
A. COMPARATIVE STUDY OF THE USAGE OF THE ED -
AND EX FAMILIES OF EDITORS ON THE

UNIX OPERATING SYSTEM

By

SHAKIR MAHMOOD HUSSAIN
"

Bachelor of Arts

Al-Mustansiriyah University

Baghdad, Iraq

1976

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1984

Dedicated to my lovely wife, Suaad

and beautiful children,

Raghad and Zaid

I

\S
l o 'v<.i ~ - t 0- !

C. <""I tp;;; 'i'.:l J.. ~ ~t .. J

A COMPARATIVE STUDY OF THE USAGE OF THE ED

AND EX FAMILIES OF EDITORS ON THE

UNIX OPERATING SYSTEM

Thesis Approved:

-~ £. ~

ii 1189JOZ I

PREFACE

This study is concerned with the usage of text editors

on the Unix Operating System in the Computing and

Information Sciences (CIS) Department at Oklahoma State

University (OSU).

I would like to express my gratitude to my major

advisor, Dr. Mahir S. Ali, for his valuable advice and

guidance provided during this project. Also I wish to thank

Dr. G. E. Hedrick and Dr. S. A. Thoreson, my committee

members, for their suggestions and Dr. D. w. Grace for his

substitution during my oral examination. I would also like

to thank Dr. A. N. Walker at Nottingham University, England,

for his help.

Deep appreciation is expressed to my wife, Suaad, for

her love, understanding, and encouragement through my study.

I want to include a general expression of gratitude to

all my friends, students, and professors who have made my

years at Oklahoma State University an enjoyable and

educational experience.

Lastly, but not least I sincerely appreciate the Iraqi

Government for its financial support during my graduate

study at OSU.

iii

Chapter

I.

TABLE OF CONTENTS

INTRODUCTION

Literature Review
Intent and Outline

II. HISTORY AND TYPE OF EDITORS

Page

1

3
5

7

Historical Development of Edit~~s . . • • . 7
The Editor: A System Viewpoirit . • • . . . 14
Types of Editors . • . • . . • . 19

III. UNIX EDITORS • • •

Line Oriented Editors .
Full Screen Editors .
Modification on Editors

IV. MONITORING AND ANALYSIS

The Monitor Program .
Data Analysis .•.

V. CONCLUSIONS AND RECOMMENDATION .

Suggested Further Work

SELECTED BIBLIOGRAPHY

APPENDIX A - P~efix B+ Tree

APPENDIX B - Editors Commands

APPENDIX C - Usage of Editors Commands

lV

27

27
32
33

35

35
36

50

51

54

56

60

69

LIST OF TABLES

Table Page

I • OSU/CIS Population 37

II. Unused Commands 38

III. Popular Commands (A) 41

IV. Popular Commands (B) 43

v. Similar Commands in Ed and Ex 45

VI. Similar Commands in Ued and Vi 48

VII. Ed Line Editor Commands . . . 0 60

VIII. Ex Line Editor Commands 62

IX. Ued Full Screen Editor Commands 64

X. Vi Full Screen Editor Commands 66

XI. Usage of Ed and Ued Editor Commands 69

XII. Usage of Ex and Vi Editor Commands 72

v

Figure

1.

2.

3.

4.

5.

6.

7.

8.

LIST OF FIGURES

Communication Between Text Editor and Terminal For File Processing • •

The Editor: a system architecture •.
Elements of the Editing Component .

Unix Editors
Organization of B+ Tree .

B+ Tree: Structure of Root Node •

B+ Tree: Structure of Index Level Node
B+ Tree: Structure of Leaf Level Node

vi

Page

2

15

18

28

57

58

59

59

CHAPTER I

INTRODUCTION

Editing is the process of creating, examining, and

updating text, programs, and data files. The editing process

may be viewed as the transformation of an existing string of

symbols to a new string of symbols. The editor is a valuable

tool for manipulating files in an interactive mode under

some commands which are provoked by the user from a

terminal.

The editor does not work on the file itself, but rather

a copy of the file is made at the beginning of the editing

session to prevent loss of data in case of a system failure.

Figure 1 shows how the processing of a file is carried out

by a text editor from a terminal. In this figure, the text

editor makes a copy of the user's file in the main memory

from the secondary memory, and all commands are executed on

the copy file (17). Modifications that are done during the

editing session do not appear on the original file until the

new file (copy file) is saved (using write command).

1

Main Memory

Copy of
the File

Text Editor

Program

Secondary Memory

Terminal

Figure 1. Communication Between Text Editor and
a Terminal for File Processing

2

Literature Review

Fraser (6) defined "editing" as the process of

examining and modifying data. Though most editing programs

edit text, o~her types of data need editing too: utilities

that delete and rename files edit directories and

interactive debuggers edit binary core images. Typically,

each utility has its own command language and command

scanner. However, each of these utilities is just another

form of "editor" and, with careful design, ~ight share the

system text editor's command language and scanner.

3

The general functions of editors, as described by Embly

et al. (5) are:

1. Create and modify source programs.

2. Prepare documents.

3. Examine and retrieve portions of a program, text, or a

data file.

A text editor is often the primary interface between

the user, the system, and the program. An editor must

therefore be easy to use and efficient in using computer

resources (11).

Stearns (19) classified text editors into two types:

1. Line editor: it has simple form and requires little

system programming.

2. A full screen editor:, it is more convenient to use, but

it requires more system programming and more memory space

than line editor. For example, the object code for ed

(the standard line editor developed by Bell

Laboratories) is 16776 bytes and ued is 86260 bytes.

The Unix* system as distributed by Bell Laboratories

(18) does not have a full screen editor. Instead, it has a

line editor, "ed". At Nottingham University, England, the

"ed" editor was extended to "ued" to include a full screen

mode (22). The University of California, Berkeley (UCB)

developed a line editor "ex" which is based on the Bell

Laboratories line editor "ed". UCB also developed a full

screen editor "vi" which is based on "ex".

4

The most important characteristic of an editor as

described by Deutsch (3) is its convenience for the user.

Such convenience requires a simple and mnemonic command

language, and a method of text organization which allows the

user to think in terms of the structure of his text rather

than in some framework fixed by the system.

Embly et al. (5)'in 1981,, observed from a survey

carried out on a 900 of users that the following features

characterize a good editor:

1. Self-descriptiveness.

2. User control.

3. Ease of learning.

4. Problem-adequate usability (minimize details the user

must know and deal with).

5. Correspondence with user expectations.

*Unlx lS a trademark of Bell Laborator1es

5

6. Flexibility in task handling.

7. Fault tolerance.

Intent and Outline

The Computing and Information Sciences (CIS) Department
at Oklahoma State University (OSU) has a Perkin Elmer 3230
computer running Unix and has line editors ("ed", "ex") and
full screen editors ("ued", "vi").

J,
• It 1s proposed that a project to perform a compar1son

of the use of the facilities in both ("ed", "ex") and

("ued", "vi") is needed to show the similarities/differences
between these editors and to have a deep understanding of
the "editors at work". The project is to be carried out in
two parts:

1. Qevelop a monitor program to monitor the use of ("ed",
"ex") and ("ued", "vi") facilities for a period of time.
The criteria for deciding on the "length" of the

monitoring period are explained in chapter IV.

2. Develop program to analyze the data collected (see

chapter III for the type of data items) from the monitor
and to present the information in a useful format.

Historical development of editors is discussed in
Chapter II. Also information about the system viewpoint of
editors and type of editors is provided in the same chapter.

Chapter III, covers the type of editors available on
the Unix Operating System.

Chapter IV is the analysis of the data collected on

("ed", "ex") and ("ued", "vi") editors.

Chapter V gives a summary of this thesis, its

conclusions and some suggestions for further work.

6

CHAPTER II

HISTORY AND TYPE OF EDITORS

The primary reference for this chapter is a paper by

Meyrowitz and Van Dam (16). This depends on this reference

which is intended as a summary. For further details, the

reader is referred to the original paper by Meyrowitz and

Van Dam.

This chapter will cover the development of editors, the

system viewpoint of editors, and then the types of editors

that are available.

Historical Development of Editors

Noninteractive editors were the first editors to be

implemented. They began with the manipulation of "unit

record" punched cards. The basic unit of information was

the SO-column line; the user made corrections on a line-by

line basis, retyping mistyped cards. The card gave the

programmer new freedom compared to toggling in bits at the

system console. The user could store information in

readable form, and then access this information, changing

its order, discovering and correcting errors.

Punched card decks had many disadvantages, such as the

rearrangement of the entire box of cards when the box was

7

8

accidentally dropped. More seriously, editing a small part

of a large document required feeding the entire document.

Correction of small errors, such as single-character errors

or double-character transpositions, required retyping the

error and replicating the other characters with the

duplication facilities of the keypunch. Replacing a word

with a word of different size required duplicating all the

characters prior to the word and retyping all the remaining

characters from the new word to the end. If the incorrect

card was almost completely filled with characters, inserting

a new word might cause an overflow in the contents;

therefore insertion of one or more new cards required

handling the overflow. Global change was much more

difficult, because it required finding all occurrences of

the pattern manually and then replacing the new pattern

agairr manually~ if the new pattern were larger than the old

pattern, multiple overflows could happen easily.

In 1960s the use of cards was very common. A batch

editor created to remove the problems of dropped cards and

retyping, and in some versions provided new operation such

as global replacement of a pattern. The main idea of batch

editor was to store the programmer's initial deck of cards

as a card-image tape or disc file. Each card was referenced

by a unique sequence number. Changes were made by creating

an edit deck composed of cards containing editing requests,

and running the deck through the batch editor program. For

example, the request "in card 107, correctly spell the word

9

'data'" would be made by typing the sequence number 107 on

one card followed by a card containing the new contents of

line 107, or more simply by using one card contain sequence

number and editing command as in

107 REPLACE/DATE/DATA/

Batch editors solved problems appeared when using cards; but

there were several disadvantages. Programmers needed to

have a line-printer listing of the entire deck cards before

making any change. Also because batch editors relied on

sequential storage media such as magnetic tape, the user

could only step through card images linearly, stopping at

lines which needed correction, and making correction

according to the editing command. To go backward the file

need to rewind and start again.

Line editors were implemented in systems like IBM's

MTST (16), which used a selectric typewriter as an input

device and small magnetic tapes and/or cards as storage

media. The utility of these initial line editors was

limited by the typewriters, which supported the viewing of

only one line at a time and had very slow printing speeds.

Also problems appeared with updating when the user required

going forward and backward to get the desired location on

the file.

In the mid 1960s, interactive line editors were

designed to allow the user to create and modify disc files

from terminals. These editors attached either fixed or

varying (sequential relative to the top of the file) line

10

numbers to lines of limited length (initially 80

characters), allowing the user to reference any part of the

information. Examples of these include ATS and VIPcom (16).

Simple commands languages allowed the user to make

corrections within a line or even within a group of

contiguous lines, using almost the same syntax as used in

batch editors.

Another advance was the creation of the context-driven

line editor, which allowed the user to identify the line

containing the target of an operation by specifying a

character context pattern for the editor to match, rather

than by giving an explicit line number. An example of the

context-driven line editors was the editor running on the

IBM 7090. At this point in the history of editing, users

were still forced to think about multiline entities, such as

paragraph and program blocks, as groups of integral lines,

usually in card image format; no interline commands were

available that would, for example, delete spanning from the

middle of one line to the middle of the next line.

The first break from the 80-column card image came in

the form of variable-length line editors, specified by

(com-Share's Quick Editors "QED") (3). The line was still

the main element of operation, but now each line could be of

"arbitrary" length. Initially, these lines were actually

limited to some maximum. QED was the first that used the

notion of "superline" (limited to 500 characters in length),

which the on-line display process broke into viewable lines

11

of 80 characters each until the superline was exhausted.

Later a variable-length line editors were designed and

implemented. By removing the card image orientation of the

editor, the variable-length line editor had strong and

beneficial impact on the versatility of text processing.

Another far-reaching result of the invention of variable

length line editors was that displayed text was no longer

considered to be a one-to-one mapping of the internal

representation, but rather a tailored, more abstract view of

the editable elements.

Even with superline editors, three basic problems in

manuscript editing remained:

a. Truncation when the line length was exceeded.

b. Inability to edit a string crossing line boundaries.

c. Inability to search for a pattern crossing line

boundaries.

The stream editor concept solved all three problems by

eliminating line boundaries altogether: the entire text was

considered a single stream or string that was broken into

stream lines by display routines. An arbitrary string

between any two characters could be defined for searching

and editing.

Another way of dealing with the limitation of line and

superline editors was to use the power of multiline display

screen which provided cursor addressability and possibly

local buffers, to create what are now called synonymously

full-screen, display, or cursor editors. These editors work

12

either with stream or variable-length lines, offering the

user an entire screenful of text to view and edit without

regard to line boundaries. An early example of a timeshared

display editor is Stanford University; TVEDIT (16).

Commands, represented by control character sequences, could

be interspersed with the input of normal text. Users were

able to move the cursor to point to the text they wish to

manipulate rather than having to describe text arguments in

some awkward syntax. Characters could be replaced by simply

typing over them. Characters could be deleted by placing

the cursor on the character and pressing the delete control

character; characters to the right of the cursor moved left

so that the cursor seemed to "swallow" characters.

Similarly, for insertion, the characters to the right of the

pointer moved to right, reserving a place for the new

characters.

A major new way of thinking about editing was

introduced as early as 1959 by Douglas Engelhart at Stanford

Research Institute (16). His NLS (oNLine System),

implemented in the 1960s to create an environment for on

line thinking and authoring, showed the power of display

terminals, multicontext viewing, flexible file viewing, and

a consistent user interface. NLS was the first structure

editor in that it provided support for text structure and

hierarchy, not just for manipulating raw string of text: the

user could manipulate documents in terms of their

structures, not only their content (16).

13

Hansen's EMILY (7) extended the concept of the

structure editor and developed the syntax-directed editor,

in which the structure imposed on a program being edited was

the structure of the programming language itself. Users were

able to manipulate logical constructs, such as do-while

loops and their nested contents, as single units.

In the late 1960s, general-purpose time-sharing

facilities typically supported only simple interactive

line-editing and batch-formating facilities for line-printer

output. These facilities were barely adequate to create and

modify programs and· rudimentary documentation. By the early

1970s, text processing had become sufficiently important to

be the single dedicated application on both stand-alone and

timeshared minicomputers. Since these minicomputers did not

need to support general-purpose computing facilities,

manufacturers were able to offer comprehensive editing

capabilities as well as features oriented toward document

production such as database management, information

retrieval, work-flow management that were usually

unavailable on general-purpose system. For a time, owners

of these systems often had more text-processing power than

those with much more expensive and much larger general

purpose computers. Examples of dedicated word processing

system include CDT, Lainer, DEC-Word/11, and NBI (16).

An important milestone in text editing and text

processing was the early 1970s development and mid 1970s

14

acceptance of the Unix timesharing system (18), the first

general-purpose computing environment in which text

utilities were given as much weight as programming

utilities. In Unix, a suite of utilities (the ed text

editor, the troff and nroff text formatter, the tbl table

formatter, and the eqn equation formatter,) (11) introduced

and popularized an extensive set of text tool in the

general-purpose computing community.

Current research in th~ editing field is focused upon

several overlapping areas. One is that of providing a

consistent, editor-based interface throughout a computer

system (6). This allows many common functions, such as

renaming files, searching through directories, and debugging

programs, to be performed as editing operations. For

example, to rename a file, one would type over the old file

name in a listing of available files that would appear on

the screen; in debugging a program, one would be able to

edit the values of displayed variables. Other research

topics include generalized structure editors, powerful

syntax-directed editors with program-tracing capability, and

interactive editor/formatters.

The Editor: A System Viewpoint

The architecture of any editor can be represented by

(Figure 2). This general form can be implemented regardless

of the particular computers and the features can be found in

that particular editors (16).

Command
Language
Processor

Output Devlct~s +--~

Display

Component
~.-. ___

VIewing

Buffer

Control

Data

Editing
Filter

VIewing
Filter

Figure 2. The Editor: A System Architecture

15

Main

Memory

File

System

16

The command language processor accepts input from the

user input device, then there are two levels of process to

be done. Lexically analyzes and tokenizes the input stream

is the first level and the second one is syntactically

analyzes the accumulated stream of tokens, then after

finding the legal composition of tokens the appropriate

semantic routines will be invoked.

At the syntactic level, the command language processor

may generate an intermediate representation of the proper

editing operations instead of explicitly invoking the

semantic routines. This intermediate representation is

decoded by interpreter that invokes the suitable semantic

routines. The semantic routines of the editing component

then operate on the editing buffer, which essentially a

filtered subset of the document data structure.

Viewing a document is similar to editing a document.

The part of the data to be viewed is determined by the

current viewing pointer maintained by the viewing component

of the editor. The current viewing pointer can be set or

reset explicitly by the user or implicitly by the system as

a side effect of the previous editing operation. When the

display needs to be updated, the viewing component invokes

the viewing filter. The viewing filter filters the documents

to generate a new viewing buffer based on the current

viewing pointer as well as viewing filter parameters. These

parameters are specified by the system and the user. The

17

viewing buffer may contain the current line or the null

string in line editors, while in a full screen editors it

may contain a rectangular cutout of the quarter plane of

text. This viewing buffer is then passed to the display

component of the editor, which maps it to a window (viewing

buffer) or viewport, a rectangular subset of the screen, to

produce a display.

The editing and viewing buffers, while independent, can

be related in many ways. In the simple case they are

identical (case of full screen editors, in which the user

edits the text directly in view on the screen instead of

specifying materiai with typed commands}, see Figure 3 (16).

The editing and viewing buffer can also be disjoint,

for example, in the University of California/ Berkeley Unix

editor "ex" (20), a user might travel to line 100, and after

viewing it, he decide to change all occurrences of "line

editor" to "editors" in lines 10 through 60 of the file by

using the substitute command:

10,60s/line editor/editors/g

As a part of this editing command, there is implicit travel

to the line 10 of the file. Lines 10 through 60 are filtered

from the document to become the editing buffer, and

successive substitutions take place in the editing buffer

without corresponding updates of the view. If the pattern

is found, the current pointers are moved to the last line

that the pattern is matched, and that line becomes the

default contents of both the editing and viewing buffers.

18

Current Editing Pointer

CUtrent VIewing Pointer

Document

'-------
Dispfay

Figure 3. Elements of the Editing Component

19

When the pattern is not found the default editing and

viewing remain on line 100.

Types of Editors

Several types of editors have been implemented:

Line-oriented Editors

The concept of line editors is that of editing virtual

card images; the line editor constantly visits the

limitations of this outdated representation of data on the

user. Drawbacks of this type of editor are pattern searchs

and edits that do not cross line boundaries, and overflow

and subsequent truncation of fixed-length lines. Examples

of line-oriented editors are:

1. IBM's CMS

The IBM's CMS editor (16) which is a classic example of

fixed-length line oriented editor with a textual interface,

designed for a time sharing system in which terminals lack

cursor motion keys and function keys.

2. sos

SOS (4) is another example, like CMS editor, is a line

editor designed for editing on time sharing system,

specifically a wide range of Digital Equipment Corporation

(DEC) computers.

20

3. Unix ed

The Unix text editor, ed (11), is another type of

line-oriented editors similar to CMS editor and SOS, but it

has a variable-length line property.

Stream Files

Stream editors act upon a document as a single,

continuous chain of characters, as if the entire document

were a single, indefinitely long character string 1 rather

than act upon fixed-length or variable-length lines. By

doing so, they avoid line editor problems such as truncation

and inability to perform interline searching or editing. An

example of this type is TECO (16}.

TECO, the Text Editor and COrrection, which is an

interpreter fpr a string processing language. TECO can be

used interactively as a stream-oriented editor; its basic

commands can also be used as building blocks to provide

quite elaborate editing operations. Many variations exist

(DEC TECO and TENEX TECO); with varying capabilities and

syntax. The conceptual model considers a document to be a

sequence of characters, possibly broken into variable-length

virtual pages by formfeed characters, and into virtual lines

by line-end characters. Pages may be combined in an in-core

editing buffer considered to be simply a varying-length

string whose length may grow up to the in-core memory

available.

21

Display Editors

This category includes several editors based on work

done by Deutsch (3} and on the work of Djourp and Irons (8),

as well as as several editors with an Irons-like model. In

the Irons conceptual model, text is conceived of as a

quarter-plane extending indefinitely in width and length,

with the topmost, leftmost character the origin of the file.

The user travels through this plane by using cursor keys and

changes characters by overtyping. At any time, the user sees

an accurate portrayal of the portion of the file displayed.

Text is input on the screen at the position of the cursor.

The environment is "modeless"~ since all typing on the

screen is considered text, commands must be entered either

through function keys, control characters, and escape

sequences, or by moving the cursor to and typing in a

special command line at the bottom of the screen. Examples

of display editors are:

1. Brown's bb

Brown's bb (16) is a typical example of the Irons model

editor, running under the Unix operating system on

VAXll/780. it makes use of a wide range of function key for

interaction. One of the bb's extensions of the model is the

maintenance of an up-to-date temporary file on disc along

with a linked list of changes that have been made to the old

file. This change history serves as the backbone of the undo

22

command, which is capable of reverting changes back to the

beginning of the editing session.

2. Yale's Z editor

Yale's z editor (16) extends the general Irons

functionality by providing facilities that aid in program

creation which maintaining the general-purpose functionality

of the editor.

Editor commands are entered using control characters

coupled with the cursor keys. Function keys are not used;

the developer disliked the fact that the user's hand must be

moved from the typewriter keyboard to use them. Software

allows overloading of the standard ASCII character set by

using certain keys as shift keys. The interaction language

also supports the overloading of each editor command.

Graphics-based Interactive Editor/Formatters

Examples of this type are:

1. Xerox PARC's Bravo

Xerox PARC's Bravo (16) is one of the first of the

interactive editor/formatters based on the display of high

resolution, proportionally spaced text. Bravo allows the

creation and revision of a document containing soft-typeset

text with justification performed instantly by the system.

The conceptual model is of a continuous scroll of typeset

text that can be paginated when desired.

23

2. ETUDE

ETUDE (16) is a document production system designed to

extend the functionality of conventional word processing

systems while reducing the complexity of the user interface.

General-purpose Structure Editors

Structure editing, pioneered by Englehart with NLS

(16), has been "rediscovered" as an alternative to standard

character-oriented methods of editing. Since most target

applications have some innate structure (e.g. manuscripts

are composed of chapters, sect ions, paz;,agraphs), the

philosophy of structure editors is to exploit this "natural"

ordering to simplify editing. The most common

representation is a hierarchy of elements. Examples of

general-purpose structure editors are:

1. NLS/AUGMENT

· NLS was a product of research at Stanford Research

Institute (now renamed SRI, international) (16) between the

early 1960s and late 1970s. Renamed AUGMENT and marketed by

Tymshare, Inc., NLS is one of the seminal efforts in the

field of text editing and office automation; indeed, many of

its features are being reexamined and reimplemented today.

2. Burkhart/Nievergelt Structure Editor

Burkhart and Nievergelt at the Institute for

Information in Zurich have designed a family of structure

oriented editors called XS-1 (16). The designers contend

that the basic sets of editing operations, regardless of

the target being manipulated, are similar, and that "a

universal structure defined on all data within a system"

exploits that similarity to its greatest advantage.

3. Fraser's s

24

Fraser's (6) is an attempt to provide standard editing

primitives that can be used to build a variety of editors.

"s" allows the programmer quickly to create different front

ends for a text editor so that various targets can be

modified using existing editing routines. The philosophy

behind s is that many computer utilities are simply editors

in that they accept a particular input syntax and modify the

existing representation and/or .state of their particular

data. Rather than producing languages and scanners for each

application, s attempts to use a generalized structure and a

generalized text editor nucleus for editing all application.

Syntax-Directed Editors

Syntax-directed editors attempt to increase the

productivity of the programmer by removing the time

consuming process of eliminating syntax errors. Syntax

editors are structure editors that ensure that the structure

always is constrained to preserve syntactical integrity.

Often syntax-directed editors do not merely recognize the

syntax and translate the user's actions into linear text,

but instead parse the input into an intermediate form that

can be used to generate code. Here the editor is both a

tool for the programmer and a tool for the

compiler/interpreter. An examples of this type are:

1. Hansen's EMILY

25

Hansen's EMILY (7) is one of the earliest syntax

directed editors. Rather than typing in arbitrary text, the

user creates and modifies text by graphically selecting

units of text (template) that are constructs in a

programming language. Text is created with a sequence of

selection. The screen is divided into three areas: text,

menu, and message.

2. Fraser's sds

Fraser's sds is a general structure editor driven by a

grammar that describes a hierarchical data structure. The

user-viewable part of sds is a screen editor with displays a

current record of some tree structure. The cursor keys

down, up, left, right, and home allow the user to move down

to a node field, back up, left or right to adjacent fields,

or to the root of the structure.

Word Processors

Examples of Word Processor are:

1. WordStar

WordStar (16) is one of the most popular word

processing programs available for home computer system. It

runs on a variety of systems under the CP/M operating

system, using the CP/M file system to maintain its files.

26

2. NBI System 3000

The NBI System 3000 is another popular commercial word

processing system. It has a stand-alone processor, with

file storage on floppy disc. Its conceptual model is very

similar to that WordStar described earlier (16).

Integrated Environments

RIG and Apollo are examples of this type. RIG and

Appollo systems are based on the concept of a display or

window manager as the primary interface to the system. These

display managers give the user the ability to create windows

on the display surface, move these windows around, and

change their size. On the Apollo these windows can overlap;

in RIG the windows do not overlap but simply partition the

disply screen.

CHAPTER III

UNIX EDITORS

The Unix System at the OSU/CIS Department has both line

editors and full screen editors. Line editors are "ed",

"ex", and "sed". Full screen editors are "ued" and "vi" (see

Figure 4).

Line Oriented Editors

Line editors are divided into two types: Interactive

editor and Noninteractive editor.

Interactive Editors

1. Ed Text Editor

Ed is the standard line editor on the Unix system.

Since "ed" is a line editor, any operation to be performed

must specify line or lines on which the operation is to be

carried out.

Lines can be accessed in several ways, the most easily

understood method of addressing lines is by line number.

Other methods for accessing lines are by using the line's

textual contents or position of line in the text (end of

file, for example).

27

Unix Editors

Interactive Non interactive

ED (line mode) SED

UED EX (line mode)

(screen mode)

VI

(s::reen mode)

Figure 4. Unix Editors

28

29

The format of "ed" commands is:

[line[,line]]operation[parameter]

The "ed" command consists of an optional line-address, or

two optional line-addresses separated by a comma, then a

single letter indicating the operation, followed by some

other (option) parameter. The form of the parameter is

varied for each operation. For example, the move "m"

operation, the parameter is the line that the addressed

lines are to be moved to; while in the read "r" operation,

the parameter is the file name that is to be read. The

substitute command is an exception to this rule because

between the operation and the optional parameter, the string

to be substituted and the new string need to be specified.

Detailed description of the "ed" commands can be found

in the Unix System Manuals (20), "A Tutorial Introduction to

the Unix Text Editor" (9), or "Advanced Editing on Unix"

(10).

2. Ex Text Editor

The "ex" text editor was developed by William Joy of

the University of California at Berkeley (23). The "ex"

text editor is based on "ed" and therefore users who have

experience with "ed" can easily learn and use "ex".

Ex is somewhat easier to use than ed. This is mostly

because "ex" is more communicative. It tries to inform the

user of the error while "ed" responds by "?" to all types of

errors.

30

Ex has many extensions and improvements to the "ed"

editor, as described by McGilton (15), these are:

1. Operations are not restricted to a single character,
so they can be remembered more easily - for example,
"co" for copy instead of "t" for transpose. However
the single-letter operations used in "ed" are
retained, so the experienced "ed" user will not have
to remember the new ones.

2. Introduction of additional operations not found in
ed.

3. Variants of some editor operations, which modify the
way in which those operations are performed under
certain conditions. Operation variants are invoked
by placing a ! character following the normal
operation, for example a!.

4. Improved messages for error conditions, with
instructions as to how to override the error
condition.

4. Editor "options" which modify the overall behavior
of ex.

5. Provision of a means of recovery if the system
crashes during an editing session.

6. Introduction of a "visual" mode which turns the
editor into a screen editor. In this mode, ex is
identical with the vi full screen editor. There is·
also an "open" mode, which provides intraline
editing.

7. ex and vi editors react to different terminal types,
this is necessary because of the screen editing
capability.
(P. 236)

For more details on the "ex" editor commands see Ex

Reference Manual (23).

31

Noninteractive Editor

The stream editor, "sed" (14), is the only

noninteractive editor available on the Unix System. Sed,

unlike the line or full screen editors works on the original

file, instead of a copy of the file. It also edits

according to a script of commands stored in a file on the

system rather than interactively from a terminal. Sed is

designed to be specially useful to edit files which are too

large for comfortable interactive editing, to perform

multiple "global" editing functions efficiently in one pass

through the input, and finally to edit any size file when

the sequence of editing commands is too complicated to be

comfortably typed in an interactive mode.

The general format of the commands is the same as "ed"

commands:

[line[,line]]operation[parameter]

However there are some important differences, given by

McGilton (15), from "ed" :

1. The only operation which can take the optional final
parameter is the s (substitute) operation.

2. If no line numbers are specified, the operation is
performed on all lines. This is quite different from
ed, where the default line is usually dot.

3. Lines can be addressed by number, or by text pattern
using fixed character strings, or by regular
expressions. Because the default mode of operation
is global, there is no concept of "current line",
nor of relative line address. Line numbers are
absolute in the file.

4. Operations that require text input (a, i, and c)
have a different format from the same operation in
ed.

5. Many ed operations have no counterpart in sed. In
particular, the m (move) and t (transpose, copy)
operations do not exist.

32

6. Contrariwise, there are some operations that are
available.in sed that do not exist in ed. One of
these is y (for transform, or maybe translYterate -
not too mnemonic). ·
(P. 220)

Full Screeri Editors

1. Ued Editor

ued is an extended version of the standard Bell line

editor "ed", developed by Dr. A. N. Walker at Nottingham

University, England (22). Enhancement have been added such

as a full screen facilities, m~ch better pattern searching

in the line mode, and a better interface with the Unix Shell

(20).

Modification on the file can be performed by displaying

a portion of the file to be modified on a terminal screen

called "window". Within that portion the cursor can be moved

around to the position where the modification is needed to

be performed.

All "ued" commands in full screen mode are control

characters, and act on the cursor's current screen position.

Details on "ued" commands can be found in "Unix Program's

Manual" (20).

33

2. Vi Editor

Vi is another editor that is associated very closely

with the "ex" text editor (20), but it is classified as a

full screen editor. This editor is called a "visual" editor,

"screen" editor, or a "disply" editor •. In "vi", the portion

of the file to be modified is displayed on the terminal

screen. This is often named the window. Within this window

the cursor can be moved around to control where changes are

to be made, and then the changes can be made by replacing,

adding, or deleting text. The window can be moved up and

down to display any portion of the file, therefore making it

possible to access any section of the file.

Vi has no default mode, like "ued" where the default

mode is "write". Any modification (insertion, deletion, or

replacement) needs an explicit command in "vi".

It is possible to change mode from "vi" to "ex" (for

example, full screen mqde to line mode) and vice versa. The

reason for this is that "ex" and "vi" are linked together to

the same code.

Vi has a wide range of commands, a detailed description

of these commands can be found in "An Introduction to

Display Editing with vi" by William Joy (24).

Modification on Unix Editors

For the monitoring period, counters have been added to

the Unix editors: "ed", "ued", and "ex" and "vi". The

34

purpose of these counters is to keep track of how many

times each command is invoked. Permanent counters are stored

in two files; one for "ed" and "ued", and the other is used

for "ex" and "vi" commands. Temporary counters are used for

each editing session and a counter is incremented by one

every time its related command is invoked. When the editing

session is finished the permanent counters are modified

using the values in the temporary counters.

Finally, chapter IV describes the analysis of the total

accumulative values (i.e, at the end of the monitoring

period) of these counters.

CHAPTER IV

MONITORING AND ANALYSIS

This chapter covers the comparison of the usage of all

commands for both line editors (ed, ex) and full screen

editors (ued, vi). The empirical usage of the commands of

all the editors was continuously monitored from March 12,

1984 to April 30, 1984.

The Monitor Program

The purpose of the monitor program is to maintain

counters for all commands of each editor for every user.

Prefix B+ tree has been used to implement the monitor

program. A full description of the structure of the monitor

program and its implementation is given in appendix A.

The monitor program was invoked during the second half

of the spring semester, 1984 at the CIS Department, OSU.

Two main factors have been decisive in determining the

length of this period, these are:

1. There are two main semesters in one academic year, the

fall and the spring semesters. The majority of the

graduate students (the only group of students allowed to

use Unix) join the CIS Department in the fall semester

and are likely to be unfamiliar with the Unix system a.nd

35

36

its editors. By the beginning of the spring semester,

most of all graduate students who are going to use the

system have already started or are beginning to start

using the system. By the end of the first half of the

spring semester, all the students should have learned to

use the system, including the editors, well enough not to

be called "beginners". It is also expected that by the

beginning of the second half of the spring semester, most

of the work which is being carried out on the system is

in connection with major projects related to the graduate

level courses. It is our believe that the selected

period (the second half of the spring semester)

represents the heaviest workload the system has to deal

with.

2. We have decided to run the monitor continuously (24 hours

a day, seven days a week) simply because the system is

used all the time and some users prefer, or for personal

reasons, use the system late at night or very early in

the morning or mainly during the weekends. This made it

difficult to decide upon an unbiased "sampling period"

during the day or/and the night. It was, therefore, felt

that the monitor should run for the specified period,

which represents 25% to 33% of the annual system usage.

Data Analysis

It was found, at the end of the monitoring session,

that 66 users have accessed the editors during the second

37

half of the spring semester. However, 51 users have used

"ed" and "ued" and 44 used "ex" and "vi" while 29 users used

both groups of editors. Table I shows the usage of the

editors by the CIS users.

TABLE I

OSU/CIS Population

Ed1tors Number
used of users

ed & ued 51

ex & Vl 44

both 29

ne1ther 70

Total· 136

Appendix B has four tables. Each editor has a table of

its commands sorted alphabetically by its commands, also a

short description of each command is given in these tables.

Appendix C has two tables one for "ed and ued" editors

and the other is for "ex and vi" editors. These tables give

the data collected during the monitoring period.

Unused Commands

Table II shows the unused commands during the

monitoring period. It was found that only ona command in

"ed" is not used which is the mark "k" operation. This

operation was also not used in "ex". The mark "k" command

is used with operations which need to remember line number

such as move "m" and copy "t". It is possible to perform

38

these operations without using the mark command by using the

actual line numbers.

TABLE II

UNUSED COMMANDS

Ed1tors Commands Descr1pt1on

ed and ued k mark l1ne

k mark l1ne

< Shlft l1ne one tab to left

ex I pr1nt next l1ne but one
and vi

se set term1nal type

Ctrl z suspend ed1tor's sess1on and
temporarily return to shell

-- 1ndent for LISP

Also in "ex" editor, it is possible to change line mode to

full screen mode by using the command "vi" and the mark

operation is available in it under the name "m" and it was

used by the users (table XII, Appendix C); therefore, the

mark command "k" is not needed unless the user works with

line mode only.

39

The command "<" (shift line one tab to left) is an "ex"

command and it was not used because this operation can be

performed within the full screen mode by using the "<<"

command which does the same operation as "<" commands does

within the line mode.

The command "se" (set terminal type) also is one of the

unused command in "ex". This command is not used because the

terminals that are available at the CIS Department are set

by default in the shell script.

Indentation for LISP command "==" is not used simply

because LISP is not available on the system.

The reasons which can be thought of for not using the

command "Ctrl z" (suspend editor's session and temporarily

return to shell) is that most users use the command "!"

which allows users to exit temporarily from the editor and

perform one unix command. The other reason which can be

thought of is that.users seem to prefer to exit permanently

from the editor if they wish to execute more than one unix

command and then return to "vi".

40

The last command which was not used in ex is "I" (print

next line but one). The only reason which can be thought of

for not using this command is that it is not useful for the

applications of the CIS population.

Popular Commands

It was found that only seven commands of "ed and ued"

editors make 83.92% of the total commands used (table III),

and five commands of "ex and vi" editors make 80.49% of the

total commands used.

From table III, the top three commands used in both

editors ("ed and ued" and "ex and vi"} perform the same

operations. The "->" and "1" commands scan the line from

left to right one character at a time. Users need to scan

lines to position the location for making any correction

(deleting, replacing and adding new characters). Also

scanning from right to left ("<-" and "h") is needed for the

same reason that is given above.

There is a need for deleting a character(s) from a line

without leaving a blank in the deleted location. This can be

done by using "Ctrl R" command in "ued" and by using "x" in

"vi"; therefore, these commands are used 4.6 and 8.5 percent

of the total commands used respectively.

In the "ued" editor, the command "Ctrl W" is used to

widen the line to the right from the location of the cursor.

It is used to insert a space in a line. This operation can

ed and

command

* ->

* <-

~

1'

~

"RETURN"

Ctrl W

Total

TABLE III

POPULAR COMMANDS (A)
USAGE OF COMMANDS

GREATER THAN 3%
OF THE TOTAL

COMMANDS

ued ex and v1

% of total command % of total

19.69 1 35.47

16.66 h 29.16

4.81 X {viJ 8.50

13.00 Ctrl D 3.92

14.65 c 3.44

10.54 Total 80.49

4.57

83.92

* indicates that the two commands on this
line perform the same function.

41

42

also be performed with two commands "Ctrl V Ctrl E" which

are considered to be one command, but this operation is not

described in the "ued" online manual; therefore, the "Ctrl

W" is used 4.57 percent of the total commands used.

However, in "vi" editor there is more than one command to

insert and widen at the same time such as "a", "I" and "i".

This explains why "Ctrl W" is used heavely in "ued".

In "ued" editor, overwriting is allowed by typing over

the character(s) directly, while in "vi" any changing must

be done through the change command "C". For this reason the

change command is used heavely (3.44 percent).

Table IV shows the commands that are used greater than

one percent and less than three percent of the total

commands used. The "un command is used to change the editor

mode from line mode "ed" to full screen mode "uedn. This

operation also available in "ex" editor. "vi" and nu"

commands used almost within the same percentage of the total

commands used. Also the second and the third commands in

both editors ("Ctrl C" , ~ctrl nn in "ued" and "Ctrl \ "

"dd" in "vi") perform the same operations as it is shown in

table IV.

The command nx" is an "ex" command used to write and

quit from the editing session. In "vin the same operation

can be performed by using "ZZ" command. These commands

appear in table IV almost within the same percentage while

the write "w" and quit nq" commands do not appear in the

table under the "ex and vin editors. The write and quit

ed and

command

* u

* Ctrl
1.,..

* Ctrl D

Ctrl G

Ctrl v

TAB

q

r

Total

TABLE IV

POPULAR COMMANDS (B)
USAGE OF COMMANDS

GREATER THAN 1%
AND LESS THAN 3%

OF THE TOTAL
COMMANDS

ued ex and v1

% of total command % of total

1.28 Vl 1.91

1.29 Ctrl \ 1.24

2.12 dd 2.98

1.59 X {ex) 1.21

1.28 0 0 1.40

2.20 zz 1.22

1.08 cc 2.86

1.01 Total 12.82

11.85

* indicates that the two commands on this
line perform the same function.

43

44

(one command) does not have an equivalent in "ed" and

"ued" editors. The quit "q" command appears in table IV

with 1.08 percent while the write "w" commands does not

appear in the table but it is used with 0.97 percent of the

total commands used and the total percentage of "w" and. "q"

make 2.05 percent which is close to the total of "x" and

"ZZ" commands (2.43%). Since the "w" and "q" commands must

be used at least once per session, therefore, their usage is

heavy as the data collected shows in table IV.

Table III and IV show that a total of fifteen "ed and

ued" commands make 95.77% of the total commands used and the

remaining commands make the other 4.23 percent. In "ex and

vi"i only twelve commands make 93.31% of the total commands

used and the others make only 6.69 percent. Also from these

tables, it is found that there are six similar commands

which share the heavy usage in both editors.

Similar Commands in Line Mode

The line editors "ed" and "ex" have some similar

commands. Table V shows the average usage of these commands

per user during the monitoring period. It was found that

most of the "ed" commands have averages higher than the "ex"

commands. The reasons for this are, first because of the

larger number of commands in the "vi" editor that-are

available. The second reason is the availability of

commands in the full screen mode "vi" which are not

available in the full screen mode "ued", but are available

45

TABLE V

SIMILAR COMMANDS IN ED AND EX

ed ex

command average * average *
per user per user

a 20 1

1 12 1

r 365 5

c 9 1

d 86 9

e 1 4

f 1 3

9 9 1

J 1 2

k 0 0

1 1 1

p 74 16

m 12 1

t 7 1

q 389 31

s 77 11

u(ed) vi(ex) 463 281

46

TABLE V (Continued)

w 351 83

{ " %} {z} 1 1

! 18 4

Number of
users 51 44

* Averages are rounded to the nearest digit

in the line mode "ed". These two reasons force the "ued"

users to use more line mode commands than "vi" users.

47

The "a" and "i" commands are used to insert text (one

line or more). This operation can be performed in one

command in "vi" while in "ued", more than one command is

needed to perform the same operation. Users prefer to use

one command to do what they need; therefore, the "a" and "i"

commands in "ed" editor are used more than in "ex" editor.

The quit command "q" is used more in "ed" than in "ex"

simply because there is more than one command available in

"ex" and "vi" to perform this function ("x" in "ex" and "ZZ"

in "vi"). Also the same reason can be given for the write

command "w". Another reason which can be thought of for

making the averages of most "ed" commands higher than the

"ex'' commands is that "ed" is not linked with the full

screen editor "ued". "Ed" and "ued" are two different

programs while "ex" and "vi" are the same program~ From

"ex", accessing "vi" commands is possible while in "ed",

there is no way to get the full screen mode "ued". However,

the line editor commands are available in "ued" mode, except

the· undo command "u" because this letter is used to get the

full screen mode.

Similar Commands in Full Screen Mode

Table VI shows the usage of the similar commands in the

full screen editors "ued" and "vi". It was found that most

of the operations which need more than one command, such as

TABLE VI

SIMILAR COMMANDS IN UED AND VI

ued Vl

command average * command average *
per user per user

Ctrl q 1 Ctrl L 24

Ctrl v ~ 198 Ctrl u 30

Ctrl v -> 5 Ctrl D 576

t 4687 Ctrl E 87

w 5282 Ctrl y 5

Ctrl v Ctrl E 1 l + 505

Ctrl c 464 Ctrl \ 182
Q . .

Ctrl z 25 $ 27

<- 6004 h 4281

-> 7095 1 5208

D 40
Ctrl D 764

dd 437

Ctrl R 1733 X 1248

Ctrl v Ctrl z 1 0 56

* Averages are rounded to the nearest digit

+ This operation includes the "vi" commands
(A, a, I , R, C, and i)

48

49

"Ctrl V Ctrl E", have lower averages than the ones that

need one command only.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This thesis consists of two major parts. The first

part presents the editors that are available on the Unix at

the CIS Department, Oklahoma State University. An

introductory description of each editor is discussed to give

a good start on the second part.

The second part presents the method that was used to

collect the data for the editors' commands. Also an analysis

of the data collected is discussed. The type of the data

structure that was used to implement the monitor program is

explained in appendix A.

It was found that over 95% of the monitored "ed" and

"ued" work was performed by about 25% of the available

commands, and over 93% of the monitored "ex" and "vi" work

was performed by about 13% of the available commands.

It was also found that the average usage of most of

"ex" and "vi" commands is much lower than "ed" and "ued"

commands. This can be attributed to three reasons:

1. The number of commands available in "ex" and "vi" is

almost 50% more than the number of commands available in

"ed" and "ued".

50

2. It is possible to access "vi" from within "ex" and vice

versa, while it is only possible to access "ed" from

"ued" but not from "ed" to "ued". This resulted in

forcing "ed" users to perform all the work using line

mode commands.

51

3. The "vi" editor has a number of commands which are not

available in "ued", such as "ZZ". This results in

forcing "ued" users to change to line mode to perform the

same operations.

The third and the final finding was that most of the

operations which require two commands in order to be carried

out, such as "Ctrl V" followed by "->", have much lower

average usage than the operation which require one command

only (see Appendix C).

Suggested Further Work

The result of this work leads to the following

suggestions:

1. Since a small number of the total number of commands in

both "ed" and "ued" and "ex" and "vi" editors performed

over 93% of the total work, ·it is therefore, recommended

that the source code for these commands should be

examined in the hope that its efficiency can be improved,

if possible.

2. The write and quit operation (one command) was heavely

used in "ex" ("x" command) and in "vi" ("ZZ" command),

while such command is not available in "ed" and "ued"

52

(see Table XII, Appendix C) (the two commands "w" and "q"

perform this operation), it is therefore suggest_ed that

adding such command to "ed" and "ued" would benefit the

users. Similar argument can be. presented for another

"vi" command which is not available in "ued", this

command is

command).

II II . (repeat last modifying open/visual

3. The undo command "u" (discard last command) was used in

"ex" and since "ex" and "vi" are linked together,

therefore, this command is also available for the "vi"

users. The "ed" editor does have the undo command ("u")

while "ued" does not; therefore, it would be useful for

"ued" users to add this command.

4. Unlike "ed" and "ued", the online manual entry for "ex"

and "vi" does not have a detailed description of the

commands. Also the learn command does not have an entry

for "ex". It is therefore, recommended that adding these

information to the system will give the CIS users a

better environment to learn "ex" and "vi".

5. The "ued" command "Ctrl W" is used to widen a line to the

right. This command is useful to insert character(s)

between two characters within the same line. For. example,

53

if a user needs to insert the word "elseif" in a line,

he/she is likely to repeat "Ctrl W" six times or type

"Ctrl V" 6 "Ctrl W" then types the word. Since the

average usage of the "Ctrl W" was very high (1649 times

per user during the monitoring period, see Table XI,

Appendix C); therefore, the command ''Ctrl V Ctrl E" is

very useful in this situation. The command "Ctrl V Ctrl

E" is not .described in the manual, it is therefore

recommended that should be added to the online manual.

6. Appendix C has a column containing the accumulative

percentage values of the usage of the editors commands.

This column was included to assist in any future

, simulation work which may be carried out in the CIS

Department in the area of editors.

SELECTED BIBLIOGRAPHY

(1) Bayer, R. and Unteraner, K. "Prefix B trees." ACM
Transaction on Data Base System, Vol.-2, No. 1-rMarch
1977) 11-26.- -- -.-

(2) Comer, D. "The Ubiquitous B_Tree." Computing Surveys,
Vol. 11, No. 2 (June 1979), 121-137.

(3) Deutsch, P. and Lampson, B. w. "An Online Editor."
Communication of ACM, Vol. 10, No. 12 (Dec 1967), 793-
799. -- --

(4) Digital Equipment Corporation VAX-11, Text Editing
Reference Manual, Maynard, Mass. (Aug. 1978).

(5) Embley, D. W. and Nagy, G. "Behavioral Aspects of
Editors." Computing Surveys, Vol. 13, No. 1 (March
1981), 382~385.

(6) Fraser, C. w. "A Generalized Text Editor."
Communication of ACM, Vol. 23, No. 3 (March 1980),
154-158.

(7) Hansen, W. J. "Creation of Hierarchic Text with a
Computer Display." Agronne National Laboratory,
Argonne, III. Rep. ANL7818, (July 1971).

(8) Irons, E. T. and Djorup, F. M. "A CRT Editing System."
Communication of ACM, Vol. 15, No. 1 (Jan. 1972), 16-
20.

(9) Kernighan, B. w., A Tutorial Introduction to the Ed
Text Editor, Bell Laborator1es, (June 1982T: ---

(10) Kernighan, B. w., Advanced Editing on Unix, Bell
Laboratories, (June 1982). -- ----

(11) Kernighan, B. W. , Lesk, M. E. and Ossanna, J. F •
. "Unix Time Sharing System: Document Preparation." The

Bell System Technical Journal, Vol. 57, No. 6 (July
Augest 1978), 2115-2135.

(12) Kernighan, B. Wand Ritchie, D. M., The f Programming
Language, Prentice-Hall, 1978.

(13) Knuth, D. E., The Art of Computer Programming Vol. 3:

54

Sorting and Searching, Addison Wesley, Reading,
Massachusetts, 1973.

(14) McMahon, Lee E., A Non interactive Text Editor, Bell
Laboratories, (August 1978). ----

(15) McGilton, H. and Morgan, R., Introducing the Unix
System, McGraw-Hill, N.Y. 1983.

(16) Meyrowitz, N. and Van Dam, A. "Interactive Editing
System: Parts I and II." Computing Surveys, Vol. 14,
No. 3, (Septembeer 1982), 321-415.

(17) Parikh, J. S., "The Design of a Text Editor for VSAM
Files." (Unpub. Master thesis, Oklahoma State
University, 1980)

(18) Ritchie, D. M. and Thomson, K. "The Unix Time Sharing
System." Communication of ACM, Vol. 17, No. 7-(July
1974), 365-375.

55

(19) Stearns, F. "How to Select a Text Editor." Interface,
Vol. 7, No. 11 (Nov 1982), 108-118,164.

(20) Unix Programmer'! Manual. Vol. 1, Edition VII, 1984.

(21) Van Doren, J. R. "Information Organization and
Retrieval." (Unpub. Class Notes, Oklahoma State
University. 1983.)

(22) Walker, A. N. Private Correspondence. Nottingham
University, England, Dec. 1983.

(23) William, N. J., Ex Reference Manual, Bell Laboratories,
(September 1980)--.

(24) w~lli~m, N. J., An Introduction to DisTlay Editing with
V1, Bell Laboratories, (September 1980 •

APPENDIX A

Prefix B+ Tree

The structure that is used to store counters for editor

commands per user is a Prefix B+ Tree, described by Bayer et

al. (1) and Comer (2).

Prefix B+ Tree is a special case of B+ Tree. In

B+ Tree each node contains keys and pointers. The B+ Tree

structure is divided into two levels (Figure 5). The upper

level is called index. It contains keys and each key is

copied from the bottom level key during a node split on

insertion. The bottom level is called keys or leaf. It

contains pointers which point to data record or external

nodes. On the key level, there is only one pointer per key.

Each leaf node has a link to the next right leaf node,

except the most right node, which has a null link.

Some implementations of the B+_Tree (13) have data

stored with the keys in leaf nodes; but in the one that is

used in the monitor program, pointers to data are stored

with the keys in leaf nodes.

In Prefix B+_Tree a key in the index level is the

shortest separator to the leaf node when a node 1s split.

56

Root Node

Index
Level

Leaf
Level

\ Ac_tual LJ Data

Figure 5. Organization of B+ Tree

57

B+ tree

58

Th~ monitor program used a Prefix B+ Tree structure.

This structure is stored in a file with a fixed recored

size. The programs were written in C and implemented on the

Unix Operating System (12).

The Prefix B+ Tree file has three types of records (all

have the same size) (21). The structure of the first

physical record in the file is different from the remaining

records, it is called the root (root node). Figure 6 shows

the structure of this node, it contains two pointers: one

points to the first leaf node and the other one points to

the first index node. Figure 7 shows the structure of the

index node. The structure of the leaf node is shown in

figure a.

+----+------+----+-·-------+---+---+----------+---+---+
I I I I I · · · I I I
+----+------+----+--------+---+---+----------+---+---+
I nu~ber I I

root of levels . I
pointer location
to first of available ava1lable
node in the nodes nodes
leaf node

Figure 6. B+ Tree: Structure of Root Node

+----+---+----+----+-----+-----+-----+---+---+---+---+

I k!ys I I k~yll key21· • ·1 key n 1· · ·1 I I I I
+----+---+----+----+-----+-----+-----+---+---+---+---+

J loca!ion I
po1nter of key2 loc-
to left ation
node of of keyl
keyl pointer to

right node
of key2

&
to left
node of
key3

pointer to
right node
of keyl

&
to left node
of key2

Fi9ure 7. B+_Tree: Structure of Index Level Node

+--~--+---+---+-----+-----+-------+------+------+-----+

I I I I userll user21 • .' • I I I I
+-----+---+---+-----+-----+-------+------+------+-----+

I I . I_ • I I . # ~~er r;9ht po1nter to f1le2 locat1on
1d l1nk (counters for ex of userl

left and vi commands)
link

pointer to filel
(counters for ed
and ued commands)

Figure 8. B+_Tree: Structure of Leaf level Node

59

APPENDIX B

EDITORS COMMANDS

TABLE VII

ED LINE EDITOR COMMANDS

Ed
commands Description

a insert after {append}

b back1ng over a read

c change

d delete line{s}

e ed1t another f1le

f pr1nt f1le name

g global

l 1nsert before

' ' l:lnes {default lines} J JOln 2

k mark l1ne

1 print line{sJ

m move line~s}

p print line{s~

q qu1t

r read f1le

s subst1tute

t copy line(s)

60

61

TABLE VII (Continued)

u move to ued commands

v global {for pattern not exist}

w write {save file}

X encrypt f1le

z T pr1nt term1nal type

= pr1nt l1ne number

II % print visual line~sJ

I # qu1t temporary to shell commands

------< remove l1ne number dur1ng ed1t1ng

> pr1nt l1ne number dur1ng ed1t1ng

62

TABLE VIII

EX LINE EDITOR COMMANDS

Ex
commands Description

a insert after {append}

c change

Ctrl d pr1nt one page from current l1ne

d delete line{s~

e n ed1t another f1le

f pr1nt f1le name

9 global

l ""'lnsert before
I , I

lines} J JOln lines ~default 2

k mark l1ne

1 print line{s}

m move line{s}

0 open VlSUal

p print line{s~

q qu1t

r read another f1le

s subst1tute

se set term1nal type

sh qu1t to shell for more than 1 command

t copy line(s)

63

TABLE VIII (Continued}

u undo (d1scard last command)

ve pr1nt vers1on of the ed1tor

Vl switch editor to visual mode {vU

w write {save file}

X wr1te and qu1t

y yank

z pr1nt VlSUal

= pr1nt l1ne number

! qu1t temporary to shell commands

< Shlft l1ne one tab to left

> Shlft l1ne one tab to r1ght

number1ng text

' pr1nt next l1ne but one j

* @ pr1nt content of reg1ster spec1f1ed

" named buffers

64

TABLE IX

UED FULL SCREEN EDITOR COMMANDS

commanp Descr1pt1on

Ctrl A add next l1ne at the cursor pos1t1on

Ctrl B move to the beg1nn1ng of the text

Ctrl c ex1t from ued

Ctrl D delete all characters r1ght to the cursor

Ctrl E move to the end of the text

Ctrl F move cursor one left tab

Ctrl G spl1t l1ne

Ctrl K {UP t J move cursor one l1ne down

Ctri L {->} move cursor one character r1ght

Ctrl N toggle space process1ng

Ctrl 0 delete non space r1ght to the cursor

Ctrl p copy l1ne

Ctrl Q red1splay screen

Ctrl R remove one character

Ctrl T text "word" mode operat1on

Ctrl u red1splay screen

Ctrl v {numberJ .repeats the "Ctrl_anything 1'

Ctrl v Ctrl E 1nsert and w1den

Ctrl v Ctrl z move cursor to the beg1nn1ng of the l1ne

Ctrl v - Ctrl E qu1t from Ctrl V Ctrl E

65

TABLE IX (Continued)

Ctrl v .,. scroll down one page

Ctrl v ~ scroll up one page

Ctrl v <- scroll up half page

Ctrl v -> scroll down half page

Ctrl w w1den

Ctrl y help: pr1nt at the bottom of .the screen:
file name,line number, and column number

Ctrl z move cursor to the end of the l1ne

"RETURN" move cursor to the beg1nn1ng of next l1ne

TAB {Ctrl I } move cursor one tab r1ght

<- (LEFT) move cursor one character left

t {DOWN} move cursor one l1ne up

66

TABLE X

VI FULL SCREEN EDITOR COMMANDS

Command Descr1pt1on

a append at current cursor

A append at end of l1ne

b,B back word

cc change

c change text {to end of line}

Ctrl B red1splay screen Wlth scroll down 1 page

Ctrl D scroll down half page

Ctrl E scroll down one l1ne

Ctrl F red1splay screen w1th scroll up 1 page

Ctrl G d1splay at the bottom of the screen f1le _name,
current line #, and # of lines

Ctrl L red1splay screen

Ctrl u scroll up one page

Ctrl y scroll up one l1ne

Ctrl z suspend ed1tor sess1on's and temporar1ly
return to shell

Ctrl ? {delete or rubout} interrupts

Ctrl \ qu1t to command mode

Ctrl " return to prev1ous f1le

Ctrl] take word after cursor as a tag and then
does the commands

dd delete l1ne

67

TABLE X (Continued)

D delete to end of l1ne

e end of word

E to end of follow:\.ng blank7nonblank word

h back a character

H move cursor to f1rst l1ne of screen

1 1nsert and sh1ft the rest of the l1ne

1, " forward a character

I 1nsert at the beg1nn1ng of l1ne and w1den l1ne

- ' ' J)Olll lines {default 2 lines}

L move cursor to last l1ne of screen

m mark

M move cursor to m1ddle of screen

n search to next match of current pattern

N search to prev1ous match of current pattern

0 1nsert after current l1ne

0 1nsert before current l1ne

p,P print line{s~

Q qu1t from v1sual mode

s remove line and insert on it {overwrite}

u undo last chang1ng command

u restore current l1ne to 1n1t1al state

w,W word forward

x,X delete a character

yy yank l1nes to buffer

68

TABLE X (Continued)

y yank l1nes

z from current l1ne d1splay #of l1nes spec1f1ed

zz wr1te and qu1t

@ call Macros

. repeats last modifying open7v:l.sual commands

.... change case of letter {upper or lower case~

& same as & 1n command mode

. read and execute command mode .
) next sentence

j next paragraph

(back sentence

i. back paragraph

% match n or n
0 beg1nn1ng of l1ne

$ to end of l1ne

\ return to l1ne spec 1 f·1 ed by follow1ng mark

<< Shlft l1ne one tab to left

>> Shlft l1ne one tab to r1ght

! ! f1lter through command

-- 1ndent for LISP

APPENDIX C

USAGE OF EDITORS COMMANDS

TABLE XI

USAGE OF ED AND UED EDITORS COMMANDS

Command Total Accumulat1ve

a 992 0.0005396

l 594 0.0008628

r 18612 0.0109873

c 447 0.0112305

d 4402 0.0136251

e 8 0.0136295

f 27 0.0136441

g 478 0.0139042

J 62 0.0139379

k 0 0.0139379

1 67 0.0139743

p 3781 0.0160311

m 600 0.0163575

t 356 0.0165512

q 19853 0.0273508

s 3948 0.0294985

u 23587 0.0423294

69

70

TABLE XI (Continued)

w 17922 0.0520786

" % 28 0.0520938

= 124 0 •. 0521613

! # 901 0.0526514

b 15 0.0526596

v 32 0.0526770

X 57 0.0527080

T z 55 0.0527379

< 12 0.0527444

> 7 0.0527482

Ctrl A 598 0.0530735

Ctrl B 3366 0.0549046

Ctrl c 23645 0.0677670

Ctrl D 38962 0.0889616

Ctr1 E 691 0.0893375

-Ctrl F 3426 0.0912011

Ctrl s 3577 0.0931469

<- 306199 0.2597135

-> {Ctrl L) 361867 0.4565624

TAB ~Ctr1 I J 40501 0.4785942

t {DOWNJ 269391 0.6251379

~UP {Ctrl K~ 239034 0.7551679

''RETURN" 193828 0.8606067

Ctr1 N 476 0.8608657

71

TABLE XI (Continued)

Ctr1 Q 36 0.8608853

Ctrl P 5939 0.8641160

Ctrl 0 2971 0.8657321

Ctrl R 88371 0.9138043

Ctr1 G 29107 0.9296380

Ctrl T 1201 0.9302913

Ctrl u 1158 0.9309212

Ctrl v 23525 0.9437184

Ctrl V Ctrl E 6 0.9437217

Ctrl W 84084 0.9894618

Ctrl V Ctrl Z 12 0.9894683

Ctrl v - Ctrl E 6 0.9894716

Ctrl Y 78 0.9895141

Ctrl z 1269 0.9902044

Ctrl v t 7501 0.9942848

Ctrl V ~ 10094 0.9997758

Ctrl v <- 148 0.9998563

Ctrl v -> 264 1.0000000

72

TABLE XII

USAGE OF EX AND VI EDITORS COMMANDS

Command Total Accumu1at1ve

a 32 0.0000495

1 36 0.0001053

r 214 0.0004366

c 40 0.0004986

d 408 0.0011303

-----e n 183 0.0014136

f 116 0.0015932

g 42 0.0016583

J 67 0.0017620

k 0 0.0017620

1 14 0.0017837

p 710 0.0028830

m 20 0.0029140

t 23 0.0029496

q 1363 0.0050600

s 490 0.0058186

Vl 12365 0.0249638

w 3633 0.0305889

z 10 0.0306043

73

TABLE XII (Continued)

= 203 0.0309187

! 160 0.0311664

ve 1 0.0311679

0 2 0.0311710

X 7842 0.0433131

< 0 0.0433131

> 1 0.0433146

3 0.0433193

sh 2 0.0433223

u 12 0.0433409

y 6 0.0433502

Ctrl d 11 0.0433673

' 0 0.0433673
I

* @ 4 0.0433734

se 0 0.0433734

" 28 0.0434168

Ctrl L 1036 0.0450209

@ 5 0.0450286

. 2355 0.0486749·

Ctr1 u 1298 0.0506847

Ctrl D 25327 0.0898993

Ctrl E 3839 0.0958434

Ctrl Y 229 0.0961980

m 62 0.0962940

74

TABLE XII (Continued)

Ctrl F 2820 0.1006603

Ctrl B 1897 0.1035975

z 70 0.1037058

y 47 0.1037786

J 688 0.1048439

s 17 0.1048702

0 0 9026 0.1188455

A a 1 R I 22230 0.1532649

N 22 0.1532989

Ctrl ? 323 0.1537990

Ctrl \ Q . 7984 0.1661609 .
zz 7880 0.1783617

p p 3862 0.1843414

Ctrl A 4 0.1843476

Ctrl] 2 0.1843507

& 10 0.1843662

Ctrl G 96 0.1845148

Ctrl z 0 0.1845148

u 1847 0.1873746

u 60 0.1874675

b B 1469 0.1897420

w w 3136 0.1945976

e 124 0.1947896

) 85 0.1949212

J 84 0.1950513

75

TABLE XII (Continued)

(38 0.1951101

i 35 0.1951643

E 150 0.1953965

% 70 0.1955049

0 2454 0.1993045

$ 1178 0.2011285

h 188341 0.4927430

1 II 229136 0.8475218

D 1717 0.8501803

X X 54921 0.9352162

H 263 0.9356235

L 255 0.9360183

M 305 0.9364905

n 551 0.9373437

N 404 0.9379692

\ 126 0.9381643

dd 19217 0.9679186

cc 18465 0.9965085

<< 238 0.9968770

>> 1579 0.9993218

! ! 264 0.9997306

-- 0 0.9997306

yy 174 1.0000000

(\j

VITA

Shakir Mahmood Hussain

Candidate for the Degree of

Master of Science

Thesis: A COMPARATIVE STUDY OF THE USAGE OF THE ED
AND EX FAMILIES OF EDITORS ON THE UNIX
OPERATING SYSTEM

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Baghdad, Iraq, May 4, 1953.

Education: Graduated from Al-markisiyah Secondary
School, Baghdad, Iraq, in June, 1972; received
Bachelor of Arts degree in Statistics from Al
Mustansiriyah University, Baghdad, Iraq, in June
28, 1976; completed requirements for the Master of
Science degree at Oklahoma State University in
July, 1984.

