
DEVELOPMENT OF AN EXPERIMENTAL TEMPLATE

DRIVEN EDITOR FOR TREES

By

RONALD DEAN MOORE

Bache+or of Science

Southeastern Oklahoma State University

Durant, Oklahoma

1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1984

T~"'ii:.~~:;
l(i~~. .. ,
\'1.\ ~~·Q \

. ,;:) c:'1

c:~ l::lf·

DRIVEN EDITOR FOR TREES

Thesis Approved:

ii

PREFACE

The development of a template editor for trees is examined

by defining the mechanisms of the template and by discussing

the techniques used to coordinate the traversal of two

trees. This paper shows the feasibility of editing network

and tree structures using an overlay (template) to keeping

the data in a defined pattern. I wish to thank the faculty

and staff of the Computing and Information Sciences

Department for their help and friendship. Special thanks go

to my major advisor, Dr. J. R. Van Doren, who answered my

questions and also encouraged me in the work, to my

committee members Dr. G. E. Hedrick and Dr. S. A. Thoreson

for their helpful comments and Finally I express my sincere

appreciation to Kathy McMath, who read the early

manuscripts, the men of "Pigma Chi", who put up with me when

deadlines came near, and others who encouraged me to

continue. The biggest thanks go to my family, whom I love

very much, and to my parents, to whom this paper is

dedicated.

iii

Chapter

I •

I I.

TABLE OF CONTENTS

Page

INTRODUCTION 1

Objectives • • • • • • • • • • • • • • 1
Survey of the Literature • • • • • • • • • 3

Conceptual Editor Design • • • • • • • 3
Implementation Model for Design

Support • • • • • • • • • • • • • • 5

METHODS OF EDITING • • • • . . 8

Introduction • • • • • • • • • • • • • • • 8
Definition of Trees Edited • • • • • • • • 10
Basic Editing Commands • • • • • • • • 12
Template Editing • • • • • • • • • • • • • 17

III. DESIGN OF AN EDITOR FOR TREES 22

Introduction • • • • • • • • • • • 22
Conceptual Model of Editor Design • • • • • 23
Subsystem Design of the Editor for Trees 26

Movement Subsystem • • • • • • • • • • 27
Validity Checking Subsystem • • • • • 28
Editing Subsystem • • • • • • • • • • 29

Implementing a Recursive Coroutine System • 30

IV. SUMMARY AND RECOMMENDATIONS

SELECTED BIBLIOGRAPHY • • •
APPENDIX A - IMPLEMENTATION LANGUAGE DESCRIPTI'ON . . .
APPENDIX B - SYSTEM PROGRAMMER'S GUIDE
APPENDIX C - USER '·S GUIDE .•
APPENDIX D - SAMPLE COMMAND PROCEDURE . .

iv

32

37

39

43

68

72

Table

I.

LIST OF TABLES

Command Set for a Template Driven
Editor for Trees •••••• . . . • • • •

II. Template Mechanism Symbols and Actions
III. List of Variables and Descriptions Used in

a Prqtotype Edi~or for Trees •••••

v

. .

Page

15

21

46

LIST OF FIGURES

Figure Page

1. Labeled Tree (with substructures) 11

2. Labeled Tree (with values) 11

3. Tree of figure 1 in Textual Form . • 12

4. Tree pointer modified by traversal 13

5. Template and Data tree with general label 18

6. Template and Data tree with choice of label . . . 19

7. Template and Data tree with fixed label 19

B. Template and Data tree with horizontal repeat 20

9. Template and Data tree with vertical repeat . . . 21

10. Subroutine and Coroutine relationship 25

11. Generie Template for Template Driven Editor . . . 69

vi

CHAPTER I

INTRODUCTION

Objectives

Data structures are of concern in any application of

computers. The increase of computer usage and the

implementation of new sophisticated applications require

proper attention to data structures by system designers.

Tree structures are a useful group of these structures.

Trees are used in compilers to develop structured symbol

tables [5]. B-trees are often used when implementing

indexed files for information retrieval systems [1].

This project describes the initial building and

modifying of tree data structures. It has two major

objectives; they are:

(1) to investigate the issues involved in a template

driven tree editor; and

(2) to develop a template driven test editor for trees.

The trees used as a work base are the general class of

ordered trees as defined by Standish [13]. Such a tree is a

hierarchical data structure consisting of a finite set of

one or more vertices with one designated vertex as the root.

The remaining vertices (nodes) are partitioned into mutually

exclusive subsets, each of which is an ordered tree.

1

2

Beginning in Chapter II the methods of editing and

their relation to template editing is discussed. The

chapter introduces the types of trees, the techniques, and

the methods that are useful in coordinated processing.

Chapter III describes the design of ~he editor and discusses

implementation problems.

Both the editor and the concept of template driven

editing are reviewed in.Chapter IV. The issues involved in

this type of editing are summarized and questions that are

beyond the scope of this project are presented along with

possible suggestions for further study of template driven

editing of trees.

Four appendices are included to aid the user in working

with the editor implemented in the project. Appendix A

describes the implementation language and discusses the

special features and restrictions of the language. Appendix

B, a System Guide, contains the conceptual design logic of

the system in Program Design Language (PDL) form in addition

to a list of variable names and their definitions. Appendix

C, a User's Guide, illustrates the proper way to start an

editing session and contains comments on the format of

displays and messages. The appendix also outlines each

command of the editor. Appendix D gives the UNIX command

procedure that connects logical files to physical files and

performs the execution of the language interpreter.

Survey of the Literature

A number of different approaches to editing are found

in the literature. The presentation of the literature is

based on the type of design help given.

Conceptual Editor Design

3

A text editor is one of the basic components of a

text-processing system [8]. Meyrowitz and Van Dam [8]

describe this class of editors with three groups: line

oriented editors, stream editors and display editors.

Line-oriented editors such as IBM's CMS editor (ca. 1967) is

an example of a fixed-length line-oriented editor with a

textual interface, designed for a time sharing system.

Stream editors on a document as a single, continuous chain

of characters rather than act upon fixed-length or

variable-length lines. TECO, the Text Editor and COrrector

(ca. 1970), is an interpreter for a string processing

language.

TECO can be used interactively as a stream-oriented

editor. The conceptual model considers a document to be a

sequence of characters, possibly broken into variable-length

virtual pages. Pages may be combined in an in-core editing

buffer considered to be a variable-length string capable of

expanding to the in-core memory available. Display editors

or full screen editors use the Irons [8] conceptual model.

In this model, text is conceived as a quarter-plane

extending indefinitely in width and length, with the

topmost, leftmost character the origin of the file. The

user travels through this plane by using cursor keys making

changes when desired.

4

Structure editors attempt to use the natural structure

found in most editing targets [8]. The idea of the ED3

prototype described by Stromfors and Jonesjo [14] is to

superimpose a tree structure onto the text. The tree will

act as the table of contents of a book. The difference is

that changes of the tree will cause the text parts to be

correspondingly reordered. Meyrowitz and Van Dam [8]

mention the NLS/Augment editor as a structure editor using

the same concept. Regardless of the subject matter, all NLS

information is stored in a hierarchical outline structure.

Statements can be nested an arbitrary number of levels. NLS

provides modifiers to reference not only text elements but

structure elements as well.

A Language-directed editor, according to Morris and

Schwartz [9], combines the text manipulation functions of a

general-purpose text editor with the syntax-checking

functions of a compiler. Language-directed editors are

claimed to allow more productive editing of program texts.

They reduce typing effort by providing abbreviations for

frequently occurring text elements such as keywords. The

editor commands are tailored to the syntactic structure of

the text. For example, a single command will locate the

next· occurrence of a variable X, ignoring occurrences of X

5

as a string in constants or comments. Language-directed

editors are tend to be great consumers of computer resources

and impose tight syntactic constraints on the object text.

Fraser [4] describes another type of editor as a

syntax-directed editor. A syntax-directed editor accepts a

grammatical description of hierarchical data structures and

allows the user to enter and edit arbitrary trees having

this structure. Fraser's syntax-directed editor, SDS [4,8],

extracts all of its structure-dependent parameters from a

grammar that resembles grammars accepted by typical

compiler-compilers. Following the grammar is section of

code used for semantic action. This code and grammar is

compiled into a record declaration for the data type and

code to check the syntax of input.

Implementation Model for Design Support

In the course of investigating logical design models

for designing a template driven editor conventional

procedure oriented processes proved inadequate. Essentially

this is due to the coordination of processing required

between a template and the structure being edited.

A model that is useful in coordinated processes is a

group of modules with information items flowing between the

modules. Under these conditions each module may be made

into a coroutine [2]: that is: it may be made coded as an

autonomous program which communicates with adjacent modules

as if they were input or output subroutines. Coroutines are

6

subroutines all at the same level, each acting as if it

were the master program when in fact there is no master

program. Conway [2] uses this model to implement a high

speed, one-pass, syntax-directed Cobol compiler. Coroutines

allow the source code to be input and a message output one

at a time. Wang and Dahl [16] give an example to merge the

data items contained in two or more binary search trees into

a single sorted sequence. The algorithm consists of a set

of recursive processes, one for the traversal of each tree,

interlocked by coroutine linkage.

Hedrick and Alexander [6] discuss a preprocessor that

allows coroutines in Fortran. The preprocessor accepts as

input, statements that allow the user to define his own

coroutines. A symbol table is constructed for names of the

coroutines and a number is assigned as identification.

Fortran subroutines are generated with the last statement as

a computed GO TO statement which enables execution of the

subprogram to resume at the proper place when it is called

more than once in the program. Every subroutine which is

generated by the coroutine preprocessor has a labelled

common block used for communication among the various

coroutines. A special subroutine interrogates this common

block and/or sets the values in order to sequence the

subroutine calls.

It is the intent of this paper to use this model and

these designs to develop a prototype template driven editor

for general tree structures. The following is a discussion

of this development.

7

CHAPTER II

METHODS OF EDITING

Introduction

Editors are softwar·e systems that attempt to perform

text manipulations with speed and accuracy while upholding

the overall computer performance. Editors are key elements

in an interactive computing environment and exhibit many

interesting questions concerning data structures and user

interfaces. To review, the four primary types of editors

mentioned in the previous chapter are: text editors,

structure editors, language-directed editors, and syntax-.

directed editors.

" Of the four types of editors, text editors are the most

common. A text editor [8] is one of the basic components of

a word processing system or an independent tool concerned

with the creation and maintenance of the character strings

of the target text. Word processing systems include other

features as text formatters and spelling correctors while

the text editor performs free style manipulations of text

with dynamic changes in style and format.

Structure editors manipulate portions of generic

structure. Since target applications have some innate

structure (e.g. manuscripts are composed of chapters,

8

sections, and paragraphs}, structure editors take

advantage of this "natural" organization to manipulate text

in a tree form. One such example is the NLS/Augment editor

mentioned by Meyrowitz and Van Dam [8]. NLS uses a

hierarchical tree structure to contain text of a

hierarchical nature.

9

The third type of editor is a language-directed editor

[9] which combines the text manipulation functions of a

general-purpose editor with the syntax-checking functions of

a compiler. The editor is combined with the functions of a

parser, allowing the creation of programs in terms of the

syntactic structure. Text is entered character by character

and is parsed token by token as it is being entered. A

disadvantage of language-directed editors is the tight

syntactic constraints they impose on the object text.

The last type is syntax-directed editors [4]. A

syntax-directed editor accepts a grammar description of a

hierarchical data structure and allows the user to enter and

edit arbitrary trees having this structure. A language

grammar description would allow the editing of a parse tree

from which program code could be generated. An example of a

formatter/editor is SDS [4], where the syntax of a paper is

described to the editor. Syntax-directed editing is an aid

in program development and is expanded to any structure that

can be described by a grammar.

The approach of template driven editing is similar to

syntax-directed editing by accepting a description of a

10

hierarchical data structure. The description is not a

grammar but a hierarchical structure with defined

mechanisms. The purpose of template driven editing is to

provide mechanisms to describe a data structure in a

template and allow data structures to be created and edited

having this structure.

Definition of Trees Edited

In addition to the ordered tree definition of Standish

[13], the trees used for this project are more explicitly

defined by the Programming Language for Allocation and

Network Scheduling User's Guide [10]. According to this

defi~ition, each node has a label consisting of any

character string containing no embedded blanks. Labels can

be used to store information in the tree or to identify the

nature of information in the subtree. Figure 1 shows the

graphical format of a labeled tree using a convention that

the label of the node is written to the right of the node.

The leaf nodes of a tree have a value, which may be a

character string, a numeric value, or null. Values are

shown below their nodes as in figure 2. While graphical

format is convenient for conceptual tree structures it is

not used for screen display of this prototype. Figure 3

shows the tree of figure 1 as defined by an indented text

format. Each new level is indented three spaces and the

values of the leaf nodes are separated by a hyphen {-)

character preceded and followed by a blank for visual

11

purposes. This representation of trees is similar to

Hoare records [5] but differ with respect to the ability for

dynamic change in structure whereas Hoare records do not. A

null label in graphical format is demonstrated by a blank to

the right of the node while an at-sign (@) is used to

indicate a null label in textual format.

DELTA

3 6 8

Figure 1. Labeled Tree (with substructures)

OTANGO
5

Figure 2. Labeled Tree (with values)

ALPHA
BRAVO

XTRA - 3
YANKEE - 6

CHARLIE - 5
DELTA

ZEBRA - 8

Figure 3. Tree of Figure 1 in Textual Form

Basic Editing Commands

The choice of a command set for a structure editor

12

should be based on functionality and convenience. Stromfors

and Jonejo [14] state, "Only a few commands are needed to

make it easy for a user to walk around in a tree." Table I

shows the command set for the prototype of a template driven

editor for trees. The Advance and Back commands move one

position across the siblings in a forward and backward

direction. The Down command moves to the first child of

current node while the Up command moves to the parent of the

current node. Figure 4 shows the changes of the current

node while performing the above commands. The Root command

places the current node at the· root of the tree regardless

of the current location.

Two commands are used to display the template and data

trees. Write Template displays the subtree of template that

has the current node as the root and the Write command

displays the subtree of the data tree that has the current

node as the root. The commands Label and Value change the

information of the current node. The Value command is

only valid on leaf level nodes and any changes are subject

to a consistency check with the template.

current

HISTORY

85.7 92.4 78.6

Figure 4a. Tree with root as current node

current

· HISTORY

85.7 92.4 78.6

Figure 4b. Tree of (a) after Down command

13

14

HISTORY

85.7 92.4 78.6

Figure 4c. Tree of (b) after Advance command

current

HISTORY

85.7 92.4 78.6

Figure 4d. Tree of (c) after Back command

HISTORY

85.7 92.4 78.6

Figure 4e. Tree of (b), (c), or (d) after Up command

15

TABLE I

COMMAND SET FOR A TEMPLATE DRIVEN
EDITOR FOR TREES

Command

Help
Advance
Back
Down

Up
Root
Write
Write Template
Label
Value
Insert Before
Insert After
Insert Down
QUIT

Description

li-st the command set
advance one position across siblings
back one position across siblings
move down to first child of current
node
move up to parent of current node
move to the root of the tree
write current subtree to screen
write current template tree to screen
assign label to current node
assign value to current node
insert before current node a blank node
insert after current node a blank node
insert down a blank node as last child
end current editing session

The three remaining commands are Insert Down, Insert

After, and Insert Before. Each of these commands insert

nodes in positions relative to the current node. However,

the use of these three are severly restricted by the

template being used. Additional information on the

restrictions can be found in Appendix C- User's Guide and

discussion about command sets for structure editors is in

[14,15]~

16

The user interface is also an important factor in

editing. Roberts [11] addresses the subject of the user

interface relative to the usability of text editors by

beginners, novice users and knowledgeable users. According

to Roberts, the ideal interface would tutor beginners and

advise novices, but not hinder the knowledgeable. For the

beginner, the method of progressive disclosure would be

suitable. This explicitly shows the user the valid command

repertoire and the operation targets at any given time.

Another method uses menus to allow the user to select

choices rather than to memorize commands. Both of these

methods would be helpful for the novice but could be

somewhat irritating to the user who already knows what

commands are needed and how to use them.

Structure editing lends itself nicely to split-screen

display. The top portion of the screen displays the current

node and subtree while the bottom portion awaits the command

input. Regardless of the method used, the editor should use

17

descriptive mnemonic commands and a help facility on

either user request or upon invalid or disabled commands.

The topic of user interfaces is beyond the scope this paper.

The content of this paper emphasizes the functionality of

template driven editing.

Template Editing

As grammars are used to generate the possible

combinations of tokens in programming languages, template

trees are used to generate the possible combinations of

structures in data trees. Though the template is a special

tree created by a template editor, it is used to influence

the data tree. The primary goal of template driven editing

is to insure structural and content validity in the data

tree. The template is built by placing special labels in the

tree structure restricting the editor to allow only valid

input. The mechanisms to describe the value field of a node

are CONSTANT and VALUE. When CONSTANT is the label of the

current template node the value of that node is placed in

the current data tree node. A label of VALUE in the

template causes a value to be placed in the data tree of the

data type specified by the value field of the template node.

Figure 5 shows how values are described. The four types

available are: string, integer, float or null.

Labels are subject to restrictions also. The

generalized label is denoted by a pound sign (#), also shown

in figure 5, and allows any character string as input. A

18

more restricted template symbol is the asterisk (*). The

asterisk signals the editor that a label may be input from a

list of choices and placed in the data tr~e as in figure 6.

The left branch (CHOICE) has as its children the choices

available while the right branch exist as a place holder

accepting the choire and allowing a possible substructure.

A label is considered to be fixed if the template symbol is

not a defined mechanism. A fixed label, as shown in figure

7, is required in the data tree if the node exists.

ANY LABEL

CONSTANT

32

Template tree Data tree

a) general label (with CONSTANT)

FLOAT

~ ANY_LABEL

3.55

VALUE

Template tree Data tree

b) general label (with VALUE)

Figure 5. Template and Data Tree with general label

19

The dollar sign ($) signifies the repeat of the exact

substructure that is described in the right subtree. The

left subtree (REPEAT) is the value of the maximum number of

times it can be repeated. The substructure can be repeated

any number of times between zero and the maximum. The

example in figure 8 shows the maximum to be three but the

substructure is repeated only twice. Any legal template

mechanisms can be used in the right subtree.

Figure 6. Template and Data Tree with choice of label

CHI

Figure 7. Template and Data Tree with fixed label

20

0

MICRO

MICRO

Figure 8. Template and one of four valid Data Trees
with horizontal repeat

The template structure of a vertical repeat mechanism

is shown in figure 9. This mechanism requires two symbols.

The ampersand (&) is the root of this structure, and when it

is encountered its location is stored and editing continues

with the single child. Upon encountering the circumflex (A)

the stored location of the ampersand becomes the current

template location thus repeating the substructure

vertically.

Table II presents a summary of template symbols. With

these description mechanisms and the command set of Table I

template driven editing can be accomplished on n-ary ordered

trees. The remainder of this paper includes a description

of how these symbols and mechanisms are implemented in a

template driven editor.

21

A

B

B

Figure 9. · Template and Data Tree with vertical repeat

Symbol

*

CHOICE

<label>

CONSTANT

VALUE

$

REPEAT

&

TABLE II

TEMPLATE MECHANISM SYMBOLS AND ACTIONS

Actions

any input accepted in label field

choice of input accepted in label
field

root of subtree with valid choices

fixed label - any label that is not
a template mechanism

specifies fixed value of data leaf

specifies data type of data leaf value

possible repeat of substructure
vertically

maximum number of substructure repetition

possible repeat of substructure
horizontally

placeholder for possible horizontal
substructure repetition

CHAPTER III

DESIGN OF AN EDITOR FOR TREES

Introduction

The design of editors, according to Meyrowitz and Van

Dam [8], has been ad hoc, with the editor often riopying and

inheriting poor design from previous systems. Their call

for strong design techniques is stated:

It is time that editor designers, like programming
language designers, commit their conceptual models
and user interfaces to paper before
implementation. This requires extensive search of
the literature, analysis of alternatives, and
experimental validation of ideas, all traditional
actions in science and engineering ••• ([6] p.403).

The conceptual model used here in developing a prototype editor

for trees is based on the principle of a template driven method

of input and validity checking. The template used in a template

driven editor for trees describes the basic structure of the data

tree. The editor is expected to compare the data tree and the

template tree to assure that a data tree is consistent with the

template used. The label and value requirements are also to be

checked for satisfaction of the template tree rules mentioned in

Chapter II. A template driven editor, as with any editor, needs

the ability to move the current viewer window around in the

target data. With the target being a tree this causes the

22

23

movement mechanisms to be modeled aft~r a natural tree

traversal. The traversal of the data tree and template tree

requires a coordinated technique to keep the correspondence of

data tree nodes and template definitions.

In an interactive computing environment the purpose of an

editor is to create and change information structures. The

editor for trees must allow input. This input could be limited

by the structure imposed by the template, but should be allowed

nonetheless. The extent of what could be inserted is addressed

on an individual basis during the editing session under the

considerations of the template used for that session.

The development of an editor for trees is a topic that

brought about many unanswered questions. The limited definitions

of template nodes and ignoring the possibility of a deletion

(pruning) of a subtree were not studied in detail because of time

constraints. The prototype developed should exhibit enough

functional characteristics to show its usefulness and test its

results.

Conceptual Model of Editor Design

The underlying concept of template driven editing is the

need to keep track of which node in the template corresponds with

a node of the data tree. The model used in developing a template

driven editor for trees is one of a recursive coroutine s~stem

[1,2,14].

Coroutines were first introduced by Conway [1] while

designing a compiler that would receive one line of input and

24

output a message. These coroutines require subprograms to act

as if each were the calling program. The technique of coroutine

processing has become increasingly useful in the coordinated

processing required by some operating system techniques. Wegner

[15] suggests that the same kind of coordination can be used in

search tree~. Template driven editing decodes the template, take

actions required by template mechanisms, and then repeat the

cycle.

Coroutines, as the name implies, are routines that cooperate

with one another. Subroutines have a relationship to the calling

procedure like one of a master-slave. Figure lOa shows the

master-slave relationship of the main procedure and two

subroutines. The subroutine is subordinate and is started at the

first of the block and continues until the end or some return

point. The call passes control to the subroutine but control

must be returned to the main procedure before control can be

passed to another subroutine. Figure lOb shows the same

procedures with a coroutine structure allowing control to be

passed through subprograms until the task is completed. The

RESUME statement is the method by which control is passed between

coroutines. Further explanation of coroutines and the RESUME

statement is found in [2,14]. Each coroutine can be viewed as

the calling procedure block. This allows coroutines to process

one section of code, pass control to another coroutine which does

the same and then return control to the original to continue

processing at the point immediately following transfer of control

or pass control to another coroutine.

25

-..... 0

Figure lOa. Master-slave relationship of subroutines.

return

resume

}----~
(Y)

Figure lOb. Cooperative relationship of coroutines.

26

Recursion is used to aid in the coordinated processing by

allowing a subtree to be processed as an independent tree. After

the subtree is traversed processing can be continued along

siblings of the current node which is the root of the subtree.

This is similar to the local instance discussed by Dahl,

••. the scanner [traversal] can be accomplished by
a recursive procedure attribute, local to the
relevant instance of the coroutir.e. ([2] p. 195).

By using recursion to produce these local instances and

coroutines to traverse along a level, template driven

editing can be accomplished. The importance of coordinated

traversal should be seen due to the one to one

correspondence of the template mechanism structures and

individual data nodes.

The definitions included in the template are primarily

limited to labels and values. Three compound symbols exist

for choice of label, vertical repetition, and horizontal

repetition. The set of definitions (see Table II) exhibit

enough power to test the concept of template driven editing

for trees while still keeping the complexity of definitions

to a minimum.

Subsystem Design of the Editor for Trees

There are three major subsystems of the template driven

editor for trees. The movement subsystem has the

responsibility of coordinated tr-aversal of the template and

27

data trees. The validity checking subsystem insures that

the data tree is consistent with the template being used.

The editing subsystem interprets the command input by the

user and executes the command. This execution could be

accomplished in the editing subsystem or by a call to

another subsystem (i.e. movement or validity checking

subsystems).

Movement Subsystem

The movement subsystem has the responsibility of

coordinating the traversal of the template tree and the data

tree. The recursive coroutine system is made up of a

recursive external routine with two internal coroutines.

One coroutine has the function of traversing the data tree.

This is done by assuming that the only direction desired is

that of left to right along siblings of the same level. The

advance along the sibling is completed and control is

resumed in the subsystem requesting the movement. The other

coroutine must make a decision concerning the movement

direction in addition to performing the movement in the

template tree. The information needed for this decision is

provided by the subsystem requesting the movement. If the

direction of the movement is along the current level then an

advance is made in the same fashion as with. the data tree.

If the direction of the movement is down, then the template

traversal coroutine checks both trees for substructure,

which is required for downward movement, and issues a

recursive call to the global routine.

28

By using recursion for the depth traversal,

conceptually, a new set of local coroutines are used. Each

call to the global routine temporarily freezes the variables

of the current level and traverses the subtree as an

individual tree. This provides a convenient method of

handling the nested structures which trees create.

Validity Checking Subsystem

The validity checking subsystem is invoked upon

entering a editing session or by an input user command.

This subsystem has two major roles: building the data tree

with the required parts of the template and to print a list

of data tree nodes that are not consistent with the

coordinated template node. The building role is discussed

in the editing subsystem because of the close functional

relationship. The checking role of the subsystem checks

only the tree for which the current node is the root and

issues requests to the movement subsystem to perform a

generalized inorder traversal of the n-ary tree pair, the

current data tree and the template used to edit the data

tree. Because the process is for the entire tree, special

comparisons are needed for repeat substructures in the

template. If an error occurs while the template is at the

root of a repeat substructure, the current template node is

29

advanced to the next sibling in the event that the repeat

was optional. This allows misplacement of an error but is

required if optional repeti~ion is desired.

Editing Subsystem

The editing subsystem displays current information,
.

prompts the user for commands, and executes the commands.

At any idle time of the editing session the current data

tree node with either the value or the number of children is

shown. Immediately following the current information a

prompt for the next user command is displayed.

The execution of user commands may require interaction

with the other subsystems or could be processed. in this

subsystem. For example, any commands displaying or changing

current node information are done in the editing subsystem

(Write, Write Template, Label, Value, etc.). Movement

commands (Advance, Down, etc.) require issuing requests of

the movement subsystem. Commands used in building the tree

(Insert After, Insert Down, Insert Before) must check the

template to see if the command is valid and issue a request

to the validity checking subsystem to build the node and any

required substructure associated with the node. The

building of the substructure keeps the editor consistent

with the definition of a template or overlay of another

structure.

30

Implementing a Recursive Coroutine System

The recursion of a part of a recursive coroutine system

should be done with an implementation language that supports

recur0ion. Otherwise, the stack manipulation would become

tedious. The foundation of the logic used for coroutine

implementation is discussed by Hedrick and Alexander [4].

They developed a preprocessor to handle coroutine processing

in Fortran. The principle is to implement the conceptual

model of coroutines by using Fortran subroutines. For each

coroutine, a subroutine is generated with a labeled common

block. The data in this labeled common block is used for

communication among the various coroutines; in particular,

the Coroutine Control Routine (CCR) which interrogates

and/or sets the values that are used to sequence the

coroutines. The RESUME statement is then implemented by

assigning a new code to the variable designating the next

routine to be called and returning control to the CCR.

Implementation of this prototype editor for trees is

written in the Programming Language for Allocation and

Network Scheduling (PLANS). PLANS is a recursive block

structured language that uses trees as the primary data

structure. However, PLANS does not have a method of

implementing external variables (as in the Fortran common

block) or variable entry points (as in Fortran entry

specifications) which could be useful. For more information

31

on the PLANS language refer to Appendix D and [8]-.

The problem of implementing external variables was

solved by making all routines (control and conceptual) local

to a recursive procedure. An integer variable was used to

contain the entry point information. Upon entering the

routines, the entry point variable is queried by if-rhen

else-if statements to decode the label at which processing

should continue. Exiting the routine by a RESUME statement

updates the entry point variable that .would be used the next

time the routine was called (resumed).

The conceptual model of recursive coroutines is a

possible solution to design the .coordinated traversal needed

to accomplish template editing of trees. The movement

subsystem controls the traversal while the editing subsystem

and validity checking subsystems interact with the user and

insure the consistency of the data tree.

CHAPTER IV

SUMMARY AND RECOMMENDATIONS

The need for an "editor for trees" is apparent when

systems are used that make use of dynamic tree structures.

For example, scheduling and allocation prob~ems like those

encountered by NASA with space shuttle flights [8] are

instances in which large trees were used to arrive at

schedules with no regard to how or where the trees were

originally built. Updating these large trees presents

problems unless the necessary tools are available; i.e.,

editors for trees. In hierarchical data base systems the

use of a tool to populate these systems could be less time

consuming than conventional data base input programs. With

the state of the art of computing science trees are used in

many different applications. Editing of these tree

structures will allow trees to become data structures which

are as common as files but have the added features that make

trees efficient and practical.

The general language features desired in the

development of template driven editors for trees include

direct coroutine implementation, arrays of tree variables,

and external storage of trees during an editing session.

Direct coroutine implementation would bring the physical

32

33

code of the editor closer to the conceptual model.

Pointer arrays are useful in allowing depth repetition

during editing of trees. The feature of external storage

would allow very large trees to be edited (either large

template trees or data trees) without using a large amount

of the computer's main storage. Presently trees u~ed in the

editing process of the prototype must be kept in memory.

This project was undertaken with two major objectives

in mind: First, to investigate the difficulty of a template

driven tree editor; and secondly, to develop an editor for

trees in which these ideas could be tested.·

The results of the first objective show that template

editors are useful and possible to implement. However, many

questions were raised during the work and will need to be

addressed before a production environment can be considered.

One question raised concerns optional substructures.

Is there an instance when a substructure could be optional

or are all substructures required? This may possibly be

application dependent, but if the editor is a generalized

template editor for trees, then any tree can be created for

any specific application. Another question along the same

line has to do with the use of a Prune command to delete

nodes and connected substructures. A prune command could be

needed if the substructures were allowed to be optional but

would restructure the data tree otherwise. Removal of nodes

or substructures requires the right sibling_of the deleted

node to be checked against the template structure of the

34

deleted node.

Another area that raised questions was how much

consistency checking should be done automatically and how

much should be left to the user. The option taken in this

project is that automatic traversal should occur when

e~tering the editing session. If the data tree exists, then

the traversing causes only messages to be printed concerning

the inconsistencies. If the data tree does not exist, then

the automatic traversing would build a tree with the

structure and required labels and values of the template.

When an insert command is used, the same building process is

done. Pattern matching and error detection questions arise

when errors occur in optional repeat structures. When using

the optional repeat structure, the consistency check will

try the next template node upon an error causing the program

to assume that the repeat structure was not used. This

sometimes causes the error message to be misplaced and

possibly may cause more errors.

The final question is one concerning potential

ambiguity in a template. This question covers many avenues

of study and may have a wide variety of answers. The

ambiguity does not cause the editor to create an invalid

tree but exists due to modifications made by means other

than the editor. If all the ambiguity is removed, then the

restrictions on a template will require separate editors for

templates and data trees. If ambiguity is allowed (as in

this prototype), then again error detection and consistency

checking becomes difficult.

Template driven editing is a tool that could prove to

be productive in the expansion of information retrieval

systems. Many techniques used in these systems are

hierarchical in nature allowing the idea of template

35

generation to apply itself to data base generatjon. A more

immediate use of template editing is the population of data

base systems and the changing of the structure of these

systems. Another extension could be with network

structures. These structures would benefit from a tool to

build the network while adhering to a defined pattern.

The second objective has been accomplished through the

design and implementation described in the previous chapter.

The editor provides the user with the capability to edit a

wide range of trees. The general template allows the editor

to function conceptually as basic tree editor [13]. Using

the editor to generate additional templates allows the user

to create templates which meet specific requirements. The

attribute that makes a template editor useful is the ability

to build a tree structure with all required substructures,

fixed labels, and fixed values. This insures the validity
'

of the tree and the usefulness of the tree in the intended

application.

Further work could be done concerning these questions.

A selected list of topics is given to invoke thoughts of

future work. 1) The user interface of a template driven

editor for trees. 2) The development of additional template

mechanisms to allow more generalized structures. 3) The

removal of template ambiguity contrasted with editing

flexibility. 4) The performance of an template driven

editor compared with other methods of tree creation and

modification.

36

SELECTED BIBLIOGRAPHY

[1] Bradley, J., File and Data Base Techniques. Holt,
Rinehart and Winston, New York, 1q81.

[2] Conway, M.E., "Design of a Separable Transition-Diagram
Compiler" Communications of the~, Vol. 6, No.
7 (July 1963), 396-408.

[3] Dahl, O.J., Dijkstra, E.W., and Hoare, C.A.R.,
Structured Programming, "Hierarchical Program
Structures" pp. 175-220. Academic Press, London
(1972).

[4] Fraser, c.w., "Syntax-Directed Editing of General Data
Structures·." Proceedings of the ACM SIGPLAN
SIGOA Symposium QD. Text Manipulation" Vol. 16,
No. 6 (June 1981). ACM, New York, 1981. pp.
17-21.

[5] Gries, D., Compiler Construction for Digital Computers.
John Wiley and Sons, Inc., New York, 1971.

[6] Hedrick, G.E., and Alexander, B.R., "Coroutine
Programming in Fortran". The Australian
Computer Journal, Vol. 4, No. 2 (May 1972).

[7] Medina-Mora, R.I., Syntax-Directed Editing; Towards
Intergrated Programming Environments. Ph. D.
dissertation Carnegie-Mellon University
(DA8215892) 1982.

[8] Meyrowitz, N., and Van Dam, A., "Interactive Editing
Systems; Parts I and II". Comyuting Surveys,
Vol. 14, No. 3 (September 1982 •

[9] Morris, J.M., and Schwartz, M.D., "The Design of a
Language-Directed Editor for Block-Structured
Languages." Proceedings Qi the ACM SIGPLAN SIGOA
Symposium on Text Manipulation Vol. 16, No. 6
(June 1981>7 ACM, New York, 1981. pp. 28-33.

[10] Ramsey, R.H., Willoughby, J.K., and Kullas, D.A.,
User's Guide~ the Programming Language~
Allocation and Network Scheduling, Technical
Report SAI-77-068-DEN, Science Applications,
Inc., Englewood, Colorado, 1977.

37

[11] Roberts, T.L., Evaluation of ~omputer Text Editors,
Ph.D. dissertation Stanford University
(8011699), 1981.

38

[12] Samual, C.A., ~Software Design for the Programming
Language PLANS, Master's Thesis, Oklahoma State
University, 1982.

[13] Standish, T.A., Data Structure Techniques. Addison
Wesley Publishing Company, Inc., Philippines,
1980.

[14] Stromfor, 0., and Jonejo, L., "The Implementation of
Experiences of a Structure-Oriented Text
Editor." Proceedings of the ACM SIGPLAN SIGOA
Symposium on Text Manipulation' Vol. 16, No. 6
(June 1981~ ACM, New York, 1981. pp. 22-27.

[15] Van Doren, S.R., Unpublished user's guide for PLANS
tree editor, Oklahoma State University,
Computing and Information Sciences.

[16] Wang, A., and Dahl, O.J., "Coroutine Sequencing in a
Block Structured Environment." BIT, Vol. 11, No.
4 (1971). pp. 425-449.

[17] Wegner, P., Programming Languages, Information
Structures, ~Machine Organization. McGraw
Hill, New York, 1968.

APPENDIX A

IMPLEMENTAT.ION LANGUAGE DESCRIPTION

39

40

The implementation language for the experimental

template editor of trees is the Programming Language for

Allocation and Network Scheduling (PLANS). PLANS is a high

level language which supports dynamic manipulation of tree

data structures. The language was developed to reduce the

cost and time span of developing and maintaining software

which support scheduling and resource allocation tasks. The

language is under continuing development at the Computing

and Information Sciences Department of Oklahoma State

University. The installation consists of a Perkin-Elmer

3230 . d h TM . operat1ng un er t e UNIX operat1ng system.

PLANS supports ordered trees, but the trees are stored

in memory as binary trees. The left pointer points to the

first child of the current node while the right pointer

points to the next sibling. Recursion is available in PLANS

which is used to traverse down and up through trees. An

advance function allows the traversal of nodes left to right

along one level. PLANS does not have local static variables

and therefore must be placed in a higher scope block.

External variables also are not included in PLANS. This

requires procedures that use external variables to be made

internal to the universal block. This technique of

achieving external variables is used when implementing

coroutines to traverse two trees in a coordinated manner.

Another language feature restricting coroutine

™UNIX is a trademark of Bell Telephone Laboratories

implementation is the absence of a computed goto or label

variable used to enter routines at the location following

the last statement executed.

41

The emphasis of PLANS is on data structures, access

methods,· and manipulative operations. In the developing of

an editor for trees, a language that tre~ts trees as a basic

data type is a natural luxury. The access methods of tree

nodes make PLANS a useful language in developing an editor

for trees. The use of tree pointers to point to subtrees

allow traversal to continue even if unusual circumstances

occur in the template descriptor mechanisms. These

circumstances develop because PLANS does not have string

functions which would allow multiple fields in the label of

a node. The template symbols for repeating structures ($,&)

and for choice of labels (*) use substructures to give

additional information to the routines. Indirect access

methods are used to access special function subtrees

(CONSTANT, VALUE, CHOICE). The manipulative operations of

PLANS allow insertion of nodes either before or after the

current node which changes the pointers to reflect the

insertion. The trees are actual as well as ·conceptual to

the user.

In developing an editor for trees, the need for nested

depth structures is apparent. To nest the substructures

several utilities were written to accomplish a push down

stack. Because PLANS does not facilitate tree pointer

arrays, this was accomplished by converting the pointers to

42

integers and storing the integers in an array with the

last element of the array as the top of stack pointer.

Conversion was done by sending a tree pointer as an actual

parameter to a procedure with a dummy parameter as an

integer. The inverse was done when converting back to tree

pointers. The size of the push down stack limits the amount

of vertical repetition. If trees are nested a large number

of times the stack size will need to be increased.

Programming changes in the push and pop utilities and the

size declaration in the main procedure are required.

The size of the trees are also hampered with PLANS.

PLANS trees must be sequentially input and reside in main

memory. Since an template editor requires two trees of

varying size, if insufficient memory remains for one of the

trees, the editor loses effectiveness.

More information about PLANS is in [8] and [10].

APPENDIX B

SYSTEM PROGRAMMER'S GUIDE

43

44

This is intended to provide the reader a description of

the conceptual design of the experimental editor for trees

to aid in understanding the internal program structure of

the editor. This is done in two sections. The first is the

description of variables used in the program while the

second is the Program Design Language of the conceptual

model of coroutine procedures. For discussion on languages

features of PLANS see Appendix A. For a copy of the

implemented source code send a written request in care of

the author to P.O. Box 695, Atoka, Oklahoma 74525, u.s.A.

Variables and Descriptions

Table III lists the variables of the program in

alphabetic order and a description of uses for each.

Variables beginning with a dollar sign ($} signafies a tree

variable. Tree variables are also used for character

variables because of the absence of character type variables

in PLANS. The remaining variables are of type integer or

float following the default specifications of Fortran 77.

Program Design

The following is a description of the design of a

prototype template driven editor for trees. The psuedo code

given and the actual implementation of the editor differs

from the discussion in Chapter III. When implementing

coroutines the movement subsystem was duplicated, with

minor changes, internal to the remaining two subsystems

because of seeping problems in the PLANS language.

45

46

TABLE III

LIST OF VARIABLES AND DESCRIPTIONS USED IN
A PROTOTYPE EDITOR FOR TREES

Variable

$blank
$current data
$current-desc
$data -
$desc
$flag
$mode
$parent
$reply
$temp
flag
ichild
ipoint
irepeat
jchild
kount
level
m
n
none
norepeat
num-data
num-desc
valid

Description

temporary node used during insertions
current node in data tree
current node in template tree
data tree for current session
template tree for current session
LABEL used to perform two pass commands
LABEL used to check consistency
pointer to template structure mechanisms
LABEL receiving yes/no keyboard input
temporary node used for stack operations
flag set to 1 if $parent is in use
ordinal number of $current data
integer array used to implement stack
maximum number allowed for vertical repeat
ordinal number of $current desc
current count of vertical repeat
level of current node
temporary integer for parameter passing
temporary integer for parameter passing
integer constant representing 1
flag for error recovery in CHECK
number of siblings along current level
number of template nodes along current
flag signaling match in choice structure

47

PROC main:
SET ipoint(21), level, none<-- 0, -1, 1:
WRITE message, 'MAIN PROGRAM STARTUP';

, 'shift to caps for yes/no responses and
editing commands';

READ $desc /* template tree for current edit session */;
WRITE message, 'Is the data tree a' new tree?(Y/N)';
GET $reply;
IF $reply= 'Y' ·THEN;

$data <-- $NULL /* $NULL is a null tree */;
$mode <-- 'build';
CALL check;

END;
ELSE;

READ $data;
$mode <-- 'check';
CALL check;

END;
CALL list commands;
CALL newl'evel;
WRITE /* to file */ $data;
WRITE message, 'MAIN PROGRAM TERMINATION';

END main;

48

PROC check (IN $desc: TREE, $data: TREE, $mode: CHAR,
INOUT num desc: INT, num data: INT, level: INT,

ipoint: INT ARRAY[l,21]);
DEFINE $current desc AS $desc;
DEFINE $current-data AS $data;
SET ichild, jchild, flag, kount <-- 1, 1, 0, 0;
level <-- level + 1;
CALL match;
level <-- level - 1;
return;

EN~ check;

COROUTINE match;
/* coroutine internal to check */
/* reminder that coroutines continue

executed statement
after last

*I
one:

IF LABEL($current desc) = '&' THEN;
DEFINE $parent-AS $current desc;
DEFINE $current desc AS $current desc(l);
flag <-- 1; - -
CALL pushptr(ipoint,$parent);
GOTO one;

END;
ELSEIF LABEL($current desc) = '~' THEN;

/* check if depth substructure exist */
IF NUMBER($current data) > 0 THEN;

CALL popptr(ipoint,$temp);
DEFINE $current desc AS $temp;
GOTO one; -

END;
END;
ELSEIF LABEL($current desc) = '$' THEN;

irepeat <-- $current desc.REPEAT;
norepeat <-- 1; -
kount <-- kount + 1;
IF kount <= irepeat THEN;

DEFINE $parent AS $current desc;
DEFINE $current desc AS $current desc(2);
flag <-- 1; - -
GOTO one;

END;
ELSE;

norepeat <-- 0;
END;

END;
ELSEIF LABEL($current desc) = '*' THEN;

IF $mode = 'check'-THEN;
valid <-- 0;
DEFINE $choice AS $current desc.CHOICE;
DO FOR ALL SUBNODES OF $choice USING $ptr;

IF LABEL($ptr) = LABEL($current data) THEN;
valid <-- 1; -

END;
END;
IF valid =1 THEN;

DEFINE $parent AS $current_desc;
DEFINE $current desc AS $current_desc(2);
flag <-- 1; -
GOTO one;

END;
ELSE;

RESUME err;
END; .

END;
ELSE /* $mode = 'build' */;

49

DEFINE $parent AS $current desc;
DEFINE $current desc AS $current desc(2);
IF jchild > 1 THEN; -

ADVANCE $current data;
jchild <-- jchild + 1;
num data <-- num data + 1;

END;
END;

END;
ELSEIF LABEL($current desc) = '#' THEN;

IF $mode = 'check'-THEN;
IF LABEL($current desc(1)) = 'CONSTANT' THEN;

CALL sca1or; -
END;
ELSEIF LABEL($current desc(1)) = 'VALUE' THEN;

CALL·numeric; -
END;

END;
ELSE /* $mode = 'build' */;

IF jchild = 1 THEN;
ADVANCE $current data;
jchi1d <-- jchi1d + 1;
num data <-- num data + 1;

END; - -
END;

END;

50

ELSEIF LABEL($current desc) = LABEL($current data) THEN;
IF LABEL($current desc(1}) = 'CONSTANT' THEN;

CALL sca1or; -
END;
ELSEIF LABEL($current desc(l)) = 'VALUE' THEN;

CALL numeric; -
END;

END;
ELSE;

IF $mode = 'check' THEN;
RESUME err;

END;
ELSE /* $mode = 'build' */;

IF jchild = 1 THEN;
ADVANCE $current data;
jchild <-- jchild + 1;
num data <-- num data + 1;

END; -
LABEL($current data) <-- LABEL($current_desc);

END; -
END;

two:
RESUME trav template;

three: -
RESUME trav tree;

END match; -

COROUTINE trav template;
/* coroutine internal to check */
IF NUMBER($current desc) > 0 THEN;

IF NUMBER($current data) = 0 & $mode = 'build' THEN;
LABEL($blank) <=- '';
$current data(next) <-- $blank;

END; -
IF NUMBER($current data) > 0 THEN;

m <-- NUMBER($current desc);
n <-- NUMBER($current-data);
CALL check; -

END;
ELSEIF LABEL($current desc(l)) = 'CONSTANT' I

LABEL($current:data(l)) = 'VALUE' THEN;
END;

END;
IF flag = 1 THEN;

DEFINE $current desc AS $parent;
flag = 0; -
IF LABEL($current desc) = '$' THEN;

RESUME match; -
END;

END;
IF ichild < num desc THEN;

ichild <-- ichild + 1;
ADVANCE $current desc;
RESUME match; -

END;
ELSE;

return /* out of coroutine -- up one level */;
END;

END trav template;

51

COROUTINE trav tree;
IF jchild <-num data THEN;

jchild <-- jchild + 1;
ADVANCE $current data;
RESUME match; -

END;
ELSE;

return /* out of coroutine -- up one level */;
END;

END trav_tree;

52

53 '

COROUTINE err;
IF norepeat = 0 THEN;

WRITE message, 'level-->' ,level;
'LABEL-->' ,LABEL($current data);
'does not agree with template being used';

END;
ELSE;

norepeat <-- 0;
END;
RESUME match;

END err;

PROC numeric;
IF TYPE($current data) 0 = $current desc.VALUE THEN;

WRITE $current data; -
WRITE message,-' type does not match template';

END;
END numeric;

PROC scaler;
IF $mode = 'build' THEN;

LABEL($LABEL) <-- LABEL($current data);
$current data <-- $current desc.CONSTANT;
LABEL($current data) <-- LABEL($LABEL);

END; -
ELSE /* $mode = 'check' */;

IF $current data 0 = $current desc.CONSTANT THEN;
WRITE $current data; -
WRITE message,-'constant required but not found';

E~;
END;

END scaler;

54

PROC list commands;
WRITE message I

WRITE message
WRITE message ';

55

Experimental template editor for trees';
help utility';

WRITE message 'h -help!: list the commands.';
WRITE message 'a -advance one position across siblings.';.
WRITE message 'd -move down to first child of current node.';
WRITE message 'u -move up to parent of current node. ';
WRITE message 'r -move to the root of the tree.';
WRITE message 'w -write current subtree to screen.';
WRITE message '1 -assign LABEL to currPnt node.';
WRITE message 'v -assign value to current node.';
WRITE message 'ib -insert before current node a blank node.';
WRITE message 'ia -insert after current node a blank node.';
WRITE message 'id -insert down, as last child, a blank node.':
WRITE message 'wt -write current template tree to screen';
WRITE message 'quit-quit editing the current tree.';
WRITE message ' ';
WRITE message 'return to resume editing';
get edit($ans) (al);
return;

END list_commands;

PROC pushptr (IN j: INT, INOUT i: INT ARRAY[1,21]);
icount <-- i(21);
IF icount >= 20 THEN;

WRITE message, 'cannot store another pointer';
return;

END;
ELSE;

icount <-- icount + 1;
i(icount) <-- j;
i(21) <-- icount;
return;

END;
END pushptr;

PROC popptr(IN i:INT, OUT $t:TREE);
icount <-- i(21);
IF icount = 0 THEN;

WRITE message, 'cannot repeat -- subtree missing';
return;

END;
ELSE;

j <-- i(icount);
icount <-- icount - 1;
i(21) <-- icount;
CALL toptr;

END;
END popptr;

PROC toptr;
$j <-- $i;
return;

END toptr;

56

57

PROC newlevel (IN $desc: TREE, $data: TREE, $mode: CHAR,
INOUT num desc: INT, num data: INT, level: INT,

ipoint: INT ARRAY[l,21]}:
DEFINE $current desc AS $desc:
DEFINE $current-data AS $data:
SET ichild, jchild, flag, kount <-- 1, 1, 0, O:
$flag <-- I I:
level <-- level + l:
CALL compare:
level <-- level - l:
return:

END newlevel:

58

COROUTINE compare;
one:

al:

a2:

IF LABEL($current desc) ='&' THEN;
DEFINE $parent-as $current desc;
DEFINE $current desc as $current desc(l);
flag=l; - -
CALL pushptr(ipoint,$parent);
GOTO one;

END;
ELSEIF LABEL($current desc)='~' THEN;

WRITE message, 'Wish to repeat the subtree?(Y/N)';

INPUT $reply;
IF $reply='Y' THEN;

CALL popptr(ipoint,$temp);
DEFINE $current desc as $temp;
GOTO one; -

END;
ELSEIF $reply='N' THEN;

IF $flag='ADVANCE' THEN;
RESUME template;

END;
RESUME command;

END;
ELSE;

WRITE message, 'invalid reply, try again-(Y/N)';
GOTO al;

END;
RESUME command;
ELSEIF LABEL($current desc)='$' THEN;

irepeat <-- $current desc.REPEAT;
IF kount = 0 THEN; -

WRITE message, 'Wish to use this structure? (Y/N)';
WRITE ($current_desc(2));

END:
ELSE;

WRITE message, 'Wish to repeat structure?(Y/N)';

INPUT $reply;
IF $reply='N' THEN do;

RESUME template;
END;
ELSEIF $reply='Y' THEN;

kount <-- kount + 1;
IF (kount <= irepeat) THEN;

DEFINE $parent as $current desc;
DEFINE $current desc as $current desc(2);
flag <-- 1; - -
GOTO one;

END;
END;

a3:

ELSE;
WRITE message, 'invalid, try again-(Y/N)';
GOTO a2;

END;
END /* repeat structure */;
ELSEIF LABEL($current desc)='*' THEN;

valid <-- 0; -
DEFINE $choice as $current desc.CHOICE;
IF LABEL($current data)=' ,-THEN;

WRITE message,-'enter LABEL from choices below:';
WRITE ($choice);
INPUT $nLABEL;
LABEL($current data) <-- $nLABEL;

END; -

DO FOR ALL SUBNODES OF $choice USING $ptr;
IF LABEL($ptr)=LABEL($current data) THEN;

valid <-- 1; -
END /* do for all */;
IF valid = 0 THEN;

WRITE message, 'enter LABEL from choices below:';
WRITE ($choice);
INPUT $nLABEL;
LABEL($current data)=$nLABEL;
GOTO a3; -

END;
DEFINE $parent as $current desc;
DEFINE $current desc as $current desc(2);
flag <-- 1; - -
GOTO one;

END /* LABEL is choice of several */;
ELSEIF LABEL($current desc)='#' THEN;

IF LABEL(~current desc(l))='CONSTANT' THEN;
CALL constant;-

END;
IF LABEL($current desc(l))='VALUE' THEN;

CALL type_check;
END;
RESUME command;

END /* LABEL accepted to any string */;
ELSEIF LABEL($current data)='@'

ILABEL($current=data)='' THEN;
LABEL($current data) <-- LABEL($current desc);
GOTO one; . - -

END /* exact LABEL required */;
ELSEIF LABEL($current desc)=LABEL($current data) THEN;

IF LABEL($current desc(1))='CONSTANT' THEN;
CALL constant;-

END;
IF LABEL($current desc(1))='VALUE' THEN;

CALL type check;
END; -
RESUME command;

END;

59

ELSE;
RESUME command;

END;
END compare;

60

COROUTINE command;
one:

WRITE 'level = ',level;
IF LABEL{$current data)='' THEN;

WRITE 'current-node LABEL-->@';
END;
ELSE;

WRITE 'current node LABEL-->' ,LABEL{$current_data);
END;
IF NUMBER{$current data)=O THEN;

WRITE 'current node value -->',$current data;
ELSE; -

WRITE 'number of children= ',number{$current_data);
END;
WRITE 'enter command';
INPUT $cmd;
/*

identify and process with IF-THEN-ELSE-IF logic
*I
/* Help command */
IF $cmd='H' THEN;

CALL list commands;
GOTO one;-

END;
/* CHECK command */
IF $cmd='CHECK' THEN;

$mode = 'check';
CALL check;
GOTO one;

END;
/* QUIT by returning */
ELSEIF $cmd='QUIT' THEN;

$flag='QUIT';
return /* to NEWLEVEL */;

END;
/* return to ROOT level */
ELSEIF $cmd='R' THEN;

IF level > 0 THEN;
$flag=' ROOT';
return /* to NEWLEVEL */;

END;
ELSE;

WRITE message, 'already at root node';
GOTO one;

END;·
END;
/* Write current template subtree */
ELSEIF $cmd='WT' THEN;

WRITE $current desc;
GOTO one; -·

END;
/* Write current subtree */
ELSEIF $cmd='W' THEN;

WRITE $current_data;

61

GOTO one;
END;
/* change Label of current node */
ELSEIF $cmd='L' THEN;

WRITE message, 'enter new label';
INPUT $nlabel;
LABEL ($current data)=$nlabel;
RESUME compare;-

END;
/* assign a Value to the current node, avoiding

unwanted destruction of substructure. */
ELSEIF $cmd='V' THEN;

IF number($~urrent_desc)=OI
LABEL($current desc(l))='VALUE' THEN;

IF number($current data) > 0 THEN;
WRITE 'caution:-value axes substructure';
WRITE 'do you wish to proceed? (Y/N)';
INPUT $reply;

ENp;
ELSE;

$reply <-- 'Y';
END;
IF $reply='Y' THEN do;

WRITE message, 'enter new value';
INPUT $nvalue;
LABEL($label) <-- LABEL($current data);
$current data <-- $nvalue; -
LABEL($current data) <-- LABEL($LABEL);
RESUME compareT

END;
ELSE;

WRITE message, 'template not at leaf level';
GOTO one;

END;
END;
/* Insert a node Before the current node

and move to the new node */
ELSEIF $cmd='IB' THEN;

IF level>O & LABEL($current desc)='$' THEN;
LABEL($blank) <-- '@'; -
INSERT $blank BEFORE $current data;
num data <-- num data+l; -
IF flag=l THEN; -

DEFINE $current desc as $parent;
flag=O; -

END;
$mode=' build';
CALL check;
RESUME compare;

ELSE;
WRITE message, 'insert before not valid here';
GOTO one; .

END;
END;

62

/* Insert a node After the current node
and move to the new node */

ELSEIF $cmd='IA' THEN;
IF level>O & LABEL($current desc)='$' THEN;
END; -
ELSEIF level>O & ichild=num data THEN;

$flag <-- 'ADVANCE';
RESUME template;

END;
ELSE;

WRITE message, 'insert after not valid here';
GOTO one;

END;
LABEL($blank) <-- '@';
DEFINE $tmp as $current data;
ADVANCE $tmp; -
INSERT $blank BEFORE $tmp;
IF $tmp IDENTICAL TO $null THEN;

PRUNE $tmp;
END;
ADVANCE $current data;
jchild <-- jchild + 1;
num data <-- num data+l;
$mode='build'; -
CALL check;
RESUME compare;

END;
/* Insert a node as next child of the current node and

initiate down to new level */
ELSEIF $cmd='ID' THEN;

63

IF NUMBER($current desc)=OI
LABEL($current=desc(l))='VALUE' I
LABEL($current desc(l))='CONSTANT' THEN;

WRITE message, 'cannot insert below template leaf';
GOTO one;

END;
IF number($current data)>O THEN;

WRITE message, 'insert down not valid here';
GOTO one;

END;
LABEL($blank) <-- '@';
$current data(next) <-- $blank;
$flag <-= 'DOWN';
$mode<-- 'build';
CALL check;
RESUME template;

END;
/* move Up level by returning */
ELSEIF $cmd='U' THEN;

IF level>O THEN;
return;

. END;
ELSE;

WRITE message, 'cannot move up beyond root node';

END;
/* Advance to next sibling */
ELSEIF $cmd='A' THEN;

$flag <-- 'ADVANCE';
IF level>O THEN;

RESUME data;
END;
WRITE message, 'cannot advance while on root node';
END;
RESUME template;
RESUME data;

END;
/* Down to first child of next level */
ELSEIF $cmd='D' THEN;

$flag <-- 'DOWN';
RESUME template;

ELSE;
WRITE message, 'command not valid';
GOTO one;

END;
END command;

64

PROC type check;
IF type($current_desc.VALUE)>OI

type($current_desc.VALUE)<41
$current desc=O THEN;

a3:
IF $current_data = $null THEN;

IF $current desc.VALUE=l THEN WRITE 'enter string';
IF $current:desc.VALUE=2 THEN WRITE 'enter integer';
IF $current desc.VALUE=3 THEN WRITE 'enter float';
IF $current-desc=O THEN WRITE 'enter new value';

LABEL($label) <-- LABE~($current data);
INPUT $nvalue; -
$current data <-- $nvalue;
LABEL($current data) <-- LABEL($label);

END; -
IF $current_desc.VALUE 0 = type($current_data) THEN;

WRITE message,'data type of leaf not

GOTO a3;
END;

consistent with template';

END /* data type check */;
ELSE;

WRITE message, ' invalid - value at non-leaf node';
END;

END type_check;

PROC constant;
LABEL($label) <-- LABEL($current_data);
$current data <-- $current desc.CONSTANT;
LABEL($current data) <-- LABEL($label);

END constant;-

65

PROC template;
one:

IF $flag='ADVANCE' THEN;
GOTO two;

END;
IF NUMBER($current desc) > 0 THEN;

IF NUMBER($current data) > 0 THEN;
m=NUMBER(Scurrent desc);
n=NUMBER($current-data);
CALL newlevel; -
IF $flag='ROOT' & level>O THEN;

return;
END;
ELSEIF $flag='QUIT' THEN;

return;
END;
ELSE;

RESUME command;
END;

. 66

ELSEIF LABEL($current_desc(l))='CONSTANT' I
LABEL($current desc(l))='VALUE' THEN;

WRITE message, 'cannot move down from leaf node';
RESUME command;

END;
END;

two:

WRITE 'node does not exist';
RESUME command;

IF flag=l THEN;
DEFINE $current desc as $parent;
flag <-- 0; -
IF LABEL($current desc)='$' THEN;

RESUME compareT
END;

END;
IF ichild < num desc THEN;

ichild <-- ichild + 1;
ADVANCE $current desc;
RESUME command; -

ELSE:
WRITE message, 'cannot advance beyond template';
RESUME compare;

END;
END template;

PROC data;
IF jchild < num data THEN;

jchild <-- jchild +1;
ADVANCE $current data;
RESUME command; -

END;
ELSE;

67

WRITE message, 'cannot advance past right most node';
RESUME compare;

END;
END data;

APPENDIX C

USER'S GUIDE

68

This User's Guide is a brief description of how to

start an editing session, what messages and prompts will

appear, and a review of the command set that is available.

69

The command to run the editor is TED, an· acronym for

Template EDitor. TED can have up to two parameters and must

have at least one. If only one parameter is used the

program assumes that the file specified is to be used as the

data tree and the generic template, which allows any

substructure or labels to be built, as the template. The

structure of the generic tree is shown in figure 11. If two

parameters are found, then the first is used as the template

while the second is used as tha data file. The

99

Figure 11. G~neric Template for Template Driven Editor

70

template must exist but the data file can be created at the

start of a editing session.

The error messages are classified as informative.

Informative messages are those that relay the problem and

continue processing, ignoring the command that caused the

error. For example, if an invalid command were entered the

message would be as follows:

invalid command
enter command

Many commands are not valid through out the entire session.

The editor will inform the user of the invalid command and

wait for input of a legal command. Other prompts that

appear often during editing are those concerned with repeat

structures. Both vertical and horizontal repeats prompt the

user to answer if the structure should be used and awaits a

yes or no input.

The command set is dynamic, in that some commands are

invalid determined by the location of the editor in the

template tree. The Help command is valid at all times and

displays on the screen a summary of the entire command set

available.

Advance is valid only when a right sibling exists.

Down is valid only when substructure exists below

current node.

71

Up is valid at any level in tree except the root node.

Root is valid at any location in the tree and the root

becomes the current data tree node.

Write and Write Template are valid at all times.

Label and Value are valid when in agreement with the

template used.

Insert Before is only valid w~en the node to be

inserted is a part of a horizontal repeat structure.

Insert After is only valid when the node to be inserted

is a part of a horizontal repeat structure.

Insert Down is only valid when a vertical repeat

structure is used or when no substructure exists for the

current node.

QUIT is valid at any time.

APPENDIX D

UNIX COMMAND PROCEDURE

72

73

On the following pages is a sample of a command

procedure written for the UNIX operating system. PLANS uses

Fortran unit numbers, which are difficult to distinquish

when listed in a catalog or directory. The command

procedure allows the editor to be called using logical file

names as parameters. The procedure checks for existence of

the file and associates the logical file name with the

physical Fortran unit number.

#***
#**
#***

experimental template editor for trees
shell script

$1 - name of template tree used for edit session
$2 - file name of data tree used for edit session

determine which template and data files

echo 11 11

if ($#argv == 1) then
echo 'default template file - GENERIC will be used'
set tfile = GENERIC
set dfile = $argv[l]

else
echo $argv[l] 'template file will be used '
set tfile = $argv[l]
set dfile = $argv[2]

endif
#***
#**
#***

link files to fortran equivalents

if (! -r $tfile) then
echo 'template file is not available'
exit (102)

endif
cp $tfile fort.l
if (! -r $dfile) then

echo 'new file '
else ·

cp $dfile fort.2
endif
#***
#**
#***

check to see if runfile is there

if (! -r editor.run) then
echo 'run file is not available'
exit (103)

endif
cp editor.run RUNFILE

74

#***
#**
#***

check to see that the interpreter error file is there

if (! -r /u2/pjrv/exe/INTERR) then
echo 'required interpreter error message file not found'
exit (104)

endif
#***
#**
#***

check to see that the interpreter is there

if (! -r /u2/pjrv/v2.0/exe/pint.ex) then
echo 'the interpreter is not available'
exit (105)

endif
echo " "
#***
#** run the interpreter
#***
cp /u2/pjrv/v2.0/exe/INTERR INTERR
/u2/pjrv/v2.0/exe/pint.ex
rm INTERR RUNFILE
#***
#**
#***
echo " "
echo 'Would you like to save the data tree? '
set resp = ¢gets¢
if ($resp == "Y" I I $resp == "YES") then

echo 'What would you like to name it? '
set tree = ¢gets¢

al:
if (-e $tree) then

75

echo $tree 'already exits. Want to overwrite it? '
set res = ¢gets¢
if ($res == "Y" I I $res == "YES") then

mv fort.3 $tree

else

else
echo 'New file name: '
set tree = ¢gets¢
goto al

endif
else

mv fort.3 $tree
endif

rm fort.3
endif
rm fort.l fort.2

VITA?--

Ronald Dean ·Moore

Candidate for the Degree of

Master of Science

Thesis: DEVELOPMENT OF AN EXPERIMENTAL TEMPLATE
DRIVEN EDITOR FOR TREES

Major Field: Computer Science

Biographical:

Personal Data: Born in Atoka, Oklahoma, July 20, 1960,
the son of Mr. and Mrs. David Moore.

Education: Graduated from Atoka High School, Atoka,
Oklahoma, in May, 1978: received Bachelor of
Science degree in Computing Science from
Southeastern Oklahoma State University in
December, 1981: completed requirments for the
Master of Science degree at Oklahoma State
University in May, 1984.

Professional Experience: System Operator at S.E.O.
Computer Services: Durant, Oklahoma, November,
1979 to December, 1981. Programmer/Consultant at
Dicus Corporate Offices: Ada, Oklahoma, May, 1982
to August, 1982. Graduate Teaching Assistant,
Department of Mathematics, Oklahoma State
University, Stillwater, Oklahoma, January, 1982 to
December, 1982. Graduate Teaching Assistant,
Department of Computing and Information Sciences,
Oklahoma State Univer·si ty, Stillwater, Oklahoma,
January, 1983 to January, 1984~

