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CHAPTER I 

INTRODUCTION 

The first real study of sewage aeration was carried out by Angus 

Smith in 1882 (1). Initially, activated sludge studies were conducted 

on a fill and draw basis (2). Since then the activated sludge system 

has become probably the most widely used for biological treatment of 

wastewaters. The activated sludge system has been known to even remove 

priority pollutants and other normally toxic materials from wastewaters. 

Treatment plants were at first designed from experience, and 

ususally on the basis of the flow. Then it progressed through stages to 

where the design was based upon the BOD loading per unit volume of 

aeration basin. These 11 black-box" type designs worked initially since 

the treatment systems were usually designed for domestic waste alone. 

But this could not go on for long as more and more industries kept 

producing wastewaters in large quantities. Studies carried out showed 

activated sludge to be a promising and more economical treatment alter­

native to physiochemical treatment processes that were being used by 

industry at the time. Probably due to this and the stringent control on 

pollutant of natural resources, the activated sludge system has come a 

long way. Today, there are a number of kinetic models that can be used 

as a guide for the design of activated sludge reactors. Most of these 

models produce relatively reliable results when used to design 

conventional systems. However, complex treatment needs and the 

1 
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ever-escalating effluent restrictions have resulted not only in modifi­

cations of the conventional activated sludge systems but also in the 

development of new concepts in wastewater treatment. Moreover, many of 

the kinetic models have their limitations when one tries to apply them 

to the operational control of existing treatment systems. 

Investigators in the field were in conflict over whether the 

efficiency of treatment depended on the organic concentration of the 

waste or the hydraulic flow rate. 

Recently, Kincannon and Stover (3,4) have introduced a design 

concept that is based on the total organic loading approach. This 

design approach was initially developed for trickling filters (or 

biological towers). 

This experiment was conducted to study the response of an activated 

sludge system at a high Food:Micro-organism (F:M) ratio. 



CHAPTER II 

LITERATURE REVIEW 

The need for kinetic design models to predict metabolic and 

biological behavior in the activated sludge process encouraged extensive 

research in the field. This has resulted in a number of mathematical 

models which describe relationships governing microbial growth and 

substrate utilization. Proper use of the models to design full scale 

treatment plants, involves first obtaining essential biokinetic 

coefficients from bench and pilot scale studies using the particular 

wastewater to be treated. 

Eckenfelder's (5) original model assumes that the specific sub­

strate utilization rate, U, is a function of the effluent substrate 

concentration. McKinney's (6) model is identical to Eckenfelder's 

original model. Lawrence and McCarty's model (7) also assumes that the 

specific substrate utilization rate is a function of the effluent sub­

strate concentration. Gaudy's model relates substrate removal directly 

to specific growth rate by use of the Monad relationship. Chapter 7 of 

the Design Manual (8) published by the Bioenvironmental Engineering 

Department of Oklahoma State University provides an excellent in-depth 

comparison of the various kinetic models, and is highly recommended for 

the interested reader. 

It should be noted that when all the actual data obtained from a 

laboratory scale treatment study is plotted for the models mentioned 

3 
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above, the variability is very significant. Determination of the bio­

kinetic coefficients from the plots for each model becomes a calculated 

guess. Many engineers in the field tend to plot average values so as to 

reduce the scatter of data. 

The concept of food to micro-organism ratio (F:M ratio) has been 

used and misused for a number of years. It has been referred to by many 

different names; for example, the F:M ratio was very often referred to 

as the "sludge loading factor" (9) or "sludge loadings". 

McKinney (11) developed the concept of F:M ratio as a control 

parameter. Although originally derived from batch type laboratory waste 

treatment systems, its use has proven very helpful in full scale 

treatment operation. The F:M ratio may be defined as 

where (F:M) is the food:micro-organism ratio, F is the flow rate, Si is 

the influent substrate concentration, X is the mixed liquor volatile 

suspended solids and V is the volume of the aeration chamber. 

Unfortunately, confusion has been added to the definition of (F:M). 

In one widely used reference and textbook (12), the (F:M) was defined as 

the mass of BOD or COD used per day divided by the mass of solids under 

aeration. Lawrence and McCarty (7) have demonstrated that this misused 

definition of (F:M) is actually equal to the specific utilization rate, 

U, and that the {F:M) can be related to U by the expression 

U = (F:M)E 
100 

100 = 
F (S. - S ) 

1 e 
xv 

where E is the treatment process efficiency in percentage, and Se is the 

effluent substrate concentration. Bliss and Barnes (13), in their 



studies with nitrogen control, have also defined a term that they call 

the 11 modified F:M ratio." Again their definition is actually the 

specific utilization rate. 

The term BOD or COD sludge age has also been used instead of the 

F:M (14,15). This term is simply the reciprocal of the F:M ratio or, 

the mass of micro-organisms present in the aeration chamber divided by 

the mass of BOD or COD entering the aeration chamber each day. 

5 

Although some literature is available for studies conducted using 

the F:M concept, very little is available for high F:M loading ratios. 

It was felt that the normal F:M operating range for the activated sludge 

system was around 0.5, at most. Some researchers have conducted studies 

on what they called the 11 high rate activated sludge process" and have 

operated pilot plants treating sewage at F:M loading ratios above 2.0 

(16). They have used both surface aerators and air diffuser systems and 

have reported BOD removal of only 75 percent and below. 

Rennerfelt (17) reports that the BOD removal efficiency dropped 

from nearly 95 percent at an F:M loading of below 0.25, to 45 percent at 

an F:M loading of about 1.5 for a pulp mill waste in Sweden. The 

treatment plant was maintaining a MLSS concentration of 6,000 to 8,000 

mg/t. Emde (18) has studied results from four plants running at F:M 

loading ratios as high as 3.0. The MLSS in two of the plants was 

maintained at between 5,000 and 6,000 mg/2 and around 11,000 mg/2 at 

another plant. He too, reports severe reductions in treatment 

efficiencies but claims that the high MLSS of 11,000 mg/2 does help in 

the removal efficiency even though the F:M ratios were high. He feels 

that the biological characteristics are affected by the dissolved 

oxygen level and the BOD loading on the system. But at high loads, 



flagellates replaced ciliates, even at very high dissolved oxygen 

conditions. He concluded by saying that the efficiency of BOD removal 

was affected more by the aeration period than by the BOD load. 

6 

McKinney (19) has found that well fed, rapidly growing organisms, 

tended to result in poor flocculation and therefore in dispersed growth. 

At very high F:M loading ratios, food was surely not the limiting 

factor. Simpson's (9) studies reinforced McKinney's findings. Simpson 

found that in "high rate activated sludge systems" the micro-organisms 

are very active at the end of each contact period, causing poor effluent 

qualities and the actual sludge age turned out to be between 0.2 and 0.4 

days. He has also put out an emperical expression for excess sludge 

production 

a = 0.2 + {sludge loading factor) 1/2 

where "a" is the "sludge growth factor" (i.e., kg. sludge formed per kg. 

of applied BOD). The sludge loading factor {i.e., kg. BOD per kg. 

sludge day) is basically the F:M ratio. Immediately, one would notice 

that for F:M ratios greater than 2.0, the sludge growth factor becomes 

greater than 1.0 and this is questionable. 

Cashion et al. {10) has concluded from his studies with activated 

sludge that meaningful F:M control can only be achieved when provision 

is made for external storage of biological solids. He concludes that 

F:M control that can be achieved in an activated sludge system that does 

not have provision for external storage of biological solids is 

negligible. 

Kincannon et al. (21) assume that the specific substrate 

utilization rate is a function of the mass loading per mass of 
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micro-organisms (F:M) rather than the substrate concentration alone. 

With the other kinetic models, a lot of rationalization is required to 

determine the respective biokinetic coefficients due to the large 

scatter of data points when plotted for each model. Kincannon and 

Stover (21) have recently introduced a kinetic model that eliminates the 

variability of the biological response to the wastewater being treated 

which exists with the other models. Moreover, Kincannon et al. (21,22) 

have also introduced a procedure to account for this variability to a 

large extent. 



CHAPTER III 

MATERIALS ANO METHODS 

To study the effects of the high food to micro-organism loading 

ratios on the activated sludge system a bench-scale external recycle 

system was operated. A .schematic diag·ram of the system is shown in 

Figure 1. 

The system consisted of a 2.5 liter capacity, hemispherical 

bottomed aeration chamber and a 1.0 liter capacity, flat bottomed 

clarifier. Both units were made of glass. A frame was used to support 

the two separate units at a difference of elevation of about 14 inches. 

The clarifier was seated on a magnetic stirrer plate and a 1 inch long 

teflon coated magnetic stirrer bar was placed in the clarifier to 

prevent "arching" effects of the settled sludge. Air was supplied to 

the aeration chamber through a single fine bubble diffuser. The airflow 

rate was regulated with a Gelman airflow meter to provide an adequate 

dissolved oxygen level in the aeration chamber. Positive displacement 

pumps were used to provide a continuous feed flow to the system and also 

to recycle and waste sludge. Glass tubing was used for both the suction 

and delivery side of the feed pump and tygon tubing was used in the 

sludge recycle and wasting system. Flow from the aeration chamber to 

the clarifier was by gravity. Every time the feed was made up, the feed 

lines, feed bottle and the effluent bottle were cleaned with chlorox and 

8 
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rinsed out several times with tap water to prevent bacterial growth in 

these parts of the system. 

10 

Table I shows the composition of the synthetic wastewater used in 

this study. Glucose was used as the carbon source. Stock solutions 

were made for each of the chemicals in Table I, and depending on the 

required concentration of the feed to provid~ specific loadings on the 

system, equal measured volumes of each stock solution were mixed in a 25 

liter capacity bottle and the mixture diluted to 20 liters with tap 

water. Tap water was used to provide the trace elements required for 

microbial growth. The pH of the fresh feed was checked and adjusted if 

required. At F:M loadings of 0.5 and 1.0, the feed was prepared once 

every two days, but as the concentration of the feed increased for the 

higher loadings, the feed was prepared daily. A Cole-Palmer 7013 

variable speed flex pump was used to deliver the synthetic feed from the 

feed bottle into the aeration chamber. The pump was regulated to 

deliver a flow of 10 liters per day at a continuous rate of seven milli­

liters per minute. The flow was measured regularly to ensure a constant 

flow rate. By so doing, the hydraulic detention time in the aeration 

chamber was maintained at six hours throughout the study. 

A Cole-Palmer 7015 variable speed flex pump was used to recycle 

settled sludge from the bottom of the clarifier back to the aeration 

chamber. The recycle sludge flow rate was fixed at 3/10 of the incoming 

feed rate. This recycle rate was chosen as it was found by trial and 

error that at that recycle ratio, the sludge blanket depth remained 

relatively stable in the clarifier. 

At an F:M loading of 1.0 and below, a third pump had been connected 

to the recycle flow line to enable continuous wasting from the clarifier 
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underflow. This pump was later removed when sludge wasting was done 

directly from the aeration chamber. The sludge recycle pump, the sludge 

wasting pump and the magnetic stirrer plate were connected to the power 

supply through timers. The timers were set so as to operate the sludge 

recycle pump for a duration of seven seconds out of every five minutes, 

the sludge wasting pump for a duration of three seconds out of every 

five minutes and the magnetic stirrer plate for a duration of thirty 

seconds out of every five minutes throughout the day. Moreover, the 

magnetic stirrer would be switched on by the timer about ten seconds 

before the recycle and waste pumps were operated. 

TABLE I 

COMPOSITION OF SYNTHETIC WASTEWATER 

Concentrations (mg/t) used for F:M ratios of 
Constituents 0.5 1.0 2.0 3.0 

Glucose 400 800 1600 2400 

Glycerol 25 50 100 150 

Glutamic acid 25 50 100 150 

Yeast extract 25 50 100 150 

Ammonium Chloride 50 100 200 300 

Potassium Phosphate 10 20 

Manganese Sulphate 10 20 20 20 

lM Phosphate buffer 10 30 
(ml /t of feed) 

The ammonium chloride and potassium phosphate concentrations are 
terms of nitrogen and phosphorous concentrations respectively. 

in 
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The original seed of micro-organisms.was taken from the clarifier 

underflow of a domestic wastewater treatment plant. The mixed liquor 

volatile suspended solids (MLVSS) of the seed sludge was determined and 

a volume of the seed sludge was placed into the aeration chamber and 

feed was added. The resulting initial MLVSS concentration in the 

aeration chamber was 2000 mg/i. 

provide an F:M loading of 0.5. 

The feed concentration was made up to 

The system was allowed to acclimate for 

four weeks before data collection was started. During this time, the 

MLVSS in the system was monitored and maintained at a level to provi9e 

an F:M loading of 0.5. 

At the first loading, that is, at an F:M loading of 0.5, samples 

were taken from the mixed liquor, effluent, recycle line and waste line 

on a daily basis and the suspended solids and volatile suspended solids 

determination was carried out according to procedures set out in 

"Standard Methods" (26). On alternative days when fresh feed was made­

up a soluble BOD analysis was conducted on the feed and the filtered 

effluent. The pH of the feed, the mixed liquor and the effluent were 

checked throughout each day, using a pH probe. Microscopic observations 

were made periodically. 

Data was collected at the F:M ratio of 0.5 for about five weeks and 

then the flow rate was doubled, keeping the feed concentration constant 

and maintaining the same MLVSS concentrations in the aeration chamber to 

maintain an F:M ratio of 1.0. The system was run in this way for four 

weeks, but continuous monitoring of the system from the second week 

onwards warned of impending problems with the sludge settling character­

istics. Therefore, at this point, the first change was made in the 

method of operation. 
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The flow rate was returned to the 10.0 liters per day rate, but the 

concentration of the feed was increased. Again, the system was allowed 

to go through an acclimatization period of three weeks before any data 

was collected. The samples were collected as for the previous loading. 

A second change made in the operation of the system was in the method of 

sludge wasting. The sludge wasting pump was removed and sludge wasting 

was made once a day directly from the aeration chamber. This was done 

to directly control the MLVSS in the aeration chamber. At about the 

same time every day, the MLVSS was measured just before and immediately 

after wasting. A filtered volume of the effluent was used to replace 

the sludge volume wasted from the aeration chamber. By doing so, the 

level of mixed liquor in the aeration chamber was maintained. The daily 

sludge wastage was calculated using 

Fw = 

where Fw is the volume in liters to be wasted, 2.5 is the volume of the 

aeration chamber in liters, X24 is the measured MLVSS before wasting and 

Xo is the target MLVSS required after wasting and refilling the aeration 

chamber with an equal quantity of filtered effluent. The target x0 was 

calculated using the expression 

where Xa is the average MLVSS that is required in the aeration chamber 

to maintain the required F:M ratio. 

After five weeks of data collection at an F:M loading of 1.0 the 

concentration of the feed was further doubled, but both the feed flow 
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rate and the MLVSS concentration were kept the same. This provided an 

F:M loading of 2.0 on the system. The system was allowed to acclimatize 

for four weeks. During these four weeks, further changes were made to 

facilitate proper operation of the system. The potassium phosphate was 

removed from the stock solution and instead, a 1.0 M phosphate buffer 

was made using monobasic and dibasic phosphate. Ten mls. of the buffer 

was added to each liter of the feed after the feed pH was adjusted with 

sodium hydroxide. Moreover, the feed was made up daily. The data was 

collected as before. 

After about four weeks of data collection at an F:M loading of 2.0, 

the feed concentration was increased to three times the concentration 

used at an F:M loading of 1.0. This brought the F:M loading to 3.0. 

The system was run for four weeks before the data collection was 

started. Data was collected for three weeks and the unit was shut down. 

During all the loadings, at times the MLVSS in the reactor dropped 

below the target values. When this happended, sludge wasting was 

stopped and the solids were allowed to build up to the required level 

again. 

The Kincannon and Stover model was used to analyze the data 

collected. This model was chosen over all the other models because of 

the high F:M loadings used. The Kincannon and Stover model reduced 

scatter of data (when plotted) to a minimal compared to the "shotgun­

blast" type of data (when plotted) when other models were tried. 

The Kincannon and Stover model is based upon the following 

relationship for specific substrate utilization rate. 



FS. 
Umax x 1 . . w-

= 

KB 
FSi 

+"XV 

where ~~\ = Mass rate of change in substrate due to growth \ jg 
Umax =Maximum substrate utilization rate 

Ks = Substrate loading at which the rate of substrate 
utilization is one half the maximum rate 

F = Flow rate of substrate into reactor 

Si = Initial substrate concentration 

X = MLVSS in the reactor 

V = Volume of reactor 

This relationship assumes that substrate utilization is a function of 

the mass loading per mass of micro-organisms rather than the substrate 
FS. 

concentration alone. The term xv 1 is the F:M ratio. 

The biokinetic coefficient K8 and Umax were obtained by linearizing 

the above equation 

1 

1/X (¥t) 
= K B 1 + _1_ 

umax --i:si umax 
w-

and plotting 1/(1/X)(ds/dt) vs. 1/FSi/XV. The Y-axis intercept is equal 

to the 1/Umax value and the slope of the line is equal to Kg/Umax· 

Linear regression was used to determine the slope and intercept of the 

line. 

The reciprocal of the sludge retention time was plotted against the 

substrate utilization rate for each loading rate and an attempt was made 

to determine the true yields (Vt) and the decay coefficients from the 

slope of the curve and the intercept on the Y-axis respectively. 



CHAPTER IV 

RESULTS AND DISCUSSIONS 

The synthetic feed was relatively simple to make-up for the lower 

F:M loading, but increased in difficulty as the concentration of the 

feed was increased. At the F:M loading of 0.5, no pH adjustment was 

required after the feed was made up, but at F:M loadings of 1.0 and 

above, pH adjustments were necessary. 

Operational Aspects 

At an F:M loading of 0.5, the system was quite stable 'and produced 

treatment efficiencies consistently above 99.5 percent. The system 

required only minimal daily care when compared to the higher loadings. 

The sludge flocculated quite well and settling in the clarifier was very 

good, thereby producing a very clear effluent. The golden-brown colored 

sludge also compacted well in the clarifier and enabled a good recycle 

sludge concentration. The pH throughout the system--usually about 7.4-­

remained relatively stable at this loading. 

When the feed flow rate was increased slowly to attain an F:M ratio 

of 1.0, the first change that was noticed in the system, was a 

tremendous increase in the mixed liquor solids. The system seemed to be 

trying to prevent a higher loading than it was used to. Following this, 

the pH in the mixed liquor dropped, just as fast as the solids 

increased, to around 6.0. The very fast growth caused dispersed solids 

16 
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which did not flocculate well and therefore did not settle well in the 

clarifier. 

effluent. 

The result was an increase in the suspended solids in the 

The increased solids in the reactor caused the F:M loading to 

remain at 0.5. The recycle ratio was reduced from 0.3 to 0.1 and after 

a lag time of about one day, the mixed liquor suspended solids seemed to 

reduce to the required 1800 mg/~ (to maintain an F:M of 1.0). The 

sludge wasting from the clarifier had to be increased to prevent solids 

build-up in the clarifier. The effuent suspended solids concentration 

increased to a level four times higher than the effluent solids at a 

loading of 0.5, and the underflow suspended solids concentration reduced 

to where it was close to the mixed liquor suspended solids concentra­

tion. This in turn caused a reduction in the mixed liquor suspended 

solids and nothing much could be done to correct it due to the amount of 

solids wash-out from the system. About one week after the flow rate was 

increased, the pH in the reactor dropped to about 5.85 for no apparent 

reason. A predominance change seemed to have occurred in the aeration 

chamber during the night when the unit was not monitored. The mixed 

liquor had changed in color to a lighter brown than the original darker 

color. The sludge, although not slimy to the feel, had formed a film on 

the inside of the aeration chamber and along all the tubing. When 

scraped off with a spatula, it came off in sheets. Even the clarifier 

had a thin film attached to the sides. The clarifier could not handle 

the dispersed and non-flocculating solids and the effluent suspended 

solids increased. When a sample of mixed liquor was taken and filtered 

through a glass fiber filter, the filtrate was clear but had a straw 

colored tint to it. This color change in the filtrate was also noticed 

on the day before the visual predominance change. Moreover, the sample 
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took a considerably longer time to filter, probably due to dispersed 

solids. The coloring in the filtrate was probably due to some metabolic 

byproducts excreted by the micro-organisms. 

By the next day, the mixed liquor became a much darker color than 

the original golden brown color that existed throughout the F:M loading 

of 0.5. The settling characteristics improved tremendously and the 

effluent suspended solids concentration reduced, but the filtered sample 

of the clarified effluent was nearly black in color. The dissolved 

oxygen and the pH were immediately checked throughout the system and 

found to be above 3.2 mg/t and around 7.3 respectively. This ruled out 

the first impression of possible anaerobic activity in the effluent 

bottle causing the color. 

Soon after the predominance change occurred, the mixed liquor 

suspended solids concentration began to fluctuate. Microscopic analysis 

of a sample of sludge showed a total absence of higher forms of life 

(protozoa etc.). Moreover, there also seemed to be a total absence of 

any filamentous type organisms. Tiny but very active micro-organisms 

were the only life-forms noticed. Since the recycle alone could not 

cope with the fluctuations in the mixed liquor suspended solids, it was 

decided to control the mixed liquor suspended solids concentration by 

wasting directly from the aeration chamber, and immediately replacing 

the volume of mixed liquor wasted, with filtered effluent. This allowed 

a much better control of the mixed liquor suspended solids 

concentration. 

Since by this time, the system was totally upset, fresh sludge was 

used from a municipal treatment plant to re-seed the system. The system 

was now run at an F:M loading of 1.0 by increasing the feed 
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concentration and maintaining the same feed flow rate of 102/day that 

was used at an F:M loading of 0.5. But now, the higher concentration of 

glutamic acid in the feed make-up probably exceeded the buffering 

capacity of the tap water and caused a drop in the pH. The pH was 

adjusted to 7.0 with sodium hydroxide solution after the feed was made­

up. This adjustment of the pH did help a little although ve~v often, 

the pH in the mixed liquor did drop below 7.0 after about 18 hours. 

When the feed pH was adjusted to 7.5, the mixed liquor pH tended to 

remain around 7.0. 

At the F:M loading of 1.0, the sludge looked very filamentous and a 

microscopic examination of the sludge confirmed this. The dissolved 

oxygen level in the aeration chamber was maintained around 4.5 mg/2 but 

the filaments still prevailed. Apart from the reduction in the settling 

efficiency, the filamentous sludge in the mixed liquor tended to collect 

on the lip of the overflow from the aeration chamber. During the day, 

this was prevented to a certain extent by regularly scraping the solids 

off and washing them down into the clarifier. But during the night, the 

solids collected on the lip and did not pass into the clarifier. There­

fore, although the recycle rate was maintained during the night, the 

concentration of recycle solids reduced tremendously. There were times 

when the recycle solids concentration was very close to the mixed liquor 

suspended solids concentration. This caused a problem in trying to set 

the recycle ratio by calculation. From trial and error, it was found 

that a recycle ratio of 0.3 maintained a reasonable sludge blanket level 

in the clarifier. From this observation, it was decided to maintain the 

recycle ratio at 0.3 of the flow throughout the experiment. The average 

removal efficiency at an F:M loading of 1.0 was 96.9 percent. 
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The F:M loading was then increased to 2.0. The flow rate was kept 

constant, thereby maintaining the same hydraulic detention time, but the 

feed concentration was increased. The pH of the feed had to be adjusted 

with even larger volumes of sodium hydroxide solution. Again, the pH of 

the feed and the mixed liquor were monitored and it was noticed that the 

pH in both the feed and the mixed liquor had dropped drastically. The 

pH in the feed bottle dropped from the adjusted level of 7.5 to around 

6.5 while the pH of the mixed liquor dropped to levels below 6.0. 

Therefore, the pH of the feed was adjusted to 8.0 but this did not seem 

to be able to cope as the pH in the mixed liquor did not improve. More­

over, adjustment of the pH to levels of 8.0 and above, caused some 

precipitation of the salts in the feed and also released the ammonium 

salt as free ammonia gas into the atmosphere. It was then decided to 

add a buffer to the feed to control the pH. In spite of the addition of 

20 mls. of phosphate buffer to each liter of feed made up, the pH in the 

mixed liquor had a tendency to drop to levels between 6.5 and 7.0. 

At the F:M loading of 2.0, the mixed liquor slowly changed color to 

become a greenish-yellow color. A filtered sample showed the same 

coloring in the filtrate whereas the residue on the filter paper v1as 

beige in color. This coloring of the sludge remained throughout the run 

at the F:M loading of 2.0. It was also noticed that this coloring in 

the mixed liquor was pH sensitive. If the pH of a filtered sample was 

slowly reduced with acid, the greenish-yellow color would clear up and 

only a clear, colorless liquid remained at pH levels below 6.5. On the 

other hand, if the pH of the filtrate was increased with sodium 

hydroxide, the greenish-yellow color returned at a pH of about 7.5 and 
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continued to become darker and more greenish in color with any further 

increase in the pH. 

When the feed was made-up, it was always cloudy in contrast to the 

clear feed make-up at the lower concentrations. It was noticed that the 

feed was clear if the pH was left at 4.5 after make-up. When the sodium 

hydroxide was added to adiust the pH to 7.0 before adding the buffer, 

the feed became cloudy. The salts were being pushed out of the solu­

tion. Also, due to the higher concentration, ionic exchange was prob­

ably taking place in the solution and when insoluble compounds form, 

they immediately precipitate. This problem became more severe at an F:M 

loading of 3.0. 

At an F:M loading of 3.0, the major problem encountered was with 

the pH control. The pH of the feed would reduce to around 5.2 in the 

feed bottle and in the aeration chamber over a period of 24 hours in 

spite of the phosphate buffer addition (30 mls per liter of feed). No 

more buffer could be added due to fear of toxicity resulting from the 

high potassium concentration in the buffer. This type of pH drawdown 

has been noticed in fixed bed reactors too. Deen (20) reported that in 

the fixed bed reactor, pH drawdown was practically all in the first foot 

of reactor depth and that thereafter, the pH tended to rise towards its 

original nozzle value. He also found that the pH recovery is greater 

for lower organic laodings and therefore, as the organic loadings became 

heavier, the tendency for the pH to recover becomes less and less, until 

theoretically, at some total organic loading, the pH in each foot of the 

fixed bed reactor is the same, Apparently, this applies to the activated 

sludge also but at much lower F:M loading rates than that noticed by 

Deen in the fixed bed reactors. The lack of pH recovery at higher 
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loadings in the A.S. system could be due to the fact that the F:M load­

ing does not reduce with time whereas in the tower, the organic load 

reduces with increase in depth. 

Foaming in the aeration chamber became a problem. At times, the 

white foam would prevent the mixed liquor suspended solids from leaving 

the aeration chamber, thereby causing a build-up of suspended solids in 

the aeration chamber, and a detrimental effect on the solids concentra­

tion in the clarifier. Foam would also build-up and flow over the lip 

of the aeration chamber and into the clarifier. When this happended, it 

would cause rising of the solids in the clarifier due to the fine 

bubbles of foam. 

At the F:M loading of 0.5, settling characteristics of the sludge 

was very good, but as the loading was increased, the effluent solids 

increased and due to the dispersed growth, even a filtered sample was 

very cloudy. Cashion, et al. (10) has found that suspended solids that 

pass over the weirs of secondary clarifiers vary in direct proportion to 

the organic loading to the aeration basin. Although in this study too, 

an increase in loading had generally produced an increased effluent 

suspended solids concentration, no definite relationship was found. 

The mixed liquor suspended solids did not fluctuate very much at 

the lower loadings but fluctuation amplitude increased with increase in 

the total organic loading. The increase in mixed liquor suspended 

solids concentration over a 24-hour period was very unpredictable at the 

higher F:M loadings. Some days, the solids concentration would double 

over a 24-hour period and on other days, the increase was not half as 

much. When the mixed liquor solids concentration increased a lot, large 

volumes of the reactor were wasted but when the following 24 hours 
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produced very little increase in the mixed liquor suspended solids, 

nothing was wasted. This caused fluctuations in the average mixed 

liquor suspended solids concentration especially at the higher loadings. 

Sludge draping over the lip of the reactor also contributed to these 

large fluctuations. When the sludge was scraped off the lip of the 

aeration chamber, it came off in chunks. This settled very well in the 

clarifier and was immediately recycled. Therefore, the solids in the 

reactor would increase. 

Performance of Reactor 

The plots of ec against time (Figures 2 through 5) generally show 

very low sludge retention times with sudden increases and decreases over 

very short time intervals, in spite of the relatively stable F:M ratios. 

This was very surprising as it was assumed that low F:M loadings would 

produce high sludge retention times and vice-versa, but no definite 

relationship could be found between the sludge retention time and the 

F:M ratio. Throughout the study, the ec tended to stay around one day. 

This low ec was probably the only way that the system could produce a 

sufficiently high yield to cope with the high F:M ratio imposed on it. 

Figures 2 through 5 show the main parameters monitored over the 

duration of each loading rate studied. At an F:M loading of 0.5 the 

parameter that was directly controlled was the influent BOD concen­

tration (Si). At the other loading rates, both the influent BOD concen­

tration and the mixed liquor suspended solids were directly controlled. 

At the loading rate of 0.5, the mixed liquor suspended solids con­

centration was controlled by the recycle rate. As mentioned before, 
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this could not be done for the higher loadings so a more direct method 

was employed. 

In Figure 2, in spite of the slight variation in the influent 

soluble BOD concentrations, the effluent soluble BOD concentration was 

consistently below 20 mg/t with a major part of the run producing 

effluent soluble BODs of 15 mg/t or less. For the first 20 days of the 

run, the mixed liquor volatile suspended solids (MLVSS) was maintained 

relatively stable. From the 22nd day to the 26th day, the MLVSS kept 

increasing. This increase followed after the settling characteristics 

in the clarifier improved tremendously as can be seen from the low 

effluent volatile suspended solids concentration levels. At this point, 

further reduction of the recycle flow rate did not help to reduce the 

MLVSS concentration since the sludge compaction in the clarifier 

increased with reduction in the recycle flow rate. From the 26th day 

onward, the MLVSS was not as stable as the initial part of the run. 

From Table II, it can be seen that the fluctuations seemed to occur 

immediately after the flow rate was increased to compensate the reduc­

tion in the BOD concentration of the influent. This increase in the 

flow rate also contributed indirectly to the increase in the MLVSS as 

the recycle rate was a fraction (a) of the flow rate. Since this 

fraction (a) was not reduced much, the actual recycle flow increased. 

Despite these fluctuations, the main parameter, the F:M ratio, did not 

vary much. Throughout the run, the F:M ratio was maintained stable. 

At an F:M loading of 1.0 (Figure 3) more control was exerted on the 

MLVSS concentration. Figure 3 shows a far more stable MLVSS. The 

influent substrate concentration was also maintained relatively stable 

and so was the flow (Table III). This in turn produced much smaller 
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fluctuations in the F:M loading rate in the aeration chamber. At this 

loading rate, the effluent soluble BOD and the effluent volatile 

suspended solids varied considerably, although during the final week of 

the run at this loading rate, the effluent soluble BODs were consis­

tently below 10 mg/t. 

Figures 4 and 5 relate to the performance of the system at F:M 

loading ratios of 2.0 and 3.0 respectively. In Figure 4, even though 

the MLVSS and the F:M ratio was maintained relatively stable, the 

variatons in the performance of the system was considerable. The 

effluent soluble BODs seldom went below 100 mg/t and the effluent 

volatile suspended solids concentrations were consistently above 100 

mg/t with maximum values above 450 mg/t. The first 10 days produced 

high effluent solids concentrations and lower effluent BODs. Similarly, 

the higher effluent BODs correspond to lower effluent suspended solids 

during the final week of the run. This observation, when related to 

dissolved oxygen levels above 2.0 mg/t in the effluent, might lead to 

hasty deductions of biodegradation occurring in the clarified effluent 

collection bottle. This could be a possibility, but by no means do the 

results obtained from this study affirm or contradict this possibility. 

In Figure 5, the variations in the parameters plotted against time 

is substantial. The variations in the raw wastewater BODs were either 

due to variations in the volume of stock solutions added to the feed 

make-up or due to growth in the feed sample. Due to the very high con­

centration of the stock solution, even a minute error in measurement 

either in making up the feed or in the running of the BOD test could 

result in large fluctuations in the results. Secondly, even though the 

sample of feed was stored in the refrigerator for no more than 24 hours 
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prior to the BOD test being done, errors could result. The effluent 

BODs seemed to be on a generally increasing trend until the system was 

shut down. The MLVSS zig-zagged through the run. This was probably due 

to the irregular growth and acummulation of solids in the reactor as 

mentioned earlier on in this chapter. The effluent volatile suspended 

solids also varied between 150 mg/t and. 300 mg/t most of the time. Due 

to the combination of the influent BOD and the MLVSS fluctuations, the 

F:M ratio was not maintained very stable. This probably contributed to 

the generally increasing trend in the effluent BODs. 

Evaluation of Kinetic Models 

During the analysis of the data to determine the biokinetic 

coefficients, it was noticed that most of the existing kinetic models 

returned the "shotgun-blast" type of plots with very low correlation 

coefficients. The only model that did handle the data relatively well 

was the Kincannon and Stover model. A plot of U, the specific substrate 

utilization rate against Se, the effluent substrate concentration to 

determine the Eckenfelder's "Ke" is shown in Figure 6. From this plot, 

Eckenfelder's "Ke" could not be accurately determined. This had to 

happen since the specific substrate utilization rate for a particular 

substrate cannot increase indefinitely. It has to bend over and tend to 

level off at some point. Figure 7 shows the plot of the product of the 

influent BOD and the specific substrate utilization rate against the 

effluent BOD. The scatter of the points is even more obvious here for 

the higher loading rates. From this plot, the Eckenfelder's modified 

kinetic coefficients could not be determined either. Figure 8 shows the 

reciprocal of the specific substrate utilization rate plotted against 
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the reciprocal of the effluent BOD. This plot is normally used to 

determine the kinetic coefficients for the Lawrence and McCarty 1 s 

model. However, here again the specific substrate utilization is 

related to the effluent substrate and therefore poses the same problem 

in the accurate determination of the kinetic coefficients as was found 

with the Eckenfelder 1 s models. 

In contrast to this, Kincannon and Stover relate the specific 

substrate utilization rate to the F:M ratio and get far less scatter of 

data. Figure 9 shows the relationship of the specific substrate utili­

zation to the F:M ratio for the particular feed used for this study. As 

the F:M ratio was increased, the substrate utilization increased follow­

ing a monomolecular type relation at first and then started to bend 

over. The substrate used in this study was easily metabolized and 

therefore the bending over was not as much as might be obtained for some 

other wastewater that contained very complex organic compounds. If a 

particular wastewater contained matter that was toxic to micro­

organisms, the graph would have probably leveled off and then begun to 

drop, showing that any further increase in the F:M ratio would cause a 

reduction in the substrate utilization. The bending over of the graph 

could also be due to oxygen transfer limitations. Even though the 

dissolved oxygen in the mixed liquor is sufficiently high, the transfer 

of oxygen into the mass of micro-organisms may be inefficient due to 

clumping of the solids at higher F:M ratios. Ganezarzyk (23) and 

Washington et al. (24) concluded that the bending over of the graph is 

due to inhibiting effects of inert and slowly degradable materials 

including the metabolic byproducts accumulating in the mixed liquor. 

Dohanyos et al. (25) found that the initial substrate removal in an 
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activated sludge system depended not on the storage capacity of the 

cells but rather, on what they term as the "accumulation capacity" of 

the cell. They used glucose as the substrate, balanced with nutrients 

required by the cells, and controlled the sludge age at 10 days. The 

F:M loading turned out to be 2.9. Although the storage capacity of the 

cells in their study did not reach a maximum, the glncose removal rate 

reduced. They imply that the drop in removal rate is due to saturation 

of the "accumulation capacity" of the cells. This, if true, could also 

have contributed to the bending over of the graph in Figure 6. 

Using the Kincannon and Stover model, the data could be analyzed 

with very good correlation. Figure 10 shows the Kincannon and Stover 

plot of the reciprocal of the substrate utilization rate against the 

reciprocal of the F:M ratio. The correlation coefficient was found to 

be 0.998, which was far better than the correlation coefficient obtained 

from any of the other kinetic models. The Kincannon and Stover design 

model is the only model that expresses substrate utilization as a 

function of mass loading; all the other design models express substrate 

utilization as a function of substrate concentration in the reactor. 

Using the Kincannon and Stover model, the biokinetic coefficients, Umax 

and Ks can be determined. Umax is defined as the maximum specific 

utilization rate and K8 is the substrate loading at which the rate of 

substrate utilization is half the maximum rate. The Y-axis intercept in 

Figure 10 is the reciprocal of Umax and the slope of the line is equal 

to Ks/Umax· In this study, Umax and Ks were found to be 17.3 and 17.5 

respectively with a correlation coefficient of 0.998. Studies done with 

alcohol production wastewater by Stover and Gomathinayagam (27) have 
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produced Umax and Ks values of 16.7 and 16.7 respectively. These, and 

other studies at the Sioenvironmental Laboratories, Oklahoma State 

University, seem to encourage the belief that easily biodegradable, non­

inhibitory wastewaters have Ks and Umax values in the ranges mentioned 

above. The presence of heavy metals or other toxic substances in a 

wastewater being treated tend to induce much lower Ks and Umax values. 

The common procedure to determine the true yield (Yt) and the decay 

coefficient (Kd) is to plot the reciprocal of the sludge retention time 

against the specific substrate utilization rate (U). The slope of the 

straight line obtained is the yield while the intercept on the Y-axis is 

the decay coefficient. Kincannon et al. (23,24) have shown that vari­

ability occurs in the biological response to the wastewater being 

treated. They have found that when the sludge retention time was kept 

constant, the specific substrate utilization rate (U) varied consider­

ably. In this study, the F:M ratio was held quite constant and the 

sludge retention time was found to vary. Figure 11 shows a plot of the 

data obtained from this study. It can be seen from the plot that the 

true yield and the decay coefficient cannot be satisfactorily deter­

mined. If results obtained by Dohanyos et al. (25) are any indication 

of what happens in a heavily loaded activated sludge system, then, it is 

a possibility that this phenomenon (Figure 11) occurred due to a lack of 

growth during the "accumulation" period followed by very high growth 

rates. This would be consistent with the resulting fluctuations in the 

sludge retention time at each loading rate (Figures 2 through 5). How­

ever, when the true yield and the decay coefficient were determined from 

the plot in Figure 11 using the data obtained at the lower F:M loading 

ratios of 0.5 and 1.0, the true yield and the decay coefficient were 
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found to be 1.12 and 0.17 respectively, with a correlation coefficient 

of 0.74. Although a lot of problems were encountered as the F:M ratio 

was increased to 3.0, it can be seen from the Kincannon and Stover plot 

in Figure 10 that the kinetics at the lower and higher loadings are 

about the same. These observations coupled with the whitish color of 

the mixed liquor suspended solids at the higher loadings could mean that 

at these high loadings, the sytem was encouraging the growth of micro­

aerophilic organisms like the Beggiatoa. A whitish growth is very 

common on heavily loaded fixed bed reactors like the rotating biological 

contractor and has been suspected to be Beggiatoa. This organism seems 

to become visually apparent as a whitish growth on the discs of the 

rotating biological contractor when oxygen limiting conditions were 

suspected on the growth media in spite of satisfactory dissolved oxygen 

levels in the liquid portion. Therefore in this study, the possibility 

of Beggiatoa in the system, contributing to the difficulty in determin­

ing the true yield and decay coefficient for loadings above F:M ratios 

of 1.0, cannot be completely ruled out. 

Since the Gaudy 1s model relates the mass rate of substrate utili­

zation to the growth of the biomass and the biomass characteristic 

constants, this model could not be used to determine the kinetic 

coefficients. 



CHAPTER V 

CONCLUSIONS 

From the experimental data and observations obtained through this 

study, the following conclusions may be drawn. 

1. High F:M loading ratios on an activated sludge system tends to 

produce poorly settling sludge and low treatment efficiencies (measured 

as soluble BOD). 

2. The true yield {Vt) and the decay coefficient {Kd) could not be 

accurately determined by plotting the reciprocal of the sludge retention 

time against the specific substrate utilization rate. 

3. The Kincannon and Stover model returned a very high correlation 

coefficient when the reciprocal of the specific substrate utilization 

rate was plotted against the reciprocal of the F:M ratio. 
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TABLE II 

pbs. BOD RAW DATA FOR F:M LOADING RATIO OF o. 5 lbs. MLVSS)day 

Si Se XA Xe XR Fw F td u F:M 1/U 1/F:M 

258 5.7 1990 17 -- 0.54 10.0 0.25 0.51 0.52 1.97 1.91 
256 0.3 1830 61 -- 0.30 10.0 0.25 0.56 0.57 1. 79 1. 77 
263 12.6 ·1460 60 3690 0.20 9.22 0.27 0.64 0.66 1.57 1.51 
233 7.5 1680 39 4030 0.17 9.22 0.27 0.50 0.51 2.01 1.96 
216 10.0 1860 181 3330 0.29 9.22 0.27 0.41 0.43 2.44 2.34 
285 10.5 2250 21 2930 0.19 9.50 0.26 0.47 0.48 2.13 2.08 
270 7.6 2660 11 2970 0.22 9.50 0.26 0.38 0.39 2.63 2.59 
267 14.1 1800 164 3090 0.36 9.94 0.25 0.56 0.59 1. 78 1. 70 
277 15.0 2200 10 4170 0.45 10.0 0.25 0.48 0.51 2.10 1.97 
298 22.1 2370 16 4000 0.41 10.0 0.25 0.47 0.51 2.15 1.97 
297 18.1 2210 10 4260 0.32 10.0 0.25 0.51 0.54 1.98 1.85 
238 13.2 2490 5 2610 0.20 10.0 0.25 0.36 0.39 2. 77 2.59 
173 6.8 3120 13 3330 0.56 14.11 0.18 0.30 0.31 3.38 3.20 
135 4.8 3790 2 3030 0.67 14.11 0.18 0.19 0.20 5.24 4.97 
243 4.1 2310 7 2410 1.55 10. 70 0.23 0.45 0.45 2.22 2.22 
176 8. 5 -··3190 2 3510 1.23 15.26 0.16 0.33 0.34 3.05 2.97 
166 9.0 3560 5 2880 1.50 20.02 0.12 0.37 0.37 2. 72 2.68 
199 24.7 2310 5 4070 3.60 20.02 0.12 0.63 0.69 1.59 1.45 

ec 1/ec 

2.69 0.37 
2.92 0.34 
3.41 0.29 
4.91 0.20 
1.89 0.53 

13.15 0.08 
16.48 0.06 
1.83 0.55 
4.24 0.24 
3.97 0.25 
6.58 0.15 
7.89 0.13 
4.73 0.21 
4.89 0.20 
2.33 0.43 
3.66 0.27 
2.89 0.35 
0.75 1.33 

SiU 

132 
143 
168 
117 
89 

134 
103 
150 
133 
140 
151 
86 
52 
26 

109 
58 
61 

125 

1/Se 
x10-2 

17.5 
333 

7.9 
13.3 
10.0 
9.5 

13.2 
7.1 
6.7 
4.5 
5.5 
7.6 

14.7 
20.8 
24.4 
11.8 
11.1 
4.0 

~ 
O'I 



TABLE II I 

(lbs. BOD 
RAW DATA FOR F:M LOADING RATIO OF 1.0 1 lbs. MLVSSTday 

Si Se XA Xe XR Fw F td u F:M 1/U 1/F:M 

475 29.7 2320 70 2770 0.31 10.0 0.25 0.77 0.82 1.30 1.22 
445 16.0 2070 162 2180 0.32 9.20 0.27 o. 77 0.79 1.30 1.26 
465 24.0 1810 324 1660 0.05 10.0 0.25 0.97 1.03 1.03 0.79 
443 18.1 2020 316 2200 0.31 10.37 0.24 0.88 0.91 1.14 1.10 
410 28.6 2000 440 2080 0.31 10.0 0.25 0.76 0.82 1.31 1.22 
420 9.4 1910 308 2050 o.o 10.0 0.25 0.86 0.88 1.16 1.14 
404 8.7 1950 298 1970 0.63 10.0 0.25 0.81 0.83 1.23 1.21 
420 13.2 2035 296 1560 0.65 10.0 0.25 0.80 0.83 1.25 1.21 
460 12.3 2170 256 2170 0.70 10.0 0.25 0.83 0.85 1.21 1.18 
441 18.2 2010 360 1340 0.80 10.0 0.25 0.84 0.88 1.19 1.14 
397 14.3 1715 384 1920 0.59 10.0 0.25 0.89 0.93 1.12 1.08 
449 8.8 2135 118 1890 1.37 10.23 0.24 0.86 0.86 1.16 1.16 
433 6.2 1812 226 1730 0.59 10.0 0.25 0.94 0.96 1.04 1.05 
413 6.9 1855 402 1940 0.50 10.65 0.23 0.95 0.95 1.05 1.05 
419 7.3 1820 406 2470 0.55 10.0 0.25 0.90 0.92 1.11 1.09 
475 3.8 2070 154 1730 0.80 10.0 0.25 0.91 0.92 1.10 1.09 
464 10.4 2070 237 1400 1.35 9.79 0.26 0.84 0.88 1.19 1.14 
413 5.1 1920 140 2500 1.45 10.0 0.25 0.85 0.86 1.18 1.16 

ec 1/ec 

4.15 0.24 
2.47 0.41 
1.36 0.74 
1.33 0.75 
1.02. 0.98 
1.55 0.65 
1.21 0.83 
1.24 0.81 
1.39 o. 72 
1.02 0.98 
0.93 1.08 
1.34 0.75 
1.42 0.70 
0.93 1.08 
0.94 1.06 
1.68 0.60 
1.08 0.93 
1.21 0.83 

S1U 

366 
343 
451 
390 
312 
361 
327 
336 
382 
370 
353 
386 
407 
392 
377 
432 
390 
351 

1/Se 
x10-2 

3.4 
6.3 
4.2 
5.5 
3.5 

10.6 
11.5 
7.6 
8.1 
5.5 
7.0 

11.4 
16.1 
14.5 
13.7 
26.3 
9.6 

19.6 

..i:::. 

....... 



TABLE IV 

RAW DATA FOR F:M LOADING RATIO OF 2.0 (lbs. BOD 

S; Se XA Xe XR Fw F td u F:M 1/U 

950 219 1675 520 2960 o.o 10.0 0.25 1. 75 2.27 0.57 
1016 183 2195 350 1960 1.15 10.0 0.25 1. 52 1.85 0.66 
921 28 2255 556 1990 0.8 10.0 0.25 1.58 1.63 0.63 
902 61 2020 506 1580 0.81 10.0 0.25 1.67 1. 79 0.60 
923 24 1955 558 1390 0.81 10.0 0.25 1.84 1.89 0.54 
992 106 1805 472 1450 0.80 10.0 0.25 1.96 2.20 0.51 
986 34 2025 578 1930 0.90 10.0 0.25 1.88 1.95 0.53 
936 137 2180 236 2410 1.31 10.0 0.25 1.47 1. 72 0.68 
872 46 1990 196 1570 1.50 10.37 0.24 1.73 1.82 0.58 

1023 21 2050 344 2640 1.63 10.0 0.25 1.96 2.0 0.51 
940 52 1880 322 1420 1.40 10.37 0.24 1.97 2.07 0.51 
973 371 1650 146 2040 1.00 10.0 0.25 1.46 2.36 0.69 
993 394 1815 72 930 1.20 9.79 0.26 1.27 2.19 0.79 

1062 102 2025 256 1790 1.05 10.0 0.25 1.90 2.10 0.53 
1123 184 2070 210 4270 1.33 9.79 0.26 1. 74 2.12 0.57 
902 93 1565 202 2070 0.83 9.50 0.26 1.99 2.19 0.50 
937 175 2185 352 1340 1.34 10.0 0.25 1.39 1. 72 o. 72 
965 170 2195 140 1910 1. 21 10.0 0.25 1.45 1. 76 0.69 
943 190 1745 176 3730 0.96 10.0 0.25 1. 73 2.16 0.58 
978 212 1665 76 2480 0.51 10.0 0.25 1.84 2.35 0.54 
987 187 2034 306 3340 1.0 10.0 0.25 1.57 1.94 0.64 

1/F:M ec 1/ec 

0.44 0.81 1.23 
0.54 0.98 1.02 
0.61 0.81 1.24 
0.56 0.80 1.25 
0.53 0.73 1.37 
0.45 0.78 1.28 
0.51 0.71 1.41 
0.58 1.11 0.90 
0.55 1.05 0.95 
0.50 0.82 1.22 
0.48 0.85 1.18 
0.42 1.39 o. 72 
0.46 1.62 0.62 
0.48 1.15 0.87 
0.47 1.14 0.88 
0.46 1.28 0.78 
0.58 0.91 1.10 
0.57 1.38 o. 72 
0.46 1.34 0.75 
0.43 2.65 0.38 
0.52 1.06 0.94 

S;U 

1663 
1544 
1455 
1506 
1698 
1944 
1854 
1376 
1509 
2005 
1852 
1421 
1261 
2018 
1954 
1795 
1302 
1399 
1631 
1800 
1550 

1/Se 
x10-2 

0.5 
0.5 
3.6 
1.6 
4.2 
0.9 
2.9 
0.7 
2.2 
4.8 
1.9 
0.3 
0.3 
1.0 
0.5 
1.1 
0.6 
0.6 
0.5 
0.5 
0.5 

.j:::. 
00 



TABLE V 

lbs. BOD 
RAW DATA FOR F:M LOADING RATIO OF 3.o )lbs. MLVSS)day 

S; Se XA Xe XR Fw F td u F:M 1/U 1/F:M 

1760 215 1700 306 2160 '0.6 9.79 0.26 3.50 4.14 0.29 0.24 
1796 228 2235 252 1810 1.17 10.0 0.25 2.81 3.21 0.36 0.31 
2051 497 1605 200 2780 0.59 9.79 0.26 3.72 5.11 0.27 0.20 
2486 490 2230 300 2200 1.16 9.79 0.26 3.44 4.46 0.29 0.22 
1560 441 1740 212 1520 0.3 10.0 0.25 2.57 3.59 0.39 0.28 
1545 456 2170 182 2110 1.21 8.64 0.29 1. 73 2.85 . 0.58 0.35 
1416 541 1365 138 3810 o.o 10.0 0.25 2.56 4.15 0.39 0.24 
1830 739 1890 322 1050 0.93 10.0 0.25 2.31 3.87 0.43 0.26 
1760 537 ·1380 190 740 o.o 10.0 0.25 3.54 5.10 0.28 0.20 
1890 518 1820 130 3220 o.o 10.0 0.25 3.02 4.15 0.33 0.24 
2030 593 2470 454 2600 1.15 10.0 0.25 2.33 3.29 0.43 0.30 

ac 1/ac 

1.11 0.90 
1.15 0.87 
1.44 0.69 
1.08 0.93 
1.69 0.59 
1.36 0.74 
2.47 0.40 
1.01 0.99 
1.82 0.55 
3. 50 0.29 
0.90 1.11 

S;U 

6160 
5047 
7630 
8552 
4009 
2673 
3625 
4227 
6230 
5708 
4730 

1/Se 
x10-2 

0.5 
0.4 
0.2 
0.2 
0.2 
0.2 
0.2 
0.1 
0.2 
0.2 
0.2 

~ 
l.O 
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