TRANSIENT SIMULATION OF THE IMMISCIBLE FRESH-WATER/SALT-WATER INTFERFACE IN AQUIFERS

By

ROOP DASARI KUMAR Bachelor of Technology Osmania University Hyderabad, India 1980

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1984

and a standard of the second second second and a second second second second second second second second second

Thesis 1984 K96t Cop.2 y Karant

A State of the second sec

 $= \sum_{i=1}^{n} \left[\left(\frac{1}{2} - \frac{1}{2} \right) \right] = \sum_{i=1}^{n} \left[\left(\frac{1}{2} - \frac{1}{2} \right) \right] = \sum_{i=1}^{n} \left[\left(\frac{1}{2} - \frac{1}{2} \right) \right]$

1

(1) A state of a st

, ,

. .

OKLAHOMA SA UNIVERSITA LIBRARY CIBLE

TRANSIENT SIMULATION OF THE IMMISCIBLE

FRESH-WATER/SALT-WATER INTERFACE

IN AQUIFERS

Thesis Approved:

Thesis Adviser baldr rma

Dean of the Graduate College

ii

ţr.

ACKNOWLEDGMENTS

The author wishes to express his gratitude to his major advisor, Dr. Jan Wagner, for his guidance and encouragement during the course of this study. Appreciation is also expressed to the University Computing Center for providing computer time necessary for the successful completion of this report.

A note of thanks is due to Ms. Nannie Mathews for a typing job well done. The author also wishes to acknowledge the National Center for Groundwater Research for funding the project.

TABLE OF CONTENTS

.

.

.

Chapte	er en	Page
Ι.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	3
	Analytical Models	4 5 7
III.	MODEL DEVELOPMENT	10
	Interface Conditions	11 13 23
IV.	FINITE-ELEMENT MODEL • • • • • • • • • • • • • • • • • • •	27
	Unconfined Aquifers • • • • • • • • • • • • • • • • • • •	28 33 36 37
۷.	TESTING OF THE NUMERICAL MODEL ••••••••••••••••••••••••••••••••••••	38
	Upconing in an Unconfined Aquifer ••••••••••••• Effect of Capillarity on Ground-Water Mounds•••••• Salt-Water Intrusion in a Confined Coastal Aquifer•••	39 48 51
VI.	CONCLUSIONS AND RECOMMENDATIONS	60
REFEREN	NCES	62
APPEND	IXES	64
Аг	PENDIX A - INPUT CODES FOR PROGRAM · · · · · · · · · · · · · · · · · · ·	65
AF	PPENDIX B - SUMMARY OF COMPUTER PROGRAM • • • • • • • • • • • • • • • • • • •	71
AF	PPENDIX C - SOURCE CODES FOR COMPUTER PROGRAM • • • • • • • • • • • • • • • • • • •	75
. Af	PPENDIX D - INPUT DATA FOR NUMERICAL SIMULATION ••••••	92
AP	PENDIX E - RESULTS OF NUMERICAL SIMULATION • • • • • • • • • • • • • • • • • • •	118
AP	PENDIX F - FINITE ELEMENT MESH LAYOUTS	136

LIST OF TABLES

.

-

Table	Page
Ι.	Input Data for Case 1
II.	Input Data for Case 2
III.	Input Data for Case 3
IV.	Input Data for Case 4
۷.	Input Data for Case 5
VI.	Input Data for Confined Aquifer Example
VII.	Input Data for Recharge Mound Example with Capillarity 110
VIII.	Input Data for Recharge Mound Example without Capillarity 116
IX.	Sample Output for Case 1
Х.	Sample Output for Case 2
XI.	Sample Output for Case 3
XII.	Sample Output for Case 4
XIII.	Sample Output for Case 5
. XIV.	Analytical Solution for Confined Aquifer
XV.	Sample Output for Confined Aquifer Example
XVI.	Sample Output for Recharge Mound Example with Capillarity 130
XVII.	Sample Output for Recharge Mound Example without Capillarity 133

LIST OF FIGURES

Figu	re	Page
1.	The Ghyben-Herzberg Interface Approximation for a Coastal Aquifer	6
2.	Movement of the Salt-Water Front in a Confined Coastal Aquifer	12
3.	Vertical Cross-Section of an Unconfined Coastal Aquifer	14
4.	Capillary Pressure Profile in a Soil Column	20
5.	Vertical Cross-Section of a Confined Coastal Aquifer	24
6.	Sahni's Experimental Model for Salt-Water Upconing in a Phreatic Aquifer	40
7.	Finite Element Mesh Simulation of Sahni's Physical Model	42
8.	Steady State Solutions Employing Different Mesh Layouts	43
9.	Transient Numerical Analyses Employing Different Mesh Layouts .	44
10.	Experimental Observations Versus Steady State Solution Obtained Using the Expanded Mesh	46
11.	Experimental Results Versus Transient Analysis of the Numerical Model Obtained Using the Expanded Mesh	47
12.	Groundwater Mounding Due to Vertical Percolation from Surface Recharge Areas • • • • • • • • • • • • • • • • • • •	49
13.	Finite Element Mesh Simulation of the Experimental Model of Ortiz, et al	50
14.	Experimental Results Versus Numerical Solution • • • • • • •	52
15.	Comparison of Numerical Results With and Without the Influence of Capillary Effects	53
16.	Sea-Water Wedge in a Confined Coastal Aquifer • • • • • • • •	54
17.	Finite Element Mesh Simulation of the Analytical Model $\cdot\cdot\cdot$	57
18.	Analytical Solution Versus Numerical Results	58

× .

Figu	re				Page	
19.	Detailed Finite Element Mesh Layout of Sahni's Model .	•	•	•	. 137	
20.	Expanded Finite Element Mesh Layout of Sahni's Model .	•	•	•	. 138	
21.	Finite Element Mesh Layout of the Experimental Model of Ortiz, et al	•	•	•	. 139	
22.	Finite Element Mesh Layout of Henry's Analytical Model.	•			. 140	

vii

NOMENCLATURE

А	Cross-sectional	area	of	aquifer.	L2
A	Cross-seccional	area	01	ayuner,	L

B Saturated thickness of the confined aquifer, L

 C_1, C_2, C_3, C_4 Coefficients in the finite element equations, L^2/T

dh/dl Hydraulic gradient

He Equivalent saturated height, L

- Hf Total head in the aquifer, L
- H_j Hydraulic head of fluid j, L
- HK Equivalent permeable height, L
- H_S Salt water head, L
- H_T Phreatic surface elevation, L
- H' Distance from water table to the soil surface, L
- H Change in hydraulic head, L
- h Hydraulic head, L
- h* Piezometric head, L
- K Hydraulic conductivity, L/T
- Km Saturated hydraulic conductivity, L/T
- K_{rw} Relative permeability of the wetting phase
 - k Permeability of the medium, L²
- k' Product of permeability and buoyancy
- L(Hf) Differential equation governing Hf
- 1_X, 1_V Directional cosines
 - N_i Shape function of the ith node

 N'_X , N'_V Dervatives of the shape function with respect

to the x and y coordinates

- n Unit vector normal to the interface
- p Fluid pressure head, L
- Pb Bubbling pressure head, L
- P_c Capillary pressure head, L
- p Scaled capillary pressure
- Q Volumetric discharge, L^3/T
- Qf, Qs Fresh and salt water sources or sinks
 - if areal, L/T
 - if nodal, L^3/T
 - Q' Fresh water flow per unit length of shore line, L^2/T
 - q Superficial recharge velocity, L/T
 - q; Superficial velocity in x, y and z directions, L/T
 - q_j Superficial discharge rate of fluid j, L/T
- q_X,q_y,q_z Darcy velocities in x, y and z directions, L/T
 - S Stiffness matrix
 - S Storativity of confined aquifer
 - S Saturation
 - Se Effective saturation
 - S_r Residual saturation
 - S_s Specific storage coefficient, L⁻¹
 - Sy Specific yield
 - V Specific discharge, L/T
 - Vi Pore velocity, L/T
- x, y, z Spatial coordinates

- X Horizontal distance from shore towards land, L
- Y Distance from impermeable confining layer to interface, L
- Z Elevation above datum, L
- Y Excess of the specific gravity of sea water over fresh water, M/L²T²
- γ_{f} Unit weight of fresh water, M/L²T²
- γ_j Unit weight of fluid j, M/L²T²
- γ_{s} Unit weight of salt water, $M/L^{2}T^{2}$
- n Interface elevation, L
- θ Porosity of the medium
- θ Integration parameter
- γ Pore size distribution index
- ξ Height of ocean above the top of the aquifer, L

CHAPTER I

INTRODUCTION

Increasing surface water contamination has required the development of groundwater as an alternative source of water for human, industrial and irrigation purposes. Unfortunately, groundwater resources have been utilized to such an extent that water tables have declined drastically. Efficient use of aquifers as reservoirs can be achieved if the impact of imposed conditions - natural or artificial - on hydrologic systems can be simulated successfully.

Aquifers, inland or coastal, may consist of fresh-water with the heavier salt-water lying underneath. Fresh-water and salt-water are actually mixible fluids but under certain conditions, the width of the transition zone caused by hydrodynamic dispersion is relatively small, so that an abrupt interface can be assumed to separate the two fluids. As a result of the simultaneous movement of both, fresh-water and saltwater, the interface does not remain static but moves accordingly. Water balance of groundwater can be achieved only when the rate of discharge is less than or equal to the rate of natural and/or artifical recharge. If the pumping rate is in excess of the replenishment rate, the water table elevation will drop and as a result the interface will start upcoming under the discharge well. As long as the critical discharge rate is not exceeded, fresh-water can be continuously pumped out of the aquifer. Once the critical discharge is exceeded, the upconed interface becomes unstable and salt-water starts flowing out of the well.

Furthermore, due to increasing concern about surface pollution, liquid and solid wastes are being introduced into the subsurface environment thereby endangering groundwater supplies. As a result, the simulation of the dynamic fluid-fluid interface is of utmost importance in determining the course of subsurface water management policies.

The soil between the water table and the ground surface is only partially saturated with water. In this zone, the effect of capillary pressure on the water table elevation and the specific yield of the aquifer is not negligible. If flow in the unsaturated region has some impact on the water table, the salt-water interface will also be affected accordingly.

The prediction of the location of the fresh-water/salt-water interface will also be useful towards gaining an insight into the mechanism of sea-water intrusion into coastal aquifers. This problem is a particularly difficult one as it involves tracking a boundary which is moving and limited in extent.

This research, therefore, intends to develop a general model based on the governing partial differential equations to simulate the dynamic interface in a two phase subsurface reservoir. Flow of fresh-water and salt-water will be considered in a horizontal two-dimensional plane as a three dimensional model is useful only when changes in vertical head components are too large to ignore. The numerical model will be tested against existing analytical and experimental models to determine its accuracy and utility in the real world.

CHAPTER II

REVIEW OF LITERATURE

Flow problems involving nonlinear partial differential equations have been solved using various numerical techniques such as finite differences, the method of characteristics, etc. These methods were inadequate for certain types of problems, and the need for a new method was stressed. This led to the introduction of finite-element methods in hydrology and reservoir engineering. These numerical techniques are applied to obtain solutions to partial differential equations after certain assumptions have been made to simplify the flow domain, boundary conditions, physical characteristics of the porous medium, and fluid characteristics.

The study of homogeneous and inhomogeneous fluid flow can be classified as follows:

1. Single phase flow

2. Multiphase flow

- a. miscible flow
- b. immiscible flow

The simultaneous flow of two fluids that are soluble in each other is termed miscible displacement. In this case, there is no distinct fluidfluid interface, instead there is a convective-dispersion zone. Immiscible displacement occurs when the fluids displace each other without mixing, and there is a distinct fluid-fluid interface between each fluid phase.

The fresh water and salt water are treated independently and the interface elevation is evaluated from the boundary condition over the fluidfluid interface.

The presence of capillarity in unconfined aquifers involves the solution of a set of nonlinear differential equations which describe the capillary pressure and the saturated and permeable heights.

Analytical Models

The basis of groundwater hydrology is Darcy's Law which was propounded by Henry Darcy in 1856. As a result of his experiments, the following empirical relationship evolved:

$$Q = -KA \frac{dh}{dl} \text{ or } V = \frac{Q}{A} = -K \frac{dh}{dl}$$
(1)

where:

h = hydraulic head,

dh/dl = hydraulic gradient,

K = hydraulic conductivity,

V = specific discharge,

Q = volumetric discharge, and

A = cross-sectional area.

From this simple empirical base, researchers have developed complex equations which describe flow in aquifers for single, as well as multiphase, fluid flow. Dupuit (1863) and Forchheimer (1930) postulated that for flow in unconfined systems bounded by a free surface (1) flowlines can be assumed to be horizontal with vertical equipotentials and (2) the hydraulic gradient can be assumed to be equal to the slope of the free surface and to be invariant with depth. The Dupuit-Forchheimer assumptions

are not applicable in regions where the vertical flow components are significant. However, these assumptions are important tools for treating unconfined flows due to their simplicity and relatively small errors in many cases.

Immiscible Fluid Flow

Pioneering research on the position of the interface in coastal aquifers was conducted by Badon-Ghyben and Herzberg in 1888 and 1901, respectively. Their analyses assumed simple hydrostatic conditions in a homogeneous, unconfined coastal aquifer. Essentially, both Ghyben and Herzberg assumed static equilibrium and a hydrostatic pressure distribution in the fresh-water body with the sea-water being stationary. Figure 1 depicts the idealized Ghyben-Herzberg model for the phreatic surface and interface position in an unconfined coastal aquifer.

The Ghyben-Herzberg principle states that at any distance from the sea, the depth of the stationary interface below sea level is approximately forty times the height of the fresh-water above it. Near the seashore, however, dynamic factors become important. If static conditions alone were to prevail, the fresh-water body would narrow and there would be no way for the fresh-water to escape to the sea. When dynamic factors are considered, the fresh-water flows through a narrow gap between a freshwater/salt-water interface and the water table outcrop at the coast.

Based on this theory, Glover (1959) developed a relationship to relate the interface elevation to the rate of fresh-water withdrawal from a confined coastal aquifer at steady state conditions. The equation describing this relationship is

$$y^{2} - \frac{20}{\gamma k}' \times - \frac{0}{\gamma^{2} k^{2}} = 0$$
 (2)

$$Z_{i} = Z_{f} \left(\frac{\gamma_{f}}{\gamma_{s} - \gamma_{f}} \right) \approx 40 Z_{f}$$

Figure 1. The Ghyben-Herzberg Interface Approximation for a Coastal Aquifer

where γ = excess of the specific gravity of sea-water over fresh-water,

x = horizontal distance from shore towards land,

k = permeability of the medium,

y = vertical downward distance from sea level, and

Q' = fresh-water flow per unit length of shore line.

A somewhat analoguos relationship was presented by Henry (1959) by the use of hodograph planes and complex potentials. His relationship is

$$\left(\frac{yk'}{Q'}\right)^2 - 2\left(\frac{xk'}{Q'}\right) - 1 = 0$$
(3)

where

$$k' = \frac{k(\gamma_s - \gamma_f)}{\gamma_f}$$

and

x = horizontal distance landwards,

y = vertical distance downward,

k' = product of permeability and buoyancy,

 $\gamma_{\rm S}$ = specific weight of salt-water, and

 γ_{f} = specific weight of fresh-water.

When sea-water intrudes into a coastal aquifer, both fluids will be moving under transient conditions. Because the zone underlain by the sea-water wedge is limited, the problem becomes more complicated since there is a moving boundary to deal with.

Numerical Models

The petroleum industry is responsible for developing many of the reservoir simulation techniques. The basis behind these techniques is the immiscible displacement of fluids. The fundamental laws governing the displacement problem are Darcy's law, the law of conservation of mass of both fluids, and the pressure balance across the interface. The highly nonlinear partial differential equations that result are extremely difficult to solve, analytically or numerically. Simplifying assumptions have to be made before a solution can be obtained.

The numerical solution can be accomplished by numerous techniques available. The most common solution techniques are the finite-difference and finite-element methods. One of the problems in flow through porous media involves sharp fronts. A sharp front refers to a large change in a dependent variable over a small distance. It was observed that finitedifference methods, when applied to sharp-front problems, tend to oscillate and cause instability (Mercer and Faust, 1977). Hence, there has been a growing tendency to use the finite-element method to solve sharp front problems. Pinder and Page (1976) developed a finite-element model to simulate salt-water instrusion on Long Island. Segol, Pinder and Gray (1973), Pinder and Cooper (1970), Bredehoeft and Pinder (1970), Neuman and Witherspoon (1970) and others have used the finite-element technique with excellent results. Layla (1980) developed a general model based on the Galerkin finite-element method to predict the interface elevations in coastal aquifers. His model was found to have some discrepancies regarding the development of the necessary flow equations.

In developing the fresh-water and salt-water flow equations for confined aquifers, Layla neglected to integrate the specific storage term with respect to the vertical fluid phase elevation. He also makes an assumption that the change in interface elevation with time is zero so as to simplify the formulation of the fresh-water equation in the Galerkin finite-element approximation. Contradictorily, he retains the term during the salt-water region Galerkin approximation. Time integration of the finite-element matrix equations is accomplished but the derivation is subject to mathematical errors.

Layla's finite-element algorithm is fundamentally correct and his solution technique error-free. The choice of quadratic, triangular elements leads to great accuracy and low computation times and costs. However, the subroutines for evaluating the equivalent saturated and permeable heights are conceptually incorrect. Layla integrates the necessary differential equations to arrive at relationships which describe the permeable and saturated heights in the presence of capillary pressure. He then uses the unintegrated differential equations to build his algorithms for evaluating the equivalent saturated and permeable heights and apparent specific yield.

The integration routine used in the algorithms does not cover the entire flow domain, and the change in the equivalent saturated height with respect to the change in water-table elevation is also evaluated incorrectly.

All-in-all, the Layla model has to be redeveloped from a fundamental basis so that the head distributions in aquifers can be predicted with a reasonable degree of accuracy. The next few chapters will be devoted to developing the necessary flow equations and solving them using the Galerkin finite-element algorithms developed by Layla.

CHAPTER III

MODEL DEVELOPMENT

The areal distribution of the dynamic fresh-water/salt-water interface in unconfined aquifers is considered first. This will enable the model to be checked with existing experimental data. Next, the effect of capillarity on the value of specific yield and the water table height in unconfined aquifers is considered. Finally, the necessary flow equations for fluid movement in confined aquifers are developed.

The assumptions underlying the formulation of the flow equations for an unconfined aquifer are:

- 1. Darcy's law is valid for both fluid phases,
- An abrubt interface approximation is justified since the transition zone between fresh and salt water is very small when compared to the saturated thickness of the aquifer,
- 3. The Dupuit-Forchheimer approximations are applicable,
- 4. Soil and fluid properties do not change with time,
- 5. Both fluids are incompressible,
- 6. Isothermal conditions prevail in the flow domain,
- 7. The effect of the capillary fringe on the water table elevation is not negligible, and
- 8. Elastic properties of the formulation and fluids are negligible.

10 .

Interface Conditions

At steady state, the magnitude of seaward fresh-water flow, $Q_f(L, 0)$, is constant everywhere and equals $Q_f(x, 0)$. The boundary condition along the interface (Figure 2a) is the same as that of the impervious boundary conditions; i.e.,

shere j represents fluid phase and n is the unit vector normal to the interface.

If equilibrium is disturbed, the interface will shift accordingly due to hydraulic gradients. Suppose at $t=t_1$, the seaward fresh-water flow is increased to $Q_f(L, t_1)$. The interface will continue moving landward until a new equilibrium is established (Figure 2b). During the transition, the boundary condition described by Equation 4 is no longer applicable along the interface. Continuity requires that

$$q_{nj} = -K \frac{\partial H_j}{\partial n}$$
(5)

where $q_{n,i}$ is the velocity component normal to the interface and

$$H_{j} = \frac{P}{\gamma_{j}} + n$$
 (6)

where H_j = hydraulic head of fluid j,

 γ_j = unit weight of fluid j,

P = fluid pressure, and

n = interface elevation.

Figure 2. Movement of the Salt-Water Front in a Confined Coastal Aquifer

Continuity also requires equality of fluid pressure across the interface. Hence, equating the pressure term in Equation 6 for both fluids yields

$$P = (H_{s} - n)\gamma_{s} = (H_{f} - n)\gamma_{f}$$
(7)

which simplifies to:

$$n = \alpha_{\rm S} H_{\rm S} - \alpha_{\rm f} H_{\rm f} \tag{8}$$

where $\alpha_f = \gamma_f/\Delta\gamma$ and $\alpha_s = \gamma_s/\Delta\gamma$, and f and s denote fresh-water and salt water, respectively. Equation 8 is the dynamic boundary condition on the interface.

Unconfined Aquifers

The elevations of the phreatic surface and the interface (Figure 3) can be expressed as follows (Bear, 1979):

$$F_{1}(x, y, z, t) = z - H_{T}(x, y, t)$$
(9)

$$F_{2}(x, y, z, t) = z - n (x, y, t)$$
(10)

where H_T = phreatic surface elevation,

n = elevation of salt-water/fresh-water interface,

z = elevation above datum, and

t = time.

Since the phreatic surface and the interface are material surfaces which are always composed of the same fluid particles,

$$\frac{DF}{Dt} = \frac{\partial F}{\partial t} + V_{i} \cdot \nabla F = 0$$
 (11)

Figure 3. Vertical Cross-Section of an Unconfined Coastal Aquifer

where V_i = pore velocity $\simeq q_i/\theta$,

q_i = superficial velocity,

 θ = effective porosity, and

i = fluid phase.

As the vertical gradients generally found in the field are relatively small an assumption can be made to the effect that

$$H_{s} = (H_{s})_{z=0} = (H_{s})_{z=n}$$

and

$$H_f = (H_f)_{Z=H_f} = H_T.$$

Using these approximations, substituting Equation 9 into Equation 11, and expanding terms leads to

$$\theta \frac{DF}{Dt} = \theta \frac{\partial z}{\partial t} - \theta \frac{\partial H}{\partial t} - \theta \frac{\partial H}{\partial x} \frac{\partial A}{\partial t} - \theta \frac{\partial H}{\partial y} \frac{\partial H}{\partial y} \frac{\partial Y}{\partial t} .$$
(12)

In terms of the Darcy velocity at the phreatic surface,

. . .

$$(q_z)_{H_f} - \theta_f \frac{\partial^H f}{\partial t} = (q_x)_{H_f} \frac{\partial^H f}{\partial x} + (q_y)_{H_f} \frac{\partial^H f}{\partial y}$$
(13)

Similarly, the salt-water/fresh-water interface equation is

$$(q_{z})_{\eta} - \theta_{s} \frac{\partial \eta}{\partial t} = (q_{x})_{\eta} \frac{\partial \eta}{\partial x} + (q_{y})_{\eta} \frac{\partial \eta}{\partial y}$$
(14)

Assuming the fluids and the formation are incompressible, continuity requires

$$\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z} = 0$$
(15)

...

for the fresh-water, and

$$\frac{\partial q_X}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z} = 0$$
(16)

for the salt water.

Integrating Equation 15 with respect to z between the limits z = nand $z = H_f$ and applying the Dupuit-Forchheimer principle for a mildly sloping free surface gives

$$(q_{z})_{H_{f}} - (q_{z})_{\eta} + \frac{\partial}{\partial x} \int_{\eta}^{H_{f}} q_{x} dz + \frac{\partial}{\partial y} \int_{\eta}^{H_{f}} q_{y} dz + (q_{x})_{\eta} \frac{\partial \eta}{\partial x} + (q_{y})_{\eta} \frac{\partial \eta}{\partial y} = 0 \quad .$$
(17)

Substituting Equations 13 and 14 into Equation 17 and expressing the velocity components, q_X and q_V , by Darcy's law, yields

$$\frac{\partial}{\partial x} \int_{\eta}^{H} f K_{x} \left(\frac{\partial H}{\partial x} \right) dz + \frac{\partial}{\partial y} \int_{\eta}^{H} f K_{y} \left(\frac{\partial H}{\partial y} \right) dz = \Theta_{f} \frac{\partial H}{\partial t} - \Theta_{s} \frac{\partial \eta}{\partial t}$$
(18)

Equation 18 can be expanded about the salt-water interface using a Taylor series. Accounting for capillarity by utilizing the concepts of equivalent permeable and equivalent saturated heights as defined by Duke (1973), yields:

$$\frac{\partial}{\partial x} \left[K_{x} \left(H_{f} + H_{k} - n \right) \frac{\partial H_{f}}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_{y} \left(H_{f} + H_{k} - n \right) \frac{\partial H_{f}}{\partial y} \right] + Q_{f}$$

$$= \theta_{f} \left(1 + \frac{\partial H_{e}}{\partial H_{f}} \right) \frac{\partial H_{f}}{\partial t} - \theta_{s} \frac{\partial n}{\partial t}$$
(19)

where

 Q_f = fresh-water source or sink term,

 H_k = equivalent permeable height, and

 H_e = equivalent saturated height.

The equation for salt-water flow is obtained by integrating Equation 16 between z = 0 and z = n, or

$$(q_z)_n + \frac{\partial}{\partial x} \int_0^n q_x dz + \frac{\partial}{\partial y} \int_0^n q_y dz - (q_x)_n \frac{\partial n}{\partial x} - (q_y)_n \frac{\partial n}{\partial y} = 0 .$$
(20)

Substituting Equation 14 into Equation 20 and expressing the velocity components, q_X and q_y , in terms of Darcy's law yields the salt-water flow equation:

$$\frac{\partial}{\partial \mathbf{x}} \left[\mathbf{K}_{\mathbf{x}}^{n} \left(\frac{\partial \mathbf{H}_{\mathbf{s}}}{\partial \mathbf{x}} \right) \right] + \frac{\partial}{\partial \mathbf{y}} \left[\mathbf{K}_{\mathbf{y}}^{n} \left(\frac{\partial \mathbf{H}_{\mathbf{s}}}{\partial \mathbf{y}} \right) \right] + \mathbf{Q}_{\mathbf{s}}^{n} = \mathbf{\theta}_{\mathbf{s}} \frac{\partial \mathbf{n}}{\partial \mathbf{t}}$$
(21)

where Q_S is included as a salt-water source or sink term.

Equations 19 and 21 can be solved simultaneously to yield values for the dynamic fresh-water and salt-water heads. The interface elevation can then be evaluated by using the boundary condition for continuity of pressure across the interface, or

$$\frac{\partial n}{\partial t} = \alpha_{\rm s} \frac{\partial H_{\rm s}}{\partial t} - \alpha_{\rm f} \frac{\partial H_{\rm f}}{\partial t}$$
 (22)

Equivalent Permeable Height

Duke (1973) defined the equivalent permeable height as a measure of the effectiveness of the partially saturated region for transmitting horizontal flow and presented the following relationship:

$$H_{k} = \frac{1}{K_{m}} \int_{0}^{H} K(z) dz$$
 (23)

where H_k = equivalent permeable height,

H' = distance from the water table to the soil surface,

 $K_{\rm M}$ = saturated hydraulic conductivity, and

z = elevation above the water table.

According to Burdine (1952), the relative permeability of the wetting phase, K_{rw} , is given by

$$K_{rw} = \left(\frac{S - S_{r}}{1 - S_{r}}\right)^{2} \frac{\int_{0}^{S} \frac{dS}{P_{c}^{2}}}{\int_{0}^{1} \frac{dS}{P_{c}^{2}}}$$
(24)

where S_r = residual saturation,

S = saturation, and

 P_{C} = capillary pressure.

Corey (1964) defined an effective saturation as

$$S_e = \frac{S - S_r}{1 - S_r}$$
 (25)

By making a change of variable from S to S_e in the integrals of Equation 24, the relative wetting phase permeability becomes

$$K_{rw} = (S_{e})^{2} \frac{\int_{0}^{Se} \frac{dS_{e}}{p_{c}^{2}}}{\int_{0}^{1} \frac{dS_{e}}{p_{c}^{2}}}.$$
 (26)

Corey (1964) also found by experimentation that

$$S_e = \left(\frac{P_b}{P_c}\right)^{\lambda}$$
 for $P_c \ge P_b$ (27)

and

$$S_e = 1.0 \qquad \text{for } P_c < P_b \qquad (28)$$

where λ = pore size distribution index, and

 P_b = bubbling pressure.

Substituting Equation 27 into Equation 26 and performing the indicated integrations, the relative permeability of the wetting phase becomes

$$K_{rw} = \left[\frac{P_b}{P_c}\right]^n \qquad \text{for } P_c > P_b \qquad (29)$$

where $n = 2 + 3\lambda$. When the capillary pressure is less than the bubbling pressure, the relative permeability of the wetting phase is given by

$$K_{rw} = 1.0$$
 for $P_c < P_b$. (30)

In terms of hydraulic conductivity, Equations 29 and 30 can be written as

$$K = K_{m} \left[\frac{P_{b}}{P_{c}} \right]^{2+3\lambda} \qquad \text{for } P_{c} \ge P_{b} \qquad (31)$$

and

 $K = K_m$ for $P_c < P_b$. (32)

The capillary pressure head is equivalent to the elevation, z (Figure 4), above the water table when the soil water profile is presumed to be in static equilibrium with the water table. Hence, Equations 31 and 32 transform to

$$K = K_{m} \begin{bmatrix} \frac{P_{b}}{z} \end{bmatrix}^{2+3\lambda} \quad \text{for } z \ge P_{b} \quad (33)$$

$$K = K_{m}$$
 for $z < P_b$ (34)

Substituting Equations 33 and 34 into Equation 23 yields

$$H_{k} = \frac{1}{K_{m}} \int_{0}^{P_{b}} K_{m} dz + \frac{1}{K_{m}} \int_{P_{b}}^{H'} K_{m} \left[\frac{P_{b}}{z}\right]^{2+3\lambda} dz$$
(35)

where H' is the distance from the phreatic surface to the ground surface. Upon integration, the effective permeable height is

$$H_{k} = P_{b} \frac{(2+3\lambda) - {\binom{P_{b}}{H^{+}}}^{1+3\lambda}}{1+3\lambda} .$$
(36)

Equivalent Saturated Height

In saturated flow, the specifc yield is identified with the porosity of the medium. However in unsaturated flow, the specific yield is defined as the volume of water per unit area of soil per unit lowering of the water table. Ortiz, et al. (1978) used the concept of an equivalent saturated height to illustrate this phenomenon. According to them, the equivalent saturated height is a measure of the influence of the partially saturated region upon the storage of water in unconfined aquifers. By definition,

$$H_{e} = \int_{0}^{H'} S_{e}(z) dz$$
(37)

where H_e is the equivalent saturated height and $S_e(z)$ is the effective saturation.

Brooks and Corey (1964) deduced from experimental data that

$$S_e = \left[\frac{P_b}{z}\right]^{\lambda}$$
 for $z \ge P_b$ (38)

$$S_e = 1.0$$
 for $z < P_b$. (39)

Substituting Equations 38 and 39 in Equation 37 yields

$$H_{e} = \int_{0}^{P_{b}} dz + \int_{P_{b}}^{H'} \left[\frac{P_{b}}{z}\right]^{\lambda} dz.$$
(40)

Upon integration,

$$H_{e} = P_{b} + P_{b} \frac{\left[\frac{P_{b}}{H^{*}}\right]^{\lambda - 1} - 1}{1 - \lambda}$$
(41)

The relationship for the equivalent saturated height based on static conditions can be written as

$$H_{e} = P_{b} \left[\frac{\lambda - (\frac{P_{b}}{H})^{\lambda - 1}}{\lambda - 1} \right]$$
(42)

Ortiz, et al. (1978) also presented the following relationship for the equivalent saturated height when steady downward flow conditions exist beneath a recharge site:

$$H_{e} = P_{b} \left[\frac{1 - {\binom{q}{K}}^{\lambda/n}}{1 - {\binom{q}{K}}} + {\binom{q}{K}}^{\lambda/n} + {\binom{q}{K}}^{\lambda/n} - \frac{H'}{P_{b}} + \int_{1}^{\binom{q}{K}} - \frac{1}{n} - {\binom{q}{K}}^{\lambda/n} -$$

where q is the superficial recharge velocity and $\hat{P} = P_C/P_D$ is the scaled capillary pressure.

Following Tuma (1970), the integral appearing in Equation 43 can be evaluated as

and

$$\begin{cases} \left(\frac{q}{K}\right)^{-1/n} & \frac{\hat{p}}{2} - \left(\frac{q}{K}\right)^{\lambda/n} \\ & \frac{1}{1 - \left(\frac{q}{K}\right)^{\hat{p}n}} & d\hat{p} = \frac{1}{2n} \left[\frac{1+2n+\lambda}{1+\lambda} \left\{ \left(\frac{q}{K}\right)^{-(\lambda+1)/n} - 1 \right\} \right] \\ & + \left\{ 1 - \left(\frac{q}{K}\right)^{2} \right\} \right] - \left\lfloor \left(\frac{q}{K}\right)^{(\lambda-1)/n} & \left(1 + \frac{1}{2n}\right) + \frac{\left(\frac{q}{K}\right)^{\lambda/n}}{2n} \left\{ \left(\frac{q}{K}\right)^{2} - 2\left(\frac{q}{K}\right) - 2n \right\} \right].$$

$$(44)$$

The equivalent saturated height then becomes

$$H_{e} = P_{b} \left[\frac{1 - {\binom{q}{K}}^{\lambda/n}}{1 - {\binom{q}{K}}^{2}} + {\binom{q}{K}}^{\lambda/n} \frac{H'}{P_{b}} + \frac{1}{2n} \left\{ \frac{1+2n+\lambda}{1+\lambda} \left({\binom{q}{K}}^{-} \frac{\left(\frac{\lambda+1}{n} \right)}{n} - 1 \right) + \left(1 - {\binom{q}{K}}^{2} \right)^{2} - \left\{ {\binom{q}{K}}^{\frac{\lambda-1}{n}} \left(1 + \frac{1}{2n} \right) + \frac{{\binom{q}{K}}^{2}}{2n} \left\{ {\binom{q}{K}}^{2} - 2{\binom{q}{K}} - 2n \right\} \right].$$

$$(45)$$

The specific yield is evaluated by utilizing the appropriate equation for H_e ; depending on whether H_e is based on static conditions as beyond the recharge area, or steady downward flow conditions beneath the recharge site.

Confined Aquifers

Relationships for fluid surface elevations similar to Equations 13 and 14 can be written for a confined aquifer. At the top of the aquifer (Figure 5)

$$(q_z)_B - \theta \frac{\partial B}{\partial t} = (q_x)_B \frac{\partial B}{\partial x} + (q_y)_B \frac{\partial B}{\partial y},$$
 (46)

and at the interface

$$(q_{z})_{\eta} - \theta \frac{\partial \eta}{\partial t} = (q_{x})_{\eta} \frac{\partial \eta}{\partial x} + (q_{y})_{\eta} \frac{\partial \eta}{\partial y}$$
(47)

.:

Figure 5. Vertical Cross-Section of a Confined Coastal Aquifer

where B is the saturated thickness of the acquifer. In a confined aquifer, continuity requires

$$\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z} + S_s \frac{\partial H_f}{\partial t} = 0$$
(48)

for the fresh-water, and

$$\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z} + S_s \frac{\partial H_s}{\partial t} = 0$$
(49)

for the salt water where S_S is the specific storage coefficient.

Integrating Equation 48 with respect to z between the limits $z = \eta$ and z = B and changing the order of integration and differentiation for the first two terms yields

$$(q_{z})_{B} - (q_{z})_{\eta} + \frac{\partial}{\partial x} \int_{\eta}^{B} q_{x} dz + \frac{\partial}{\partial y} \int_{\eta}^{B} q_{y} dz + (q_{x})_{\eta} \frac{\partial \eta}{\partial x} + (q_{y})_{\eta} \frac{\partial \eta}{\partial y} - (q_{x})_{B} \frac{\partial B}{\partial x} - (q_{y})_{B} \frac{\partial B}{\partial y} + S_{s}(B - \eta) \frac{\partial H}{\partial t} f = 0$$
(50)

Substituting Equations 46 and 47 into Equation 50 and noting that $\partial B/\partial t = 0$ for constant saturated thickness gives

$$\frac{\partial}{\partial x} \int_{\eta}^{B} q_{x} dz + \frac{\partial}{\partial y} \int_{\eta}^{B} q_{y} dz - \theta \frac{\partial \eta}{\partial t} + S \frac{\partial H_{f}}{\partial t} + Q_{f} = 0$$
(51)

where S is the storativity and is equal to $S_{S}(H_{f} - \eta)$.

Expressing the velocity components in terms of Darcy's law, the fresh-water flow equation becomes

$$\frac{\partial}{\partial x} \left[K_{x}(B - n) \frac{\partial^{H} f}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_{y}(B - n) \frac{\partial^{H} f}{\partial y} \right] + Q_{f} = S \frac{\partial^{H} f}{\partial t} - \theta \frac{\partial n}{\partial t} .$$
(52)
Similarly, integrating Equation 45 between z = 0 and z = n and simplifying after substitutions yields

$$\frac{\partial}{\partial x} \left[K_{x} n \frac{\partial H_{s}}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_{y} n \frac{\partial H_{s}}{\partial y} \right] + Q_{s} = S \frac{\partial H_{s}}{\partial t} + 0 \frac{\partial n}{\partial t}$$
(53)

for the salt water region where S = $S_{\rm S}$ η for salt water.

Equations 51 and 53 describe the flow of fresh-water and saltwater, respectively, in a confined aquifer. They can be solved simultaneously, and the interface elevation can be evaluated from Equation 22 which describes the continuity of pressure across the interface.

CHAPTER IV

FINITE-ELEMENT MODEL

The Galerkin finite-element method is applied to solve the flow equations developed in the preceding chapter. The Galerkin method is a means of obtaining an approximate solution to a differential equation by requiring that the error between the approximate solution and the true solution be orthogonal to the functions used in the approximation. The finite-element technique uses the following procedure.

- 1. The flow domain is divided into elements and nodes.
- 2. An arbitrary trial solution is assumed to describe the partial differential equation to be solved.
- 3. Suitable basis functions are chosen which satisfy the boundary conditions imposed on the appropriate partial differential equation.
- 4. The appropriate integrations are performed to yield coefficients.
- 5. The weighted integrals of the residual are set equal to zero to obtain a set of simultaneous equations which can be solved to yield values of the dependent variables at all nodes.

The resulting set of algebraic equations are integrated with respect to time to yield values of the dependent variable at different time levels. The formulation of the finite-element approximations for flow in unconfined aquifers are developed in the following paragraphs.

Unconfined Aquifers

The finite-element approximation for the fresh-water flow equation described by Equation 19 can be rewritten using Equation 22 to yield:

$$\frac{\partial}{\partial x} \left[C_{1} \frac{\partial H_{f}}{\partial x} \right] + \frac{\partial}{\partial y} \left[C_{2} \frac{\partial H_{f}}{\partial y} \right] + Q_{f} - C_{3} \frac{\partial H_{f}}{\partial t} + C_{4} \frac{\partial H_{s}}{\partial t} = 0 = L(H_{f})$$
(54)

where

 $C_{1} = K_{X} (H_{f} + H_{k} - n),$ $C_{2} = K_{y} (H_{f} + H_{k} - n),$ $C_{3} = \theta_{f} (1 + \frac{\partial H_{e}}{\partial H_{f}}) + \theta_{S} \alpha_{f}, \text{ and}$ $C_{4} = \theta_{S} \alpha_{S}.$

The term $L(H_f)$ is the differential equation governing H_f . To solve $L(H_f) = 0$ by the Galerkin method, a trial solution

$$H_{f}(x,y,t) = \sum_{i=1}^{n} N_{i}(x,y) H_{i}(t) = [N] \{H_{f}\}$$
(55)

is assumed where

n = the number of nodal points,

 N_i = the shape function, and

 $H_i = an n \times 1$ column matrix denoting the nodal values of H_f .

The approximating function, $H_f(x,y,t)$, will be an exact solution of Equation (19) only if $L(H_f) = 0$. Orthogonality of $L(H_f)$ to all the shape functions $N_i(x,y)$ requires that

$$\int L [H_{f}(x,y,t)] N_{i}(x,y) dx dy = 0 \quad i = 1, 2, ..., n$$
(56)

.....

Substituting for $L(H_f)$ from Equation 54 and Equation 55 into Equation 56 and integrating by parts using Green's formula yields

$$\iint [N]Q_{f}dx dy + \iint C_{4}[N][N](\frac{\partial H_{s}}{\partial t})dx dy - \iint C_{3}[N][N](\frac{\partial H_{f}}{\partial t})dx dy$$
$$+ \iint [N_{s}](C_{1}\frac{\partial H_{f}}{\partial x})1_{x}ds - \iint \frac{\partial}{\partial x} [N] \frac{\partial}{\partial x} (C_{1}H_{f}) dx dy$$
$$+ \iint [N_{s}](C_{2}\frac{\partial H_{f}}{\partial y})1_{y} - \iint \frac{\partial}{\partial y} [N] \frac{\partial}{\partial y} (C_{2}H_{f}) dx dy = 0$$
(57)

where $l_{\rm X}$ and $l_{\rm y}$ are directional cosines. From Equation 55,

$$\frac{\partial H_{f}}{\partial x} = \{H_{f}\} \frac{\partial [N]}{\partial x}$$
(58)

and

$$\frac{\partial H_{f}}{\partial y} = \{H_{f}\} \frac{\partial [N]}{\partial y}$$
(59)

Replacing $\partial H_{f}/\partial x$ and $\partial H_{f}/\partial y$ in Equation 57 gives

$$\iint (C_{1}\{H_{f}\} \frac{\partial}{\partial x} [N] \frac{\partial}{\partial x} [N]) dxdy + \iint (C_{2}\{H_{f}\} \frac{\partial}{\partial y} [N] \frac{\partial}{\partial y} [N]) dxdy$$
$$+ \iint C_{3}[N][N](\frac{\partial H_{f}}{\partial t}) dxdy - \iint C_{4}[N][N](\frac{\partial H_{s}}{\partial t}) dxdy$$
$$- \iint Q_{f}[N] dxdy - \iint Q_{f}[N] dxdy \qquad (60)$$

Equation 60 can be written in matrix form as

$$[S]{H_{f}} + [BK]{\frac{\partial H_{f}}{\partial t}} - [BS]{\frac{\partial H_{s}}{\partial t}} - {F} = 0$$
(61)

where

$$[S]_{e} = \int \int (C_{1}[N_{x}']^{2} + C_{2}[N_{y}']^{2}) dxdy$$
 (62)

$$[BK]_e = \int \int (C_3[N][N]) dxdy$$
(63)

and

$$[BS]_e = \int \int (C_4[N][N]) dxdy$$
(64)

are n x n matrices; and

$$[F]_{e} = \int \int (Q_{f}[N]) dx dy + \int \int q[N_{s}] ds$$
(65)

is a vector.

In Equation 62,

$$N_X' = \frac{\partial [N]}{\partial x}$$
 and $N_y' = \frac{\partial [N]}{\partial y}$

The last term in Equation 65 takes care of the natural boundary conditions. This term incorporates the Neumann boundary condition for fresh-water seepage into the aquifer. This term disappears when the fresh-water flux per unit length of a boundary element is zero.

Equation 21 describing the salt-water flow can be rewritten with the aid of Equation 22 to give

$$\frac{\partial}{\partial \mathbf{x}} \left[C_5 \frac{\partial H_s}{\partial \mathbf{x}} \right] + \frac{\partial}{\partial \mathbf{y}} \left[C_6 \frac{\partial H_s}{\partial \mathbf{y}} \right] + Q_s - C_7 \frac{\partial H_s}{\partial \mathbf{t}} + C_8 \frac{\partial H_f}{\partial \mathbf{t}} = 0$$
(66)

where

$$C_5 = K_X n,$$

$$C_6 = K_y n,$$

$$C_7 = \theta_S \alpha_S, \text{ and}$$

$$C_8 = \theta_S \alpha_f.$$

Utilizing the procedure followed to arrive at Equation 61, the finiteelement matrix equation for salt-water flow is

$$[S]{H_S} + [BK]{\frac{\partial H_S}{\partial t}} - [BS]{\frac{\partial H_f}{\partial t}} = \{F\}$$
(67)

where

$$[S]_{e} = \int \int (C_{5}[N_{x}']^{2} + C_{6}[N_{y}']^{2}) dxdy$$
(68)

$$[BK]_e = \int \int C_7[N][N] dxdy$$
(69)

and

$$[BS]_e = \int C_8[N][N] dxdy$$
(70)

are n x n matrices; and

$$[F]_{e} = \int \int Q_{S}[N] dxdy + \int \int q[N_{S}]ds \qquad (71)$$

is a vector. The last term in Equation 71 goes to zero when there is no salt-water flux at the boundary.

Equations 61 and 67 must be integrated with respect to time to achieve the unsteady state head distributions in an unconfined aquifer. The time derivative can be approximated using either finite-difference or finite-element methods.

Convergence to a reasonable solution can result only if a stable numerical integration scheme is chosen to approximate the time derivative. It has been observed that implicit finite-difference approximations lead to stable, accurate results. The coefficient matrices in Equations 61 and 67 are dependent on the unknown hydraulic heads. An iterative solution scheme is introduced to take care of the nonlinearity. Following Pinder and Page (1976), Equation 61 can be written in time to yield

$$(1-\theta)[S]_{n+1/2} {}^{\{H}_{f}\}_{n} + \theta [S]_{n+1/2}^{m} {}^{\{H}_{f}\}_{n+1}^{m+1}$$

$$+ \frac{1}{\Delta t} [BK]_{n+1}^{m} ({}^{\{H}_{f}\}_{n+1}^{m+1} - {}^{\{H}_{f}\}_{n}) - \frac{1}{\Delta t} [BS]_{n+1}^{m} ({}^{\{H}_{S}\}_{n+1}^{m+1} - {}^{\{H}_{S}\}_{n})$$

$$- \{F\} = 0$$
(72)

where θ is the time weighting parameter. For $\theta = 0$, Equation 72 is solved explicitly in time. With $\theta = 1$, a fully implicit solution is achieved, whereas $\theta = 0.5$ yields a Crank-Nicholson formulation. The indices m and n are the iteration level and the time step respectively.

Rearrangement of Equation 72 gives

$$((1-\theta)[S]_{n+1/2} - \frac{1}{\Delta t} [BK]_{n+1}^{m}) \{H_{f}\}_{n} + (\theta[S]_{n+1/2}^{m} + \frac{1}{\Delta t} [BK]_{n+1}^{m})$$

$$(H_{f})_{n+1}^{m+1} - \frac{1}{\Delta t} [BS]_{n+1}^{m} (\{H_{S}\}_{n+1}^{m+1} - \{H_{S}\}_{n}) - \{F\} = 0.$$
(73)

Following a similar procedure, Equation 67 can be approximated to give

$$((1-\theta)[S]_{n+1/2} - \frac{1}{\Delta t} [BK]_{n+1}^{m}) \{H_{s}\}_{n} + (\theta[S]_{n+1/2}^{m} + \frac{1}{\Delta t} [BK]_{n+1}^{m})$$
$$\{H_{s}\}_{n+1}^{m+1} - \frac{1}{\Delta t} [BS]_{n+1}^{m} (\{H_{f}\}_{n+1}^{m+1} - \{H_{f}\}_{n}) - \{F\} = 0.$$
(74)

Equations 73 and 74 are solved simultaneously at a time step, and at each iteration the coefficient matrices are recomputed. Iterations terminate when the changes in heads for two successive iterations are within a prescribed tolerance.

The freshwater and saltwater head distributions in an unconfined aquifer are described by Equations 73 and 74. The elevation of the interface can be computed from Equation 22 at the end of each time step.

Confined Aquifers

The fresh-water flow equation for confined aquifers, Equation 52, can be rewritten with the aid of Equation 22 to yield

$$\frac{\partial}{\partial x} \left[C_1 \frac{\partial H_f}{\partial x} \right] + \frac{\partial}{\partial y} \left[C_2 \frac{\partial H_f}{\partial y} \right] + Q_f - S_1 \frac{\partial H_f}{\partial t} + S_2 \frac{\partial H_s}{\partial t} = 0$$
(75)

where

$$C_{1} = K_{X}(B - n),$$

$$C_{2} = K_{y}(B - n),$$

$$S_{1} = S_{s}(B - n) + \Theta \alpha_{f}, \text{ and }$$

$$S_{2} = \Theta \alpha_{s}.$$

Proceeding in a manner similar to that for unconfined aquifers, the finite-element matrix equation for fresh-water flow in a confined aquifer is

$$[S] \{H_{f}\} + [B] \{\frac{\partial H_{f}}{\partial t}\} - [B1] \{\frac{\partial H_{S}}{\partial t}\} - [F] = 0$$
(76)

where

$$[S]_{e} = \int (C_{1}[N'_{x}]^{2} + C_{2}[N'_{y}]^{2}) dxdy$$
(77)

$$[B]_{e} = \int \int S_{1}[N][N] dxdy$$
(78)

and

$$[B1]_{e} = \int \int S_2[N][N] dxdy$$
(79)

are n x n matrices; and

$$\{F\}_{e} = \iint Q_{f}[N] dxdy + \iint q[N_{S}] dS$$
(80)

is a vector. In Equation 77,

$$N'_{X} = \frac{\partial [N]}{\partial X}$$
 and $N'_{y} = \frac{\partial [N]}{\partial y}$.

By making use of Equation 22, the salt-water flow equation for confined aquifers (Equation 53) becomes

$$\frac{\partial}{\partial x} \left[C_3 \frac{\partial H_s}{\partial x} \right] + \frac{\partial}{\partial y} \left[C_4 \frac{\partial H_s}{\partial y} \right] + Q_s - S_1 \frac{\partial H_s}{\partial t} + S_2 \frac{\partial H_f}{\partial t} = 0$$
(81)

where

C3 = K_Xn,
C4 = K_Yn,
S1 = Ssn +
$$\theta \alpha_S$$
, and
S2 = $\theta \alpha_f$.

The finite-element matrix equation for salt-water flow in a confined aquifer is

$$[S] \{H_{S}\} + [B] \{\frac{\partial H_{S}}{\partial t}\} - [B1] \{\frac{\partial H_{f}}{\partial t}\} - [F] = 0$$
(82)

where

$$[S]_{e} = \iint (C_{3}[N'_{x}]^{2} + C_{4}[N'_{y}]^{2}) dxdy$$
(83)

$$[B]_{e} = \iint S_{1}[N][N] dxdy \qquad (84)$$

and

$$[B1]_{e} = \iint S_{2}[N][N] dxdy$$
(85)

are n x n matrices; and

$$[F]_{e} = \iint Q_{S}[N] dxdy + \iint q[N_{S}] dS$$
(86)

is a vector.

Approximation of the time derivative in Equation 76 yields

$$((1-\theta)[S]_{n+1/2} - \frac{1}{\Delta t}[B]_{n+1}^{m}) \{H_{f}\}_{n}$$

$$+ (\theta[S]_{n+1/2}^{m} + \frac{1}{\Delta t}[B]_{n+1}^{m}) \{H_{f}\}_{n+1}^{m+1} - \frac{1}{\Delta t}[B1]_{n+1}^{m}$$

$$(\{H_{s}\}_{n+1}^{m+1} - \{H_{s}\}_{m}) - \{F\} = 0.$$
(87)

The time derivative in Equation 82 can also be approximated to yield

$$((1-\theta)[S]_{n+1/2} - \frac{1}{\Delta t}[B]_{n+1}^{m}) \{H_{S}\}_{n} + (\theta[S]_{n+1/2}^{m} + \frac{1}{\Delta t}[B]_{n+1}^{m})$$

$$\{H_{S}\}_{n+1}^{m+1} - \frac{1}{\Delta t}[B1]_{n+1}^{m} (\{H_{f}\}_{n+1}^{m+1} - \{H_{f}\}_{n}) - \{F\} = 0$$

$$(88)$$

•

Equations 87 and 88 can be solved simultaneously to yield the head distributions in a confined aquifer. The change in interface elevation can be computed from Equation 22 at the end of every time increment.

Other Aspects of the Finite-Element Technique

According to Pinder and Frind (1972), implementation of the Galerkin finite-element approximation is heavily dependent on the weighting functions. The functions are continuous polynomials and are defined at each node. The polynomial to be chosen depends on the shape of the boundaries.

The flow domain, in this model, is divided into quadratic, triangular elements with six nodes per element. An appropriate polynomial is chosen to define the weighting functions. The shape functions and derivatives of the shape functions are given by Segerlind (1976) and Zienkiewicz (1971).

The element matrices arising in the finite-element equations have to be evaluated numerically using an integration scheme. A Gaussian quadrature integration technique is employed to integrate the elemental matrices and obtain the coefficients. The integrated element matrices are inserted into a global matrix. The force vector, F, is computed if a source or sink exists.

The resulting system of equations is solved by a backward Gauss elimination method to yield the change in the dependent variable at each node for each time interval. The new interface elevation is evaluated at the end of every time step. The computations are terminated when either

- a. the change of head between two successive time intervals is less than a predetermined tolerance, or
- b. the sum of the time increments equals the maximum time specified.

Finite-Element Computer Model

The computer program is capable of predicting the interface elevations in confined or unconfined aquifers. The program solves the fresh-water and salt-water flow equations and then updates the hydraulic heads and the interface elevation.

The program has been developed to handle steady-state or transient variations of the head distributions in an aquifer. In the case of an unconfined aquifer, the program can also incorporate the effects of capillarity on the specific yield and the water table elevation.

The programming language used in the development of this program is FORTRAN IV. Input data requirements and formats are described in Appendix A and the computer program is summarized in Appendix B. A listing of the source codes is included in Appendix C.

CHAPTER V

TESTING OF THE NUMERICAL MODEL

The numerical model developed in the preceeding chapter has to be verified against existing analytical or experimental models before it can be used to simulate field conditions. The computer program has to be tested for 1) its ability to simulate the movement of the freshwater/salt-water interface, 2) its effectiveness in accounting for capillary flow effects in the unsaturated zone, and 3) its capability in tracking the movement of the salt-water wedge in a coastal aquifer.

The first part of the model can be verified using Sahni's (1972) observations for salt-water coning below a fresh-water discharge well in a phreatic aquifer. The physical model was constructed to study the effects of discharge and well geometry on the critical rise in upconing. By using the numerical model to simulate the physical experiment, the ability of the model to predict the shape and position of the dynamic interface can be established.

The effect of capillarity on the water table and specific yield will be investigated on the basis of experimental observations made by Ortiz, et al. (1978). Their physical model was developed to study the effects of capillarity and specific storage on the growth of ground-water mounds beneath a surface recharge area. The experimental data will be used to demonstrate the ability of the numerical model to account for the capillary fringe in phreatic aquifers.

The above two applications will fulfill the primary objectives of this research. The versatility of the model can be demonstrated if it can track the transient sea-water wedge in a coastal aquifer. This part of the model will be tested against Henry's (1959) analytical model for salt-water intrusion into a confined coastal aquifer.

Upconing in an Unconfined Aquifer

Sahni (1972) simulated salt-water coning beneath a well discharging fresh-water using a pie-shaped model (Figure 6). The model was constructed in such a way as to preserve radial symmetry in the homogeneous, isotropic medium. The radial walls of the pie-shaped sector formed an included angle of 15°. The radius of the sector was 122 cm and it was 61 cm high. The radius of the fresh-water well was 2.38 cm and its base was 13.5 cm below the top of the model.

The fluids used to simulate fresh-water and salt-water were chosen so that a well defined interface existed between the two fluids. The homogeneous, isotropic medium was simulated by glass beads 2.5 mm in diameter.

The well radius and the outer perimeter of the pie-shaped sector were fixed and the hydraulic heads at the outer boundary held constant. After noting down the initial positions of the interface and the phreatic surface, fresh-water withdrawal was started. Finally, after allowing sufficient time for the system to attain steady state, the positions of the interface and free surface were recorded at several radial distances from the well axis.

Figure 6. Sahni's Experimental Model for Salt-Water Upconing in a Phreatic Aquifer

Numerical Analysis of the Physical Model

In order to perform numerical simulation of Sahni's physical model, a finite-element mesh was constructed by Layla (1980) so that it closely resembled the physical model. The geometry and properties of the finiteelement system and the physical model are shown in Figure 7.

The numerical model was first tested for three cases: (1) steady state flow with an nodal discharge, (2) steady state flow with an areal discharge, and (3) transient flow with an areal discharge. These cases were investigated using the finite-element mesh depicted in Figure 19 (Appendix F). The input data and the results of the numerical analyses for these three cases are listed in Tables I to III (Appendix D) and X to XII (Appendix E), respectively. The experimental observations made by Sahni are also listed in Table IX (Appendix E).

The results of Cases 1 and 2 are illustrated in Figure 8. The large errors near the well axis for a nodal sink can be attributed to the fact that in the numerical solution the fresh-water is discharged out from a point sink whereas in the experimental model the discharge is from a well of radius 2.38 cm. The reasoning is corroborated by the comparitively better results obtained by using an areal sink. The results would have more closely matched the physical model if the whole well could have been simulated instead of just a cross-section.

Figure 9 depicts the results from the numerical model for Case 3. The numerical model is accurate except within the area of the well radius where the head changes are extremely sensitive to the discharge velocities. Even so, the fresh-water elevations are essentially identical and the discrepancy in interface elevations is restricted to regions

Figure 7. Finite Element Mesh Simulation of Sahni's Physical Model

Figure 9. Transient Numerical Analyses Employing Different Mesh Layouts

near the well axis. This can be explained by the fact that, unlike the physical model, radial symmetry around the well axis is not preserved. In the physical model the well is 13.5 cm deep whereas the numerical model is built around the assumption of a well situated at ground-level. The Dupuit-Forchheimer assumptions are also not valid within the well radius as vertical flow components are not negligible.

The finite-element mesh configuration shown in Figure 19 (Appendix F) does not preserve radial symmetry around the well axis. The interface elevation, obtained from the numerical model, would have more closely matched the physical data if the mesh were to be reoriented to retain a certain amount of radial symmetry around the well axis. The finite-element mesh layout depicted in Figure 20 (Appendix F) is constructed so as to ensure a reasonable degree of radial symmetry around the well axis. Cases 4 and 5 are similar to Cases 2 and 3, respectively, except that they utilize the new mesh configuration to simulate Sahni's physical model. The corresponding input data and results for Cases 4 and 5 are given in Tables IV and V (Appendix D) and Tables XIII and XIV (Appendix E), respectively. Comparison of experimental results and the solution obtained from the steady state numerical analysis is presented in Figure 10. The transient numerical solution in Figure 11 matches the physical model very accurately except around the well axis where there is some deviation from the experimental results.

This new mesh layout could probably have given better results if 24 elements were situated in the discharge well area instead of the 6 elements which were used. However, the results obtained from the numerical model are accurate enough to suggest that this part of the numerical model was valid.

Expanded Mesh

Figure 11. Experimental Results versus Transient Analysis of the Numerical Model Obtained Using the Expanded Mesh

Effect of Capillarity on Ground-Water Mounds

Earlier researchers have assumed that (1) the percolation rate is vertically downwards until it encounters the phreatic surface, (2) the water table encompasses the flow region, and (3) the fillable pore space is constant and equal to the drainable porosity, which amounts to neglecting the effects of capillarity.

In the 1978, Ortiz, et al. constructed a physical model to study the growth of ground-water mounds under artificial recharge areas in the presence of capillary pressure. The growth of ground-water mounds as a result of vertical percolation from surface recharge sites is illustrated in Figure 12. The physical model was a narrow flume approximately 365 cm long, 40 cm high and 5.1 cm wide, containing a porous medium. A constant recharge rate was established at the soil surface with the help of a recharge simulator. The initial condition for each recharge test was a horizontal water table elevation. After initiation of a constant recharge rate, Ortiz, et al. (1978) recorded the development of the ground water mound at pre-established time intervals.

Numerical Analysis of Physical Model

The finite-element mesh (Figure 13) was used to simulate the physical system used by Ortiz, et al, in their investigations on the effect of capillarity on ground-water mounds. It was possible to construct a very accurate mesh because of the way in which the physical model was constructed. The input data for the numerical analysis and the results are listed in Table VII (Appendix D) and Table XVII

Figure 12. Ground-Water Mounding due to Vertical Percolation from Surface Recharge Areas

Figure 13. Finite Element Mesh Simulation of the Experimental Model of Ortiz, et al.

(Appendix E) respectively. A detailed sketch of the mesh layout used in the numerical simulation is shown in Figure 21 (Appendix F). The input data used in simulating the physical model, without the influence of capillarity, is shown in Table VIII (Appendix D) and the numerical solution is listed in Table XVIII (Appendix E).

The results of the physical and numerical models are shown in Figure 14. The results of the numerical model simulation are very good and the slight deviations from the experimental values can be attributed to the various simplifying assumptions which were incorporated into the numerical model. Comparison of the numerical solutions with and without the influence of capillarity on the ground-water mounds are shown in Figure 15 and demonstrated that the effects of capillarity significantly influence the development of ground-water mounds.

Salt-Water Intrusion in a Confined Coastal Aquifer

This case was investigated on the basis of Henry's (1959) analytical model and using Reddell and Sunada's (1970) numerical data. Sea-water intrudes into a confined, coastal aquifer (Figure 16) when fresh-water flows into the sea. Salt-water enroachment will be contained only when the fresh-water flow becomes steady.

Utilizing Darcy's law and the Dupuit-Forchheimer principle, the specific discharge of fresh-water per unit width of coast is given as

$$q = Ky \frac{dh}{dx}^{*}$$
(89)

where

K = hydraulic conductivity,

y = distance from impermeable confining layer to the interface and

DISTANCE FROM CENTERLINE OF MOUND, CM.

Figure 16. Sea-Water Wedge in a Confined Coastal Aquifer

.

.

h* = piezometric head.

Pressure balance of the salt-water fresh-water interface, in the homogeneous, isotropic medium, requires that

$$y = \frac{\rho_{f}}{\Delta \rho} h^{*} - \frac{\rho_{s}}{\Delta \rho} \xi$$
(90)

where

 ρ_{f} = density of fresh-water,

 ρ_{s} = density of salt-water,

 ξ = height of ocean above top of aquifer, and

$$\Delta \rho = \rho_{\rm S} - \rho_{\rm f}. \tag{91}$$

Substituting Equation 90 in Equation 89 yields

$$q = K \left(\frac{\rho_{f}}{\Delta \rho} h^{*} - \frac{\rho_{s}}{\Delta \rho} \xi\right) \frac{dh^{*}}{dx}$$
(92)

which can be rearranged to

$$(h^* - \frac{\rho_S}{\rho_f} \xi) dh^* = \frac{q\Delta\rho}{\rho_f K} dx.$$
(93)

Upon integration,

$$\frac{(h^{\star})^2}{2} - \frac{\rho_s}{\rho_f} \xi h^{\star} = \frac{q\Delta\rho}{\rho_f K} x + C$$
(94)

where C is a constant of integration.

Henry (1959) found that for a vertical outflow face

$$y(x=0) = \frac{0.741 \ q \ \rho}{K\Delta\rho} f$$
 (95)

Substituting Equation 95 in Equation 90 gives

$$h^{\star}(x = 0) = \frac{0.741q}{K} + \frac{\rho_{s}}{\rho_{f}} \xi$$
(96)

Equation 96 can be placed in Equation 94 to yield the constant of integration, or

$$C = \frac{\left(\frac{0.741q}{K} + \frac{\rho_{s}}{\rho_{f}}\xi\right)^{2}}{2} - \frac{\rho_{s}}{\rho_{f}}\xi\left(\frac{0.741q}{K} + \frac{\rho_{s}}{\rho_{f}}\xi\right)$$
(97)

After simplification,

$$C = \frac{\left(\frac{0.741q}{K}\right)^2 - \left(\frac{\rho_s}{\rho_f} \xi\right)^2}{2}$$
(98)

Equations 98 and Equation 94 can be combined to yield

$$h^{\star} = \left[\frac{2q\Delta\rho}{K\rho_{f}} \times + \left(\frac{0.741q}{K}\right)^{2}\right]^{1/2} + \frac{\rho_{s}}{\rho_{f}} \xi .$$
(99)

Finally, substituting Equation 99 in Equation 90 gives

$$y^{2} = \frac{2q\rho_{f}}{K\Delta\rho} x + (\frac{0.741 \ q \ \rho_{f}}{K\Delta\rho})^{2}$$
(100)

Equations 99 and 100 were solved analytically using Reddell and Sunada's (1970) data, and the results are listed in Table XV (Appendix E). The finite-element mesh representation of the analytical model is shown in Figure 17. The mesh is divided into 20 elements with 63 nodes so that it can simulate a confined aquifer, 160 cm long and 1 cm wide. The input data and the results of numerical analysis using Figure 22 (Appendix F) are listed in Table VI (Appendix D) and Table XVI (Appendix E) respectively. The analytical and numerical results are plotted in Figure 18. It is evident that at steady state, the agreement between the numerical analytical solutions is very good, except in the

Figure 17. Finite Element Mesh Simulation of the Analytical Model

-

vicinity of the sea. In the analytical model, the fresh-water discharges into the ocean through a vertical outflow face. This boundary condition cannot be simulated in the numerical model. Hence, large deviations of interface elevation result at the coastline.

The finite-element mesh (Appendix F) used for this problem is not symmetrical along the longitudinal axis and could be an explanation for the discrepancy observed in Figure 18. Better results would be obtained if a symmetrical mesh were used and the spatial distances reduced in the vicinity of the coast. This would thereby establish a relatively smooth gradient, and the interface elevations would approach the analytical model. The boundary condition at the coast where the fresh-water discharges into the sea is extremely difficult to handle numerically due to the presence of an infinite gradient. This can be overcome by placing very small spatial grids near the coast but this would lead to enhanced computational costs.

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The finite element model, developed and verified in the preceeding chapters, has been found to be extremely accurate in its ability to predict the location of the dynamic fresh-water/salt-water interface. Unlike some earlier models, a few simplifying assumptions have been circumvented so as to ensure greater accuracy. For instance, instead of neglecting to consider salt-water hydrodynamics, the simultaneous movement of both fresh water and salt water has been incorporated into the model. Also, the effects of capillary flow and capillary storage on the water table and the specific yield have been taken into account. The contribution of these effects, as shown in the last chapger, significantly influence the growth of ground-water mounds under surface recharge.

An advantage of a two-dimensional areal model is that it can easily accommodate surface sources and/or sinks. Other useful features of the model include the ability to simulate single phase flow or immiscible displacement processes under steady-state or transient conditions and the capacity to include nodal sources and/or sinks.

The transient simulation of the salt-water wedge produced oscillations which showed no indication of dampening out. Mercer and Faust (1977) report that this problem persists even if the element and/or time step sizes are reduced. They suggest a collocation finite element

solution or a finite element approximation of the time derivative to effectively control oscillations in the numerical solution. The finite element approximation uses weighted averages of the time derivatives over the elements to simulate the intrusion of the salt-water wedge. The implementation of either of these techniques is impractical in this research, as it would involved restructuring the whole model from a fundamental basis.

Efficient use of the numerical model can be accomplished if the following guidelines are followed. One important consideration is the need to construct a refined mesh near discontinuities in the physical system to be simulated. Also, the numbering of nodes and elements should be done to minimize band width in the matrix equations. This can be accomplished by utilizing one of the many mesh-generation computer programs available in literature.

The finite element model is not restricted to salt-water/fresh-water systems but can be used to simulate other immiscible displacement problems as well. For example, the numerical model can be used to predict the formation of plumes for light or heavy hydrocarbon systems. The model also might be used to predict the formation of a water cone beneath a producing oil well with a natural water drive. Recovery of oil by water injection can also be simulated. Finally, liquid waste disposal by deep well injection can be modeled if the liquid waste-water system can be assumed to be immiscible.

The computer model was tested for homogeneous, isotropic aquifers. If field and/or laboratory data become available, future work could be directed toward analyzing the performance of the model for heterogenous, anisotropic aquifers.
REFERENCES

Bear, J., <u>Hydraulics of Ground Water</u>, McGraw-Hill, New York, 567 p., 1979.

Bredehoeft, J. D. and G. F. Pinder, "Digital Analysis of Areal Flow in Multiaquifer Groundwater Systems: A Quasi Three-Dimensional Model," Water Resources Research, Vol. 6. No. 3, pp. 883-888, June, 1970.

- Brooks, R. H. and A. T. Corey, "Hydraulic Properties of Porous Media," Hydrology Paper No. 3, Colorado State University, Fort Collins, Colorado, March, 1964.
- Burdine, N. T., "Relative Permeability Calculations from Pore Size Distribution Data," Petroleum Trans., AIME, Vol. 198. pp. 71-78, March, 1953.
- Corey, A. T., "Measurement of Water and Air Permeability in Unsaturated Soil," Soil Science Society of America Proceedings, Vol. 21. No. 1, Jan.-Feb., 1957.
- Duke, H. R., "Capillary Properties of Soils-Influence Upon Specific Yield," Trans. ASAE, pp. 688-691, 1972.
- Glover, R. E., "The Pattern of Fresh-Water Flow in a Coastal Aquifer," Journal of Geophysical Research, Vol. 64. No. 4, pp. 457-459, April, 1959.
- Henry, H. R., "Salt Instrusion into Fresh-Water Aquifers," Journal of Geophysical Research, Vol. 64. No. 11. pp. 1911-1919, Nov., 1959.
- Layla, I. R., "Numerical Analysis of Transient Salt/Fresh-Water Interface in Coast Aquifers," Ph.D. Dissertation, Colorado State University, Fort Collins, p. 188, Spring, 1980.
- Mercer, J. W. and C. R. Faust, "The Application of Finite-Element Techniques to Immiscible Flow in Porous Media," Finite Elements in Water Resources (Gray et al. ed.), Princeton, N.J., pp. 1.21-1.57, July, 1977.
- Neuman, S. P. and P. A. Witherspoon, "Finite Element Method for Analyzing Steady State Seepage With a Free Surface," Water Resources Research, pp. 889-897, June, 1970.

- Ortiz, N. V., Duke, H. R., Sunada, D. K. and D. B. McWhorter, "Artifical Ground-Water Recharge with Capillarity," AACE, Irrigation and Drainage Division, IR1, pp. 78-93, March, 1978.
- Pinder, G. F., "A Galerkin-Finite Element Simulation of Groundwater Contamination on Long Island, New York," Water Resources Research, Vol. 9. No. 6, pp. 1657-1669, December, 1973.
- Pinder, G. F. and H. H. Cooper, Jr., "A Numerical Technique for Calculating the Transient Position of the Saltwater Front," Water Resources Research, Vol. 6, No. 3, pp. 875-882, June, 1970.
- Pinder, G. F. and E. O'Frind, "Application of Galerkin Procedure to Aquifer Analysis," Water Resources Research, Vol. 8. No. 1, pp. 108-120, Feb., 1972.
- Pinder, G. F. and R. H. Page, "Finite Element Simulation of Salt Water Intrusion on the South Fork of Long Island," Proc. Intern. Conf. on Finite Elements, Princeton, N.J., pp. 2.51-2.69, 1976.
- Reddell, D. L. and D. K. Sunada, "Numerical Simulation of Dispersion in Groundwater Aquifers," Hydrology Paper No. 4, Colorado State University, Fort Collins, p. 79, June, 1970.
- Sahni, B. M., "Salt Water Coning Beneath Fresh Water Wells," Ph.D. Dissertation, Colorado State University, Fort Collins, p. 168, April, 1972.
- Segerlind, L. J., <u>Applied Finite Element Analysis</u>, John Wiley and Sons, Inc., New York, 1976.
- Segol, G., Pinder, G. F. and W. G. Gray, "A Galerkin-Finite Element Technique for Calculating the Transient Position of the Saltwater Front," Water Resources Research, Vol. II. No. 2, pp. 343-347, April, 1975.
- Zienkiewicz, O. C., <u>The Finite Element Method in Engineering Science</u>, McGraw-Hill, New York, p. 521, 1971.

APPENDIXES

:

.

.

.

• • •

APPENDIX A

INPUT CODES FOR PROGRAM

CARD SET 1

No: of cards = 1

NAQTYP	= 0	unconfined aquifer confined aquifer
NSS	= 0	transient flow steady flow
NCAP	= 0	no capillarity exists capillarity exists
NPHASE	= 1	single fluid present two fluids present
FORMAT	- 413	

CARD SET 2

No:	of cards = 1	
	NUMEL	= No: of elements
	NUMNP	= No: of nodal points
	NNPE	= No: of nodes per element
	IBWDTH	= Band width
	NUMAT	= No: of materials of varying permeabilities
	NCS	= No: of cross sections
	FORMAT	- 615

CARD SET 3

No:	of cards = 1					1				
	NQF	=	No:	of	fresh	n waten	r nodal	sinks	and/or	r sources
	NQS	=	No:	of	salt	water	nodal	sinks	and/or	sources
,	NQXYF	=	No:	of	fresh	water	areal	sinks	and/or	sources

NQXYS = No: of salt water areal sinks and/or sources FORMAT ----- 415

CARD SET 4

No: of cards = NCS

NCS = Nodal points of cross section(s)

FORMAT ---- 2513

CARD SET 5

No: of cards - 1

GAMAF	= Density of fresh water						
GAMAS	= Density of salt water						
LAMDA	= Pore size distribution index						
BUBPH	= Bubbling pressure head						
(Ignore	LAMDA and BUBPH if NCAP = 0)						
SPS	= Specific storage of confined aquife	١r					
(Ignore	(Ignore if NAQTYP = 0)						
DHST	= Tolerable change in head						
ITER	= No: of time increments						
FORMAT -	6F10.5, I2						

CARD SET 6

No: of cards = NUMAT I = Element no: K_X = Hydraulic conductivity of element I in the xdirection K_y = Hydraulic conductivity of element I in the ydirection S_y = Specific yield of element I FORMAT ----- I5, 3F10.5

CARD SET 7

No: of cards = 1 FTIME = Initial time TMAX = Maximum time THETA = Numerical time integration parameter 0.0 - Explicit 0.5 - Crank-Nicholson 1.0 - Implicit FORMAT ----- 3F10.3, F5.3

CARD SET 8

No:	of cards =	NUMNP
	Ι	= Nodal number
	NPBC	= Boundary condition at node I 0 no flow 1 constant head
	XORD	= x-ordinate of node I
	YORD	= y-ordinate of note I
	HF	= Total head at node I
	HS	= Salt water head at node I
	PSI	= Interface elevation at node I
	FORMAT	2I10, 5F10.5
	(If NPH	ASE = 1: HS=PSI=0)

CARD SET 9

No: of cards = NUMEL

I = Element no:

NP = Nodal no: of element I read counter clockwise
FORMAT ----- 7110

CARD SET 10 No: of cards = NUMELΙ = Element no: MAT = Material no: of I FORMAT ----- 4211 Skip this card if NUMAT = 1 CARD SET 11 No: of cards = NOFΙ = Node no: QNODF = Discharge or recharge of fresh water at node(s) I - ve for discharge + ve for recharge FORMAT ----I5, F10.5 Skip this card if NQF = 0CARD SET 12 No: of cards = NQS Ι = NQSQNODS = Discharge or recharge of salt water at node(s) I - ve for discharge + ve for recharge FORMAT ----- I5, F10.5 Skip this card if NQS = 0CARD SET 13 No: of cards = NQXYF Ι = Element No: QXYF = Areal Discharge or recharge of fresh water on element(s) I - ve for discharge + ve for recharge FORMAT ----- 15, F10.f Skip this card if NQXYF = 0

CARD SET 14

No: of cards = NQXYS I = Element No: OXYS = Areal discharge or recharge of salt water on element(s) I. - for discharge + for recharge FORMAT ----- 15, F10.5 Skip this card if NQXYS = 0CARD SET 15 No: of cards = NUMNP/8Ι = Node No: В = Thickness of confined Aquifer FORMAT ---- 8F8.4 Skip this card if NAQTYP = 1 CARD SET 16 No: of cards = NUMNP/8Ι = Node No: DGS = Distance from soil surface to aquifer bottom FORMAT ---- 8F8.4

Skip this card if NCAP = 0

NOTE: The format statements may need modification for specific types of problems. Dimensions of input variables are given in the nomenclature as well as in the program. All units should be dimensionally consistent. .

.

APPENDIX B

SUMMARY OF COMPUTER PROGRAM

.

· · · ·

The main program formulates element matrices, transmissivities, and applies the necessary boundary conditions for each time step. The nodal force vector is also computed if a nodal or areal source or sink exists.

SUBROUTINE IODAT

The input data consisting of control parameters, mesh and flow parameters, numerical parameters, and source and/or sink locations is read in by this subroutine. This subroutine also initializes various arrays.

SUBROUTINE SHAPFN

Quadrature points and weighting functions are defined so that the shape functions can be computed in subprogram SFN.

SUBPROGRAM SFN

Evalutes shape functions and returns them to SHAPEN.

SUBPROGRAM SFNXI

Computes the derivatives of the shape functions with respect to one global coordinate and returns them to SHAPFN.

SUBPROGRAM SFNETA

Computes the derivatives of the shape functions with respect to the other global coordinate and returns them to SHAPFN.

SUBROUTINE CHECK

This subroutine terminates execution of the program if the maximum change of interface elevation at any node, for successive time intervals, is less than a specified tolerance.

SUBROUTINE COEFFS

The coefficients appearing in the finite element matrix equations are computed and then averaged over an element.

SUBROUTINE GQINT

The matrices appearing in the finite element equations are integrated using a Gaussian quadrature integration scheme. The Jacobian and its inverse are computed to enable the shape functions to be derived with respect to cartesian coordinates.

The elemental matrices are pieced together and the force vector computed if areal sources and/or sinks exist.

SUBROUTINE GLOBAL

The global matrix is assembled using the elemental matrices computed in GQINT. Due to symmetry, the assembly is limited in the upper half of the global matrix.

SUBROUTINE GAUSOL

Gausol solves the resultant system of algebraic equations by an upper diagonal-upper Gaussian elimination. The output is the change in head for a particular time step.

SUBROUTINE INTELV

INTELV updates the interface elevation by utilizing the computed values of the head changes in both; fresh and salt water regions; at the end of each time step.

SUBROUTINE OUTDAT

This subroutine prints the new elevations after each time step.

SUBROUTINE CAPRES

This part of the program computes the saturated and permeable heights and also calculates the resulting specific yield.

SUBROUTINE HEADCH

The maximum changes in the fresh-water and salt-water heads, between iterations within a given time step, are evaluated in this routine. If convergence is reached, computations progress to the next time step.

SUBROUTINE TSTEP

This routine establishes optimum time step sizes with the aid of an acceleration factor.

۵

SOURCE CODES FOR COMPUTER PROGRAM

•

~				
0				GRUUNOUT
C*	****	*******	***************************************	*****GROUN002
С	****	**** PROG	RAM GROUNDWATER COMPUTES THE FRESH AND SALT WATER ***:	*****GROUN003
С	****	**** HEAD	DISTRIBUTIONS IN CONFINED OR UNCONFINED AQUIFERS ****	*****GROUN004
Ċ	****	**** THE	PROGRAM IS BUILT TO HANDLE STEADY STATE AS WELL ***	******GPOUNOOS
ē	****	**** AC TI	CANSENT VADIATIONS OF ELOW OF THE ELUTION THE ***:	***************************************
č	ى بى بى ب	AJ II	CANSIENT VARIATIONS OF FULL OF THE FLOIDS . THE	
C	* * * *	TATE INIE	RFACE ELEVALIUNS ARE EVALUATED AT THE END OF A ****	*****GROUN007
С	****	**** SPEC:	IFIC YIELD IN UNCONFINED AQUIFERS IS INCORPORATED ****	*****GROUNOO8
С	****	**** IN A	SPECIFIC SUBROUTINE . ****	****GROUN009
C*	****	*******	***************************************	*****GROUNO10
~*	****	******	******	*****CP0UN011
č				CROUNDIN
Č				GRUUN012
С	****	*******	***************************************	*****GROUNO13
С	****	*******	*********** DEFINITIONS OF VARIABLES ************************************	*****GROUNO14
С				GROUNO15
С				GROUNO 16
č	***	BETA	ADEAL AVERAGE OF THE SPECIFIC VIELD OF AN ELEMENT	****CPOUNO17
ž	ب بد بد	DETAC	AREAL AVERAGE OF THE STEELING FILED OF AN ELEMENT	SROUNO 17
U.		BEIAS	AREAL AVERAGE OF THE STORATIVITY OF AN ELEMENT	****GRUUNO18
С	***	BUBPHD -	BUBBLING PRESSURE HEAD (L)	****GROUNO19
С	***	DETJ	DETERMINANT OF THE JACOBIAN MATRIX	****GROUN020
С	***	DGS	DISTANCE FROM AQUIFER BOTTOM TO SOIL SURFACE (L)	****GROUN021
С	***	DHF	NODAL CHANGE OF THE FRESH WATER HEAD (L)	****GR0UN022
č	***		NODAL CHANGE OF THE SALT WATER HEAD (1)	****62011N022
ž		DUCT	NODE CHANGE TO THE DAMAGE (1)	TTTTTOROUNO23
Č	~~~		STEADY STATE TULERANCE (L)	****GRUUNU24
С	***	DMAX	MAXIMUM CHANGE OF INTERFACE ELEVATION AMONG ALL	****GROUN025
С	***		NODES AT THE END OF A TIME INTERVAL (L)	****GR0UN026
С	***	DNDX	DERIVATIVE OF THE SHAPE FUNCTION WITH RESPECT TO X	****GR0UN027
Ċ	***	DNDY	DERIVATIVE OF THE SHAPE FUNCTION WITH RESPECT TO Y	****GR0UN028
č	***	DTIME	TIME INCREMENT (T)	****0000020
č		DITME		****GRUUNU29
C	***	EPSX	TIME INCREMENT ACCELERATION PARAMETER	****GR0UN030
С	***	FTIME	INITIAL TIME (T)	****GROUNO31
С	***	GAMAF	DENSITY OF FRESH WATER (M/L**3)	****GROUN032
С	***	GAMAS	DENSITY OF SALT WATER (M/L**3)	****GROUN033
č	***	H	HEAD AT A NODE (1)	****600110034
ž	-		= CONTVALENT CATURATED = EFORT (1)	SROUNO3-
5			EQUIVALENT SATURATED HEIGHT (L)	TTTTGRUUN035
C	***	HELD	ARRAY FOR STORING THE SATURATED HEIGHT FROM A	****GROUN036
С	***		PREVIOUS TIME INCREMENT (L)	****GROUN037
С	***	HF	TOTAL HEAD IN THE AQUIFER (L)	****GROUN038
С	***	HK	EQUIVALENT PERMEABLE HEIGHT (L)	****GROUN039
ċ	***	HS	SALT WATER HEAD (1)	****GR0UN040
č	***	TRAND		
Š		IBAND	BAND WIDTH FLUS UNE	####GROUNO41
C	* * *	IRMDIH -	BAND WIDTH. THE LARGEST DIFFERENCE BETWEEN TWO NODES	****GRUUN042
С	***		IN ANY GIVEN ELEMENT	****GROUN043
С	* * *	IDIAG	COLUMN LOCATION OF THE ROTATED SK MATRIX DIAGONAL	****GROUNO44
С	***	INCR	TIME INCREMENT COUNTER	****GROUN045
č	***	TTED	NUMBER OF TIME INCREMENTS	****GP0UN046
ž	****		UNDEALS TO CONDUCTIVITY OF AN ELEMENT IN THE Y DIRECT	***************************************
Š		N A	TTORADEIG GUNDOGTIVITT OF AN ELEMENT IN THE A DIREC-	####GROUNO47
C	***		110N (L/T)	****GRUUN048
С	***	KY	HYDRAULIC CONDUCTIVITY OF AN ELEMENT IN THE Y DIREC-	****GROUN049
С	***		TION (L/T)	****GROUN050
С	***	LAMDA	PORE SIZE DISTRIBUTION INDEX	****GROUN051
С	***	MAT	MATERIAL PROPERTY OF ELEMENT I	****GR0UN052
č	***	NAOTVP -	TYPE OF ADULTEED	****CP0UN053
ž		NAVITE		****ODOLNOS
C	***		O UNCUNFINED	****GRUUN054
С	***		1 CONFINED	****GROUN055
С	***	NCAP	PRESENCE OF CAPILLARITY	****GROUN056
С	***		O ND CAPILLARY FLOW AND STORAGE	****GROUN057
ċ	***		1 CAPTLLARY FLOW AND STORAGE EXISTS	****GR0UN058
č	***	NOWASE -	- NUMBER OF FLUTTS DESENT IN AOUTER	****CPOUNOSO
č		NPHAJE -	- NUMBER OF FLOIDS FREENIN IN AUDITER	STATE OR DUNOSS
C	***		I SINGLE FLUID PRESENI	GRUUN060
С	* * *		2 TWO FLUIDS PRESENT	****GROUNO61
С	***	NCS	NUMBER OF HORIZONTAL CROSS SECTIONS	****GROUN062
С	***	NNPE	NUMBER OF NODES PER ELEMENT	****GROUN063
Ċ	***	NP	NODAL POINT OF AN ELEMENT.	****GROUNO64
č	***	NPRC	TYPE OF BOUNDARY CONDITION	****600110005
ž	ىد بو بو		A THIEDIOD NODE OD WADIADIE USAD	****OPOUNOGO
C C	***		U INTERIUK NUDE UK VARTABLE HEAU	
С	***		1 CUNSTANT HEAD	****GRDUN067
С	***	NPCS	NODAL POINTS OF HORIZONTAL CROSS SECTIONS	****GROUN068
С	***	NQF	NUMBER OF FRESH WATER SOURCE(S) AND/OR SINK(S)	****GROUN069
С	***	NQS	NUMBER OF SALT WATER SOURCE(S) AND/OR SINK(S)	****GROUN070

С	***	NQXYF NUMBEF	OF FRESH WAT	ER SOURCE(S)	AND/OR SI	NK(S)	****GROUNO71
С	***	NQXYS NUMBER	OF SALT WATER	R SOURCE(S)	AND/OR SIN	<(S)	****GROUN072
С	***	NSS TYPE (F FLOW				****GROUN073
С	***	0 1	RANSIENT				****GROUN074
С	***	1 5	TEADY				****GRDUN075
С	***	NUMAT NUMBER	OF MATERIALS	WITH DIFFER	RING PERMEAE	BILITIES	****GROUN076
С	* * *	NUMEL NUMBER	OF ELEMENTS.				****GR0UN077
С	* * *	NUMNP NUMBER	OF NODES				****GROUN078
С	* * *	NUMOPT - NUMBER	OF QUADRATUR	E POINTS IN	AN ELEMENT		*** GROUN079
С	* * *	PHIJ AREAL	AVERAGE OF THE	E FRESH WATE	R OVER AN E	ELEMENT (L)	****GROUN080
С	***	PSI INTERF	ACE ELEVATION	(L)			****GROUNO81
С	* * *	QNOD NODAL	DISCHARGE OR F	RECHARGE OF	A FLUID (L'	**3/T)	****GR0UN082
С	***	QNODF FRESH	WATER NODAL D	ISCHARGE OR	RECHARGE (L	_**3/T)	****GROUNO83
С	***	NEGATI	VE SIGN FOR D	ISCHARGE			****GROUN084
С	* * *	POSITI	VE SIGN FOR R	ECHARGE			****GROUN085
С	* * *	QNODS SALT V	ATER NODAL DIS	SCHARGE OR R	ECHARGE (L'	**3/T)	****GROUNO86
С	***	NEGATI	VE SIGN FOR D	ISCHARGE			****GROUN087
С	***	POSITI	VE SIGN FOR R	ECHARGE			****GROUN088
С	* * *	QPT QUADRA	TURE POINT OF	AN ELEMENT.			*** GROUN089
С	***	QXY AREAL	DISCHARGE OR F	RECHARGE OF	A FLUID (L/	/Τ)	****GROUN090
С	***	QXYF AREAL	FRESH WATER D	ISCHARGE OR	RECHARGE (L	./T)	***GROUN091
С	***	NEGATI	VE SIGN FOR D	I SCHARGE			****GROUN092
С	***	POSITI	VE SIGN FOR RE	ECHARGE			****GROUN093
С	***	QXYS AREAL	SALT WATER DIS	SCHARGE OR R	ECHARGE (L1	Γ)	****GROUN094
С	***	NEGATI	VE SIGN FOR D	I SCHARGE			****GROUN095
С	***	POSITI	VE SIGN FOR RE	ECHARGE			****GROUN096
С	***	RJAC JACOBI	AN MATRIX				****GROUN097
С	***	RJACI INVERS	E OF THE JACOE	JIAN MATRIX .			****GROUN098
С	***	SF SHAPE	FUNCTION OR IT	FS DERIVATIV	'ES		****GROUN099
С	***	SK GLOBAL	STIFFNESS MAT	FRIX			****GROUN100
С	***	SPB MATRIX	S MINUS MATR	(X B1			****GROUN101
С	***	SMB MATRIX	S MINUS MATRI>	< В			****GROUN102
С	***	BHS MATRIX	B PLUS MATRI>	< S			****GROUN103
С	***	SPS SPECIF	IC STORATIVITY	OF CONFINE	D AQUIFER.		****GROUN104
С	***	SY SPECIF	IC YIELD OR PO	JROSITY			****GROUN105
С	***	SYIJ AREAL	AVERAGE OF THE	E SPECIFIC Y	IELD OVER A	N ELEMANT.	****GROUN106
C	***	THETA NUMERI	CAL TIME INTER	GRATION PARA	METER		****GROUN107
C	* * *	0.0	EXPLICIT				****GROUN108
C	***	0.5	CRANK-NICOLS	N (****GROUN109
C	***	1.0	IMPLICIT	. .			****GROUN110
C	***	TIME TIME A	T THE END OF A	A TIME INCRE	MENT (T)	• • • • • • • • • • •	****GROUN111
C	***	IKX IRANSN	ISSIVITY IN X	DIRECTION ($L^{**2/T}$	• • • • • • • • • • • •	****GROUN112
č		IKY IRANSN	ISSIVILY IN Y	DIRECTION (L**2/1)	••••	****GROUN113
č	***	MAX MAXIMU	M ILME (I)			••••	****GROUN114
ĉ	***	WI WEIGH!	ING FACIORS FU	JR QUADRAIUR	E INTEGRATI	UN	****GROUN115
c c	****	VORD X ORDI	NATE OF A NODA	AL POINT (L)	• • • • • • • • • •	• • • • • • • • • • •	****GRUUN116
	***	TURU T URU1	NAIE UF A NUUA	AL PUINI (L)	· · · · · · · · · · · ·		****GROUN117
č	****	******	*****		*********	********	****GROUN118
č							
č							GROUN 120
0		COMMON/C1/HE(16	0) HS(160) PST	(160) DHS(1	60) DHE (160	P(160)	GROUN 121
		COMMON /C2/ ONC	DE(160) ONODS((160) 0XVE(6	(100), 0111 (100)		GPDUN122
		COMMON /C3 / XC	PD(160) YOPD(*	160) NPBC(16	(0) = B(160) = N	(AT(62)	GROUN 123
		COMMON /C4 / BE	TA 7FTA TKX TH	(V KX(62) KV)	(62)	A (02)	GROUN 124
		COMMON /C4 / BL	$T_{1}(62) = SVT_{1}(62)$	(1, (02), (1))	VS(160)		GROUN 125
		COMMON /CG / SE	(3 6 7) WT(7)	OPT (7 3) ND	CS(3 35) ME	(160 E)	GDOUNI20
		COMMON / CO / SI	(0,0,7),WT(7), R(6 6) SMR(6 6) RHS(6 6)	SK(160 25)	(100,0)	GROUN 127
		COMMON /C8 / DN	DX(6), DNDV(6)	RUAC(2 2) P	dACT(2,2)		GROUN 128
		COMMON / C9 / TR	AND. TOTAG NUM	IP NUMEL NND	F NUMORT TO	ST	GPOLINI 29
		COMMON / C10 / T	NCR NAOTVP NSS	NCAP NOS N	DHASE		GDOUNI130
		COMMON /C11 / T	IME(31) DTIME(31) TMAX TH	FTA TTEP DN	AX FPSY FTT	ME GROUNIA22
		COMMON /C12 / G	AMAF GAMAS BUE	SPH.LAMDA SP	S. DHST DEMA	X.DSMAX	GPOLINI 122
		COMMON /C13 / D	GS(160) HE(160)) HK(160) H	5,0131,0PMA	160) F(160)	GDOIN133
		COMMON /C14 /SP	IU(60) GS GF F	TG NOYVE N			GDOLINI 134
							GPOUN135
		COMMON /C15 /HE	5T(160) HSST(4	BOL PSSIINO			
		COMMON /C15 /HF Real KX,KY LAMD	ST(160),HSST(1 1	160), PSS(160), HKLD(160)		GROUNISS
с	****	COMMON /C15 /HF REAL KX,KY,LAMD ******** INPUT	ST(160),HSST(1 A DATA AND INITI	ALIZE ARRAV	S IN INDAT	*****	GROUN137
cc	***	COMMON /C15 /HF REAL KX,KY,LAMD ******** INPUT	ST(160),HSST(1 A DATA AND INITI	ALIZE ARRAY	S IN IDDAT	*****	GROUN130 GROUN137 *** GROUN138 GROUN139
ccc	***	COMMON /C15 /HF REAL KX,KY,LAMD ******** INPUT	ST(160),HSST(' A DATA AND INIT1	ALIZE ARRAY	S IN IDDAT	*****	GROUN137 #** GROUN138 GROUN139 GROUN140

CALL IODAT GROUN141 С GROUN142 *********** COMPUTE TIME INCREMENTS FOR UNSTEADY STATE SOLUTION ******GROUN143 С С GROUN144 IF (NSS .EQ. O) CALL TSTEP GROUN145 ******* EVALUATION OF SHAPE FUNCTIONS AND THEIR DERIVATIVES ******GROUN146 С CALL SHAPFN GROUN147 С С GROUN149 С GROUN150 DO 230 IT = 1, ITERGROUN151 С GROUN152 ICOUNT = 1GROUN153 С GROUN154 $10 \quad DD \quad 200 \quad LD = 1.2$ GROUN155 С GROUN156 ******** COMPUTE THE EFFECT OF CAPILLARITY ON THE FRESH WATER ******GROUN157 С DO 20 IK = 1,NUMNP GROUN159 F(IK) = 0.0GROUN 160 CONTINUE 20 GROUN161 C GROUN162 С GROUN163 IF (NAQTYP.EQ.O.AND.NCAP.EQ.1.AND.LO.EQ.1) CALL CAPRES(IT, ICOUNT) GROUN164 ICOUNT = 2GROUN165 С ******** AVERAGE THE COEFFICIENTS OVER THE ELEMENTS ************** **GROUN166 С GROUN167 CALL COEFFS (LO) GROUN168 С GROUN169 ISST = ISST + 1GROUN170 DO 60 I = 1, NUMNP GROUN171 GD TO (30,40),LO GROUN172 H(I) = HFST(I)30 GROUN173 GO TO 50 GROUN174 40 H(I) = HSST(I)GROUN175 DD 60 J = 1, IBAND SK(I, J) = 0.0 50 GROUN176 GROUN177 CONTINUE 60 GROUN178 С GROUN179 С GROUN180 C FORMULATE ELEMENT MATRICES GROUN181 DO 140 I = 1, NUMELGROUN182 DO 70 J = 1, NNPEGROUN183 DD 70 K = 1, NNPE GROUN184 SPB(J,K) = 0.0GROUN185 BHS(J,K) = 0.0GROUN186 SMB(J,K) = 0.0GROUN187 70 CONTINUE GROUN188 EVALUATE TRANSMISSIVITY COEFFICIENTS С GROUN189 BETA = SYIJ(I)GROUN190 ZETA = SPIJ(I)GROUN191 TKX = KX(MAT(I)) * PHIJ(I)GROUN192 TKY = KY(MAT(I)) * PHIJ(I)GROUN193 С GROUN194 C BEGIN QUADRATURE INTEGRATION GROUN195 CALL GQINT (I,LO,IT) GROUN196 C END OF QUADRATURE INTEGRATION GROUN197 С GROUN198 С GROUN 199 IF (NSS.EQ.1) GO TO 110 GROUN200 C SUBTRACT SMB*PHI AND BHS*DHS FROM F GROUN201 DD 100 J = 1, NNPE GROUN202 NPJ = NP(I,J)GROUN203 DC 100 K = 1, NNPEGROUN204 NPK = NP(I,K)GROUN205 GO TO (80,90),LO GROUN206 F(NPJ) = F(NPJ) - (SPB(J,K) + SMB(J,K)) * HFST(NPK) + BHS(J,K) GROUN20780 1 * (HS(NPK) - HSST(NPK)) GROUN208 GD TD 100 GROUN209 F(NPJ) = F(NPJ) - (SPB(J,K) + SMB(J,K)) * HSST(NPK) + BHS(J,K) GROUN21090

```
1 * (HF(NPK) - HFST(NPK))
   100
            CONTINUE
          GO TO 130
         CONTINUE
  110
 С
        DD 120 J = 1, NNPE
        NPJ = NP(I,J)
        DO 120 K = 1, NNPE
        NPK = NP(I,K)
         F(NP_U) = F(NP_J) - SPB(J,K) * H(NPK)
  120
        CONTINUE
         CONTINUE
  130
 С
 C GLOBAL SUBROUTINE WILL FORMULATE THE LARGE SK MATRIX
           CALL GLOBAL (I,LO)
   140
         CONTINUE
 С
 С
 C BOUNDARY CONDITIONS
         DO 150 I = 1, NUMNP
            IF (NPBC(I).EQ.O) GO TO 150
            F(I) = 0.0
            SK(I, IDIAG) = 1.0E + 50
         CONTINUE
   150
 С
 С
 C GAUSOL SOLVES FOR F(I)
         CALL GAUSOL
         DO 160 I = 1, NUMNP
           H(I) = H(I) + F(I)
 С
            IF (H(I).LT.O.O) GD TD 240
   160
         CONTINUE
        CALL HEADCH(LO)
 С
       DO 190 I = 1, NUMNP
          GO TO (170,180), LO
  170
           DHF(I)=F(I)
           HF(I) = H(I)
          GD TO 190
           DHS(I)=F(I)
  180
           HS(I) = H(I)
   190 CONTINUE
   200 CONTINUE
      IF (NPHASE.EQ.2) CALL INTELV
       IF (DFMAX.GT.DHST.OR.DSMAX.GT.DHST) GO TO 10
       IF (NSS.EQ.1) GD TD 220
        DO 210 I=1, NUMNP
        HFST(I)=HF(I)
        HSST(I)=HS(I)
        HKLD(I) = HK(I)
        HELD(I) = HE(I)
        R(I) = PSI(I) - PSS(I)
        CONTINUE
 210
 C INCREMENT VARIABLES
      TIME(IT) = TIME(IT) + DTIME(IT)
       INCR = INCR + 1
 С
• C
        IF (NPHASE.EQ.2) CALL CHECK
   220 CALL OUTDAT(IT)
 С
 С
       IF ( NPHASE.EQ.1) GD TO 230
       IF ( DMAX .LE. DHST ) GD TD 260
 С
 230
       CONTINUE
 С
 С
```

GROUN211 GROUN212 GROUN213 GROUN214 GROUN215 GROUN216 GROUN217 GROUN218 GROUN219 GROUN220 GROUN221 GROUN222 GROUN223 GROUN224 GROUN225 GROUN226 GROUN227 GROUN228 GROUN229 GROUN230 GROUN231 GROUN232 GROUN233 GROUN234 GROUN235 GROUN236 GROUN237 GROUN238 GROUN239 GROUN240 GROUN241 GROUN242 GROUN243 GROUN244 GROUN245 GROUN246 GROUN247 GROUN248 GROUN249 GROUN250 GROUN251 GROUN252 GROUN253 GROUN254 GROUN255 GROUN256 GROUN257 GROUN258 GROUN259 GROUN260 GROUN261 GROUN262 GROUN263 GROUN264 GROUN265 GROUN266 GROUN267 GROUN268 GROUN269 GROUN270 GROUN271 GROUN272 GROUN274 GROUN275 GROUN276 GROUN277 GROUN278 GROUN279

GROUN280

```
. GO TO 280
                                                                                 GROUN281
 240
      IF (NSS.EQ.1) GD TD 250
                                                                                 GROUN282
       TIME(IT) = TIME(IT) + DTIME(IT)
                                                                                 GROUN283
С
                                                                                 GROUN284
C
                                                                                 GROUN285
  .... ERROR MESSAGE
С
                                                                                 GROUN286
       WRITE (6,300) TIME(IT)
                                                                                 GROUN287
       GO TO 290
                                                                                 GROUN288
 250
        ISST = ISST / 2
                                                                                GROUN289
       WRITE(6,310) ISST
                                                                                GROUN290
       GO TO 290
                                                                                GROUN291
  260 IF (NSS.EQ.1) GD TD 270
                                                                                GROUN292
       WRITE (6,320) TIME(IT)
                                                                                GROUN293
       GD TO 290
                                                                                GROUN294
 270
       ISST = ISST / 2
                                                                                GROUN295
       WRITE (6,330) ISST
                                                                                GROUN296
       GD TD 290
                                                                                GROUN297
  280 WRITE(6,340) ITER
                                                                                GROUN298
С
                                                                                GROUN299
  290 STOP
                                                                                GROUN300
      FORMAT (///10X,24HNEGATIVE HEADS AT TIME =,F10.5/)
FORMAT (///10X,28HNEGATIVE HEADS AT ITERATION ,I2///)
  300
                                                                                GROUN301
  310
                                                                                GROUN302
  320 FORMAT (////10X, 30HSTEADY STATE REACHED AT TIME =, F8.3,
                                                                                GROUN303
                9H SECONDS/////////
     1
                                                                                GROUN304
  330 FORMAT (////10X,24HSTEADY STATE REACHED IN ,I3,13H ITERATIONS.)GROUN305
340 FORMAT(////10X,18HND CONVERGENCE IN ,I3,12H ITERATIONS) GROUN306
c
                                                                                IODATOO1
       END
                                                                                IDDAT002
              SUBROUTINE IODAT
                                                                                IDDAT003
С
                                                                                IDDAT004
C * THIS SUBROUTINE READS THE INPUT DATA . IT ALSO INTIALIZES CONTROL * IODATOO5
C * PARAMETERS AND ECHO PRINTS THE INPUT DATA .
                                                                                IODATOOG
С
                                                                                IDDAT007
      CDMMON/C1/HF(160),HS(160),PSI(160),DHS(160),DHF(160),R(160)
                                                                                IODATOO8
      COMMON /C2/ QNODF(160), QNODS(160), QXYF(62), QXYS(62), QNOD, QXY
                                                                                IODAT009
      COMMON /C3 / XORD(160), YORD(160), NPBC(160), B(160), MAT(62)
                                                                                IDDAT010
      COMMON /C4 / BETA, ZETA, TKX, TKY, KX(62), KY(62)
                                                                                IDDAT011
      COMMON /C5 / PHIJ(62), SYIJ(62), SY(160), SYS(160)
                                                                                IODAT012
      COMMON /C6 / SF(3,6,7),WT(7),QPT(7,3),NPCS(3,35),NP(160,6)
                                                                                IODAT013
      COMMON /C9 / IBAND, IDIAG, NUMNP, NUMEL, NNPE, NUMQPT, ISST
                                                                                IODAT014
      COMMON /C10 / INCR, NAQTYP, NSS, NCAP, NCS, NPHASE
COMMON /C11 / TIME(31), DTIME(31), TMAX, THETA, ITER, DMAX, EPSX, FTIME
                                                                                IODAT015
                                                                                IODATO16
      COMMON /C12 / GAMAF, GAMAS, BUBPH, LAMDA, SPS, DHST, DFMAX, DSMAX
                                                                                IODAT017
      COMMON /C13 / DGS(160), HE(160), HK(160), HELD(160), H(160), F(160)
                                                                                IDDAT018
      COMMON /C14 /SPIJ(60), GS, GF, DLTG, NQXYF, NQXYS
                                                                                IDDAT019
      COMMON /C15 /HFST(160),HSST(160),PSS(160),HKLD(160)
                                                                                IODATO20
      REAL KX, KY, LAMDA
                                                                                IODATO21
С
                                                                                IODAT022
C
                                                                                IDDAT023
C READ CONTROL PARAMETERS
                                                                                IODATO24
      READ (5,50) NAQTYP, NSS, NCAP, NPHASE
                                                                                IODAT025
C
                                                                                IDDAT026
C READ MESH AND FLOW DATA
                                                                                IDDAT027
      READ (5,60) NUMEL, NUMNP, NNPE, IBWDTH, NUMAT, NCS
                                                                                IDDAT028
      READ(5,70) NQF, NQXYF, NQS, NQXYS
                                                                                IODAT029
      READ (5,80) ((NPCS(I,J),J = 1,25),I = 1,NCS)
                                                                                IODAT030
      READ (5,90) GAMAF, GAMAS, LAMDA, BUBPH, SPS, DHST, ITER
                                                                                IODAT031
      READ (5, 100) (I, KX(I), KY(I), SY(I), ID = 1, NUMAT)
                                                                                IODAT032
C
                                                                                IODAT033
 READ NUMERICAL CONTROL DATA
С
                                                                                IODAT034
      IF (NSS.EQ.O) READ (5,110) FTIME, TMAX, THETA, EPSX
                                                                                IODAT035
С
                                                                                IDDAT036
С
 INCREMENTAL INITIALIZATION
                                                                                IODAT037
      NUMOPT = 7
                                                                                IDDAT038
      IBAND = IBWDTH + 1
                                                                                IODAT039
      INCR = O
                                                                                IDDAT040
      ISST = 0
                                                                                IODATO41
      IDIAG = 1
                                                                                IODAT042
       IF (NPHASE.EQ.1) DMAX = 1.0
                                                                                IODAT043
       IF (NPHASE.EQ.2) DMAX = 0.0
                                                                                IODAT044
```

DFMAX = 0.0IODAT045 DSMAX = 0.0IODAT046 DLTG = GAMAS - GAMAF IODAT047 IF (DLTG.EQ.O.O) DLTG = 1.0IODATO48 GS = GAMAS/DLTG IODAT049 GF = GAMAF/DLTG IODAT050 С IDDAT051 C READ MESH PHYSICAL DIMENSIONS IDDAT052 READ (5,120) (I,NPBC(I),XORD(I),YORD(I),HF(I),HS(I),PSI(I),IO = 1,IODATO53 1NUMNP) IODAT054 READ (5, 130) (I, (NP(I, J), J = 1, NNPE), I1 = 1, NUMEL)IODAT055 IF (NUMAT.NE.1) READ (5, 140) (MAT(I), I = 1, NUMEL) IDDAT056 DO' 10 I = 1, NUMELIODAT057 QXYF(I) = 0.0IODATO58 QXYS(I) = 0.0IODAT059 PHIJ(I) = 0.0IDDAT060 SYIJ(I) = 0.0IDDAT061 SPIJ(I) = 0.0IDDAT062 IF (NUMAT.EQ.1) MAT(I) = 1IODAT063 DO 10 J = 1, NNPEIODATO64 NPJ = NP(I,J)IODAT065 SY(NPJ) = SY(MAT(I))IODATO66 SYS(NPJ) = SY(MAT(I))IDDAT067 HELD(NPJ) = 0.0IODATO68 HKLD(NPJ) = 0.0IODAT069 HE(NPJ) = 0.0IODAT070 HK(NPJ) = 0.0IODATO71 DHF(NPJ) = 0.0IODAT072 R(NPJ) = 0.0IODAT073 DHS(NPJ) = 0.0IODAT074 QNODF(NPJ) = 0.0IODAT075 QNODS(NPJ) = 0.0IODAT076 F(NPJ) = 0.0IODAT077 HFST(NPJ)=HF(NPJ) IDDAT078 HSST(NPJ)=HS(NPJ) IDDAT079 PSS(NPJ) = PSI(NPJ)IODATO80 CONTINUE 10 IODATO81 С IODATO82 C READ SOURCE AND/OR SINK AND THEIR NODAL AND/OR AREAL LOCATIONS IODAT083 IF (NQF.GT.O) READ (5, 150) (I,QNODF(I),IO = 1,NQF) IODAT084 (NQS.GT.O) READ (5, 150) (I, QNDDS(I), IO = 1, NQS)TF. IODAT085 IF (NQXYF.GT.O) READ (5, 150) (I,QXYF(I),IO = 1,NQXYF) IDDAT086 IF (NQXYS.GT.O) READ (5, 150) (I,QXYS(I),IO = 1,NQXYS) IODAT087 IF (NAQTYP.EQ.1) READ (5, 160) (B(I), I = 1, NUMNP) IODAT088 IF (NAQTYP.EQ.O.AND.NCAP.EQ.1) READ (5,160) (DGS(I), I = 1, NUMNP) IODAT089 C IODAT090 C PRINT THE PHYSICAL AND FLOW DATA IDDAT091 WRITE (6,170) IODAT092 WRITE (6, 180) NAQTYP, NSS, IBAND, NUMAT, NUMEL, NUMNP, NNPE IODAT093 WRITE(6, 190)GAMAF, GAMAS, BUBPH, LAMDA, SPS, DHST IODAT094 IF (NSS.EQ.1) GD TO 20 IODAT095 WRITE(6,200) FTIME, TMAX, THETA, EPSX IODAT096 WRITE (6,210) NCS, NQF, NQS, NQXYF, NQXYS, ITER 20 IDDAT097 WRITE (6,170) IODAT098 WRITE (6,220) IODAT099 DO 30 I = 1, NUMNPIDDAT 100 WRITE (6,230) I,NPBC(I),XORD(I),YORD(I),HF(I),HS(I),PSI(I), IDDAT 101 1 QNODF(I), QNODS(I), SY(I), SYS(I) **IODAT 102** 30 CONTINUE IDDAT103 WRITE (6,170) IDDAT104 WRITE (6,240) IDDAT 105 DO 40 I = 1, NUMELIDDAT106 WRITE (6,250) I, (NP(I,J), J = 1, NNPE), MAT(I), KX(MAT(I)), KY(MAT(IIODAT107))),QXYF(I),QXYS(I) 1 IDDAT 108 40 CONTINUE IODAT 109 RETURN IODAT110 С IODAT111 50 FORMAT (413) 60 FORMAT (615) IODAT112 IODAT113 70 FORMAT (415) IODAT114

80 FORMAT (2513) IODAT115 90 FORMAT (6F10.5,I2) IODAT116 100 FORMAT (15,3F10.5) IODAT117 110 FORMAT (3F10.3, F5.3) IODAT118 120 FORMAT (2110,5F10.0) 130 FORMAT (7110) IODAT119 IODAT120 140 FORMAT (4211) IODAT121 150 FORMAT (15, F10.7) IODAT122 160 FORMAT (8F8.4) IODAT123 170 FORMAT (1H1) IODAT124 180 FORMAT (////40X,27HAQUIFER AND MESH PARAMETERS//40X,6HNAQTYP,1X,IIODAT125 13/40X, 3HNSS, 3X, 14/40X, 5HIBAND, 15/40X, 5HNUMAT, 15/40X, 5HNUMEL, 15/40X10DAT 126 2,5HNUMNP, 15/40X,5HNNPE ,15/) IODAT127 190 FORMAT (///40X.25HFLUID AND SOIL PARAMETERS//40X.5HGAMAF.E12.4/40XIDDAT128 1,5HGAMAS,E12.4/40X,5HBUBPH,E12.4/40X,5HLAMDA,E12.4/40X,5HSPS ,E1210DAT129 2.4/40X,5HDHST ,E12.4/) IDDAT130 200 FORMAT (///40X,20HNUMERICAL PARAMETERS//40X,5HFTIME,E12.4/40X IODAT131 1,5HTMAX,E12.4/40X,5HTHETA,E12.4/40X,5HEPSX,E12.4/) 210 FORMAT (///40X,18HCONTROL PARAMETERS/40X,8HNCS ,I IODAT132 ,I3/40X,8HNQF IODAT133 , I3/40X, 8HNQS ,I3/40X,8HNQXYF ,I3/40X, 8HNQXYS ,I3/40X, IDDAT134 ,I3/) 2 8HITER IODAT135 220 FORMAT (2X,11HNODAL DATA,//48X,7HINITIAL,9X,7HINITIAL,9X,7HINITIALIODAT136 1,6X,18HDISCHARGE/RECHARGE,3X,14HSPECIFIC YIELD/8X,2HNP,36X, IDDAT137 2 11HFRESH-WATER, 6X, 10HSALT-WATER, 6X, 9HINTERFACE, 6X, 5HFRESH, 5X, IODAT138 3 4HSALT,6X,5HFRESH,5X,4HSALT/2X,4HNODE,2X,2HBC,3X,12HX-COORDINATE,IODAT139 4 4X, 12HY-COORDINATE, 8X, 4HHEAD, 12X, 4HHEAD, 10X, 9HELEVATION, 6X, 5HWATEIODAT140 5R, 5X, 5HWATER, 5X, 5HWATER, 5X, 5HWATER/) IODAT141 230 FORMAT (3X, I3, 3X, I1, 5(3X, E13.6), 4(3X, F7.3)) IODAT142 240 FORMAT (3X, 11HAREAL DATA, //72X, 18HDISCHARGE/RECHARGE/38X, 4HMAT , IODAT143 14X,22HHYDRAULIC CONDUCTIVITY,5X,5HFRESH,4X,4HSALT/2X,4HELEM,2X, IODAT144 23HNPI, 2X, 3HNPJ, 2X, 3HNPK, 2X, 3HNPL, 2X, 3HNPM, 2X, 3HNPN, 2X, 4HPROP, 3X, IODAT145 311HX-DIRECTION, 3X, 11HY-DIRECTION, 3X, 7HWATER ,4X, 5HWATER/) IODAT146 250 FORMAT (2X, I3, 3X, I3, 615, 4X, E11.4, 3X, E11.4, 2X, F8.4, 3X, F8.4) IODAT147 END OUTDAOO1 С DUTDA002 SUBROUTINE OUTDAT(IT) DUTDA003 С OUTDA004 C * THIS SUBROUTINE PRINTS OUT THE COMPUTED HEADS AND ELEVATIONS AT * OUTDA005 * THE END OF EVERY TIME INCREMENT С * OUTDA006 C OUTDA007 CDMMON/C1/HF(160), HS(160), PSI(160), DHS(160), DHF(160), R(160) OUTDA008 COMMON /C3 / XORD(160), YORD(160), NPBC(160), B(160), MAT(62) OUTDA009 COMMON /C5 / PHIJ(62), SYIJ(62), SY(160), SYS(160) OUTDA010 COMMON /C6 / SF(3,6,7),WT(7),QPT(7,3),NPCS(3,35),NP(160,6) OUTDA011 COMMON /C9 / IBAND, IDIAG, NUMNP, NUMEL, NNPE, NUMQPT, ISST OUTDA012 COMMON /C10 / INCR,NAQTYP,NSS,NCAP,NCS,NPHASE COMMON /C11 / TIME(31),DTIME(31),TMAX,THETA,ITER,DMAX,EPSX,FTIME OUTDA013 OUTDA014 COMMON /C12 / GAMAF, GAMAS, BUBPH, LAMDA, SPS, DHST, DFMAX, DSMAX OUTDA015 COMMON /C13 / DGS(160), HE(160), HK(160), HELD(160), H(160), F(160) OUTDA016 С OUTDA017 C PRINT OUT THE COMPUTED VALUES OUTDAO18 WRITE (6,60) OUTDA019 IF (NSS.EQ.O) WRITE (6,70) INCR,TIME(IT+1) OUTDA020 WRITE (6,100) OUTDA021 DO 10 I = 1, NUMNPOUTDA022 WRITE (6,110) I,NPBC(I),HF(I),HS(I),PSI(I),HK(I),HE(I), DUTDA023 1 SY(I), SYS(I)OUTDA024 10 CONTINUE OUTDA025 WRITE (6,60) OUTDA026 IF (NSS.EQ.O) WRITE (6,120) INCR,TIME(IT+1) OUTDA027 C PRINT OUT THE RESULTS BY CROSS SECTION OUTDA028 IF (NCS.EQ.O) GO TO 40 OUTDA029 DO 30 I = 1,NCSDUTDA030 WRITE (6,130) I OUTDAO31 WRITE (6,100) OUTDA032 DO 2O J = 1,23OUTDA033 M = NPCS(I,J)OUTDA034 WRITE (6,110) M, NPBC(M), HF(M), HS(M), PSI(M), HK(M), HE(M), OUTDA035 1 SY(M), SYS(M)OUTDA036 20 CONTINUE OUTDA037 -

30 CONTINUE OUTDA038 40 WRITE (6,80) DFMAX, DSMAX OUTDA039 IF (NSS.EQ.1) GD TD 50 OUTDA040 WRITE (6,90) DMAX DUTDA041 50 WRITE (6,60) OUTDA042 RETURN OUTDA043 60 FORMAT (1H1) DUTDA044 70 FORMAT (//1X,4HINCR,110,/1X,4HTIME,E10.3/) OUTDA045 80 FORMAT (////10X,48HTHE MAXIMUM CHANGE IN THE FRESH-WATER HEAD =OUTDAO46 1 ,F6.3,14H CENTIMETERS./10X,48HTHE MAXIMUM CHANGE IN THE SALT-WATDUTDA047 2ER HEAD = ,F6.3,14H CENTIMETERS./) OUTDA048 FORMAT (10X,48HTHE MAXIMUM CHANGE IN THE INTERFACE-ELEVATION = , 90 OUTDA049 1F6.3,14H CENTIMETERS.) OUTDA050 100 FORMAT (95X, 14HSPECIFIC YIELD/8X, 2HNP, 4X, 11HFRESH-WATER, 5X, DUTDA051 110HSALT-WATER, 6X, 9HINTERFACE, 7X, 9HSATURATED, 7X, 9HPERMEABLE, 8X, OUTDA052 25HFRESH, 5X, 4HSALT/2X, 4HNODE, 2X, 2HBC, 8X, 4HHEAD, 12X, 4HHEAD, 8X, OUTDA053 39HELEVATION, 10X, 6HHEIGHT, 10X, 6HHEIGHT, 8X, 5HWATER, 5X, 5HWATER/) OUTDA054 110 FORMAT (3X, I3, 3X, I1, 5(3X, E13.6), 2(3X, F7.3)) OUTDA055 120 FORMAT (//1X,23HOUTPUT BY CROSS SECTION//1X,4HINCR,I10,/1X,4HTIME,OUTDA056 1E10.3/) OUTDA057 130 FORMAT (//18H CROSS SECTION NO., 12/) OUTDA058 END -GQINTOO1 С GQINTOO2 SUBROUTINE GQINT(I,LO,IT) **GOINTOO3** С GQINT004 C * THIS SUBROUTINES MAIN FUNCTION IS TO INTEGRATE THE MATRIX EQUATION *GQINTOO5 C * USING A GAUSSIAN QUADRATURE SCHEME . AT EACH QUADRATURE POINT IN *GQINTOO6 C * AN ELEMENT , THE CORRESPONDING JACOBIAN RJAC , ITS DTERMINANT DETJ C * AND ITS INVERSE RJACI ARE GENERATED AND USED TO COMPUTE THE C * DERIVATIVES OF THE SHAPE FUNCTIONS WITH RESPECT TO THE LOCAL *GQINTOO7 * GQINTOO8 *GQINT009 * COORDINATE SYSTEM. THE OTHER FUNCTION OF THIS SUBPROGRAM IS THE С *GQINTO10 * FORMULATION OF THE FORCE MATRIX F AND MATRICES SMB , SPB AND BHS TO *GQINTO11 С С C GQINT013 COMMON /C2/ QNODF(160), QNODS(160), QXYF(62), QXYS(62), QNOD, QXY GQINTO14 COMMON /C3 / XORD(160), YORD(160), NPBC(160), B(160), MAT(62) GQINT015 COMMON /C4 / BETA, ZETA, TKX, TKY, KX(62), KY(62) GQINTO16 COMMON /C6 / SF(3,6,7), WT(7), QPT(7,3), NPCS(3,35), NP(160,6) GOINTO17 CDMMDN /C7 / SPB(6,6),SMB(6,6),BHS(6,6),SK(160,25) CDMMDN /C8 / DNDX(6),DNDY(6),RJAC(2,2),RJACI(2,2) GQINTO18 GQINT019 COMMON /C9 / IBAND, IDIAG, NUMNP, NUMEL, NNPE, NUMOPT, ISST GOINTO20 COMMON /C10 / INCR, NAQTYP, NSS, NCAP, NCS, NPHASE GOINTO21 COMMON /C11 / TIME(31),DTIME(31),TMAX,THETA,ITER,DMAX,EPSX,FTIME GQINTO22 COMMON /C13 / DGS(160),HE(160),HK(160),HELD(160),H(160),F(160) GQINTO23 COMMON /C14 /SPIJ(60),GS,GF,DLTG,NQXYF,NQXYS GQINTO24 С GOINTO25 REAL KX, KY, LAMDA GQINTO26 С GQINTO27 C FORMULATE JACOBIAN RJAC GQINTO28 DO 90 J = 1, NUMQPTGOINTO29 RJAC(1,1) = 0.0**GQINTO30** RJAC(1,2) = 0.0GOINTO31 RJAC(2, 1) = 0.0GQINT032 RJAC(2,2) = 0.0**GQINTO33** DO 10 K = 1, NNPEGQINT034 NPK = NP(I,K) GQINT035 RJAC(1,1) = RJAC(1,1) + SF(2,K,J) * XORD(NPK)GOINTO36 RJAC(1,2) = RJAC(1,2) + SF(3,K,J) * XORD(NPK)GQINT037 RJAC(2,1) = RJAC(2,1) + SF(2,K,J) * YORD(NPK)**GQINTO38** RJAC(2,2) = RJAC(2,2) + SF(3,K,J) * YORD(NPK)GOINT039 CONTINUE 10 GQINT040 С GQINTO41 C FORMULATE ITS DETERMINANT GQINT042 DETJ = RJAC(1,1) * RJAC(2,2) - RJAC(1,2) * RJAC(2,1)GQINT043 IF (DETJ.LE.O.O) GD TD 150 GQINT044 С GQINT045 C FORMULATE ITS INVERSE GOINTO46 RJACI(1,1) = RJAC(2,2)/DETJGQINT047 RJACI(1,2) = -RJAC(1,2)/DETJRJACI(2,1) = -RJAC(2,1)/DETJGQINTO48 GQINT049

	RJACI(2,2) = RJAC(1,1)/DETJ	GQINT050
С		GQINTO51
c	CETERNINE DURY AND DURY	GQINT052
C		GQINTO53
	DU = 2U - K - 1, NNPE = D.ACT(1 + 1) + SE(2 + 1) + D.ACT(2 + 1) + SE(2 + 1)	GQINI054
	DNDY(K) = RIACI(1,2) + SF(2,K,J) + RIACI(2,2) + SF(3,K,J)	GOINTOSS
	20 CONTINUE	GQINTO57
С	FORMULATE ELEMENTAL MATRICES SMB AND SPB	GQINT058
	DO 40 K = 1, NNPE	GQINT059
	DO 40 L = 1, NNPE	GQINTO60
	ST = WT(J) * (DNDX(K) * TKX * DNDX(L) + DNDY(K) * TKY	GQINTO61
	1 + DNDY(L) + DEIJ	GQINTO62
	SPR(K) = SPR(K) + ST	GQINI063
	GD TD 40	GQINTO65
:	30 CONTINUE	GQINT066
	BK = WT(J) * SF(1,K,J) * BETA * SF(1,L,J) * DETJ	GQINTO67
	BS = WT(J) * SF(1,K,J) * ZETA * SF(1,L,J) * DETJ	GQINTO68
	SPB(K,L) = SPB(K,L) + THETA * ST + BK/DTIME(IT)	GQINT069
	SMB(K,L) = SMB(K,L) + (1.0-THETA) * ST - BK/DTME(TT)	GQINTO70
	$\frac{1}{40} = \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100}$	GQINTO71
с		GOINTO72
-	IF (NQXYF.EQ.O.AND.NQXYS.EQ.O) GO TO 90	GQINTO74
С		GQINT075
	GD TD (50,60), LD	GQINT076
	50 QXY = QXYF(I)	GQINT077
	GD TD 70	GQINTO78
		GOINTO/9
с	FORMULATE FORCE MATRIX	GOINTO81
-	DO 80 K = 1 , NNPE	GQINTO82
	K1 = NP(I,K)	GQINT083
	DO 80 L = 1, NNPE	GQINTO84
	F(K1) = F(K1) + WT(J) * SF(1,K,J) * QXY * SF(1,L,J) * DETJ	GQINT085
		GUINTO86
с	SO CONTINUE	GOINTO88
•	IF (NQXYF.EQ.O.AND.NQXYS.EQ.O) GD TD 100	GQINT089
	G0 TD 160	GQINT090
С		GQINTO91
•	100 CONTINUE	GQINT092
		GQINT093
	$G_{1} = O_{1}(1, K)$	GQINT094
	110 $QNDD = QNDDF(K1)$	GOINTO96
	GD TD 130	GQINT097
	120 QNOD = QNODS(K1)	GQINT098
	130 CONTINUE	GQINT099
	F(K1) = QNUD	GQINT 100
		GOINT 107
с		GOINT 103
С	ERROR MESSAGE	GQINT 104
	150 WRITE (6,170) I	GQINT 105
	160 CONTINUE	GQINT 106
~	RETURN	GQINT 107
C	170 FORMAT (//36H FREDR IN JACOBIAN CHECK ELEMENT NO. 14/)	GUINI 108
	END	CDEFF002
	SUBROUTINE COEFFS(LO)	COEFFOO3
С		COEFF004
C	* THIS SUBROUTINE EVALUATES THE AREAL AVERAGE OF THE NODAL VALUES OF	*COEFFOO5
C	* THE TRANSMISSIVITY, INTERFACE ELEVATION, THICKNESS OF AQUIFER AND	*COEFFOO6
C	THE SPECIFIC YIELD USING THE CONCEPT OF SHAPE FUNCTIONS	*CUEFF007
U	COMMON/C1/HF(160), HS(160), PSI(160), DHS(160), DHF(160), P(160)	COFFEOOR
	COMMON /C3 / XORD(160), YORD(160).NPBC(160).B(160).MAT(62)	CDEFF010
	COMMON /C5 / PHIJ(62),SYIJ(62),SY(160),SYS(160)	CDEFF011

.

•

COMMON /C6 / SF(3,6,7), WT(7), QPT(7,3), NPCS(3,35), NP(160,6) CDEFF012 COMMON /C9 / IBAND, IDIAG, NUMNP, NUMEL, NNPE, NUMQPT, ISST CDEFF013 COMMON /C10 / INCR, NAQTYP, NSS, NCAP, NCS, NPHASE CDEFF014 COMMON /C12 / GAMAF, GAMAS, BUBPH, LAMDA, SPS, DHST, DFMAX, DSMAX COMMON /C13 / DGS(160), HE(160), HK(160), HELD(160), H(160), F(160) COEFF015 COEFF016 COMMON /C14 /SPIJ(60),GS,GF,DLTG,NQXYF,NQXYS CDEFF017 COMMON /C15 /HFST(160),HSST(160),PSS(160),HKLD(160) COEFF018 DO 160 I = 1,NUMEL CDEFF019 С CDEFF020 IF (NAQTYP.EQ.1) GO TO 80 CDEFF021 IF (NSS.EQ.O) GD TO 40 COEFF022 C CDEFE023 С COEFF024 C PSIJ IS THE SAME FOR CONFINED AND UNCONFINED AQUIFERS COEFF025 IF (LO.EQ.1) GO TO 20 COEFF026 PHIJ(I) = 0.0COEFF027 DD 10 J = 1, NUMQPTCDFFF028 DO 10 K = 1, NNPECDEFF029 PHIJ(I) = PHIJ(I) + SF(1,K,J) * (PSI(NP(I,K)))CDEFF030 CONTINUE 10 CDEFF031 PHIJ(I) = PHIJ(I)/NUMQPTCDEFF032 GO TO 160 COEFF033 20 CONTINUE CDEFF034 PHIJ(I) = 0.0CDEFF035 DO 30 J = 1, NUMQPTCDEFF036 DO 30 K = 1, NNPE COEFF037 PHIJ(I) = PHIJ(I) + SF(1,K,J) * (HFST(NP(I,K))+HKLD(NP(I,K))CDEFF038 - PSI(NP(I,K)))1 CDEFF039 30 CONTINUE COFFE040 PHIJ(I) = PHIJ(I)/NUMOPTCOEFFO41 GD TO 160 COEFF042 40 CONTINUE COEFF043 с COEFFO44 IF (LO.EQ.1) GO TO 60 COFFE045 PHIJ(I) = 0.0CDEFF046 SYIJ(I) = 0.0COEFFO47 SPIJ(I) = 0.0CDEFF048 DO 50 J = 1, NUMQPTCOEFF049 DO 50 K = 1, NNPECOEFF050 SPIJ(I) = SPIJ(I) + SF(1,K,J) * (SYS(NP(I,K))*GF)COEFF053 50 CONTINUE COEFF054 PHIJ(I) = PHIJ(I)/NUMQPT CDEFF055 SYIJ(I) = SYIJ(I)/NUMQPT CDEFF056 SPIJ(I) = SPIJ(I)/NUMQPT COEFF057 GD TD 160 COEFF058 60 CONTINUE COEFF059 PHIJ(I) = 0.0CDEFF060 SYIJ(I) = 0.0COEFFO61 SPIJ(I) = 0.0CDEFF062 DO 70 J = 1, NUMQPTCDEFF063 DO 70 K = 1, NNPECOEFF064 PHIJ(I) = PHIJ(I) + SF(1,K,J) * ((HFST(NP(I,K)) + HKLD(NP(I,K))) CDEFF065 - PSS(NP(I,K))) + (HF(NP(I,K)) + HK(NP(I,K)) -1 COEFF066 2 PSI(NP(I,K)))/2.0 COEFF067 SYIJ(I) = SYIJ(I) + SF(1,K,J) * (SY(NP(I,K)) + (SYS(NP(I,K)))CDEFF068 1 * GF)) CDEFF069 SPIJ(I) = SPIJ(I) + SF(1,K,J) * (SYS(NP(I,K)) * GS)CDEFF070 70 CONTINUE CDEFF071 PHIJ(I) = PHIJ(I)/NUMQPT CDEFF072 SYIJ(I) = SYIJ(I)/NUMOPTCDEFF073 SPIJ(I) = SPIJ(I)/NUMQPT COEFF074 GO TO 160 CDEFF075 80 CONTINUE COEFF076 IF (NSS.EQ.O) GD TD 120 COEFF077 IF (LO.EQ.1) GO TO 100 COEFF078 PHIJ(I) = 0.0CDEFF079 DO 90 J = 1, NUMQPTCOEFF080 DO 90 K = 1, NNPECOEFFO81

		PHIJ(I) = PHIJ(I) + SF(1,K,J) * (PSI(NP(I,K)))	CDEFF082
	90		COEFF083
		$G_{1} = G_{1} = G_{1$	CUEFF084
	100	CONTINUE	COEFFORS
		PHIJ(I) = 0.0	CDEFF087
		DD 110 J = 1, NUMQPT	CDEFF088
		DD 110 K = 1,NNPE	CDEFF089
		PHIJ(I) = PHIJ(I) + SF(1,K,J) * (B(NP(I,K)) - PSI(NP(I,K)))	COEFFO90
	110		CDEFF091
		CD TD 160	CDEFF092
	120		CDEFF093
		IF (LO.EQ.1) GO TO 140	CDEFF095
		PHIJ(I) = 0.0	COEFFO96
		SYIJ(I) = 0.0	COEFFO97
		SPIJ(I) = 0.0	CDEFF098
		DU 130 U = 1, NUMQPT	COEFF099
		$PHI_{I}(T) = PHI_{I}(T) + SF(1 K_{I}) * (PSS(NP(T K)) + PSI(NP(T K)))/2$	CUEFF 100
		SYIJ(I) = SYIJ(I) + SF(1,K,J) * (SPS * PSI(NP(1,K)) + (SY(NP(1,K))))	KCDEFF 101
	1)) * GS))	COEFF 103
		SPIJ(I) = SPIJ(I) + SF(I,K,J) * (SY(NP(I,K)) * GF)	CDEFF 104
	130	CONTINUE	COEFF105
		PHIJ(I) = PHIJ(I)/NUMQPT	CDEFF106
		$SPI_I(T) = SPI_I(T)/NUMOPT$	CUEFF 107
		GD TD 160	COEFF 108
	140	CONTINUE	CDEFF110
		PHIJ(I) = 0.0	CDEFF111
		SYIJ(I) = 0.0	COEFF112
		SPIJ(1) = 0.0	COEFF113
		DD 150 K = 1 NNPF	CUEFF114
		PHIJ(I) = PHIJ(I) + SF(1,K,J) * ((B(NP(I,K)) - PSS(NP(I,K))) +	COFFF116
	1	(B(NP(I,K)) - PSI(NP(I,K))))/2.0	COEFF117
		SYIJ(I) = SYIJ(I) + SF(1,K,J) * (SPS * (B(NP(I,K)) - PSI(NP(I,K)))))COEFF118
	1) + (SY(NP(I,K)) * GF)). SPI (I) = SPI (I) + SF(4 K +) * (SY(NP(I K)) * SP)	COEFF119
	150	SPID(1) = SPID(1) + SP(1,K,U) * (SY(NP(1,K)) * GS)	CDEFF120
	150	PHIJ(I) = PHIJ(I)/NUMOPT	COEFF 121
		SYIJ(I) = SYIJ(I)/NUMQPT	COEFF 123
		SPIJ(I) = SPIJ(I)/NUMQPT	COEFF124
	160	CONTINUE	COEFF125
		RETURN	COEFF 126
(c	END .	GLUBAOO1
	-	SUBROUTINE GLOBAL(I.LO)	GLOBACO2
(с	··· / /	GLOBA004
(С * ТН	IS SUBROUTINE ASSEMBLES THE ELEMENTAL MATRIX SMB FORMED IN GQINT	*GLOBAOO5
(C * TO	FURMULATE THE GLOBAL MATRIX SK . THE ASSEMBLY IS LIMITED TO THE	*GLOBAOO6
((с — UP С	FER MALE OF SK DUE IN IME EXISIENCE OF SYMMEIRY	*GLUBAOO7
	c		GLUDAUUS
		COMMON /C6 / SF(3,6,7),WT(7),QPT(7,3),NPCS(3.35).NP(160.6)	GLOBA010
		COMMON /C7 / SPB(6,6),SMB(6,6),BHS(6,6),SK(160,25)	GLOBAO11
	- -	COMMON /C9 / IBAND,IDIAG,NUMNP,NUMEL,NNPE,NUMQPT,ISST	GLOBAO12
			GLOBAO13
```	C FLAC	DO 10 J = 1. NNPE	GLUBAO14
	·	J1 = NP(I,J)	GLOBAO16
	I	DO 10 K = 1, NNPE	GLOBA017
		K1 = NP(I,K)	GLOBAO18
		IF (K1.LT.J1) GD TD 10	GLOBA019
		$R(11 R_{3}) = R(11 R_{3}) + CDR(1 R_{3})$	GLUBA020
	10	CONTINUE	GLOBAO21
	-	RETURN	GLOBA023
	_	END .	GAUSDOO 1
C	0	,	GAUSDOO2

SUBROUTINE GAUSOL GAUS0003 С GAUSDOO4 C * THIS SUBROUTINE SOLVES A SYSTEM OF NUMEL ALGEBRAIC EQUATIONS BY *GAUS0005 C * UPPER - DIAGONAL - UPPER GAUSSIAN ELIMINATION. THE INPUT MATRICES *GAUSDOOG C * FOR THE SUBPROGRAM ARE THE GLOBAL MATRIX SK AND THE FORCE VECTOR F *GAUSDOO7 C * . THE DUTPUT SOLUTION IS THE CHANGE OF HEAD ..... *GAUSDOO8 С GAUS0009 COMMON /C7 / SPB(6,6),SMB(6,6),BHS(6,6),SK(160,25) COMMON /C9 / IBAND,IDIAG,NUMNP,NUMEL,NNPE,NUMQPT,ISST GAUSDO10 GAUSD011 CDMMON /C13 / DGS(160), HE(160), HK(160), HELD(160), H(160), F(160) GAUS0012 С GAUSD013 NEM1 = NUMNP - 1GAUSD014 DO 30 I = 1, NEM1GAUSD015 C * AN EXPONENT UNDERFLOW ERROR WILL OCCUR HERE IF AN ERROR RESETTING *GAUSDO16 C * ROUTINE IS NOT CALLED FROM THE SYSTEM LIBRARY ...... *GAUSDO17 С GAUS0018 CALL TRAPS (100,100,100,100) GAUS0019 B = 1.0 / SK(I, 1)GAUS0020 JEND = NUMNP - I + 1GAUSOO21 IF (JEND.GT.IBAND) JEND = IBAND GAUSD022 DO 20 J = 2, JEND GAUSD023 JI = I + J - 1GAUS0024 FAC = SK(I,J) * BGAUS0025 K1 = 0GAUSD026 DO 10 K = J, JENDGAUSD027 K1 = K1 + 1GAUS0028 C * AN EXPONENT UNDERFLOW ERROR WILL OCCUR HERE IF AN ERROR RESETTING *GAUSDO29 C * ROUTINE IS NOT CALLED FROM THE SYSTEM LIBRARY ...... *GAUSDO30 CALL TRAPS (100, 100, 100, 100, 100) GAUS0031 SK(J1,K1) = SK(J1,K1) - SK(I,K) * FACGAUSD032 10 CONTINUE GAUS0033 SK(I,J) = FACGAUSDO34 F(J1) = F(J1) - F(I) * SK(I,J)GAUSD035 CONTINUE 20 GAUS0036 F(I) = F(I)/SK(I,1)GAUS0037 30 CONTINUE GAUSD038 F(NUMNP) = F(NUMNP)/SK(NUMNP, 1)GAUSD039 С GAUSD040 С GAUSD041 C BACK SUBSTITUTION GAUSD042 . DO 50 I = 1, NEM1GAUSD043 I1 = NUMNP - IGAUSDO44 JEND = NUMNP - I1 + 1GAUSD045 IF (JEND.GT.IBAND) JEND = IBAND GAUSDO46 RHS = F(I1)GAUSD047 DO 40 J = 2, JEND GAUSD048 J1 = I1 + J - 1GAUS0049 C * AN EXPONENT UNDERFLOW ERROR WILL OCCUR HERE IF AN ERROR RESETTING *GAUSDO50 C * ROUTINE IS NOT CALLED FROM THE SYSTEM LIBRARY ..... *GAUSDO51 CALL TRAPS (100, 100, 100, 100, 100) GAUSDO52 RHS = RHS - SK(I1, J) * F(J1)GAUSD053 CONTINUE 40 GAUS0054 F(I1) = RHSGAUSD055 50 CONTINUE GAUS0056 RETURN GAUSD057 END SHAPF001 С SHAPF002 SUBROUTINE SHAPFN SHAPF003 С SHAPF004 C * THIS SUBROUTINE DEFINES THE QUADRATURE POINTS QPT WITH RESPECT TO *SHAPFOO5 C * THE LOCAL COORDINATES X AND Y , THE MAGNITUDES OF THE WEIGHTING *SHAPFOO6 C * FUNCTIONS WT AND SETS UP THE VALUES OF THE SHAPE FUNCTIONS N AND *SHAPFOO7 * THEIR DERIVATIVES WITH RESPECT TO LOCAL COORDINATE SYSTEM AT EACH *SHAPFOOB С QUADRATURE LOCATION ......*SHAPFOO9 С* С SHAPF010 CDMMON /C6 / SF(3,6,7),WT(7),QPT(7,3),NPCS(3,35),NP(160,6) CDMMON /C9 / IBAND,IDIAG,NUMNP,NUMEL,NNPE,NUMQPT,ISST SHAPF011 SHAPF012 С SHAPF013 C DEFINE QUADRATURE VALUES ... THERE ARE SEVEN QUADRATURE LOCATIONS IN SHAPF014 C THE TRIANGULAR ELEMENT SHAPF015

С

```
SHAPF016
 QPT(1,1) = 1.0/3.0
 SHAPF017
 QPT(1,2) = 1.0/3.0
 SHAPF018
 QPT(2,1) = 0.5
 SHAPF019
 QPT(2,2) = 0.5
 SHAPF020
 QPT(3,1) = 0.0
 SHAPF021
 QPT(3,2) = 0.5
 SHAPF022
 QPT(4, 1) = 0.5
 SHAPE023
 QPT(4,2) = 0.0
 SHAPF024
 QPT(5,1) = 1.0
 SHAPF025
 QPT(5,2) = 0.0
 SHAPF026
 QPT(6,1) = 0.0
 SHAPF027
 QPT(6,2) = 1.0
 SHAPF028
 QPT(7, 1) = 0.0
 SHAPF029
 QPT(7,2) = 0.0
 SHAPF030
С
 SHAPF031
C DEFINE WEIGHTING FUNCTIONS
 SHAPF032
С
 SHAPF033
 WT(1) = 9.0/40.0
 SHAPF034
 WT(2) = 1.0/15.0
 SHAPF035
 WT(3) = WT(2)
 SHAPF036
 WT(4) = WT(2)
 SHAPF037
 WT(5) = 0.025
 SHAPF038
 WT(6) = WT(5)
 SHAPF039
 WT(7) = WT(5)
 SHAPF040
С
 SHAPF041
 DO 10 I = 1, NUMQPT
 SHAPF042
 QPT(I,3) = 1.0 - QPT(I,1) - QPT(I,2)
 SHAPF043
 CONTINUE
 10
 SHAPF044
С
 SHAPF045
C DEFINE SHAPE FUNCTIONS AND THEIR DERIVATIVES
 SHAPF046
С
 SHAPF047
 DO 30 J = 1, NUMQPT
 SHAPF048
 DO 20 I = 1, NNPE
 SHAPF049
 SF(1,I,J) = SFN(QPT(J,1),QPT(J,2),QPT(J,3),I)
 SHAPF050
 SF(2,I,J) = SFNXI(QPT(J,1),QPT(J,2),QPT(J,3),I)
 SHAPF051
 SF(3,I,J) = SFNETA(QPT(J,1),QPT(J,2),QPT(J,3),I)
 SHAPF052
 20
 CONTINUE
 SHAPF053
 CONTINUE
 30
 SHAPE054
 RETURN
 SHAPF055
 END
 FNSFN001
С
 FNSFN002
 FUNCTION SFN(XI, ETA, ZETA, N)
 FNSFN003
С
 FNSFN004
C * THIS SUBPROGRAM EVALUATES THE SHAPE FUNCTION AT A GIVEN POINT.
 *FNSFN005
 * INPUT PARAMETERS ARE THE QUADRATURE COORDINATES XI., ETA AND ZETA *FNSFN006
С
 * OF THE NODAL POINT N *FNSFN007
С
С
 FNSFN008
 GO TO (10, 20, 30, 40, 50, 60), N
SFN = (2.0 * XI - 1.0) * XI
 FNSFN009
 10
 FNSFN010
 RETURN
 ENSENO11
 20 SFN = 4.0 * ETA * XI
 FNSFN012
 RETURN
 FNSFN013
 30 SFN = (2.0 * ETA - 1.0) * ETA
 FNSFN014
 RETURN
 FNSFN015
 40 SFN = 4.0 * ETA * ZETA
 FNSFN016
 RETURN
 FNSFN017
 50 SFN = (2.0 * ZETA - 1.0) * ZETA
 FNSFN018
 RETURN
 FNSFN019
 60 SFN = 4.0 * XI * ZETA
 FNSFN020
 RETURN
 FNSFN021
 END
 SFNET001
С
 SFNET002
 FUNCTION SFNETA(XI, ETA, ZETA, N)
 SFNET003
С
 SFNET004
C * THIS SUBPROGRAM EVALUATES THE DERIVATIVE OF THE SHAPE FUNCTION
 *SFNET005
C * WITH RESPECT TO ONE AXIS OF THE GLOBAL COORDINATE SYSTEM XI. INPUT *SFNET006
C * PARAMETERS ARE THE QUADRATUE COORDINATES XI, ETA AND ZETA OF THE *SFNETOO7
С
 * NODAL POINT N *SFNETOO8
С
 SFNET009
```

```
GD TD (10,20,30,40,50,60), N
 SFNET010
 10
 SFNETA = 0.0
 SFNET011
 RETURN
 SFNET012
 20
 SFNETA = 4.0 * XI
 SFNET013
 RETURN
 SFNET014
 30
 SFNETA = 4.0 * ETA - 1.0
 SFNET015
 RETURN
 SENETO16
 SFNETA = 4.0 * ZETA - 4.0 * ETA
 40
 SFNET017
 RETURN
 SFNET018
 50
 SFNETA = -4.0 * ZETA + 1.0
 SFNET019
 RETURN
 SFNET020
 60
 SFNETA = -4.0 * XI
 SFNET021
 RETURN
 SFNET022
 END
 SENXIO01
С
 SFNXI002
 FUNCTION SFNXI(XI, ETA, ZETA, N)
 SFNXI003
С
 SFNXI004
C * THIS SUBPROGRAM EVALUATES THE DERIVATIVE OF THE SHAPE FUNCTION
 *SFNXIO05
C * WITH RESPECT TO ONE AXIS OF THE GLOBAL COORDINATE SYSTEM ETA.INPUT *SFNXIOO6
C * PARAMETERS ARE THE QUADRATUE COORDINATES XI, ETA AND ZETA OF THE
 *SFNXI007
C * NODAL POINT N
 *SFNXIOO8
C
 SFNXI009
 GD TD (10, 20, 30, 40, 50, 60), N
 SFNXI010
 10 SFNXI = 4.0 * XI - 1.0
 SFNXI011
 RETURN
 SFNXI012
 20 SFNXI = 4.0 * ETA
 SENXT013
 RETURN
 SFNXI014
 30 \text{ SFNXI} = 0.0
 SFNXI015
 RETURN
 SFNXI016
 40 SFNXI = - 4.0 * ETA
 SFNXI017
 RETURN
 SFNXI018
 50 SFNXI = - 4.0 * ZETA + 1.0
 SFNXI019
 RETURN
 SFNXIO20
 60 SFNXI = 4.0 * ZETA - 4.0 * XI
 SFNXIO21
 RETURN
 SFNXI022
 FND
 INTEL001
С
 INTELOC2
 SUBROUTINE INTELV
 INTEL003
С
 INTEL004
C * THIS SUBROUTINE UPDATES THE ELEVATION OF THE INTERFACE BY APPLYING *INTELOO5
C * THE DYNAMIC BOUNDARY CONDITION ACROSS THE INTERFACE *INTELOOG
С
 INTEL007
 COMMON/C1/HF(160), HS(160), PSI(160), DHS(160), DHF(160), R(160)
 INTEL008
 COMMON /C3 / XORD(160), YORD(160), NPBC(160), B(160), MAT(62)
 INTEL009
 COMMON /C9 / IBAND, IDIAG, NUMNP, NUMEL, NNPE, NUMOPT, ISST
COMMON /C10 / INCR, NAQTYP, NSS, NCAP, NCS, NPHASE
 INTEL010
 INTEL011
 COMMON /C14 /SPIJ(60), GS, GF, DLTG, NQXYF, NQXYS
 INTEL012
 COMMON /C15 /HFST(160),HSST(160),PSS(160),HKLD(160)
 INTEL013
С
 INTEL014
 IF (NAQTYP.EQ.O) GO TO 30
 INTEL015
С
 INTEL016
 DO 20 I = 1, NUMNP
 INTEL017
 R(I) = (GS * DHS(I) - GF * DHF(I))
 INTEL018
 PSI(I) = PSI(I) + R(I)
 INTEL019
 IF (PSI(I).GE.O.O) GD TD 10
 INTELO20
 PSI(I) = 0.0
 INTEL021
С
 INTEL022
С
 INTEL023
 GO TO 20
 INTELO24
 10 CONTINUE
 INTEL025
 IF (PSI(I).LT.B(I)) GO TO 20
 INTELO26
 PSI(I) = B(I)
 INTEL027
С
 INTELO28
С
 INTELO29
 20
 CONTINUE
 INTEL030
 RETURN
 INTEL031
С
 INTEL032
 30 CONTINUE
 INTEL033
С
 INTEL034
 DO 40 I = 1,NUMNP
 INTEL035
```

PSI(I) = (GS * HS(I) - GF * HF(I))INTEL036 IF (PSI(I).LE.O.O) PSI(I) = 0.0INTELO37 40 CONTINUE INTEL 038 С INTEL039 RETURN INTEL040 END CAPREOO1 С CAPREOO2 SUBROUTINE CAPRES(IT, ICOUNT) CAPRE003 С CAPREOO4 C * SUBROUTINE CAPRES EVALUATES THE SATURATED AND PERMEABLE HEIGHTS AS *CAPREOOS C * A FUNCTION OF THE ELEVATION WHEN THE INFILTRATION RATE IS NON-ZERD *CAPREOOG CAPREO07 COMMON/C1/HF(160), HS(160), PSI(160), DHS(160), DHF(160), R(160) CAPRE008 COMMON /C2/ QNODF(160),QNODS(160),QXYF(62),QXYS(62),QNOD,QXY CAPRE009 COMMON /C3 / XORD(160), YORD(160), NPBC(160), B(160), MAT(62) CAPREO10 COMMON /C4 / BETA, ZETA, TKX, TKY, KX(62), KY(62) CAPREO11 COMMON /C5 / PHIJ(62),SYIJ(62),SY(160),SYS(160) CAPREO12 COMMON /C6 / SF(3,6,7),WT(7),QPT(7,3),NPCS(3,35),NP(160,6) CAPREO13 COMMON /C9 / IBAND, IDIAG, NUMNP, NUMEL, NNPE, NUMOPT, ISST CAPREO14 COMMON /C10 / INCR, NAQTYP, NSS, NCAP, NCS, NPHASE CAPRE015 COMMON /C11 / TIME(31), DTIME(31), TMAX, THETA, ITER, DMAX, EPSX, FTIME CAPREO16 COMMON /C12 / GAMAF, GAMAS, BUBPH, LAMDA, SPS, DHST, DFMAX, DSMAX CDMMON /C13 / DGS(160), HE(160), HK(160), HELD(160), H(160), F(160) CAPREO17 CAPREO18 COMMON /C15 /HFST(160),HSST(160),PSS(160),HKLD(160) CAPREO19 REAL KX, KY, LAMDA CAPREO2O С CAPREO21 PETA = 2.0 + 3.0 * LAMDACAPRE022 CONST1 = (1.0+2.0*PETA+LAMDA)/(LAMDA+1.0)CAPRE023 CONST2 = LAMDA/PETA CAPRE024 CONST3 = -1.0 *(LAMDA+1.0)/PETA CAPRE025 CONST4 = 1.0 + 1.0/(2.0*PETA)CAPRE026 CONST5 = (LAMDA - 1.0)/PETA CAPRE027 DO 40 I = 1, NUMELCAPREO28 QSCALE = QXYF(I)/KX(MAT(I))CAPRE029 DO 30 J = 1,NNPE CAPRE030 NPJ = NP(I,J)CAPREO31 DGSD = DGS(NPJ) - HF(NPJ)CAPRE032 DWTD = DGSD/BUBPHCAPRE033 IF(DWTD.LT.1.0) GD TD 20 CAPRE034 HK(NPJ) = BUBPH *(PETA-DWTD**(1.0-PETA))/(PETA-1.0) CAPRE035 IF(QSCALE.NE.O.O) GO TO 10 CAPRE036 HE(NPJ) = BUBPH *((DWTD**(1.O-LAMDA))-LAMDA)/(1.O-LAMDA) CAPREO37 GO TO 30 CAPRE038 CONTINUE 10 CAPRE039 HE(NPJ) = BUBPH *((1.0-QSCALE**CONST2)/(1.0-QSCALE)+(QSCALE** CAPREO40 1CONST2)*DWTD+(1.0/(2.0*PETA))*(CONST1*((QSCALE**CONST3)-1.0)+ CAPREO41 2(1.0-QSCALE)**2.0)-((QSCALE**CONST5)*CONST4+((QSCALE**CONST2)/ CAPREO42 3(2.0*PETA))*(QSCALE**2.0-2.0*QSCALE-2.0*PETA))) CAPRE043 GO TO 30 CAPRE044 20 CONTINUE CAPREO45 HK(NPJ) = DGSDCAPREO46 HE(NPJ) = DGSDCAPREO47 30 CONTINUE CAPRE048 40 CONTINUE CAPRE049 IF(IT.EQ.1.AND.NSS.EQ.O) GD TD 60 CAPRE050 DO 50 I=1, NUMNP CAPRE051 DHE = HE(I) - HELD(I)CAPRE052 SY(I) = SY(I) * (1.0+(DHE/DHF(I)))CAPRE053 50 CONTINUE CAPRE054 60 IF(IT.NE.1.AND.NSS.EQ.O) GO TO 80 CAPRE055 IF (ICOUNT.EQ.2) GO TO 80 CAPRE056 DO 70 I=1, NUMNP CAPRE057 HELD(I) = HE(I)CAPRE058 HKLD(I) = HK(I)CAPRE059 70 CONTINUE CAPRE060 80 RETURN CAPREO61 END CHECKOO1 С CHECKOO2 SUBROUTINE CHECK CHECK003 С CHECKOO4

```
C * THIS ROUTINE COMPUTES THE CHANGE OF INTERFACE ELEVATION AT ALL
 *CHECKOO5
C * AND COMPARES THEM TO RETAIN THE MAXIMUM CHANGE IN ORDER TO CHECK
 *CHECKOO6
C * FOR STEADY STATE *CHECK007
C
 CHECK008
 COMMON/C1/HF(160), HS(160), PSI(160), DHS(160), DHF(160), R(160)
 CHECK009
 COMMON /C9 / IBAND, IDIAG, NUMNP, NUMEL, NNPE, NUMQPT, ISST
 CHECKO10
 COMMON /C11 / TIME(31), DTIME(31), TMAX, THETA, ITER, DMAX, EPSX, FTIME CHECKO11
 COMMON /C15 /HFST(160),HSST(160),PSS(160),HKLD(160)
 CHECKO12
С
 CHECK013
 DMAX = 0.0
 CHECKO14
 DO 20 I = 1, NUMNP
 CHECK015
 DHSS = ABS (R(I))
 CHECKO16
 IF (DHSS .LT. DMAX) GD TO 10
 CHECK017
 DMAX = DHSS
 CHECKO18
 PSS(I)=PSI(I)
 10
 CHECK019
 20
 CONTINUE
 CHECKO20
 RETURN
 CHECKO21
 END
 HEADCOO1
С
 HEADCOO2
 SUBROUTINE HEADCH(LO)
 HEADCOO3
С
 HEADCOO4
C * THIS SUBROUTINE COMPUTES THE CHANGES OF THE FRESH-WATER HEAD AT
 *HEADCOO5
С
 * ALL NODES AND COMPARES THEM TO RETAIN THE MAXIMUM CHANGE IN ORDER
 *HEADCOO6
 * TO CHECK FOR CONVERGENCE WITHIN A TIME STEP . IF CONVERGENCE IS
С
 *HEADCOO7
C * REACHED , THEN THE PROGRAM PROCEEDS TO THE NEXT TIME STEP . THE
 *HEADCOO8
 * SAME PROCEDURE IS FOLLOWED FOR THE SALT-WATER REGION ALSO ...
С
 *HEADCOO9

 CDMMDN/C1/HF(160),HS(160),PSI(160),DHS(160),DHF(160),R(160)
 HEADCO10
 COMMON /C9 / IBAND, IDIAG, NUMNP, NUMEL, NNPE, NUMQPT, ISST
 HEADCO11
 COMMON /C12 / GAMAF, GAMAS, BUBPH, LAMDA, SPS, DHST, DFMAX, DSMAX
 HEADCO12
 COMMON /C13 / DGS(160), HE(160), HK(160), HELD(160), H(160), F(160)
 HEADCO13
С
 HEADCO14
 GO TO (10,30), LO
 HEADCO15
 10 DFMAX = 0.0
 HEADCO16
 DO 20 I = 1, NUMNP
 HEADCO17
 DHSS = ABS (H(I) - HF(I))
 HEADCO18
 IF (DHSS .LT. DFMAX) GO TO 20
 HEADCO19
 DFMAX = DHSS
 HEADCO20
 20
 CONTINUE
 HEADCO21
С
 HEADCO22
 GD TD 50
 HEADCO23
 30
 DSMAX = 0.0
 HEADCO24
 DO 40 I=1, NUMNP
 HEADCO25
 DHSS=ABS(H(I)-HS(I))
 HEADCO26
 IF(DHSS.LT.DSMAX) GO TO 40
 HEADCO27
 DSMAX=DHSS
 HEADCO28
 40
 CONTINUE
 HEADCO29
 RETURN
 50
 HEADC030
 END
 TSTEPO01
С
 TSTEP002
 SUBROUTINE TSTEP
 TSTEPOO3
С
 TSTEP004
C * THIS SUBROUTINE ESTABLISHES OPTIMUM TIME INCREMENTS WITH THE HELP *TSTEP005
 * OF AN ACCELERATION FACTOR
С
 *TSTEPOO6
С
 TSTEP007
 COMMON /C11 / TIME(31),DTIME(31),TMAX,THETA,ITER,DMAX,EPSX,FTIME
 TSTEP008
С
 TSTEP009
 IT = ITER + 1
 TSTEP010
 DXAPP = TMAX / FLOAT(ITER)
 TSTEP011
 TIME(1) = FTIME
 TSTEP012
 DO 10 I=2,IT
 TSTEP013
 TIME(I) = TIME(I-1) + DXAPP
 TSTEP014
 DXAPP = DXAPP * EPSX
 TSTEP015
 10
 CONTINUE
 TSTEP016
 FACT = TMAX / TIME(IT)
 TSTEP017
 DO 20 I=2,IT
 TSTEP018
 TIME(I) = TIME(I) * FACT
 TSTEP019
 DTIME(I-1) = TIME(I) - TIME(I-1)
 TSTEP020
20
 CONTINUE
 TSTEP021
С
 TSTEP022
 RETURN
 TSTEP023
```

## APPENDIX D

## INPUT DATA FOR NUMERICAL SIMULATION

.,

•

TABLE I

INPUT DATA FOR CASE 1

0 1 0 42 109 1 0	6 14 0 0	1 1			
1 4 6 14 1 0.755 1.	5 24 25 0 0	34 35 44 45 54 55 0.0 0.0 0.2428	64 65 74 0.0	75 84 85 94 0.05	95104105
1 2.000	2.330	0.2420	60 96	54 7223	35 5
2	õ	1.7386 -0.2289	60.96	54,7223	35.5
3	õ	2.3596 -0.3107	60.96	54.7223	35.5
4	õ	1.7586 0.0	60.96	54.7223	35.5
. 5	ō	2.3749 -0.1557	60.96	54.7223	35.5
6	0	2.38 0.0	60.96	54.7223	35.5
7	0	2.3749 0.1557	60.96	54.7223	35.5
8	0	1.7386 0.2289	60.96	54.7223	35.5
9	0	2.3596 0.3107	60.96	54.7223	35.5
10	0	2.9874 -0.3933	60.96	54.7223	35.5
11	0	3.6298 -0.4779	60.96	54.7223	35.5
12	0	3.0067 -0.1971	60.96	54.7223	35.5
13	0	3.6533 -0.2395	60.96	54.7223	35.5
14	0	3.0132 0.0	60.96	54.7223	35.5
16	ŏ	3 0067 0 1971	60.96	54 7223	35.5
17	õ	3.6533 0.2394	. 60.96	54,7223	35.5
18	õ	2.9874 0.3933	60.96	54.7223	35.5
19	Ō	3.6298 0.4779	60.96	54.7223	35.5
20	0	4.4102 -0.5806	60.96	54.7223	35.5
21	0	5.3586 -0.7055	60.96	54.7223	35.5
. 22	0	4.4388 -0.2909	60.96	54.7223	35.5
23	0	5.3932 -0.3535	60.96	54.7223	35.5
24	0	4.4483 0.0	60.96	54.7223	35.5
25	0	5.4048 0.0	60.96	54.7223	35.5
26	0	4.4388 0.2909	60.96	54.7223	35.5
27	ő	4 4102 0 5806	60.96	54.7223	35.5
29	õ	5.3586 0.7055	60.96	54 7223	35.5
30	ŏ	6.5107 -0.8572	60.96	54.7223	35.5
31	Ō	7.9105 -1.0414	60.96	54.7223	35.5
32	0	6.5528 -0.4295	60.96	54.7223	35.5
33	0	7.9617 -0.5218	60.96	54.7223	35.5
34	0	6.5669 0.0	60.96	54.7223	35.5
35	0	7.9788 0.0	60.96	54.7223	35.5
36	0	6.5528 0.4295	60.96	54.7223	35.5
37	0	7.9617 0.5218	60.96	54.7223	35.5
38	0	6.5107 0.8572 7 9105 1 0414	60.96	54.7223	35.5
40	ŏ	9 6115 -1 2654	60.96	54.7223	35.5
41	ŏ	11.6780 -1.5374	60.96	54.7223	35.5
42	õ	9.6736 -0.6341	60.96	54.7223	35.5
43	0	11.7536-0.7704	60.96	54.7223	35.5
44	0	9.6944 0.0	60.96	54.7223	35.5
45	0	11.7788 0.0	60.96	54.7223	35.5
46	0	9.6736 0.6340	60.96	54.7223	35.5
47	0	11.7536 0.7704	60.96	54.7223	35.5
48	0	9.6115 1.2654	60.96	54.7223	35.5
49	0	14 1890 -1 9690	60.96 60 96	54.7223	35.5
51	00	17 2397 -2 2697	60.96	54 7000	35.5
52	õ	14.2808-0.9360	60.96	54.7223	35 5
53	õ	17.3513-1.1373	60.96	54.7223	35.5
54	Ō	14.3114 0.0	60.96	54.7223	35.5
55	0	17.3885 0.0	60.96	54.7223	35.5
<u> </u>	0	14.2808 0.9360	60.96	54.7223	35.5

.

.

TABLE I (CONTD.)

.

•

.

.

.

57	0	17 3513 1 1373	60,96		54 7223	35 5	
58	ŏ	14.1890 1.8680	60.96		54.7223	35.5	
59	0	17.2397 2.2697	60.96		54.7223	35.5	
60	0	20.9465 -2.7577	60.96		54.7223	35.5	
61	0	25.4504 -3.3506	60.96		54.7223	35.5	
62	0	21.0821-1.3818	60.96		54.7223	35.5	
63	0	25.6150-1.6789	60.96		54.7223	35.5	
64 65	0	21.1273 0.0	60.96		54.7223	35.5	
66	õ	21.0821 1.3818	60.96		54.7223	35.5	
67	ŏ	25.6150 1.6789	60.96		54.7223	35.5	
68	0	20.9465 2.7577	60.96		54.7223	35.5	
69	0	25.4504 3.3506	60.96		54.7223	35.5	
70	0	30.9226 -4.0710	60.96		54.7223	35.5	
71	0	37.5713 -4.9464	60.96		54.7223	35.5	
72	0	31.1226-2.0399	60.96		54.7223	35.5	
73	0	31 1894 0 0	60.96		54.7223	35.5	
75	ŏ	37.8955 0.0	60.96		54.7223	35.5	
76	ō	31.1226 2.0399	60.96		54.7223	35.5	
77	0	37.8143 2.4785	60.96		54.7223	35.5	
78	0	30.9226 4.0710	60.96		54.7223	35.5	
79	0	37.5713 4.9464	60.96		54.7223	35.5	
80	0	45.6497 -6.0099	60.96		54.7223	35.5	
81	0	45 9450-2 0114	60.96		54.7223	35.5	
83	õ	45.5450-3.0114	60.96		54.7223	35 5	
84	ŏ	46.9436 0.0	60.96		54.7223	35.5	
85	õ	55.9436 0.0	60.96		54.7223	35.5	
86	0	45.9450 3.0114	60.96		54.7223	35.5	
87	0	55.8238 3.6589	60.96		54.7223	35.5	
88	0	45.6497 6.0099	60.96		54.7223	35.5	
89	0	55.4650 7.3021	60.96		54.7223	35.5	
90	0	81 8806 -10 7798	60.96		54.7223	35.5	
92	õ	67.8267-4.4456	60.96		54.7223	35.5	
93	õ	82.4104-5.4015	60.96		54.7223	35.5	
94	0	67.9722 0.0	60.96		54.7223	35.5	
95	0	82.5872 0.0	60.96		54.7223	35.5	
96	0	67.82674.4456 7	60.96		54.7223	35.5	
97	0	82.4104 5.4015	60.96		54.7223	35.5	
98	0	81 8806 10 7798	60.96		54.7223	35.5	
100	õ	99 4861 -13 0976	60.96		54.7223	35.5	
101	1	120.8769 -15.9138	60.96		54.7223	35.5	
102	Ó	100.1297-6.5629	60.96		54.7223	35.5	
103	1	121.6589-7.9740	60.96		54.7223	35.5	
104	0	100.3446 0.0	60.96		54.7223	35.5	
105	1	121.9200 0.0	60.96		54.7223	35.5	
106	0	100.1297 6.5629	60.96		54.7223	35.5	
107	<u></u>	99 4861 13 0976	60.96		54.7223	35.5	
109	1	120.8769 15.9138	60.96		54 7223	35.5	
1	1	2	3	5	6		4
2	1	4	6	7	9		8
З	6	5	3	10	11		12
4	6	12 1	1	13	15		14
5	6	14 1	5	17	19		16
ю 7	9 7 F	10 1 12 4	9 1	18	9		20
8	15	22 2	1	23	21		22 24
9	15	24 2	25	27	29		26
10	15	26 2	9	28	19		17
11	25	23 2	2 1	30	31		32
12	25	32 3	31	33	35		34

TABLE I (CONTD.)

	13	25	34	35	37	39	36
	14	25	36	39	38	29	27
	15	35	33	31	40	41	42
	16	35	42	41	43	45	44
	17	35	44	45	47	49	46
	18	35	46	49	48	39	37
	19	45	43	41	50	51	52
	20	45	52	51	53	55	54
	21	45	54	55	57	59	56
	22	45	56	59	58	49	47
	23	55	53	51	60	61	⁻ 62
	24	55	62	61	63	65	64
	25	55	64	65	67	69	66
	26	55	66	69	68	59	57
	27	65	63	61	70	71	· 72
	28	65	72	71	73	75	74
	29	65	74	75	77	79	76
	30	65	76	79	78	69	67
	31	75	73	71	80	81	82
	32	75	82	81	83	85	84
	33	75	84	85	87	89	86
	34	75	86	89	88	79	77
	35	85	83	81	90	91	92
	36	85	92	91	93	95	94
	37	85	94	95	97	99	96
	38	85	96	99	98	89	87
	39	95	93	91	100	101	102
	40	95	102	101	103	105	104
	41	95	104	105	107	109	106
	42	95	106	109	108	99	97
1	-11.5						
			,				

.

.

-

TABLE II

.

^

INPUT DATA FOR CASE 2

0 1 0					
42 109	6 14 0 0	1 1			
1 4 6 14 1	5 24 25	34 35 44 45 54 55	64 65 74	75 84 85 94	95104105
0.755 1.	0 (	0.0 0.0	0.0	0.05	
1	0	0.0 0.0	60.96	54.7223	35.5
2	0	1.7386 -0.2289	60.96	54.7223	35.5
3	0	2.3596 -0.3107	60.96 60.96	54.7223	35.5
5	ŏ	2.3749 -0.1557	60.96	54.7223	35.5
6	0	2.38 0.0	60.96	54.7223	35.5
7	0	2.3749 0.1557	60.96	54.7223	35.5
9	ő	2.3596 0.3107	60.96	54.7223	35.5
10	Ō	2.9874 -0.3933	60.96	54.7223	35.5
11	0	3.6298 -0.4779	60.96	54.7223	35.5
12	0	3.0067 -0.1971	60.96	54.7223 54.7223	35.5
14	õ	3.0132 0.0	60.96	54.7223	35.5
15	0	3.6611 0.0	60.96	54.7223	35.5
16	0	3.0067 0.1971	60.96	54.7223	35.5
18	ŏ	2.9874 0.3933	60.96	54.7223	35.5
19	0	3.6298 0.4779	60.96	54.7223	35.5
20	0	4.4102 -0.5806	60.96	54.7223	35.5
21	0	4.4388 - 0.2909	60.96	54.7223	35.5
23	õ	5.3932 -0.3535	60.96	54.7223	35.5
24	0	4.4483 0.0	60.96	54.7223	35.5
25	0	5.4048 0.0	60.96	54.7223	35.5
27	ő	5.3932 0.3535	60.96	54.7223	35.5
28	0	4.4102 0.5806	60.96	54.7223	35.5
29	0	5.3586 0.7055	60.96	54.7223	35.5
30	0	7.9105 - 1.0414	60.96 60.96	54.7223 54.7223	35.5
32	õ	6.5528 -0.4295	60.96	54.7223	35.5
33	0	7.9617 -0.5218	60.96	54.7223	35.5
34	0	6.5669 0.0 7 9788 0 0	60.96	54.7223	35.5
36	ŏ	6.5528 0.4295	60.96	54.7223	35.5
37	0	7.9617 0.5218	60.96	54.7223	35.5
38	0	6.5107 0.8572	60.96	54.7223	35.5
39 40	ő	9.6115 -1.2654	60.96	54.7223	35.5
41	Ō	11.6780 -1.5374	60.96	54.7223	35.5
42	0	9.6736 -0.6341	60.96	54.7223	35.5
43	0	9.6944 0.0	60.96 60.96	54.7223 54.7223	35.5
45	ŏ	11.7788 0.0	60.96	54.7223	35.5
46	0	9.6736 0.6340	60.96	54.7223	35.5
47 48	0	11.7536 0.7704 9.6115 1.2654	60.96 60.96	54.7223 54.7222	35.5
49	ŏ	11.6780 1.5374	60.96	54.7223	35.5
50	0	14.1890 -1.8680	60.96	54.7223	35.5
51	0	17.2397 -2.2697	60.96	54.7223	35.5
53	0	17.3513-1.1373	60.96	54.7223 54.7223	35.5
54	õ	14.3114 0.0	60.96	54.7223	35.5
55	0	17.3885 0.0	60.96	54.7223	35.5
56	0	14.2808 0.9360	60.96	54.7223	35.5

TABLE II (CONTD.)

.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
57       0       17.3513       1.1373       60.96       54.7223       35.5         58       0       14.1890       1.8680       60.96       54.7223       35.5         60       0       20.9455       -2.7577       60.96       54.7223       35.5         61       0       25.4504       -3.3506       60.96       54.7223       35.5         63       0       21.6180       -1.6788       60.96       54.7223       35.5         64       0       21.1273       0.0       60.96       54.7223       35.5         65       0       25.6180       1.6788       60.96       54.7223       35.5         67       0       25.6180       1.6789       60.96       54.7223       35.5         68       0       20.9465       2.7577       60.96       54.7223       35.5         71       0       30.9226       -0.710       60.96       54.7223       35.5         72       0       31.1226       2.0399       60.96       54.7223       35.5         74       0       31.1226       2.0399       60.96       54.7223       35.5         75       0       31.87       74						
58         0         14.1890         1.8680         60.96         54.7223         35.5           60         0         20.9465         -2.7577         60.96         54.7223         35.5           61         0         25.4504         -3.8506         60.96         54.7223         35.5           62         0         21.0821         1.3818         60.96         54.7223         35.5           64         0         21.0821         1.3818         60.96         54.7223         35.5           65         0         21.0821         1.3818         60.96         54.7223         35.5           66         0         21.0821         1.3818         60.96         54.7223         35.5           67         0         25.6150         1.6789         60.96         54.7223         35.5           70         0         37.5713         -4.9464         60.96         54.7223         35.5           71         0         37.5713         -4.9464         60.96         54.7223         35.5           72         0         37.8143.2.4785         60.96         54.7223         35.5           74         0         37.8143.2.4785         60.96	57	0	17.3513 1.1373	3 60.96	54.722	3 35.5
59         0         17.2397         2.2697         60.96         54.7223         35.5           60         25.4504         -3.3506         60.96         54.7223         35.5           61         0         25.6150-1.6789         60.96         54.7223         35.5           63         0         21.0821         1.3818         60.96         54.7223         35.5           64         0         21.0821         1.3818         60.96         54.7223         35.5           65         0         21.6699         0.0         60.96         54.7223         35.5           67         0         25.6150         1.6783         60.96         54.7223         35.5           68         0         20.9465         2.7577         60.96         54.7223         35.5           70         0         30.9226         -4.0710         60.96         54.7223         35.5           71         0         37.1432.24785         60.96         54.7223         35.5           73         0         37.1432.24785         60.96         54.7223         35.5           74         0         31.1826         2.0399         60.96         54.7223         35.5	58	0	14.1890 1.8680	0 60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59	0	17.2397 2.2697	7 60.96	54.722	3 35.5
61       0       25.4504 -3.3506       60.96       54.7223       35.5         62       0       21.0221 - 1.3818       60.96       54.7223       35.5         64       0       21.1273 0.0       60.96       54.7223       35.5         65       0       25.6699 0.0       60.96       54.7223       35.5         66       0       21.0221 1.3818       60.96       54.7223       35.5         67       0       25.6150 1.6783       60.96       54.7223       35.5         68       0       20.9465 2.7577       60.96       54.7223       35.5         70       0       30.9226 -4.0710       60.96       54.7223       35.5         71       0       37.1324.9464       60.96       54.7223       35.5         73       0       37.1432.24785       60.96       54.7223       35.5         74       0       31.1226 2.0399       60.96       54.7223       35.5         76       0       31.1226 2.0399       60.96       54.7223       35.5         77       0       37.8143 2.4785       60.96       54.7223       35.5         78       0       30.9226 4.0710       60.96       54.7223 </td <td>60</td> <td>0</td> <td>20.9465 -2.757</td> <td>77 60.96</td> <td>54.722</td> <td>3 35.5</td>	60	0	20.9465 -2.757	77 60.96	54.722	3 35.5
	61	0	25.4504 -3.350	60.96	54.722	3 35.5
	62	0	21.0821-1.3818	60.96	54.722	3 35 5
64         0         21.1279         0.00         60.96         54.7223         35.5           65         0         25.699         0.0         60.96         54.7223         35.5           66         0         21.0821         1.3818         60.96         54.7223         35.5           67         0         25.6150         1.6789         60.96         54.7223         35.5           68         0         23.4652         7577         60.96         54.7223         35.5           70         0         32.4652         .7577         60.96         54.7223         35.5           71         0         37.5713         -4.9464         60.96         54.7223         35.5           74         0         31.1226         2.0399         60.96         54.7223         35.5           74         0         31.1226         2.0399         60.96         54.7223         35.5           75         0         37.8143         2.4785         60.96         54.7223         35.5           76         0         31.1226         2.0399         60.96         54.7223         35.5           78         0         30.9226         4.0710	63	õ	25 6150-1 6789	60.96	54 722	3 35 5
35 $0$ $21$ $123$ $35$ $5$ $66$ $0$ $21$ $0.80$ $54$ $7223$ $35$ $5$ $67$ $0$ $25$ $6150$ $00$ $66$ $54$ $7223$ $35$ $5$ $68$ $0$ $20$ $9455$ $2.7577$ $60.96$ $54$ $7223$ $35.5$ $70$ $0$ $30.9226$ $-4.0710$ $60.96$ $54$ $7223$ $35.5$ $71$ $0$ $37.513$ $4.9464$ $60.96$ $54$ $7223$ $35.5$ $74$ $0$ $31.1226$ $2.0399$ $60.96$ $54.7223$ $35.5$ $74$ $0$ $37.8143$ $2.4785$ $60.96$ $54.7223$ $35.5$ $77$ $0$ $37.8143$ $2.4785$ $60.96$ $54.7223$ $35.5$ $78$ $0$ $37.5713$ $4.9464$ $60.96$ $54.7223$ $35.5$ $80$ <th< td=""><td>64</td><td>õ</td><td>21 1273 0 0</td><td>60.00</td><td>54 700</td><td>2 / 25 5</td></th<>	64	õ	21 1273 0 0	60.00	54 700	2 / 25 5
66         0         23.888         0.0         60.86         54.7223         35.5           67         0         25.6150         1.6789         60.96         54.7223         35.5           68         0         20.9465         2.7577         60.96         54.7223         35.5           69         0         25.4504         3.3506         60.96         54.7223         35.5           70         0         37.124-4.9464         60.96         54.7223         35.5           71         0         37.8143-2.4785         60.96         54.7223         35.5           74         0         31.1226         2.0399         60.96         54.7223         35.5           74         0         31.1226         2.0399         60.96         54.7223         35.5           75         0         37.713         4.9464         60.96         54.7223         35.5           76         0         31.1226         2.0399         60.96         54.7223         35.5           78         0         30.9226         4.0710         60.96         54.7223         35.5           80         0         45.4437         60.099         60.96         54.7	65	š	21.1273 0.0	60.30 60.00	54.722	3 35.5
66         0         21.0821         1.3818         60.96         54.7223         35.5           67         0         25.6150         1.6789         60.96         54.7223         35.5           68         0         20.9465         2.7577         60.96         54.7223         35.5           70         0         30.9226         -4.0710         60.96         54.7223         35.5           71         0         37.513         -4.9464         60.96         54.7223         35.5           72         0         31.1226-2.0399         60.96         54.7223         35.5           74         0         31.843         2.4785         60.96         54.7223         35.5           75         0         37.8143         2.4785         60.96         54.7223         35.5           78         0         30.9226         4.0710         60.96         54.7223         35.5           78         0         37.513         4.9464         60.96         54.7223         35.5           79         0         37.513         4.9464         60.96         54.7223         35.5           80         0         45.4450-3.0114         60.96	65	Ŭ,	25.6699 0.0	60.96	54.722	3 35.5
	00	0	21.0621 1.3818	5 60.96	54.722	3 35.5
68         0         20.93465         2.7577         60.96         54.7223         35.5           70         0         30.9226         -4.0710         60.96         54.7223         35.5           71         0         37.5713         -4.9464         60.96         54.7223         35.5           72         0         31.1226-2.0399         60.96         54.7223         35.5           73         0         37.8143-2.4785         60.96         54.7223         35.5           74         0         31.1226         2.0399         60.96         54.7223         35.5           74         0         37.8143         2.4785         60.96         54.7223         35.5           75         0         37.5713         4.9464         60.96         54.7223         35.5           78         0         30.526         40710         60.96         54.7223         35.5           80         0         45.64507.3021         60.96         54.7223         35.5           81         0         55.94360.0         60.96         54.7223         35.5           82         0         45.94503.0114         60.96         54.7223         35.5	67	0	25.6150 1.6789	60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68	0	20.9465 2.7577	60.96	54.722	.3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69	0	25.4504 3.3506	60.96	54.722	3 35.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	0	30.9226 -4.07	10 60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71	0	37.5713 -4.946	60.96	54.722	3 35.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	72	0	31.1226-2.0399	60.96	54.722	3 35.5
74       0       31.1894       0.0       60.96       54.7223       35.5         75       0       37.8955       0.0       60.96       54.7223       35.5         77       0       37.8143       2.4785       60.96       54.7223       35.5         78       0       30.9226       4.0710       60.96       54.7223       35.5         79       0       37.5713       4.9464       60.96       54.7223       35.5         80       0       45.6497       -6.0099       60.96       54.7223       35.5         81       0       55.4650       -7.3021       60.96       54.7223       35.5         82       0       45.9450.3.0114       60.96       54.7223       35.5         84       0       46.9436       0.0       60.96       54.7223       35.5         84       0       45.8497       6.099       60.96       54.7223       35.5         85       0       55.8238.36589       60.96       54.7223       35.5       5         86       0       45.6497       6.096       54.7223       35.5       5         87       0       55.4650       7.3021       60.96	73	0	37.8143-2.4785	5 60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74	0	31,1894 0.0	60.96	54.722	3 35.5
76031.12262.039960.9654.722335.5 $77$ 037.81432.478560.9654.722335.5 $78$ 030.92264.071060.9654.722335.5 $79$ 037.57134.946460.9654.722335.5 $80$ 0 $45.6497$ $-6.0099$ $60.96$ 54.722335.5 $81$ 055.4650 $-7.3021$ $60.96$ 54.722335.5 $82$ 0 $45.9450$ $3.0114$ $60.96$ 54.7223 $35.5$ $83$ 055.8238 $3.6589$ $60.96$ 54.7223 $35.5$ $84$ 0 $46.9436$ $0.0$ $60.96$ 54.7223 $35.5$ $85$ 0 $55.8238$ $3.6589$ $60.96$ $54.7223$ $35.5$ $86$ 0 $45.9450$ $3.0114$ $60.96$ $54.7223$ $35.5$ $87$ 0 $55.4250$ $3.0114$ $60.96$ $54.7223$ $35.5$ $87$ 0 $55.4250$ $7.3021$ $60.96$ $54.7223$ $35.5$ $89$ 0 $67.3907$ $8.8722$ $60.96$ $54.7223$ $35.5$ $91$ 0 $81.806$ $10.7798$ $60.96$ $54.7223$ $35.5$ $92$ 0 $67.82674.4456$ $76.96$ $54.7223$ $35.5$ $94$ 0 $67.9722$ $0.96$ $54.7223$ $35.5$ $95$ 0 $82.4104$ $5.096$ $54.7223$ $35.5$ $95$ 0 $82.4104$ $5.09$	75	0	37.8955 0.0	60.96	54.722	3 35 5
77037.812524.78560.9654.722335.578030.92264.071060.9654.722335.579037.57134.946460.9654.722335.580045.6497-6.009560.9654.722335.581055.4650-7.302160.9654.722335.582045.9450-3.011460.9654.722335.583055.8238-3.658960.9654.722335.584046.94360.060.9654.722335.585055.94360.060.9654.722335.586045.94503.011460.9654.722335.587055.462076.09960.9654.722335.588045.64976.09960.9654.722335.590067.3907-8.872260.9654.722335.591081.8806-10.779860.9654.722335.592067.82674.445670.9654.722335.593082.4104-5.401560.9654.722335.594067.39078.872260.9654.722335.595082.41045.401560.9654.722335.597082.41045.401560.9654.722335.598067.39078.872260.9654.722335.5 </td <td>76</td> <td>õ</td> <td>31 1226 2 0399</td> <td>60,96</td> <td>54 722</td> <td>3 35 5</td>	76	õ	31 1226 2 0399	60,96	54 722	3 35 5
78030.9224.713060.9654.722335.579037.57134.946460.9654.722335.580045.6497-6.00960.9654.722335.581055.4650-7.302160.9654.722335.582045.9450-3.011460.9654.722335.583055.8238-3.658960.9654.722335.584046.94360.060.9654.722335.585055.94360.060.9654.722335.586045.64576.09960.9654.722335.587055.46507.302160.9654.722335.588045.64976.09960.9654.722335.590067.3907-8.872260.9654.722335.591081.8806-10.779860.9654.722335.592067.8267-4.445660.9654.722335.593082.4104-5.401560.9654.722335.594067.39078.872260.9654.722335.595082.58720.060.9654.722335.596067.82674.4456760.9654.722335.597082.4104-5.401560.9654.722335.598067.39078.872260.9654.7223	77	õ	37 8143 2 4785		54.722	2 25 5
79037.57134.946460.9654.722335.580045.6497-6.009960.9654.722335.581055.4650-7.302160.9654.722335.582045.94503.011460.9654.722335.583055.82383.658960.9654.722335.584046.94360.060.9654.722335.585055.94360.060.9654.722335.586045.94503.011460.9654.722335.587055.82383.658960.9654.722335.588045.64976.009960.9654.722335.590067.3907-8.872260.9654.722335.591081.8806-10.779860.9654.722335.592067.82674.445660.9654.722335.593082.41045.401560.9654.722335.594067.97220.060.9654.722335.595082.58720.060.9654.722335.596067.82674.4456760.9654.722335.597082.41045.401560.9654.722335.598067.39720.9654.722335.5100099.4861-13.097660.9654.7223 <td< td=""><td>79</td><td>ŏ</td><td>30 9226 4 0710</td><td></td><td>54.722</td><td>3 35.5</td></td<>	79	ŏ	30 9226 4 0710		54.722	3 35.5
75037.134.346460.9654.722335.580045.6497-6.009960.9654.722335.581055.4650-7.302160.9654.722335.582045.94503.011460.9654.722335.583055.82383.658960.9654.722335.584046.94360.060.9654.722335.585055.94360.060.9654.722335.586045.64976.009960.9654.722335.587055.46507.302160.9654.722335.589055.46507.302160.9654.722335.591081.8806-10.779860.9654.722335.592067.3907-8.872260.9654.722335.593082.4104-5.401560.9654.722335.594067.97220.060.9654.722335.595082.41045.401560.9654.722335.596067.32674.4456760.9654.722335.597082.41045.401560.9654.722335.598067.39078.872260.9654.722335.597081.880610.779860.9654.722335.51001120.8769-15.913860.96 <td>70</td> <td>ě</td> <td>30.9226 4.0710</td> <td></td> <td>54.722</td> <td>3 35.5</td>	70	ě	30.9226 4.0710		54.722	3 35.5
80       0       44.6497       -6.0099       60.96       54.7223       35.5         81       0       55.4650       -7.3021       60.96       54.7223       35.5         82       0       45.9450       -7.3014       60.96       54.7223       35.5         83       0       55.8238       -3.6589       60.96       54.7223       35.5         84       0       46.9436       0.0       60.96       54.7223       35.5         85       0       55.9436       0.0       60.96       54.7223       35.5         87       0       55.8238       3.6589       60.96       54.7223       35.5         87       0       55.4650       7.3021       60.96       54.7223       35.5         90       0       67.3907       -8.8722       60.96       54.7223       35.5         91       0       81.8806       -10.7798       60.96       54.7223       35.5         92       0       67.9722       0.0       60.96       54.7223       35.5       93       0       82.5872       0.0       60.96       54.7223       35.5       95       0       82.5872       0.0       60.96       54.	/9	0	37.5713 4.9464	60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80	0	45.6497 -6.005	60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81	0	55.4650 -7.302	60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82	o	45.9450-3.0114	60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83	0	55.8238-3.6589	60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	0	46.9436 0.0	60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85	0	55.9436 0.0	60.96	54.722	3 35.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	86	0	45.9450 3.0114	60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87	0	55.8238 3.6589	60.96	54.722	3 35.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	88	0	45,6497 6,0099	60.96	54.722	3 35.5
90067.3807 $-8.8722$ 60.96 $54.7223$ $35.5$ 910 $81.8806$ $-10.7798$ $60.96$ $54.7223$ $35.5$ 920 $67.8267-4.4456$ $60.96$ $54.7223$ $35.5$ 930 $82.4104-5.4015$ $60.96$ $54.7223$ $35.5$ 940 $67.9722$ $0.0$ $60.96$ $54.7223$ $35.5$ 950 $82.5872$ $0.0$ $60.96$ $54.7223$ $35.5$ 960 $67.82674.4456$ 7 $60.96$ $54.7223$ $35.5$ 970 $82.4104$ $5.4015$ $60.96$ $54.7223$ $35.5$ 980 $67.3907$ $8.8722$ $60.96$ $54.7223$ $35.5$ 970 $82.4104$ $5.4015$ $60.96$ $54.7223$ $35.5$ 980 $67.3907$ $8.8722$ $60.96$ $54.7223$ $35.5$ 990 $81.8806$ $10.7798$ $60.96$ $54.7223$ $35.5$ 1011 $120.8769 - 15.9138$ $60.96$ $54.7223$ $35.5$ 1020 $100.1297 - 6.5629$ $60.96$ $54.7223$ $35.5$ 1031 $121.6589 - 7.9740$ $60.96$ $54.7223$ $35.5$ 1040 $100.3446 0.0$ $60.96$ $54.7223$ $35.5$ 1051 $121.6589 - 7.9740$ $60.96$ $54.7223$ $35.5$ 1060 $100.1297 6.5629$ $60.96$ $54.7223$ $35.5$ 1071 $121.6789 15.9138$ <	89	õ	55,4650 7,3021	60.96	54 722	3 35 5
91081.8806 -10.772860.9654.722335.592067.8267-4.445660.9654.722335.593082.4104-5.401560.9654.722335.594067.97220.060.9654.722335.595082.58720.060.9654.722335.596067.82674.4456760.9654.722335.597082.41045.401560.9654.722335.598067.39078.872260.9654.722335.599081.880610.779860.9654.722335.5100099.4861-13.097660.9654.722335.51011120.8769-15.913860.9654.722335.51020100.1297-6.562960.9654.722335.51031121.6589-7.974060.9654.722335.51040100.34460.060.9654.722335.51051121.92000.060.9654.722335.51051121.65897.974060.9654.722335.51051121.65897.974060.9654.722335.510609.486113.097660.9654.722335.51091120.876915.913860.9654.722335.51091120.876915.913860.96	90	ŏ	67.3907 -8.872	60.96	54 722	3 35 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91	õ	81 8806 -10 77	108 60 96	54.722	2 25 5
93082.4104-5.401560.9654.722335.5 $94$ 067.97220.060.9654.722335.5 $95$ 082.58720.060.9654.722335.5 $96$ 067.82674.4456760.9654.722335.5 $97$ 082.41045.401560.9654.722335.5 $98$ 067.39078.872260.9654.722335.5 $99$ 081.880610.779860.9654.722335.5 $100$ 099.4861-13.097660.9654.722335.5 $101$ 1120.8769-15.913860.9654.722335.5 $102$ 0100.1297-6.562960.9654.722335.5 $103$ 1121.65897.974060.9654.722335.5 $104$ 0100.34460.060.9654.722335.5 $105$ 1121.65897.974060.9654.722335.5 $106$ 0100.12976.562960.9654.722335.5 $107$ 1121.65897.974060.9654.722335.5 $108$ 099.486113.097660.9654.722335.5 $109$ 1120.876915.913860.9654.722335.5 $108$ 099.486113.097660.9654.722335.5 $109$ 1120.876915.913860.9654.722335.5	92	õ	67 8267-4 4456	SS 60.90	54.722	3 35.5 2 35 5
33 $0$ $82.4104-5.4015$ $80.96$ $54.7223$ $35.5$ $94$ $0$ $67.9722$ $0.0$ $60.96$ $54.7223$ $35.5$ $95$ $0$ $82.5872$ $0.0$ $60.96$ $54.7223$ $35.5$ $96$ $0$ $67.82674.4456$ $7$ $60.96$ $54.7223$ $35.5$ $97$ $0$ $82.4104$ $5.4015$ $60.96$ $54.7223$ $35.5$ $98$ $0$ $67.3907$ $8.8722$ $60.96$ $54.7223$ $35.5$ $99$ $0$ $81.8806$ $10.7798$ $60.96$ $54.7223$ $35.5$ $100$ $0$ $99.4861$ $-13.0976$ $60.96$ $54.7223$ $35.5$ $101$ $1$ $120.8769$ $-15.9138$ $60.96$ $54.7223$ $35.5$ $102$ $0$ $100.1297-6.5629$ $60.96$ $54.7223$ $35.5$ $103$ $1$ $121.65897.9740$ $60.96$ $54.7223$ $35.5$ $104$ $0$ $100.3446$ $0.0$ $60.96$ $54.7223$ $35.5$ $105$ $1$ $121.9200$ $0.0$ $60.96$ $54.7223$ $35.5$ $106$ $0$ $100.1297$ $6.5629$ $60.96$ $54.7223$ $35.5$ $108$ $0$ $99.4861$ $13.0976$ $60.96$ $54.7223$ $35.5$ $107$ $1$ $121.6589$ $7.9740$ $60.96$ $54.7223$ $35.5$ $108$ $0$ $99.4861$ $13.0976$ $60.96$ $54.7223$ $35.5$ $108$ $0$ $99.4861$ <	02	ě		60.96	54.722	3 35.5
94 $0$ $67.9722$ $0.0$ $60.96$ $54.7223$ $35.5$ $95$ $0$ $82.5872$ $0.0$ $60.96$ $54.7223$ $35.5$ $96$ $0$ $67.82674.4456$ $7$ $60.96$ $54.7223$ $35.5$ $97$ $0$ $82.4104$ $5.4015$ $60.96$ $54.7223$ $35.5$ $98$ $0$ $67.3907$ $8.8722$ $60.96$ $54.7223$ $35.5$ $99$ $0$ $81.8806$ $10.7798$ $60.96$ $54.7223$ $35.5$ $100$ $0$ $99.4861$ $-13.0976$ $60.96$ $54.7223$ $35.5$ $101$ $1$ $120.8769$ $-15.9138$ $60.96$ $54.7223$ $35.5$ $102$ $0$ $100.1297-6.5629$ $60.96$ $54.7223$ $35.5$ $103$ $1$ $121.6589-7.9740$ $60.96$ $54.7223$ $35.5$ $104$ $0$ $100.3446$ $0.0$ $60.96$ $54.7223$ $35.5$ $105$ $1$ $121.9200$ $0.0$ $60.96$ $54.7223$ $35.5$ $106$ $0$ $100.1297$ $6.5629$ $60.96$ $54.7223$ $35.5$ $107$ $1$ $121.6589$ $7.9740$ $60.96$ $54.7223$ $35.5$ $108$ $0$ $99.4861$ $13.0976$ $60.96$ $54.7223$ $35.5$ $108$ $0$ $99.4861$ $13.0976$ $60.96$ $54.7223$ $35.5$ $108$ $0$ $99.4861$ $13.0976$ $60.96$ $54.7223$ $35.5$ $108$ $0$ $9$	33	ě	82.4104-5.4015	60.96	54.722	3 35.5
95082.58720.060.9654.722335.596067.82674.4456760.9654.722335.597082.41045.401560.9654.722335.598067.39078.872260.9654.722335.599081.880610.779860.9654.722335.5100099.4861-13.097660.9654.722335.51011120.8769-15.913860.9654.722335.51020100.12976.562960.9654.722335.51031121.65897.974060.9654.722335.51040100.34460.060.9654.722335.51051121.92000.060.9654.722335.51060100.12976.562960.9654.722335.51071121.65897.974060.9654.722335.5108099.486113.097660.9654.722335.51091120.876915.913860.9654.722335.5108099.486113.097660.9654.722335.51091120.876915.913860.9654.722335.5108099.486113.097660.9654.722335.51091120.876915.913860.9654.722335.5108099.4	94	0	67.9722 0.0	60.96	54.722	3 35.5
960 $67.82674.44567$ $60.96$ $54.7223$ $35.5$ $97$ 0 $82.41045.4015$ $60.96$ $54.7223$ $35.5$ $98$ 0 $67.39078.8722$ $60.96$ $54.7223$ $35.5$ $99$ 0 $81.880610.77986$ $60.9654.7223$ $35.5$ $100$ 0 $99.4861-13.09766$ $60.9654.7223$ $35.5$ $101$ 1 $120.8769-15.9138$ $60.9654.7223$ $35.5$ $102$ 0 $100.1297-6.5629$ $60.9654.7223$ $35.5$ $103$ 1 $121.6589-7.9740$ $60.9654.7223$ $35.5$ $103$ 1 $121.6589-7.9740$ $60.9654.7223$ $35.5$ $104$ 0 $100.34460.00$ $60.9654.7223$ $35.5$ $105$ 1 $121.92000.0$ $60.9654.7223$ $35.5$ $106$ 0 $100.12976.5629$ $60.9654.7223$ $35.5$ $107$ 1 $121.65897.9740$ $60.9654.7223$ $35.5$ $107$ 1 $121.65897.9740$ $60.96554.7223$ $35.5$ $108$ 0 $99.4861$ $13.0976$ $60.96554.7223$ $35.5$ $109$ 1 $120.8769$ $15.9138$ $60.96554.7223$ $35.5$ $109$ 1 $120.8769$ $15.9138$ $60.96554.7223$ $35.5$ $109$ 1 $120.8769$ $15.9138$ $60.96554.7223$ $35.5$ $109$ 1 $120.8769$ $15.9138$ $60.96554.7223$ $35.5$ $109$ 1 $120.8769$ $15.9138$ $60.96554.7223$ $35.5$	95	0	82.5872 0.0	60.96	54.722	3 35.5
970 $82.4104$ $5.4015$ $60.96$ $54.7223$ $35.5$ $98$ 0 $67.3907$ $8.8722$ $60.96$ $54.7223$ $35.5$ $99$ 0 $81.8806$ $10.7798$ $60.96$ $54.7223$ $35.5$ $100$ 0 $99.4861$ $-13.0976$ $60.96$ $54.7223$ $35.5$ $101$ 1 $120.8769$ $-15.9138$ $60.96$ $54.7223$ $35.5$ $102$ 0 $100.1297-6.5629$ $60.96$ $54.7223$ $35.5$ $103$ 1 $121.6589-7.9740$ $60.96$ $54.7223$ $35.5$ $104$ 0 $100.3446$ $0.0$ $60.96$ $54.7223$ $35.5$ $104$ 0 $100.3446$ $0.0$ $60.96$ $54.7223$ $35.5$ $105$ 1 $121.9200$ $0.0$ $60.96$ $54.7223$ $35.5$ $106$ 0 $100.1297$ $6.5629$ $60.96$ $54.7223$ $35.5$ $107$ 1 $121.6589$ $7.9740$ $60.96$ $54.7223$ $35.5$ $108$ 0 $99.4861$ $13.0976$ $60.96$ $54.7223$ $35.5$ $109$ 1 $120.8769$ $15.9138$ $60.96$ $54.7223$ $35.5$ $109$ 1 $120.8769$ $15.9138$ $60.96$ $54.7223$ $35.5$ $109$ 1 $120.8769$ $15.9138$ $60.96$ $54.7223$ $35.5$ $109$ 1 $120.8769$ $15.9138$ $60.96$ $54.7223$ $35.5$ $109$ 1 $120.8769$ $13.02$	96	0	67.82674.4456	7 60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97	0	82.4104 5.4015	60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	98	0	67.3907 8.8722	60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99	0	81.8806 10.779	60.96	54.722	3 35.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	0	99.4861 -13.09	60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101	1	120.8769 -15.91	38 60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102	0	100.1297-6.5629	60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103	1	121.6589-7.9740	60.96	54.722	3 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104	0	100.3446 0.0	60.96	54.722	3 35.5
1060 $100.1297$ $6.5629$ $60.96$ $54.7223$ $35.5$ $107$ 1 $121.6589$ $7.9740$ $60.96$ $54.7223$ $35.5$ $108$ 0 $99.4861$ $13.0976$ $60.96$ $54.7223$ $35.5$ $109$ 1 $120.8769$ $15.9138$ $60.96$ $54.7223$ $35.5$ $1$ 123564 $2$ 146798 $3$ 653101112 $4$ 61211131514 $5$ 61415171916 $6$ 616191897 $7$ 151311202122 $8$ 152221232524 $9$ 152425272926 $10$ 152629281917 $11$ 252321303132 $12$ 253231333534	105	1	121.9200 0.0	60.96	54.722	3 35 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106	ò	100, 1297 6, 5629	60.96	54 722	3 35 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107	1	121 6589 7 9740		54.722	2 35.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109	, ,	99 4961 13 097		54.722	0 05 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	108	, i	120 8769 15 017	6 60.96	54.722	3 35.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	109		120.8769 15.913	60.96	_ 54./22	3 35,5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	2	3	5	6 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	4	6	7	9 8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	6	5	З	10	11 12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	6	12	11	13	15 14
6616191897715131120212281522212325249152425272926101526292819171125232130313212253231333534	5	6	14	15	17	19 16
715131120212281522212325249152425272926101526292819171125232130313212253231333534	6	6	16	19	18	9 7
81522212325249152425272926101526292819171125232130313212253231333534	7	15	13	11	20	21 22
9       15       24       25       27       29       26         10       15       26       29       28       19       17         11       25       23       21       30       31       32         12       25       32       31       33       35       34	8	15	22	21	23	25 24
10         15         26         29         28         19         17           11         25         23         21         30         31         32           12         25         32         31         33         35         34	9	15	24	25	27	29 26
11         25         23         21         30         31         32           12         25         32         31         33         35         34	10	15	26	29	28	19 17
12 25 32 31 33 35 34	11	25	23	21	30	31 32
	12	25	32	31	33	35 34

.

•
TABLE II (CONTD.)

13	25	34	35	37	39	36
14	25	36	39	38	29	27
15	35	33	31	40	41	42
16	35	42	41	43	45	44
17	35	44	45	47	49	46
18	35	46	49	48	39	37
19	45	43	41	50	51	52
20	45	52	51	53	55	54
21	45	54	55	57	59	56
22	45	56	59	58	49	47
23	55	53	51	60	61	62
. 24	55	62	61	63	65	64
25	55	64	65	67	69	66
26	55	66	69	68	59	57
27	65	63	61	70	71	72
28	65	72	71	73	75	74
29	65	74	75	77	79	76
30	65	76	79	78	69	67
31	75	73	71	80	81	82
32	75	82	81	83	85	84
33	75	84	85	87	89	86
34	75	86	89	88	79	77
35	85	83	81	90	91	92
36	85	92	91	93	95	94
37	85	94	95	97	.99	96
38	85	96	99	98	89	87
39	95	93	91	100	101	102
40	95	102	101	103	105	104
41	95	104	105	107	109	106
42	95	106	109	108	99	97
1 -15.51						
2 -15.51						

INPUT DATA FOR CASE 3

```
0
 0
 0
 14
 42
 109
 6
 1
 1
 0
 2
 0
 0
 14 15 24 25 34 35 44 45 54 55 64 65 74 75 84 85 94 95104105
 1 4
 6
 0.755
 0.0 0.0
 1.0
 0.0
 0.05
 25
 1 2.596
 2.596
 0.2428
0.0
 600.0
 1.0
 1.25
 0.0
 0.0
 60.96
 54.7223
 1
 0
 35.5
 1.7386
 2
 0
 -0.2289
 60.96
 54.7223
 35.5
 З
 0
 2.3596
 -0.3107
 60.96
 54.7223
 ·35.5
 1.7586
 54.7223
 4
 0
 0.0
 60.96
 35.5
 5
 0
 2.3749
 -0.1557
 60.96
 54.7223
 35.5
 6
 0
 2.38
 0.0
 60.96
 54.7223
 35.5
 0
 7
 0.1557
 2.3749
 60.96
 54.7223
 35.5
 8
 0
 1.7386
 0.2289
 60.96
 54.7223
 35.5
 0
 9
 2.3596
 54.7223
 0.3107
 60.96
 35.5
 10
 0
 2.9874
 -0.3933
 60.96
 54.7223
 35.5
 11
 0
 3.6298
 -0.4779
 60.96
 54.7223
 35.5
 -0.1971
 12
 0
 3.0067
 60.96
 54.7223
 35.5
 13
 0
 3.6533 -0.2395
 60.96
 54.7223
 35.5
 0
 60.96
 14
 3.0132
 0.0
 54.7223
 35.5
 15
 0
 3.6611
 0.0
 60.96
 54.7223
 35.5
 0
 16
 3.0067
 0.1971
 60.96
 54.7223
 35.5
 17
 0
 3.6533
 0.2394
 60.96
 54.7223
 35.5
 18
 0
 2.9874
 0.3933
 60.96
 54.7223
 35.5
 0
 3.6298
 19
 0.4779
 54.7223
 60.96
 35.5
 20
 0
 4.4102
 -0.5806
 60.96
 54.7223
 35.5
 -0.7055
 21
 0
 5.3586
 60.96
 54.7223
 35.5
 22
 0
 4.4388 -0.2909
 60.96
 54.7223
 35.5
 0
 23
 5.3932 -0.3535
 60.96
 54.7223
 35.5
 4.4483
 24
 0
 0.0
 60.96
 54.7223
 35.5
 25
 0
 5.4048
 0.0
 60.96
 54.7223
 35.5
 0
 4.4388
 54.7223
 26
 0.2909
 60.96
 35.5
 27
 0
 5.3932
 0.3535
 60.96
 54.7223
 35.5
 0
 28
 4.4102
 0.5806
 60.96
 54.7223
 35.5
 5.3586
 0
 29
 0.7055
 60.96
 54.7223
 35.5
 30
 0
 6.5107
 -0.8572
 60.96
 54.7223
 35.5
 0
 7.9105
 31
 -1.0414
 60.96
 54.7223
 35.5
 32
 0
 6.5528
 -0.4295
 60.96
 54.7223
 35.5
 33
 0
 7.9617
 -0.5218
 54.7223
 60.96
 35.5
 0
 34
 6.5669
 0.0
 60.96
 54.7223
 35.5
 35
 0
 7.9788
 0.0
 60.96
 54.7223
 35.5
 36
 0
 6.5528
 0.4295
 54.7223
 60.96
 35.5
 37
 0
 7.9617
 0.5218
 60.96
 54.7223
 35.5
 38
 0
 6.5107
 0.8572
 60.96
 54.7223
 35.5
 39
 0
 7.9105
 1.0414
 60.96
 54.7223
 35.5
 40
 0
 9.6115
 -1.2654
 60.96
 54.7223
 35.5
 11.6780 -1.5374
 41
 0
 60.96
 54.7223
 35.5
 42
 0
 9.6736 -0.6341
 60.96
 54.7223
 35.5
 43
 0
 11.7536-0.7704
 60.96
 54.7223
 35.5
 44
 0
 9.6944 0.0
 60.96
 54.7223
 35.5
 45
 0
 11.7788 0.0
 60.96
 54.7223
 35.5
 46
 9.6736 0.6340
 54.7223
 0
 60.96
 35.5
 47
 0
 11.7536 0.7704
 60.96
 54.7223
 35.5
 48
 0
 9.6115 1.2654
 60.96
 54.7223
 35.5
 49
 0
 11.6780 1.5374
 60.96
 54.7223
 35.5
 50
 14.1890 -1.8680
 54.7223
 35.5
 0
 60.96
 17.2397 -2.2697
 51
 0
 60.96
 54.7223
 35.5
 52
 0
 14.2808-0.9360
 60,96
 54.7223
 35.5
 53
 0
 17.3513-1.1373
 60.96
 54.7223
 35.5
 54
 14.3114 0.0
 60.96
 54.7223
 0
 35.5
 55
 0
 17.3885 0.0
 60.96
 54.7223
 35.5
```

TABLE III (CONTD.)

.

·					
56	0	14.2808.0.9360	60.96	54.7223	35.5
57	õ	17.3513 1.1373	60.96	54,7223	35.5
58	ō	14.1890 1.8680	60.96	54.7223	35.5
59	ō	17.2397 2.2697	60.96	54.7223	35.5
60	õ	20,9465 -2,7577	60.96	54.7223	35.5
61	ŏ	25.4504 -3.3506	60.96	54.7223	35.5
62	ŏ	21.0821-1.3818	60.96	54.7223	35.5
63	ŏ	25.6150-1.6789	60.96	54.7223	35.5
64	õ	21.1273 0.0	60.96	54.7223	35.5
65	ō	25.6699 0.0	60.96	54.7223	35.5
66	ō	21.0821 1.3818	60.96	54.7223	35.5
67	ō	25.6150 1.6789	60.96	54.7223	35.5
68	ō	20.9465 2.7577	60.96	54.7223	35.5
69	0	25.4504 3.3506	60.96	54.7223	35.5
70	0	30.9226 -4.0710	60.96	54.7223	35.5
71	0	37.5713 -4.9464	60.96	54.7223	35.5
72	0	31.1226-2.0399	60.96	54.7223	35.5
73	0	37.8143-2.4785	60.96	54.7223	35.5
74	0	31.1894 0.0	60.96	54.7223	35.5
75	0	37.8955 0.0	60.96	54.7223	35.5
76	0	31.1226 2.0399	60.96	54.7223	35.5
77	0	37.8143 2.4785	60.96	54.7223	35.5
78	0	30.9226 4.0710	60.96	54.7223	35.5
79	0	37.5713 4.9464	60.96	54.7223	35.5
80	0	45.6497 -6.0099	60.96	54.7223	35.5
81	0	55.4650 -7.3021	60.96	54.7223	35.5
82	0	45.9450-3.0114	60.96	54.7223	35.5
83	0	55.8238-3.6589	60.96	54.7223	35.5
84	0	46.9436 0.0	60.96	54.7223	35.5
85	0	55.9436 0.0	60.96	54.7223	35.5
86	0	45.9450 3.0114	60.96	54.7223	35.5 ·
87	0	55.8238 3.6589	60.96	54.7223	35.5
88	0	45.6497 6.0099	60.96	54.7223	35.5
89	0	55.4650 7.3021	60.96	54.7223	35.5
90	0	67.3907 -8.8722	60.96	54.7223	35.5
91	0	81.8806 -10.7798	60.96	54.7223	35.5 .
92	0	67.8267-4.4456	60.96	54.7223	35.5
93	0	82.4104-5.4015	60.96	54.7223	35.5
94	0	67.9722 0.0	60.96	54.7223	35.5
95	0	82.5872 0.0	60.96	54.7223	35.5
96	0	67.82674.4456 7	60.96	54.7223	35.5
97	0	82.4104 5.4015	60.96	54.7223	35.5
98	0	67.3907 8.8722	60.96	54.7223	35.5
99	0	81.8806 10.7798	60.96	54.7223	35.5
100	o	99.4861 -13.0976	60.96	54.7223	35.5
101	1	120.8/69 -15.9138	60.96	54.7223	35.5
102	O A	100.1297-6.5629	60.96	54.7223	35.5
103	1	121.6589-7.9740	60.96	54.7223	30.0
104	0	100.3446 0.0	60.96	54.7223	33.3
105	1	121.9200 0.0	60.96	54.7223 E4.7000	30.0 25 5
106	ç	100.1297 6.5629	60.96	54.7223	33.3
107		121.0000 /.9/40	60.96	54.7223	33.3
108	4	33.4861 13.09/6 120 8769 15 0128	60.96 60 96	54.7223	35.5
109	4	20.0/03 10.9138	00.30	54.1225	33.5
1	1		, D	0	4
2	Ē	4 5		3	40
3	ø			1	12
4	6		13	10	14
5	6	16 15	· · · · ·	13	7
7	15	13 14	, 10		· · ·
, 8	15	22 24	20	21	22
	15	24 2F	5 27	29	26
10	15	26 29	28	19	17
11	25	23 21	30	31	32

.

.

.

TABLE III (CONTD.)

-

.

.

,

12	25	32	31	33	35	34
13	25	34	35	37	39	36
14	25	36	39	38	29	27
15	35	33	31	40	41	42
16	35	42	41	43	45	44
17	35	44	45	47	49	46
18	35	46	49	48	39	37
19	45	43	41	50	51	52
20	45	52	51	53	55	54
21	45	54	55	57	59	56
22	45	56	59	58	49	47
23	55	53	51	60	61	62
24	55	62	61	63	65	64
25	55	. 64	65	67	69	66
26	55	66	69	68	59	57
27	65	63	61	70	71	72
28	65	72	71	73	75	74
29	65	74	75	77	79	76
30	65	76.	79	78	69	67
31	75	73	71	80	81	82
32	75	82	81	83	85	84
33	75	84	85	87	89	86
34	75	86	89	88	79	77
35	85	83	81	90	91	92
36	85	92	91	93	95	94
37	85	94	95	97	99	96
38	85	96	99	98	89 .	87
39	95	93	91	100	101	102
40	95	102	101	103	105	104
41	95	104	105	107	109	106
42	95	106	109	108	99	97
1 -15.51 2 -15.51						

.

.

TABLE IV

.

INPUT DATA FOR CASE 4

0 1 0 46 119 6 0 6 0	23 1 1		
1 4 6 24 25 0.755 1.0	34 35 44 45 54 55 64 6 0.0 0.0	5 74 75 84 85 0.0 0	94 95104105114115 .05
46 119 6 0 6 0 1 4 6 24 25 0.755 1.0 1 2.596 2 14 16 17 15 18 1 12 13 11 19 3 2 5 4 6 8 7 9 10 20 21 22 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5       74       75       84       85         0.0       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0         60.96       0	94         95104105114115           .05           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0           00.0000         00.0 <t< td=""></t<>
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96         60.96       60.96	D0.0000         00.0           D0.0000         00.0
54 55 、56	0 9.6544 0.0 0 11.7788 0.0 0 9.6736 0.6340	60.96 60.96 60.96	00.0000 00.0 00.0000 00.0 00.000 00.0

.

4

.

.

.

.

-

TABLE IV (CONTD.)

57	0	11.7536 0.7704	60.96	00.0000	00.0
58	0	9.6115 1.2654	60.96	00.0000	00.0
59	o o	11.6780 1.5374	60.96	00.0000	00.0
60	. 0	14.1890 -1.8680	60.96	00.0000	00.0
62	õ	14 2808-0 9360	60.96	00.0000	00.0
63	ŏ	17.3513-1.1373	60.96	00.0000	
64	0	14.3114 0.0	60.96	00.0000	00.0
65	0	17:3885 0.0	60.96	00.0000	00.0
66	0	14.2808 0.9360	60.96	00.0000	00.0
68	0	17.3513 1.1373	60.96	00.0000	00.0
69	ŏ	17.2397 2.2697	60.96	00.0000	
70	0	20.9465 -2.7577	60.96	00.0000	00.0
71	0	25.4504 -3.3506	60.96	00.0000	00.0
72	0	21.0821-1.3818	60.96	00.0000	00.0
73	õ	21 1273 0 0	60.96	00.0000	00.0
75	õ	25.6699 0.0	60.96		00.0
76	0	21.0821 1.3818	60.96	00.0000	00.0
77	0	25.6150 1.6789	60.96	00.0000	00.0
78 79	0	20.9465 2.7577	60.96	00.0000	00.0
79 80	0	25.4504 3.3506	60.96	00.0000	00.0
81	ŏ	37.5713 -4.9464	60.96	00.0000	
82	Ō	31.1226-2.0399	60.96	00.0000	00.0
83	0	37.8143-2.4785	60.96	00.0000	00.0
84	0	31.1894 0.0	60.96	00.0000	00.0
86	õ	31 1226 2 0399	60.96	00.0000	00.0
87	ŏ	37.8143 2.4785	60.96	00.0000	00.0
88	Ō	30.9226 4.0710	60.96	00.0000	00.0
89	0	37.5713 4.9464	60.96	00.0000	00.0
90	0	45.6497 -6.0099	60,96	00.0000	00.0
92	õ	45,9450-3,0114	60.96	00.0000	00.0
93	ŏ	55.8238-3.6589	60.96	00.0000	00.0
94	0	46.9436 0.0	60.96	00.0000	00.0
95	0	55.9436 0.0	60.96	00.0000	00.0
96	0	45.9450 3.0114	60.96	00.0000	00.0
98	õ	45.6497 6.0099	60.96	00.0000	00.0
99	õ	55.4650 7.3021	60.96	00.0000	00.0
100	0	67.3907 -8.8722	60.96	00.0000	00.0
101	0	81.8806 -10.7798	60.96	00.0000	00.0
102	0		60.96	00.0000	00.0
104	ŏ	67.9722 0.0	60.96		00.0
105	õ	82.5872 0.0	60.96	00.0000	00.0
106	0	67.8267 4.4456	60.96	00.0000	00.0
107	0	82.4104 5.4015	60.96	00.0000	00.0
108	0	81 8806 10 7798	60.96	00.0000	00.0
110	ŏ	99.4861 -13.0976	60.96	00.0000	00.0
111	1	120.8769 -15.9138	60.96	00.0000	00.0
112	0	100.1297-6.5629	60.96	00.0000	00.0
113	1	121.6589-7.9740	60.96	00.0000	00.0
115	1	121.9200 0.0	60.96 60 96	00.0000	00.0
116	ò	100.1297 6.5629	60.96	00.0000	00.0
117	1	121 6589 7.9740	60 96	00 0000	00.0
118	ò	99.4861 13.0976	60 96	00 0000	00.0
1	1	120.8/69 15.9138	60.96	_ 00.0000	00.0
2	1	4 6		J 6 7 9	4 8
				•	

.

-

TABLE IV (CONTD.)

					•		
1 2 9 4 5 8	$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 34\\ 35\\ 36\\ 37\\ 38\\ 940\\ 41\\ 42\\ 43\\ 45\\ 46\\ -0.6462\\ 245\\ 6462\\ 26\\ -0.6462\\ 26\\ -0.6462\\ 6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.6462\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ 6-0.666\\ $	1 1 1 1 3 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 12 15 18 20 22 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 24 46 32 2 46 32 2 46 32 2 46 32 2 46 32 2 46 32 2 46 32 2 2 46 32 2 46 32 2 2 4 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 11 14 17 21 25 29 21 35 9 31 45 9 31 45 9 5 5 5 5 5 5 5 5 5 5 5 5 5 7 7 7 7 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 5 9 1 1 1 1	10 13 16 19 22 23 27 28 30 33 37 38 40 43 47 48 50 53 57 58 60 63 67 68 70 73 77 78 80 83 87 88 90 93 97 98 100 103 107 108 110 113 117 118	11 14 17 3 6 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 9 1 5 9 9 9 1 5 9 9 9 1 5 9 9 9 1 5 9 9 9 1 5 9 9 9 1 1 5 9 9 1 5 9 9 9 1 5 9 9 9 1 5 9 9 9 1 5 9 9 9 1 5 9 9 9 1 5 9 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 9 1 5 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 5 9 9 9 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 5 9 9 9 1 1 1 1	1254672467246724672467246724672467246724672

TABLE V

INPUT DATA FOR CASE 5

$\begin{array}{c} 0 & 0 & 0 \\ 46 & 119 & 6 \\ 0 & 6 & 0 \\ 1 & 4 & 6 & 24 & 25 \\ 0.755 & 1.0 \\ 1 & 2.596 & 2 \\ 0.0 & 600.0 \\ 14 \\ 16 \\ 17 \\ 15 \\ 18 \\ 1 \\ 12 \\ 13 \\ 11 \\ 19 \\ 3 \\ 2 \\ 5 \\ 4 \\ 6 \\ 8 \\ 7 \\ 9 \\ 10 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64 $65$ $74$ $75$ $84$ $0$ $0.0$ $25$ $60.96$ $0$ $60.96$ $380$ $60.96$ $380$ $60.96$ $380$ $60.96$ $7536$ $60.96$ $7536$ $60.96$ $380$ $60.96$ $380$ $60.96$ $380$ $60.96$ $380$ $60.96$ $3107$ $60.96$ $2289$ $60.96$ $2289$ $60.96$ $2289$ $60.96$ $2289$ $60.96$ $23933$ $60.96$ $3933$ $60.96$ $2395$ $60.96$ $2394$ $60.96$ $23933$ $60.96$ $3933$ $60.96$ $3933$ $60.96$ $23909$ $60.96$ $23909$ $60.96$ $2909$ $60.96$ $2909$ $60.96$ $2$	85         94         95         104         102           00         0000         25           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000           00         0000         00         0000 <td>5114115         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0</td>	5114115         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0         00.0
44	0 6.5669 0.0	0 60.96 0 60.96	00.0000	00.0
46	0 6.5528 0.4	4295 60.96	00.0000	00.0
47	0 7.9617 0.1	5218 60.96	00.0000	00.0
48 49	0 7 9105 1.0	0414 60.96	00.0000	00.0
50	0 9 6115 -1	.2654 60.96	00.0000	00.0
51	0 11.6780 -1	.5374 60.96	00.0000	00.0
52	0 9.6736 -0.0	60.96 7704 60.96	00.0000	00.0
54	0 9.6944 0.4	0 60.96	00.0000	00.0
55	0 11 7788 0.0	0 60.96	00.0000	00.0

.

TABLE V (CONTD.)

56 57 58 59 60 61 62 63 64 56 67 68 97 01 72 73 74 75 67 78 98 1 82 83 84 86 87 88 99 91 92 93 94 95 97 98 90 101 102 104 105 106 102 104 105 106 102 106 102 106 102 102 104 105 106 102 102 100 102 102 102 102 102 102 102	000000000000000000000000000000000000000	9.6736 0.6340 11.7536 0.7704 9.6115 1.2654 11.6780 1.5374 14.1890 -1.8680 17.2397 -2.2697 14.2808-0.9360 17.3513-1.1373 14.3114 0.0 17.3885 0.0 14.2808 0.9360 17.3513 1.1373 14.1890 1.8680 17.2397 2.2697 20.9465 -2.7577 25.4504 -3.3506 21.0821-1.3818 25.6150-1.6789 21.1273 0.0 25.6699 0.0 21.0821 1.3818 25.6150 1.6789 20.9465 2.7577 25.4504 3.3506 30.9226 -4.0710 37.5713 -4.9464 31.1226-2.0399 37.8143 2.4785 30.9226 4.0710 37.5713 4.9464 31.1226 2.0399 37.8143 2.4785 30.9226 4.0710 37.5713 4.9464 45.6497 -6.0099 55.4650 -7.3021 45.9450-3.0114 55.8238-3.6589 46.9436 0.0 45.9450 3.0114 55.8238-3.6589 46.9436 0.0 45.9450 3.0114 55.8238 3.6589 46.9436 0.0 45.9450 3.0114 55.8238 3.6589 46.9436 0.0 45.9450 7.3021 67.3907 -8.8722 81.8806 -10.7798 67.8267 4.4456 82.4104 5.4015 67.3907 8.8722 81.8806 10.7798 99.4861 -13.0976	$\begin{array}{c} 666666666666666666666666666666666666$		
106 107 108 109 110 111	0000010	67.8267 4.4456 82.4104 5.4015 67.3907 8.8722 81 8806 10.7798 99.4861 -13.0976 120.8769 -15.9138 100 1297-6 5629	60.96 60.96 60.96 60.96 60.96 60.96		00.0 00.0 00.0 00.0 00.0
112 113 114 115 116 117 118	0101010	100.1297-6.5629 121.6589-7.9740 100.3446 0.0 121.9200 0.0 100 1297 6.5629 121.6589 7 9740 99.4861 13.0976	60.96 60.96 60.96 60.96 60.96 60.96 60.96		00.0 00.0 00.0 00.0 00.0 00.0
119	1	120.8769 15.9138 2 3	60.96	00.000C 5 6	00.0 4

٠

.

.

TABLE V (CONTD.)

.

.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	1 1 1 1 1 1 1 3 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 8 12 15 8 20 22 4 26 23 24 26 23 24 26 23 24 26 23 24 26 23 24 46 32 44 46 32 44 45 55 66 66 32 44 63 27 46 32 24 88 83 22 84 83 22 84 83 22 84 83 83 84 83 83 84 83 83 84 83 83 84 83 84 83 83 84 85 85 86 85 86 85 86 85 86 86 86 86 86 86 86 86 86 86 86 86 86	6 9 11 14 17 21 25 29 21 35 39 21 35 39 31 45 49 41 55 9 51 65 69 61 75 79 71 85 89 81 91	7 10 13 16 19 22 23 27 28 30 33 37 28 30 33 37 28 30 33 37 28 30 33 37 28 30 33 37 28 30 33 37 28 30 33 57 58 60 63 67 68 70 73 77 88 80 83 87 88 90 93	9 11 14 17 3 6 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 9 9 1 5 7 7 7 7 9 9 1 5 9 9 1 5 9 9 1 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 12 15 8 22 7 24 67 24 44 67 24 67 24 66 57 74 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 24 67 777 777 777 777 7777777777
$ \begin{array}{c} 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ -0.6462\\ 2.0.6462\\ 2.0.6462 \end{array} $	333444455555666677777888889999010000	42 44 46 43 54 55 66 66 77 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 46 32 1111	41 45 49 41 55 59 61 65 69 61 71 75 79 71 81 85 89 81 95 99 101 50 101 105 101 115 109	43 47 48 50 53 57 58 60 63 67 68 70 73 77 78 80 83 87 88 90 93 97 98 100 103 107 108 110 113 117	45 99 51 55 99 46 59 97 75 99 15 99 46 59 97 75 99 15 99 90 100 91 15 99 115 99 100 91 15 99 109 91 15 99 109 91 109 109 91 109 91 109 100 91 109 100 100	446724672466724667246672466724667246724100 100672110 11167
2 -0.6462 3 -0.6462 4 -0.6462 5 -0.6462 6 -0.6462					.*	

.

•

#### TABLE VI

INPUT DATA FOR CONFINED AQUIFER EXAMPLE

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 1 0 6 17 22 23 0.0	1 28 29 34 35 0.0	40 41 46 47 0.0 0.	52 53 58 59 05	•
$\begin{array}{c} 1 & 4 & 5 & 10 & 11 & 10 \\ 1 & 000 & 1 & 006 \\ 1 & 0 & 835 & 0 & 1 \\ 2 & 3 & 4 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & 15 \\ 16 & 17 & 18 \\ 19 & 20 & 21 \\ 21 & 22 & 23 \\ 24 & 25 & 26 \\ 27 & 28 & 29 \\ 30 & 31 & 32 \\ 33 & 34 & 35 \\ 36 & 37 & 38 \\ 39 & 40 & 41 \\ 42 & 43 & 44 \\ 45 & 46 & 47 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28       29       34       35         9       0.0       0.5       1.0         0.0       0.5       1.0       0.0         0.5       1.0       0.0       0.5         0.0       0.5       1.0       0.0         0.5       1.0       0.0       0.5         0.0       0.5       1.0       0.0         0.5       1.0       0.0       0.5         0.0       0.5       1.0       0.0         0.5       1.0       0.0       0.5         1.0       0.0       5       1.0         0.0       0.5       1.0       0.0         0.5       1.0       0.0       0.5         1.0       0.0       5       1.0         0.0       0.5       1.0       0.0         0.5       1.0       0.0       0.5         1.0       0.0       5       1.0         0.0       0.5       1.0       0.0         0.5       1.0       0.0       0.5         1.0       0.0       5       1.0         0.0       0.5       1.0       0.0         0.5       1.0	40 41 46 47 0.0 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97	52         53         58         59           00-00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00         00.00         00.00           00.00         00.00	
46 47 48 49 50 51 52 53 54 55	<ul> <li>120.0</li> <li>128.0</li> <li>120.0</li> <li>128.0</li> <li>128.0</li> <li>128.0</li> <li>128.0</li> <li>120.0</li> <li>136.0</li> <li>144.0</li> <li>136.0</li> <li>144.0</li> </ul>	0055000550	93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782	00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

TABLE VI (CONTD.)

57 58 59 60 61 62 63 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 -0.0184 2 -0.0368	$\begin{array}{c} 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\$	36.0 52.0 60.0 52.0 4 7 10 13 16 19 225 28 31 347 43 46 955 558 61	$\begin{array}{c} 1 \ . 0 \\ 0 \ . 0 \\ 0 \ . 5 \\ 0 \ . 5 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \\ 1 \ . 0 \ . 0 \\ 1 \ . 0 \ . 0 \\ 1 \ . 0 \ . 0 \\ 1 \ . 0 \ . 0 \\ 1 \ . 0 \ . 0 \ . 0 \\ 1 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ . 0 \ .$	93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 93.97782 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63	$\begin{array}{c} 00.00\\ 00.00\\ 00.00\\ 00.00\\ 00.00\\ 00.00\\ 00.00\\ 00.00\\ 00.00\\ 00.20\\ 26\\ 26\\ 32\\ 32\\ 38\\ 38\\ 44\\ 44\\ 50\\ 50\\ 56\\ 56\\ 56\end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 2\\ 6\\ 7\\ 12\\ 13\\ 18\\ 19\\ 24\\ 25\\ 30\\ 316\\ 37\\ 42\\ 43\\ 48\\ 49\\ 54\\ 55\\ 60\\ \end{array}$
60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00	60.00 60.00 60.00 60.00 60.00 60.00 60.00	60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00	60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00	60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00           60.00         60.00	60.00           60.00           60.00           60.00           60.00           60.00           60.00           60.00           60.00           60.00           60.00           60.00           60.00           60.00           60.00           60.00           60.00	

TABLE VII

### INPUT DATA FOR RECHARGE MOUND EXAMPLE WITH CAPILLARITY

0 0 1 48 125	6 12	1 1					
0 8	0 0 0 23 28 33	38 43 48	53 58 63	68 73	78 83 88 93	98103108113118	
1 39.0	39.0	0.2	8.8	0.0	0.01	12	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 23 28 33 0.0 4 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 53 & 58 & 63 \\ 8 \cdot 8 \\ 1 \cdot 0 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 3 \cdot 81 \\ 5 \cdot 08 \\ 0 \cdot 00 \\ 1 \cdot 27 \\ 2 \cdot 54 \\ 2 \cdot 27 \\ 2 \cdot 57 \\ 2$	60 66666666666666666666666666666666666	78         83         88         93           0.01         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0         0.0           0.0         0.0	98103108113118 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	000000000000000000000000000000000000000	90.0 90.0 105.0 105.0 105.0 105.0 120.0 120.0 120.0 120.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 150.0	3.81 5.08 0.27 2.54 3.81 5.08 0.27 2.54 3.81 5.08 0.00 1.27 2.54 3.81 5.08 0.00 1.27 2.54 3.81 5.08 0.1.27 2.54 3.81 5.08 0.00 1.27 2.54 3.81 5.08	66666666666666666666666666666666666666		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	*

.

•

TABLE VII (CONTD.)

.

•

-

•

.

-

TABLE VII (CONTD.)

•

•

TABLE VII (CONTD.)

•

34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5	34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5	34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34         34.5       34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5	34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5	34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5
			· · ·			

•

### TABLE VIII

### INPUT DATA FOR RECHARGE MOUND EXAMPLE WITHOUT CAPILLARITY

0 0 1	-		•			
48 125 6	12	1 1				
3 8 13 18 23	28 33	38 43 48	53 58 63	68 73 78	8 83 88 93	98103108113118
0.0 0. 1 39.0	0 39.0	0.00	0.0	0.0	0.01	12
0.0 3.0		0.5	1.0			
2	0	0.0	1.27	6.7 6.7	0.0	0.0
3	0	0.0	2.54	6.7	0.0	0.0
5	ő	0.0	5.08	6.7	0.0	0.0
6 7	0	15.0	0.00	6.7 67	0.0	0.0
8	ŏ	15.0	2.54	6.7	0.0	0.0
9 10	0	15.0 15.0	3.81 5.08	6.7	0.0	0.0
11	õ	30.0	0.00	6.7	0.0	0.0
12	0	30.0 30.0	1.27 2.54	6.7 6.7	0.0	0.0 0.0
14	0	30.0	3.81	6.7	0.0	0.0
16	ő	45.0	0.00	6.7	0.0	0:0
17 18	00	45.0 45.0	1.27	6.7 67	0.0	0.0
19	õ	45.0	3.81	6.7	0.0	0.0
20 21	. 0	45.0 60.0	5.08	6.7 6.7	0.0	0.0 0.0
22	· · 0	60.0	1.27	6.7	0.0	0.0
24	ő	60.0	3.81	6.7	0.0	0.0
25	00	60.0 75.0	5.08	6.7 6.7	0.0	0.0
27	õ	75.0	1.27	6.7	0.0	0.0
28 29	0	75.0	2.54 3.81	6.7 6.7	0.0	0.0 0.0
30 3 1	00	75.0	5.08	6.7	0.0	0.0
32	ő	90.0	1.27	6.7	0.0	0.0
33 34	00	90.0 90.0	2.54	6.7 67	0.0	0.0
35	õ	90.0	5.08	6.7	0.0	0.0
36 37	00	105.0 105.0	0.00	6.7 6.7	0.0	0.0 0.0
38	0	105.0	2.54	6.7	0.0	0.0
40	ő	105.0	5.08	6.7	0.0	0.0
41 42	00	120.0 120.0	0.00	6.7 6.7	0.0	0.0
43	õ	120.0	2.54	6.7	0.0	0.0
44 45	0	120.0	3.81 5.08	6.7	0.0	0.0
46	0	135.0	0.00	6.7	0.0	0.0
48	õ	135.0	2.54	6.7	0.0	0.0
49 50	0	135.0 135.0	3.81	6.7 6.7	0.0	0.0
51	õ	150.0	0.00	6.7	0.0	0.0
52 53	00	150.0 150.0	1.27 2.54	6.7 6.7	0.0	0.0
54	õ	150.0	3.81	6.7	0.0	0.0

•

-

-

TABLE VIII (CONTD.)

•,

,

TABLE VIII (CONTD.)

$\begin{array}{c} 120\\ 121\\ 122\\ 123\\ 124\\ 125\\ 12\\ 3\\ 4\\ 125\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 23\\ 24\\ 25\\ 22\\ 23\\ 24\\ 25\\ 22\\ 23\\ 24\\ 25\\ 22\\ 33\\ 34\\ 35\\ 36\\ 37\\ 8\\ 39\\ 40\\ 41\\ 42\\ 43\\ 445\\ 46\\ 47\\ 8\\ 2\\ 23\\ 7\\ 2\\ 2\\ 37\\ 7\\ 2\\ 2\\ 37\\ 7\\ 2\\ 2\\ 37\\ 7\\ 2\\ 2\\ 37\\ 7\\ 2\\ 2\\ 37\\ 7\\ 2\\ 2\\ 37\\ 7\\ 2\\ 2\\ 37\\ 7\\ 5\\ 2\\ 37\\ 7\\ 5\\ 2\\ 37\\ 34\\ 5\\ 5\\ 34\\ 5\\ 5\\ 5\\ 34\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$	34.5	O 1 1 1 1 1 1 3 5 1 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1	345.0 366.0 366.0 366.0 366.0 366.0 6 7 8 9 16 17 18 19 26 27 28 29 36 6 7 8 9 16 17 18 19 26 27 28 29 36 6 7 8 9 16 17 18 19 26 27 28 29 36 6 7 7 8 9 16 17 18 19 26 27 28 29 36 6 7 7 8 9 16 17 18 19 26 27 28 29 36 6 7 7 7 8 9 16 17 18 19 26 27 28 29 37 38 39 46 47 7 7 8 59 66 7 7 7 7 8 9 16 17 18 19 26 27 28 29 36 67 7 7 8 9 66 7 7 7 8 9 66 7 7 7 8 9 9 66 7 7 7 7 8 9 9 66 7 7 7 7 8 9 9 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 109 106 107 108 108 109 106 107 108 108 109 106 107 108 109 106 107 108 109 106 107 108 107 108 107 108 107 108 107 108 107 108 10 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 107 107 108 107 107 107 107 107 107 107 107	5.08 0.00 1.27 2.54 3.81 5.08 11 13 13 23 23 23 23 23 23 23 23 23 2	6.7 6.7 6.7 6.7 6.7 6.7 6.7	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 13\\ 3\\ 5\\ 15\\ 23\\ 25\\ 5\\ 32\\ 25\\ 5\\ 33\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$	7 2 4 100 172 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 24 307 22 34 30 20 20 20 20 20 20 20 20 20 20 20 20 20
34.5	34.5	34.5	5 34.5	34.5	34.5	34.5	34.5	
34.5	34.5	34.5	5 34.5	34.5	34.5	34.5	34.5	

TABLE VIII (CONTD.)

34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5
34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5
34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5
34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5
34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5
34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5
34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5
34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5
34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5
34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5
34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5
34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5
34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5

, **•**.

*`*۲

.

,

APPENDIX E

.

,

.

•

# RESULTS OF NUMERICAL SIMULATION

### TABLE IX

SAMPLE OUTPUT FOR CASE 1

NODE NO.	FRESH-WATER HEAD (CM.)	INTERFACE ELEVATION (CM.)
	· · ·	
1	55.1314	53.6484
4	57.0774	47.6523
6	57.7086	45.7076
14	57.9557	44.9476
15	58.1600	44.3193
24	58.3515	43.7289
25	58.5410	43.1433
34	58.7203	42.5894
35	58.8979	42.0395
44	59.0671	41.5138
45	59.2350	40.9917
54	59.3957	40.4906
55	. 59.5554	39.9908
64	59.7088	39.5086
65	59.8613	39.0276
74	60.0085	38.5607
75	60.1548	38.0947
84	60.3094	37.6007
85	60.4346	37.1996
94	60.5697	36.7641
95	60.7030	. 36.3342
04	60.8320	35.9164
05	60.9600	35.5000

.

119

### TABLE X

### SAMPLE OUTPUT FOR CASE 2

NODE NO.	FRESH-WATER HEAD (CM.)	INTERFACE ELEVATION (CM.)
1	57.0616	47.5451
4	57.5405	46.0710
6	57.7596	45.3965
14	58.0041	44.6429
15	58.2049	44.0240
24	58.3930	43.4432
25	58.5795	42.8683
34	58.7560	42.3243
35	58.9307	41.7854
44	59.0974	41.2713
45	59.2629	40.7605
54	59.4212	40.2707
55	59.5781	39.7843
64	59.7289	39.3172
65	59.8789	38.8529
74	60.0233	38.4052
75	60.1669	37.9598
84	60.3183	37.4889
85	60.4411	37.1068
94	60.5741	36.6944
95	60.7054	36.2870
104	60.8328	35.8933
105	60.9600	35.5000

#### TABLE XI

## SAMPLE OUTPUT FOR CASE 3

OUTPUT BY CROSS SECTION INCR 1 TIME 0.569E 00 DMAX 0.30E 01 CROSS SECTION NO. 1 NODE NO. FRESH-WATER HEAD INTERFACE ELEVATION (CM.) (CM.) 1 59.7478 38.4790 4 60.0522 37.5999 6 60.1673 37.2666 14 60.3091 36.8552 15 60.4201 36.5419 24 60.5216 36.2657 25 60.6141 36.0278 34 60.6955 35.8330 35 60.7657 35.6804 44 60.8237 35.5716 45 60.8697 35.5036 60.9041 54 35.4694 55 60.9279 35.4612 64 60.9431 35.4663 65 60.9522 35.4770 74 60.9569 35.4878 75 60.9593 35.4949 84 60.9599 35.4988 85 60.9601 35.4999 94 60.9601 35.5003 95 60.9601 35.5002 104 60.9601 35.5001 105 60 9600 35 5000

TABLE XI (CONTD.)

OUTPUT BY CROSS SECTION INCR 12 TIME 0.308E 02 DMAX 0.54E OO CROSS SECTION NO. 1 INTERFACE ELEVATION NODE NO. FRESH-WATER HEAD (CM.) (CM.) 57.5009 1 45.6316 4 58.0671 43.8860 6 58.2805 43.2283 14 58.5261 42.4713 15 58.7265 41.8533 24 58.9114 41.2807 25 59.0942 40.7138 34 59.2651 40.1831 35 59.4339 39.6588 44 59.5925 39.1652 45 59.7487 38.6793 54 59.8966 38.2166 55 60.0413 37.7658 64 60.1772 37.3441 65 60.3080 36.9429 74 60.4290 36.5804 75 60.5422. 36.2551 84 60.6528 35.9577 60.7333 85 35.7631 94 60.8101 . 35.6053 60.8724 95 35.5160 104 60 9210 35.4881 105 60.9600 35.5000

TABLE XI (CONTD.)

		·						
OUTPU"	T BY CROSS S	ECTION						
INCR	25	T	r					
TIME O.GOOE O3								
DMAX	0.48E-01			x				
CROSS	SECTION NO.	1						
NODE	NO .	FRESH-WATER (CM.)	HEAD	INTERFACE ELEVATION (CM.)				
1		55.8003	, ,	51.7291				
4		56.7962		48.6620				
6		57.1719	,	47.5049				
14		57.5374		46.3793				
15		57.8298		45.4760				
24		58.0783	· .	44.7062				
25		58.3213		43.9521				
34	s.	58.5383		43.2767				
35		58.7518		42.6110				
44		58.9472		41.9986				
45		59.1398		41.3942				
54		59.3186		40.8283				
55		59.4954	1	40.2678				
64		59.6614		39.7375				
65		59.8258	1	39.2110				
74		59.9816		38.7091				
75		60.1360	1	38.2100				
84		60.2965		37.6878				
85		60.4263	,	37.2637				
94		60.5647		36.8080				
95		60.7008	ı.	36.3591				
104		60.8309		35 9280				
105		60.9600		35.5000 .				

#### TABLE XII

NODE NO.	FRESH-WATER HEAD (CM.)	INTERFACE ELEVATION (CM.)
	х. Х	· · · · · ·
1	57.5453	46.0344
4	57.6850	45.6043
6	57.7938	45.2698
24	58.0261	44.5547
25	58.2249	43.9434
34	58.4418	43.3675
35	58.5968	42.7976
44	58.7702	42.2566
45	58.9460	41.7207
54	59.1116	41.2095
55	59.2755	40.7035
54	59.4323	40.2196
35	59.5885	39.7370
74	59.7388	39.2721
75	59.8879	38.8114
34	60.0314	38.3688
35	60.1737	37.9296
€	60.3239	37.4659
95	60.4456	37.0903
04	60.5772	36.6830
05	60.7076	36.2791
14	60.8341	35.8883
15	60.9600	35.5000

#### SAMPLE OUTPUT FOR CASE 4

#### TABLE XIII

SAMPLE OUTPUT FOR CASE 5

·							
OUTPUT BY CROSS SECTION							
INCR 1							
TIME 0.569E OO	١,	-					
DMAX 0.25E 00							
CROSS SECTION N	IO. 1						
NODE NO.	FRESH-WATER HEAD (CM.)	INTERFACE ELEVATION (CM.)					
1	60.6830	35.7451					
4	60.7081	35.7090					
6	60.7211	35.6902					
24	60.7623	35.6309					
25	60.7958	35.5846					
34	60.8266	35.5454					
35	60.8549	35.5141					
44	60.8800	35.4908					
45	60.9016	35.4761					
54	60.9191	35.4697					
55	60.9329	35.4700					
64	60.9431	35.4737					
65	60.9501	35.4821					
74	60.9549	35.4893					
75	60.9577	35.4950					
84	60.9594	35.4977					
85 .	60.9602	35.4996					
94	60.9603	35.5004					
95	60.9603	35.5008					
104 .	60.9601	35.5007					
105	60.9602	35.4999					
114	60.9601	35.5001					
115	60.9600	35.5000					

.

TABLE XIII (CONTD.)

OUTPUT BY CROSS	SECTION	
INCR 12		,
TIME 0.308E 02		
DMAX 0.68E 00		
CROSS SECTION NO	. 1	· ·
NODE NO.	FRESH-WATER HEAD (CM.)	INTERFACE ELEVATION (CM.)
1	58.3595	42.7973
4	58.4924	42.3913
6	58.5603	42.1848
24	58.7678	41.5570
25	58.9447	41.0205
34	59.1111	40.5152
35	59.2756	40.0160
44	59.4310	39.5446
45	59.5846	39.0768
54	59.7299	38.6343
55	59.8732	38.1976
64	60.0090	37.7824
65	60.1411	37.3816
74	60.2651	. 37.0093
75	60.3837	36.6601
84	60.4933	36.3464
85	60.5953	36.0673
94	60.6943	35.8182
95	60.7655	35.6615
104	60.8327	35.5428
105	60.8864	35.4832
114	60.9274	35.4757
115	60.9600	35.5000

### TABLE XIII (CONTD.)

OUTPUT BY CRO	SS SECTION	
INCR 2	4	
TIME 0.480E 0	3	, ,
DMAX 0.72E-0	2	1 1
CROSS SECTION	NO. 1	· · · · · · · · · · · · · · · · · · ·
NODE NO.	FRESH-WATER HEAD (CM.)	INTERFACE ELEVATION (CM.)
1	56.9028	48.3327
4	57.1490	47.5746
6	57.2722	47.1952
24	57.6066	46.1631
25	57.8870	45.2957
34	58.1279	44.5473
35	58.3635	43.8143
44	58.5752	43.1534
45	58.7835	42.5034
54	58.9749	41.9040
55	59.1637	41.3113
64	59.3394	40.7562
65	59.5132	40.2053
74	59.6769	39.6825 .
75	59.8392	39.1638
84	59.9927	38.6691
85	60.1451	38.1776
94	60.3039	37.6617
95	60.4321	37.2440
104	60.5690	36.7936
105	60.7036	36.3495
114	60.8325	35.9231
115	60.9600	35.5000

•

NODE NO.	FRESH-WATER HEAD (CM.)	INTERFACE ELEVATION (CM.)
1	93.6458	45.3700
4	93.6850 、	38.8300
5	93.7147	33.8800
10	93.7396	29.7300
11	93.7615	26.0800
16	93.7813	22.7900
17	93.7994	19.7700
22	93.8163	16.9600
23	93.8321	14.3200
28	93.8471	11.8200
29	93.8613	9.4500
34	93.8749	7.1900
35	93.8879	5.0200
40	93.9004	2.9300
41	93.9125	0.9100
46	93.9242	0.0000
47	93.9355	0.0000
52	93.9465	0.0000
53	93.9572	0.0000
58	93.9677	0.0000
59	93.9778	0.0000

#### ANALYTICAL SOLUTION FOR CONFINED AQUIFER

### TABLE XV

IDE NO.	FRESH-WATER HEAD (CM.)	INTERFACE ELEVATION (CM.)
,		
	93.7523	37.5796
,	93.7644	35.5776
i	93.7787	33.1896
)	93.7902	31.2742
	93.8043	28.9207
i v	93.8157	27.0270
	93.8297	24.6942
	93.8409	22.8239
(	93.8547	20.5148
	93.8658	18.6708
,	93.8795	16.3872
	93.8904	14.5712
,	93.9039	12.3161
•	93.9146	10.5309
	93.9280	8.3058
	93.9385	6.5525
	93.9517	4.3587
	93.9620	2.6388
	93.9749	0.4777
1	93,9825	0.0000
	93.9778	0.0000
	93.9749 93.9825 93.9778	0.4777 0.0000 0.0000

## SAMPLE OUTPUT FOR CONFINED AQUIFER EXAMPLE

#### TABLE XVI

.

#### SAMPLE OUTPUT FOR RECHARGE MOUND EXAMPLE WITH CAPILLARITY

OUTPUT BY CROSS	SECTION	
INCR 1		
TIME 0.250E 00		
DMAX 0.00E_00	н. 1	
CROSS SECTION NO	). 1	· · · · · · · · · · · · · · · · · · ·
NODE NO.	FRESH-WATER HEAD (CM.)	INTERFACE ELEVATION (CM.)
3	9.5228	0.0000
8	9.4782	0.0000
13	9.3253	0.0000
18	8.9591	0.0000
23	8.1827	0.0000
28	7.4011	0.0000
33	7.0293	0.0000
38	6.8564	0.0000
43	6.7749	0.0000
48	6.7365	0.0000
53	6.7192	0.0000
58	6.7108	0.0000
63	6.7074	- 0.0000
68	6.7050	0.0000
73	6.7043	0.0000
78	6.7032	0.0000
83	6.7031	0.0000
88	6 7024	0.0000
93	6.7026	0.0000
98	6.7020	0.0000
103	6.7023	0.0000
108	6.7015	0.0000
113	6.7014	0.0000
118	6.7003	0.0000
123	6.7000	0.0000

.

TABLE XVI (CONTD.)

OUTPUT BY CROSS SECTION INCR 5 TIME 0.125E 01 DMAX 0.00E 00 CROSS SECTION ND. 1 NODE NO. FRESH-WATER HEAD INTERFACE ELEVATION (CM.) (CM.) З 20.2928 0.0000 8 20.0710 0.0000 13 19.4034 0.0000 18 18.2352 0.0000 23 16.5639 0.0000 28 14.6403 0.0000 33 12.9917 0.0000 38 11.4527 0.0000 43 10.2164 0.0000 48 9.1901 0.0000 53 8.4309 0.0000 58 7.8634 0.0000 63 7.4697 0.0000 68 7.1993 0.0000 73 7.0206 0.0000 78 6.9042 0.0000 83 6.8309 0.0000 88 6.7840 0.0000 93 6.7559 0.0000 98 6.7380 0.0000 103 6.7271 0.0000 108 6.7191 0.0000 113 6.7132 0 0000 118 6.7074 0.0000 123 6.7000 0.0000

TABLE XVI (CONTD.)

```
OUTPUT BY CROSS SECTION
INCR
 12
TIME 0.300E 01
DMAX 0.00E 00
CROSS SECTION NO. 1
 NODE NO.
 FRESH-WATER HEAD
 INTERFACE ELEVATION
 (CM.)
 (CM.)
 з
 28.3553
 0.0000
 8
 28.1529
 0.0000
 13
 27.5389
 0.0000
 18
 26.5366
 0.0000
 23
 25.1803
 0.0000
 28
 23.5683
 0.0000
 33
 21.9767
 0.0000
 38
 20.3503
 0.0000
 43
 18.8127
 0.0000
 48
 17.2789
 0.0000
 53
 15.8774
 0.0000
 58
 14.5186
 0.0000
 13.3105
 63
 0.0000
68
 12.1764
 0.0000
73
 11.1986
 0.0000
78
 10.3170
 0.0000
83
 9.5806
 0.0000
88
 8.9451
 0.0000
93
 8.4296
 0.0000
98
 7.9999
 0.0000
103
 7.6563
 0.0000
108
 7.3744
 0.0000
113
 7.1439
 0.0000
118
 6.9454
 0.0000
123
 6.7000
 0.0000
```

### TABLE XVII

### SAMPLE OUTPUT FOR RECHARGE MOUND EXAMPLE WITHOUT CAPILLARITY

· ,

OUTPUT BY CROSS	SECTION	,
INCR 1		
TIME 0.250E 00	<i>,</i>	
DMAX 0.00E 00	,	
CROSS SECTION NO	D. 1	· - ·
NODE NO.	FRESH-WATER HEAD (CM.)	INTERFACE ELEVATION (CM.)
З	9.6356	0.0000
8	9.6129	0.0000
13	9.5200	0.0000
18	9.1905	0.0000
23	8.1840	0.0000
28	7.1716	0.0000
33	6.8438	0.0000
38	6.7460	0.0000
43	6.7148	0.0000
48	6.7050	0.0000
53	6.7024	0.0000
58	6.7012	0.0000
63	6.7011	0.0000
68	6.7007	0.0000
73	6.7006	0.0000
78	6.7004	0.0000
83	6.7004	0.0000
88	6.7002	0.0000
93	6.7004	0.0000
98	6.7001	0.0000
103	6.7001	0.0000
108	6.7001	0.0000
113	6.7003	0.0000
118	6.7002	0.0000
123	6.7000	0,0000

-
TABLE XVII (CONTD.)

OUTPUT BY CROSS SECTION

INCR 5

TIME 0.125E 01

DMAX 0.00E 00

•

-

CROSS SECTION NO. 1

		-
NODE NO.	FRESH-WATER HEAD (CM.)	INTERFACE ELEVATION (CM.)
3	18.0154	0.0000
8	17.8065	0.0000
13	17.1811	0.0000
18	16.0544	0.0000
23	14.3884	0.0000
28	12.3127	0.0000
33	10.6659	0.0000
38	9.1823	0.0000
43	88.1858	0.0000
48	7.4957	0.0000
53	7.1064	0.0000
58	6.8964	0.0000
63	6.7924	0.0000
68	6.7432	0.0000
73	6.7203	0.0000
78	6.7105	0.0000
83	6.7061	0.0000
88	6.7039	0.0000
93	6.7028	0.0000
98	6.7023	0.0000
103	6.7022	0.0000
108	6.7018	0.0000
113	6.7014	0.0000
118	6 7008	0.0000
123	6.7000	0.0000

TABLE XVII (CONTD.)

OUTPUT BY CROSS SECTION INCR 12 TIME 0.300E 01 DMAX 0.00E 00 CROSS SECTION NO. 1 INTERFACE ELEVATION (CM.) NODE NO. FRESH-WATER HEAD (CM.) З 25.3732 0.0000 8 25.1633 0.0000 24.5506 0.0000 13 18 23.4622 0.0000 23 21.9206 0.0000 28 20.0161 0.0000 33 18.2578 0.0000 38 16.4257 0.0000 14.7911 43 0.0000 48 13.1334 0.0000 53 11.7332 0.0000 58 10.3996 0.0000 9.3612 0.0000 63 8.4831 0.0000 68 73 7.8655 0.0000 78 7.4190 0.0000 0.0000 83 7.1340 88 6.9529 0.0000 93 6.8452 0.0000 98 6.7825 0.0000 6.7468 0.0000 103 108 6.7265 0.0000 113 6.7147 0.0000 118 6 7073 0.0000 123 6.7000 0.0000

## APPENDIX F

# FINITE-ELEMENT MESH LAYOUTS



Figure 19. Detailed Finite Element Mesh Layout of Sahni's Model

•

•



.

Figure 20. Expanded Finite Element Mesh Layout of Sahni's Model

¥





.



Figure 22. Finite Element Mesh Layout of Henry's Analytical Model

### VITA 2

#### Roop Dasari Kumar

#### Candidate for the Degree of

Master of Science

Thesis: TRANSIENT SIMULATION OF THE IMMISCIBLE FRESH-WATER/SALT-WATER INTERFACE IN AQUIFERS

Major Field: Chemical Engineering

Biographical:

- Personal Data: Born in Hyderbad, India, August 10, 1958, the son of Mr. and Mrs. D. V. Rao.
- Education: Graduated from Hyderabad Public School, Hyderbad, India, in March, 1975; received Bachelor of Technology degree in Chemical Engineering from Osmania University in May, 1980; completed requirments for the Master of Science degree at Oklahoma State University in May, 1984.
- Professional Experience: Research Assistant, School of Chemical Engineering, Oklahoma State University, 1981-82; Teaching Assistant, School of Chemical Engineering, Oklahoma State University, 1981-82.