student may acquire.

Critchfield (1979), from another perspective, suggests

to proceed one step beyond CAI and provide a system for stu­

dents to author their own programs. The computer is to be

used as an intellectual tool for experimentation and

creativity.

10

CAI in Computer Science

CAI courseware has been created for the specific pur­

pose of teaching computer science principles. Lower level

languages such as assembler and machine language are taught

through systems devised by Ballaben (1975) and Koffman

(1975), respectively. BIP, a BASIC instructional program

(Barr 1975a, 1975b, 1976), BATS, a BASIC automatic teaching

system (Santos, 1975), and MENO-II, an artificial intelli­

gence based tutor for PASCAL (Soloway, 1983) are examples of

CAI courseware for high level languages. Lorton (1981) has

designed a system to develop computer literacy by offering

tutelage in a wide range of programming languages. A program

for teaching the fundamental principles and operations of

software systems has been created by Su (1975). Courseware

is not limited to any particular area within computer sci­

ence, rather many aspects on the subject can be learned us­

ing CAI.

Dynamic Program Visualization

A major goal in computing is to be able to program (or

design and implement algorithms) effectively. It is impor­

tan;t to have a clear and in-depth understanding of the

dynamic character of programs before attempting algorithm

design and program implementation (Dromey, 1982).

The difficulties which arise in presenting an algorithm

in the classroom are discussed by Mincy (1983). He

expresses concern about how to convey the time factor when

11

an algorithm modifies the values or states associated with

an entity over a period of time. In addition, during a lec­

ture students understand material at different rates.

Therefore, the pace of the lecture is often inappropriate

for many students. Another problem with the classroom set­

ting is the inability of a student to visualize what is hap­

pening.

None of the afore-mentioned programs allows the novice

programmer to grasp fully wnat transpires during program ex-

ecution. Students need to "see" programs written in a high

level language executing. Two approaches have been taken in

order to enable students to visualize program execution:

animated·films, and computer simulation.

Computer systems have been developed which facilitate

the production of teaching films containing animated

representations of program execution (Baecker 1975, Gross

1975). Sorting Out Sorting is an example of a teaching film

produced with the aid of a computer (Baecker, 1981).

Computer simulation is preferred over animated teaching

films because the dy~amic visual sequence presented by a

computer simulation has the following advantages:

1. The display screen is under the complete control of
the individual student.

2. The display code can be followed in conjunction
with the model animation.

3. The system allows the student to proceed through
the algorithm at his own pace.

4. The material can be viewed by the student more than
once.

12

5. There is a greater range of time when the system is
accessible (vs. when the film is accessible} for
viewing.

6. The simulator can provide a larger assortment of
examples.

Examples of computer simulators include systems devised for

the displaying of data structures within a program (Myers,

1983), an aid to program visualization (Herot, 1982), and

the demonstration of dynamic events using Hypertext (Ward,

1981). Hypertext is a facility for creating, altering, and

traversing information in a flexible manner.

CHAPTER III

METHODS AND PROCEDURES

Hardware

SIS is implemented on a GIGI (General Image Generator

and Interpretor) terminal manufactured by Digital Equipment

Corporation. The terminal is interfaced to a Perkin-Elmer

3230 Computer. Remote Graphics Instruction Set (ReGIS) com­

mands are used to generate the screen displays on a. GD 233

video monitor manufactured by BARCO Industries. The program

package is written in the language Con the UNIX operating

system.

Simulator Design

SIS, when developed, adhered to the guidelines for

designing the display as outlined by Kosel (1982). Reada­

bility, variety, eye movement, timing, and visual imagery

were the most important factors considered.

Menu Display

Three selections must be made by a student before a

simulation can begin: choice of algorithm, mode of

execution, and speed of execution. With all selections a

similiar display format is used (Figure 1). The student is

13

provided with a blinking pointer to a menu which can be

moved around via the up and down arrow keys. The pointer

used is actually the graphics cursor which is made visible

only during times of a selection process.

Figure 1. An Example of a SIS Menu Display

Originally the pointer was defined as a blinking box.

14

Problems arose, however, in defining the cursor keys . It

was difficult to put a bound upon their range due to limita­

tions with ReGIS~ Using a box was abandoned, and instead

the graphics ~ursor was implemented as the menu pointer.

15

The graphics cursor provided all the benefits of the box

without any of the disadvantages. With this approach the

programming became cleaner. The only modification necessary

was to widen the rows of the menu because the graphics cur­

sor was a little taller than the box. This provid~d a bene­

ficial side effect of improved readability in associating

the menu pointer with the correct corresponding option.

The first decision to be made by the student is which

sorting algorithm is to be viewed. The selection of sorting

algorithms to choose from is:

1. bubblesort

2. insertionsort

3. guicksort

4. selectionsort

5. · Shellsort

Selection is made as described above by moving the menu

pointer to the desired algorithm and then pressing the re­

turn key.

Next, the student must decide the mode of execution in

which he would like to see the algorithm presented. There

are·two modes of execut.ion:· self-run mode and single-step

mode. . Se 1.f~run mode _portrays the progress of the executing

· progr~m in dynamic illustrations at a fixed r~ie of speed.

- In this· mode the student 'is able to grasp the overall

behavior of the particular algorithm in question. Main em­

phasis is placed on changes occurring within the list of

keys to be sorted. He can see visually how the keys are

16

sorted. Single-step mode steps through the algorithm one

instruction at a time. In this mode execution of the algo­

rithm advances to the next instruction only as directed by

the student. Such static illustrations portraying the pro­

gram at some instant of execution time allow the viewer to

examine the details and results of each instuction executed.

Changes in the flow of control and variable assignments can

be monitored along with results of conditional expressions.

If self-run mode is selected, a menu of relative speeds

is presented: fast, medium, and slow. The option picked

will determine the rate of instruction execution. Specific

quantitative rates are not offered as options because the

speed of algorithm simulation at a given time is dependent

upon the availability of the CPU. In a multi-user environ­

ment the speed of simulation will bog down during times of

CPU peak workloads.

Screen Layout

Once the student has selected an algorithm, mode of ex­

ecution, and speed of execution, the simulator display is

presented. The screen is divided into two partitions. The

right partition holds the array of shuffled keys to be sort­

ed and, if in single-step mode, the program variables. The

left partition contains the program design language (PDL) of

the algorithm. An example of the contrasting simulator

displays of the two execution modes is shown in Figure 2.

(A) Self-Run Mode

(B) Single-Step Mode

Figure 2. Contrasting Simulator Displays of the
Two Execution Modes

17

18

The layout is similiar to the design described by

Dromey (1982). However, instead of illustrating the array

of keys as a linear list of integers, a more pictorial

representation has been developed (Figure 3). Letters are

used as the keys rather than integers. The use of letters

is an improvement over the use of integers because misunder­

standings can arise when using integer keys in the array.

Students often will confuse integers with the indices of the

array. In addition, the letter keys within the array are

represented by rectangles of proportional sizes as illus­

trated. The rectangles aid in eye recognition, as it is

easy to check whether a[i] is greater than a[j] by comparing

the sizes of the rectangles in both locations.

A PDL rather than a flowchart is placed in the left

partition to follow the flow of the executing program.

Results appear to provide a strong case for the use of a

program design language in preference to flowcharts (Ramsey,

1983).

An ADA-like pseudocode is used as the PDL (Young,

1982). In order to fit the entire algorithm PDL on the

display screen at one time, its length must be less than

twenty-three lines. This limitation does not pose a problem

except in the case of quicksort. To circumvent this problem

a ·recursive version of quicksort is used.

19

a [1] 1--------~
a [2]

I
a [3]

a [4]

a [s]
I ;

a [6] m
a [7] J

a [8]

a [9] lillll
a [lo]

a [11]

a [12] Diii
a [13]

a [14]

a[Js] l!mlllllll

Figure 3. Array of Keys Representation

Two other functional areas of the display are the re­

turn prompt and the header. The header rests at the top of

the screen and provides orientation information. It informs

the student of the algorithm currently being shown and its

mode of execution. The lower right hand corner of the simu­

lator display is reserved for a return symbol which prompts

the student for a response. In the single-step mode, press­

ing the return key steps the simulation to the next instruc­

tion. Pressing the return key at the conclusion of a

20

simulation prompts SIS to ask, "Do you wish to make another

selection?". Depending upon his response, the student is

either redirected to the algorithm menu or logged out of

SIS.

The Use of Color in Algorithm Simulation

Color is effective for highlighting any graphics enti­

ty. The color selection of the principle components in the

running simulation is critical. Care must be taken in order

to ensure maximum clarity within the ongoing presentation.

The guidelines recommended by Heines (1984) were applied:

1. Make sure the adjacent colors do not clash.

2. Do not use colors that are too "hot".

In addition, the colors selected need to provide contrast.

Contrasting colors are important to guide the reader's eye

to important changes within the operating simulation.

Green was chosen as the primary display color. It is a

soft color and easy to read. Unlike white, it is mono­

chromatic and provides a sharper picture while not contri­

buting to eye fatigue. The other colors picked to highlight

simulation features are listed in Table I. Black was

reserved for the background color because Foley (1982) ad­

vises that a neutral background be used with a display con­

taining several colors.

By using a pre-defined color coding scheme, the PDL,

array of keys, and program variables can be integrated to

present the student with a detailed conceptual model. In

21

either execution mode, the student can associate what array

key(s) are affected by the current executing instruction.

Both the current PDL instruction and relevant array key(s)

are highlighted in cyan.

Color

Green

Yellow

Blue (Cyan)

Red

White

Dark

TABLE I

SIS DISPLAY COLOR CODES

Purpose

General Display Color

Highlights Previous Instruction

Highlights Current Instruction,
Keys, and Variables

Highlights Recursion

Highlights Display Header and
Return Symbol

Background Color

Because single-step mode was designed to focus on the

details of a single executing instruction, it provides addi~

tional information. Not only are the current PDL instruc~·

tion and relevant array key(s) displayed in cyan, but so are

the affected variables found within that inst.ructi0n. For

instance, if the current instruction is a conditional ex-

pression, the result of that condition is posted (either

true or false). In addition, _when in· single-step mode the

previous POL instruction is color coded in yellow whichs

aids in following the flow of control of the program.

22

The recursion imposed on t~e quicksort simulation in­

troduces modifications in the color coding scheme. These

modifications are necessary in order to make clear to the

student ~hen a recursive subroutine call is being made. On

such an occasion the current POL instruction and affected

variables are highlighted in red. This deviates from the

normal cyan highlighting. Within the array, a red box is

drawn around the range of cells affected by the procedural

call. This box is removed when the subroutine is exited.

While inside the subroutine, all current components revert

to cyan highlighting.

It should be pointed out that SIS does not teach recur­

•ion. Rather, it illustrates the performance of a recursive

algorithm. It is assumed that the student has some notion

of the concept of recursion before using SIS.

Program Functions

SIS offers a variety of program functions which may be

.called while the user is viewing a simulation. The brea~

key· may be pressed if the student elects to leave the

current simulation prematurely. Such action prompts SIS to

erase the screen and ask whether the student wants to view

another sorting routine or prefers to exit the program.

SIS offers additional program functions when in self-

run mode. For example, the viewer has the prerogative of

changing the execution speed of the simulation by pressing

the corresponding function keys. A pause function is also

provided which can be used to halt program execution tem­

porarily. A summary of the program functions available is

given in Table II.

TABLE II

SUMMARY OF THE PROGRAM FUNCTIONS

Key

'F' or 'f'

'M' or 'm'

'S' or 's'

'P' or 'p'

'BREAK'

Function

Change Execution Speed To 'Fast'

Change Execution Speed To
'Medium'

Change Execution Speed To 'Slow'

Pause Or Temporarily Halt
Simulation, Press 'RETURN' Key
To Resume Execution

Abort Current Simulation

The terminal response time to depressed program func-

23

tion keys may not be immediate. The alarm macro provided by

the UNIX operating system is methodically set to test for

depressed function keys, but the time resolution of the

24

alarm is only one second. Therefore a small delay can occur

between the time the function key is pressed and when the

terminal responds.

In order to maintain clarity, the viewer is not allowed

to change the mode of execution while a simulation is in

progress. Because the objectives of the self-run mode and

single-step mode are different, their respective PDLs vary

slightly. Each PDL is tailor-made for a specific purpose.

If the viewer were allowed to change the mode of execution,

such an abrupt change within the currently displayed PDL

could cause confusion. As an alternative, the viewer can

abort the running simulation and restart it in the other ex­

ecution mode.

Progam Description

The Program Modules

Due to the nature of the C programming language, SIS is

constructed as a collection of interfacing procedures or

modules. The principles set forth by Maynard (1972) are

followed in modularizing the system. Each module is

designed to fulfill a specific need within the program pack­

age.

While designing a system, care must be given when

breaking the program code into modules. Within SIS there

are three basic types of modules: control modules, process

modules, and graphics modules. The function of a control

module is to control the calling sequence of the modules

25

under its jurisdiction. A process module performs a single

logical function or a series of small related logical func­

tions. A graphics module carries out a specific graphics

function whose results can be observed upon the screen

display. Appendix A gives the schematics of the SIS module

interfacing.

Modules of common purpose are grouped together into one

file. The files constituting SIS can be divided into two

categories: primary files containing primary modules, and

secondary files containing secondary modules. All primary

modules of a particular primary file serve together in a

specific stage of the SIS program. They are not used at any

other time. The following is a list of the primary files

implemented by SIS and the functions they perform:

sis.c

setup.c

options.c

screen.c

run sort.c

The main driver of the system.

Initializes both the screen and graphics
parameters and produces the title of
the package.

Displays all menu frames and processes
all input in response to the menu
frames.

Displays the opening frame of the
selected algorithm simulation.

The driver of the algorithm simulation.

Secondary modules play a supplementary role to the

primary modules in a SIS program. They exist as common

functions which may be utilized many times throughout a

simulation by primary modules of different primary files.

Secondary modules are not limited by the number of times and

places they are called. They are grouped into files accord-

26

ing to the functions they perform. The names of the secon­

dary files used by SIS are:

globals.c

dspfns.c

code.c

sorts.c

kybdfns.c

The routines which generate and remove
the return symbol.

The graphics modules which supplement
the primary modules found in
run_sort.c and screen.c.

The graphics display modules which sup­
plement screen.c with the sorting al­
gorithm PDLs.

The source code modules of the sorting
algorithms supplementing run sort.c.

The modules used for handling the simu­
lation functions generated from the
keyboard.

The interrelationship between the SIS files is diagramed in

Figure 4.

The SIS Command Language

The SIS Command Language has been developed ~o simplify

the programming of the algorithm simulation. Each command

in the language can be conceived as an encapsulation of

several ReGIS commands. The language acts as an interface

between the sorting algorithm source code and the screen

display. To the programmer, the SIS commands operate as

visual tools and are implemented by being inserted into the

existing source code of the sorting algorithms. The basic

core of the source code is left unaltered. A complete sum­

mary of all available SIS commands is located in the SIS

Module Catalog, Appendix B.

27

sis.c

I
v

I I I · I
v v v v

setup options.c screen.c
I

run sort.c
i-

v v

v v v v
---~----------

I
v v

globals.c
v

dspfns.c kybdfns.c

Figure 4. SIS File Interrelationship

I
v

I
v

sorts.c

The language can be broken down categorically into five

types of commands. Each type of command controls one or

more of the components to the simulation display: the PDL,

the array of keys, or the variables. SIS commands are

categorized as follows:

1. Line commands.

2. Variable commands.

3. Stack commands.

4. Condition commands.

5. Box commands.

1. Line commands. display PDL instructions in the color

indicated. The parameter ·passed is a PDL line number. For

28

example, a blue_line(2) command specifies that PDL line

number two is to be displayed in blue (cyan). Similar

results are obtained for red line commands. Because green

is the primary display color, a green line command has an

additional feature associated with it: if single-step mode

is employed, the previously executed PDL instruction is

displayed in yellow.

2. Variable commands function to highlight denoted

variable displays and array display keys. A green_var('i')

command dictates that the variable 'i' be displayed in

green. A red_var('k') command directs the variable 'k' be

highlighted in red. The format of variable commands only

allows single character parameters to be passed. Variable

names occurring in an algorithm that exceed one character

are substituted with· unique mnemonic symbols. Such substi­

tutions are required for array variables and temporary vari­

ables. The symbols '-', 'J', and 'T' representing the·

variable names a[j-1], a[j], and temp respectively, are

samples of mnemonic replacements. A blue_var('-') command

orders the variable 1 a[j-l]' and its associated key to be

highlighted in· blue (cyan).

3. Stack commq.nds and variable commands function simi­

larly. They both highlight .variables and array key&, ~rid

pass the· same. se.t. of parameters. However, unlike variable

commands, stack commands use a display stack in their imple­

mentation. They-are comprised of (1) push dsp commands and

(2) pop dsp commands. A push_dsp command acts like a

29

blue_var command by highlighting in blue. In addition, it

pushes its parameter onto the display stack. When a pop_dsp

command is invoked, all stack elements are systematically

popped off the display stack, and each becomes the object of

a green_var command. Use of stack commands has advantages

over variable commands in situations that merit many vari­

able displays and key displays to be reset to green. Stack

commands condense the SIS command encoding by replacing a

list of green var instructions with a single pop dsp in­

struction.

4. Condition commands are issued only in single-step

mode. Their function is to display the result of a condi­

tional expression. 'TRUE' and 'FALSE' are posted in blue

(cyan) for the condition commands cond(l) and cond(O)

respectively. When a subsequent instruction is executed,

the result of a condition command is automatically erased

from the screen display.

5. Box commands are restricted to SIS presentations

utilizing recursion. They appear in two varieties: as

red_box commands or as white_box commands. The function of

a red box command is to encompass the range of cells in the

array display affected by the recursive call. When return­

ing from a .recursive call, a white box command is invoked to

remove the red enclosure. Two integers are passed as param­

eters within box commands. These parameters designate the

lower and upper bounds of the box to be superimposed upon a

portion of the array display.

Two Examples of Source Code

with SIS Commands

30

This section discusses the steps to follow in achieving

the trans!ormation of algorithm code into a SIS display

which can be dynamically visualized. Two examples are fur­

nished on how to transform bubblesort into (1) a self-run

mode presentation and (2) a single-step mode presentation.

The six basic steps of a SIS algorithm creation are:

1. Establish the algorithm PDL.

2. Insert the line commands.

3. Insert the variable commands and stack commands.

4. Insert the condition commands.

5. Insert the box commands.

6. Replace the PDL instructions with program code.

These steps are followed regardless of the execution mode

desired.

Step 1: Establish the algorithm PDL. The PDL serves

as the framework for the SIS command insertions. It is

identical to the one which will appear on the display screen

during the simulation. Correctness of the PDL instructions

is paramount because inaccuracies or mistakes will eventual­

ly lead to the conveying of erroneous information to the

viewer. In this example, it was decided that the algorithm

to be presented in self-run mode should be the one illus­

trated in Figure 5.A. This is contrasted with the single­

step mode algorithm shown in Figure 5.B, in which it was

31

decided that the call to 'swap' should,· for pedagogical rea­

sons, be replaced by the three lines shown.

for i in 2 •• N

for j in reverse N .. i

if a[j-1] > a[j] then

swap(a[j],a[j-1])

(A) Self-Run Mode

for i in 2 •• N

for j in reverse N .. i

if a[j-1] > a[j] then

temp:= a[j-1]

a[j-1] := a[j]

a [j] : = temp

(B) Single-Step Mode

Figure 5. Bubblesort PDLs

Step 2: Insert the line commands. There are three

different line commands used for displaying PDL instruc-

tions:

1. A blue line command directed to highlight the partic­
ular-PDL instruction.

2. A green line command which resets the instruction
(blue-line commands must always be followed by
green-line commands).

3. A red line command, which is substituted for the
blue line command whenever the PDL instruction is a
recursive function call.

Figure 6 presents the bubblesort algorithms after the inser­

tion of the line commands.

for i in 2 .. N
* blue line(l);
* green line(l);

for j in reverse N •. i
* blue line(2);
* green line(2);

* blue line(3);

for i in 2 .• N
* blue line(l);
* green_line(l);

for j in reverse N .• i
* blue line(2);
* green_line(2);

* blue line(3);

32

* green line(3);
if a[3-l] > a[j] then

* green line(3);
if a[3-l] > a[j] then

swap(a[j],a[j-1]) temp:= a[j-1]
* blue line(4);
* green line(4);

* blue line(4);
* green line(4);

a[j-1] := a[j]
* blue line(5);
* green_line(5);

a[j] := temp
* blue line(6);
* green_line(6);

(A) Self-Run Mode (B) Single-Step Mode

Figure 6. Insertion of Line Commands into Bubblesort

The ordering of the PDL instruction with its associated

line commands is most important. Consider the first PDL in-

struction of Figure 6.A, which is a 'for loop' statement.

If its related line commands were listed ahead of the 'for

loop' statement instead, the line commands would execute

only once while the first PDL instruction would execute at

each iteration. Unlike the first PDL instruction of Figure

6.A, the third original PDL instruction (which is an 'if'

statement) needs preceeding line commands. If the related

line commands were placed beneath the 'if' condition in-

33

stead, they would not be executed when the result of the

condition was false. It is urged strongly that the designer

walk through his algorithm at the conclusion of Step 2 to

assure himself that the ordering is correct.

Step 3: Insert the variable commands and stack com­

mands. Variable commands and stack commands pertaining to a

PDL instruction are inserted following the instruction's

blue line command. Stack commands are generally favored

over variable commands because variable displays are easier

to reset when using stack commands. One exception to stack

command preference regards a variable appearing as an

operand in consecutive PDL instructions. In such a situa­

tion the variable can be represented with-one blue var com­

mand in the beginning of the succession and one green var

command at the conclusion of the succession. Self-run mode

algorithms have fewer variable command and stack command

insertions than single-step mode algorithms. Unlike

single-step mode algorithms, self-run mode algorithms in­

clude only those variable commands and stack commands which

affect the array display keys. The bubblesort algorithms

after the insertion of stack commands and variable commands

are shown in Figure 7.

Step 4: Insert the condition commands. For each 'if

statement' appearing as a PDL instruction in a single-step

mode algorithm, a duplicate is made and placed ahead of the

original.

plicate.

Condition commands are then inserted into the du­

Figure 8 gives the bubblesort algorithm in

*
*

*
*

*

*

for i in 2 •• N
blue line(l);
green_line(l);

for j in reverse N •• i
blue line(2);
green line(2);

· blue line(3);
blue-var('J') · - ,
blue var('-')· - ,
green line(3);
if aIJ-1] > a[j] then

swap(a[j],a[j-1])
blue line(4);
blue-var('J') • - ' blue var('-')· - ,
green line(4);

*
*
*

*
*
*

*

*
*

*

for i in 2 •• N
blue line(l);
push:dsp('i');
push_dsp('N');
green_line(l);
pop dsp();

for j in reverse N •• i
blue line(2);
push:dsp(' j');
push_dsp('N');
push_dsp('i');
green line(2);
pop dsp();

blue line(3);
blue-var('-')· - ,
push_dsp('J');

34

green_var('J');

green_var('J');

green_line(3);
pop dsp();
if a[j-1] > a[j] then

(A) Self-Run Mode

*
*

temp:= a[j-1]
blue line(4);
push:dsp('T') ;
green line(4);
pop dsp();

a[j-1] := a[j]
blue line(S);

* push:dsp('-');
* blue var('J')· - ' green line(S);
* pop_dsp();

a[j] := temp
blue line(6);

* push:dsp('J');
* push dsp('T');

green line(6);
* pop_dsp();

* else
* green_var('-');

(B) Single-Step Mode

Figure 7. Insertion of Variable Commands and Stack
Commands into Bubblesort

for i in 2 •• N
blue line(l);
push=dsp('i');
push_dsp('N');
green line(l);
pop dsp();

for j in reverse N •• i
blue 1ine(2);
push=dsp('j');
push_dsp('N');
push_dsp('i');
green line(2);
pop dsp();

blue line(3);
blue=var('-');
push dsp('J');

* if aTj-1] > a[j] then
* cond(l); /* displays 'TRUE' */
* else
* cond(O); /* displays 'FALSE' */

green line(3);
pop dsp();
if a[j-1] > a[j] then

temp:= a[j-1]
blue line(4);
push=dsp('T');
green line(4);

. pop_dsp():

a[j-1] := a[j]
blue 1 i ne (5) ;
push=dsp(' - ');
blue var('J')• - . ,
green l1ne(S);
pop_dsp();

a [j] : = temp
blue line(6);
push - dsp ('J') ;
push-dsp('T');
green line(6);
pop_dsp();

else
green var('-');

Figure 8. Bubblesort Algorithm in Single-Step Mode
with the Condition Commands Inserted

35

single-step mode with the condition commands added. Since

self-run mode algorithms do not display results of condi-

36

tional expressions, they do not require condition commands.

Step 5: Insert the box commands. Box commands are

used exclusively in recursive algorithms. If recursion does

not exist within the algorithm (as in the case of the bub­

blesort examples}, then this step is omitted. Red box com­

mands are inserted immediately before red line commands. A

white box command is placed above each recursive function
!

call and as the last executable statement within the called

function.

Step 6: Replace the PDL instructions with program

code. The final step entails the translation of all PDL in­

structions into actual program code. In addition to the

original PDL instructions, all the duplicated 'if state­

ments' from Step 4 must be changed as well.· The completed

bubblesort algorithms are listed in Figure 9.

An Example of Recursion and SIS Commands

All variables appearing in a SIS presentation are de­

fined within the program as external variables. This poses

a problem when simulating a recursive algorithm. Unavoid­

able errors result when SIS commands are inserted into an

unaltered recursive function. The errors which occur per-

tain to the scope of recursively passed variables. Local

copies of external variables are passed as parameters when

the external variables are used later in SIS Commands. This

* for (i=2; i<=N; i++) {
blue line(l);
green_line(l);

*

*
*
*
*

*

for (j=N; j>=i; j--) {
blue line(2);
green_line(2);

blue line(3);
blue:var('J');
blue var('-')· - ,
green line(3);
if (aTj-1] > a[j]) {

J

temp= a[j-1];
a[j-1] = a[j];
a[j] = temp;
blue line(4);
blue:var('J');
blue var (' - ') • - ,
green line(4);

green_var('J');

* J

* J
green_var('J');

(A) Self-Run Mode

* for (i=2; i<=N; i++) {
blue line(l);
push:dsp('i');
push_dsJ?('N');
green l1ne(l);
pop dsp();

* for (j=N; j>=i; j--) {
blue line-(2);
push:dsp('j');
push_dsp('N');
push_dsp('i');
green line(2);
pop_dsp();

blue line(3);
blue-var('-')• - ,
push_dsp('J');
if (a[j-1] > a[j])

cond (l);
else

cond(O);
green line(3);
pop dsp();

* if Ta[j-1] > a[j]) {

*

*

*

*
* }
* }

temp= a[j-1];
blue line(4);
push:dsJ?('T');
green_l1ne(4);
pop_dsp (-);
a[j-1] = a[j];
blue line(5);
push:dsp(' - ');
blue var('J')• - . ,
green line(.5);
pop dsp();
a[jJ = temp;
blue line{6);
push:dsp('J');
push_dSJ?('T');
green_l1ne(6);
pop_dsp();

J else
green_var('-');

(B) Single-Step Mode

Figure 9. The Completed Bubblesort Algorithms

37

38

harmonizes recursive parameter passing with external vari­

able declarations by preventing external variables from

being altered by function calls. Figure 10 provides an ex­

ample of how the PDL of a recursive function can be altered

to accommodate SIS commands.

procedure sort(l,r);

i = l;
j = r;

if 1 < j then
sort(l,j);

if i < r then
sort(i,r);

(A) Original PDL

*

*
*

*
*
*
*

procedure sort(left,right);

1 = left;
r = right;

i = l;
j = r;

if left< j then
sort(left,j);

if i < right then
sort(i,right);

(B) Modified PDL

Figure 10. An Alteration in the PDL of a Recursive
Function to Accommodate SIS Commands

After the original PDL has been altered, the insertion

of SIS commands into the algorithm follows the procedure as

outlined in the previous section. Figure 11 further illus-

39

trates the recursive function example with the insertion of

SIS commands associated with recursive algorithms.

*
*

*
*

*
*

*
*

*
*

procedure sort(left,right);

1 = left;
r = right;

red 1 i ne (1) ;
green_line(l);

i = l;
blue line(2);
green_line(2);

j = r;
blue line(3);
green line(3);

blue line(l5);
green_line(l5);
if left< j then

sort(left,j);

blue line(l6);
green line(l6);
if i < right then

sort(i,right);

(A) Line Command Insertion

*

*

*

procedure sort(left,right);

1 = left;
r = right;
red_box(l,r);

red line(l);
green_line(l);

i = l;
blue line(2);
green line(2);

j = r;
blue line(3);
green line(3);

blue line(l5);
green line(l5);
if left< j then

white box(l,r);
sort(Ieft,j);

if i < right then
white box(l,r);
sort(T,right);

* white_box(l,r);

(B) Box Command Insertion

Figure 11. SIS Command Insertion into a Recursive Function

User's Guide Descriptton

The SIS User's Guide is a student's roadmap through a

SIS presentation. The viewer will find in it the detailed

information required to operate SIS. Illustrations of the

major displays supplement the step-by-step instructions.

40

The instructions are written at a low level so that they may

be understood by persons with no computer experience. A

copy of the SIS User's Guide is found in Appendix C.

Module Catalog Description

Specifications of all modules implemented in the simu­

lator embody the SIS Module Catalog. Each module descrip­

tion is comprised of the following characteristics: module

type, usage, input parameter(s), and returned value. The

primary purpose of this catalog is assisting programmers who

want to incorporate SIS modules into future systems. Appen­

dix B contains a listing of the SIS Module Catalog.

CHAPTER IV

SUMMARY AND FUTURE WORK

SIS Synopsis

Many problems for beginning programming students relate

to program comprehension, that is, the ability to conceptu­

alize the abstraction of a given algorithm with the flow of

the program code. SIS was develdped to aid in this conceptu­

alization process by providing the student a means to

observe program ~xecution via simulation. It offers the

student a choide o~ five sorting algorithms to view in two

modes of execution and three execution speeds. Program

functions built into SIS all6w the user to halt or adjust

the execution speed, switch to another algorithm, or prema­

turely exit the simulator .. The package was designed pri­

marily as a demonstration tool for supplementing material

presented in an algorithm.course.

To assess the educational efficacy of SIS-necessitates

its evaluation in a c1a~s~oo~ :jetting. ·since the scope of.

this project was·.to desi9D and implement SIS, no conclusions·

can be drawn regarding its per~ormance or effectiveness.

Such a study is left for·future work.

41

42

Future Project Considerations

Natural extensions of SIS can be developed without re-

quiring any changes in the screen format. If an array ·im­

plemen~ation is maintained, two such extensions would be a

simulator for search algorithms, and a system to illustrate

list structure operations. The most important modifications

needed in SIS would be: -

1. Altering the menu display for choosing the algo­
rithm.

2. Displaying the relevant PDL and variables.

3. Inserting the necessary SIS commands into the
source code.

Sequential search and binary search are examples of search­

ing algorithms which could be presented. List structure

operations which could be demonstrated include: the pop and

push operations def.ined on a stack, and the remove and in­

sert operations defined on either a deque or queue.

If the array display in SIS is replaced with a binary

tree display, additional future projects may be considered.

This extension would require the screen layout to be refor­

matted because a tree structure assumes a different shape

than an array. In lieu of the tree display, the variable

display fields would have to be repositioned. The major

modification centers around the development of additional

SIS commands to represent the tree display. Display modules

for inserting and deleting the tree nodes as well as for

labeling the tree nodes are needed. Heapsort, tree

43

traversals, and tree implemented sorting and searching algo­

rithms are examples which could be simulated with a tree

display.

SIS is designed to be implemented on GIGI. At institu­

tions where GIGI is unavailable, some modifications can be

performed to make the simulator compatible with a VT125

{ VT125 User Guide , 1981). The changes which must be made

regard the choice of colors or color commands used and the

method of option selection. The changes are outlined in Ap­

pendix D.

The development of SIS points to several future pro­

jects. The SIS Command Language lends itself to adaptation

regarding educational content and hardware compatibility.

With minor modifications, SIS should be of value in teaching

students additional computer science concepts.

SELECTED .BIBLIOGRAPHY

Baecker, R. M. "Two Systems Which Produce Animated
Representations of the Execution of Computer Programs."
SIGCSE Bulletin 7, 1 (1975), 158-167.

Baecker, R. M. Sorting Out Sortins , 16 mm color, sound, 25
minutes (Dynamic Graphics ProJect, Computer Systems
Research Group, University of Toronto, 1981).

Ballaben, G. and Ercoli, P. "Computer-Aided Teaching of As­
sembler Programming." In O. Lecarme and R. Lewis
(eds.), Computers in Education , IFIP (Part 1). Am­
sterdam: North-Holland, 1975, 217-227.

Barr, A., Beard, M., and Atkinson, R. c. "A Rationale and
Description of a CAI Program to Teach the BASIC Pro­
gramming Language." Instructional Science 4 (1975), 1-
31.

Barr, A., Beard, M., and Atkinson, R. c. "Information Net­
works for CAI Curriculums." In O. Lecarmi and R. Lewis
(eds.), Computers in Education , IFIP (Part 1). Am­
sterdam: No~th-Holland, 1975, 477-582.

Barr, A., Beard, M., and Atkinson, R. c. "The Computer as a
Tutorial Laboratory: The Stanford BIP Project." Inter­
national Journal of Man-Machine Studies 8 (1976), 567-
596.

Bayman, P. and Mayer, R. E. "A Diagnosis of Beginning
Programmers' Misconceptions of BASIC Programming State­
ments." Communications of the ACM 26, 9 (1983), 677-
679. - -- --

Blaschke, C. L. "Microcomputer Software Development for
Schools: What, Who, How?" Educational Technology 19,
10 (1979), 26-28.

Bork, A. and Franklin, S. "Personal Computers in Learning."
Educational Technology 19, 10 (1979), 7-12.

Bork, A. Learning With Computers. Bedford, MA: Digital
Press, 1981.

44

45

Brown, J. S., Burton, R.R., and Bell, A.G. "SOPHIE: A
Step Toward Creating a Reactive Learning Environment."
International Journal of Man-Machine Studies 7 (1975),
675-696. - --

Brown, M. H., and Sedgewick, R. "A System for Algorithm An­
imation." Computer Graphics 18, 3 (1984), 177-186.

Carbonell, J. "AI in CAI: An Artificial-Intelligence Ap­
proach to Computer-Assisted Instruction." IEEE Transac­
tions .£!2 Man-Machine Systems MMS-11, 4 (1970T';° 190-202.

Chambers, J. A. and Sprecher, J. W. "Computer Assisted In­
struction: Current Trends and Critical Issues." Com­
munications of the ACM 23, 6 (1980), 332-342.

Critchfield, M. "Beyond CAI: Computers as Personal Intel­
lectual Tools." Educational Technology 19, 10 (1979),
18-25.

Dean, C. and Whitlock, Q. A Handbook of Computer Based
Training. New York: -Nichols Publishing Co., 1983.

Dimas, C. "A Strategy for Developing CAI." Educational
Technology 18, 4 (1978), -26-29.

Dromey, R. G. How to Solve It QY. Computer. London:
Prentice/Hall-Ynternational, Inc., 1982.

Foley, J. D. and Van Dam, A. Fundamentals of Interactive
Computer Graphics. Reading, MA: Addison-Wesley, 1982.

Gelder, J. I. Unpublished chemistry simulation programs.
Oklahoma State University, Department of Chemistry,
(n.d.).

Goldberg, A. and Suppes, P. "A Computer-Assisted Instruc­
tion Program for Exercises on Finding Axioms." Educa­
tional Studies in Mathematics 4 (1972), 429-549.

Goldstein, I. I. Training: Program Development and Evalua­
tion. Monterey, CA: Brooks/Cole, 1974.

Goldstein, I. P. and Carr, B. "The Computer as Coach: An
Athletic Paradigm for Intellectual Education." Proc.
1977 ACM Annual Conf., 1977, 227-233.

Gray, D. C., Hulskamp, J. P., Kumm, J. H., Lichtenstein, S.,
and Nimmervoll, N. E. "COAL-A - A Minicomputer CAI
System." IEEE Transactions on Education E-20, 1 (1977),
73-77. -- -

Gross, J. F. "Video Augmented Computer Science (VACS)."
SIGCSE Bulletin 7, 4 (1975), 47-59.

46

Heines, J.M. Screen Design Strategies for Computer-Assisted
Instruction. Bedford, MA: Digital Press, 1984.

Herot, C. P., Brown, G. P., Carling, R. T., Friedall, M.,
Kramlich, D., and Baecker, R. M. "An Integrated En­
vironment for Program Visualization." In H.J.
Schneider and A. I. Wasserman (eds.), Automated Tools
for Information Systems Design. Amsterdam: North­
Holland, 1982, 237-259.

Katz, M. R. and Chapman, W. "SIGI: An Example of Computer-
. Assisted Guidance." Educational Technology 18, 4

(1978), 57-59.

Kehler, T. P. and Barnes, M. "Design for an On-Line Consul­
tation System." AEDS Journal 14, 3 (1981), 113-127.

Koffman, E. B. and Blount, S. E. "Artificial Intelligence
and Automatic Programming in CAI." Artificial Intelli­
gence 6 (1975), 215-234.

Kosel, M. and Jostad, K. "Designing the Display." PIPELINE
7, 1 (1982), 8-10,57.

Lagowski, J. J. "Computer-Assisted Instruction in Chemis­
try." In W. H. Holtzman (ed.), Computer-Assisted In­
struction, Testing, and Guidance. New York: Harper &
Row, 1970, 283-298.

Lantz, B. S., Bregar, w. S., and Farley, A. M. "An Intelli­
gent CAI System for Teaching Equation Solving." Journal
of Computer-Based Instruction 10, 1 & i (1983), 35-52.

Lorton, P. Jr. and Cole, P. "Computer-Assisted Instruction
in Computer Programming: SIMPLER, LOGO, and BASIC,
1968-1970." In P. Suppes (ed.), University-Level
Computer-Assisted Instruction!! Stanford: 1968-1980.
Stanford, CA: Stanford University, Institute for
Mathematical Studies in the Social Sciences, 1981,
841-876.

Magidson, E. M. "Issue Overview: Trends in Computer­
Assisted Instruction." Educational Technology 18, 4
(1978), 5-8.

Matthews, J. I. "Microcomputer vs. Minicomputer for Educa­
tional Computing." Educational Technology 18, 11
(1978), 19-22.

Maynard, J. Modular Programming Princeton: Auerbach Pub­
lishers, 1972.

47

Mincy, J. W., Tharp, A. L., and Kuo-Chung, T. "Visualizing
Algorithms and Processes with the Aid of a Computer."
SIGCSE Bulletin 15, 1 (1983), 106-111.

Myers, B. A. "INCENSE: A System for Displaying Data Struc­
tures." Computer Graphics 17, 3 (1983), 115-125.

Peters, H.J. and Daiker, K. c. "Graphics and Animation as
Instructional Tools: A Case Study." PIPELINE 7, 1
(1982), 11-13,57.

Ramsey, H. R., Atwood, M. E., and Van Doren, J. R.
"Flowchart versus Program Design Languages: An Experi­
mental Comparison." Communications of the ACM 26, 6
(1983), 445-549.

Santos, S. M. dos and Millan, M. R. "A System for Teaching
Programming by Means of a Brazilian Minicomputer." In
O. Lecarmi and R. Lewis (eds.), Computers in Education,
IFIP (Part 1). Amsterdam: North-Holland, 1975, 211-
216.

Schuyler, J. A. "Programming Languages for Microprocessor
Courseware." Educational Technology 19, 10 (1979), 29-
35.

Shapiro, S. C. and Kwasny, S. C. "Interactive Consulting
via Natural Language." Communications of the ACM 18, 8
(1975), 459-562.

Skinner, B. F. "Why We Need Teaching Machines." Harvard
Education Review 31 (1961), 377-398. Reprinted 1n J.
P. De Cecco (ed.), Educational Technology. New York:
Holt, Rinehart, and Winston, 1964, 92-112.

Soloway, E., Rubin, E., Woolf, B., Bonar, J., and Johnson,
W. L. "MENO-II: An AI-Based Programming Tutor." Jour­
nal of Computer-Based Instruction 10, 1 & 2 (1983),
20-34.

Su, S. Y. w. and Eman, A. E. "Teaching Software Systems on
a Minicomputer: A CAI Approach." In O. Lecarmi and R.
Lewis (eds.), Computers in Education, IFIP (Part 1).
Amsterdam: North-Holland, 1975, 223-229.

Sugarman, R. "A Second Chance for Computer-Aided Instruc­
tion." IEEE Spectrum 15, 8 (1978), 29-37.

Suppes, P. "On Using Computers to Individualize Instruc­
tion." In D. D. Bushnell and D. w. Allen (eds.), The
Computer in American Education. New York: John Wiley,
1967, 11-24.

Suppes, P., and Morningstar, M. Computer-Assisted Instruc­
tion at Stanford, 1966-68: Data, Models, and Evalua­
tion of the Ari thmeETc Prograiil's:" New York-:-Academic
Press, 1972.

Suppes, P. "Current Trends in Computer-Assisted Instruc­
tion." In M. c. Yovits (ed.), Advances in Computers
(Vol. 18). New York: Academic Press, 1979, 173-229.

Suppes, P. and Macken, E~ "The Historical Path from
Research and Development to Operational Use of CAI."
Educational Technology 18, 4 (1978), 9-12.

Suppes, P. and Sheehan, J. "CAI Course in Logic." In P.
Suppes (ed.), University-Level Computer-Assisted In­
struction at Stanford: 1968-1980. Stanford, CA:
Institute for Mathematical Studies in the Social Sci­
ences, 1981, 193-225.

48

VT125 User Guide. Maynard, MA: Digital Equipment Co., 1981.

Ward, D. L. and Irby, T. C. "Classroom Presentation of
Dynamic Events Using Hypertext." SIGCSE Bulletin 13, 1
(1981), 126-131.

Wexler, J~ D. "Information Networks in Generative
Computer-Assisted Instruction." IEEE Transactions on
Man-Machine Systems MMS-11, 4 (1970), 181-190.

Young, ~· J. Real Time Langua$es: Design.~ Development.
Chichester, England: Ellis Horwood Limited, 1982.

I
v

init

v

I
v

options

v

APPENDIX A

SIS MODULE SCHEMATICS

I
v

main

I
v

v
driver

I
v

I
v

screen run sort

v v

I
v

proceed

I v

I v
echo

Figure 12. Main Module Schematics

49

v
reset

v

50

init

I
v

I I · 1 I
v v v

echo init echo
v

set_up
v

regis_init title dsp 1-
I
v

I I v v
return_sym next frame

Figure 13. !nit Module Schematics

options

I
v

I I I I I v v v v v
menu dsp mode dsp speed dsp make pick echo

T T 1- T v v v v
--------------------------- ------------

I I I I
v v v v

return_sym instruct dsp get row next frame

I
-

v
atoi

Figure 14. Options Module Schematics

51

screen

I v

I I I I I
v v ·V v v

header code array var dsp

T
return_sym

I I I I v v v v
bub macro insert macro quick macro shell macro

I v v

I I I I I
v v v v v

index dsp key dsp

T
shuffle_keys var_pos underline

v

I I I
v v v

ary_pos erase_key key

Figure 15. Screen Module Schematics

52

run sort

T v

I I I I I
v v v v v

bub sim

T
ins sim

T
quik sim

T
sel sim

T
shl sim

T
v v v v v

I I I I I I I I I I
v v v v v v v v v v

bubl bub2 insl ins2 qui kl quik2 sell sel2 shll shl2

I I v v
sortl sort2

I I
v v v v v v v v v v
--------------------------- -------- ------------------

v
SIS COMMANDS

Figure 16. Run sort Module Schematics

APPENDIX B

SIS MODULE CATALOG

The SIS Module Catalog contains a description of every

module implemented in the SIS system. The modules are ca­

taloged into directories based upon their usage within the

SIS program. The directories and their members include:

1. Primary Control Modules

driver
init

main
options

run sort
screen

2. Initialization Modules

echo init
init-var

regis init
reset-

3. Menu Display Modules

atoi
get row
instruct_dsp

4. Screen Modules

bub macro
code
header
index dsp

5. Run sort Modules

bubl
bub2
bub sim

make pick
menu:dsp

insert macro
quick macro
select macro
shell macro

erase return sym
insl - -

ins sim
qui kl
quik2
quik sim
sell-

ins2 sel2

53

set up
title dsp

mode dsp
speed_dsp

shuffle keys
underline
var_dsp
var_pos

sel sim
shlI
shl2
shl.sim
sor:tl
sort2

54

6. SIS Command Modules

blue line green_var red line
blue-var pop_dsp red-var
cond push_dsp white box
green line red box

7. SIS Command Utility Modules

array_dsp green dsp push
blue_dsp line_dsp readkybd
box_dsp par_dsp red dsp
clear . -. pause s1g_1gn
gold_line pop value_dsp

8. Common Modules

ary_pos interrupt next frame
echo key proceed
erase_key key_dsp return _sym

55

1. Primary Control Modules

The Primary Control Modules include the drivers to the

major program components of the SIS system. Their function

is to oversee the execution of the major program components

by coordinating ~raphics modules and process modules.

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

. MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

56

Primary Control Modules

driver main driving routine in SIS,
invokes the menu display
driver, screen driver, and
run sort driver.

control module

driver();

N/A

N/A

init initializes SIS and displays
the title frame.

control module

init();

N/A

N/A

main main control module, invokes
the initialization driver, the
main driver, and the reset
function.

control module

main ()

INPUT PARAMETERS: a
N

array of keys.
size of array a.

RETURNED VALUE: N/A

Primary Control Modules

FUNCTION NAME: options menu display driver.

MODULE TYPE: control module

USAGE: options();

INPUT PARAMETERS: sort
mode
speed

RETURNED VALUE: N/A

sorting algorithm selected.
execution mode selected.
execution speed.

57

FUNCTION NAME: run sort simulation driver, runs the
selected sorting algorithm.

MODULE TYPE: control module

USAGE: run_sort();

INPUT PARAMETERS: sort
mode
speed

RETURNED VALUE: N/A

FUNCTION NAME: screen

sorting algorithm selected.
execution mode selected.
execution speed.

opening screen driver, dis­
plays the initial frame of
the simulation.

MODULE TYPE: control module

USAGE: screen ();

INPUT PARAMETER: sort sorting algorithm selected.

RETURNED VALUE: N/A

58

2. Initialization Modules

The initialization modules constitute the first ma­

jor program component. Their function is to set program

parameters and display the title frame. These modules are

driven by the init control module.

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

Initialization Modules

echo init

process module

echo_init();

N/A

N/A

sets echo flags.

init var sets array size and loads
array with keys.

process module

init_var();

INPUT PARAMETERS: a
N

array of keys.
size of array a.

RETURNED VALUE: N/A

59

FUNCTION NAME: regis_init initializes ReGIS for SIS.

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

graphics module

regis init();

N/A

N/A

60

Initialization Modules

--·
FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

reset resets GIGI set-up parameters.

process module

reset();

N/A

N/A

set_up sets GIGI set-up parameters
for SIS.

process module

set up () : .

N/A

N/A

title_dsp displays ~IS.title frame.

graphics module

title dsp();

N/A

N/A

61

3. Menu Display Modules

The Menu Display Modules make up the second major pro:­

gram component. They are responsible for illustrating the

menu displays and processing the menu selections. The

modules are driven by the options control module.

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

Menu Display Modules

atoi converts a character string to
an integer.

process module

number= atoi(string);

string an array of characters.

integer

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

62

Menu Display Modules

get row calculates current ordinate of
cursor position.

process module

row= getrow();

N/A

integer

instruct_dsp

graphics module

instruct_dsp();

N/A

N/A

displays the instruct­
ions for menu selection.

make pick used when selecting options
in a menu display.

process module

selection= make_pick(menu_number);

menu number number of menu options.

integer (menu option selected)

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

63

Menu Display Modules

menu_dsp displays the menu of sorting
algorithms.

graphics module

menu_dsp():

N/A

N/A

mode_dsp displays the menu of avail­
able execution modes.

graphics module

mode dsp():

N/A

N/A

speed_dsp displays the menu of available
execution speeds.

graphics module

speed dsp () :

N/A

N/A

64

4. Screen Modules

The Screen Modules draw the original simulation frame.

They consist primarily as graphics modules. These modules

compose the third major program component and are driven by

the screen control module.

Screen Modules

FUNCTION NAME: array displays the array of keys.

MODULE TYPE:

USAGE:

graphics module

array () ;

INPUT PARAMETERS: a
N

RETURNED VALUE: N/A

array of keys.
size of array a.

65

Screen Modules

FUNCTION NAME: bub macro contains the bubblesort PDL
macrographs.

MODULE TYPE:

USAGE:

INPUT PARAMETER:

graphics module

bub_macro();

mode execution mode selected.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

code displays the selected PDL.

graphics module

code ();

sort sorting algorithm selected.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

header display header of current
algorithm.

graphics module

header();

mode execution mode selected.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

Screen Modules

index dsp displays array indices.

graphics module

index dsp();

sort soiting algorithm selected.

RETURNED VALUE: N/A

66

FUNCTION NAME: insert macro contains the insertion­
sort PDL macrographs.

MODULE TYPE:

USAGE:

INPUT PARAMETER:

graphics module

insert_macro();

mode execution mode selected.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

quick_macro

graphics module

quick macro();

contains the quicksort
POL macrographs.

mode execution mode selected.

RETURNED VALUE: N/A

67

Screen Modules

FUNCTION NAME: select macro contains the selection­
sort PDL macrographs.

MODULE TYPE:

USAGE:

graphics module

select_macro();

INPUT PARAMETER: mode execution mode selected.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

shell macro

graphics module

shell_macro();.

· contains the Shellsort
PDL macrographs.

INPUT PARAMETER: mode execution mode selected.

RETURNED VALUE: N/A

FUNCTION NAME: shuffle_keys

MODULE .TYPE : process module

USAGE: shuffle keys();

mixes the order of the
keys within the array.

INPUT PARAMETERS: a
N

array of keys.
size of array a.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

Screen Modules

underline used to underline display
of algorithm variable.

graphics module

underline(num_char);

num char number of characters to be
underlined.

RETURNED VALUE: N/A

68

FUNCTION NAME: var_dsp displays algorithm variables.

MODULE TYPE:

USAGE:

INPUT PARAMETER:

graphics module

var dsp();

mode execution mode selected.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

var_pos moves cursor to indicated
screen field.

graphics module

var pos(field);

field number of a display field.

RETURNED VALUE: N/A

·--

5. Run sort Modules

The Run sort Modules are the active participants in a

running simulation. They contain the SIS algorithms which

can be dynamically viewed. These modules comprise the

fourth major program component a~d are driven by the

run sort control module.

69

Run_sort Modules

FUNCTION NAME: bubl bubblesort algorithm in
self-run mode.

MODULE TYPE: process module

USAGE: bubl();

INPUT PARAMETERS: a
N
temp
i, j

RETURNED VALUE: N/A

FUNCTION NAME: bub2

array of keys.
size of array a.
array key variable.
array indices.

bubblesort algorithm in
single-step mode.

MODULE TYPE: process module

USAGE: bub2();

INPUT PARAMETERS: a
N
temp
i,j

RETURNED VALUE: N/A

array of keys.
size of ·array a.
array key variable.
array indices.

70

FUNCTION NAME:" bub,sim invokes bubblesort algorithm
in selected execution mode.

MODULE TYPE:

USAGE:

INPUT PARAMETER:

process module

bub_sim();

mode execution mode selected.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

Run sort Modules

erase_return_sym

process module

erase_return_sym();

N/A

N/A

erases the return
symbol from the
display screen.

insl insertionsort algorithm in
self-run mode.

P!'.'Ocess module

insl();

INPUT PARAMETERS: a array of. keys.
N
temp
i' j

RETURNED VALUE: N/A

FUNCTION NAME: ins2

size of array a.
array key variable.
array indices.

insertionsort algorithm in
single-step mode.

MODULE TYPE:

USAGE:

process module

ins2();

INPUT PARAMETERS: a
N
temp
i' j

RETURNED VALUE: N/A

array of keys.
size of array a.
array key variable.
array indices.

71

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

Run sort Modules

ins sim invokes insertionsort
algorithm in selected
execution mode.

process module

ins_sim();

mode execution mode selected.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

qui kl quicksort algorithm in
self-run mode.

process module

quikl();

N size of array.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

quik2 quicksort algorithm in
single-step mode.

process module

quik2();

N size of array.

RETURNED VALUE: N/A

72

73

Run sort Modules

FUNCTION NAME: quik sim invokes quicksort algorithm
in selected execution mode.

MODULE TYPE:

USAGE:

process module

quik sim():

INPUT PARAMETER: mode

RETURNED VALUE: N/A

FUNCTION NAME: sell

execution mode selected.

selectionsort algorithm in
self-run mode.

MODULE TYPE: process module

USAGE: sell():

INPUT PARAMETERS: a
N
temp
i, j, k

RETURNED VALUE: N/A

FUNCTION NAME: sel2

array of keys.
size of array a.
array key variable.
array indices.

selectionsort algorithm in
single-step mode.

MODULE TYPE: process module

USAGE: sel2():

INPUT PARAMETERS: a
N
temp
i, j, k

RETURNED VALUE: N/A

array of keys.
size of array a.
array key variable.
array indices.

-----------·--

74

Run sort Modules

---- .---------------------------· ---------------------- ----
FUNCTION NAME: sel sim invokes selectionsort

algorithm in selected
execution mode.

MODULE TYPE:

USAGE:

process module

sel_sim():

INPUT PARAMETER: mode

RETURNED VALUE: N/A

FUNCTION NAME: shll

execution mode selected.

Shellsort algorithm in
self-run mode.

MODULE TYPE: process module

USAGE: shll():

INPUT PARAMETERS: a
N
temp
i,j,s

RETURNED VALUE: N/A

FUNCTION NAME: shl2

MO PULE TYPE: process

USAGE: . shl2 ():

IN"PUT PARAMETERS: a
N
temp
i,j,s

RETURNED VALUE: N/A

array of keys.
size of array a.
array key variable.
array indices~

Shell sort algorithm
single-step mode.

module

arra.y of.keys.
size.· ·of array a.
array key variable.
array indices.

in

Run sort Modules

FUNCTION NAME: shl sim invokes selectionsort
algorithm in selected
execution mode.

MODULE TYPE:

USAGE:

process module

shl_sim();

INPUT PARAMETER: mode

RETURNED VALUE: N/A

FUNCTION NAME:· sortl

execution mode selected.

quicksort subroutine invoked
in self-run mode.

MODULE TYPE: process module

USAGE: sortl();

INPUT PARAMETERS: a
N
temp,x
i,j,l,r

RETURNED VALUE: N/A

FUNCTION NAME: sort2

array of keys.
size of array a.
array key variables.
array indices.

quicksort subroutine invoked
in single-step mode.

MODULE TYPE: process module

USAGE: sort2();

INPUT PARAMETERS: a
N
temp,x
i,j,l,r

RETURNED VALUE: N/A

array of keys.
size of array a.
array key variables.
array indices.

75

76

6. SIS Command Modules

This section is a library of the SIS Commands used in

the program. They are invoked only by the run sort modules

of the previous section. Their purpose is to simplify the

programming of an algorithm simulation.

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

SIS Command Modules

blue line displays line of PDL
in blue.

process module

blue_line(line):

line line number of PDL.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

blue var displays variable in blue.

process module

blue_var('var'):

var mnemonic character representing
an algorithm variable.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

SIS Command Modules

cond displays the result of a
conditional expression.

graphics module

cond(bool);

bool integer with a boolean value.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

green_line displays line of PDL
in blue.

process module

green line(line);

line line number of PDL.

RETURNED VALUE: N/A

77

FUNCTION NAME: green var displays variable in green.

MODULE TYPE:

USAGE:

INPUT PARAMETER:

process module

green_var('var');

var mnemonic character representing
an algorithm variable.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

78

SIS Command Modules

pop_dsp pops all variables off of the
display stack and highlights
them in green.

process module

pop_dsp();

N/A

N/A

push_dsp pushes a variable onto the
display stack and highlights
the variable· in blue.

process module

push_dsp('var');

var mnemonic character representing
an algorithm variable.

RETURNED VALUE: N/A

FUNCTION NAME: red box encloses a portion of the array
display in a red box.

MODULE TYPE:

USAGE:

process module

red_box(lower,upper);

INPUT PARAMETERS: lower
upper

RETURNED VALUE: N/A

lower bound of the red box.
upper bound of the red box.

79

SIS Command Modules

FUNCTION NAME: red line displays line of PDL in red.

MODULE TYPE:

USAGE:

INPUT PARAMETER:

process module

red_line(line):

line line number of PDL.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

red var displays variable in red.

process module

red_var('var'):

var mnemonic character representing
an algorithm variable.

RETURNED VALUE: N/A

FUNCTION NAME: white box encloses a portion of
the array display in
a white box.

MODULE TYPE:

USAGE:

process module

white_box(lower,upper):

INPUT PARAMETERS: lower
upper

RETURNED VALUE: N/A

lower bound of the white box.
upper bound of the white box.

80

7. SIS Command Utility Modules

SIS Command Utility Modules perform the screen mechan­

ics of the SIS Commands. They play a supplemental role to

SIS Commands and remain unseen to the programmer. Many of

these utility modules are invoked by more than one SIS Com­

mand.

FUNCTION NAME:

MODULE TYPE:

USAGE:

·SIS Command Utility Modules

array..;.dsp branches to cell of array
key display, invoked by
value_dsp subroutine.

process module

array_dsp(var);

INPUT PARAMETERS: a array of keys.
size of array a.
array indices.

N
i,j,r,l,k,s
var

RETURNED VALUE: N/A

mnemonic ~epresentation
of algorithm variable.

81

FUNCTION NAME: . blue_dsp sets text and graphics to
blue and is invoked by
blue var and push dsp cmds.

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

process module

blue_dsp();

N/A

N/A

box_dsp SIS box command utility func.

graphics module

box_dsp(lower,upper);

INPUT PARAMETERS: N
lower
upper

size of the array.
·lower bound of the box.
upper bound of the box.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

SIS Command Utility Modules

clear clears the display stack,
called by pop and push cmds.

process module

clear():

N/A

N/A

gold_line displays line of PDL in
gold (yellow), invoked by
green line commands.

process module

gold line(line);

line line number of PDL.

82

RETURNED VALUE: N/A

--· ---------------
FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

green_dsp

process module

green_dsp():

N/A

N/A

sets text and graphics to
green, invoked by green var
and pop_dsp commands. -

83

SIS Command Utility Modules

FUNCTION NAME: line_dsp - SIS line command utility func.

MODULE TYPE:

USAGE:

INPUT PARAMETER:

graphics module

line_dsp(line);

line line number of PDL.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

par_dsp posts the current value
of a variable, invoked
by value_dsp.

process module

par_dsp(var);

INPUT PARAMETERS: a array of keys.
N
i,j,r,l,k,s
var

size of array a.
array indices.
mnemonic repesentation
of algorithm variable.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETERS:

RETURNED VALUE:

pause

graphics

pause ();

mode
speed

N/A

regulates simulation speed,
.invoked by green line command.

module

execution mode selected.
execution speed selected.

84

SIS Command Utility Modules

FUNCTION NAME: pop pops value from top of display
stack, invoked by pop dsp.

MODULE TYPE: process module

USAGE: pop ();

INPUT PARAMETERS: sp
par

stack pointer.
parameter stack.

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

· USAGE:

character (value from top of stack
returned or error symbol returned
if stack empty).

push push_dsp command utility func.

process module

push(var);

INPUT PARAMETERS: sp
par
var

stack ,pointer.
parameter stack.
mnemonic representation of an
algorithm variable.

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

error symbol returned on stack overflow.

readkybd looks for input from
keyboard, invoked by
pause function.

process module

readkybd();

INPUT PARAMETERS: mode
speed

execution mode selected.
execution speed selected.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

85

SIS Command Utility Modules

red_dsp sets text and graphics to
red, invoked by red var cmds.

process module

red_dsp();

N/A

N/A

sig_ign dummy function to process
alarm interrupt, invoked by C
func 'signal' in readkybd.

process module

signal(SIGALRM,sig_ign);

N/A

N/A

value_dsp variable graphics display
driver, invoked by blue var
and pop_dsp commands. -

process module

value dsp(var);

INPUT PARAMETERS: mode
var

execution mode selected.
mnemonic character representing
an algorithm variable.

RETURNED VALUE: N/A

86

B. Common Modules

Common Modules are defined as those modules which are

called by modules of different major program components.

Common Modules perform an assortment of functions and may be

summoned frequently in a SIS presentation.

87

Common Modules

---------------------- -------------------------------------
FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

ary_pos sets graphics cursor to the
appropriate array position.

graphics module

ary_pos(pos);

pos position corresponding to
an array index.

RETURNED VALUE: N/A

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

echo regulates the terminal echo.

process module

echo(flag);

flag specifies terminal echo cond,
values it can assume:
' ON' or ' OFF ' •

RETURNED VALUE:. N/A

FUNCTION NAME:

MODULE TYPE·:
-·· .

USAGE:-

INPUT. PARAMETER:

RETURNED- VALUE:

erase_key erases array key found in
the current cell position.

graphics module.

erase key ()°;

N/A

N/A

-- -----. ----------------·--·-----------------------------

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

Common Modules

interrupt handles signal interrupts
generated by the 'BREAK'
key.

process module

signal(SIGINT,interrupt);

N/A

N/A

88

FUNCTION NAME: key generates specified array key
at current location.

MODULE TYPE:

USAGE:

INPUT PARAMETER:

graphics module

key(array key);

array_key array key variable.

RETURNED VALUE: N/A

FUNCTION NAME: key_dsp array key display driver,
calls ary_pos, erase_key,
and key.

MODULE TYPE:

USAGE:

process module

key_dsp(pos,array_key);

INPUT PARAMETERS: array_key
pos

RETURNED VALUE: N/A

array key variable.
position corresponding
to array index.

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

FUNCTION NAME:

MODULE TYPE:

USAGE:

INPUT PARAMETER:

RETURNED VALUE:

89

Common Modules

next frame

process module

next_frame():

N/A

N/A

an infinite loop, exited
only when carriage return
is received.

proceed displays 'new selection'
question and processes user
response to question, invoked
by interrupt function.

process module

proceed():

N/A

the response to the question is returned:
'YES' or 'NO'.

return_sym

graphics module

return sym():

N/A

N/A

generates the return
symbol display.

APPENDIX C

SIS USER'S GUIDE

Introduction

SIS is a sorting instruction simulator. Its purpose is

to provide you, the viewer, the opportunity to witness the

execution of a sorting algorithm. The design of the simula­

tor allows you to choose:

1 •. One of five sorting algorithms

2. One of two modes of execution

3. One of three execution speeds

Briefly page through this accompanying guide before us­

ing SIS. Knowing the options available to you in advance

will enhance your learning and increase your enjoyment. SIS

is programmed with several convenient features. With a few

simple keystrokes you can change the execution speed while

the simulation is in progress, temporarily halt algorithm

execution, or abort the current simulation and begin anoth-

er.

Colorful graphics highlight important points in an

executing sorting algorithm. Through color change, you

can follow the actions resulting from each executing

instruction. You are always aware of what instruction is ex­

ecuting, what variables are being affected, and the current

90

order of the keys being sorted as they are displayed in a

rectangular array.

Login Procedure

91

SIS is currently available on the Perkin-Elmer 3230

Computer associated with the Computing and Information Sci­

ence (COMSC) Department. Having already acquired an account

name and password from the COMSC Department:

1. Secure a GIGI Terminal accessing the Perkin-Elmer.
One is located on the second floor of the
Mathematical Science Building. (SIS will only
operate properly on GIGI Terminals).

2. Repeatedly press the "RETURN" key until "login:"
appears on the screen.

3. Type your account name and press "RETURN". "Pass­
word:" should appear, if it does not then go back
to step 2.

4. Enter your password and press the "RETURN" key.
(Your password will not be displayed.) Wait for
the system to respond with a"%" prompt.

5. To invoke the SIS program, type:

/u/fac/mjf/sis.jsr/SIS

and press the "RETURN" key.

If these steps are followed correctly, the SIS title will

appear on the display screen (Figure 17).

92

Figure 17. The SIS Title Display

Option Selection

With the SIS title presented on the display screen,

press the "RETURN" key. You have now entered the menu

selection portion of the SIS program. A menu of sorting al­

gorithms should appear.

SORTING ALGORITHM - The blinking cursor situated near

the center of the screen is the option selector. Locate the

up and down arrow keys ~~ on the top row of the key­

board. Using these keys, align the option selector with the

93

sorting algorithm option that you desire to view. Press the

"RETURN" key to enter your choice.

EXECUTION MODE - After choosing the sorting algorithm

to simulate,. you must decide how you want it to be present­

ed. A menu of execution modes is displayed next with the

options: 1) self-run mode and 2) single-step mode.

The self-run mode simulates the selected algorithm at a

fixed rate of speed. This mode is beneficial when wanting

to learn about the algorithm's overall behavior. Main at­

tention centers on the array display where you will be ob­

serving the swapping characteristics of the algorithm.

If a more detailed account of the sorting algorithm is

desired, then the single-step mode is recommended. Single­

step mode proceeds through the algorithm one instruc~ion at

a time under your direction. Emphasis is placed upon ·vati­

able values, program flow, and results of individual in­

structions.

As in the algorithm selection process, use the arrow

keys in conjunction with the option selector to choose the

execution mode. Press the "RETURN" key to enter your

choice.

EXECUTION SPEED - If you have chosen the single-step

mode of execution, omit this step and proceed immediately to

Viewing the Simulation. Having elected to watch a simula­

tion in self-run mode, you are presented with a menu of

execution speeds: fast, medium, and slow. Following the

previously mentioned menu selection procedure, choose an ap-

propriate speed and press· the "RETURN" key to enter your

choice.

Viewing the Simulation

94

You are now ready to b.egin the simulation. The simula­

tor display should appear on the screen as shown in Figure

18 (self-run mode) and Figure 19 (single-step mode). At the

top of the screen in white is the display header. It rem­

inds you of your sorting algorithm and execution mode selec­

tions. The left portion of the screen holds the pseudocode

of your sorting algorithm. The array display containing the

keys to be sorted appears near the center of the screen. If

you elected single-step mode, a display of algorithm vari­

ables is posted along the right side of the screen.

SIS employs a color scheme to aid you in algorithm

comprehension. Table III describes the color codes used by

SIS during a running simulation. Depending upon the sorting

algorithm and execution mode, not all of 'the color codes

will be used. For instance, yellow is not used in self-run

mode simulations and red only appears when recursive algo­

rithms (quicksort) are selected.

95

Figure 18. A Self~Run Mode Simulation Display

Figure 19. A Single-Step Mode Simulation Display

Color

Green

Yellow

Blue (Cyan)

Red

White

Dark

TABLE III

SIS DISPLAY COLOR CODES

Purpose

General Display Color

Highlights Previous Instruction

Highlights Current Instruction,
Keys, and Variables

Highlights Recursion

Highlights Display Header and
Return Symbol

Background Color

96

Please note the white return symbol found in the lower

right hand corner of the display screen. Whenever this sym­

bol appears, press the "RETURN" key when you are ready to

continue the simulation.

The "BREAK" key is pressed when you.want to leave the

current simulation prematurely. You will then be given the

option of either exiting the SIS program or choosing another

sorting algorithm to view. Respond to the question by typ-

ing either "yes" or "no" and press the "RETURN" key. The

"BREAK" key may be used anytime during the SIS program, even

during menu selection.

Please proceed to the appropriate·execution mode for

further directions.

97

**

SELF-RUN MODE

**

In this mode, SIS provides you with a set of function

keys. Use of these function keys during a simulation en­

ables you to change execution speeds or pause the action of

the algorithm demonstration. Please see Table IV for a com­

plete description.

Press the "RETURN" key to initiate the simulation. No­

tice, that as each line of code is executed:

1. It is highlighted in blue.

2. All array keys affected by that instruction
are also highlighted in blue.

Center your concentration upon the array display. Ob­

serving how the individual array keys are compared and ex-

changed will give you insight into the characteristics of

the sorting algorithm. Questions to consider while viewing

include:

1. What is the general direction of the comparisons
being made? (up or down)

2. How far apart are the array keys being compared?
Are they adjacent or several positions apart?

3. Is an additional array position required fn this
particular sorting algorithm?

4. How efficient is this sorting algorithm, that is,
are there many unnecessary comparisons?

5. Do you see any general trends?

98

Remember, if you desire to leave the simulation before

it reaches its conclusion, press the "BREAK" key. When you

are finished watching SIS, please go to the Logout Pro-

cedure.

TABLE IV

SUMMARY OF THE PROGRAM FUNCTIONS

Key

'F' or 'f'

'M' or 'm'

'S' or 's'

'P' or 'p'

'BREAK'

Function

Change Execution Speed To 'Fast'

Change Execution Speed To
'Medium'

Change Execution Speed To 'Slow'

Pause Or Temporarily Halt
Simulation, Press 'RETURN' Key
To Resume Execution

Abort Current Simulation

99

**

SINGLE-STEP MODE

**

In this mode, progress through the simulation is accom­

plished by a repeated pressing of the "RETURN" key. With

each keystroke, the next instruction is executed.

Throughout the demonstration, use Table III as a guide for

interpreting the various colored elements of the display.

Press the "RETURN" key. This initiates the simulation.

While stepping through the demonstration focus your atten­

tion upon the blue highlighting in the display. The blue

color indicates currently affected elements, including the

variable values, line of code, and array keys. Questions to

consider while viewing are:

1. What variable values changed when the current in­
struction was executed? Why?

2. What array keys are affected by the current in­
struction? Why?

3. Examine the program flow of execution. Why was the
current instruction executed after the previous
instruction?

4. If the current instruction is an "if statement",
why is its posted result TRUE (or FALSE)?

Remember, if you desire to leave the simulation before

it reiches its conclusion, press the "BREAK" key. When you

are finished watching SIS, please go to the Logout Pro­

cedure.

100

Logout Procedure

When you have concluded viewing SIS, please do not

leave the terminal without logging off the system. If you

are still in the SIS program:

1 •. Press the "BREAK" key. The question "Do you wish
to make another selection?" will then follow on
the screen .•

2. Respond to the question by typing "n~" and press
the "RETURN" key. A"%" prompt should appear.

You have now exited the SIS program. To log off the system

type "logout" and press the "RETURN" key. If you are suc­

cessful, "login:" will be displayed upon the screen.

APPENDIX D

VT125 CONVERSION REQUIREMENTS

The VT125 utilizes only four out of the eight colors

provided by ReGIS: dark, blue, red, and green. This limited

selection is inadequate for SIS, which requires six colors.

Although a stripped down version of SIS could be built

around four colors, replacing ReGIS color commands with the

HLS color specifiers available on the VT125 is a better al­

ternative. The HLS color system offers 64 different colors

and would not impose any color restrictions on the presenta­

tion.

The up and down arrow keys, used to manipulate the

pointer in a SIS menu display, are enabled with GIGI­

specific device control strings (DCS). Because DCS are not

acknowledged by a VT125, the menu display is rendered inop­

erable. Unfortunately, there is no simple_conversion.

Another method for choosing options could be devised to al­

low the student a way of entering simulation parameters.

An annoyance with running SIS on a VT125 is that the

graphics cursor cannot be disabled. The cursor is present

whenever the VT125 is processing ReGIS graphics commands.

This is not a critical issue, but the cursor could become

distracting during a simulation.

101

VITA ;t

James Stephen Ramlet

Candidate for the Degree of

Master of Science

Thesis: SIS: A SORTING INSTRUCTION SIMULATOR

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Yankton, South Dakota, April
16, 1954, son of Robert L. and .Dorothy A. Ramlet.
Married to Sandra S. Burkhardt on March 20, 1982.

Education: Graduated from Larkin High School, Elgin,
Illinois, in June, 1972; received Bachelor of
Science Degree in Biology from Oral Roberts
University in May, 1977; completed requirements
for the Master of Science degree at Oklahoma State
University, in December, 1984.

Professional Experience: Research Assistant, Oral
Roberts University, October, 1977 to August, 1982;
Teaching Assistant, Oklahoma State University,
August, 1982 to January, 1982; Programmer, Los
Alamos National Laboratory, June, 1983 to August,
1983. .

