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CHAPTER I 

INTRODUCTION 

Impetus 

This paper is a presentation of a Sorting Instruction 

Simulator (SIS), a computer simulation model of visual 

program execution for sorting algorithms. Many problems for 

beginning programming students relate to program comprehen­

sion. The purpose of SIS is to aid the student in his abil­

ity to conceptualize the abstraction of a given algorithm 

with the flow of the program code. 

Chapter II is a discussion on how program visualization 

in computer-assisted instruction (CAI) has evolved. 

Chapter III describes SIS in detail. Its menu 

displays, the screen layout, simulator execution, and pro­

gram functions are included. The SIS command language and 

program modules are also covered. The chapter concludes 

with descriptions of the SIS User's Guide and SIS Module Ca­

talog. 

Chapter IV highlights the main features of the SIS sys­

tem. Future project considerations are also suggested in 

this chapter. 

1 



Objectives 

The goals of SIS parallel those of Herot (1982): 

1. To aid programmers in the formation of clear and 
correct mental images of the structure and func­
tion of programs. 

2. To illustrate the dynamic behavior of programs. 

3. To "open the side of the machine" so that the user 
can form an accurate model of the program. 

2 

Herot's emphasis is placed upon the design of a program 

visualization environment to support builders and main­

tainers of large, complex software systems, whereas SIS is a 

visual display package of sorting routines. It allows a 

student to select a sorting algorithm he or she is interest-

ed in viewing. As he interactively investigates the princi­

ples and details of the algorithm, his comprehensi~n is 

enhanced. 



CHAPTER II 

REVIEW OF LITERATURE 

CAI Overview 

History 

Beginning in the late 1950's, Computer Assisted In­

struction (CAI) was developed and applied to many problems 

in education ranging from elementary to secondary to univer­

sity level (Suppes, 1978). Its history can be divided into 

time periods beginning with a "primitive age" of programmed 

instruction with workbooks, through today's "modern age" of 

intelligent CAI (Goldstein, 1977). The level of interaction 

between the student and computer has evolved from the limit­

ed, inflexible drill-and-practice systems to highly person­

alized interactive tutorial presentations (Suppes 1967, 

Goldstein 1974). The educational promise of CAI is reflect­

ed in two trends: (1) the increasing emphasis on individu­

alized instruction, and (2) use of computers to simulate 

experiences not otherwise readily available (Mag~dson, 

1978). Results indicate that in the future, CAI will con­

tinue to be geared toward an· instructor supervised system. 

Supplementary written material and personal support from the 
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teacher are necessary in order to achieve the maximum bene­

fits of CAI (Chambers, 1980). 

Systems and Courses 

CAI presentations can appear in many different forms. 

The most common types of lessons are: drill-and-practice, 

tutorial, simulation, and games. 

4 

In a drill-and-practice setting,·the teacher introduces 

material in class. The student is then directed to work on 

related exercises offered by the drill-and-practice program. 

The degree of difficulty of the exercises changes according 

to the student's performance. These systems are strictly 

supplementary to the regular curriculum taught by the.·teach­

er. One of the first drill-and-practice programs was 

developed at Stanford for teaching mathematics in elementary 

schools (Suppes, 1972). 

Tutorial systems take over the main responsibility for 

developing skill in the use of a given concept. They may be 

complete course sequences or special supplementary units in­

corporated by the teacher into his course program. Tutorial 

programs are capable of real time decisions, with branching 

contingent upon the student's responses. The SOPHIE system 

developed by Brown (1975), is an example of a CAI tutorial 

program. 

Simulation systems provide the student with the illu­

sion of experiencing a real life occurrence. These systems 

incorporate graphics routines for portraying a situation. 
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They are useful in a· wide variety of subject areas, includ­

ing scientific applications. For example, in a chemistry 

simulation the student can proceed through a potentially 

dangerous experiment in complete safety and without destruc­

tion to laboratory equipment. If he makes an error in 

judgement he is able to view the results of his error 

without experiencing physical harm. Examples of laboratory 

simulation programs are given by Lagowski (1970) and Gelder 

(n.d.). One of Gelder's simulators demonstrates the in­

terrelationship of pressure, volume, and temperature in a 

closed system; another illustrates color titration. 

The use of computer games for teaching has appeal 

(Goldstein, 1977). The knowledge gained by the student is 

learned actively, and with purpose (to improve his score). 

As in a simulation, the results of a decision are immediate. 

Computer games inspire motivation because they are enjoy­

able. However, Goldstein (1977) points out that a game has 

limitations. A student, when using a game on his own will 

reach a plateau of learning. At that time he needs a coach 

in order to further improve his performance. Therefore, 

Goldstein has combined a tutorial system with the computer 

game concept to propel the student forward in his learning 

endeavor. 

The use of natural language processing within all forms 

of CAI has led to the introduction of courseware whereby 

students are not limited to responding in single words, word 

phrases, or by making multiple choice selections. Rather, 
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students may reply in a conversational manner. It is under­

stood that success with natural language. is limited 

(Shapiro, 1975). The user, though not specifically trained 

in the system's input language, must know the capabilities 

of the system and must adequately phrase input to the system 

for satisfactory handling. Courseware using natural 

language processing has been described by Brown (1975), 

Wexler (1970), and Carbonell (1970). 

CAI has been implemented in a wide variety of subject 

areas. COALA is a computer-based learning system for an in­

troductory electrical engineering network theory course 

(Gray, 1977). A case study is given by Peters (1982) on a 

tutoring system for organic chemistry. Interactive CAI pro­

grams have been described for teaching elementary mathemati­

cal logic (Suppes 1981, Goldberg 1972). Lantz (1983) has 

created a system for teaching equation solving. Other re­

lated uses of CAI include SIGI, a computer-assisted guidance 

system (Katz, 1978), and on-line consultation systems 

(Kehler 1981, Shapiro 1975). These are but a few examples. 

Thus CAI has progressed from a rough and relatively unex­

plored theory to a broad field that involves a diversity of 

systems tailored to the specific need at hand. 

Course Design and Development 

With any software development activity, risks are to be 

considered. The user is concerned with the quality of the 

software and the cost involved in getting the system "up and 



running". On the other hand, the developer must have as­

surance that the hardware for which the software is 

developed.will be widely used. He also needs protection 

through copyrights and other incentives which increase the 

probability of a return on his investment (Blaschke, 1979). 
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Regarding choice of hardware, Matthews (1978) believes 

that in the education market, the microcomputer is a defin­

ite contender. It is simpler and l•ss expensive to operate 

than a minicomputer. Bork (1979) discusses two ingredients 

to consider when choosing a microcomputer: screen design 

capabilities, and programming languages. Although the 

display screen needs minimal resolution, it should be capa­

ble of displaying both alphanumeric information and pictori­

al or graphic information. Another plus is if the system 

has the ability to "turn on" a full complex picture rather 

than drawing it line by line. Bork regards BASIC as a less 

than adequate language for developing CAI courseware and 

prefers a PASCAL system. Schuyler (1979) agrees, noting 

that the best programming language for a given task is one 

whose structure allows an easy tranformation of the author's 

ideas into a finished, debugged program, and PASCAL is a 

good choice. 

Once the feasibility of a software development project 

is established, the specific role of CAI must be clarified. 

Dimas (1978) suggests that the following questions may aid 



in determining the direction that courseware development 

should take: 

1. Should courseware be developed as a complete in­
structional package or as a supplement and en­
richment to the present academic program? 
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2. Should the development of courseware be devoted to 
one particular type of lesson,- i.e., drill-and­
practice, tutorial, simulation, o·r games, or 
should different types of lessons be implemented? 

When the role of CAI is established, the actual course· 

·design may begin. Dean (1983) advises top-down approach, 

that is, begin with general objectives and work down to de­

tailed objectives. To accomplish this goal he provides the 

following strategy: 

1. Begin with a course description. 

2. Divide the course into sub-areas~ 

3. Divide each sub-area into task~: 

4. Divide each task into steps. 

With each.step .or frame well defined, the job of. preparing 

the computer dialogue is simplified and work can begin. 

Many consider a team approach of two to five authors 

superior to a one man approach in lesson developmen.t (B(?rk 

1981, Chambers 1980, Dimas 1978). A negative aspect o.f the 

one man approach is that the courseware may reflect the 

author Is idiosyncrasies. Users other than the· ~-uthor ·may. 
view the lesson as inappropriate for use with their_$tu-

·dents. Although it is believed that group authorship.in.:..· 

volves more man hours to create a given amoun.t of material, 

less revision will be necessary after the material is used 

with the students. Another important aspect of group 



development i-s that it makes possible the involvement of 

people with. teaching experience, who may lack expertise in 

those skills necessary.for courseware development. 
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It is speculated that courseware is not likely to im­

prove in the immediate future (Sugarman, 1978)~ Therefore, 

the most important explorations should be aimed not at 

achieving specific learning goals, but at learning about 

learning through interactive computer use (Skinner 1961, 

Sugarman 1978). A current CAI issue centers around how to 

build concepts within the student's mind. Achieving this 

so-called "modeling" is explored by Suppes (1979). He 

states that at the present tfme it is unclear how to model 

the student and still retain a deep basis for individualiza­

tion •. Nor is it known, from a theoretical standpoint, how 

to approach the practicalities involved in modeling. Howev­

er, Bayman (1983) reports. progress in teaching concepts of 

BASIC. He discusses the formation of mental or conceptual 

models by the beginning programmer in the process of learn­

ing the language, also describing the misconceptions the 

student may acquire. 

Critchfield (1979), from another perspective, suggests 

to proceed one step beyond CAI and provide a system for stu­

dents to author their own programs. The computer is to be 

used as an intellectual tool for experimentation and 

creativity. 
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CAI in Computer Science 

CAI courseware has been created for the specific pur­

pose of teaching computer science principles. Lower level 

languages such as assembler and machine language are taught 

through systems devised by Ballaben (1975) and Koffman 

(1975), respectively. BIP, a BASIC instructional program 

(Barr 1975a, 1975b, 1976), BATS, a BASIC automatic teaching 

system (Santos, 1975), and MENO-II, an artificial intelli­

gence based tutor for PASCAL (Soloway, 1983) are examples of 

CAI courseware for high level languages. Lorton (1981) has 

designed a system to develop computer literacy by offering 

tutelage in a wide range of programming languages. A program 

for teaching the fundamental principles and operations of 

software systems has been created by Su (1975). Courseware 

is not limited to any particular area within computer sci­

ence, rather many aspects on the subject can be learned us­

ing CAI. 

Dynamic Program Visualization 

A major goal in computing is to be able to program (or 

design and implement algorithms) effectively. It is impor­

tan;t to have a clear and in-depth understanding of the 

dynamic character of programs before attempting algorithm 

design and program implementation (Dromey, 1982). 

The difficulties which arise in presenting an algorithm 

in the classroom are discussed by Mincy (1983). He 

expresses concern about how to convey the time factor when 
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an algorithm modifies the values or states associated with 

an entity over a period of time. In addition, during a lec­

ture students understand material at different rates. 

Therefore, the pace of the lecture is often inappropriate 

for many students. Another problem with the classroom set­

ting is the inability of a student to visualize what is hap­

pening. 

None of the afore-mentioned programs allows the novice 

programmer to grasp fully wnat transpires during program ex-

ecution. Students need to "see" programs written in a high 

level language executing. Two approaches have been taken in 

order to enable students to visualize program execution: 

animated·films, and computer simulation. 

Computer systems have been developed which facilitate 

the production of teaching films containing animated 

representations of program execution (Baecker 1975, Gross 

1975). Sorting Out Sorting is an example of a teaching film 

produced with the aid of a computer (Baecker, 1981). 

Computer simulation is preferred over animated teaching 

films because the dy~amic visual sequence presented by a 

computer simulation has the following advantages: 

1. The display screen is under the complete control of 
the individual student. 

2. The display code can be followed in conjunction 
with the model animation. 

3. The system allows the student to proceed through 
the algorithm at his own pace. 

4. The material can be viewed by the student more than 
once. 



12 

5. There is a greater range of time when the system is 
accessible (vs. when the film is accessible} for 
viewing. 

6. The simulator can provide a larger assortment of 
examples. 

Examples of computer simulators include systems devised for 

the displaying of data structures within a program (Myers, 

1983), an aid to program visualization (Herot, 1982), and 

the demonstration of dynamic events using Hypertext (Ward, 

1981). Hypertext is a facility for creating, altering, and 

traversing information in a flexible manner. 



CHAPTER III 

METHODS AND PROCEDURES 

Hardware 

SIS is implemented on a GIGI (General Image Generator 

and Interpretor) terminal manufactured by Digital Equipment 

Corporation. The terminal is interfaced to a Perkin-Elmer 

3230 Computer. Remote Graphics Instruction Set (ReGIS) com­

mands are used to generate the screen displays on a. GD 233 

video monitor manufactured by BARCO Industries. The program 

package is written in the language Con the UNIX operating 

system. 

Simulator Design 

SIS, when developed, adhered to the guidelines for 

designing the display as outlined by Kosel (1982). Reada­

bility, variety, eye movement, timing, and visual imagery 

were the most important factors considered. 

Menu Display 

Three selections must be made by a student before a 

simulation can begin: choice of algorithm, mode of 

execution, and speed of execution. With all selections a 

similiar display format is used (Figure 1). The student is 
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provided with a blinking pointer to a menu which can be 

moved around via the up and down arrow keys. The pointer 

used is actually the graphics cursor which is made visible 

only during times of a selection process. 

Figure 1. An Example of a SIS Menu Display 

Originally the pointer was defined as a blinking box. 

14 

Problems arose, however, in defining the cursor keys . It 

was difficult to put a bound upon their range due to limita­

tions with ReGIS~ Using a box was abandoned, and instead 

the graphics ~ursor was implemented as the menu pointer. 
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The graphics cursor provided all the benefits of the box 

without any of the disadvantages. With this approach the 

programming became cleaner. The only modification necessary 

was to widen the rows of the menu because the graphics cur­

sor was a little taller than the box. This provid~d a bene­

ficial side effect of improved readability in associating 

the menu pointer with the correct corresponding option. 

The first decision to be made by the student is which 

sorting algorithm is to be viewed. The selection of sorting 

algorithms to choose from is: 

1. bubblesort 

2. insertionsort 

3. guicksort 

4. selectionsort 

5. · Shellsort 

Selection is made as described above by moving the menu 

pointer to the desired algorithm and then pressing the re­

turn key. 

Next, the student must decide the mode of execution in 

which he would like to see the algorithm presented. There 

are·two modes of execut.ion:· self-run mode and single-step 

mode. . Se 1.f~run mode _portrays the progress of the executing 

· progr~m in dynamic illustrations at a fixed r~ie of speed. 

- In this· mode the student 'is able to grasp the overall 

behavior of the particular algorithm in question. Main em­

phasis is placed on changes occurring within the list of 

keys to be sorted. He can see visually how the keys are 
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sorted. Single-step mode steps through the algorithm one 

instruction at a time. In this mode execution of the algo­

rithm advances to the next instruction only as directed by 

the student. Such static illustrations portraying the pro­

gram at some instant of execution time allow the viewer to 

examine the details and results of each instuction executed. 

Changes in the flow of control and variable assignments can 

be monitored along with results of conditional expressions. 

If self-run mode is selected, a menu of relative speeds 

is presented: fast, medium, and slow. The option picked 

will determine the rate of instruction execution. Specific 

quantitative rates are not offered as options because the 

speed of algorithm simulation at a given time is dependent 

upon the availability of the CPU. In a multi-user environ­

ment the speed of simulation will bog down during times of 

CPU peak workloads. 

Screen Layout 

Once the student has selected an algorithm, mode of ex­

ecution, and speed of execution, the simulator display is 

presented. The screen is divided into two partitions. The 

right partition holds the array of shuffled keys to be sort­

ed and, if in single-step mode, the program variables. The 

left partition contains the program design language (PDL) of 

the algorithm. An example of the contrasting simulator 

displays of the two execution modes is shown in Figure 2. 



(A) Self-Run Mode 

(B) Single-Step Mode 

Figure 2. Contrasting Simulator Displays of the 
Two Execution Modes 
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The layout is similiar to the design described by 

Dromey (1982). However, instead of illustrating the array 

of keys as a linear list of integers, a more pictorial 

representation has been developed (Figure 3). Letters are 

used as the keys rather than integers. The use of letters 

is an improvement over the use of integers because misunder­

standings can arise when using integer keys in the array. 

Students often will confuse integers with the indices of the 

array. In addition, the letter keys within the array are 

represented by rectangles of proportional sizes as illus­

trated. The rectangles aid in eye recognition, as it is 

easy to check whether a[i] is greater than a[j] by comparing 

the sizes of the rectangles in both locations. 

A PDL rather than a flowchart is placed in the left 

partition to follow the flow of the executing program. 

Results appear to provide a strong case for the use of a 

program design language in preference to flowcharts (Ramsey, 

1983). 

An ADA-like pseudocode is used as the PDL (Young, 

1982). In order to fit the entire algorithm PDL on the 

display screen at one time, its length must be less than 

twenty-three lines. This limitation does not pose a problem 

except in the case of quicksort. To circumvent this problem 

a ·recursive version of quicksort is used. 
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a [1] 1--------~ 
a [2] 

I 
a [3] 

a [4] 

a [s] 
I ...... ; 

a [6] m 
a [7] J 

a [8] 

a [9] lillll 
a [lo] 

a [11] 

a [12] Diii 
a [13] 

a [14] 

a[Js] l!mlllllll 

Figure 3. Array of Keys Representation 

Two other functional areas of the display are the re­

turn prompt and the header. The header rests at the top of 

the screen and provides orientation information. It informs 

the student of the algorithm currently being shown and its 

mode of execution. The lower right hand corner of the simu­

lator display is reserved for a return symbol which prompts 

the student for a response. In the single-step mode, press­

ing the return key steps the simulation to the next instruc­

tion. Pressing the return key at the conclusion of a 
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simulation prompts SIS to ask, "Do you wish to make another 

selection?". Depending upon his response, the student is 

either redirected to the algorithm menu or logged out of 

SIS. 

The Use of Color in Algorithm Simulation 

Color is effective for highlighting any graphics enti­

ty. The color selection of the principle components in the 

running simulation is critical. Care must be taken in order 

to ensure maximum clarity within the ongoing presentation. 

The guidelines recommended by Heines (1984) were applied: 

1. Make sure the adjacent colors do not clash. 

2. Do not use colors that are too "hot". 

In addition, the colors selected need to provide contrast. 

Contrasting colors are important to guide the reader's eye 

to important changes within the operating simulation. 

Green was chosen as the primary display color. It is a 

soft color and easy to read. Unlike white, it is mono­

chromatic and provides a sharper picture while not contri­

buting to eye fatigue. The other colors picked to highlight 

simulation features are listed in Table I. Black was 

reserved for the background color because Foley (1982) ad­

vises that a neutral background be used with a display con­

taining several colors. 

By using a pre-defined color coding scheme, the PDL, 

array of keys, and program variables can be integrated to 

present the student with a detailed conceptual model. In 
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either execution mode, the student can associate what array 

key(s) are affected by the current executing instruction. 

Both the current PDL instruction and relevant array key(s) 

are highlighted in cyan. 

Color 

Green 

Yellow 

Blue (Cyan) 

Red 

White 

Dark 

TABLE I 

SIS DISPLAY COLOR CODES 

Purpose 

General Display Color 

Highlights Previous Instruction 

Highlights Current Instruction, 
Keys, and Variables 

Highlights Recursion 

Highlights Display Header and 
Return Symbol 

Background Color 

Because single-step mode was designed to focus on the 

details of a single executing instruction, it provides addi~ 

tional information. Not only are the current PDL instruc~· 

tion and relevant array key(s) displayed in cyan, but so are 

the affected variables found within that inst.ructi0n. For 

instance, if the current instruction is a conditional ex-



pression, the result of that condition is posted (either 

true or false). In addition, _when in· single-step mode the 

previous POL instruction is color coded in yellow whichs 

aids in following the flow of control of the program. 
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The recursion imposed on t~e quicksort simulation in­

troduces modifications in the color coding scheme. These 

modifications are necessary in order to make clear to the 

student ~hen a recursive subroutine call is being made. On 

such an occasion the current POL instruction and affected 

variables are highlighted in red. This deviates from the 

normal cyan highlighting. Within the array, a red box is 

drawn around the range of cells affected by the procedural 

call. This box is removed when the subroutine is exited. 

While inside the subroutine, all current components revert 

to cyan highlighting. 

It should be pointed out that SIS does not teach recur­

•ion. Rather, it illustrates the performance of a recursive 

algorithm. It is assumed that the student has some notion 

of the concept of recursion before using SIS. 

Program Functions 

SIS offers a variety of program functions which may be 

.called while the user is viewing a simulation. The brea~ 

key· may be pressed if the student elects to leave the 

current simulation prematurely. Such action prompts SIS to 

erase the screen and ask whether the student wants to view 

another sorting routine or prefers to exit the program. 



SIS offers additional program functions when in self-

run mode. For example, the viewer has the prerogative of 

changing the execution speed of the simulation by pressing 

the corresponding function keys. A pause function is also 

provided which can be used to halt program execution tem­

porarily. A summary of the program functions available is 

given in Table II. 

TABLE II 

SUMMARY OF THE PROGRAM FUNCTIONS 

Key 

'F' or 'f' 

'M' or 'm' 

'S' or 's' 

'P' or 'p' 

'BREAK' 

Function 

Change Execution Speed To 'Fast' 

Change Execution Speed To 
'Medium' 

Change Execution Speed To 'Slow' 

Pause Or Temporarily Halt 
Simulation, Press 'RETURN' Key 
To Resume Execution 

Abort Current Simulation 

The terminal response time to depressed program func-

23 

tion keys may not be immediate. The alarm macro provided by 

the UNIX operating system is methodically set to test for 

depressed function keys, but the time resolution of the 



24 

alarm is only one second. Therefore a small delay can occur 

between the time the function key is pressed and when the 

terminal responds. 

In order to maintain clarity, the viewer is not allowed 

to change the mode of execution while a simulation is in 

progress. Because the objectives of the self-run mode and 

single-step mode are different, their respective PDLs vary 

slightly. Each PDL is tailor-made for a specific purpose. 

If the viewer were allowed to change the mode of execution, 

such an abrupt change within the currently displayed PDL 

could cause confusion. As an alternative, the viewer can 

abort the running simulation and restart it in the other ex­

ecution mode. 

Progam Description 

The Program Modules 

Due to the nature of the C programming language, SIS is 

constructed as a collection of interfacing procedures or 

modules. The principles set forth by Maynard (1972) are 

followed in modularizing the system. Each module is 

designed to fulfill a specific need within the program pack­

age. 

While designing a system, care must be given when 

breaking the program code into modules. Within SIS there 

are three basic types of modules: control modules, process 

modules, and graphics modules. The function of a control 

module is to control the calling sequence of the modules 
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under its jurisdiction. A process module performs a single 

logical function or a series of small related logical func­

tions. A graphics module carries out a specific graphics 

function whose results can be observed upon the screen 

display. Appendix A gives the schematics of the SIS module 

interfacing. 

Modules of common purpose are grouped together into one 

file. The files constituting SIS can be divided into two 

categories: primary files containing primary modules, and 

secondary files containing secondary modules. All primary 

modules of a particular primary file serve together in a 

specific stage of the SIS program. They are not used at any 

other time. The following is a list of the primary files 

implemented by SIS and the functions they perform: 

sis.c 

setup.c 

options.c 

screen.c 

run sort.c 

The main driver of the system. 

Initializes both the screen and graphics 
parameters and produces the title of 
the package. 

Displays all menu frames and processes 
all input in response to the menu 
frames. 

Displays the opening frame of the 
selected algorithm simulation. 

The driver of the algorithm simulation. 

Secondary modules play a supplementary role to the 

primary modules in a SIS program. They exist as common 

functions which may be utilized many times throughout a 

simulation by primary modules of different primary files. 

Secondary modules are not limited by the number of times and 

places they are called. They are grouped into files accord-
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ing to the functions they perform. The names of the secon­

dary files used by SIS are: 

globals.c 

dspfns.c 

code.c 

sorts.c 

kybdfns.c 

The routines which generate and remove 
the return symbol. 

The graphics modules which supplement 
the primary modules found in 
run_sort.c and screen.c. 

The graphics display modules which sup­
plement screen.c with the sorting al­
gorithm PDLs. 

The source code modules of the sorting 
algorithms supplementing run sort.c. 

The modules used for handling the simu­
lation functions generated from the 
keyboard. 

The interrelationship between the SIS files is diagramed in 

Figure 4. 

The SIS Command Language 

The SIS Command Language has been developed ~o simplify 

the programming of the algorithm simulation. Each command 

in the language can be conceived as an encapsulation of 

several ReGIS commands. The language acts as an interface 

between the sorting algorithm source code and the screen 

display. To the programmer, the SIS commands operate as 

visual tools and are implemented by being inserted into the 

existing source code of the sorting algorithms. The basic 

core of the source code is left unaltered. A complete sum­

mary of all available SIS commands is located in the SIS 

Module Catalog, Appendix B. 
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sis.c 

I 
v 

I I I · I 
v v v v 

setup options.c screen.c 
I 

run sort.c 
i-

v v 

v v v v 
-------------------------------------------~----------

I 
v v 

globals.c 
v 

dspfns.c kybdfns.c 

Figure 4. SIS File Interrelationship 

I 
v 

I 
v 

sorts.c 

The language can be broken down categorically into five 

types of commands. Each type of command controls one or 

more of the components to the simulation display: the PDL, 

the array of keys, or the variables. SIS commands are 

categorized as follows: 

1. Line commands. 

2. Variable commands. 

3. Stack commands. 

4. Condition commands. 

5. Box commands. 

1. Line commands. display PDL instructions in the color 

indicated. The parameter ·passed is a PDL line number. For 
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example, a blue_line(2) command specifies that PDL line 

number two is to be displayed in blue (cyan). Similar 

results are obtained for red line commands. Because green 

is the primary display color, a green line command has an 

additional feature associated with it: if single-step mode 

is employed, the previously executed PDL instruction is 

displayed in yellow. 

2. Variable commands function to highlight denoted 

variable displays and array display keys. A green_var('i') 

command dictates that the variable 'i' be displayed in 

green. A red_var('k') command directs the variable 'k' be 

highlighted in red. The format of variable commands only 

allows single character parameters to be passed. Variable 

names occurring in an algorithm that exceed one character 

are substituted with· unique mnemonic symbols. Such substi­

tutions are required for array variables and temporary vari­

ables. The symbols '-', 'J', and 'T' representing the· 

variable names a[j-1], a[j], and temp respectively, are 

samples of mnemonic replacements. A blue_var('-') command 

orders the variable 1 a[j-l]' and its associated key to be 

highlighted in· blue (cyan). 

3. Stack commq.nds and variable commands function simi­

larly. They both highlight .variables and array key&, ~rid 

pass the· same. se.t. of parameters. However, unlike variable 

commands, stack commands use a display stack in their imple­

mentation. They-are comprised of (1) push dsp commands and 

(2) pop dsp commands. A push_dsp command acts like a 
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blue_var command by highlighting in blue. In addition, it 

pushes its parameter onto the display stack. When a pop_dsp 

command is invoked, all stack elements are systematically 

popped off the display stack, and each becomes the object of 

a green_var command. Use of stack commands has advantages 

over variable commands in situations that merit many vari­

able displays and key displays to be reset to green. Stack 

commands condense the SIS command encoding by replacing a 

list of green var instructions with a single pop dsp in­

struction. 

4. Condition commands are issued only in single-step 

mode. Their function is to display the result of a condi­

tional expression. 'TRUE' and 'FALSE' are posted in blue 

(cyan) for the condition commands cond(l) and cond(O) 

respectively. When a subsequent instruction is executed, 

the result of a condition command is automatically erased 

from the screen display. 

5. Box commands are restricted to SIS presentations 

utilizing recursion. They appear in two varieties: as 

red_box commands or as white_box commands. The function of 

a red box command is to encompass the range of cells in the 

array display affected by the recursive call. When return­

ing from a .recursive call, a white box command is invoked to 

remove the red enclosure. Two integers are passed as param­

eters within box commands. These parameters designate the 

lower and upper bounds of the box to be superimposed upon a 

portion of the array display. 



Two Examples of Source Code 

with SIS Commands 
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This section discusses the steps to follow in achieving 

the trans!ormation of algorithm code into a SIS display 

which can be dynamically visualized. Two examples are fur­

nished on how to transform bubblesort into (1) a self-run 

mode presentation and (2) a single-step mode presentation. 

The six basic steps of a SIS algorithm creation are: 

1. Establish the algorithm PDL. 

2. Insert the line commands. 

3. Insert the variable commands and stack commands. 

4. Insert the condition commands. 

5. Insert the box commands. 

6. Replace the PDL instructions with program code. 

These steps are followed regardless of the execution mode 

desired. 

Step 1: Establish the algorithm PDL. The PDL serves 

as the framework for the SIS command insertions. It is 

identical to the one which will appear on the display screen 

during the simulation. Correctness of the PDL instructions 

is paramount because inaccuracies or mistakes will eventual­

ly lead to the conveying of erroneous information to the 

viewer. In this example, it was decided that the algorithm 

to be presented in self-run mode should be the one illus­

trated in Figure 5.A. This is contrasted with the single­

step mode algorithm shown in Figure 5.B, in which it was 



31 

decided that the call to 'swap' should,· for pedagogical rea­

sons, be replaced by the three lines shown. 

for i in 2 •• N 

for j in reverse N .. i 

if a[j-1] > a[j] then 

swap(a[j],a[j-1]) 

(A) Self-Run Mode 

for i in 2 •• N 

for j in reverse N .. i 

if a[j-1] > a[j] then 

temp:= a[j-1] 

a[j-1] := a[j] 

a [ j] : = temp 

(B) Single-Step Mode 

Figure 5. Bubblesort PDLs 

Step 2: Insert the line commands. There are three 

different line commands used for displaying PDL instruc-

tions: 

1. A blue line command directed to highlight the partic­
ular-PDL instruction. 

2. A green line command which resets the instruction 
(blue-line commands must always be followed by 
green-line commands). 

3. A red line command, which is substituted for the 
blue line command whenever the PDL instruction is a 
recursive function call. 

Figure 6 presents the bubblesort algorithms after the inser­

tion of the line commands. 



for i in 2 .. N 
* blue line(l); 
* green line(l); 

for j in reverse N •. i 
* blue line(2); 
* green line(2); 

* blue line(3); 

for i in 2 .• N 
* blue line(l); 
* green_line(l); 

for j in reverse N .• i 
* blue line(2); 
* green_line(2); 

* blue line(3); 
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* green line(3); 
if a[3-l] > a[j] then 

* green line(3); 
if a[3-l] > a[j] then 

swap(a[j],a[j-1]) temp:= a[j-1] 
* blue line(4); 
* green line(4); 

* blue line(4); 
* green line(4); 

a[j-1] := a[j] 
* blue line(5); 
* green_line(5); 

a[j] := temp 
* blue line(6); 
* green_line(6); 

(A) Self-Run Mode (B) Single-Step Mode 

Figure 6. Insertion of Line Commands into Bubblesort 

The ordering of the PDL instruction with its associated 

line commands is most important. Consider the first PDL in-

struction of Figure 6.A, which is a 'for loop' statement. 

If its related line commands were listed ahead of the 'for 

loop' statement instead, the line commands would execute 

only once while the first PDL instruction would execute at 

each iteration. Unlike the first PDL instruction of Figure 

6.A, the third original PDL instruction (which is an 'if' 

statement) needs preceeding line commands. If the related 

line commands were placed beneath the 'if' condition in-
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stead, they would not be executed when the result of the 

condition was false. It is urged strongly that the designer 

walk through his algorithm at the conclusion of Step 2 to 

assure himself that the ordering is correct. 

Step 3: Insert the variable commands and stack com­

mands. Variable commands and stack commands pertaining to a 

PDL instruction are inserted following the instruction's 

blue line command. Stack commands are generally favored 

over variable commands because variable displays are easier 

to reset when using stack commands. One exception to stack 

command preference regards a variable appearing as an 

operand in consecutive PDL instructions. In such a situa­

tion the variable can be represented with-one blue var com­

mand in the beginning of the succession and one green var 

command at the conclusion of the succession. Self-run mode 

algorithms have fewer variable command and stack command 

insertions than single-step mode algorithms. Unlike 

single-step mode algorithms, self-run mode algorithms in­

clude only those variable commands and stack commands which 

affect the array display keys. The bubblesort algorithms 

after the insertion of stack commands and variable commands 

are shown in Figure 7. 

Step 4: Insert the condition commands. For each 'if 

statement' appearing as a PDL instruction in a single-step 

mode algorithm, a duplicate is made and placed ahead of the 

original. 

plicate. 

Condition commands are then inserted into the du­

Figure 8 gives the bubblesort algorithm in 



* 
* 

* 
* 

* 

* 

for i in 2 •• N 
blue line(l); 
green_line(l); 

for j in reverse N •• i 
blue line(2); 
green line(2); 

· blue line(3); 
blue-var( 'J') · - , 
blue var('-')· - , 
green line(3); 
if aIJ-1] > a[j] then 

swap(a[j],a[j-1]) 
blue line(4); 
blue-var( 'J') • - ' blue var('-')· - , 
green line(4); 

* 
* 
* 

* 
* 
* 

* 

* 
* 

* 

for i in 2 •• N 
blue line(l); 
push:dsp('i'); 
push_dsp( 'N'); 
green_line(l); 
pop dsp(); 

for j in reverse N •• i 
blue line(2); 
push:dsp(' j'); 
push_dsp( 'N'); 
push_dsp('i'); 
green line(2); 
pop dsp(); 

blue line(3); 
blue-var('-')· - , 
push_dsp( 'J'); 
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green_var('J'); 

green_var( 'J'); 

green_line(3); 
pop dsp(); 
if a[j-1] > a[j] then 

(A) Self-Run Mode 

* 
* 

temp:= a[j-1] 
blue line(4); 
push:dsp( 'T' ) ; 
green line(4); 
pop dsp(); 

a[j-1] := a[j] 
blue line(S); 

* push:dsp('-'); 
* blue var('J')· - ' green line(S); 
* pop_dsp(); 

a[j] := temp 
blue line(6); 

* push:dsp('J'); 
* push dsp('T'); 

green line(6); 
* pop_dsp(); 

* else 
* green_var('-'); 

(B) Single-Step Mode 

Figure 7. Insertion of Variable Commands and Stack 
Commands into Bubblesort 



for i in 2 •• N 
blue line(l); 
push=dsp('i' ); 
push_dsp( 'N'); 
green line(l); 
pop dsp(); 

for j in reverse N •• i 
blue 1ine(2); 
push=dsp('j' ); 
push_dsp( 'N'); 
push_dsp('i' ); 
green line(2); 
pop dsp(); 

blue line(3); 
blue=var('-'); 
push dsp( 'J'); 

* if aTj-1] > a[j] then 
* cond(l); /* displays 'TRUE' */ 
* else 
* cond(O); /* displays 'FALSE' */ 

green line(3); 
pop dsp(); 
if a[j-1] > a[j] then 

temp:= a[j-1] 
blue line(4); 
push=dsp( 'T'); 
green line(4); 

. pop_dsp(): 

a[j-1] := a[j] 
blue 1 i ne ( 5) ; 
push=dsp( ' - '); 
blue var('J')• - . , 
green l1ne(S); 
pop_dsp(); 

a [ j] : = temp 
blue line(6); 
push - dsp ( 'J' ) ; 
push-dsp( 'T'); 
green line(6); 
pop_dsp(); 

else 
green var('-'); 

Figure 8. Bubblesort Algorithm in Single-Step Mode 
with the Condition Commands Inserted 
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single-step mode with the condition commands added. Since 

self-run mode algorithms do not display results of condi-
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tional expressions, they do not require condition commands. 

Step 5: Insert the box commands. Box commands are 

used exclusively in recursive algorithms. If recursion does 

not exist within the algorithm (as in the case of the bub­

blesort examples}, then this step is omitted. Red box com­

mands are inserted immediately before red line commands. A 

white box command is placed above each recursive function 
! 

call and as the last executable statement within the called 

function. 

Step 6: Replace the PDL instructions with program 

code. The final step entails the translation of all PDL in­

structions into actual program code. In addition to the 

original PDL instructions, all the duplicated 'if state­

ments' from Step 4 must be changed as well.· The completed 

bubblesort algorithms are listed in Figure 9. 

An Example of Recursion and SIS Commands 

All variables appearing in a SIS presentation are de­

fined within the program as external variables. This poses 

a problem when simulating a recursive algorithm. Unavoid­

able errors result when SIS commands are inserted into an 

unaltered recursive function. The errors which occur per-

tain to the scope of recursively passed variables. Local 

copies of external variables are passed as parameters when 

the external variables are used later in SIS Commands. This 



* for (i=2; i<=N; i++) { 
blue line(l); 
green_line(l); 

* 

* 
* 
* 
* 

* 

for (j=N; j>=i; j--) { 
blue line(2); 
green_line(2); 

blue line(3); 
blue:var('J'); 
blue var('-')· - , 
green line(3); 
if (aTj-1] > a[j]) { 

J 

temp= a[j-1]; 
a[j-1] = a[j]; 
a[j] = temp; 
blue line(4); 
blue:var( 'J'); 
blue var ( ' - ' ) • - , 
green line(4); 

green_var('J'); 

* J 

* J 
green_var('J' ); 

(A) Self-Run Mode 

* for (i=2; i<=N; i++) { 
blue line(l); 
push:dsp('i' ); 
push_dsJ?( 'N'); 
green l1ne(l); 
pop dsp(); 

* for (j=N; j>=i; j--) { 
blue line-(2); 
push:dsp('j'); 
push_dsp( 'N'); 
push_dsp('i'); 
green line(2); 
pop_dsp(); 

blue line(3); 
blue-var('-')• - , 
push_dsp( 'J'); 
if (a[j-1] > a[j]) 

cond ( l); 
else 

cond(O); 
green line(3); 
pop dsp(); 

* if Ta[j-1] > a[j]) { 

* 

* 

* 

* 
* } 
* } 

temp= a[j-1]; 
blue line(4); 
push:dsJ?( 'T'); 
green_l1ne(4); 
pop_dsp (-); 
a[j-1] = a[j]; 
blue line(5); 
push:dsp( ' - '); 
blue var('J')• - . , 
green line(.5); 
pop dsp(); 
a[jJ = temp; 
blue line{6); 
push:dsp( 'J'); 
push_dSJ?( 'T'); 
green_l1ne(6); 
pop_dsp(); 

J else 
green_var('-'); 

(B) Single-Step Mode 

Figure 9. The Completed Bubblesort Algorithms 

37 
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harmonizes recursive parameter passing with external vari­

able declarations by preventing external variables from 

being altered by function calls. Figure 10 provides an ex­

ample of how the PDL of a recursive function can be altered 

to accommodate SIS commands. 

procedure sort(l,r); 

i = l; 
j = r; 

if 1 < j then 
sort(l,j); 

if i < r then 
sort(i,r); 

(A) Original PDL 

* 

* 
* 

* 
* 
* 
* 

procedure sort(left,right); 

1 = left; 
r = right; 

i = l; 
j = r; 

if left< j then 
sort(left,j); 

if i < right then 
sort(i,right); 

(B) Modified PDL 

Figure 10. An Alteration in the PDL of a Recursive 
Function to Accommodate SIS Commands 

After the original PDL has been altered, the insertion 

of SIS commands into the algorithm follows the procedure as 

outlined in the previous section. Figure 11 further illus-
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trates the recursive function example with the insertion of 

SIS commands associated with recursive algorithms. 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

procedure sort(left,right); 

1 = left; 
r = right; 

red 1 i ne (1) ; 
green_line(l); 

i = l; 
blue line(2); 
green_line(2); 

j = r; 
blue line(3); 
green line(3); 

blue line(l5); 
green_line(l5); 
if left< j then 

sort(left,j); 

blue line(l6); 
green line(l6); 
if i < right then 

sort(i,right); 

(A) Line Command Insertion 

* 

* 

* 

procedure sort(left,right); 

1 = left; 
r = right; 
red_box(l,r); 

red line(l); 
green_line(l); 

i = l; 
blue line(2); 
green line(2); 

j = r; 
blue line(3); 
green line(3); 

blue line(l5); 
green line(l5); 
if left< j then 

white box(l,r); 
sort(Ieft,j); 

if i < right then 
white box(l,r); 
sort(T,right); 

* white_box(l,r); 

(B) Box Command Insertion 

Figure 11. SIS Command Insertion into a Recursive Function 



User's Guide Descriptton 

The SIS User's Guide is a student's roadmap through a 

SIS presentation. The viewer will find in it the detailed 

information required to operate SIS. Illustrations of the 

major displays supplement the step-by-step instructions. 
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The instructions are written at a low level so that they may 

be understood by persons with no computer experience. A 

copy of the SIS User's Guide is found in Appendix C. 

Module Catalog Description 

Specifications of all modules implemented in the simu­

lator embody the SIS Module Catalog. Each module descrip­

tion is comprised of the following characteristics: module 

type, usage, input parameter(s), and returned value. The 

primary purpose of this catalog is assisting programmers who 

want to incorporate SIS modules into future systems. Appen­

dix B contains a listing of the SIS Module Catalog. 



CHAPTER IV 

SUMMARY AND FUTURE WORK 

SIS Synopsis 

Many problems for beginning programming students relate 

to program comprehension, that is, the ability to conceptu­

alize the abstraction of a given algorithm with the flow of 

the program code. SIS was develdped to aid in this conceptu­

alization process by providing the student a means to 

observe program ~xecution via simulation. It offers the 

student a choide o~ five sorting algorithms to view in two 

modes of execution and three execution speeds. Program 

functions built into SIS all6w the user to halt or adjust 

the execution speed, switch to another algorithm, or prema­

turely exit the simulator .. The package was designed pri­

marily as a demonstration tool for supplementing material 

presented in an algorithm.course. 

To assess the educational efficacy of SIS-necessitates 

its evaluation in a c1a~s~oo~ :jetting. ·since the scope of. 

this project was·.to desi9D and implement SIS, no conclusions· 

can be drawn regarding its per~ormance or effectiveness. 

Such a study is left for·future work. 

41 
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Future Project Considerations 

Natural extensions of SIS can be developed without re-

quiring any changes in the screen format. If an array ·im­

plemen~ation is maintained, two such extensions would be a 

simulator for search algorithms, and a system to illustrate 

list structure operations. The most important modifications 

needed in SIS would be: -

1. Altering the menu display for choosing the algo­
rithm. 

2. Displaying the relevant PDL and variables. 

3. Inserting the necessary SIS commands into the 
source code. 

Sequential search and binary search are examples of search­

ing algorithms which could be presented. List structure 

operations which could be demonstrated include: the pop and 

push operations def.ined on a stack, and the remove and in­

sert operations defined on either a deque or queue. 

If the array display in SIS is replaced with a binary 

tree display, additional future projects may be considered. 

This extension would require the screen layout to be refor­

matted because a tree structure assumes a different shape 

than an array. In lieu of the tree display, the variable 

display fields would have to be repositioned. The major 

modification centers around the development of additional 

SIS commands to represent the tree display. Display modules 

for inserting and deleting the tree nodes as well as for 

labeling the tree nodes are needed. Heapsort, tree 
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traversals, and tree implemented sorting and searching algo­

rithms are examples which could be simulated with a tree 

display. 

SIS is designed to be implemented on GIGI. At institu­

tions where GIGI is unavailable, some modifications can be 

performed to make the simulator compatible with a VT125 

{ VT125 User Guide , 1981). The changes which must be made 

regard the choice of colors or color commands used and the 

method of option selection. The changes are outlined in Ap­

pendix D. 

The development of SIS points to several future pro­

jects. The SIS Command Language lends itself to adaptation 

regarding educational content and hardware compatibility. 

With minor modifications, SIS should be of value in teaching 

students additional computer science concepts. 
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APPENDIX B 

SIS MODULE CATALOG 

The SIS Module Catalog contains a description of every 

module implemented in the SIS system. The modules are ca­

taloged into directories based upon their usage within the 

SIS program. The directories and their members include: 

1. Primary Control Modules 

driver 
init 

main 
options 

run sort 
screen 

2. Initialization Modules 

echo init 
init-var 

regis init 
reset-

3. Menu Display Modules 

atoi 
get row 
instruct_dsp 

4. Screen Modules 

bub macro 
code 
header 
index dsp 

5. Run sort Modules 

bubl 
bub2 
bub sim 

make pick 
menu:dsp 

insert macro 
quick macro 
select macro 
shell macro 

erase return sym 
insl - -

ins sim 
qui kl 
quik2 
quik sim 
sell-

ins2 sel2 
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set up 
title dsp 

mode dsp 
speed_dsp 

shuffle keys 
underline 
var_dsp 
var_pos 

sel sim 
shlI 
shl2 
shl.sim 
sor:tl 
sort2 
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6. SIS Command Modules 

blue line green_var red line 
blue-var pop_dsp red-var 
cond push_dsp white box 
green line red box 

7. SIS Command Utility Modules 

array_dsp green dsp push 
blue_dsp line_dsp readkybd 
box_dsp par_dsp red dsp 
clear . -. pause s1g_1gn 
gold_line pop value_dsp 

8. Common Modules 

ary_pos interrupt next frame 
echo key proceed 
erase_key key_dsp return _sym 
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1. Primary Control Modules 

The Primary Control Modules include the drivers to the 

major program components of the SIS system. Their function 

is to oversee the execution of the major program components 

by coordinating ~raphics modules and process modules. 



FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

. MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 
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Primary Control Modules 

driver main driving routine in SIS, 
invokes the menu display 
driver, screen driver, and 
run sort driver. 

control module 

driver(); 

N/A 

N/A 

init initializes SIS and displays 
the title frame. 

control module 

init(); 

N/A 

N/A 

main main control module, invokes 
the initialization driver, the 
main driver, and the reset 
function. 

control module 

main () 

INPUT PARAMETERS: a 
N 

array of keys. 
size of array a. 

RETURNED VALUE: N/A 



Primary Control Modules 

FUNCTION NAME: options menu display driver. 

MODULE TYPE: control module 

USAGE: options(); 

INPUT PARAMETERS: sort 
mode 
speed 

RETURNED VALUE: N/A 

sorting algorithm selected. 
execution mode selected. 
execution speed. 
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FUNCTION NAME: run sort simulation driver, runs the 
selected sorting algorithm. 

MODULE TYPE: control module 

USAGE: run_sort(); 

INPUT PARAMETERS: sort 
mode 
speed 

RETURNED VALUE: N/A 

FUNCTION NAME: screen 

sorting algorithm selected. 
execution mode selected. 
execution speed. 

opening screen driver, dis­
plays the initial frame of 
the simulation. 

MODULE TYPE: control module 

USAGE: screen (); 

INPUT PARAMETER: sort sorting algorithm selected. 

RETURNED VALUE: N/A 
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2. Initialization Modules 

The initialization modules constitute the first ma­

jor program component. Their function is to set program 

parameters and display the title frame. These modules are 

driven by the init control module. 



FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

Initialization Modules 

echo init 

process module 

echo_init(); 

N/A 

N/A 

sets echo flags. 

init var sets array size and loads 
array with keys. 

process module 

init_var(); 

INPUT PARAMETERS: a 
N 

array of keys. 
size of array a. 

RETURNED VALUE: N/A 
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FUNCTION NAME: regis_init initializes ReGIS for SIS. 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

graphics module 

regis init(); 

N/A 

N/A 
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Initialization Modules 

------------------------------------------------------------· 
FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

reset resets GIGI set-up parameters. 

process module 

reset(); 

N/A 

N/A 

set_up sets GIGI set-up parameters 
for SIS. 

process module 

set up () : . 

N/A 

N/A 

title_dsp displays ~IS.title frame. 

graphics module 

title dsp(); 

N/A 

N/A 
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3. Menu Display Modules 

The Menu Display Modules make up the second major pro:­

gram component. They are responsible for illustrating the 

menu displays and processing the menu selections. The 

modules are driven by the options control module. 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

Menu Display Modules 

atoi converts a character string to 
an integer. 

process module 

number= atoi(string); 

string an array of characters. 

integer 



FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 
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Menu Display Modules 

get row calculates current ordinate of 
cursor position. 

process module 

row= getrow(); 

N/A 

integer 

instruct_dsp 

graphics module 

instruct_dsp(); 

N/A 

N/A 

displays the instruct­
ions for menu selection. 

make pick used when selecting options 
in a menu display. 

process module 

selection= make_pick(menu_number); 

menu number number of menu options. 

integer (menu option selected) 



FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 
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Menu Display Modules 

menu_dsp displays the menu of sorting 
algorithms. 

graphics module 

menu_dsp(): 

N/A 

N/A 

mode_dsp displays the menu of avail­
able execution modes. 

graphics module 

mode dsp(): 

N/A 

N/A 

speed_dsp displays the menu of available 
execution speeds. 

graphics module 

speed dsp ( ) : 

N/A 

N/A 
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4. Screen Modules 

The Screen Modules draw the original simulation frame. 

They consist primarily as graphics modules. These modules 

compose the third major program component and are driven by 

the screen control module. 

Screen Modules 

FUNCTION NAME: array displays the array of keys. 

MODULE TYPE: 

USAGE: 

graphics module 

array ( ) ; 

INPUT PARAMETERS: a 
N 

RETURNED VALUE: N/A 

array of keys. 
size of array a. 
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Screen Modules 

FUNCTION NAME: bub macro contains the bubblesort PDL 
macrographs. 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

graphics module 

bub_macro(); 

mode execution mode selected. 

RETURNED VALUE: N/A 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

code displays the selected PDL. 

graphics module 

code (); 

sort sorting algorithm selected. 

RETURNED VALUE: N/A 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

header display header of current 
algorithm. 

graphics module 

header(); 

mode execution mode selected. 

RETURNED VALUE: N/A 



FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

Screen Modules 

index dsp displays array indices. 

graphics module 

index dsp(); 

sort soiting algorithm selected. 

RETURNED VALUE: N/A 
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FUNCTION NAME: insert macro contains the insertion­
sort PDL macrographs. 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

graphics module 

insert_macro(); 

mode execution mode selected. 

RETURNED VALUE: N/A 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

quick_macro 

graphics module 

quick macro(); 

contains the quicksort 
POL macrographs. 

mode execution mode selected. 

RETURNED VALUE: N/A 
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Screen Modules 

FUNCTION NAME: select macro contains the selection­
sort PDL macrographs. 

MODULE TYPE: 

USAGE: 

graphics module 

select_macro(); 

INPUT PARAMETER: mode execution mode selected. 

RETURNED VALUE: N/A 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

shell macro 

graphics module 

shell_macro();. 

· contains the Shellsort 
PDL macrographs. 

INPUT PARAMETER: mode execution mode selected. 

RETURNED VALUE: N/A 

FUNCTION NAME: shuffle_keys 

MODULE .TYPE : process module 

USAGE: shuffle keys(); 

mixes the order of the 
keys within the array. 

INPUT PARAMETERS: a 
N 

array of keys. 
size of array a. 

RETURNED VALUE: N/A 



FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

Screen Modules 

underline used to underline display 
of algorithm variable. 

graphics module 

underline(num_char); 

num char number of characters to be 
underlined. 

RETURNED VALUE: N/A 
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FUNCTION NAME: var_dsp displays algorithm variables. 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

graphics module 

var dsp(); 

mode execution mode selected. 

RETURNED VALUE: N/A 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

var_pos moves cursor to indicated 
screen field. 

graphics module 

var pos(field); 

field number of a display field. 

RETURNED VALUE: N/A 

·----------------------------------------------------------------



5. Run sort Modules 

The Run sort Modules are the active participants in a 

running simulation. They contain the SIS algorithms which 

can be dynamically viewed. These modules comprise the 

fourth major program component a~d are driven by the 

run sort control module. 
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Run_sort Modules 

FUNCTION NAME: bubl bubblesort algorithm in 
self-run mode. 

MODULE TYPE: process module 

USAGE: bubl(); 

INPUT PARAMETERS: a 
N 
temp 
i, j 

RETURNED VALUE: N/A 

FUNCTION NAME: bub2 

array of keys. 
size of array a. 
array key variable. 
array indices. 

bubblesort algorithm in 
single-step mode. 

MODULE TYPE: process module 

USAGE: bub2(); 

INPUT PARAMETERS: a 
N 
temp 
i,j 

RETURNED VALUE: N/A 

array of keys. 
size of ·array a. 
array key variable. 
array indices. 
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FUNCTION NAME:" bub,sim invokes bubblesort algorithm 
in selected execution mode. 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

process module 

bub_sim(); 

mode execution mode selected. 

RETURNED VALUE: N/A 



FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

Run sort Modules 

erase_return_sym 

process module 

erase_return_sym(); 

N/A 

N/A 

erases the return 
symbol from the 
display screen. 

insl insertionsort algorithm in 
self-run mode. 

P!'.'Ocess module 

insl(); 

INPUT PARAMETERS: a array of. keys. 
N 
temp 
i' j 

RETURNED VALUE: N/A 

FUNCTION NAME: ins2 

size of array a. 
array key variable. 
array indices. 

insertionsort algorithm in 
single-step mode. 

MODULE TYPE: 

USAGE: 

process module 

ins2(); 

INPUT PARAMETERS: a 
N 
temp 
i' j 

RETURNED VALUE: N/A 

array of keys. 
size of array a. 
array key variable. 
array indices. 
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FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

Run sort Modules 

ins sim invokes insertionsort 
algorithm in selected 
execution mode. 

process module 

ins_sim(); 

mode execution mode selected. 

RETURNED VALUE: N/A 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

qui kl quicksort algorithm in 
self-run mode. 

process module 

quikl(); 

N size of array. 

RETURNED VALUE: N/A 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

quik2 quicksort algorithm in 
single-step mode. 

process module 

quik2(); 

N size of array. 

RETURNED VALUE: N/A 
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Run sort Modules 

FUNCTION NAME: quik sim invokes quicksort algorithm 
in selected execution mode. 

MODULE TYPE: 

USAGE: 

process module 

quik sim(): 

INPUT PARAMETER: mode 

RETURNED VALUE: N/A 

FUNCTION NAME: sell 

execution mode selected. 

selectionsort algorithm in 
self-run mode. 

MODULE TYPE: process module 

USAGE: sell(): 

INPUT PARAMETERS: a 
N 
temp 
i, j, k 

RETURNED VALUE: N/A 

FUNCTION NAME: sel2 

array of keys. 
size of array a. 
array key variable. 
array indices. 

selectionsort algorithm in 
single-step mode. 

MODULE TYPE: process module 

USAGE: sel2(): 

INPUT PARAMETERS: a 
N 
temp 
i, j, k 

RETURNED VALUE: N/A 

array of keys. 
size of array a. 
array key variable. 
array indices. 

-----------·------------------------------------------------



74 

Run sort Modules 

---- .---------------------------· ---------------------- ----
FUNCTION NAME: sel sim invokes selectionsort 

algorithm in selected 
execution mode. 

MODULE TYPE: 

USAGE: 

process module 

sel_sim(): 

INPUT PARAMETER: mode 

RETURNED VALUE: N/A 

FUNCTION NAME: shll 

execution mode selected. 

Shellsort algorithm in 
self-run mode. 

MODULE TYPE: process module 

USAGE: shll(): 

INPUT PARAMETERS: a 
N 
temp 
i,j,s 

RETURNED VALUE: N/A 

FUNCTION NAME: shl2 

MO PULE TYPE: process 

USAGE: . shl2 (): 

IN"PUT PARAMETERS: a 
N 
temp 
i,j,s 

RETURNED VALUE: N/A 

array of keys. 
size of array a. 
array key variable. 
array indices~ 

Shell sort algorithm 
single-step mode. 

module 

arra.y of.keys. 
size.· ·of array a. 
array key variable. 
array indices. 

in 



Run sort Modules 

FUNCTION NAME: shl sim invokes selectionsort 
algorithm in selected 
execution mode. 

MODULE TYPE: 

USAGE: 

process module 

shl_sim(); 

INPUT PARAMETER: mode 

RETURNED VALUE: N/A 

FUNCTION NAME:· sortl 

execution mode selected. 

quicksort subroutine invoked 
in self-run mode. 

MODULE TYPE: process module 

USAGE: sortl(); 

INPUT PARAMETERS: a 
N 
temp,x 
i,j,l,r 

RETURNED VALUE: N/A 

FUNCTION NAME: sort2 

array of keys. 
size of array a. 
array key variables. 
array indices. 

quicksort subroutine invoked 
in single-step mode. 

MODULE TYPE: process module 

USAGE: sort2(); 

INPUT PARAMETERS: a 
N 
temp,x 
i,j,l,r 

RETURNED VALUE: N/A 

array of keys. 
size of array a. 
array key variables. 
array indices. 
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6. SIS Command Modules 

This section is a library of the SIS Commands used in 

the program. They are invoked only by the run sort modules 

of the previous section. Their purpose is to simplify the 

programming of an algorithm simulation. 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

SIS Command Modules 

blue line displays line of PDL 
in blue. 

process module 

blue_line(line): 

line line number of PDL. 

RETURNED VALUE: N/A 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

blue var displays variable in blue. 

process module 

blue_var('var'): 

var mnemonic character representing 
an algorithm variable. 

RETURNED VALUE: N/A 



FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

SIS Command Modules 

cond displays the result of a 
conditional expression. 

graphics module 

cond(bool); 

bool integer with a boolean value. 

RETURNED VALUE: N/A 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

green_line displays line of PDL 
in blue. 

process module 

green line(line); 

line line number of PDL. 

RETURNED VALUE: N/A 
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FUNCTION NAME: green var displays variable in green. 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

process module 

green_var('var'); 

var mnemonic character representing 
an algorithm variable. 

RETURNED VALUE: N/A 



FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 
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SIS Command Modules 

pop_dsp pops all variables off of the 
display stack and highlights 
them in green. 

process module 

pop_dsp(); 

N/A 

N/A 

push_dsp pushes a variable onto the 
display stack and highlights 
the variable· in blue. 

process module 

push_dsp('var'); 

var mnemonic character representing 
an algorithm variable. 

RETURNED VALUE: N/A 

FUNCTION NAME: red box encloses a portion of the array 
display in a red box. 

MODULE TYPE: 

USAGE: 

process module 

red_box(lower,upper); 

INPUT PARAMETERS: lower 
upper 

RETURNED VALUE: N/A 

lower bound of the red box. 
upper bound of the red box. 



79 

SIS Command Modules 

FUNCTION NAME: red line displays line of PDL in red. 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

process module 

red_line(line): 

line line number of PDL. 

RETURNED VALUE: N/A 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

red var displays variable in red. 

process module 

red_var('var'): 

var mnemonic character representing 
an algorithm variable. 

RETURNED VALUE: N/A 

FUNCTION NAME: white box encloses a portion of 
the array display in 
a white box. 

MODULE TYPE: 

USAGE: 

process module 

white_box(lower,upper): 

INPUT PARAMETERS: lower 
upper 

RETURNED VALUE: N/A 

lower bound of the white box. 
upper bound of the white box. 
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7. SIS Command Utility Modules 

SIS Command Utility Modules perform the screen mechan­

ics of the SIS Commands. They play a supplemental role to 

SIS Commands and remain unseen to the programmer. Many of 

these utility modules are invoked by more than one SIS Com­

mand. 



FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

·SIS Command Utility Modules 

array..;.dsp branches to cell of array 
key display, invoked by 
value_dsp subroutine. 

process module 

array_dsp(var); 

INPUT PARAMETERS: a array of keys. 
size of array a. 
array indices. 

N 
i,j,r,l,k,s 
var 

RETURNED VALUE: N/A 

mnemonic ~epresentation 
of algorithm variable. 
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FUNCTION NAME: . blue_dsp sets text and graphics to 
blue and is invoked by 
blue var and push dsp cmds. 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

process module 

blue_dsp(); 

N/A 

N/A 

box_dsp SIS box command utility func. 

graphics module 

box_dsp(lower,upper); 

INPUT PARAMETERS: N 
lower 
upper 

size of the array. 
·lower bound of the box. 
upper bound of the box. 

RETURNED VALUE: N/A 



FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

SIS Command Utility Modules 

clear clears the display stack, 
called by pop and push cmds. 

process module 

clear(): 

N/A 

N/A 

gold_line displays line of PDL in 
gold (yellow), invoked by 
green line commands. 

process module 

gold line(line); 

line line number of PDL. 
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RETURNED VALUE: N/A 

--------------------------------------------· ---------------
FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

green_dsp 

process module 

green_dsp(): 

N/A 

N/A 

sets text and graphics to 
green, invoked by green var 
and pop_dsp commands. -
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SIS Command Utility Modules 

FUNCTION NAME: line_dsp - SIS line command utility func. 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

graphics module 

line_dsp(line); 

line line number of PDL. 

RETURNED VALUE: N/A 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

par_dsp posts the current value 
of a variable, invoked 
by value_dsp. 

process module 

par_dsp(var); 

INPUT PARAMETERS: a array of keys. 
N 
i,j,r,l,k,s 
var 

size of array a. 
array indices. 
mnemonic repesentation 
of algorithm variable. 

RETURNED VALUE: N/A 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETERS: 

RETURNED VALUE: 

pause 

graphics 

pause (); 

mode 
speed 

N/A 

regulates simulation speed, 
.invoked by green line command. 

module 

execution mode selected. 
execution speed selected. 
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SIS Command Utility Modules 

FUNCTION NAME: pop pops value from top of display 
stack, invoked by pop dsp. 

MODULE TYPE: process module 

USAGE: pop (); 

INPUT PARAMETERS: sp 
par 

stack pointer. 
parameter stack. 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

· USAGE: 

character (value from top of stack 
returned or error symbol returned 
if stack empty). 

push push_dsp command utility func. 

process module 

push(var); 

INPUT PARAMETERS: sp 
par 
var 

stack ,pointer. 
parameter stack. 
mnemonic representation of an 
algorithm variable. 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

error symbol returned on stack overflow. 

readkybd looks for input from 
keyboard, invoked by 
pause function. 

process module 

readkybd(); 

INPUT PARAMETERS: mode 
speed 

execution mode selected. 
execution speed selected. 

RETURNED VALUE: N/A 



FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 
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SIS Command Utility Modules 

red_dsp sets text and graphics to 
red, invoked by red var cmds. 

process module 

red_dsp(); 

N/A 

N/A 

sig_ign dummy function to process 
alarm interrupt, invoked by C 
func 'signal' in readkybd. 

process module 

signal(SIGALRM,sig_ign); 

N/A 

N/A 

value_dsp variable graphics display 
driver, invoked by blue var 
and pop_dsp commands. -

process module 

value dsp(var); 

INPUT PARAMETERS: mode 
var 

execution mode selected. 
mnemonic character representing 
an algorithm variable. 

RETURNED VALUE: N/A 
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B. Common Modules 

Common Modules are defined as those modules which are 

called by modules of different major program components. 

Common Modules perform an assortment of functions and may be 

summoned frequently in a SIS presentation. 
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Common Modules 

---------------------- -------------------------------------
FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

ary_pos sets graphics cursor to the 
appropriate array position. 

graphics module 

ary_pos(pos); 

pos position corresponding to 
an array index. 

RETURNED VALUE: N/A 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

echo regulates the terminal echo. 

process module 

echo(flag); 

flag specifies terminal echo cond, 
values it can assume: 
' ON' or ' OFF ' • 

RETURNED VALUE:. N/A 

FUNCTION NAME: 

MODULE TYPE·: 
-·· . 

USAGE:-

INPUT. PARAMETER: . . ... 

RETURNED- VALUE: 

erase_key erases array key found in 
the current cell position. 

graphics module. 

erase key ( )°; 

N/A 

N/A 

-- -----. ----------------·--·-----------------------------



FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

Common Modules 

interrupt handles signal interrupts 
generated by the 'BREAK' 
key. 

process module 

signal(SIGINT,interrupt); 

N/A 

N/A 
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FUNCTION NAME: key generates specified array key 
at current location. 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

graphics module 

key(array key); 

array_key array key variable. 

RETURNED VALUE: N/A 

FUNCTION NAME: key_dsp array key display driver, 
calls ary_pos, erase_key, 
and key. 

MODULE TYPE: 

USAGE: 

process module 

key_dsp(pos,array_key); 

INPUT PARAMETERS: array_key 
pos 

RETURNED VALUE: N/A 

array key variable. 
position corresponding 
to array index. 



FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 

FUNCTION NAME: 

MODULE TYPE: 

USAGE: 

INPUT PARAMETER: 

RETURNED VALUE: 
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next frame 

process module 

next_frame(): 

N/A 

N/A 

an infinite loop, exited 
only when carriage return 
is received. 

proceed displays 'new selection' 
question and processes user 
response to question, invoked 
by interrupt function. 

process module 

proceed(): 

N/A 

the response to the question is returned: 
'YES' or 'NO'. 

return_sym 

graphics module 

return sym(): 

N/A 

N/A 

generates the return 
symbol display. 



APPENDIX C 

SIS USER'S GUIDE 

Introduction 

SIS is a sorting instruction simulator. Its purpose is 

to provide you, the viewer, the opportunity to witness the 

execution of a sorting algorithm. The design of the simula­

tor allows you to choose: 

1 •. One of five sorting algorithms 

2. One of two modes of execution 

3. One of three execution speeds 

Briefly page through this accompanying guide before us­

ing SIS. Knowing the options available to you in advance 

will enhance your learning and increase your enjoyment. SIS 

is programmed with several convenient features. With a few 

simple keystrokes you can change the execution speed while 

the simulation is in progress, temporarily halt algorithm 

execution, or abort the current simulation and begin anoth-

er. 

Colorful graphics highlight important points in an 

executing sorting algorithm. Through color change, you 

can follow the actions resulting from each executing 

instruction. You are always aware of what instruction is ex­

ecuting, what variables are being affected, and the current 
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order of the keys being sorted as they are displayed in a 

rectangular array. 

Login Procedure 
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SIS is currently available on the Perkin-Elmer 3230 

Computer associated with the Computing and Information Sci­

ence (COMSC) Department. Having already acquired an account 

name and password from the COMSC Department: 

1. Secure a GIGI Terminal accessing the Perkin-Elmer. 
One is located on the second floor of the 
Mathematical Science Building. (SIS will only 
operate properly on GIGI Terminals). 

2. Repeatedly press the "RETURN" key until "login:" 
appears on the screen. 

3. Type your account name and press "RETURN". "Pass­
word:" should appear, if it does not then go back 
to step 2. 

4. Enter your password and press the "RETURN" key. 
(Your password will not be displayed.) Wait for 
the system to respond with a"%" prompt. 

5. To invoke the SIS program, type: 

/u/fac/mjf/sis.jsr/SIS 

and press the "RETURN" key. 

If these steps are followed correctly, the SIS title will 

appear on the display screen (Figure 17). 
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Figure 17. The SIS Title Display 

Option Selection 

With the SIS title presented on the display screen, 

press the "RETURN" key. You have now entered the menu 

selection portion of the SIS program. A menu of sorting al­

gorithms should appear. 

SORTING ALGORITHM - The blinking cursor situated near 

the center of the screen is the option selector. Locate the 

up and down arrow keys ~~ on the top row of the key­

board. Using these keys, align the option selector with the 
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sorting algorithm option that you desire to view. Press the 

"RETURN" key to enter your choice. 

EXECUTION MODE - After choosing the sorting algorithm 

to simulate,. you must decide how you want it to be present­

ed. A menu of execution modes is displayed next with the 

options: 1) self-run mode and 2) single-step mode. 

The self-run mode simulates the selected algorithm at a 

fixed rate of speed. This mode is beneficial when wanting 

to learn about the algorithm's overall behavior. Main at­

tention centers on the array display where you will be ob­

serving the swapping characteristics of the algorithm. 

If a more detailed account of the sorting algorithm is 

desired, then the single-step mode is recommended. Single­

step mode proceeds through the algorithm one instruc~ion at 

a time under your direction. Emphasis is placed upon ·vati­

able values, program flow, and results of individual in­

structions. 

As in the algorithm selection process, use the arrow 

keys in conjunction with the option selector to choose the 

execution mode. Press the "RETURN" key to enter your 

choice. 

EXECUTION SPEED - If you have chosen the single-step 

mode of execution, omit this step and proceed immediately to 

Viewing the Simulation. Having elected to watch a simula­

tion in self-run mode, you are presented with a menu of 

execution speeds: fast, medium, and slow. Following the 

previously mentioned menu selection procedure, choose an ap-



propriate speed and press· the "RETURN" key to enter your 

choice. 

Viewing the Simulation 
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You are now ready to b.egin the simulation. The simula­

tor display should appear on the screen as shown in Figure 

18 (self-run mode) and Figure 19 (single-step mode). At the 

top of the screen in white is the display header. It rem­

inds you of your sorting algorithm and execution mode selec­

tions. The left portion of the screen holds the pseudocode 

of your sorting algorithm. The array display containing the 

keys to be sorted appears near the center of the screen. If 

you elected single-step mode, a display of algorithm vari­

ables is posted along the right side of the screen. 

SIS employs a color scheme to aid you in algorithm 

comprehension. Table III describes the color codes used by 

SIS during a running simulation. Depending upon the sorting 

algorithm and execution mode, not all of 'the color codes 

will be used. For instance, yellow is not used in self-run 

mode simulations and red only appears when recursive algo­

rithms (quicksort) are selected. 



95 

Figure 18. A Self~Run Mode Simulation Display 

Figure 19. A Single-Step Mode Simulation Display 



Color 

Green 

Yellow 

Blue (Cyan) 

Red 

White 

Dark 

TABLE III 

SIS DISPLAY COLOR CODES 

Purpose 

General Display Color 

Highlights Previous Instruction 

Highlights Current Instruction, 
Keys, and Variables 

Highlights Recursion 

Highlights Display Header and 
Return Symbol 

Background Color 
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Please note the white return symbol found in the lower 

right hand corner of the display screen. Whenever this sym­

bol appears, press the "RETURN" key when you are ready to 

continue the simulation. 

The "BREAK" key is pressed when you.want to leave the 

current simulation prematurely. You will then be given the 

option of either exiting the SIS program or choosing another 

sorting algorithm to view. Respond to the question by typ-

ing either "yes" or "no" and press the "RETURN" key. The 

"BREAK" key may be used anytime during the SIS program, even 

during menu selection. 

Please proceed to the appropriate·execution mode for 

further directions. 
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************************************************************ 

SELF-RUN MODE 

************************************************************ 

In this mode, SIS provides you with a set of function 

keys. Use of these function keys during a simulation en­

ables you to change execution speeds or pause the action of 

the algorithm demonstration. Please see Table IV for a com­

plete description. 

Press the "RETURN" key to initiate the simulation. No­

tice, that as each line of code is executed: 

1. It is highlighted in blue. 

2. All array keys affected by that instruction 
are also highlighted in blue. 

Center your concentration upon the array display. Ob­

serving how the individual array keys are compared and ex-

changed will give you insight into the characteristics of 

the sorting algorithm. Questions to consider while viewing 

include: 

1. What is the general direction of the comparisons 
being made? (up or down) 

2. How far apart are the array keys being compared? 
Are they adjacent or several positions apart? 

3. Is an additional array position required fn this 
particular sorting algorithm? 

4. How efficient is this sorting algorithm, that is, 
are there many unnecessary comparisons? 

5. Do you see any general trends? 
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Remember, if you desire to leave the simulation before 

it reaches its conclusion, press the "BREAK" key. When you 

are finished watching SIS, please go to the Logout Pro-

cedure. 

TABLE IV 

SUMMARY OF THE PROGRAM FUNCTIONS 

Key 

'F' or 'f' 

'M' or 'm' 

'S' or 's' 

'P' or 'p' 

'BREAK' 

Function 

Change Execution Speed To 'Fast' 

Change Execution Speed To 
'Medium' 

Change Execution Speed To 'Slow' 

Pause Or Temporarily Halt 
Simulation, Press 'RETURN' Key 
To Resume Execution 

Abort Current Simulation 
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************************************************************ 

SINGLE-STEP MODE 

************************************************************ 

In this mode, progress through the simulation is accom­

plished by a repeated pressing of the "RETURN" key. With 

each keystroke, the next instruction is executed. 

Throughout the demonstration, use Table III as a guide for 

interpreting the various colored elements of the display. 

Press the "RETURN" key. This initiates the simulation. 

While stepping through the demonstration focus your atten­

tion upon the blue highlighting in the display. The blue 

color indicates currently affected elements, including the 

variable values, line of code, and array keys. Questions to 

consider while viewing are: 

1. What variable values changed when the current in­
struction was executed? Why? 

2. What array keys are affected by the current in­
struction? Why? 

3. Examine the program flow of execution. Why was the 
current instruction executed after the previous 
instruction? 

4. If the current instruction is an "if statement", 
why is its posted result TRUE (or FALSE)? 

Remember, if you desire to leave the simulation before 

it reiches its conclusion, press the "BREAK" key. When you 

are finished watching SIS, please go to the Logout Pro­

cedure. 
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Logout Procedure 

When you have concluded viewing SIS, please do not 

leave the terminal without logging off the system. If you 

are still in the SIS program: 

1 •. Press the "BREAK" key. The question "Do you wish 
to make another selection?" will then follow on 
the screen .• 

2. Respond to the question by typing "n~" and press 
the "RETURN" key. A"%" prompt should appear. 

You have now exited the SIS program. To log off the system 

type "logout" and press the "RETURN" key. If you are suc­

cessful, "login:" will be displayed upon the screen. 



APPENDIX D 

VT125 CONVERSION REQUIREMENTS 

The VT125 utilizes only four out of the eight colors 

provided by ReGIS: dark, blue, red, and green. This limited 

selection is inadequate for SIS, which requires six colors. 

Although a stripped down version of SIS could be built 

around four colors, replacing ReGIS color commands with the 

HLS color specifiers available on the VT125 is a better al­

ternative. The HLS color system offers 64 different colors 

and would not impose any color restrictions on the presenta­

tion. 

The up and down arrow keys, used to manipulate the 

pointer in a SIS menu display, are enabled with GIGI­

specific device control strings (DCS). Because DCS are not 

acknowledged by a VT125, the menu display is rendered inop­

erable. Unfortunately, there is no simple_conversion. 

Another method for choosing options could be devised to al­

low the student a way of entering simulation parameters. 

An annoyance with running SIS on a VT125 is that the 

graphics cursor cannot be disabled. The cursor is present 

whenever the VT125 is processing ReGIS graphics commands. 

This is not a critical issue, but the cursor could become 

distracting during a simulation. 
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