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PREFACE 

This study is concerned with developing a ·method that evaluates 

the annual effectiveness of fixed, exterior shading devic~s. The 

method quantitatively measures the effectiveness of a device to shade 

during overheated months and to allow insolation during underheated 

months, and thus facilitates the selection and sizing of fixed, 

exterior shading devices. In developing the method, a procedural 

synopsLs LS presented of assessing shading needs and selecting and 

sizing shading devices. Existing latitude-based and climate-based 

methods for determining recommended projection lengths are analyzed to 

see how (and whether) the methods address the problems of balancing 

summer shading with winter insolation and late summer shading with 

spring insolation. 
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GLOSSARY 

For identification, glossary terms throughout this study are 
followed by an asterisk (*) the first time and at strategic times each 1s 
used. 

Air gap - The distance between the plane of a wall and the nearest point 
of a shading device; prevents hot air from collecting under a 
solid shading device by allowing vertical air movement. 

Auxiliary heating system - A conventional heating system used to 
supplement solar heat. 

Average day - That day which has the extraterrestrial radiation closest 
to the average for the month. 

Balance point temperature - The outside temperature below which heating 
is required and above which heating is not required; used as 
the demarcation temperature between overheated and underheated 
periods. 

Beam radiation- Direct radiation (solar). 

Checking period - The period of .time less than or equal to the overheated 
period, determined by local outside temperatures and the amount 
of direct radiation striking a window. 

Complete insolation - The state at which all incoming direct solar 
radiation is allowed to strike all of a receiver. 

Complete shade - The state at which all incoming direct solar radiation 
is prevented from striking any part of a rece1ver. 

Complete-shade day - A day in which a rece1ver is completely shaded from 
sunrise to sunset. 

Complete-shade period - The period of time (normally centered on the 
summer solstice) that consists entirely of complete-shade days. 

Conjugate dates- Dates having identical sun paths (e.g., April 21 and 
August 21). 

Daylighting - Utilizing light or1g1nating from the sky hemisphere to 
supplement interior, electric lighting. 
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Declination - The angular position of the sun at solar noon with respect 
to the plane of the equator; varies between -23.45° at the 
winter solstice and +23.45° at the summer solstice. 

Depth of louver - The size of a louver measured parallel to its major 
plane. 

Device-line(s) - The border(s) of a shading mask determined by the 
shading characteristics of a shading device. 

Diffuse radiation - The component of solar radiation that has been 
scattered by atmospheric molecules and particles, or by ground 
or other reflecting surfaces. 

Effectiveness - The ability to produce a desired effect; normally, with 
respect to shading devices, effectiveness is the ability of a 
shading device to shade direct radiation when shade is desired 
(during the overheated period); however, overall effectiveness 
is the ability of a shading device to not only shade when 
shading is desired, but to produce other desired effects such 
as visibility, weatherability, daylighting, etc. 

Equinox - Either of the two times each year when the earth rotates 
about the sun normal to the equator, and day and night are 
everywhere of equal length; approximately March 21 and 
September 21. 

Extension (of an overhang) - That part of an overhang which extends past 
the sides of a window. 

Full-time overheated period - The overheated period indicated on a 
sun-path diagram for which shading is needed on both conjugate 
dates. 

Half-to-full-time overheated period - The overheated period indicated on 
a sun-path diagram for which shading is needed on at least one 
of two conjugate dates. 

Horizon-line(s) - The border(s) of a shading mask determined by the 
rising or the setting of the sun. 

Incidence angle - The angle between incoming direct solar rays and a line 
normal to that surface being insolated. 

Incremental shading mask - A shading mask that indicates shading of a 
window in a series of regular consecutive percentages of shaded 
area. 

Infinite extension - The extension of an overhang that extends 
sufficiently past the sides of a window so as to allow only a 
negligible amount of direct radiation to strike the window. 
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Insolation - Solar radiation that has been received by a surface (usually 
a window surface). 

Interface- The place at which a building's interior and exterior meet. 

Isotropic - Uniformly distributed; independent of angle. 

Latitude- Angular distance north or south from the earth's equator 0 measured through 90 • 

Load Collector Ratio (LCR)- A ratio of a building's heat loss rate to 
south window area, indicating solar heating performance. 

Locus - The set of all points whose location is determined by stated 
conditions. 

Louver position angle - The angle, in a vertical plane normal to the 
·surface to be shaded, between a louver and that surface. 

Overhang ratio - The ratio between the projection length of an overhang 
and the window height; also called "relative projection 
length". 

Overheated period - The time period of a year during which shading 1s 
needed and the outside temperature is above the building 
balance point temperature. 

Overheated profile angle - The profile angle that determines the position 
and dimensions of a shading device for shading during the 
overheated period. 

Partial angle - Shading less than 100 percent but more than zero percent 
of a window from direct solar radiation. 

Profile angle - The angle between a line normal to the window plane and 
the direct rays of the sun in a plane normal to the window 
plane; determines the position and dimensions of a shading 
device. 

Projection angle - The angle, in a plane normal to the surface to be 
shaded, between a shading device and that surface. 

Projection length - The dimension of a shading device measured normal to 
the window plane, that determines the amount of shade a window 
receives. 

Screen density - A measure of the weave opacity of a screen-type shading 
device. 

Separation distance - The distance between the top or sides of a window 
and a shading device, that determines the amount of insolation 
a window receives. 
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Separation height - The vertical distance between the top of a window and 
the lowest point of an overhang. 

Separation ratio - The ratio between the separation height of an overhang 
and the window height; also called "relative separation 
height". 

Shading mask - The area on a sun-path diagram where shading of all or 
part of a window occurs. 

Sky-line( s) - The border( s) of .a shading mask determined by shading from 
surroundings (buildings, trees, objects, etc.). 

Solar altitude angle - The angle between the sun and a horizontal plane. 

Solstice- One of the two points on the ecliptic at which the sun's 
distance from the equator is greatest and which is reached by 
the sun each year about June 21 and December 21. 

Spacing between louvers - The distance parallel to the plane of a shading 
device between louvers. 

Surface-solar azimuth angle - The angle between the projection on a 
horizontal plane of a line normal to the surface and the 
projection on a horizontal plane of a line from the sun to the 
surface. 

Total height - The vertical distance between the sill of a window and the 
lowest point of an overhang; the sum of the window height and 
the separation height. -

Underheated period - The time period of the year during which shading 1s 
undesired and the outside temperature is below the building 
balance point temperature. 

Underheated profile angle - The profile angle that determines the 
position and dimensions of a shading device for allowing 
insolation during the underheated period. 

Wall-line(s) - The border(s) of a shading mask determined by times when 
the sun is behind the wall of the wiridow to be shaded. 

Window height - The vertical distance between the sill of a window and 
the top of a window. 
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CHAPTER I 

INTRODUCTION 

Problem Statement 

One of the characteristics of modern architecture is the widespread 

use of glazing in building facades. Corbusier once stated, " ••• as we 

possess steel and reinforced concrete ••• nothing these days prevents us 

from open1ng toward the solar rays, not a mere fraction, but 100 percent 

of a facade" (1, p. 10). However, this freedom of "opening toward the 

solar rays" of the sun is restrained by a necessity of controlling solar 

heat gain, especially during hot summer months, to maintain comfort. 

Often, the architect, engineer, and building owner use energy in the form 

of air conditioning to "cancel out" the solar heat gained through 

building fenestration. The cost of such a strategy can be compared to 

the "window tax" of the 18th and 19th centuries: 

In England, between 1696 and 1851, home owners paid a "window 
tax" based on the number and size of their windows. Houses 
were designed and windows were often bricked up to avoid this 
detested assessment. Even the rumor that such a tax was 
going to be imposed in America caused an armed insurrection 
in Pennsylvania in 1796, and Federal troops had to be called 
to quell the disturbances that followed (2, p. 3). 

Although today no window taxes are being assessed, many building 

owners are still paying a modern vers1on of this levy in the form of 

unnecessarily high energy bills. A solution to the problem of high 

l 
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energy bills due to excessive solar heat gain is to prevent the entrance 

of solar energy by shading sun-exposed windows in the summer. During 

certain times of the year when a building is being mechanically heated, 

however, solar heat gain is not excessive, but rather, desired. In many 

cases solar gain enables properly designed fenestrations to allow more 

energy into a building rather than out of a building over the course of a 

year, making the fenestrations energy-contributing rather than 

energy-consuming (3). 

Heat gain through windows can be controlled by exterior shading 

devices, interior blinds or drapes, and/or interface* techniques such as 

glass composition and films. Exterior, fixed (non-movable) shading 

devices were chosen as the topic of this study for the following reasons: 

1. The most effective way to reduce the solar load on fenestration 

is to intercept direct radiation from the sun before it reaches 

the glass (3). 

2. Fixed shading devices do not require automatic or manual 

control, and are thus advantageous over operable devices from a 

practical day-to-day point of view. 

In some cases, exterior, interior and interface shading may not be 

feasible. Cool summer temperatures, prominent cloudy skies, minimal 

incident solar radiation due to orientation, shading from surroundings, 

and building type might lead a designer to leave a window unshaded. 

However, when windows can be externally shaded, such shading should be 

carefully designed. Too often fixed, exterior shading devices are 

considered only on the basis of shading during the summer. Obviously a 

"shading device" ought to shade. Ideally though, a device should shade a 
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window during overheated periods* and allow solar insolation* during 

underheated periods*. However, shading with a stationary device during 

all months of the overheated period necessarily implies partial shading* 

during some months of the underheated period. The design problem then, 

of fixed, exterior shading devices, is to determine the configuration in 

which effects of winter insolation and summer shading, as well as spring 

insolation and late summer shading, are balanced in such a way as to 

optimize overall building performance. 

In addition to balancing shading and insolation needs, is the 

important aspect of evaluating fixed, exterior shading devices with 

respect to other factors that comprise the overall effectiveness* of a 

shading device. For instance, a series of fixed shading devices may have 

the same shading characteristics, yet their effect on view, air movement, 

control of diffuse radiation*, daylighting*, and other factors may differ 

considerably. 

Objectives 

The objectives of this study are to develop a method that evaluates 

the effectiveness of exterior, fixed shading devices, and in the 

development of the method to evaluate existing work and influential 

factors related to the design of exterior shading devices. The specific 

goals of the study are: 

1. Provide a general guide in assessing shading needs and 

determining factors which influence the effectiveness and 

facilitate the selection of exterior, fixed shading devices. 

2. Compare and evaluate existing latitude-based and climate-based 

methods of shading device design. 
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3. Develop a climate-based method that quantitatively determines 

the annual effectiveness of exterior, fixed shading devices, 

and to provide a flowchart to aid in the future development of 

a computer program to facilitate solutions of the proposed 

method. 

Scope and Limitations 

Since this is a study of exterior fixed shading devices, operable 

devices (whether inside or outside), interior drapes and blinds, and 

types of glass and films are not considered. Instead, this study 

considers four general types of exterior, fixed shading devices: 

horizontal, vertical, screen-type, and combined horizontal and vertical. 

Examples of each type are shown in Figures 1 through 4. 

The emphasis of this study is to determine the effectiveness of 

shading devices with respect to shading during overheated months and 

allowing insolation during underheated months.. Consequently, 

daylighting, economics, aesthetics, and other factors that influence the 

overall effectiveness of shading devices are presented in a broad-based 

sense and are not fully developed. 

While evaluating various devices, the intent is to aid the designer 

in getting close to the selection of an optimum shading device design for 

a particular location and building application. In seeking "optimum" 

design,' J. Douglas Balcomb states an appropriate scope to this study: 

All [the designer] really wants to do is get near the top, 
knowing that attaining an exact optimum is rather meaningless 
because costs are not well known and there are various other 
uncertainties ••• Experience shows that in most instances 
energy economics are not the major factor in the design 
process. A simple procedure that gives answers in the right 
ball park will receive much wider use and thus· have a much 
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Figure 4. Illustrations of Combined Horizontal and Vertical Shading 
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greater impact on design than a complex procedure that leads 
to more precise answers but will rarely be used (4, p. 13). 

Approach 

7 

The approach taken to achieve the objectives of this study is to 

first provide a synopsis of the process of assessing shading needs and 

selecting fixed, exterior shading devices. In doing so, those aspects 

that determine the overall effectiveness of shading devices are 

identified and investigated. 

Then, existing methods, including those by Egan, Mazria, Utzinger, 

Olgyay and Lau, presently used to determine overhang lengths and shading 

device design, are compared and evaluated. 

Finally, on the basis of these methods and aspects of shading 

device design, a method that quantitatively evaluates the yearly 

effectiveness of exterior, fixed shading devices is proposed and 

analyzed. 

To aid ~n understanding terms and symbols, a glossary and list of 

symbols is included after the Table of Contents. Terms throughout the 

study that are followed by an asterisk (*) are included in the glossary. 



CHAPTER II 

SYNOPSIS OF SELECTION PROCESS 

Exterior shading devices strongly influence the appearance of 

building facades and, therefore, unless considered early in the design 

of buildings, are often not incorporated. Instead, interior or 

interface* shading devices and techniques are often used which more 

subtly affect building facades and which reduce summer solar heat ga1ns 

considerably less than exterior shading devices. While it is 

recognized that the most effective way of reducing solar load 1n the 

summer 1s to intercept direct radiation from the sun before it reaches 

a window, not all climates and orientations need exterior shading (3). 

However, as Richard Stein points out: 

In the U.S., modern buildings tend to look very much the 
same whether they are in northern or southern climates and 
regardless of their orientation on a particular site. This 
is because buildings have been designed largely to keep 
natural phenomena outside, to separate conditions inside 
from the outdoors as much as possible, relying on mechanical 
systems to do much of the work. Not only is this wasteful 
in terms of energy consumption, but it also seems quite 
boring in terms of regional aesthetics (5, p. 34). 

The purpose of this chapter is to provide a guide for assessing 

shading needs and selecting exterior, fixed shading devices for a given 

location and building application. Figure 5 shows a general flowchart 

of the process outlined in this chapter. 

8 



-----ASSESS SHADING NEEDS 

No 

Allow 
insolation. 

No 

Shade wun I 
interior or 1 I mterface device. I 

No 

Shade with 

movable device. 

SIZE AND SELECT APPROPRIATE FIXED,----~ 

EXTERIOR SHADING DEVICE 

Cheok oHmate H Ev30uale devioes H uom,. method• 
classification and with respect to of sizing and t-~ orientation overall factors selecting 

guidelines. of effectiveness. devices. 

Figure 5. General Flowchart of Assessing Shading Needs and Selecting Exterior, Fixed Shading Devices 
~ 
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Assessment of Shading Needs 

Before evaluating specific types of exterior, fixed shading 

devices, it must first be decided whether shading is needed. Once it 

1s determined that shading is needed, then the decision whether to 

shade with interior,- interface or exterior shading devices must be 

made. If exterior shading is chosen as a strategy, then one must 

assess the advantages and disadvantages of operable versus fixed 

shading devices. Finally, once it is decided to incorporate or 

consider fixed, exterior shading devices for a certain design 

application, then the appropriateness of various types of shading 

devices is· evaluated. This section summar1zes the factors that should 

be considered in assessing shading needs before evaluating various 

fixed, exterior shading devices. 

Applicability of Shading 

To determine whether shading 1s needed, building characteristics, 

thermal climate, sky conditions, orientation, and surrounding 

obstructions should be known. 

In studying building characteristics with respect to shading 

needs, shading may be desired for walls (especially dark walls with 

high absorptivity) 1n addition to windows, since shading can help 

reduce exterior surface temperatures. If a building requ1res a 

mechanical system or some level of comfort, either for occupants, 

equipment, or items in storage, shading is needed when outdoor 

temperatures are above the building balance point temperature*. 

Equation (2.1) may be used to calculate building balance point 

temperature, Tb: 
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= T - q. /UA 
set 1 (2.1) 

where 

T set 
thermostat setting; if a building has a night setback 

thermostat, then a time weighted average of the 

thermostat's settings is used (°F), 

q. = average hourly internal ga1ns from people, lights, etc. 
1 

over a 24-hour period (Btuh), and 

UA = total heat loss rate of a building including losses due to 

infiltration (Btuh/°F). 

Balance point temperature of a house is the lowest outdoor air 

temperature at which the interior remains within comfort limits without 

either a net gain or loss of heat under a specified solar contribution, 

and may be thought of as the outdoor temperature below which heating is 

required and above which no heating is required (6). 

Shading may not be desired if outdoor temperatures for a certain 

location are seldom above Tb, or if sky conditions in a certain 

location have a low percentage of sunshine. Most geographical 

locations in the United States, however, have temperatures commonly 

above Tb in the summer months, and have an average amount of possible 

sunshine 1n summer months greater than 50 percent (Figure 6). 

Shading by shading devices may not be desired if surrounding 

obstructions shade a building or if a particular orientation of a 

building rarely receives solar radiation, such as a north orientation. 

The procedure described by Mazria in defining a sky-line* is helpful 1n 

determining when and at what angles the sun would be blocked by 

surrounding obstructions (7). 
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Applicability of Shading with Exterior Devices 

The major advantage of exterior shading devices is that the direct 

solar rays from the sun are intercepted before striking a window and 

entering the building as a heat gain. Olgyay, from his study of 

shading, concludes that effectiveness in preventing solar heat gain 

"increases 35 percent by using outside shade protection" rather than 

inside shade protection (9, p. 70). ASHRAE states, "the most effective 

way to reduce the solar load on fenestration is to intercept direct 

radiation from the sun before it reaches the glass." (3, p. 27.46). 

From an aesthetic viewpoint, because of their high visibility on 

the facades of buildings, exterior devices should be considered early 

in the design of a building, and integrated carefully with the design 

concept of building facades. 

The major disadvantages of interior shading devices is that 

regardless how reflective, they trap heat on the interior of the glass, 

so heat remains indoors. Some window units circumvent a few of the 

thermal disadvantages of internal· shades or blinds by placing narrow 

louvers within the airspace between glazing sheets (6, p. 189). 

Because interior shading devices such as curtains or venetian blinds 

are normally operable, they may be used to supplement exterior shading. 

The advantages of interior devices over exterior devices are that they 

are protected from the outside environment so they can be made of less 

expensive and less durable materials, they can be used to enhance the 

interior design of a space, and unlike exterior devices, they subtly 

impact the facades of buildings. 

Interface shading techniques such as heat-absorbing clear and 

tinted glazings, reflective coatings, and solar control films, although 



helpful in reducing solar transmission, are disadvantageous in their 

non-selective nature: they block needed solar gain ~n the winter. 

Heat absorbing glass and tinted glazing reduce solar transmission by 

absorbing heat within the glazing material itself. Absorption by 

glass will result in high glass temperatures (30F or more above air 

temperature is not uncommon) which, although less significant than 

transmitted heat gain, adds heat to the interior by conduction and 

thermal radiation (6, p. 189). 

Applicability of Shading with Exterior, 

Fixed Devices 
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Once it has been decided to not only shade, but to shade with an 

exterior shading device, the choice between operable and fixed shading 

devices is made. There is a disadvantage to any fixed shading device 

because average temperatures through the year peak from late July to 

mid-August while the declination* of the sun peaks on June 21 (summer 

solstice*). Because of this difference between maximum solar 

declination and maximum yearly temperatures, a compromise between 

shading in late summer and allowing insolation on a conjugate date* ~n 

spring must be made if fixed shading devices are to be used. Movable 

shading devices make it possible to uncompromisingly shade during 

overheated* times and permit insolation during underheated* times. 

However, since movable shading devices are movable, they are likely to 

require more maintenance then fixed devices. Movable devices, whether 

operated manually or automatically, are also likely to be more 

expens~ve and require more post-installation attention than fixed 

devices. An econom~c study that considers costs of automatically 



operated devices, and benefits of shading uncompromisingly should be 

made to help determine whether shading with fixed or operable devices 

is best. 

Selection of Exterior, Fixed Shading Devices 

In Chapter I, the scope of this study was limited to eight types 

of exterior, fixed shading devices: 

1. solid overhangs, 

2. louvered overhangs, 

3. horizontal louvers, 

4. miniature horizontal louvers, 

5. solid vertical fins, 

6. eggcrate devices, 

7. frame-type devices, and 

8. screen-type devices. 
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There are many variations to the positioning and physical 

configuration of each type of shading device listed above. Table I 

shows some of the variations possible for each type of shading device. 

From the table it can be seen that devices may vary with respect to air 

gap*, projection angle*, louver position angle*, spacing between 

louvers*, depth of louvers*, screen density*, projection length*, or 

separation distance*. 

An air gap is the distance between the plane of a wall and the 

nearest point of a shading device. Air gaps are important for solid 

shading devices as they keep hot air from collecting next to a window 

under the shading device by allowing air movement. 



TABLE I 

APPLICABILITY OF POSSIBLE VARIATIONS IN PHYSICAL DESIGN AND CONFIGURATION OF EXTERIOR, FIXED SHADING DEVICES 

Louver Spacing Depth 
Type of Device Air Gap Projection Projection Separation Position Between of Screen 

Angle Length Distance Angle Louvers Louvers Densi.t:Y 

Solid overhang X X X X 

Louvered overhang X X X X X X X 

Horizontal louvers X -- -- -- X X X 

Miniature horizontal 
louvers X -- -- -- Note 1 Note 1 Note 1 

Sol~d vertical fins X X X X 

Egg crate X X X 

Frame-type X X X X 

Screen-type X -- -- -- -- -- -- X 

Applicable: X 
Not Applicable: 
Note 1: Miniature horizontal louvers originally developed by KoolShade are tilted down at 17°, 0.05 inches 

deep, and spaced either 17 or 23 to an inch (10). 

I-' 

"" 



A projection angle ~s the angle between a shading device and the 

plane of a wall, and differs from a louver position angle in that a 

louver position angle refers only to louvers. For example, the 

louvered overhang shown in Figure 7 is a shading device that projects 

0 at a 90 projection angle, but has louvers which are tilted at a 

45 0 1 ang e. 

The spacing between louvers, h, is the distance parallel to the 
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window plane from one louver to the next, while the depth of louver, c, 

~s the louver size as shown in Figure 8. 

Screen density is an indication of the weave-opacity of a screen 

type device. The denser a screen is, the less radiation is allowed to 

penetrate through to a window. 

Projection length is the horizontal distance between the plane of 

a window and the extreme point of a shading device, while separation 

distance is the distance (parallel to the plane of a wall) between the 

edge of a window and a shading device, as shown ~n Figure 9. 

The projection length of an overhang determines the amount of 

shade a window receives in the summer, while the separation height from 

the top of a window to the underside of an overhang is responsible for 

the amount of insolation a window receives in the winter. The angle 

that determines the position and dimensions of a shading device for 

shading during the overheated period is the overheated profile angle*, 

Q , and is the angle above which complete summer shading is possible. 0 

The angle that determines the position and dimensions of a shading 

device for allowing insolation during the underheated period is the 

underheated profile angle*, Q , and is the angle below which complete u 

winter insolation is possible. If a designer would like to 
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shade a window more in the summer, but allow the same amount of 

insolation in the winter, the underheated profile angle can be held 

constant while the overheated profile angle is decreased, as shown in 

Figure 10. On the other hand, if a designer would like to allow more 

winter insolation, but shade the same amount of a window in summer, the 

overheated profile angle can be held constant, while the underheated 

profile angle is increased, as shown in Figure 11. 

Louvers may be positioned to allow winter insolation, as shown in 

Figure 12. The louver position angle less 90° is the underheated 

profile angle, Q , at which complete winter insolation is allowed. 
u 

The cut-off angle between louvers is the overheated profile angle, 

Q , above which complete summer shading occurs. 
0 

The appropriateness of a particular exterior, fixed shading device 

for a given situation depends on several factors. As a guide to 

evaluating and specifying various types of fixed, exterior shading 

devices, the following steps are suggested: 

1. Compare recommended devices with respect to climate 

classification and orientation. 

2. Evaluate devices according to factors of overall 

effectiveness. 

3. Utilize methods of sizing and selecting shading devices. 

Climate Classification and Orientation 

Recommendations 

Some guidelines for selecting exterior, fixed shading devices 

according to climate type and orientation are provided by various 
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authors 1n the field of climatic design. However, all-encompassing 

general statements concerning a particular orientation or climate 

classification usually differ, making it difficult to select a device 

on the basis of these recommendations. 

Climate Classification Recommendations. There are many 
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systems for categorizing climate types, but most authors generalize all 

climates into one of four groups: 

1. hot-arid, 

2. hot-humid, 

3. temperate, and 

4. cool (11). 

Many locations do not fit neatly into just one of these 

categories. Figure 13 though, shows how Olgyay roughly locates the 

four climate-types in mainland United States (9). 

Table II compares comments by Evans, Givoni, Olgyay and Szokolay 

concern1ng shading devices for the four general climate types. The 

significance of orientation, and the influence of air movement and 

reflected radiation can be seen in many of the remarks. 

Orientation Recommendation. It would be helpful for a 

designer to know which type of exterior, fixed shading device 1s best 

suited for an orientation. From Table III it can be seen that for 

south orientations, horizontal shading devices are generally 

recommended. Givoni, however, recommends frame-type devices since they 

are most effective 1n blocking direct solar radiation (12). For 

southeast and southwest orientations, it is suggested that either 
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TABLE II 

COMPARISON OF RECOMMENDED TYPES OF EXTERIOR, FIXED SHADING DEVICES FOR VARIOUS CLIMATE. CLASSIFICATIONS 

Climate 
Classification 

Hot-humid 
(warm-wet) 

Hot-humid 

Hot-humid 
(Miami) 

Hot-arid 
(hot-dry) 

Hot-arid 
(Phoenix) 

Hot-arid or 
hot-humid 

Type of 
Device 

louvered 
overhang 

horizontal 
device 

all types 

vertical 
fins 

separate 
from 

structure 

egg crate 

Remarks Source 

Louvered overhangs can provide full shade while at the same time Givoni (12) 
reflect the sun's rays outwards and enable free air movement over 
the external surface of walls. Moreover, they allow better 
illumination than solid overhangs but provide less protection 
from driving rains. In multi-stored buildings solid overhangs 
tend to reflect an appreciable amount of solar radiation onto 
walls and windows of upper stories. 

Horizontal devices are preferable in warm humid climates as they Evans(lS) 
provide protection,from sky glare and rain, with minimal inter-
ference with air movement. 

Shading devices are important because of powerful radiation Olgyay (1) 
mainly on east and west exposures; a north exposure for Miami 
receives more radiation than a south exposure due to low-
latitude location. 

In hot-dry conditions vertical fins allow a view of high angle Evans (15) 
blue sky, while slightly reducing ground glare and the effect 
of hot dusty winds. 

Shading devices should be separate from structure, and exposed Olgyay (1) 
to wind convection. 

An eggcrate's best use is in hot climate regions. Olgyay (1) 

N 
~ 



Climate 
Classification 

Temperate 
(New York-New 
Jersey area) 

Temperate 
(moderate, 
cool-moderate, 
and warm
moderate) 

Cool 
(Minneapolis) 

Type of 
Device 

overhang, 
eggcrate, 

and 
vertical 

fin 

horizontal 
device 

horizontal 
device 

TABLE II (Continued) 

Remarks 

An overhang will protect south exposures (68°profile angle 
for an overhang in New York-New Jersey area is recommended) . 
Eggcrate type devices will protect east and west exposures, 
and vertical fins will protect north exposures in temperate 
climate regions. 

For south exposures and moderate climates, windows should be 
protected by a device having a profile angle of 90° - latitude. 
In a cool-moderate location, this profile angle could be a few 
degrees higher, and in warm-moderate climates a few degrees 
lower. 

Shading in summer is desirable but should not interfere with 
solar impact during overheated times. For southern orienta
tions, horizontal shading devices may be used (66° profile 
angle for an overhang in Minneapolis is recommended) . 

Source 

Olgyay (1) 

Szokolay (18) 

Olgyay (1) 

N 
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TABLE III· 

COMPARISON OF RECOMMENDED TYPES OF FIXED, EXTERIOR SHADING DEVICES FOR VARIOUS ORIENTATIONS 

Orientation 
East and 
West 

East and 
West 

East and 
West 

East and 
West 

East and 
West 

East and 
West 

West 

Recommended 
Type 

egg crate 

horizontal 
shading 

egg crate 
or 

vertical 

vertical 

egg crate 

not 
horizontal 

vertical 

Remarks 
Adequate shading for east and west orientations can be provided by 
an eggcrate shading device, especially if the vertical members are 0 angled 45 to the north. 

Source 
Givoni (12) 

Horizontal shading is more effective than vertical shading for east Givoni (12) 
and west walls. In fact vertical shading, even with infinite height, 
provides very poor shading in the summer, while cutting off almost 
all radiation in the winter. 

A sunshade of only vertical elements is not sufficient to shade an 
east or west wall. It 'is necessary to add small horizontal elements 
or to extend a vertical shade beyond the lintel. 

Shaviv (13) 

Vertical devices serve well, having radial shading masks. If slanted, Olgyay (1) 
the devices should incline toward the north, to give more protection 
from the southern positions of the sun. 

Vertical fins with adequate overhangs (eggcrate) will shade an east 
or west orientation. An overhang with a large projection length is 
ineffective on east and west walls. 

The solar altitude is generally so low on east and west orientations 
that horizontal projections, to be effective, would have to be 
excessively long. 

For windows which are oriented close to west, closely spaced vertical 
louvers may be the best way of excluding sunlight. 

Ramsey/ 
Sleeper (14) 

ASHRAE (3) 

Evans (15) 

N 
0\ 



Orientation 
East 

West 

Southeast 
and 
Southwest 

Southeast,_ 
Southwest 

Southeast, 
Southwest, 
South 

Recommended 
Type 

horizontal 

horizontal 

horizontal/ 
frame-type 

egg crate 

horizontal 

East through horizontal 
South to West 

South 

South 

horizontal/ 
frame-type 

horizontal 

TABLE III (Continued) 

Remarks 
The common ·architectural practice of using vertical shades on the 
eastern side is wrong. The efficiency of a horizontal shade (to 
block direct radiation) is greater than that of a vertical shade. 
However, contrary to the case of a western window, it is imprac
tical to have a single horizontal overhang. 

It is a common misconception on the part of architects that the 
sun-shades of a western window must be vertical. Results show 
that a horizontal sun-shade is practical on a west wall. 

For southeast and southwest orientations, horizontal shading is 
more effective in blocking direct radiation than a vertical 
shading device, while a frame shape is most effective. 

The eggcrate device works well on southeast and southwest orien
tations. 

Horizontal projections can considerably reduce solar heat gain by 
providing shade on south, southeast and southwest exposures during 
late spring, summer and early fall. 

In all orientations from east through south to west, horizontal 
shading is more effective than vertical shading. 

For south orientations, horizontal shading is more effective in 
blocking direct solar radiation than vertical shading, while the 
frame shape is most effective. 

A solar-shade for a southern window must be basically horizonta]. 

Source 
Shaviv (13) 

Shaviv (13) 

Givoni (12) 

Olgyay (1) 

ASHRAE (3) 

Givoni (12) 

Givoni (12) 

Shaviv (13) 
N 

" 



Orientation 
South 

South 

North 

North 

Recommended 
Type 

horizontal 

horizontal/ 
egg crate 

vertical/ 
egg crate 

none/ 
small 

TABLE III (Continued) 

Remarks 
Horizontal louvers or overhangs are effective on the south. 

Horizontal devices, with arcual shading masks work well on 
southern orientations; at low latitudes eggcrate devices 
work well. 

Fixed vertical devices are recommended on north walls for 
large surfaces and for hot regions; at low latitudes eggcrate 
devices work well. 

Typical concrete walls· are thick enough to shade north windows. 
In the case of larger windows, a small shade is sufficient. 

Source 
Ramsey/ 

Sleeper (14) 

Olgyay (1) 

Olgyay (1) 

Shaviv (13) 

N 
00 
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eggcrate or horizontal shading be applied. For east and west 

orientations, horizontal, vertical or eggcrate devices are recommended. 

This disparity of recommendations for east and west orientations makes 

it difficult to determine which general type of shading to use at these 

orientations. 

Givoni and Hoffman have analyzed the efficiency of various types 

of fixed shading devices in different orientations by computing: 

1. the daily portion of direct solar radiation falling on an 

unshaded window (according to the radiation conditions of 

0 Israel, 32 N. latitude), 

2. the percentage of shade. areas, g1ven by var1ous types of fixed 

shading devices, as a function of the projection length, and 

3. the intensity of direct solar radiation on the unshaded part 

of a window (12). 

In this way, daily curves of the intensities of direct solar 

radiation falling on windows with various types of shading devices with 

different orientations for different months were obtained for a variety 

of fixed, exterior shading devices (Figures 14 through 17). These 

devices included: 

1. horizontal shading, H, assuming infinite extensions*, 

2. vertical shading, V, with a perpendicular projection angle, 

and 

3. frame-type shading, H + V, of horizontal and vertical 

projections perpendicular to the wall. 

Givoni's conclusions to the analysis presented 1n Figu~es 14 to 17 

are included in Table III. 
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Figure 14 shows the daily pattern of direct solar radiation 

impinging on a 3.28 ft. X 3.28 ft. (1 m. X 1 m.) eastern window with a 

1.1 ft. (0.3 m.) horizontal, vertical and frame-type projection length 

1n June, September, and December. (NS denotes "no shading"). 

Figures 15 through 17 show the effect of projection length of 

various shading devices on direct radiation impacting a window facing 

different orientations. 

Factors of Overall Effectiveness 

Usually, 1n evaluating the effectiveness of a shading device, the 

major concern is its shading performance. However, there are a number 

of factors besides shading that influence the selection of a fixed, 

exterior shading device. Table IV ,lists the eight types of devices of 

this study, and qualitatively presents the effectiveness of each type 

of device in controlling sky and ground glare, allowing a view out, 

allowing free air movement, improving insulation value of glazing 

assembly, allowing winter insolation, and controlling diffuse 

radiation. 

In addition to the factors in Table IV, other considerations in 

the selection of exterior, fixed shading devices include: 

1. cost, 

2. aesthetics, 

3. weatherability, 

4. resistance to vandalism, 

5. resistance to bird nesting and perching, 

6. rain protection of a wall or sidewalk, 

7. fire-fighter access to interior, 



TABLE IV 

COMPARISON OF OVERALL FACTORS OF EFFECTIVENESS FOR FIXED, EXTERIOR SHADING DEVICES 

Type of Device 

Solid overhang 

Louvered overhang 

Horizontal louvers 

Miniature horizontal 
louvers 

Vertical fins 

Egg crate 

Frame-type 

Screen-type 

Controls 
Sky 

Glare 

No 

No 

Yes 

Yes 

Some 

Yes 

No 

Yes 

Controls 
Ground 
Glare 

No 

No 

Yes 

Yes 

Some 

Yes 

No 

Yes 

Allows 
Horizontal 

View Out 

Yes 

Yes 

Note 1 

Some 

Some 

Some 

Some 

Some 

Note 1: Depends on angle of louver position. 

Allows 
Free Air 
Movement 

Note 2 

Yes 

Yes 

Note 3 · 

Yes 

Note 2 

Note 2 

Note 3 

Improves 
Insulation 
of Window 

No 

No 

No 

Yes 

No 

No 

No 

Yes 

Allows 
Winter 

Insolation 

Note 4 

Note 5 

Note 6 

No 

Note 4 

No 

Note 4 

No 

Note 2: 
Note 3: 

Air movement allowed if there is a structural gap between device and wall surface. 
Hinders air movement, but consequently increases insulation value. 

Note 4: Winter insolation allowed if separation distance is applied. 

Controls 
Diffuse 

Radiation 

No 

No 

Yes 

Yes 

Some 

Yes 

No 

Yes 

Note 5: 
Note 6: 

Winter insolation allowed if separation height is applied or if louvers are properly positioned. 
Winter insolation allowed if louvers are properly positioned. 

w 
w 
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8. reradiation of heat, and 

9. impact on daylighting. 

A shading device's performance with respect to many of the factors 

listed above and in Table IV is dependent on the type of material used, 

installation technique, and/or color of material. Often, trade-offs 

between factors must be made in the selection of a device. One of the 

most important conflicts is between daylighting* and shading. 

Daylighting and Shading. When shading office buildings with 

exterior, fixed shading devices, care must be taken not to 

significantly decrease the potential energy savings from daylighting. 

Harvey Bryan has summarized the advantages of daylighting in commercial 

office buildings: 

Since electric lighting is often the single largest user of 
energy in commercial buildings, much attention has been 
focused on the energy-saving _potential of daylighting. 
However, few have recognized the potential that daylighting 
offers for the control of peak demand; i.e., most utilities 
peak on hot summer afternoons, which is coincident with peak 
daylighting availability. The researchers who have studied 
daylighting's relationship to peak demand have found that 
the savings derived from a demand-driven analysis are 
significantly greater (in some cases several fold) than 
those derived from an energy-driven analysis. Thus, many of 
the claims being made for daylighting may be on the 
conservative side (16, p. 105). 

A "demand-driven" analysis takes into account a utility company's 

stipulations of the "ratchet clause," which requires that a percentage 

(often at levels as high as 80 percent) of the year's maximum demand be 

incorporated as a fixed demand charge through the remaining 11 billing 

periods. Thus, a building owner may pay an enormous penalty for just 

one 15-minute surge in demand (Figure 18). 



100 

Annual Penalty 

80 
"0 c: 
IV 
E 
G) 

Q 60 
...: 
IV 
Ql 
a. 

0 
40 

i: 
Charg~d demand !80% Ratchet Clause! Ql 

(,) .. 
Ql 

-----Actual Demand a. 

20 

0 ~--------~--~----~--------~------~ 
DEC MAR JUN SEP DEC 

Figure 18. Comparison of Actual Demand With 
the Demand Charged Assuming an 80 
Percent Ratchet Clause for an 
All-Electric Office Building (16) 

35 



It is difficult in designing exterior, fixed shading devices to 

integrate shading, which saves energy by decreasing summer solar heat 

gain, and daylighting which saves energy by decreasing electric 

lighting load. Some of the conflicts are listed below: 

1. Shading devices designed to allow direct radiation in the 

winter decrease the quality of daylight by increasing glare 

from low-angle winter sun (17). 

2. On cloudy days, if incoming light is to be maintained, then 

exterior, fixed devices become excessively restrictive to 

diffuse daylight (17). 

3. At times of the day when the sun is behind a wall 

(particularly an east or west wall) and not radiating direct 

beams on a window, fixed shading devices become excessively 

restrictive to diffuse daylight. 

4. The efficiency of an exterior shading device in reducing the 

heating effect of solar radiation increases with darker 

colors, while the efficiency of reflecting light off the 

device for daylighting decreases with darker colors (12). 

36 

Olgyay has developed equations to determine the "daylighting 

efficiency" of various fixed, exterior shading devices in terms of the 

percentage of sky that is seen by a shaded window. However, the 

calculations are made with the following assumptions: 

1. The sky has equal luminance of radiation at all points. 

2. No reflections from surroundings or louvers are received. 

3. Louvers extend far enough that light entering from sides can be 

neglected (1). 



37 

For horizontal overhangs or louvers, the daylighting efficiency 

can be expressed by the following equation: 

j 2' 
Efficiency = [ 1 + (c/h) - c/h] 100% (2.2) 

where c and h are shown in Figure 19. 

For tilted horizontal overhangs or louvers, the daylighting 

efficiency can be expressed as: 

Efficiency = [Jl - 2(c/h)sinA + (c/h) 21 - (c/h) cosA] 100% ( 2. 3) 

where c, h and A are shown in Figure 20. 

For vertical fins, perpendicular to a wall or tilted, the 

daylighting efficiency is: 

J 2' 
Efficiency = (1/2)[ 1 - 2.(c/w)sinA + (c/w) 

j 2' 
- 1 + 2(c/w)sinA + (c/w) - (c/w)] 100% (2.4) 

where c, w and A are shown in Figure 21. 

Szokolay recognized the integration problem of daylighting and 

shading, and developed a simple geometrical optimization method for a 

window with an overhang facing south (or near-south) (18). The method 

is summarized in Figure 22 and the following steps: 

1. A daylight factor is assumed at point P on a working plane. 

2. Working the protractor daylight factor method in reverse, an 

initial sky component is found. 

3. From the initial sky component, the required angle can be 

found to establish line "a" (drawn from point P), which is the 

locus* of all possible points where the lowest edge of any 

overhang can be. 
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4. From a method of sizing overhangs, an angle can be found to 

establish line "b" (drawn from the window sill), which is the 

locus of all possible points to which the overhang must reach. 

5. The only possible point that would satisfy both requirements 

is the intersection of the two loci, the resultant point R. 

Since daylighting is primarily concerned with reflected and 

diffuse radiation as a source of low glare light, 'and since shading is 

primarily concerned with direct radiation* as a source of heat, a 

discussion now follows about the components and quantities of total 

radiation striking a shaded window. 

Radiation on a Shaded Window. The total solar radiation 

on an unshaded window is the sum of three components: 

1. beam (also called direct) radiation* from the sun, 

2. diffuse radiation* from the sky, and 

3. diffuse radiation reflected from the ground and other surfaces 

(19). 

A fully shaded window, on the other hand, blocks the beam component of 

solar radiation, and receives only sky and ground reflected radiation. 

The quantity of sky and ground reflected diffuse radiation striking a 

window is influenced by the color and reflectance of ground surfaces 

(and shading device surfaces), the percent of sky blocked by a shading 

device, the cloudiness of the sky, the solar altitude angle of the sun, 

and the orientation of the window (even though in calculations, diffuse 

radiation is assumed to be isotropic*). Figure 23 shows how measured 

quantities of diffuse radiation striking different orientations vary 
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for a clear sky in Minneapolis on September 14 (20). Since this 

diffuse radiation comes from all parts of the sky, its intensity 1s 

difficult to predict and subject to change throughout any g1ven day (3, 

p. 27.3). 

In the common case of a solid overhang fully shading a window, 

beam radiation is blocked, diffuse sky radiation is partially blocked 

(since part of the window's view to the sky is blocked), but diffuse 

ground reflected radiation may increase on lower stories s1nce some 

additional reflection takes place on an overhang's underside. However, 

it has been determined that for winter conditions (with snow cover 

reflectance = 70 percent) the effect of radiation reflected from the 

underside of an overhang with 70 percent reflectance is +1 percent and 

may be judged to be negligible (21). 

According to Utzinger and Klein, who examined overhang shading in 

Minneapolis and Albuquerque, and developed a relationship to determine 

the mean monthly solar radiation incident on a south-facing, shaded 

receiver, the average solar radiation received by receivers fully 

shaded from direct solar radiation in June ranges from 50 to 80 percent 

of the total solar radiation received by an unshaded receiver (21). 

Their findings are summarized as follows: 

Figures [24 and 25] compare monthly average daily radiation 
on shaded and unshaded receivers in Minneapolis, Minnesota 
and Albuquerque, New Mexico. The radiation on the shaded 
receiver is also separated into its beam, diffuse, and 
ground reflected components. During November, December, and 
January, radiation on shaded and unshaded receivers are 
nearly identical in both locations. During May, June, and 
July, even though the beam radiation has been reduced to 
near zero, the total radiation on the shaded receiver is 
more than half the value of the radiation on the unshaded 
receiver surface (roughly 70 percent for the receiver 
located in Albuquerque). Even though the summer value of 
KT (atmospheric clearness index) averaged 0.72 in 
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Albuquerque compared to 0.53 in Minnesota, the overhang has 
a larger effect in reducing radiation in Minneapolis than in 
Albuquerque. This is partly due to differences in the 
average value of R during these three months (0.28 in 
Minneapolis and 0.~4 in Albuquerque) and partly to using a 
value of the ground reflectance of 0.2 in Minneapolis and 
0.3 in Albuquerque. In both locations the amount of 
radiation incident on the shaded receiver during the summer 
is significant. It is evenly divided between diffuse and 
ground reflectance radiation. The overhang does shade a 
significant amount of radiation from the receiver during 
summer, although a larger amount of radiation remains 
unshaded (21, p. 377). 
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At first glance, it would appear 'that the findings of Utzinger and 

Klein's study are contrary to statements by ASHRAE, Givoni, Mazria and 

Olgyay. ASHRAE states "Windows fully shaded from the outside will 

have a solar heat gain reduction of as much as 80 percent" (3, p. 

27.46). 

Givoni claims "With dark, external shading, as little as 10 

percent of impinging radiation may enter the building" (12, p. 278). 

Mazria says II • • on clear uays diffuse radiation comprises only 

a small fraction of the total [striking the earth's surface]" (7, p. 

15). 

Olgyay states "Diffuse radiation is the sum of scattered sky 

radiation and reflected direct radiation and is less important as a 

source of heat than the direct radiation'' (1, p. 56). 

After close examination of the findings of Utzinger and Klein, it 

can be seen that the high percentages of diffuse radiation in the study 

are due to the low quantity of direct radiation striking a vertical, 

south-facing window during May, June, and July when the sun is high. 

On an east or west window, or during cooler months when the altitude 

angle of the sun is lower, more direct radiation strikes a window, thus 

causing the percentage of diffuse radiation to be considerably lower. 
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Also, if a shading device like a screen or miniature horizontal louver 

is used instead of an overhang, more diffuse radiation would be blocked 

since the window's view to the sky and ground is decreased. 

Another point to consider is that since impinging direct radiation 

strikes a window at such high incidence angles*, the transmittance of 

direct radiation through window glazing decreases considerably as shown 

1n Figure 26. In calculations, isotropic* diffuse radiation is assumed 

to have the same transmittance as beam radiation at an incidence angle 

0 of 60 (22). 

Based on the research of Utzinger and Klein, Lau has done a study 

that shows how monthly solar radiation transmitted through a 

double-glazed, south-facing window varies when shaded by overhangs of 

different lengths as shown in Figure 27 (23). 

By studying the results shown in Figure 28 for Phoenix, the 

following observations can be made: 

1. The amount of radiation that 1s transmitted through an 

unshaded, south-facing window decreases during summer months. 

2. The difference between the total monthly radiation transmitted 

through an unshaded south window and a south window shaded by 

a short overhang stays fairly constant throughout the year, 

despite a short overhang's ability to block a much larger 

percentage of direct radiation striking a window during the 

summer months than during the winter months. 

3. The largest difference between the total monthly radiation 

transmitted through an unshaded south window and a south 

window shaded by a 7-foot overhang occurs during the spring 

and fall months. 
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4. During the summer months, a fairly large percentage of solar 

radiation transmits through a south-facing, shaded window 

despite being shaded from direct radiation by overhangs with 

4- and 7-foot projection lengths. 

Methods of Sizing and Selecting Shading Devices 

48 

Many methods have been developed to help designers in sizing and 

selecting exterior, fixed shading devices. Latitude-based methods, 

presented in Chapter III, are the simplest type of methods sLnce 

climatological data is not used directly. Of the latitude-based 

methods presented in this study, all are for overhangs (the most common 

type of fixed, exterior shading device) and most are for south-facing 

orientations only. When using a latitude-based method, it is important 

to know how many complete-shade days* the method assumes, which is 

determined in Chapter III. The latitude-based methods presented that 

consider only summer shading are: 

1. FMHA (Farmers ffome Administration) Method, 

2. Mazria Rule-of-Thumb, 

3. Mazria F-Factor, 

4. Egan K-Value, 

5. Shade Line Factor, and 

6. Szokolay Rule-of-Thumb. 

The latitude-based methods presented t.hat consider both summer 

shading and winter insolation are: 

1. DOE-LANL Rule-of-Thumb, 

2. Small Homes Council, and 
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3. Utzinger Nomograph. 

Climate-based methods are more complex and time-consuming than 

latitude-based methods since a specific location's climate is taken 

into account. Of the climate-based methods presented in Chapter IV, 

most apply to any type of fixed, exterior shading device, and most are 

for any orientation. The climate-based methods 1n Chapter IV that 

consider only summer shading are: 

1. Olgyay Shading Mask Method, 

2. Novell Method, 

3. Saleh Method, and 

4. Shaviv Method. 

The climate-based methods presented that take into account both 

summer shading and winter insolation are: 

1. Olgyay Shading Effect Ratio Method, 

2. Lau Method, and 

3. Jones Method. 

The proposed annual 6T-Effectiveness method presented in Chapter V 

is a quantitative, climate-based method that may be applied to any type 

of shading device for any location, and considers both summer shading 

and winter insolation. 

When using a method to determine the projection length of an 

overhang, infinite extensions* are assumed to ensure the overhang does 

not allow radiation from the sun to strike a window from the sides. 

However, from a practical viewpoint, overhangs have limits to how far 
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past the sides of a window they may extend. Based on a study by 

Utzinger and Klein, if an overhang of finite extension meets or exceeds 

the following combinations of relative window width (~) and relative 

extension (~), an infinite extension can be assumed: (24) 

~ > 25 ~d ~ > 0 

~2 8 and ~l 1.4 

~24 and 
~ . 
e > 2.0 

~2 1 ~d ~2 3.0 

~ The relative window width (w), ~s the ratio of the window width 

(wW) to the window height (wH), and ~s expressed as follows: 

(2.5) 

The relative extension (~) is the ratio of the right or left 

extension (e) to the window height (wH) and is expressed as follows: 

(2.6) 

Physical representations of wW' wH, and e are shown ~n Figure 30 in 

Chapter III. 

~ ~ Plotting w versus e results in a curve as shown in Figure 29. If, 

for a given window-overhang configuration, the relative width is 

plotted with the relative extension, and the point falls on or above 

the curve ~n the unshaded area, then an infinite extension can be 

assumed. 

To illustrate the use of Figure 29, consider a window with a 

height of 3.5 ft. and a width of 30 ft., having an overhang that 
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Figure 29. Infinite Extension Assumption Curve for 
an Overhang 
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extends 6 ft·. past the sides of the window. From Equations. (2.5) and 

(2.6): 

~ = 30/3.5 = 8.6 

and 

';¥ = 6/3. 5 =· 1. 7 

Plotting these ratios on Figure 29 shows that the overhang 

extension is long enough to be considered an infinite extension. 

For the purpose of visualizing the implications of the ratios of 

Figure 29, wW and e are shown in relation to each other for a window 

height of 3.5 ft. in Table V. 
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CHAPTER III 

LATITUDE-BASED METHODS 

Overview 

This chapter evaluates and compares methods that are based on 

latitude* and an assumed number of complete-shade days*. Although there 

are differences in format (i.e., methods are in the form of a table, 

nomograph, or rule-of-thumb), and in the range of applicable latitudes, 

the major variation between methods is the number of complete-shade 

days. Because the methods presented in this chapter are not based on 

climatological data, either a method assumes a number of complete-shade 

days resulting in the same projection length for all locations along a 

particular latitude, or a method leaves to the designer the decision of 

establishing the number of complete-shade days. 

The most important aspects of this chapter on latitude-based 

methods are as follows: 

1. The periods of complete-shade* and complete-insolation* vary 

considerably for each method, resulting in widely different 

overhang lengths; this result underscores the need for 

climate-responsive design of overhangs. 

54 



55 

2. Each method can be reduced to equation form with the only 

variables being overhang projection length*, total height*, 

window height*, separation height*, latitude, and number of 

days complete shade and/or complete insolation is desired. 

Method Limitations 

It should be noted that the latitude-based methods presented here 

are applicable to overhangs only. Overhangs are the most common type of 

fixed, exterior shading device and used extensively in residential 

applications. As pointed out in Chapter II, horizontal shading devices 

(such as overhangs) are generally used on south-facing facades and extend 

well past the sides of windows. Therefore, the methods presented in this 

chapter may be applied to overhangs having infinite extensions* and 

positioned over south-facing windows. 

Window-Overhang Geometry 

For clarification, before evaluating the var1ous latitude-based 

methods of this chapter, certain angles and dimensions are defined below 

in Figures 30 and 31. In Figure 30, note that: 

In Figure 31, note the difference between profile angle (n) and solar 

altitude angle (S). 

Complete-Shade Period 

For comparison purposes, the complete-shade period* was determined 

for the methods. From Equation (3.2), the profile angle at noon on the 
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first complete-shade day* in the spring (Q ) can be determined. From 
0 

Equation (3.3), the declination* (D) is found, which is used 1n Equation 

(3.4) to find the number of days (N ) before or after summer solstice>'< 
0 

(June 21) that complete shade* is possible for the overhang projection 

length in Equation (3.2). Once N is known, the period of complete 
0 

shade is easily determined by adding and subtracting N from June 21. 
0 

where 

where 

where 

tH = total height, 

p = overhang projection length, and 

n = lowest noon profile angle of complete-shade period. 0 

-1 D = L - cos (sinQ ) 
0 

D- declination (positive 1n summer), 

L = latitude. 

N = (365/360)cos-1 (D/23.45) 
0 

N = number of complete-shade days before or after summer 0 

solstice. 

(3.3) 

(3.4) 

To clarify the complete-shade period, it must be understood that 

the sun's path is symmetrical about the summer and winter solstice. 

Because of this symmetry, the sun's path is the same on the Nth day 

before the summer solstice as on the Nth day after the summer solstice. 

For example, the sun's path on May 11 is the same as the sun's path on 
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August 1, since both dates are forty days from June 21 (the summer 

solstice). Therefore, a fixed shading device designed to completely 

shade a south-facing window on August 1 will also completely shade the 

same window on May 11. Dates on which the sun's path are the same (such 

as May 11 and August 1) are called conjugate dates. 

The declination of the sun increases as the sun nears its summer 

solstice. Consequently, a solid overhang that shades a south-facing 

window completely on August 1, not only identically shades on May 11, 

but also shades a window completely for the entire period between May 11 

and August 1. Because of this fact, a complete-shade period can be 

determined by knowing only one date: the first complete-shade day of 

the spn.ng or the last complete-shade day of the sunnner. 

It is significant to understand how complete-shade periods are 

determined because sometimes a complete-shade period for a fixed device 

is given to be from June 21 to August 1, yet such a device will also 

shade from May 11 to June 21. In another case, a fixed, solid overhang 

may be designed to shade completely on August 1 (as in the case of 

Egan's tabular method), yet will actually completely shade for 81 days, 

from May 11 to August 1. 

Derivation of Methods 

Every latitude-based method that considers only sunnner shading is 

derived from Equation (3.5), which is derived from Equations (3.2) to 

(3.4). 

p = tH/tan[90 - (L - 23.45cos(360(N0 )/365))] (3. 5) 

where 



p = overhang projection length*, 

tH = total height*, 

L = latitude, and 

N = number of complete-shade days before or after summer 0 

solstice. 
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Methods based on Equation (3.5) which consider only summer shading 

include: 

1. FMHA (Farmers Home Administration) Method, 

2. Mazria Rule-of-Thumb, 

3. Mazria F-Factor, 

4. Egan K-Value, 

5. Shade Line Factor, and 

6. Szokolay Rule-of-Thumb. 

A designer could use Equati~n (3.5) to determine the projection 

length of an overhang over a south-facing window, if he is not concerned 

about winter insolation. For example, if complete shade at 36°N. 

latitude for a total height of 6.2 feet ·is desired from April 1 to 

September 1 (conjugate dates) (separation height = 0.0 feet), then N 
0 

= 81 days, since there are 81 days from April 1 to June 21. Solving for 

p, Equation (3.5) yields: 

p = 6.2/tan[90 - (36 - 23.45cos(360(81)/365))] 

p = 3.9 ft. 

Every latitude-based method that considers both summer shading and 

winter insolation is derived from Equations (3.6) and (3.7), which are 

derived in Appendix B. The equations summarize the factors needed to 
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determine the projection length* (p) and separation height* (gH) for 

an overhang on south-facing exposures when both winter and summer 

shading and winter insolation are considered: 

p = wH/{tan[90 - (L - 23.45cos(360(N0 )/365))] 

-tan[90- (L + 23.45cos(360(N )/365))]} 
u 

and ~ = wHtan[90 - (L + 23.45cos(360(N0 )/365))] 

/{tan[90 - (L - 23.45cos(360(N )/365))] 
0 

where 

-tan[90- (L + 23.45cos(360(N )/365))]} 

p = overhang projection length, 

~ = gap or separation height, 

wH =window height, 

L = latitude, 

u 

N = number of days before or after summer solstice 
0 

that complete shade* is desired, and 

N = number of days before or after winter solstice u 

that complete insolation* is desired. 

(3.6) 

(3.7) 

A designer could use Equations (3.6) and (3.7) to determine the 

projection length of an overhang and corresponding separation height 

between the top of a window and the bottom of an overhang, if he is 

concerned about both summer shading and winter insolation. For example, 

at 36°N. latitude, for a window height of 3.50 ft., if complete shade 

1s desired from May 11 to August 1 (conjugate dates), then N = 40. If 
0 

complete sun is desired from November 16 to January 26, then N = 34. 
u 

Solving for p, Equation (3.6) yields: 



p 3.50/{tan[90 - (36 - 23.45cos(360(40)/365))] 

-tan[90- (36 + 23.45cos(360(34)/365))]} 

p = 3.50/(3.09737 - .68608) = 1.45 ft. 

Solving for gH, Equation (3.7) yields: 

g = 3.50(.68608)/(3.09737 - .68608) = 1.00 ft. 
H 

Methods based on Equations (3.6) and (3.7), which consider both 

summer shading and winter insolation, are: 

1. LANL-DOE Rule-of-Thumb, 

2. Small Homes Council Rule-of-Thumb, and 

3. Utzinger Nomograph. 

Explanation of Methods 

FMHA (Farmers Home Administration) Method 

The FMHA tabular method shown 1n Table VI claims to find the 
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"exact" projection length of an overhang (25). Using Equations (3.2) to 

(3.4) and data from Table VI, it can be seen that an overhang with a 

projection length determined by this method will shade a window 

completely from about April 1 to September 11. 

Mazria Rule-of-Thumb 

As a general rule-of-thumb, Mazria recommends shading south glazing 

with a horizontal overhang located just above the glazing and equal in 

projection length to roughly one-fourth the total height in southern 

latitudes (36°N.) and one-half the total height in northern latitudes 

(48°N.) (7). In equation form, the rule-of-thumb is simply: 



for 36°N. latitude, and 

p = tH/2 

for 48°N. latitude. 

This rule-of-thumb approach provides complete shade on south 

glazing for approximately forty-one days, from June 1 to July 11. 

Mazria F-Factor 
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(3. 8) 

( 3. 9) 

This flexible tabular method (Table VII), presents a range of 

"F-Factors" for a given latitude. The higher F-Factor for a specific 

latitude corresponds to an overhang projection that will completely 

shade a window for one day, June 21, (the summer solstice), and is 

simply the tangent of the profile angle at noon on June 21. Similarly, 

the lower F-Factor for a specific latitude corresponds to an overhang 

projection that will completely shade a window from May 11 to August 1, 

and is the tangent of the profile angle at noon on May 11 (or August 1) 

(7). 

Once an F-Factor is determined, the following equation ~s used to 

determine the projection of a fixed overhang for south-facing glass. 

p = tH/F-Factor (3.10) 

by comparing Equation (3.10) with Equation (3.2), it can be seen, as 

stated above, that: 

F-Factor = tan Q 
0 

(3.11) 



NORTH 
LATITUDE 

25° 
30° 
35° 
40° 
45° 
50° 

NORTH 
LATITUDE 

TABLE VI 

FMHA (FARMERS HOME ADMINISTRATION) TABLE 

TOTAL HEIGHT (FEET) 
3 4 5 6 7 

OVERHANG PROJECTION (FEET) 
1.1 1.5 1.9 2.2 
1.4 1.9 2.4 2.9 
1.8 2.4 3.0 3.5 
2.1 2.8 3.6 4.3 
2.6 3.4 4.3 5.1 
3.0 4.1 5.1 6.1 

TABLE VII 

MAZRIA F-FACTORS 

NORTH 
F-FACTOR LATITUDE 

286 5.6 - 11.1 
32° 4.0 - 6.3 
36° 3.0 - 4.5 
40° 2.5 - 3.4 
44° 2.0 - 2.7 
48° 1.7- 2.2 
52° 1.5- 1.8 
56° 1.3- 1.5 

TABLE VIII 

EGAN K-VALUES (OR SHADE LINE FACTORS) 

E & W 
0.83 
0.83 
0.82 
0.81 
0.80 
0.79 

K - VALUE 
SE & SW 

1.89 
1.63 
1.41 
1. 25 
1.13 
1. 01 

NW, N & NE 
4.63 
2.89 
1. 79 
1.67 
1.44 
1.24 

2.6 
3.4 
4.1 
5.0 
6.0 
7.1 

s 
10.10 
5.40 
3.55 
2.60 
2.05 
1. 70 
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3.0 
3.8 
4.7 
5.7 
6.8 
8.2 
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Egan !-Value (or Shade Line Factor) 

Egan's K-Value method, also known as the Shade Line Factor (SLF) 

Method, is based on a five-hour average of max1mum solar radiation on 

August 1 (26, 6). The time at which the five-hour average occurs 

determines overhang lengths for non-south orientations. For example, if 

the five-hour average of maximum solar radiation on a southeast wall, on 

August 1, occurs at 9:00 a.m., the overheated profile angle of the sun 

is found by knowing the date and time of day. From Equation 3.2, 

knowing n and t , a projection length may be determined. However, o H 

us1ng a K-Value from Table VIII (which is the same as an SLF) and 

Equation (3.12), an overhang projection length may be determined without 

having to find n . 
0 

(3.12) 

From Equations (3.2) to (3.4) and- data from Table VIII, a south-facing 

overhang with a projection length based on this method will completely 

shade a window from May 11 to August 1. 

By comparing Equation (3.12) with Equations (3.2) and (3.11) it 

can be seen that: 

and 

K-Value = tan n 
0 

K-Value = Lower F-Factor 

for a g1ven latitude. 

Szokolay Rule-of-Thumb 

For moderate (or temperate) climates (i.e., hot summers, cold 

(3.13) 

( 3.14) 

winters), as a rule-of-thumb, Szokolay states that south-facing windows 
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should be protected by a device having an overheated profile angle of 

90°- latitude (i.e., the noon altitude angle of the sun at equinox) 

(18). So for the six "summer" months (March 21 to September 21) the 

device will completely shade a south-facing window. The following 

equations explain the relationship between an overheated profile angle 

(Q ), an overhang projection length (p), and Szokolay's rule-of-thumb: 
0 

where 

p = tH/tan (90° - latitude) 

Q = (90° - latitude) 
0 

(3.15) 

(3.16) 

In a cool-moderate location, the profile angle determined from 

Equation 3.15 could be a few degrees higher, resulting in a shorter 

overhang, and ~n a warm moderate climate, a few degrees lower resulting 

in a longer overhang. 

LANL-DOE Rule-of-Thumb 

According to the Passive Solar Design Handbook, prepared 

by the Los Alamos Scientific Laboratory: 

0 It is fairly good design practice to allow about 5 of 
leeway at the window top in locating the overhang relative to 
the window as shown [in Figure 32] ••• It is also good design 
practice to allow for about 5° of leeway at the window 
bottom for the summer design condition (27, pp. 109-110). 

When considering the 5° allowance shown in Figure 32, the 

resulting declination of the sun is then 23.45° - 5° = 18.45°. 

0 From Equation (3.4), a declination of 18.45 corresponds toN= 39 

days. 0 Therefore, the 5 allowance will completely shade a window for 

79 days in the summer (May 11 to July 31), and will allow complete 

insolation of a window for 79 days in the winter (November 11 to January 

30). 



/ 
/ 

_,II 

/ 

/ 
/ 

/ 

June 21 

Figure 32. Illustration of LANL-DOE 
Rule-of-Thumb (27) 

66 



67 

Small Homes Council Rule-of-Thumb 

Based on a study of weather conditions and sun angles at var1ous 

latitudes, the Small Homes Council of the University of Illinois reports 

that a standard 30/16 overhang (i.e., an overhang with a 30 in. (2.5 ft.) 

projection length located 16 in. (1~33 ft.) above the top of the window) 

will provide "good" sun control on south windows for "conventional sill 

and ceiling heights" (6, p. 159). It should be noted that this 

rule-of-thumb is quite general and stays constant with varying latitudes. 

Utzinger Nomograph 

Utzinger's method uses a nomograph to determine the projection of 

an overhang for vertical windows which have azimuths within 10 degrees 

of due south. The method depends on window height, separation height 

(between the top of the window and the bottom of the overhang), and 

latitude, as well as the number of days a window is to be totally shaded 

in the summer, and the number of days a window is to be unshaded in the 

winter (24). 

The nomograph in Figure 33 1s used to find p and ~' by the 

following procedure: 

1. Locate the latitude line for the site, interpolating if 

necessary. 

2. Draw a line from B through the intersection of the 

latitude curve and the number of days the window 1s to be 

shaded before or after the summer solstice (June 21). 

The result is the summer shading line. 
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3. Draw a line from T through the intersection of the 

latitude curve and the number of days the window is to be 

unshaded before or after the winter solstice (December 

21). The result is the winter shading line. 

4. The intersection point of the summer and winter shading lines 

gives ~ (ratio of the overhang projection length, p, to the 

window height, wH) and g (ratio of the overhang separation 

height, ~' to the window height, wH): 

~ 

p/wH (3.17) p = 
~ 

gH/wH (3.18) g = 

5. Multiply the value of ~ (overhang ratio*) by the window 

height to find the length of the overhang projection. 

6. Multiply the value of g (separation ratio*) by the window 

height to find the separation distance between the top of 

the window and the bottom of the overhang. 

Comparison of Methods 

Tables IX and X, and Figure 34 compare the methods presented in 

this chapter. Of the five methods shown for comparison in Table IX, 

three are tabular methods and two are rules-of-thumb. All five consider 

only summer shading. Overhang projections are produced that completely 

shade a window from one day (June 21) to 183 days (March 21 to September 

21). The latitudes that each method considers are roughly the same, 

although the Mazria-Rule-of-Thumb requires much interpolation for north 

latitudes other than 36° or 48°. 

The three methods shown for compar1son 1n Table X consider both 

summer shading and winter insolation. Overhang projections and 



TABLE IX 

COMPARISON OF LATITUDE-BASED METHODS THAT CONSIDER ONLY SUMMER SHADING 

Column One Column Two Column Three Column Four Column Five Column Six 
Period of Number of F f Example 

Hethod Complete Complete-Shade Latitudes E 0~ 0 ( 3 2 ) Overhang quat1.on • Shade Days Length 

FHHA Table 

Hazria 
Rule-of-Thumb 

Hazria F-Factor 

Egan K-Value 

(Shade Line 
Factor) 

Szokolay 
Rule-of-Thumb 

Apr 1 to Sep 11 163 

Jun 1 to Jul 11 41 

June 21 1 
Hay 11 to Aug 1 81 

Hay 11 to Aug 1 81 

Hay 11 to Aug 1 81 

Harch 21 to Sep 21 183 

25°to 50°N. p = t !tan n H' o 3.12 ft. 

36°to 48°N. 0 
p = tH(for 36 N) 1.25 ft. 

0 
p = tH(for 48 N) 

28°to 56°N. p = tH/F-Factor 
1.11 ft. 
1. 67 ft. 

0 0 
25 to 50 N. p = tH/K-Value 1.52 ft. 

0 0 
25 to 50 N. p = tH/SLF 1. 86 ft. 

Any Latitude p tH/tan(90-lat) 3.63 ft. 

"-1 
0 



TABLE X 

COMPARISON OF LATITUDE-BASED METHODS THAT CONSiDER BOTH SUMMER SHADING AND WINTER INSOLATION 

Column One 

Method 

DOE-LANL 
Rule-of-Thumb 

Small Homes 
Council 

Column Two 
Period 

of 
Complete Shade 

May 11 to 
July 31 

Dependent 
on 

Rule-of-Thumb Window Height 

Utzinger June 21 

Nomograph 

Column Three 
Number of 

Complete-Shade 
Days 

79 

Dependent 
on 

Window Height 

1 

Apr 21 to Aug 21 121 

Column Four Column Five Column Six Column Seven 
Period Number of Example Example 

of Complete-Sum Overhang Separation 
ComQlet~Sun_ --~- __ Days~-----__ L(;!f!gth Height 

Nov 11 to 
Jan 30 

Dependent 
on 

Window Height 

Dec 21 

Oct 21 to Feb 21 

79 

Dependent 
on 

Window Height 

1 

121 

2.06 ft. 1.48 ft. 

2. 50 ft. 1. 33 ft. 

1. 28 ft. (min.) 0 . 7 6 f t . (min . ) 

3.71 ft.(max.) 3. 34 f t . (max. ) 

'"-I 
f-' 
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separation heights are produced that completely shade a window from one 

day (June 21) to 121 days (April 21 to August 21), and that allow 

complete insolation from one day (December 21) to 121 days (October 21 to 

February 21). 

Figure 34 compares and graphically presents the tabular values of 

the FMHA, Mazria F-Factor, and Egan K-Value methods for south-facing 

windows. Projection lengths can be found by multiplying the reciprocal 

of a value on the horizontal axis by the total height. For example, at 

35°N. latitude, the value on the horizontal axis corresponding to 

Egan's K-Value curve is 3.5. For a 5 ft. window height and a 1 ft. 

separation height, the total height is 6 feet. The reciprocal of 3. 5 

multiplied by the total height is (1)/(3.5)(6) = 1.7 feet. 

Example Problem 

To further explain and compare existing latitude-based methods, 

consider the following example problem: A window with a height of 5.0 

ft. faces due south at 36°N. latitude. Determine the recommended 

overhang projection length for each method in Ta~le IX, and the 

recommended overhang projection length and separation height for each 

method in Table X. 

According to the FMHA method, interpolating for a total height of 

5.0 ft. at 36°N., the overhang projection would be 3.12 ft. It should 

be noted that in the stated example problem no separation height was 

given, so it is assumed that the total height equals the window height. 

0 Mazria's rule-of-thumb, Equation (3.8), for 36 N., says the 

overhang projection should be: 

p = 5.0/4 = 1.25 ft. 
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According to the Mazria F-Factor method, Table VII, and Equation 

(3.10), 

p = 5.0/4.5 = 1.11 ft. 

for an F-Factor of 4.5, and for complete shade on June 21 only. To 

shade from May 11 to August 1, an F-Factor of 3.0 is used and, 

p = 5.0/3.0 = 1.67 ft. 

According to the Egan K-Value method, (and the Shade Line Factor 

0 method) to shade from May 11 to August 1, for 36 N., a K-Value (and 

SLF) of 3.3 is used (by interpolation from Figure 34), and from Equation 

(3.12), 

p = 5.0/3.3 = 1.52 ft. 

Szokolay's rule-of-thumb, Equation (3.15), says the overhang 

projection should be: 

p = 5.0/tan(90 - 36) = 3.63 ft. 

DOE-LANL's rule-of-thumb basically says to allow 79 days of 

complete insolation in the winter and 79 days of complete shade in the 

summer. Using Equations (3.6) and (3.7): 

p = 2.06 ft. 

gH = 1.48 ft. 

The Small Homes Council's rule-of-thumb ~s constant for all North 

American latitudes, so: 

p = 2.50 ft. (30 inches) 

gH = 1. 33 ft. (16 inches) 
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In order to work the above example, the Utzinger Nomograph method 

requires a decision by the designer about the number of days summer shade 

and winter sun is desired. The minimum and maximum projection lengths 

and separation heights for an overhang above a five ft. window, using the 

Utzinger Nomograph are: 

1.28 ~ p ~ 3.71 (ft.) 

0.76 ~ ~ ~ 3.34 (ft.) 

where p = 1.28 ft. and ~ = 0. 76 ft., when the periods of complete 

shade and insolation are June 21 and December 21 respectively; and 

p = 3.71 ft. and~= 3.34 ft., when the periods of complete shade and 

insolation are April 21 to August 21 and October 21 to February 21, 

respectively. 

Summary 

Latitude-based methods to determine proper overhang projection 

lengths are quick and easy, but have several limitations: 

1. Local climate is not considered. 

2. Building characteristics are not considered. 

3. All the methods are based on latitude, which 1s easily 

determined, but not very useful by itself in sizing overhangs 

(28). 

4. Only horizontal overhangs are considered. 

5. With the exception of the Egan K-Value Method (or SLF Method), 

all are for south orientation only. 

6. Determination of N and N 1s left up to the designer, 
0 u 

with no guidance as to what magnitude each should be. 



CHAPTER IV 

CLIMATE-BASED METHODS 

Brief Survey 

Climate-based methods of shading device design are another category 

of methods, in addition to latitude-based methods, that have been 

developed to determine proper projection lengths of overhangs and other 

types of shading devices. Two problems inherent ~n the design of fixed 

shading devices that must be addressed when considering climatological 

data are: 

1. balancing winter insolation and summer shading, and 

2. striking a comprom1se between late summer shading and spring 

insolation. 

First, three methods that attempt to balance winter insolation and 

summer shading are presented, then four methods are presented that 

suggest ways to strike a compromise between late summer shading and 

spring insolation. 

Methods that Balance Summer Shading 

and Winter Insolation 

One difficulty 1n the design of fixed shading devices is the aspect 

of balancing winter insolation and summer shading. From Table XI it can 

be seen that the three methods presented 1n this section differ in 

76 



77 

TABLE XI 

COMPARISON OF CLIMATE-BASED METHODS THAT BALANCE WINTER 
INSOLATION AND SUMMER SHADING 

Means of Olgyay Shading 
ComEarison Effect Ratio Lau .Jones 

Place and date Princeton Atlanta Los Alamos 
of development 1957 1982 1981 

Resulting projection projection length projection length 
information length and gap height and gap height 

Applicable any south ·south 
orientation orientation only only 

Type of 
shading device all types overhangs overhangs 

Building character- Yes Yes 
istics considered? No (LCR, Tb) (LCR, COP) 

Temperature temperature temperature temperature 
and/or radiation and and and 

dependent? radiation radiation radiation 

Demarcation 70F Depends on Tset betwe·en 
temper a tur e Tb 65F and 75F 

Method graphical/ graphical/ charts/ 
format equation equation computer 

Notes: LCR = Load Collector Ratio 
Tb = Building balance point temperature 



method format, applicable orientations, resulting information, and types 

of shading devices considered. They also differ in whether or not 

building characteristics are taken into account. 

Olgyay Shading Effect Ratio Method 

In 1957, the Olgyay brothers developed a method to judge the yearly 

effectiveness of shading devices. As an introduction to their method, 

the following is pointed out: 

••• the effectiveness of a shading device depends on the 
proportionate success with which it covers a given surface 
during the overheated period without interception of the 
sun's energy (by a shading device) during underheated times. 
Therefore, the efficiency of a device should be judged on its 
yearly performance, and on the relative balance between its 
"shading performance" and "heating efficiency" (1, p. 64). 

The three most important factors of Olgyay' s method are: 

1. overheated shading perform-ance, S 
p 

2. yearly heat efficiency, H 
e 

3. shading effect ratio, S 
e 

The overheated shading performance (S ) is the percent of direct 
p 

radiation intercepted by a shading device during the overheated period, 

and is given by the following equation: 
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S = (S /R ) X 100% (4.1) 

where 

p 0 0 

S = the amount of direct radiation prevented from striking a 
0 

particular window during the overheated period, (Btu), and 

R = the amount of direct radiation striking the unshaded window 
0 

during the overheated period, (Btu). 



where 

The yearly heat efficiency (H ) lS gtven as: e 

H = [(S - S )I R ] X 100% e o u o 

S = the amount of direct radiation prevented from striking a u 

window during the underheated period (Btu). 

The shading effect ratio (S ) is one-half the sum of overheated e 

shading performance and yearly heat efficiency, as follows: 

S = (S + H )12 e p e 

Substituting Equations (4.1) and (4.2) into Equation (4.3) yields 

another form of the equation for shading effect ratio: 

s = (S I R - ~ S I R ) X 10 0 % e o o u o 

Built into Equation (4.4) is Olgyay's general assumption that 
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(4.2) 

(4.3) 

(4.4) 

"shading at overheated times is twice as important as heat gain during 

the underheated period" (1, p. 64). This assumption is based on the 

following intuitive statement: 

The importance of heat gain as opposed to "cooling" shade can 
be interpreted by different ratios. In fully air-conditioned 
buildings, according to the current heating-versus-cooling 
costs the ratio could be taken as one to five [cooling being 
five times as important as heating]. In certain cases, the 
ratio based on the economy of mechanical cooling is 
justified. But its seems that a more permanent yardstick 
would be established by relating their importance to human 
reactions, where a reasonable ratio would be one to two. (1, 
p. 64). 

By using Equations (4.1) through (4.4) with appropriate solar 

radiation data, S , H , and S can be found to evaluate shading p e e 
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devices of various lengths and configurations for any location or 

orientation, until a device with the highest shading effect ratio is 

determined. Figure 35 illustrates the results of calculations for an 

0 0 0 0 overhang with profile angles of 65 , 68 , 70 and 73.5 for the 

New York-New Jersey area. 

In determining direct solar radiation data to use m the 

calculations, Olgyay' s method also entails a series of steps using a 

sun-path diagram showing the overheated period for a given location, a 

shading mask protractor, and a direct radiation protractor (1). 

Lau Method 

Another approach to balancing winter insolation and summer shading, 

developed by Andrew Lau in 1982, roughly takes into account local 

climate and building balance point temperature* in determining 

recommended projection lengths of overhangs for south-facing windows on 

residential buildings (19, 23). 

According to Lau, the following equation determines a recommended 

overhang projection length (p): 

(4.5) 

where 

gH = separation height, 

L = latitude, and 

D = declination at mid-month of the latest underheated month u 

(late winter or early srping) for which complete insolation 

is desired. 
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It should be noted that Lau emphasizes the importance of allowing 

winter insolation; as a result, Equation (4.5) uses an underheated 

declination (D ) rather than an overheated declination, and separation u 

height (gH) rather than total height (tH). Equation (4.5), 

therefore, contrasts directly with Equation (3.5) which considers summer 

shading only. It should also be noted that if the separation height can 

be chosen, the designer is wise to make it as large as feasible to allow 

more summer shading. 

In determining the latest underheated month that complete 

insolation is desired, two factors must first be calculated or 

estimated: 

1. balance temperature*, T b, and 

2. load collector ratio*, LCR. 

The balance point temperature is the outdoor temperature below 

which heating is required and above which no heating is required. A 

building balance point temperature can be calculated using Equation 

(2.1) of Chapter IT. 

According to Lau, a building balance point temperature (or balance 

temperature) can be estimated according to the following: 

In practice, the balance temperature is only a couple of 
degrees below the thermostat setting for houses that are 
poorly insulated. Houses with good insulation and 
airtightness, however, may have balance temperatures 5-lOF 
below the thermostat setting. Super insulated houses can 
have balance temperatures over 20F below the thermostat 
setting (19, p. 36). 

Load collector ratio (LCR) is the ratio of the building load 

coefficient to the net south-facing window area, and may be calculated 

using the following equation: 

82 



where 

LCR = BLC/A 
c 

BLC =building load coefficient (Btu/°F day), and 

A = net south-facing window area (ft2). 
c 

(4. 7) 

An estimate for LCR is all that is needed in Lau's method, since 

only two LCR's are considered. 0 2 An LCR of 38 Btu/ F day ft 

corresponds to a residence with: 

1. large south window area (about 15-25 percent of floor area), 

83 

2. well-insulated roof and walls (R-19 to R-30 roof, R-11 to R-19 

walls), or "super-insulated" roofs and walls, and 

3. 0.5 to 0.75 air. changes per hour. 

0 2 An LCR of 96 Btu/ F day ft corresponds to a residence with: 

1. moderate south window area (about five to ten percent of floor 

area), 

2. well insulated roof and walls ·(R-19 to R-30 roof, R-11 to R-19 

walls), and 

3. 0.5 to 0.75 air changes per hour. 

Once a building's LCR and Tb are known, the latest winter month 

that complete insolation is desired can be determined from Figure 36 or 

37. 

The geographical limits to the regions of Figures 36 and 37 

correspond to calculations performed for 25 cities, with the following 

assumptions: 



BALANCE TEMPERATURE- 70 F BALANCE TEMPERATURE - 60 F 

~ -I I 
1111!1111111!11111 

LJ 

APRIL 

MARCH 

FEBRUARY 

JANUARY 

NONE BALANCE TEMPERATURE - 50 F 

Figure 36. Estimated Last Honth for vJhich Complete 
Insolat1on· is Desired for LCR = 96 Btu/°F 
day ft and Tb = 50, 60 or 70F (19) 

BALANCE TEMPERATURE - 70 F BALANCE TEMPERATURE - 60 F 

APRIL 

MARCH 

FEBRUARY 

JANUARY 

NONE 

Figure 37. 

BALANCE ,TEMPERATURE - SO F 

Estimated Last Honth for Hhich Complete 
Insolation is Desired for LCU = 38 Btu/°F 
day ft.2 and Tb = 50, 60 or 70F (19). 
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1. If the monthly auxiliary (conventional) heating* requirement of 

a house was less than 1,000,000 Btu, complete insolation of a 

window was considered unnecessary. 

2. The outer limits of the underheated period's length, centered 

on December 21 (winter solstice), was based on a window 

collecting 80 percent of its annual useful solar heat (or 

insolation). This useful solar heat gain was estimated for 

various conditions and locations with the monthly solar load 

ratio (SLR) method for a direct-gain system (19). 

Having determined the last month for which complete insolation is 

desired, the declination value for use in Equation (4.5) is found from 

the following table of declinations of a recommended average day* for 

each month (22). 

Jones M ethod 

In 1981, R. W. Jones of Los Alamos National Laboratory developed 

another approach for balancing winter insolation and summer shading. 

His method specifically determines the projection length and separation 

height for overhangs on south-facing glazing. At the time of its 

publication, it was limited to passive solar homes having water wall 

construction (28). 

Figure 38 shows an example of the results of Jones' method. The 

contours are lines of equal energy saV1ngs. The values of the contours 

are relative annual energy savings (6. Q ') calculated from Equation (4.8) 

in units of 1000 Btu per ft2 of glazing. 

f>Q' = f>Q + f>Q /COP h c 

85 

(4.8) 



TABLE XII 

DECLINATION VALUES OF RECOMMENDED AVERAGE DAYS* 

Month 

January 

February 

March 

April 

0 
0 

Average Day 

Charleston, SC 
Water Waif 

LCR = 19.0 Btu/°F day ft1 

COP: 3-0 

0.2 0.4 

17th 

16th 

16th 

15th 

0.6 
Overhang Ratio I p I 

Declination 

-20.90 

-13.0° 

- 2.4° 

+ 9.4 
0 

J 

0.8 1.0 

Figure 38. Curves of Equal Relative Annual Energy 
Savings (1000 Btu/ft. 2) Achieved by 
South-Facing Overhang of Various Over
hang and Separatio~ Height Ratios (28) 
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where 

L1Qh = heating load without an overhang less the heating load with 

an overhang (1000 Btu/ft 2) 

L1Q = cooling load without an overhang less the cooling load with c 

an overhang ( 1000 Btu/ft2) 

COP = coefficient of performance of the cooling system relative 

the auxiliary heating system*. 

L1Qh is negative since an overhang interferes with passive solar 

heating, and L1Q is positive sine~ an overhang reduces solar gain, so c 

that Equation (4.8) becomes an algebraic expression of the trade-off 

between winter insolation and summer shading. 

In general terms, the relative COP, is the "cost" of heating 

relative to cooling and is a parametric expression of the relative 

to 

importance of heating and cooling in the design solution. For example, 

the relative COP could be regarded as the cost of heating relative to 

cooling in terms of one or more of the following: 

1. pr~mary, volumetric fuel consumption, 

2. dollar cost of fuel(s) consumed, and/or 

3. subjective measures of the desired design balance such as the 

inconvenience or discomfort of underheating relative to 

undercooling. 

Figure 38 is for a particular city, type of passive system, LCR, 

and COP; and is a summary of 26 annual energy savings calculations of 

L1Q' as a function of overhang and separation ratios* from zero to one. 

(Recall Equations (3.17) and (3.18) for overhang and separation ratio 

definitions). To develop Figure 38, and to calculate the relative 
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~ energy savings (~Q') as a function of overhang ratios (p), separation 

~ ratios (g), LCR, and COP, an hour-by-hour computer simulation was 

performed using Typical Meteorological Year (TMY) data for Charleston. 

The characteristics and assumptions of the simulation model include the 

following: 

1. Heating and cooling thermostat set-points are 65F and 75F 

respectively. 

2. Heating and cooling loads are calculated as the auxiliary 

energy flows required to maintain the space temperature between 

the thermostat set-points. 

3. Solar gains through a south-facing (or equatorial-facing) 

double-glazed windows are taken into account. 

4. Incident solar radiation is calculated from TMY's total 

horizontal and direct normal solar radiation data assuming 

isotropic diffuse sky radiation and a ground reflectance of 

0.3. 

5. Heat losses through the glazing system are calculated tn 

detail. 

6. Conduction and infiltration gatns and losses through nonsolar 

parts of the building envelope are calculated in terms of a 

single building load coefficient (BLC). 

7. There are no internal sources. 

From Figure 38, two features of overhang performance are evident 

for a building in Charleston, South Carolina, having water wall passive 

0 2 solar construction, an LCR of 19 Btu/ F day ft , and a relative COP 

of 3.0: 



1. It is possible for overhangs to yield an energy penalty 

(negative <'1Q'). For example, it can be seen from Figure 38 

that an overhang ratio of 0.8 and separation ratio of 0.0 

(i.e., no separation height between the top of a window and the 

bottom of the overhang) yields a relative annual energy 

"savings" of -7.0 X 103 Btu/ft2• 

2. There lS a broad reg~on of relative values of overhang and 

separation ratio pairs where maximum energy savmgs occur 

within the limits of the chart. From Figure 38, the 

recommended overhang ratios are between 0.6 and 1.0 with 

corresponding separation ratios of 0.5 to 1.0 to yield a 

relative annual energy savings of 3.0 X 103 Btu/ft 2• 

Methods That Consider Only Summer Shading 
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Not all climate-based methods attempt to balance winter insolation 

and summer shading. Instead, some climate-based methods consider only 

the overheated period during summer months. Overheated periods* are 

asymmetrical about the summer solstice while the sun's path is 

symmetrical about the summer solstice*. The shift of symmetry of the 

overheated period creates a problem for fixed shading devices: shading 

in late summer when shading is desired necessarily implies shading in 

the spring when shading is not desired. Therefore, a compromise must be 

made between spring insolation and late summer shading. This section 

exam~nes how four climate-based methods deal with the problem of 

striking a comprom~se between late summer shading and spr~ng insolation. 

Table XIII compares each of the four methods and serves as a means of 

introduction to methods by Olgyay, Novell, Saleh, and Shaviv. 



TABLE XIII 

COMPARISON OF CLIMATE-BASED METHODS THAT CONSIDER 
SUMMER SHADING ONLY 

Means of Olgyay Shading 
ComEarison Mask Novell Saleh Shaviv 

Place and date Princeton Alabama AustiTalia Israel 
of development 1957 1981 1979 1975 

Resulting projection projection theoretical theoretical 
information length length outline outline 

Applicable any any any any 
orientation orientation orientation orientation orientation 

Type of overhang and 
shading device all types all types frame-type all types 

Building charac-
teristics considered? No No- No No 

Temperature 
temperature and/or radiation temperature temperature temperature 

and radiation dependent? 

DP.t:J.arcation 
dependent on temperature 70F 70F 70F 
insolation 

Method equidistant sun- orthographic sun- shadow computer/ 
format path diagram path diagram chart graphical 

1.0 
0 
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Olgyay Shading Mask Method 

In the last section, Olgyay's Shading Effect Ratio Method was 

presented that dealt with balancing winter insolation and summer shading 

by using efficiency equations. If a designer does not wish to enter 

into Olgyay's yearly efficiency equations, a rule-of-thumb concerned 

with the coverage of shading masks* on a sun-path diagram showing an 

overheated period is given by Olgyay: 

••• if the 50 percent border of a shading mask covers the 
outer perimeter of the indicated overheated period, the 
shading device will be effective (1, pp. 79-80). 

To clarify this statement, a shading mask is the area on a sun-path 

diagram where shading occurs due to a particular type of shading device. 

As shown in Figure 39, horizontal devices create arcual masks, vertical 

devices create radial masks, and eggcrate devices create combination 

masks. The 100 percent border of a shading mask bounds the area on a 

sun-path diagram where the full height of a window is completely shaded. 

The 50 percent border of a shading mask bounds the area on a sun-path 

diagram where at least 50 percent (typically the top half) of a window 

is completely shaded. Figure 40 shows the 50 and 100 percent borders of 

a typical shading mask with corresponding profile angles. 

Since a single arcual line on a sun-path diagram represents the 

path of the sun on a pair of conjugate dates*, the overheated period ~s 

divided into a "full-time overheated period*", where shading is needed 

on both conjugate dates, and a "half-to-full-time overheated period*", 

where at least one of the two conjugate dates requires shading. It is 

in this "half-to-full-time overheated period" that a compromise must be 
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Arcual Radial Combination 

Figure 39. Derivation of Shading Masks (29) 
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Figure 40. Relationship Between an Overhang and 50 and 100 
Percent Shading Masks 
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made between shading in late summer or allowing insolation in spring. 

An overheated period, determined from climatological data and defined as 

the times of the year when shading is needed (or when outside 

temperatures are above the building balance point temperature), can be 

transferred to a sun-path diagram. Olgyay assumes shading is needed 

when outside temperatures are greater than 70F, which is considerably 

greater than most building balance point temperatures. 

Assuming Olgyay meant both the half-to-full-time period and the 

full-time overheated period, when referring to an overheated period in 

his statement above, Olgyay's statement could be reworded to say that as 

a rule-of-thumb, a shading device is effective if it shades at least 

half (typically the top half) of a window during both the 

half-to-full-time and full-time overheated periods. An example of such 

a device for an arbitrary situation is shown in Figure 41. 

Novell Method 

Bruce Novell's approach to designing shading devices is very 

similar to Olgyay's approach in the Shading Mask Method (30). Novell's 

method also involves shading masks covering a sun-path diagram showing 

an overheated period. The differences between the two methods are that 

Novell transfers overheated periods to an orthographic sun-path diagram 

called a "cylindrical sun chart" (such as the chart shown in Figure 42), 

rather than to the equidistant sun-path diagram used by Olgyay (Figure 

43), and that Novell recommends shading an entire window during all of 

the full-time overheated period, rather than shading at least half of a 

window during both the half-to-full-time and full-time overheated 

periods. Novell assumes shading is needed when outside temperatures are 



FULL-TIME OVERHEATED~ 

PERIOD 

HALF- TO- FULL- TIME 

OVERHEATED PERiOD 

Figure 41. An Example of Olgyay's Rule-of-Thumb for Shading 
Hasks Covering an Overheated_ Period on a Sun
Path Diagram 
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greater than 70F. Figure 44 illustrates an example of Novell's 

rule-of-thumb for compromising spring insolation and late summer 

shading. The figure shows an equidistant sun-path diagram for 

comparison with Olgyay's rule-of-thumb. 

Saleh Method 
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Rather than plotting an overheated period on a sun-path diagram, 

Saleh plots an overheated period on a "shadow chart" (also known as a 

Kuwait Sunshade Calculator), like the chart shown in Figure 45 for 

Marseille, France. (32). A plotted overheated period is called a "shadow 

template" and is used directly in finding the exact theoretical outline 

of an overhang or frame-type shading device. Figure 46 shows an example 

of a shadow template for Sydney, Australia where the overheated period 

occurs during "winter" months and the sun primarily strikes north 

exposures. Figure 47 illustrates the direct application of the shadow 

template in forming a theoretical outline of an overhang. 

Saleh's shading devices are designed to shade an entire window for 

both the half-to-full-time overheated period and the full-time 

overheated period, using approximately 70F as the demarcation 

temperature between the overheated and underheated periods. 

Shaviv Model 

The last climate-based method that considers primarily summer 

shading takes a quite different approach from the others presented Ln 

this section. Shaviv's computer-based method generates a series of 

shading solutions to satisfy a prescribed set of shading needs (13). 



FULL- TIME OVERHEATED ---...;ee~<2 
PERIOD 

Figure 44. Example of Novell's Rule-of-Thumb for Shading 
Masks Covering the Full-Time Overheated 
Period on a Sun-Path Diagram 
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Figure 47. Theoretical Outline of an Overhang from 
a Shadow Template (32) 
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Figure 48. Division of a lilindow into a 
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The first step of Shaviv's method divides a window in a fine mesh 

(Figure 48). A "pole" of length L is imagined to be located 

perpendicular to the wall at each mesh point. The length of L ~s 

calculated in such a way as to cast a shadow sufficiently long to reach 

the frame of a window for all hours of the checking period*. The 

checking period primarily depends on local temperatures, but ~s also 

dependent on the amount of direct radiation that would strike a window, 

and on the time of day that the building ~s being used. Therefore, the 

length of a checking period is less than or equal to the length of an 

overheated period. 

The distribution of L in the field of a window forms a nomogram 

from which a series of axonometric schemes (theoretical outlines) are 

presented (Figure 49). An architect then uses the theoretical outlines 

as a basis for his shading design. 

Further _Comparisons 

Working through an example problem to compare results LS unfeasible 

due to the various scopes of the methods discussed in this chapter. For 

example, Jones' method may be applied only to buildings having water 

wall construction and finds a broad range of recommended projection 

lengths and separation heights for an overhang; Saleh's method requires 

a "shadow chart" and finds the theoretical outline of an overhang that 

has several projection lengths (Figure 47); and Shaviv's method requires 

a computer program and finds a range of different types of shading 

devices. 

The basis for balancing summer shading and winter insolation varLes 

considerably between the methods by Olgyay, Jones, and Lau: 
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1. Olgyay's Shading Effect Ratio method sums yearly radiation 

quantities and intuitively sets summer shading twice as 

important as winter insolation. 
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2. Jones' method develops a series of equal relative energy 

savings contours as a function of overhang and separation 

ratios. The contours are based on a particular type of passive 

solar building construction, and form a "plateau" suggesting a 

broad region of maximum energy sav1ngs for several combinations 

of overhang projection lengths and separation heights. 

3. Lau' s method determ-ines the latest underheated month for a 

particular location, and recommends an overhang projection 

length on the basis of the separation height that allows 

insolation for underheated months. 

The basis for balancing late summer shading and spring insolation 

also varies considerably. Table XIV summar1zes the recommendations of 

the four methods that consider only summer shading. For clarification, 

shading during both the "half-to-full-time" and "full-time" overheated 

periods generally means shading during both the spring and late summer, 

while shading only during the "full-time" overheated period generally 

means allowing insolation in both spring and late summer. 



TABLE XIV 

SHADING RECOMMENDATIONS OF CLIMATE-BASED METHODS THAT CONSIDER SUMMER SHADING ONLY 

Method 

Olgyay Shading 
Mask Method 

Nov-elL Method 

Saleh Method 

Shaviv Method 

Percentage of Window in Shade 

Shade at least 
50 percent of window 

X 

Shade 100 
percent of window 

X 

X 

X 

Duration of Shading Period 

Shade during both 
half-to-full-time 

and full-time 
overheated periods 

X 

X 

Note 1 

Shade 
only during 
full-time 

overheated period 

X 

Note 1: Shaviv's method recommends shading for the duration of the "checking periol:i" for a particular 
location, which is less' than or equal to the duration of the overheated period. 

...... 
0 
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CHAPTER V 

PROPOSED ANNUAL nT-EFFECTIVENESS METHOD 

Having presented in Chapter II the factors involved with the 

proper selection of various fixed, exterior shading devices, a method 

of evaluating the annual effectiveness* of shading device~ is now 

presented to further aid in the proper selection and sizing of shading 

devices. Many of the factors involved in the selection of shading 

devices are subjective and difficult to quantify, such as disruption of 

visibility, daylighting impact, and weatherability. The method 

presented in this chapter uses nT (the difference between outside 

temperature and building balance point temperature) to quantitatively 

evaluate the effectiveness of a shading device, and incorporates 

certain components of the methods presented ~n Chapters III and IV. 

General Description and Rationale 

The proposed annual nT-Effectiveness method takes into account: 

1. latitude, 

2. window height, wH, 

3. separation height, gH, 

4. estimated hourly temperatures on the 1st, 11th and 21st day of 

each month, 
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5. building balance point temperature, Tb' 

6. sunrise and sunset times, 

7. surrounding obstructions, 

8. orientation, 

9. summer and winter balance factor, n, and 

10. partial shading*. 

Latitude is taken into account because the solar altitude angles 

of the sun vary with latitude; as latitude increases, the solar 

altitude angles of the sun decrease. Both window height and separation 

height are considered because a device's effectiveness in shading is 

related to window height, while effectiveness in allowing insolation is 

related to separation height. By us1ng estimated outside temperatures 

for both summer and winter, times of shading and insolation needs are 

determined. A building balance point temperature is used rather than 

70F (70F is a common demarcation temperature among the methods 

presented in Chapter IV) to take into account internal heat gains and a 

building's insulative quality. Sunrise and sunset times, surrounding 

obstructions, and orientation are taken into account because the method 

evaluates the effectiveness of a device when the sun is above the 

horizon, not blocked by surrounding buildings, and behind the wall of 

the window to be shaded. A summer and winter balance factor, n, which 

varies with location is used as a quantitative expression of the 

relative importance of shading in the summer versus allowing insolation 

in the winter. Partial shading in the form of incremental shading 

masks is considered because a device that shades part of a window 

should be evaluated as more effective than a device that shades none of 

a window. 
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It should be noted that there are several ways to define the 

effectiveness of a shading device. The key is ~n choosing some means 

of quantitatively measur~ng effectiveness so that comparisons between 

shading devices can be made. By using 6T's (the difference between 

outside temperature and building balance point temperature) rather than 

time, the effectiveness of a device is weighted in proportion to the 

magnitude of 6T's. In other words, if a device shades for two of three 

hours that shading is needed, its hourly effectiveness is 2/3 = 0.67, 

or 67 percent. However, if the sum of the 6T's for the three hours 

that shading is desired is 20 + 20 + 5 = 45 and a shading device shades 

for the two hours having 6T's of 20F, then its 6T-effectiveness is (20 

+ 20 + 0)/49 = 0.89, or 89 percent. 

Two possible ways of defining effectiveness that relate to the 

total heat transmission through glass are 6T and direct radiation. 

Total heat transmission through glass is the sum of conduction heat 

gain and solar heat gain. Direct radiation relates to solar heat gain 

and 6T relates to conduction heat gain. The major reason for choosing 

6T as a measure of effectiveness rather than direct radiation ~s that 

by plotting 6T's on a timetable for both overheated and underheated 

periods, as shown later in Figures 54 and 55, one can see the relative 

importance of shading versus allowing insolation for a pair of 

conjugate dates* by comparing 6T's. For example, on September 21 at 

noon in Oklahoma City, the estimated outside temperature is 20F above 

the balance point temperature of 60F (i.e., 6T = 20F). On March 21 

(the conjugate date of September 21) at noon, the estimated outside 

temperature is SF below the balance point temperature of 60F. In such 

a case, if a fixed, exterior shading device is to be used, and if 
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summer shading ~s considered more important than winter insolation, one 

would probably choose to shade on this particular pair of conjugate 

dates since the conduction heat gain on September 21 is greater than 

the conduction heat loss on March 21. If, on the other hand, direct 

radiation were used as a measure of effectiveness and plotted on a 

timetable, the solar heat gain through a window due to direct radiation 

would be the same (since the sun's incidence angle are the same) for 

both March 21 and September 21. Because direct radiation striking a 

vertical, south-facing window at noon on March 21 and September 21 ~s 

equivalent, one would not know whether to shade or allow insolation on 

this particular pair of conjugate dates. 

A method that considers both 6T and direct radiation as measures 

of effectiveness would relate more closely to total heat transmission 

through a window than 6T or direct radiation alone, but would not help 

more than a method that considers only 6T in deciding whether to shade 

or allow insolation on a pair of conjugate dates. 

Another reason for choosing 6T as a measure of effectiveness 

rather than direct radiation, is that the summer and winter balance 

factor, n, is related to the sum of overheated and underheated 6T's. 

If, for a certain location, the sum of the underheated 6T's is much 

lower than the sum of the overheated 6T's, then shading in the summer 

would be considered more important than allowing insolation in the 

winter; thus n would be adjusted to indicate the imbalance between 

summer shading and winter insolation. Further explanation of n is 

found in Step Seven of the next section. 

The steps involved in determining the 6T-Effectiveness of a 

shading device, detailed in the next section, are: 
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1. construct an incremental shading mask* on a sun-path diagram, 

2. transfer the incremental shading mask to a timetable, 

3. estimate hourly temperatures, 

4. determine overheated and underheated periods based on Tb' 

5. plot overheated and underheated ~T's on a timetable, 

6. calculate overheated and underheated ~T-effectiveness, and 

7. calculate annual ~T-effectiveness. 

The rationale for· each of the above steps is presented in the next 

section as the step-by-step procedure is presented Ln detail. 

Detailed Step-by-Step Procedure 

The following LS a step-by-step procedure detailing the steps 

taken to determine the annual ~T-effectiveness of a shading device. 

These steps are applied to the example in the next section for 

clarification. 

Step One: Construct an Incremental 

Shading Mask on ~ Sun-Path Diagram 

A shading mask represents the area on a sun-path diagram where 

shading of all or part of a window occurs, due to a particular shading 

device. When applied to the ~T-Effectiveness method, a shading mask* 

with incremental device-lines* is bounded by: 

1. wall-line borders* (due to shading caused by the wall 

containing the window), 

2. solstice-line borders* (due to summer and winter solstice), 

3. horizon-line borders* (due to the rising or the setting of the 

sun), and 
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4. sky-line borders* (due to shading by surrounding objects). 

Referring back to Figure 39, it can be seen that device-lines on 

equidistant sun-path diagrams are arcual for horizontal shading 

devices, radial for vertical devices, and both arcual and radial for 

eggcrate devices. Device-lines for horizontal shading devices are 

determined by profile angles*, while device-lines for vertical shading 

devices are determined by surface-solar azimuth angles*. A 100 percent 

device-line of a shading mask bounds the area on a sun-path diagram 

where the full height (100 percent) of a window is completely shaded. 

A 50 percent device-line of a shading mask bounds the area on a 

sun-path diagram where at least 50 percent (typically the top half) of 

a window is completely shaded. Therefore, an incremental shading mask 

having device-lines of ten percent increments indicates areas on a 

sun-path diagram where zero percent, ten percent, 20 percent ••• and so 

on to 100 percent of a window is completely shaded. 

Figure 50 shows an incremental shading mask with incremental 

device-lines bounded by two wall-line borders, two solstice-line 

borders, and two horizon-line borders. It is assumed in the example 

shown that there are no surrounding obstructions, so the shading mask 

~s not bounded by a sky-line border. The actual location and curvature 

of device-lines are determined by profile angles. 

Step Two: Transfer Incremental Shading 

Mask to Timetable 

A timetable linearly represents the paths of the sun for each 

daytime hour on the 1st, 11th and 21st of each month of the year. A 

timetable with an incremental shading mask is shown in Figure 51. A 
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blank timetable is shown 1n Appendix C, Figure 60. The purpose of 

transferring the shading mask from a sun-path diagram to a timetable 1s 

to allow space for plotting 6T's in Step Five. 

From Figure 51, four distinct areas are formed by the borders of 

the shading mask: 

1. complete shade* area, 

2. complete insolation* area, 

3. partial shade* area, and 

4. non-considered area. 

Step Three: Estimate Hourly 

Temperatures 

Having determined the incremental shading mask for a selected 

shading device, approximate hourly temperatures are determined for the 

areas within the shading mask borders. Using the form in Appendix C, 

Figure 61, approximate hourly temperatures are found by first finding 

average maximum and minimum temperatures for the 1st, 11th and 21st of 

each month. By subtracting the minimum temperature from the maximum 

temperature, the average daily temperature range is found. By 

multiplying the daily range by an S-Factor (the fraction of daily range 

for a specific hour), and adding the product to the date's minimum 

temperature, the approximate hourly temperatures are found: 

where 

T = T • + S(R) m1n (5.1) 



T = approximate hourly temperature, 

T . = minimum temperature, mLn 

S = S-Factor; fraction of daily range, and 

R = daily range. 

S-Factors are determined from Figure 52, assumLng the highest 
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temperature of the day to be at 2:00 p.m. and the lowest temperature of 

the day to be at 6:00 a.m. (30). Figure 53 shows a completed form for 

Oklahoma City. 

It should be noted that the values of Figure 53 relate to a 

residence in Oklahoma City with continual occupancy, so apparent solar 

time can be used directly. However, if the calculations were done for 

a building with set operation starting and closing times, apparent 

solar time (AST) would need to be converted to local standard time 

(LST) us1ng Equation (5.2) (3). 

LST = AST - ET - 4(LSM - LON) (5.2) 

where 

ET = equation of time, minutes of time, 

LSM = local standard time meridian, degrees of arc, 

LON = local longitude, degrees of arc, and 

4 =minutes of time required for 1.0 degree rotation of earth. 

If daylight savings time is applied, then one hour should be added to 

LST during summer months. 
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Step Four: Determine Overheated and 

Underheated Periods Based ~ !b 

By us1ng Equation (2.1), building balance point temperature* is 

determined, which is used as the demarcation temperature between the 

overheated period, when shading is desired, and the underheated period, 

when insolation is desired. 

Step Five: Plot Overheated and Underheated 

~T's on Timetable 

Figures 54 and 55 show overheated and underheated temperature 

differences on two separate timetables. An overheated temperature 

difference (~T ) is determined by subtracting the building balance 
0 ' 

point temperature (Tb) from h~~rly temperatures (T) greater than 

An underheated temperature difference (~T ) is determined by 
u 

subtracting hourly temperatures (T) less than Tb from the building 

balance point temperature (Tb). 

Equations (5.3) and (5.4). 

~T = T - T 
0 b 

~T and ~T are found using 
0 u 

(5.3) 

(5.4) 

Because the date line is the same for a pair of conjugate dates, two 

~T's may be·plotted at one point, indicating that shading or insolation 

is desired for both conjugate dates at that point. 
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Step Six: Calculate Overheated and 

Underheated 6T-Effectiveness 

To calculate the overheated 6T-effectiveness (s ) of a shading 
0 

device, Equation (5.5) is used: 
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s 
0 

= (5.5) 

where 

LT k = sum of the differences between all overheated 
0 

temperatures and the balance point temperature, multiplied 

by the fraction of a window in shade, (k), related to each 

overheated temperature. 

LT = sum of the differences between all overheated 
0 

temperatures and the balance point temperature. 

To calculate the underheated 6T-effectiveness (s ) of a shading 
u 

device, Equation (5.6) is used: 

s = L (6 T ( 1 - k)) I L (6 T ) (5.6) u u u 

where 

L~T (1- k)) =sum of the differences between all underheated u 

temperatures and the balance point temperature, 

multiplied by the fraction of a window in sun, 

(1 - k), related to each underheated temperature.' 

L(6T) =sum of the differences between all underheated u 

temperatures and the balance point temperature. 
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Step Seven: Calculate Annual 6T-Effectiveness 

To calculate the annual 6T-Effectiveness (E) of a shading device, 

Equation (5.7) is used: 

E = [s + n(s )]/(1 + n) 
0 u (5.7) 

where 

n = weighting factor to balance the importance of summer shading 

and winter insolation. 

The value of n varies according to the location of the building, 

since the importance of summer shading related to winter insolation 

depends on one or more of.the following (suggested by Jones): 

I. fuel consumption in summer versus winter, 

2. dollar cost of fuel(s) consumed, and 

3. subjective measures of the desired balance, such as the 

inconvenience or discomfort of underheating relative to 

undercooling (28). 

If Olgyay's general assumption that "shading at overheated times 

1s twice as important as heat gain during the underheated period" is 

applied to Equation (5.7), then= 0.5 (1, p. 64). However, n changes 

according to the above factors and, as a general guide, if n = 1.0, the 

importance of summer shading is the same as winter insolation. If n)1, 

winter insolation 1s more important than summer shading. If n<1, 

winter insolation 1s less important than summer shading. Determination 

of exact values of n are beyond the scope of this study, and worthy of 

future research. 
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Because exact values of n are not well established, the annual 

6T-effectiveness of shading devices in different geographical locations 

cannot be compared. However, comparisons can be made of 

6T-effectiveness for shading devices in the same location, s1nce n 

remains constant. 

Example Problem 

To illustrate the use of the 6T-effectiveness method, an example 

p~oblem of an overhang over a south-facing window for a house in 

Oklahoma City, Oklahoma (35°20' N. latitude) is presented. The 

overhang has a projection length of 2.50 ft. (p = 2.50) and is 1.33 ft. 

above a 3.50 ft. window. The overhang dimensions are chosen using the 

rule-of-thumb by the Small Homes Council of the University of Illinois 

(6). It is assumed that the overhang extends well past the sides of 

the window, and that no surrounding buildings or objects obstruct the 

sun's direct rays from striking the window. The house balance point 

temperature is assumed to be 60F. Determine the overheated, 

underheated and annual 6T-effectiveness of the shading device. 

Step One: Construct an Incremental 

Shading Mask ~ ~ Sun-Path Diagram 

To plot the device-lines of an incremental shading mask for 

horizontal shading devices, the profile angle between the sun and the 

window is determined for the window 100 percent shaded (k = 1.0), 90 

percent shaded (k = 0.9), ••• and so on to zero percent shaded 

(k = 0.0), by using Equation (3.2) and dimensions from Figure 56. For 
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Figure 56. Dimensions and Profile Angles for 
Example Problem 
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clarity, only the 100 percent and zero percent device-lines are fully 

plotted on Figure 50. The device-lines from k = 0.1 to 0.9 are shown 

only as dashes on the noon hour-line. 

By referring to Figure 50, it can be seen that the solstice-line 

borders extend from 10:20 a.m. to 1:20 p.m. on December 21, and from 

8:20 a.m. to 3:40 p.m. on June 21. Wall-line borders extend linearly 

from 6:00 a.m. on March 21 to 8:20 a.m. on June 21, and from 3:40 p.m. 

on June 21 to 6:00 p.m. on March 21. Horizon-line borders extend from 

6:00 a.m. on March 21 to 8:15 a.m. on December 21, and from 4:45 p.m. 

on December 21 to 6:00 p.m. on March 21. Since it ~s assumed that no 

buildings or objects obstruct the sun's rays from the window, the 

horizon-line borders are equivalent to the sky-line borders. Had there 

been surrounding buildings or other objects obstructing the sun's rays, 

the procedure outlined by Mazria in determining the sky-line of a 

location would have been applied (7). 

Step Two: Transfer Incremental Shading 

Mask to Timetable 

Figure 51 shows the incremental shading mask for the shading 

device on a timetable. Figure 51 is used to determine the k-factors 

that affect the ~T's of Step Five. 

Step Three: Estimate Hourly 

Temperatures 

From climatological data in reference (6) for Oklahoma City, the 

minimum and maximum temperatures for the 21st of each month are 
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recorded in the top two rows of Figure 53. T and T . for the max m~n 

1st and 11th of each month are interpolated. Many sources provide 

climatological data; if TMY data is used, hourly temperatures would not 

need to be estimated by the procedure outlined in this step; however, 

most sources of climatological data that are readily available to 

designers provide temperatures on a monthly basis and approximate 

hourly temperatures must be estimated. The hours that are not included 

in the estimates are the hours during the year that the sun is either 

below the horizon or behind the wall of the window to be shaded. 

As an example, T = 87F and T . = 66F on June 11, max m~n 

therefore, R = 87- 66 = 21F. From Equation (5.1), T = 66 + (.315)(21) 

which is 73F (circled in Figure 53). 

Step Four: Determine Overheated and 

Underheated Periods Based ~ !b 

For this problem, the building balance point temperature is 

assumed to be 60F, and serves as the demarcation temperature for which 

the overheated and underheated LT's are divided in Figure 53 (bold 

line). 

Step Five: Plot Overheated and Underheated 

LT's ~Timetable 

By using Equation (5.3), the difference between approximate hourly 

overheated temperature and the balance point temperature of 60F ~s 

calculated for the overheated period and plotted by the correct date 

and hour of Figure 54. For example, the overheated temperature of 73F 
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at 9:00 a.m. on June 11 (circled on Figure 53) is 13F above the balance 

temperature of 60F. Therefore, 13F is plotted just below and to the 

right of the intersection of the date and hour lines for June 11 at 

9:00 a.m. (circled on Figure 54). It should be noted that since June 1 

and June 11 are conjugate dates, the date-line for each is the same, so 

the ~T of 16F located just above the ~T of 13F (circled) represents the 

temperature difference plotted for J'une 1 at 9:00 a.m. In a similar 

manner, using Equation (5.4), the underheated ~T's are plotted on a 

separate timetable (Figure 55). 

Step Six: Calculate Overheated and 

Underheated ~T-Effectiveness 

Summing ~T 's plotted on Figure 54 yields: 
0 

L(~T ) = 3501F 
0 

To determine L(~T k), each ~T of Figure 54 is multiplied by the 
0 

corresponding k-factor from the shading mask of Figure 51. All of the 

~r 'sin the "complete shade area" are unchanged since k = 1.0. (If 
0 

all ~T 's were in the "complete shade area", the overheated 
0 

~r-effectiveness (E) would be 100 percent). The ~T 'sin the 
0 0 

"partial shade area" are multiplied by the k-factors of Figure 51. For 

example, on September 21 at 12 noon, ~T = 20, which ~s multiplied by 
0 

a k-factor of 0.6 to yield 7.2F. The LlT's in the "complete insolation 

area" are reduced to zero since each is multiplied by k = 0.0. 

Summing LlT k's yields: 
0 

L( ~T k) = 2722F 
0 



Using Equation (5.5), the overheated 6T-effectiveness (E ) is 
0 

found to be: 

~(6T k)/ ~(6T) = 2722/3501 = 0.78, or 78 percent. 
0 0 

In a similar manner, the underheated 6T-effectiveness (E ) is 
u 

determined using 6T 's from Figure 55 and (1- k) instead of k from 
u 

Figure 51. From Equation (5.6): 

~(6T (1 - k))/~(6T ) = 1953/2237 = 0.87, or 87 percent. u u 

Step Seven: Calculate Annual 6T-Effectiveness 

From Equation (5.7), and E and E determined ~n Step Six, the 
0 u 
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annual 6T-effectiveness for the overhang shown ~n Figure 56 is found. 

Arbitrarily using Olgyay's value of 0.5 for n: 

E = [0.78 + (0.5)(0.87)]/(1 + 0.5) = 0.81, or 81 percent. 

If, however, a value of 1.0 for n is ·used, then the results would be: 

E = [0.78 + (1.0)(0.87)]/(1 + 1.0) = 0.83, or 83 percent. 

Comparison of 6T-Effectiveness Method for 

Various Devices 

Knowing E , E and E for a shading device is most valuable 
0 u 

when compared with similar values for other shading devices for the 

same window. Table XV compares the results of the example problem (for 

n = 0.5) to the results for an overhang with p = 2.5 ft. and gH = 0, 

and for no shading device (wall depth to window plane is assumed equal 

to 0.38 ft.). Shading masks for these two additional shading schemes 

are shown in Figures 57 and 58. 



TABLE XV 

COMPARISON OF ~I-EFFECTIVENESS RESULTS FOR VARIOUS 
SHADING DEVICES OF EXAMPLE PROBLEM 

Type of Device e: e: 
0 u 

Overhang with p = 2.50 ft. .78 .87 
and ~ = 1.33 ft. 

Overhang with p = 2.50 ft. .95 .63 
and g = 

H 
0. 

No shading device; assume wall . 29 .98 
depth to window plane = 0.38 ft. 
(4.5 in.) 
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.81 

.84 

.52 



14am 
2.1 11 DEC ll NOV II ~-I OCT II 2.t SEP-·1\ 21 AUG \1 2.1 JUL 11 JUN 1.! ... - --·=r=· -- -- - -

Sam !---·----- -----l 
! 

Gam - - --· ---· 
~ 

--;.,. ---0.0 :;:;.....-:_ ~ ...... --7am --t:::== r:---- ,.-/ ~I r----- ~ "--flam ---- --·· ---~ / ~ Vfll ----~am -

_...--~ v /; I lOam 0.4 
. -----~ ~ / /, VI - ~ I 

Ham - --- ---------- r--------/ / v /. I 
I I llpm 
\ ~,6 \ 

--- -
0.8 \ 1.0 

i \pm ·- ------ ~ "' \ \ \ r-- r-- ~ 2pm r-.. --- -- ,.---- --oA' r--- ----1'--."""' """~' \ \ 3pm - r--.. -----r-- ~ ~~\\ t::-- -4pm --:::.: ----- ..• - - - ------- ----··-r---·--- --··----- ~ ~ ~~\ ------ ---::: ---== 5pm 
o:O --~ :--- ~-~ 

---·-· :.-- ------------::::::::=::: ------~ 
Solid Overhang 'pm ---- ---- -- - . --·- -- --·--- --·-·---------- -------
-2 s' - o' p- • I gH-

7prn --r-------- -- -- -----·- - ------ '---·-- ------ 1-------- Oklahoma City - 36° N. 
South -- Facing 

8pm - - - -- - -
2.1 DEC II JAN 2.1 II FEB 1.1 II MAR 2.! 11 APR 2.t 11 MAY t.f JUN II 1.1 ---··- ------------

Figure 57. Timetable Hith Incremental Shading Nask for a: Solid Overhang (p 2 . 5 ft. and gH 0 ft.) 

...... 
w 
0 



H DEC I I :Z.t + 

Samll I I -+ 

Gam ~----

_, 2, -acr-~
-r===--===='' 

I 

7am~ ~ b--===* ~~t==---+----~ 
flam 

"am 11--- ~-------

lOam II I --+-

11am 

1pm ----+----1f------t----·---· ----·---- ... -· 

'pm ~ 

3pmH -l 

:::E I I J~L L~ 
wpm 

7pmll I I 

---- --~ Aua·-u·---:] --;~-mr-1-,-- 1 JuN 'Ltl 
-=~,.==~~-=--==-==>=·=:-=-- ==r= - 't 

~~ Shadin_!L Device 

--- -- ~ -··- ---- 1---- ----
South-Facing J l:klahoma City - 36" N. 

Bpm tifoec 1. ~~ JA~· i1·:::J- ··· ·=tt· !~~ ·Ji-- ----~- 111 M~~-11 -~=1.:_.~_:_--ir~~;~!~-=-- :~~~~~~-MA_y_z.t _j Ju~-~~ l.q 

Figure 58. Timetable With Incremental Shading Mask for No Shading Device on a South-Facing Window 

1--' 
w 
1--' 



132 

It can be seen from Table XV that even though the overhang with no 

separation height has a much lower E than the overhang with a 
u 

separation height of 1.33 ft., E is about 3 percent higher for the 

overhang with no separation height. If, however, the value of 1.0 for 

n were used in Equation (5. 7) (recalling that when n = 1.0, summer 

shading and winter insolation are considered equally important), E 

would be about 3 percent higher for the overhang with a separation 

height of 1.33 ft. 

Remarks 

In its present form, the 6T-effectiveness method presented ~n this 

chapter is most useful for evaluating and compar~ng rather than for 

designing shading devices. As the user becomes more familiar with how 

shading masks are affected by -adjustments in shading device dimensions 

and configurations, he is more able to work backward through the method 

to intelligently estimate proper shading device dimensions. For 

instance, by scanning the overheated and underheated 6T's of Figures 54 

and 55, one can get an idea of how many days shading is desired in the 

summer and how many days insolation is desired in the winter. If the 

desired shading device is an overhang over a south-facing window, N 
0 

and N can then be estimated and used in Equations (3.6) and (3.7) of u 

Chapter III to find a projection length and separation height. 

If adapted for computer use E, E , and E could be quickly 
0 u 

calculated based on more accurate estimates of hourly temperatures 

using TMY data. An unlimited array of fixed, exterior shading devices 

for any orientation, geographical location, and building type could be 

easily compared. However, as noted earlier, if shading devices for 
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different geographical locations are to be compared, more research to 

determine n must be done. 

A flowchart suggesting application of the 6T-effectiveness method 

to a computer program is provided ~n Appendix D. 



CHAPTER VI 

CONCLUSIONS 

Summary of Findings 

This study developed a method for evaluating the annual 

effectiveness of fixed, exterior shading devices using approximate 

hourly temperatures, building balance point temperature, and a factor 

directly related to the percent-shade of a window. The method takes 

into account both summer shading and winter insolation, and results in 

an overheated 6T-effectiveness (E), an underheated 6T-effectiveness - 0 

(E), and an annual 6T-effectiveness (E). As background Ln u 

developing the method, a general procedure for assessing shading needs, 

and guidelines for evaluating the overall effectiveness of eight types 

of fixed, exterior shading devices was presented. Existing 

latitude-based and climate-based methods for determining recommended 

projection lengths were analyzed to determine how each method addresses 

the problems of balancing summer shading and winter insolation, and 

balancing spring insolation with late summer shading. 

It was determined that the 6T-effectiveness method LS most useful 

Ln evaluating and comparing, rather than designing fixed, exterior 

shading devices applied to a building in a particular geographical 

location for any orientation. However, by working through the method 

backward, a designer could determine a rough approximation of a 

134 
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recommended projection length and separation height for a shading 

device. 

Analysis of existing latitude-based methods showed major 

differences in assumptions concerning the recommended number of days 

that shading is desired in the summer. Equations (3.6) and (3.7), 

summarizing the latitude-based methods, were developed to aid designers 

in calculating the projection length and separation height of an 

overhang over a south-facing window, based on the number of days from 

the summer solstice that complete shade is desired, and the number of 

days from the winter solstice that complete insolation is desired. 

Analysis of existing climate-based methods showed much contrast 

between the methods with respect to resulting information, applicable 

orientations, demarcation temperature, consideration of building 

characteristics, dependency on- temperature versus radiation, and method 

format. 

Recommendations for Future Study 

In the development of the ~T-effectiveness method, the necessity 

of quantitatively express1ng the relative importance of shading in 

summer versus the importance of allowing insolation in winter for 

various locations became readily apparent in calculations of annual 

~T-effectiveness (E), At this point, only intuitive estimates can be 

used. 

The ~T-effectiveness method could be enhanced greatly by the 

development of a computer program based on the flow-chart in Appendix 

D. Not only could E, E and E be calculated more quickly and o' u 
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sensitively, resulting in more comparisons between shading devices, but 

with enough calculations and computer runs, results could be determined 

and published for an unlimited number of locations and shading devices. 

Such a publication would be a helpful and ready reference for 

designers. 
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The conversion factors used in this study to convert from SI 

(Systeme International) to English Units are listed below. The primary 

source for these conversion factors is Chapter 37 of ASHRAE Handbook-

1981 Fundamentals (3). Another source is Chapter 1 of Passive Solar 

Design Analysis (27). 

Area 

9.290304 X 10-2 m2 

Energy 

1 Btu = 1.055056 X 103J 

Energy Flux 

1 Btu/ft 2 : 1.135653 X 104 

1 Btuh/ft2 = 3.154591 W/m2 

2 
J/m 

2 2 1 Btu/(ft day) = 2.718499 kcal/(m day) 
2 -, 1 2 

1000 Btu/(ft day) = 1.135653 X 10 MJ/(m day) 

LCR (Load Collector Ratio) 

0 2 0 2 1 Btu/( F day ft ) = 20.4 kJ/( C day m ) 

Temperature 

°F = °C(l.8) + 32 
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'V 
The relative projection length of an overhang, p, and the relative 

separation height, 
'V 
g, are expressed as: 

'V 
plwH p = (B .1) 

'V 

gHiwH g (B. 2) 

where 

p projection length, 

gH separation height, and 

WH = window height (24) . 

Figure 59 shows p, gH and wH, and their relation to the overheated 

profile angle, Q , and the underheated profile angle, Q . 
0 u 

Utzinger expresses the relative projection length and relative 

separation height as (24): 
'V 
p 

'V 
g 

ll(tan Q 
0 

tan Q ) 
u 

tan Q I (tan Q - tan Q ) 
u 0 u 

Combining Equations (B.l) and (B.J) yields: 

or 

ll(tan Q 
0 

tan Q ) 
u 

p = wHI(tan Q0 - tan Q) 

Combining Equations (B. 2) and (B. 4) yields: 

or 

g = w tan Q I (tan Q - tan Q ) 
H H u o u 

(B. 3) 

(B .4) 

(B. 5) 

(B. 6) 

(B. 7) 

(B. 8) 

Since the profile angle of the sun on a south-facing window is the 

solar altitude angle at noon, the profile angle, Q, may be expressed as: 

(") . -1r. 1 a6 = s~n ~~n sin D + cos L cos Dl 
--1 

(B.9) 
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where 

L latitude, and 

D declination (24) . 

The following trigonometric identity may be used to simplify Equation 

(B. 9) ( 33) . 

cos (L - D) = sin L sin D + cos L cos D (B .10) 

So Equation (B.9) may be rewritten as: 

Q = sin -\cos(L - D)) (B .11) 

From trigonometry, 

-1 
sin cos(L - D) = 90 - (L - D) (B .12) 

which allows Equation (B.ll) to be simplified to: 

r2 = 90 - (L - D) (B .13) 

Since declination, D, is negative from September 22 to March 20 

(winter months) and positive from March 22 to September 20 (summer 

months), Equation (B.l3) may be applied to an overheated profile angle 

(during summer months) and an underheated profile angle (during winter 

months) 

Q 
0 

Q 
u 

as follows: 

90 (L D) 

90 (L +D) 

(B .14) 

(B .15) 

Utzinger expresses the declination, D, as a function of the number 

of days, N, before or after the summer or winter solstice in Equation 

(B.l6) (24): 

D = 23.45 cos (360(N)/365) (B.l6) 

Substituting Equation (B.l6) into Equations (B.l4) and (B.l5) yields: 

Q 
0 

r2 
u 

90 

90 

~- (23.45 cos (360(N0)/365)~ 

~ + (23. 45 cos (360(N) /365) ~ 

(B.l7) 

(B .18) 



where 

N number of days from summer solstice, and 
0 

N number of days from winter solstice. 
u 

Finally, substituting Equation (B.l7) and (B.l8) into Equations 

(B.6) and (B.8) yields: 

p = wHI [tan [90- (L- 23.45 cos (360(N0)I365)~ 

- tan [ 90 - (L + 23.45 cos (360(Nu) 1365) )] } 

and 

gH = wH tan [ 90 - (L +23.45 cos (360(N) /365) ~ 

I {tan [9 0 - (L - 23.45 cos (360(N ) I 365) >] 
0 

- tan [90 - (L + 23.45 cos (360(N0)I365)~} 
which are Equations (3.6) and (3.7). 

(B.l9) 

(B. 20) 
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4am 
2.1 H DEC 2.ftNOV 1t 2.1 OCT H 2.t SEP H 2.! AUG \1 

I 
Sam I 

I I 
I Gam -

7am I 

Sam 
I ! 

~am 

10am ----- . 
I 

i : 

Ham 

12.pm 

tpm 

2.pm 

-3pm 

4pm 
I I 

5pm 

'pm 

7prn 

8prn 
2.1 DEC U JAN t, It FEB 2.1 t1 MAR 2-l U APR z.t 

Figure 60. T~etable for Use With ~T-Effectiveness Method 
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MONTH 
J F M A M J J A s 0 N 1 11 ?J 1 II 2.1 1 11 1.1 1 11 21 1 11 Z1 , 11 Z.l I 1 I "Z1 I 11 21 1 11 2.1 1 " 21 1 II 21 

Tmax 

Tmin ! ! I ! 
RANGE I 

TIME s APPROXIMATE HOURLY TEMPERATURES 

4am 0.05~ I T I 
i 

S"am o.o1q 

6am 0.0 

7am o.oz.q 

Bam O.lft i I I i r-- -' +- I I ---+. ! I ! 
--

9am i 0.315 i i : 
i 

! I I I i I 
I I I I I I I lOam 0.583 I 

It am ! o. 72Ji> I i I I ! I I -- - --- --~-- i-
12am i o.81i>l i i i 
·lpm i o.%8 I ! 1 i i ! I 
2pm 1.0 ! I I I i I 

l I I I I I I I I 

3pm / 0.919 I T I I 

J I l I 
4pm I o.'l17 I I I I i I I ! I I i i I 

5pm! 0.81-4- i I I i I I I I i I I I 

I ~pm O.CC.'14 

?pm 0. 52.2. 

8pm o.-t""'-4 I I I I 

Figure 61. Table to Plot Approximate Hourly Temperatures for Use With ~T-Effectivenss Method 

1 

-~-· 

I 
I 

D 
11 2.1 

I 

I 
I 
I 
I 
I 

-- -+--
! 

i 

I 
I 

I 
I 

j 
f-' 
Ln 
0 



APPENDIX D 

ANNUAL ~I-EFFECTIVENESS METHOD FLOWCHART 

151 



Draw border 
contours on 
timetable. 

Assign k-factors 
to areas on 

timetable. 

Printout borders 
and k- factors 
on timetable. 

NO 

Approximate 

hourly temps. 

T= Tmin + R lSI 
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NO 

Calculate 

~Tu=Tb-T. 

Printout 
~Tu 's on 

timetable. 

Calculate 

:t~T u. 

YES 

Calculate 

~T0= T-Tb. 

Printout 
~T0 's on 
timetable. 

Calculate 

:S~To. 
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YES 

Calculate 

~ATu 11-kl 

Calculate Su = 
~ATu 11-kl 

:SATu 

Calculate £ 0 = 
~AT0k 

:EAT~ 

Calculate E = 

£ 0 + nEu 
1+n 

Calculate 
n 
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