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CHAPTER I 

INTRODUCTION 

Radiation-induced defects in quartz have been studied for the past 

thirty years. Of these defects, the spin=~ defects, i.e., the Ei, Ez, 
E4 and the Al-hole centers, have been explored in detail due to their 

distinct ESR profile. Recently new research has been done on certain 

spin = 1 defects labeled by Halliburton et al., as E" centers. 

The earliest report of spin = 1 defects in quartz was made by Weeks 

and Abraham (1, 2) in 1964. In their work they tentatively concluded 

that this defect was not associated with any known impurity. They sur­

mised that the spin = 1 state was due to a dipole-dipole interaction of 

two nearby electrons in spin = ~ states and that these electrons were in 

incomplete next-nearest-neighbor silicon orbitals. Their study led them 

to state that the defect is a meta-stable one and is different from the 

Ei center. 

The topic was not addressed again until Solnstev, Mashkovtsev and 

Shcherbakov (3) published their paper in 1977. They suggested that the 

defect was due to a chain of vacancies with a coupled pair of electrons 

rising from silicon atoms roughly 6 R apart. They also noted some cor­

relation in the intensities of the Ei and the spin = 1 defects. From 

this they drew the conclusion that the two defects were manifestations 

of the same many-vacancy defect in different charge states. 

1 
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The most detailed and thorough study of the E" centers was made by 

Bossoli, Jani and Halliburton (4). The important points brought forth 

in their work were i) at least three separate E" centers existed, nomen­

clatured E'i_, Ez and E3; ii) the formation of the E" centers is a two­

step process; iii) the Ez center anneals out near 50°C, while the more 
' ' 

stable E'i_ and E3 anneal out near 85°C and 95°C respectively. It was then 

suggested that the E" defect was an oxygen divacancy which to the first 

approximation would be equivalent to two neighboring Ei centers. The 

calculated separation between the two interacting silicons was approxi-
o 

mately 5 A for the E'i_ center, and larger values were estimated for the 

other two. It is on this model that the present study was based. 

Computer modeling of quartz defects has proven to be both useful 

and accurate. The first of these studies was carried out by Yip and 

Fowler (5) on the Ei center. Their model of the center consisted of an 

oxygen vacancy with an unpaired electron from the short-bonded silicon 

in that vacancy. Using a ·linear combination of localized orbitals-

molecular orbital (LCLO-MO) cluster method on a CDC 6400 computer, they 

obtained reasonable results for the electronic energy levels. An 

analysis of the hyperfine tensor also showed broad agreement with exper­

iment. As a result of their efforts, the model proposed in their study 

is the presently accepted description of the Ei.center. 

Following on the success with the Ei center, Isoya, Weil and Halli­

burton (6) performed computer modeling on the E4 center. This model was 

essentially an Ei with a hydride ion, rather than an electron trapped in 

the vacancy. The ab initio self consistent field-molecular orbital 

(SCF-MO) cluster program Gaussian 70 was employed in this project on a 

DEC 2050 computer and later on an IBM 370/158. Here, too, the agreement 



between the calculations and experimental data was good, though only on 

a limited basis. In general, the results of the present calculations 

are supportive of the assumptions made in the model. 

3 

Most recently :Mombourquette, Weil and Mezey (7) modeled AlO 4 cen­

ters in quartz on a DEC 2060 computer. For this study, Gaussian 70 and 

a version of the advanced Gaussian 76 program named Monstergauss was 

used. Once again the agreement between experimental and computational 

results was good. The calculated total energies, charge densities, spin 

densities and structural parameters were consistent with experiment. 

Insight on detailed orbital states was also made available. 

The present study is an attempt to follow on these earlier suc­

cesses with a viable model for the E" centers. The program utilized is 

the latest of the Gaussian ab initio SCF-MO programs, Gaussian 80 and 

the computing device is the IBM 3081D. Electronic energy levels and 

electron orbital distributions will be examined, as will their charge 

distribution and spin densities. Total energies and relative energy 

minimizations will likewise be carried out to study relaxations of 

various atomic parameters. With sufficient agreement in these areas, 

the oxygen divacancy will be proposed as the source of at least one of 

the E" centers. 



CHAPTER II 

PROCEDURE 

In order to implement the Gaussian 80 program, a well defined clus­

ter had to be constructed. The formation of the several clusters will 

be discussed, as will the means by which the program utilizes these 

clusters. A brief overview of the Gaussian 80 program will also be pre­

sented, as well as an outline of its application in this study and the 

difficulties encountered therein. 

Cluster Construction 

Quartz has a hexagonal unit cell with a crystallographic coordin­

ate system comprised of two axes, ~l and ~2 , making an angle of 120° 

with each other and a third axis, c, perpendicular to the plane formed 

by the first two. Wyckoff (8) generated the atomic position coordinates 

in terms of these axes using fractions of the unit cell. 

sil: cu., u, 1/3) Si2:(u, 0, 0) 

01: (x, y, z) 

04:(x-y, y, z) 

02: (y-x, x, z+ 1/3) 

0 5 : (y ' X ' 2 I 3- z) 

Si3: (0, u, 2/3) 

03:(y, x-y, z+2/3) 

06:(x, y-x, 1/3-z) 

The parameters x, y, z and u were evaluated at room temperature by 

Lepage and Donnay (9) ru1d were reported as: 

0 
X = 0.41372 A 

0 
z = 0.11880 A 

4 

0 
y = 0.26769 A 

0 
u = 0.46981 A 
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With these parameters, a table of atomic positions for right-hand 

a-quartz was constructed (Table I). The nomenclature for the positioning 

labels follows that of Nuttal (10). 

It is necessary that in order to model a large collection of atoms 

with a relatively small cluster, all of the atoms must behave as they 

would if located in the larger collection of atoms, regardless of their 

position. To accommodate this requirement, the outermost atoms in the 

cluster were bonded to hydrogens placed in the proper bond direction, 

but at a distance so as to minimize the orbital energy in that direction. 

A table of the atomic positions of the replacement hydrogens is included 

(Table II). The bond length between oxygens and hydrogens is minimized 
0 0 to 0.96 A (11) whereas the silicon to hydrogen bondlength is 1.48 A 

(12). 

Gaussian 80 requires that the cluster be entered into the program 

by a means other than the listed atomic positions. The methodology em­

ployed is one of inputting lengths between atoms, and supplying the 

angles and dihedral angles between specific groups of atoms. It was 

therefore obligatory that a small program be written to provide this 

data (Appendix A). These parameters would be varied during the energy 

optimization rather than some ubiquitious atomic position. 

Gaussian 80 

Gaussian 80 (13) is designed to perform ab initio molecular orbital 

calculations within the linear combination of atomic orbital framework. 

It is an improvement of two earlier, more limited programs, Gaussian 70 

and Gaussian 76 (14, 15). Gaussian 80 was originally written for the 

DEC VAX-11/780. The IBM version in use for this study was translated 
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TABLE I 

ATOM POSITIONS IN e~r-QUARTZ AT 300K (in ~) 

Atom X y z 

Si(O) 0.00000 0.00000 0.00000 
0(1 ,0) -0.93362 -1.13958 -0.64226 

0(2,0) -0.93362 1.13958 0.64226 

0(3,0) 0.93149 0.62166 -1.15981 

0(4,0) 0.93149 -0.62166 1.15981 

Si(l) -1.00630 -2.25710 -1.80210 

Si(2) -1.00630 2.25710 1.80210 
Si(3) 1.45157 2.00004 -1.80210 
Si(4) 1.45157 -2.00004 1.80210 

0(1,5) -1.52635 -'3.63545 -1.15981 

0(1,6) -2.01038 -1.76125 -2.96187 
0(1,7) 0.44747 -2.49586 -2.44432 

0(2,8) -2.01038 1.76125 2.96187 

0(2,9) 0.44747 2.49586 2.44432 

0(2,10) -1.52635 3.63545 1.15981 

0(3,11) 2.90532 1.76125 -2.44432 

0(3,12) 1.52423 3.1:).753 -0.64226 

0(3,13) 0.44747 2.49586 -2.96187 

0(4,14) 0.44747 -2.49586 2.96187 

0(4,15) 2.90532 -1.76125 2.44432 

0(4,16) 1.52423 -3.11753 0.64226 

Si(5) -2.45780 -4.25712 0.00000 
Si(6) -3.46412 -2.00004 -3.60413 
Si(7) 1.45157 -2.00004 -3.60413 
Si(8) -3.46412 2.00004 3. 60413 
Si(9) 1.45157 2.00004 3.60413 

Si(10) -2.45780 4.25712 0.00000 
Si(ll) 3.90943 2.25708 -3.60413 
Si(l2) 2.45789 4.25712 0.00000 
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TABLE I (Continued) 

Atom X y z 

Si (13) -1.00627 2.25708 -3.60413 
Si (14) -1.00627. -2.25708 3.60413 
Si (15) 3.90943 -2.25708 3.60413 
Si (16) 2.45789 -4.25712 0.00000 
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TABLE II 

HYDROGEN REPLACEMENT POSITIONS (in ~) 

Atom X y z 

H(O) 0.00000 0.00000 0.00000 
H(l ,0) -0.85978 -1.04952 -0.59146 
H(2,0) -0.85978 1.04952 0.59146 
H(3,0) 0.85509 0.57067 -1.06469 
H(4,0) 0.85509 -0.57067 1.06469 
H(l) -0.97690 . -1.80500 -1.33288 
H(2) -0.97690 1.80500 1.33288 
H(3) 1.24215 1.44501 -1.54347 
H(4) 1.24215 -1.44501 1.54347 

H(l,5) -1.48521 -3.52642 -1.21061 
H(l ,6) -1.92806 -1.80190 -2.86679 
H(l,7) 0.33246 -2.47697 -2.39351 
H(2,8) -1.92806 1.80190 2.86679 
H(2,9) 0.33246 2.47697 2.39351 
H(2,10) -1.48521 3.52642 1.21061 
H(3,11) 2.79033 1.78014 -2.39352 
H(3,12) 1.51827 3.02587 -0.73739 
H(3,13) 0.52979 2.45521 -2.86678 
H(4,14) 0.52979 -2.45521 2.86678 
H(4,15) 2.79033 -1.78014 2.39352 
H(4,16) 1.51827 -3.02587 0.73739 
H(5) -2.08099 -4.00563 -0.46920 
H(6) -2.87875 -1.90389 -3.34552 
H(7) 1.04537 -2.20062 -3.13494 
H(8) -2.87875 1.90389 3.34552 
H(9) 1.04537 2.20062 3.13494 
H(lO) -2.08099 4.00563 0.46920 
H(l1) 3.50322 2.05649 -3.13493 
H(l2) 2.08194 3.79825 -0.25861 
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TABLE II (Continued) 

Atom X y z 

H(13) -0.42090 2.35323 -3.34552 
H(14) -0.42090 -2.35323 3.34552 
H(15) 3.50322 -2.05649 3.13493 
H(16) 2.08194 -3.79825 0.25861 
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for the AMDAL V7B with IBM's operating system MVS-3. 8 by P. N. van Kam­

pen et al. (16). 

Gaussian 80 provides programs for the calculation of the one- and 

two-electron integers using basis sets of s, p, or d cartesian gaussian 

functions. This is the crux of the program and the main point of diver­

gence from other computational programs. Gaussian 80 utilizes a user­

determined number of gaussian functions to reproduce the Slater-type 

orbital. These functions can be provided by either the user or the pro­

gram itself. The use of gaussians greatly enhances the speed of the 

calculation of the one- and two-electron integrals with little or no 

sacrifice of accuracy (17, 18). Moreover, the ~alculation of the three­

and four-center integrals, which are necessary for clusters of the size 

used in this study, are readily handled. Without the Gaussian approxi­

mation, the computing of these integrals proves to be so cumbersome that 

it becomes impractical to use them. The one-electron integrals include 

the overlap, the kinetic, and the core-Hamiltonian integrals, the x-, y­

and z-dipole integrals, and the one-electron pseudo-potential integral. 

The two-electron integral routines included are written for s-, p-, d­

and £-type functions. 

After the calculation of these integrals, the programs for the de­

termination of the Hartree-Fock single determinant wave functions and 

their associated total energies are initiated. Differing methods are 

employed to assess these functions depending on the state of the cluster. 

For singlet closed shell states the restricted Hartree-Fock form of the 

Roothaan self-consistent-field procedure of repeated diagonalizations 

(19) is used. In the case of open-shell states the unrestricted Har­

tree-Fock or the restricted open shell Hartree-Fock methods are used to 
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obtain the wave functions and energies. Here solutions to the Pople­

Nesbet equations (20) or the Binkley-Pople-Dobosh equations (21) respec­

tively are solved through repeated diagonalizations. In each case, the 

solutions provide detailed information on the orbital interactions and 

energy levels. 

From this point the Mulliken population analysis (22) on the wave­

function is engaged. The dipole moments, including the x-, y- and z­

components, of the Hartree-Fock wavefunction are likewise calculated. 

If the system is open-shelled, the Fermi contact terms and the spin 

densities for each nucleus are also computed. 

Minimum energy optimizations can be performed next. Three methods 

can be utilized. The simplest of these is the Berney method for geome­

try optimization. Fletcher-Powell optimization and Murtaugh-Sargent 

optimization are available as well. These options can be used to map 
out the stationary points on the potential surfaces as well as locate 

the energy minimizations. 

A number of severe limitations exist. in the Gaussian 80 program. 

The primary constraint lies with the supplied basis set functions. The 
program provides basis set data for atoms up through the third row of 

the periodic table. When greater detail on the orbital functions is 

required, the larger basis sets necessary for the examination are avail­

able for only the first and second row atoms. The overall number of 
basis functions also proved to be limiting. For unrestricted Hartree­

Fock calculations, the maximum number of basis functions was 75. With 
each silicon having nine basis functions, each oxygen five and each hydro­
gen one, the largest reasonable cluster usable was Si308H8. AS will be 

seen, this is also the minimal cluster size for this problem. The total 
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number of primitive gaussians, that is the number of basis functions mul­

tiplied by however many gaussians per Slater-Type Orbital (STO) was like­

wise limited to 361. This imposed a restriction of just four or five 

gaussian functions per STO, depending on the cluster size. It should be 

noted, however, that above four gaussians per STO the overall improvement 

in the results is marginal (17, 18). Lastly, due apparently to the rela­

tively large cluster size, attempts at programmed energy optimization 

were unsuccessful. 

For the purposes of this study only single point runs were done. 

Basis sets with either three or four gaussians per orbital were used. 

Mbst calculations were performed using the smaller basis set, while the 

larger set was used to examine in detail certain aspects of the calcula­

tion. The self~consistent-field calculations were performed using the 

restricted Hartree-Fock method for the perfect clusters and the unre­

stricted Hartree-Fock Method for the defects. The output to be utilized 

included the total electronic energy and the molecular orbital contribu­

tions. A full Mulliken population analysis was also obtained. The 

gross orbital charges and total charge for each atom were calculated as 

well. The atomic spin densities were generated and the dipole moment was 

likewise computed. Lastly the Fermi contact analysis was produced. 

Each feature of this output will be discussed below. 

The average running time for the large cluster calculation was 

approximately 20 minutes. These times varied with cluster size and 

choice of the number of Gaussians per Slater-Type Orbital. This time 

also depended on how quickly the electronic energy criterion was met. 

The average processor storage time, which changed with these considera­

tions as well, ranged from 1.5 to 3.0 M-byte hours. The major contri-
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bution to this storage time was made by the 1.2 to 2.0 million integrals 

calculated in this program. 



CHAPTER III 

TESTING PROGRAMS 

In order to evaluate the ability of the cluster and the program to 

yield results that simulate the states of the electrons in the infinite 

crystal, it was necessary to find some means of testing the output from 

our version of Gaussian 80. This was done in a two-fold manner. First 

the results for the perfect crystal cluster was considered. Once satis-

fied that the findings were acceptable, the program was tested by model-

ing an Ei center and those results were compared to earlier works and 

experiments. 

The problem of selecting a reasonable model for the perfect crystal 

proved to be less than straightforward. Because of the aforementioned 

limitations in basis function and primitive gaussian numbers, it was 

necessary to use a cluster that was smaller than would otherwise be de-

sired. Working with the assumption that the larger clusters would better 

simulate the crystal, a tradeoff had to be made between size and accuracy. 

The two clusters settled upon for the test were the 15-atom Si207H6 for 

comparison with Yip's Si2o7 and the 21-atom Si3o10H8 to be used for the 

E" center study (Figure 1). As can be seen in the figure, this cluster 

lS also the smallest reasonable cluster for treating the anion divacancy. 
+ -If the cluster was terminated by (SiH3) rather than (OH) radicals, the 

charges build up unnaturally on the outer silicons .and the cluster fails 

to accurately represent the infinite ideal crystal. 

14 
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Figure 1. 15-atom and 21-atom Perfect Clusters 
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The energy levels for the 15- and 21-atam tests are shown in Figure 

2. Listed on the figure are the orbitals which are strongest ~n each 

major energy level division. As with Yip, a constant energy value was 

added appropriately to each reading so as to bring the non-bonding oxygen 

2p orbitals to the same energy level. The inner core energy levels are 

not listed as they fail to interact greatly with the other orbitals and 

remain fairly constant. Indeed the greatest difference in these inner 

core levels is but 0.12 eV. The energy levels for the two clusters are 

compared to the results obtained by Yip and to the electron states calcu­

lated by Chelikowsky and Schluter. It can be seen that the output 

agrees quite well with that of Chelikowsky's in both magnitude and form. 

The band s.tructure used for comparison was that at the point M in the 

first Brillouin zone, the face parallel to the c-axis. This point was 

selected because it exhibited all of the general behaviors of the other 

points and because it has relatively low symmetry. The band gap between 

the bonding oxygen 2p orbitals and the oxygen 2s orbitals is 12.9 eV and 

12.7 eV for Si207H6 and Si3010H8 respectively. Chelikowsky calculates 

this value as 13.2 eV though it drops to as little as 12.3 eV at point 

A, the center of the face perpendicular to the c-axis. For Yip's Si2o7 

cluster this gap is 11. 7 eV. As the energy levels increase all four 

results are in broad agreement. There are several small gaps within the 

bonding oxygen 2p band, the size of which are fairly consistent among 

the four. In the next band gap, however, there is notable discrepency. 

The energy difference between the bonding and the non-bonding oxygen 2p 

orbitals is roughly 1.0 eV in Yip's calculations. In the Si207H6 and 

the Si3o10H8 clusters this difference is 3.5 eV and 3.2 eV. Chelikowsky's 
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results lie bebveen these sets of values, going from a minimum of 1.5 eV 

at point M to a maximum of 2.7 eV near r, the center of the Brillouin 

zone. The next large band gap is benveen the occupied orbitals and the 

virtual orbitals. Care should be taken wl1en comparing these gaps. The 

conduction band states in Chelikowsky's results were obtained using a 

pseudo-potential method. These results are very close to experiment. 

The method employed in the present study should cause this gap to be too 

large due to incomplete cancellation of the self-interaction terms in the 

virtual orbital states. This is, in fact, the case. The gaps for 

Si207H6 and Si3o10H8 are 20.0 eV and 19.7 eV respectively. Chelikowsky 

shows this gap as 12.7 eV atM. Yip fails to list energy values for 

orbitals at this level. These results for the perfect cluster indicate 

that the Gaussian 80 program either match or improve the results obtained 

by Yip. 

Satisfied with the success of the perfect cluster, the Ei defect 

test was initiated. This was done by removing the central oxygen in the 

Si207H6 cluster leaving one electron in its place, thus allowing the de­

fect to assume a charge of +1. The resulting shift in electronic energy 

levels is shown in Figure 3, along with the results of Yip's corresponding 

calculations. In both cases the lowering of energy levels is fairly stan­

dard. Yip's calculations exhibit a drop of roughly 6 eV while the present 

calculation shows a drop averaging 5 eV. There is, however, a notable 

difference in the behavior of the band gaps. The present work shows a 

decrease in the energy separation benveen the oxygen 2s orbitals and the 

bonding oxygen 2p orbitals from 12.9 eV to 12.6 eV. Yip's results showed 

a marked increase of over 2.5 eV for this same gap, from 11.7 eV to 14.3 

eV. The same is true for the band gap between the bonding and non-bonding 
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oxygen 2p orbitals. In the present calculation this gap decreases from 

3.5 eV to 2.3 eV. Yip's work indicates an increase from 1.0 eV to 1.7 

eV. Aside from such specific behavior, however, the results of the two 

calculations show strong similarities with respect to the electronic 

energy levels. Experimentally, such results have limited applicability. 

What needs to be addressed are properties of physical significance, the 

hyperfine tensor and charge distribution. 

The charge distribution for the Si207H6 cluster is shown in Table 

III. As would be the case in an ideal crystal, the charges are evenly 

distributed to each atom according to type. Though in distinctly dif­

ferent surroundings, the central oxygen atom has a charge remarkably 

close to that of the other, outer oxygen atoms, the largest difference 

being .12 charge units. With the oxygen vacancy, i.e., the Ei defect, 

the charge remains fairly well distributed. Alone this lacks meaning but 

in conjunction with the Fermi contact analysis, the behavior of the de­

fect becomes clear. An exami~ation of this contact analysis (Table 

III) permits insight to the hyperfine tensor. It should be noted that 

the actual values for these terms are not exact. No optimizations on 

atomic positions were performed. The purpose of this test was to verify 

trends in the Ei cluster and not to replicate earlier works. Still, 

the relative values in this analysis are very useful. What can be seen 

from these results is that the spin density is clearly greater on the 

short-bond silicon than on the long-bond one, 5.6 times greater. This 

is just what is found experimentally (22), and again agrees with Yip 

(5). 

The results of these tests show that the Gaussian 80 program can 

describe a-quartz and the Ei defect to a degree of accuracy either equal 
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TABLE III 

CHARGE DISTRIBUTION AND FERMI CONTACT TERMS FOR THE 15-ATOM 
PERFECT CLUSTER AND El MODEL 

Perfect Ei-defect Fenni 
Atom Cluster Cluster Contact 

Charge Charge Tenns 

O(l ,0) 8.707230 
Si(O) 12.483802 12.784060 0.227547 
Si(l) 12.475976 12.711954 0.040442 
0(2,0) 8.589983 8.559498 0.052888 
0(3,0) 8.593221 8.541028 0.093977 
0(4,0) 8.592840 8.470092 0.019871 
O(l ,5) 8.588554 8.497523 0.052152 
O(l, 6) 8.591984 8.493885 0.012099 
0(1,7) 8.593054 8.531179 0.026519 
H(2) 0.797427 0.746031 0.006035 
H(3) 0.799798 0.746268 0.004884 
H(4) 0.801380 0.736629 -0.007596 
H(5) 0.787218 0. 718118 -0.002724 
H(6) 0.795755 0.727521 -0.003744 
H(7) 0.801778 0.736214 -0.000076 
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to or better than previous methods. The answers provided by this pro­

gram agree both with earlier calculations and experimental observations. 

Such success lend credence to any findings on the E" center models using 

Gaussian 80. 



CHAPTER IV 

EXPERIMENTAL RESULTS 

The models selected for studying the E" centers are shown in Figure 

4. Several notable features exist which make this cluster attractive 

for this project. As stated earlier, the maximum number of basis sets 

allowable for unrestricted Hartree-Fock calculations was 75. This is 

exactly the number of basis sets in this divacancy model. For the per­

fect cluster where only restricted Hartree-Fock calculations are neces­

sary, in which case the limiting number of basis sets is 127, the number 

of sets is 85. This allows the use of up to four gaussians per Slater­

Type Orbital, thus increasing the relative accuracy of the computation. 

CaJe was taken to insure that the perfect cluster accurately duplicated 

the perfect crystal. The net charge on the perfect cluster was therefore 

maintained to be zero, as it would be in an actual crystal. The charge 

distributions on the three silicons, though in distinctly differing 

environs, proved to be surprisingly close. The maximum charge difference 

between any two silicons was a mere 0.03 charge units. It is clear that 

even with this limited cluster, a good comparison with experiment should 

be possible. 

Another important feature of this cluster is that it takes on four 

different forms depending on whether the oxygen vacancies occur in the 

short-bond or long-bond oxygen atoms. For the purposes of this work the 

two slightly inequivalent short-bond, long-bond divacancy combinations 
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will be taken to be the same. With this, a tentative correlation can be 
made between the three E" centers and the three different forms of the 

cluster. The E" model is formed by removing the oxygens interjacent to 
the silicon atoms. In their place two electrons each are allowed. 

Therefore, unlike a pair of Ei defects which would have a net charge 

of +2, the oxygen divacancy model remains uncharged. These unpaired 

electrons provide the means for several possible silicon interactions; 

it can assume a spin = 0 or a spin = 1. Each of these states will be 

studied. 

The electron energy levels for the three perfect 21-atom clusters 

and the smaller 15-atom cluster are illustrated in Figure 5. As can be 

seen in the diagram, no striking differences exist between the three 
large clusters. The bonding and non-bonding oxygen orbitals are clearly 
defined and well separated. In this respect, the three are very simi~ar 
to the smaller cluster. In detail, however, each of the three forms of 

the 21-atom cluster have characteristic differences. While it need not 

be necessary to explore these distinctive features, it is worth noting 
the semblence of the short-bond, short-bond form and the long-bond, 

long-bond form. 

When the divacancy is formed, two distinct states exist. The un­

paired electrons of spin = ~ can interact to form spin = 0 or spin = 1 
states. For the spin = 1 case, two spins exist, the a- and s- (or up 
and down) spins. Figures 6, 7 and 8 show the electronic orbital energy 

levels for the perfect cluster, the spin= 0 divacancy and the spin = 1 
divacancy, a- and S-states of each of the three forms of the cluster. 
'Again, a detailed examination of these energy shifts will not be under-
taken as it is beyond the scope of this treatise. 
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As in the case with the smaller cluster, the closest tie with 

experiment is found in the data concerning the charge distribution and 

spin densities. This information is listed for each atom in each of the 

three clusters in Tables IV, V and VI. In each of these cases, the per­

fect clusters exhibit the same charge distribution. The silicons have a 

charge of approximately +1.5, the interjacent oxygens have a charge 

roughly -0.7, while the other oxygens have a charge of -0.6. With the 

divacancy in its place, the central silicon gains some of the electron 

charge to become +0.7, while the outer silicons obtain a charge of +1.1, 

i.e., the central silicon is less positive than the outer silicons in 

both the spin= 0 and spin= 1 cases. The spin densities, however, are 

much greater on the outer silicons, greater by factor of 3.5 to 5, with 

the short-bond, long-bond form having the smallest increase and the 

short-bond, short-bond case having the largest. 

Total energies also provide important clues to the behavior of the 

divacancy (Table VII). Several features should be pointed out. The 

total energies of each of the three perfect clusters agree to within 

0.03 eV. However, with the divacancy in place, each form of the cluster 

assumes different energies. Once again, the actual values are not as 

meaningful as relative differences in these values. The energy shift 

from the spin = 1 divacancy to the perfect cluster is approximately 4 

keV. Here the characteristics of the three clusters cause slightly dif­

ferent values. The long-bond, long-bond and short-bond, short-bond 

forms have a shift of more than 0.2 eV over that of the short-bond, long­

bond form. The energies for the double El defects have been included 

for comparison, as have the charge distributions and the Fermi contact 

analyses (Table VIII). It should be noted that the spin= 0 states 
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TABLE IV 

CHARGE DISTRIBliTION AND FERMI CONTACT TERMS FOR 1HE 21-ATOM PERFECT 
CLUSTER AND E" ~I[)DEL: SHORT -SHORT FORM 

Perfect E"-defect E"-defect Fermi 
Atom Cluster Cluster Cluster Contact 

Charge Charge Charge Terms 
Spin=O Spin~1 

Si(O) 12.509957 13.294664 13.268900 0.187666 
0(1,0) 8.709763 
0(2,0) 8.709766 -
Si(l) 12.478873 12.864874 12.881955 0.918058 
Si(2) 12.478866 12.864850 12.882152 0.916025 
0(3,0) 8.594477 8.565681 8.568911 0.010119 
0(4,0) 8.594476 8.565681 8.568812 0.009730 

i 
O(l ,5) 8.592413 8.566148 8.563325 0.063945 
0(1,6) 8.593586 8.574049 8.574545 0.111506 
0(1,7) 8.588702 8.569531 8.562184 0.120650 
0(1,8) 8.593588 8.574052 8.574625 0.111295 
O(l, 9) 8.588694 8.569513 8.562038 0.121017 

0(1 ,10) 8.592423 8.566166 8.563225 0.064027 
H(3) 0.800399 0.815523 0.809731 -0.000218 
H(4) 0.800413 0.815532 0.809769 -0.000365 
H(5) 0.796396 0.795504 0.798329 -0.004217 
H(6) 0.802785 0.808049 0.812600 0.006050 
H(7) 0.787616 0.793322 0.794108 0.001965 
H(8) 0.802790 0.808051 0.812497 0.006024 
H(9) 0.787631 0.793322 0.794105 0.001907 

H(lO) 0.796384 0.795487 0.798189 -0.004342 
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TABLE V 

CHARGE DISTRIBUTION AND FERMI CONTACT TERMS FOR THE 21-ATOM PERFECT 
CLUSTER AND E" MODEL: SHORT-LONG FORM 

Perfect E"-defect E''-defect Fermi 
Atom Cluster Cluster Cluster Contact 

Charge Charge Charge Terms 
Spin=O Spin=l 

Si(O) 12.504718 13.238072 13.246541 0.285357 
0(1,0) 8.710390 
0(3,0) 8.708897 
Si(l) 12.478602 12.836654 12.884506 0.993626 
Si(3) 12.483986 12.928271 12.870785 0.979195 
0(2,0) 8.590564 8.562209 8.548082 0.040687 
0(4,0) 8.594447 8.564156 8.572470 0.017217 
0(1,5) 8.591919 8.560703 8.567378 0.074525 
0(1,6) 8.594599 8.570506 8.578740 0.120460 
0(1,7) 8.588571 8. 567718 8.569277 0.105307 

0(3,11) 8.590123 8.582243 8.579116 0.151616 
0(3,12) 8.592957 8.578378 8.572358 0.156854 
0(3,13) 8.593149 8.576353 8.554970 0.044713 

H(2) 0.792138 0.801996 0.813220 0.002455 
H(4) 0.802673 0.804443 0.813220 -0.000101 
H(5) 0.795493 0.789013 0.804416 -0.004247 
H(6) 0.801932 0. 799713 0.816719 0.006434 
H(7) 0. 787743 0.788566 0.801673 0.002174 

H(ll) 0.797321 0.816241 0. 811551 0.016543 
H(l2) 0.799563 0.824507 0.810440 0.012008 
H(l3) 0.800213 0.810259 0.795034 -0.005274 



TABLE VI 

CHARGE DISTRIBUTION AND FERMI CONTACT TERMS FOR THE 21-ATOM PERFECT 
CLUSTER AND E" MODEL: LONG-LONG FORM 

Perfect E"-defect . E"-defect Fermi 
Atom Cluster Cluster Cluster Contact 

Charge Charge Charge Terms 
Spin=O Spin=l 

Si(O) 12.496668 13.211831 13.251873 0.260626 
0(3,0) 8.708343 
0(4,0) 8.708328 
Si(3) 12.484353 12.892665 12.875779 1.003941 
Si(4) 12.484349 12.892640 12.875995 0.995291 
0(1,0) 8.592568 8.558969 8.567359 0.016699 
0(2,0) 8.592551 8.558954 8.567395 0.019468 

0(3,11) 8.589907 8.579527 8.578720 0.148820 
0(3,12) 8.593388 8.575701 8.572562 0.144844 
0(3,13) 8.593081 8.570000 8.556564 0.055862 
0(4,14) 8.593096 8.570022 8.557534 0.055162 
0(4,15) 8.589917 8.579526 8.578890 0.146807 
0(4,16) 8.593400 8. 575711 8.572855 0.143227 

H(l) 0.790368 0.790903 0.794797 -0.000947 
H(2) 0.790406 0.790942 0.794751 -0.000493 

H(ll) 0.797731 0.806748 0.813135 0.016140 
H(l2) 0.800201 0.815939 0.812201 0.011562 
H(l3) 0.801721 0.803621 0.801744 -0.005487 
H(l4) 0. 801704 0.803614 0.802181 -0.005359 
H(l5) 0.797727 0.806748 0.813071 0.015925 
H(l6) 0.800193 0.815939 0.822593 0.011463 
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TABlE VII 

TOTAL CLUSTER ENERGIES 

Short-bond, Short-bond, Long-bond, 
Short-bond Long-bond Long-bond 
Cluster Cluster Cluster 

Perfect 
Cluster -43,593.5393 -43,593.5693 -43,593.5693 

Energy (eV) 
Divacancy 
Spin=O -39,559.4131 -39,559.5902 -39,559.4894 

Energy (eV) 

Divacancy 
Spin=l -39,559.8108 -39,560.0833 -39,559.8626 

Energy (eV) 

Spin=O 
- Spin=l 0.3977 0.4931 0.3732 

(eV) 

Spin=l 
- Perfect 4,033.7285 4,033.4860 4,033.7067 

(eV) 

Double Ei 
Spin=l -39,548.8309 -39,548.3696 -39,548.3342 

Energy (eV) 

Double Ei 
- Spin=l 10.9799 11.7137 11.5284 
Divacancy 
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TABLE VIII 

CHARGE DISTRIBUTION AND FERMI CONTACT ANALYSIS FOR THE THREE 
DOUBLE El CLUSTERS 

Short-bond, Short-bond, Long-bond, 
Atom Short-bond Long-bond Long-bond 

Cluster Cluster Cluster 

Atomic Contact Atomic Contact Atomic Contact 
Charge Terms Charge Terms Charge Terms 

Si 13.2025 0.4114 13.1770 0.1060 13.1071 0.3313 
0 

0 

Si 12.9617 -0.0888 12.6428 -0.0612 12.7314 -0.1676 
Si 12.9616 -0.0888 12.7896 0.1278 12.7314 -0.1676 
0 8.4146 0.0832 8.2394 0.0844 8.4175 0.0511 
0 8.4148 0.0832 8.4870 0.1155 8.4170 0.0510 
0 8.4723 0.0050 8.4649 0.0019 8.5485 0.0068 
0 8.5224 0.0057 8.5182 0. 0077 8.5334 0.0319 
0 8.4774 0.0373 8.4973 0.0163 8.3999 0.0054 
0 8.5224 0.0057 8.5579 0.0417 8.3998 0.0054 
0 8.4774 0.0373 8.5397 0.0826 8.5485 0.0068 
0 8.4723 0.0051 8.4474 0.0137 8.5334 0.0318 
H 0.6941 -0.0056 0.6331 -0.0185 0.6816 -0.0101 
H 0.6941 -0.0056 0.6998 0.0039 0.6815 -0.0101 
H 0.7092 -0.0033 0.7005 -0.0031 0. 7167 0.0014 
H 0.7170 -0.0012 0.7067 -0.0001 0.7200 -0.0006 
H 0.7001 -0.0039 0.7068 -0.0017 0.6978 -0.0105 
H 0. 7170 -0.0012 0.7322 0.0050 0.6978 -0.0105 
H 0.7001 -0.0039 0.7334 0.0037 0. 7166 0.0014 
H 0.7092 -0.0033 0. 7266 -0.0087 0.7200 -0.0006 
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consistently have a greater value than the spin ~ 1 states. Also noti­

cable is the similarity in the energy difference between the two spin 

states for the long-bond, long-bond form and for the short-bond, short-bond 

form, while the short-bond, long-bond case is q~ite different. 

A step-wise Berny optimization was performed on the short-bond, 

short-bond cluster. The outer silicons were moved symmetrically towards 
0 or away from the vacated oxygen positions in steps of 0.05 A. The sili-

cons were constrained to remain in the original bond direction, so the 

optimization was not altogether complete. The outcome of this optimiza-

tion, however, describes the direction of relaxation. The lowest energy 

state was reached when the silicons relaxed towards the vacancies by 

roughly 10% of their original bond lengths. The resultant drop in total 

energy was only 0.14 eV. This energy drop occurred throughout the elec-

tronic orbital energies as well, with little effect on the overall char-

acteristics of the cluster. 



rnAPTER V 

DISCUSSION 

Any discussion made at this point should be done within the context 

of the experimental work done by Bossoli (4) aDd Jani (23). Utilizing 

the results of experiment to verify the legitamacy of the model, the 

model can then be used to shed light on the defect. ESR data indicates 

that the electron charges lie close to the central silicon, but the spin 

densities are greatest on the outer ones. This holds true for the di­

vacancy model as well. Even in the short-bond, short-bond case, where in 

a double Ei center the spin would affix itself near the silicon on the 

short-bond side, the divacancy clearly has the spin on the long-bond 

atoms. (Tables IV and VIII). Another important correlation between 

experiment and the present study is found in the differences in total 

energies between the perfect clusters and the spin = 1 divacancies. Ex­

perimentally the three E" centers anneal out at differing temperatures. 

The Ez anneals out completely at 67 C, the El at 104 C and the E3 at 

108 C. The difference in the El and E3 temperatures is approximately 10 

times the difference in the E2 and E3 temperatures. The same is true 

for the energy differences found in Table VII. The ratio there is 11. 

With these energies in mind, a tentative correspondence can be made 

between the cluster forms and the separate E" centers with the long-bond, 

long-bond form assigned to the El center, the short-bond, short-bond form 

to the E3 center, and the short-bond, long-bond form to the EZ center. 
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This brings to bear another point. Throughout the project the behaviors 

of the long-bond, long-bond cluster and the short-bond, short-bond clus­

ter have been conspicuously similar. This resemblence is also found 

experimentally. In both decay properties and annealing conditions, the 

El and E3 centers are in agreement, but the Ez defect differs substan­

tially. 

An alternate conclusion can be drawn from these results. It should 

be recognized that the energy differences under consideration are on the 

order of 0.5 eV or less. These values are uncomfortably near the rela­

tive error of the model. The comparisons are also being made without the 

benefit of energy optimizations. While there is some justification for 

relating the energies of the three clusters when in common states, any 

comparisons between states has limited meaning. Attempting to equate 

singlet and triplet states has a number of pitfalls. Correlation errors 

for the two states are different, as are the relaxation forces. This 

alone could account for the results showing the spin = 1 states being of 

lower energies than the spin= 0 states. From thermal anneal data, the 

spin = 0 state would appear to be the more stable state. Indeed, even 

at room temperatures theE" centers dissappear after several days. With 

such a margin of error, the three forms of the cluster cannot be rigorously 

assigned to the three E" centers. The divacancy shows, however, the proper 

characteristics of the E" center so that it would be plausible to assume 

that it models at least one of the three E" defects. 

These calculations have demonstrated several points. The oxygen 

divacancy represents a class of as grown neutral defects. This divacancy 

can exist not only in the charge = +2 form of a double Ei but also in the 

uncharged form used in this study. Moreover, the simple divacancy appears 
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in three, rather distinct forms. This, in conjunction with the fact that 

the three clusters from spin= 1 states, as do E" centers, provides a 

plausible argument for assigning the oxygen divacancy model to at least 

one of the E" defects. The most convincing evidence is found when com­

paring the spin densities, wherein the experimental hyperfine data and 

computational contact analysis agree. 

Keeping the computational limitations in mind, several areas do de­

mand further study. A less cursury optimization of atomic positions 

should be undertaken. · This should include both bond-length and bond­

angle variation. A more flexible basis set should be employed rather 

than the minimal ST0-3G. The valence state orbitals formed in the 

spin = 1 divacancy as well as the spin-density should be mapped out. It 

would be reasonable to assume that the valence state orbitals lie in the 

plane formed by the three silicons. Such information would greatly aid 

in forming a better understanding of the model and the E" defect. 

The next logical extension of the cluster would be to a four sili­

con chain. This would allow the divacancy to be separated by more than 

one silicon, and yet still maintain reasonably strong silicon-silicon 

interactions. The extended divacancies might well account for the other 

E" centers. An entire class of spin~ 1 defects exist that have yet to 

be studied in detail and the proximity of the divacancies could very well 

explain the variance of ESR spectrum intensities. 
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APPENDIX 

CALCULATION OF INTERATOMIC DISTANCES, ANGLES 

AND DIHEDRAL ANGLES 
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140 
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160 
170 
180 
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210 
220 
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240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 

A PROGRAM TO CALCULATE THE INTERATOMIC 
DISTANCES, ANGLES AND DIHEDRAL ANGLES 

OPTION BASE 1 
DIM XC21>,Y<21>,ZC21>,D<21,21) 
INTEGER A,B,C,D,I,J,K,Irnax 
Irnax=21 
FIXED 4 

Degrees: DEG 
PRINT " ATOM ";" 
FOR I=1 TO Irnax 
READ X<I>,Y<I>,Z<I> 
PRINT I;XCil;Y<I>;Z<Il 
NEXT I 
PRINT 

X II • II 

' 
y If • II . 

PRINT " ATOM<1>";" ATOM<2>";" ATOM<3>";" 

z 

ANGLE" 

CALCULATION OF THE INTERATOMIC DISTANCES 

FOR I=1 TO Irnax 
FOR J=1 TO Irnax 
IF J=I THEN 260 
D<I,J>=SQRC<X<I>-X<Jll~2+<Y<I>-YCJ))~2+<Z<I>-Z<J>>~2) 

PRINT I;J;D<I,Jl 
NEXT J 
NEXT I 

CALCULATION OF THE INTERATOMIC ANGLES 

FOR 1=1 TO Irnax 
FOR J=l TO Irnax 
FOR K=l TO Irnax 
IF I=J THEN GOTO 450 
IF J=K THEN GOTO 440 

IT IS NOT NECESSARY TO 
RUN THROUGHOUT ALL 
POSSIBLE COMBINATIONS. 
Irnax SHOULD BE ADJUSTED 
TO FIT THE NEED. 

IF I=K THEN GOTO 440 
Px=<X<J>-X<I>l*<X<J>-X<K>> 
Py=<Y<J>-Y<I>>*<Y<J>-Y<K>> 
Pz=<Z<J>-Z<I>>*<Z<J>-Z<K>> 
Pd=D<J, I>*D<J,K> 
Theta=<Px+Py+Pzl/Pd 
T=ACS <Theta) 
PRINT I;J;K;T 
NEXT K 
NEXT J 
NEXT I 

A dot B !A!*!B!*COSCTheta> 

CALCULATION OF THE DIHEDRAL ANGLES 

PRINT 
PRINT " ATOM<1>";" 
FOR A=1 TO Irnax 
FOR B=1 TO Irnax 
FOR C=l TO Irnax 
FOR D=1 TO Irnax 

ATOM<2>";" ATOM<3>";" ATOM<4>";" DIHED." 

AGAIN, THESE SHOULD BE 
ADJUSTED AS IS NEEDED. 
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IF A=B THEN GOTO 930 
IF A=C THEN GOTO 920 
IF B=C THEN GOTO 9:20 
IF A=D THEN GOTO 910 
IF B=D THEN GOTO 910 
IF C=D THEN GOTO 910 
A:(=X <A> -X <B> 
Ay=Y<A>-Y<B> 
A::=Z<A>-Z<B> 
Cx=X<C>-X<B> 
Cy=Y<C>-Y<Bl 
C::=Z<C>-Z<B> 
Axcx=Ay*C::-Az*Cy 
Axcy=Az*Cx-Ax*Cz 
Axc::=Ax*Cy-Ay*Cx 
Bx=X<B>-X<C> 
By=Y<B>-Y<Cl 
Bz=Z<B>-Z<C> 
Dx=X <D> -X <C> 
Dy=Y<D>-Y<Cl 
Dz=Z <D> -z <Cl 
Dxbx=Dy*Bz-Dz*BY 
D:<by=Dz *Bx-Dx*Bz 
Dxbz=Dx*By-Dy*Bx 
P:<x=Dxbx *Ax ex 
Pyy=Dxby*Axcy 
Pzz=Dxbz *Axe:: 
Da=SQR(AxcxA2+AxcyA2+AxczA2) 
Dd=SQR<DxbxA2+DxbyA2+DxbzA2) 
Pdd=Da*Dd . 
Phi=<Pxx+Pyy+Pzzl/Pdd 
IF Phi>1 THEN Phi=1 
IF Phi<-1 THEN Phi=-1 
Dh=180-ACS<Phil 
PRINT D;C;B;A;Dh 
NEXT D 
NEXT C 
NEXT B 
NEXT A 

TO FIND THE DIHEDRAL 
ANGLE BETWEEN ANY FOUR 
POINTS, THE MIDDLE TWO 
POINTS ARE USED AS AN 
AXIS FROM WHICH THE PER­
PENDICULAR PROJECTIONS 
OF THE OUTER.TWO POINTS 
ARE FOUND. THE LENGTH 
OF THE AXIS IS THEN 
SUBTRACTED AWAY AND THE 
ANGLE BETWEEN THE TWO 
PERDENDICULAR PROJECTIONS 
IS FOUND IN THE SAME 
MANNER AS ABOVE. 

THIS MAINTAINS THE 
DIHEDRAL ANGLE TO BE 
LESS THAN 180 DEGREES 

560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
8:20 
830 
840 
850 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 
1000 

ATOMIC POSITIONS 

DATA 
DATA 
DATA 

1.04537,-2.20062,-3.13494 
-2.87875,-1.90389,-3.34552 
-2.08099,-4.00563,-0.46920 

-1170 ··oATA ·.:.:o:~:S362, -C -13958~- --o.-64226 

1180 DATA - 0.00000, 0.00000, 0.00000 
1190 STOP 
1200 END 
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