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CHAPTER I 

INTRODUCTION 

The idea that a massive object, such as a star, might undergo a 

collapse due to the mutual gravitational attraction of its component 

parts may well have existed long before 1930. Both Newton's Law of 

Universal Gravitation and its successor, the General Theory of 

Relativity of Einstein admitted such a possibility. However, astro

nomical and common physical evidence seemed to indicate that other 

forces such as those arising from thermal expansion would always prevent 

such a gravitational collapse. Thus study in this area of gravitational 

theory was nearly non-existent before 1930 as it was thought an 

unfruitful pursuit. Interestingly, the same astronomical and 

astrophysical considerations were eventually to give importance to such 

studies. Prior to 1915, most stellar research was confined to 

astronomical observations of the physical characteristics of stars such 

as shown in a Hertzsprung-Russell diagram, and to examine the structure 

of stellar objects in terms of classical concepts of thermo-dynamics, 

fluid mechanics and Newtonian gravitation. 

However, in about 1915 a new class of stellar objects was observed, 

the white dwarfs, whose properties could not be explained by means of 

concepts existing at the time. It was not until 1926 that Fowler, 

employing the newly developed Fermi-Dirac quantum statistics, described 

the composition of white dwarfs, stating that their average densities of 

1 



105 to 108 gm/cm3, as compared with the average density of our Sun, a 

little over that of water, 1 gm/cm3, gave rise to a new state of 

2 

matter. Such matter was composed of completely ionized atoms surrounded 

by a degenerate electron gas and the internal pressure was due to this 

quantum degeneracy. With this premise, Chandrasekhar 1 showed that the 

radius of a white dwarf was inversely proportional to the cube root of 

its mass, thus indicating that all white dwarfs would reach stable 

configurations. 

Shortly however, he and, independently, Landau discovered that a 

modification to the original premise was necessary, and this led to the 

important result that there existed an upper limit of 1.4~, or 1.4 

Solar masses, to the amount of mass which could be supported by the 

electron degeneracy pressure against gravity. With this introduction of 

the "Chandrasekhar Limit" came the realization that certain stars might 

not undergo quasistatic evolution but instead experience a catastrophic 

gravitational collapse .. Thus employing Einstein's gravitation theory as 

the most complete theory available, research began on the possibility of 

such an event. During the early years appeared many classic papers such 

as those of Tolman, Oppenheimer and Snyder, and Oppenheimer and 

Volkoff2 •3• 4. While Tolman dealt with several general static solutions 

of the gravitational field equations, Oppenheimer and Snyder examined 

the continued collapse of a spherical coll~ction of mass experiencing no 

internal pressure, that is a free fall. Oppenheimer and Volkoff 

considered the behavior of a new type of matter, a further stage in the 

collapse scenario. An object of this type consisted of matter similar 

to that of white dwarfs which had been further compressed, forcing most 

electrons to enter the nuclei of the ionized atoms and causing most 
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protons within to change to neutrons. Such a neutron star would 

experience an internal pressure due to the degeneracy of the neutrons. 

Similarly to the case of the white dwarf, it was shown that there was 

again an upper limit to the mass of a neutron star, this time of .7~, 

the "Oppenheimer-Volkoff" limit. In addition to these results further 

concepts were introduced in the mid to late 1930's, such as the 

possibility that a sufficiently massive object might collapse until even 

radiation would be unable to escape its intensely concentrated gravita

tional field. Also a connection was suggested that the triggering 

mechanism of a supernova might be related to the gravitational collapse 

of a star, and that the remnants of such'an explosion might form a 

neutron star. 

However, it must be noted that these papers employed certain 

assumptions such as specifically simple equations of state, relations 

between density and pressure within a star, and dealing primarily with 

the stability of hydrostatic solutions. At this point further research 

into the hydrodynamic collapse of stellar objects was barred by the lack 

of knowledge of the internal structure, if any, of neutrons without 

which much further evolution of a star could not be adequately de

scribed, and also by the need to develop methods of examining general 

relativistic hydrodynamic collapse. In the 1960's with the analytical 

calculations of Misner and Sharp5 as a background, May and White6 

employed a numerical approach to examine dynamic collapse with known 

equations of state. In this period also arose the quark model of 

strongly interacting particles such as the neutron, the hadrons, from 

which in the mid to late 1970's it became possible to examine properties 

of quark matter such as the nature of a phase change from neutron to 
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quarks and importantly to provide possible equations of state. It thus 

becomes relevant to consider a star in an advanced state of collapse 

consisting of predominantly quark matter. It is this point at which our 

work will enter, examining certain features of the general relativistic 

hydrodynamic behavior of such an object. 

Chapter II develops the form of the Einstein equations employed, 

and their treatment as hydrodynamic equations. Chapter III then details 

the numerical integration procedure used to solve these equations. 

Finally Chapter IV explains the application of this method to a quark 

star, with results and concluding remarks. 



CHAPTER II 

THE GENERAL RELATIVISTIC HYDRODYNAMIC EQUATIONS 

Available Formalism 

The theory of differential geometry introduces a general form for 

the element of arc length on a manifold as 

2 a f3 
ds = gaSdx dx 

where we employ .the Einstein summation convention; that is, repeated 

Greek indices are to be summed over. The components gaS of the 

metric tensor generate a covariant tensor field which describes the 

geometry of the space. 

Einstein's General Theory of Relativity employs this concept of a 

metric to represent gravitation as a manifestation of the curvature of 

space-time, thus taking x0 as the time coordinate. The presence of 

mass-energy acts as a source of this curvature in a fashion which 

Einstein expressed in the tensor equation7 

where the source term on the right side contains the energy momentum 

tensor components Tas· The remaining quantities may be determined from 

the metric tensor according to the following relations: The curvature 

scalar 

5 
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R 

the Ricci tensor 

a.\ y 
g R \YS' 

and the Riemann curvature tensor 

il 

R SYo 

involving the Christoffel symbol of the second kind 

We note that by way of notation, a comma in the subscript denotes 

partial differentiation while a semicolon will be taken to denote 

covariant differentiation. G is the Universal Gravitation constant and 

c is the-speed of light in vacuo. 

Additionally if we consider only mass configurations behaving as 

perfect fluids with proper number density of baryons n, negligable 

temperature, and with the introduction of comoving coordinates such that 

the proper fluid 4-velocity takes the form 

a 
u 

0, 

a.=O 

which also must satisfy the standard condition for any 4-velocity 

a u u 
a 

2 
c • 

we may write the energy momentum tensor as8 
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We define p as the proper mass density, E as the proper non-gravita-

tional internal energy per unit mass, p as the proper pressure, and 

as the proper relativistic enthalpy. Thus conservation of baryon number 

is given by 

Also conservation of energy momentum is given as 

The Einstein Equations 

We will confine ourselVes to a spherically symmetric dynamic mass 

configuration such that a general line element is given by 9 

where d~ 2 = d8r + sin2e d~2 is the element of solid angle on a 

sphere. The functions a, b and R are functions only of t and the radial 

coordinate ~· We note that R is a function which gives the correct 

proper area of 4TIR2 for a sphere of radius ~. but may not necessarily be 

interpreted as a radius of such a sphere itself. 

This metric tensor gives u0 = a- 1c from which we may write the 



energy momentum tensor components as 

To 2 2 
0 

pc (1 + e:/c ), 

T1 
1 

T2 
2 

T3 
3 

- P, 

and 

0' a* S. 

With these relations the Einstein equations take the form 

and 

2 2 c2 Rn2 RR 12 
4~Gp(l + e:/c )R R1 = :2 [R + ~- ----] 1 

a c b2 

- Gm 1 , 

- Gffi, 

RR2 
+ -----

2 2 a c 

RR 12 R3c ca 1 o . 
--] + [(-) 1 - (ac) ], 

b2 ab b 

8 

(2-1) 

(2-2) 

(2-3) 

a 1R oR I 
n~ --a- - -s- = o. ' (2-4) 

At this point we have felt it convenient to avoid confusion by 

representing differentiation with respect to ~ by a prime and with 

respect to t by a dot. We have introduced the function m which 

represents the total gravitational mass interior to a sphere of radius 

~ , or 

The integrand represents the total mass-energy density times the proper 
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volume of a spherical shell between ~ and ~ +" d~. 

These expressions along with an equation of state of the form 

would in general allow solutions to be obtained for all functions. 

However, as the equation of state will usually be given as P(p,E), a 

further dynamic relation would be necessary. Such a situation arises in 

classical hydrodynamic problems, and thus we are led to examine the 

conservation of energy and momentum explicitly from this viewpoint. We 

will find that such examination will fulfill another requirement, that 

of fixing the radial scale. 

The Hydrodynamic Approach 

If we assume that all particles have identical masses, conservation 

of baryon number becomes 

a (pu ) 
;a 

with the obvious result 

f(~). 

For convenience we choose f(~) 

that, if we write 

2 
4~R pb 1, 

we have 

0 (2-5) 

(4~)- 1 which fixes the scale such 
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We realize that the coordinate then defines the proper mass contained 

within a sphere of radius ~· Such a choice of scale is commonly 

employed in classical hydrodynamics, and having mass as a "Lagrangian" 

coordinate insures conservation of mass. 

Conservation of energy and momentum gives the relations for a 

comoving reference frame 

2 o 2R [p(l + Elc )]. + (b + :R)pw 0 

or by employing (2-4) 

which is simply the first law of thermodynamics in the case of no heat 

flow or entropy generation, and 

a' P' + 
a 2 

0. (2-6) 
pc w 

With a hydrodynamic approach in mind we make the following useful 

definitions: 

r 

and 

u 

R' 
b 

. a 

Equation (2-1) then becomes 

r2 = 1 + u2 2mG 2 ---2, 
c Rc 

(2-7) 

and by taking the partial derivative with respect to t and employing the 

definition of r, we arrive at 



0 

From equation (2-6) we find 

(aw)' 
aw 

and finally with (2-4), conservation of mass becomes 

u -a(-)' 
R 

11 

Thus our task will be to obtain solutions to the general relativistic 

hydrodynamic equations 

0 = -a[4~R2 rP'/w + mG + 4~G PR] 
2 2 ' 

and 

~ au, 

£ 

(aw)' 
aw 

r 

p 

2 
4~pR R', 

P(s,p), 

R c 
(2-8) 

(2-9) 

(2-10) 

( 2-11) 

(2-12) 

(2-13) 

(2-14) 

(2-15) 



12 

2 2 w = 1 + s/c + Pipe , (2-16) 

subject to certain boundary and initial conditions. As initial 

conditions we will assume that proper mass and internal energy densities 

are uniform throughout the configuration and that the object is 

uniformly at rest, or U(~,t=O) = 0. For boundary conditions we take 

U(~=O,t) = R(~=O,t) P(~=~max't) = 0 to be logical choices. In order 

that the proper time be equal to the clock time of an observer at the 

outer boundary, we choose a()l=" t) = 1. 
~max' 

This fixes the scale of the 

time coordinate. Additionally, from (2-7) we see that r(~=O,t) = +1 is 

a reasonable choice if not to allow p and s to be singular at the 

origin. 



CHAPTER III 

A NUMERICAL METHOD OF SOLUTION 

In principle, the set of equations (2-8) through (2-16) may be 

solved analytically for suitable equations of state. Generally however, 

such occasions are rare due to the complex non-linear nature of 

Einstein's equations. We will therefore introduce a numerical 

integration method based on a finite difference approximation to the 

relativistic hydrodynamic equations developed by May and White. 10 

Introduction of the Approximation 

The definition of the derivative is given as 

d 
dx f(x) 

lim f(x+~x) - f(x) 
~x-+0 ~x 

over the domain a~x~b. We now introduce the forward finite difference 

approximation 

d 
dx f(x) "' 

and 

where by dividing the interval into N segments 

13 



~X 
b - a 

N 

Naturally we would expect this approximation to only be accurate for 

x << (b-a), that is for sufficiently large N. Similarly we may 

approximate an integral as a summation. 

The Finite Difference Equations 

14 

We begin by defining our intervals and notation. Radially our mass 

configuration will be divided into spherical shell labelled by particlar 

integer values of the subscript j. The origin will be denoted by 1 and 

the outer boundary by J. R, m, ~. and a are given at shell 

boundaries. The quantities ~R, p, E, ~m. ~~. and w are the naturally 

defined over volumes such as the zone between the j and j-l shells, 

which we denote as the j -1/2zone. We will advance from one time, tn, 

to a later time, tn+l, by the interval ~tn+ 11~ the initial time being 

t 0 • Although most functions may be given a value at some particular 

time, U must be defined over a time interval as it is essentially a 

change in distance per change in time. Often in our difference 

equations a function naturally defined as a zone quantity may be given 

in terms of another function which is not, thus requiring some form of 

interpolation. Different forms of interpolation are given in Appendix 

B. 

In order to follow the time development of the mass configuration 

we will employ a predictor relation of the form 

n+l 
FPredicted 

which is based on the assumption that F is an approximately linearly 

varying function in time. By applying this predictor for certain 
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quantities we may determine all others, then return and correct the 

predicted values. We will find it useful to predict on E and a. 

During this hydrodynamic evolution we may encounter the generation 

of compression or shock waves as one shell accelerates relative to an 

adjacent shell. As our energy-monmentum tensor and the resulting hydro-

dynamic equations do not account for the energy of such waves we will 

introduce an artificial viscosity term Q which will enable the shock 

energy to be transformed into E, the internal energy. The development 

of this term will be detailed in Appendix c. 

Boundary conditions will be expr~ssed as in Chapter II with the 

exception of a. We will find it convenient to make use of the condition 

l/wJ-1;2 We now present the essential difference equations: 

Gm~ 
+ --><-J--::-2 + 41f~ (P + Q)~ R~], 

(R~) c J J 
J 

n+l n n+ 1;2 [ n+ 1;2 n+ 1;2 n+ 1;2 n+ 1;2] 
~R. 11 = ~R. 11 + 6 t a. U. - a. 1 U. 1 , 

J- 2 r 2 J J J- J-

n+ 1;2 n+ 1;2 U. - U. 1 J r 

n+l n n+l n+ 1;2 n+l n 
EJ·-1;2 = E. 1;- (P. 1; + Q. 1; )(1/p. 1;- 1/p. 1 ), r 2 J- 2 J- 2 r 2 r 2 



and 

n+l 
a 1 = j- /2 

n+1 
E: j- 1;2 

n+l n+l n+l n+l 2 + (P + Q). (l/p.+1/- 1/p. 11 )/w. c ], 
J J 2 J- 2 J 

n+l m. 
J 

j n+l 
r l'lmk- 1;2 ' 

k=2 

n+l n+l n+l 2 2 n+l n+l 
tlm . 1; = 4TI p . 1; ( 1 + e: . 1; I c ) ( R ) . 11 tl R . 11 , 

J- 2 J- 2 J- 2 J- 2 J- 2 

n+l 2 n+l n+l 
n+l 41Tp. 1; (R ) . 1; l'IR. 1; r 2 r 2 J- 2 r 1 = ---"--~-~--"'-~-'-----"'---'--
j- /2 i'l)J j- 1;2 

Tests of the Computer Code 

We begin by noting that by programming in Fortran 66 it becomes 

necessary to slightly modify the radial and time notations as this 

language does not allow half integer array labels. Thus radially we 

denote shells by odd integers, from the origin being 1, to the outer 

16 

boundary, JJ+1, and the zones by even integers from 2 to JJ. The number 

of shells is therefore JJ/2. For the time notation, we choose 

quantities at the "current" time tn to be represented by the array time 

index 3. tn+1 is given by 5, tn- 1 by 1, and the values at 
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n-1;2 n+1/2 
~t and ~t as 2 and 4 respectively. In order to reduce the 

amount of memory needed, at the end of each time cycle, values for 5 are 

reassigned to 3, etc. to begin the next cycle. With this the array's 

dimension employed to index time is reduced to 5. 

Convenient units are kilometers, solar masses (1.8 x lo3°kg), and 

seconds. Thus our only input constants are 

and 

G 
11 km3 

1.2 X 10 ----2, 
M.s 

Prior to examining the quark star it is useful to test the code by 

applying it to several cases whose solutions are known. Unless we 

encounter an equation of state which gives a negative pressure, the 

limiting case for a gravitational collapse is provided by a free-fall 

for which P = 0, ~ = 0. 

0 

and 

U, 

U' 
~· 

Equations (2-8) through (2-16) reduce to 

equivalent to the Newtonian equations of free fall. Also from (2-3) we 

find 



m o 

Integrating these equations we find for initially uniform mass 

density 

where 

81TGp 1; 
t( 0) 2 

3 

X 
R(]l,t) 
R(]l,O) • 

1;2 1;2 -1 1;2 
x (1-x) + sin (1-x) 

The total time of collapse is therefore 

'c 

This will be useful as an estimate of the collapse time in determining 

the initial time step. 

We illustrate both the analytical and numerical results in Figure 

1. The computed results show the expected quantitative behavior, but 

18 

with times for each value of x which differ from those of the theory by 

a constant amount on the order of the program's initial time step 

size. Adjusting the numerical results by such an amount, we then find 

the agreement with theory to be excellent. 

We also examine the case of the equation of state 

2 
P =- PE 

3 
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a y 5 - gas 
3 

relation. Initial conditions employed were 

M 

Po 6.8 X 10-12 --·--
km3 

and 
2 

€ 1.72 x 106 km 
0 2 s 

Figure 2 shows our numerical results and those of May and White, as 

well as the limiting curve of the free fall. We, again find excellent 

agreement with their results as our results show both that different 

mass shells collapse by different percentages, and that for the given 

initial conditions a "bounce" occurs at t = .38 sec. However, we find 

a larger bounce for the --~-- = 10-6 shell. We feel that this effect is 
~max 

due to the interpolation of P employed in the computer code, which 

erroneously gives a value of zero for the pressure at the origin. In 

order to avoid this failure, we artificially assign P(l,3) = P(2,3), 

feeling that this is a logical choice to avoid a discontinuity at the 

innermost zone. Nevertheless, there are many possible choices 

available, such as extrapolating P(l,3) from P(2,3) and P(3,3) etc. by 

perhaps some power law in the radius. Physical intuition would indicate 

the pressure at the origin to be greater than in the inner zone. The 

work of May and White does not detail their choice for P at the origin, 

and as the differences between the data become more pronounced as we 

approach the center of the configuration, we believe that same are due 

to their choice for P(l,3). 

Having thus tested the program in known elementary cases we now 

proceed to examine the case of a quark star. 
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CHAPTER IV 

THE QUARK STAR 

Survey of Equations of State 

A quark star may be considered to form following the neutron matter 

epoch in the life of a stellar object where a neutron is considered a 

bound state of two down and one up quarks. Hence we begin by displaying 

the equation of state for a neutron star employed by Oppenheimer and 

Volkoff in their classic paper. Considering neutron matter as a cold 

Fermi gas, a parameterized form of the equation of state is 

and 

p = K(sinh t- t), 

P = }±< (sinh 
4 5 

t- 8sinh ~ + 3t), 

K 
nm c 

3 , 
4 h 

, Pf Pf 2 1;. 
t = 4 log{- + [1 + (-) ] 2 } 

me me 

where m is the neutron rest mass and pf is the limiting Fermi momentum, 

given in terms of the proper number density n by 

8n 3 
n = -3 P f" 

3h 
The small number of electrons necessary to prevent beta decay of 

neutrons does not appreciably contribute to the internal pressure. Such 

an equation of state ignores the possibility of the neutron matter 

existing in several phases within such an object. Indeed it is thought 

that for a typical neutron star with a 10 km radius there exists a solid 

crust of about 1 km thickness surrounding a fluid interior. However, 

22 



23 

the behavior of matter during such phase changes is not well understood 

and thus many dynamic calculations neglect the effect of such a phase 

change. We will follow this pattern, assuming a phase change from all 

states of neutron matter to a single state of quark matter to have 

occured prior to the density at which our examination begins. A general 

discussion of the structure of neutron stars can be found in Baym and 

Pethick11 , and Weinberg. 12 

The· first derivation of an equation of state for quark matter is 

due to Itoh13, who employed para-statistics to obtain 

p 311"m4c5 
f(x), 

h3 

3nmc 2 + 311"m4c5 
g (X)' p 

h3 

f(x) 2 
xC2x - 3)(x2 + l) 1;2 + 3 -1 

sinh x. 

g(x) sx3[( x2 
1;. 

+ l) 2_ l]- f(x) 

where m is a quark mass, n is the baryon number density, and x, the 

ratio of the limiting Fermi momentum to me is given by 

This result includes the condition that in o~der that the degeneracy 

energy be minimized, half of the down quarks will transmute into strange 

quarks so that n = nu = nd ns. We note that this equation of state 

somewhat resembles that of Oppenheimer and Volkoff. However, as quantum 

chromodynamics (QCD) has gained acceptance as the candidate theory of 

strong interactions Itoh's approach appears to be naive, failing to 

include such effects as quark confinement in such a way that the 

interaction between particles becomes weak for sufficiently small 



separations, leaving free quarks. 

A more relevant approach is that of Freedman and McLerran. 14 

Taking the masses of both up and down quarks as zero, they obtain an 

equation of state which at sufficiently high number densities simply 

takes the form 

p = ~ ~. 

9 2/3 4/3 
e: = 4 1T n 

where e: is the total energy density. At low quark matter densities 

however, the relation becomes more complex 

p 2 d e: 
n dn (n)' 

3 ( 4 "' 2) 4 
e: = 4 ~ ~ini + • 20 ~c ~ ~i ' 

n. 2 ~ 1. 3 (l- 2.55 a - 3.24 a 2 ln a - 5.74 a 2 ) 
1 c c c c 

1T 

where the ~i are the quantum thermodynamic potentials of each species 

of quarks and a is the chromodynamic structure or strong coupling c 

24 

constant. As ac itself is dependent in a complex fashion on e:, these 

latter expressions are far from simple to evaluate. Fortunately 

Freedman and McLerran provide an alternate expression for the equation 

of state. 

Introducing the MIT bag model, which deals with the confinement 

problem by constraining quarks to be contained within a spherical "bag", 

phenomenological matching between quark matter and nuclear matter leads 

to 

1 -
p = 3 e: ' 

e: = e: - 48, 



where 8 the "bag constant", essentially the thermodynamic potential of 

the vacuum, and fits between theory and the spectroscopy of light 

hadrons give 8 a value of 56MeV/fm3. As natural units are employed in 

25 

the derivation, the mass scale is fixed such that the unit of length is 

one fermi, or 10-13 em. The introduction of this ''bag constant" causes 

P to increase more slowly as a function of p€ at near nuclear densities 

than at higher densities. This is called a "softening" of the equation 

of state. 

The importance of this effect to match with neutron matter at 

hadronic density can be seen by looking at the form of the Oppenheimer-

Volkoff equation of state. This equation also shows the softening 

effect; however in this case the magnitude of this effect is dependent 

on p where it is constant in the quark star relation. 

In order to apply the Freedman and McLerran equation of state to 

our program we will find it necessary to exercise some care. Their 

model is dependent on zero quark mass while our routine introduces the 

proper mass density p which would strictly vanish in this case. 

However, we may still employ p as before if we define 

€ = p€ • 

. Also as we work in solar mass, km, s units, it will be necessary to 

convert quantities from natural units. We obtain 

l [(4.2 x 106) 1 ~21 3 n 413 - 4 8 ], 
p0 4 nat. 0 

and 

p0 = (9.28 x l0-4) n t 
na . 

Taking these relations to generate initial values of p and € for an 

initial value of n, we will then allow all quantities to change 

according to the hydrodynamic equations. 
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Results 

We find approximately 2.1 M0 to be the mass limit for an object 

initially consisting entirely of quark matter and obeying the Freedman 

and McLerran equation of state. For masses larger than this amount, a 

state of continued collapse is reached in which the object falls within 

its Schwarzchild radius 

R s 
2mG 
-2-. 
c 

For a 2.2 M0 object, this is 5.87 km. If we examine the gravitational 

red shift of light, given by 

b. 'A 
z =-

A 
2mG - 1;.2 

[l - -] - l 
Rc2 

we see that z ~ oo as R ~ R and thus such an object is cut off from 
s 

its surroundings as a black hole or "frozen" star. This event takes 

place in finite proper time, well approximated by 'c of a free fall. 

We have -4 
'c = 1.15 x 10 sec. Any observer outside the configuration 

will observe this collapse to take an infinite amount of time. 15 

The appearance of the 2.1 M0 limit is independent of the initial 

"radial" velocity for the cases studied here, U < .2c. In order for 

stability to be reached, the internal energy and therefore the pressure 

must rise sufficiently to halt.collapse before R approaches Rse for any 

shell, and a non-zero U in the examined range merely serves to change 

the elapsed time from inception of the collapse in the program to the 

appearance of a bounce. Following this bounce, the configuration will 

collapse and bounce again, eventually damping its motion to reach a 
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static state. During this process strong shocks are propagated 

throughout the object, as shown in Figure 3, which details density 

fluct~ations at several times for a 2.1 M0 quark star. The fact that 

densities in some regions drops below quark matter density would seem to 

indicate that a phase change to neutron matter takes place. Indeed, 

this effect gives rise to negative, or attractive pressures indicating 

quark confinement difficulties. However this is simply due to our 

choice of equation of state which does not take into effect transitions 

to nuclear matter. Nevertheless these negative pressures suggest the 

appearance of a neutron matter crust surrounding a quark matter core. 

For 2.1 M0 such a quark core may extend to 4 km within the 14 km static 

object. Under these conditions the name "quark" star seems a misnomer. 

The outer few shells show an interesting effect for the quark 

star. In all continued collapse cases, these shells collapse from the 

first time step while they expand initially for stable masses even 

though inner shells begin collapsing. This would appear to be a 

convenient general criterion for determining a mass limit, but it does 

not provide a trustworthy test as in the 2 P = 3 PE case of Chapter III 

this behavior is not present. 

Concluding Remarks 

The apparent occurance of phase changes serves to stress the 

importance of more complete knowledge of the equation of state and its 

behavior around nuclear density. In this regard more exact examinations 

of the astrophysics must wait on future developments from particle 

physics. 

A great deal of research has been conducted into supernova creation 
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by allowing an object to collapse on a core which is governed by an 

extremely stiff equation of state. It is felt that with the inclusion 

of such effects as neutrino deposition sufficient mass would be ejected 

by the ensuing shock waves to account for the appearance of a 

supernova. The core would perhaps remain as a neutron star. In our 

examination we have looked at an object composed initially of only quark 

matter; as this does not appear to describe the final static 

configuration we would expect an entirely quark star to occur only 

immediately following some extreme compression. Thus a complete picture 

of a quark star would need to include consideration of supernova 

generation. The existence of primordial collections of quarks remaining 

from the early universe would seem to be somewhat precluded by the 

internal structure of quark configurations; sufficient mass to prevent a 

transition to neutron matter would merely provide a black hole. 

Finally, a 'further source of development is the numerical scheme 

itself. In examining a continued collapse the program does not function 

effectively to allow the generation of useful information. Near its 

Schwarzchild radius the rate of collapse approaches c and thus the time 

step control ceases to increment the time. However as discussed by 

Shapiro16 and Teukolsky, the May and White scheme gives rise to non

physical results near Rs. This is due to the fact that the metric 

employed is not the most general. 

The most general line element contains a d~ dt term which may be 

transformed away by a change of coordinates. Shapiro and Teukolsky 

employ this metric to obtain a different numerical routine which allows 

examination of hydrodynamic collapse up to and even past the 

Schwarzchild radius. Thus a more stringent analysis of quark star 
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evolution could be obtained by their method. Despite this development, 

the May and White scheme remains the basic model for relativistic 

hydrodynamic numerical calculations. 
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APPENDIX A 

DERIVATION OF THE EINSTEIN EQUATIONS 

The most common method at one time for determining the Einstein 

equations from the metric coefficients was due to Dingle17. Given a 

line element in the form 

where x4 is identical to our time coordinate x0 and A, B, C and D are 

generally functions of all the coordinates, Dingle provided formulas for 

the Einstein equations. Although the use of such relations is less 

tedious than calculating all Christoffel symbols, Riemann tensor 

components, and Ricci tensor components, this method is by no means 

algebraically simple. 

With the increased use of differential forms in general relativity, 

there arose the method of rotation 1-forms for calculating the Einstein 

equations18. We will employ this procedure as it is both more elegant 

and more modern. 

Rotation 1-Forms 

Taking our line element to be 

we define the orthonormal tetrad 

34 
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0 ac dt, w 

1 b d].l, w 

2 R de, w 

and 

w3 Rsine drp 

with which the metric takes the Minkowski form 

l a=S=O 

-1 a=S=l,2,3 

0 

Taking the total exterior derivative of each component of our tetrad 

find 

0 a 1 1 0 
dw = ab w 1\ w , 

1 o o 1 
dw acb w 1\ w , 

!"{ 0/\ 2 R I 1/\ 2 
acR w w + bR w w ' (A-1) 

and 

where /\ denotes a wedge, or exterior product. 

Now the affine connections waS are defined by the relation 

a a S dw = -w S/\w , (A-2) 



and additionally constrained by 

This latter equation gives for our case 

w = -w 
. a.~ ~a. 

If we now expand the equations given by (A-2), for example with a.=O 

and 

and 

compare with 

0 
w 1 

0 
w 2 

0 
w 3 

1 
w 2 

1 
w 3 

2 
w 3 

the 

1 
w 0 

2 
w 0 

3 
w 0 

2 -w 
1 

3 -w 
1 

relations (A-1), 

a' 0 o 
=- w ab 

+ -- w 
acb 

li 2 
= -- w acR ' 

R 3 
= -- w acR 

R' 2 - -·- w bR ' 

R' 3 -- w 
.bR ' 

R' 3 
- bR w • 

1 

The curvature 2-forms defined as 

then give the expressions 

we 

' 

oa 

arrive at 

,0 = - <R01 = [ b 
'"1 22 ----- ~ a'b'J 0 1 

2 3 wl\w ' 
a c b ab ab 
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and 

0 
(ft 2 

lRO 
3 

- rR02 

- 4R03 

- <R 12 

R 
[ 2 2 
a c R 

R 
[ 2 2 
a c R 

a 1 R 
[ 2 
a bcR 

OR I 1 2 
--2-J w/\w , 
acb R 

oR I 1 3 
--2-J w/\w , 
acb R 

1A 2 
Wt ,w 

R1 R1 D ~ 2 
acbR + ---2--] w w 

acb R 

oR R" R1 b 1 1 2 
+ [ 2 - --- + -3-] w 1\w ' 

a c2bR b2R b R 

<R1 =- <R13 
3 

a:t2 
3 

- lR23 

a 1 R 
[ 2 
a bcR 

lil 
--- + acbR 

R1 o --] 
2 acb R 

OA 3 
W t\W 

R12 2 3 
- 2-J w/\w • 
b R2 

An alternate definition of these curvature 2-forms is given by 

y/\ 6 w w 
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(A-3) 

where the RaS are components of the Riemann tensor, and by expanding Yo 
this form and comparing the results with equations (A-3), we arrive at 
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R02 R03 R Ra a'R' 
-[ 2 2 ----- -] - B, 02 03 a c R a3c2R ab2R 

R02 R03 it' . Ra' DR' 
-[acbR - --] = C, 12 13 2 2 a cbR acb R 

R23 1 112 R'2 
-[- + 

a2c2R2 
-] - D, 23 R2 b2R2 

and 

All other components vanish. 

The components of the curvature tensor are then related, with use 

of the symmetry property Sa 
R oY' 

Ro 
0 

A + 2B, 

Ro 
. 1 2C, 

R1 
1 

A + 2E, 

and 

B + D + E. 

All other components vanish~ 

This gives the curvature scalar as 

R 2A + 4B + 20 + 4E; 

finally the Einstein equations are given by 

Ra 1 a R s - 2 g s 

or 



Go 
0 

-(D + 2E), 

Go 
1 

2C, 

G1 
1 

-(D + 28), 

and 

-(A+ B +E). 

All other components vanish. 

A particularly useful equation is 

2C 11.' Ita' 
- 2[ acbR -. --::-2-

a cbR 

OR' --] 
2 acb R 

which vanishes as our energy-momentun tensor satisfies (2-l). Reducing 

this form we have 

' B. 
Ra' 
-- + 

a 
bR' 

b 

If we now employ this simplifying relation, (2-l), and perform some 

algebra, we arrive at the form of the Einstein equations found in 

Chapter II: 

and 

2 2 2 
4~Gp(l + EIC )R R' = ~ [R + 

a'B. !1.' - ---
a 

2 
- ~R 

2 

RB.2 
+ ---

2 2 a c 

RB.2 
+ ---

OR' 
b 

2 2 
a c 

0. 

2 2 
a c 
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APPENDIX 8 

ADDITIONAL DIFFERENCING CONSIDERATIONS 

Interpolation Relations 

Some difference equations will include the quantity 2 n 
( R ) . 1; • 

J- 2 

R and thus R2 are naturally defined at shell boundaries, we will 

As 

interpolate by examining the volume between the j and j-1 shells. This 

volume is given by 

n 3 
(R. 1) ]. J-

Now for small n 
L'IR. 1;, we may approximate this by r 2 

where we take 
2 n 4rr(R )j- ,12 to be the _proper surface area of a sphere of 

radius which lies in the j- 1;2 zone. Thus we have 

R~ -
J 

n n 
R.R. l J J-

n 
R. 1 J-

40 
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The radial spacing &~, which remains constant due to the comoving 

coordinates, will be interpolated according to time interval, which we 

take to be from tn to tn+l. We see that in the differencing notation 

which takes into account the case of unequal mass zoning. Quantities 

which are essentially energies per unit mass will be treated according 

to 

or 

which indicates that the energy over the fictitious &~j zone is the sum 

of the energies in the half zones on either side of the j shell. It 

will also be convenient to employ this form for (aw) as it deals 

effectively with a slowly changing scalar quantity, which we assume (aw) 

to be. 

Pressure and the artificial viscosity term Q representing 

essentially non-slowly varying vector quantities are interpolated 

linearly according to 

Time intervals will be interpolated by 



Time Step Control 

As hydrodynamic collapse progresses, some physical quantities may 

change their values by large percentages from one time cycle to the 

next, thus endangering the reliability of the numerical scheme. 

Therefore we employ a procedure whieh decreases the time step size 

whenever change in the functions exceeds some percentage. We find it 

sufficient to base this control on p and €, employing the relations 

and 

l:;t 
p 

min[ A 

n+l 
min[B e j- 112 

. n+ 1;2 
lit 

n+l n ' I € j _ 112 - € j _ 112 I 
where A and B are given precentages. 

all j], 

all j J, 
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We also note that analogous to the classical Courant-Friedrickson

Lewy stability condit~on20 we must require that the speed of sound 

through the configuration be less than the proper mesh velocity, or 

c 
s 

(t:.R) 
< _b_ 

(~) 
a 

in order to insure numerical stability of our solution. The speed of 

sound is given by19 

with 

c s 
;<lP 

()e' 



2 e = p(l + e./c ), 

the total proper mass-energy density. 

In order to assure compliance with this condition we must define 

lU c 

n+l 
lq.t. 1;. a . 1; r 2 J- 2 min[D --~--~~-~7-~-~--~-

n+l 2 n+l n+l ' 
P · 1; ( R ) · 1; ( C ) · 1;. J- 2 J- 2 s J- 2 

where D is some given allowable percentage. 

all j J. 

Time steps are therefore chosen according to 

· [Llt t.t 6t t.t 12 6tn+ 112J, mln p' e.' c' input, • 
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APPENDIX C 

SHOCKS AND ARTIFICIAL VISCOSITY 

In the analysis of gravitational collapse the equations of fluid 

flow play a central role. However it is well known that while investi

gating the flow of a compressible fluid by solving the equations using 

stepwise numerical procedures a complication arises due to the presence 

of shocks. The shocks manifest themselves mathematically as surfaces on 

which density, fluid velocity, temperature, entropy and the like have 

discontinuities. These require boundary conditions, the so-called 'jump 

conditions', connecting the values of these quantities on the two sides 

of each surface. These were first derived by Rankine and Hugoniot using 

the fundamental principles of conservation of mass flow, conservation of 

momentum and conservation of energy. The application of these to the 

current problem is, however, complicated by the fact that the shock 

surfaces are in motion relative to the network of points in space-time 

used for the numerical work. 

Von Neumann and Richtmeyer 21 showed a way out of this difficulty. 

It is well known in fluid mechanics that the effect of dissipative 

mechanisms like viscosity on the shocks is to weaken and smear the 

shocks out so that the mathematical surfaces of discontinuity are 

replaced by thin layers in which pressure, density, temperature etc vary 

rapidly but continuously. Von Neumann and Richtmeyer utilized this fact 

and introduced an 'artificial viscosity' term into the fluid equations 

44 
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such that the shocks are spread over several zones of the differencing 

mesh, the jump conditions are automatically satisifed and the entire 

calculation can be carried out as though there were no shocks at all. 

The essential effect of the damping from a physical point of view is to 

convert the kinetic energy into internal energy. The important point in 

their method is the introduction of a suitable scalar stress which is 

added to the pressure term in the equations. They derive the correct 

expression for this 'artificial viscosity' which will achieve the 

desired objective. Their general equations are 

and 

pO -(P+Q)', 
0 

€ + (P + Q) "fJ 

p rJ = U' • 
0 

0, 

Here p0 is the initial density, V the specific volume U the fluid 

velocity and £ the internal energy per unit mass. The connection 

between £, p, V is established by a suitable equation of state. 

(C-1) 

We will consider shock waves to be spherically symmetric radially 

travelling waves such that across the shock front all dynamic and 

thermodynamic are given by expressions of the form 

f()l,t) f()l - Mt) (C-2) 

for ll < ll < ll • 
0 0 

In other words after travelling a long distance we have a steady-state 

plane shock and the different dynamical quantities of interest depend on 

ll and t only through the combination 

ll - Mt. 

We employ subscripts b and a to denote behind and ahead of the shock 
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front. A wave incident on a mass shell ~ is equivalent to a wave 

incident on a 2 dimensional plane provided a shock travels with 

sufficient speed. In such 'slab symmetry' we label such a plane by 

~ which is taken to be the ~ --~2-, or the proper mass per unit area of 
41TR 

the slab. We also find from (C-2) that M may be interpreted as the mass 

flux through the slab. Employing this picture in the special 

relativistic limit for which G = 0, equations (2-8) through (2-16) 

reduce to 

and 

[U(l + g/c2 )J" - (aPr)', 

(fV)' (au) ' , 

€ - P~, 

(aw)' -----aw 
2 

(E' + PV' )/we • (C-3) 

We have introduced the specific volume V Also it is useful to 
p 

note that if we take vr=U then we find 

r (C-4) 

which is identical to the Special Relativistic gamma factor. Equation 

(C-4) simply states that U is the comoving rate of change of the surface 

area function as mentioned in Chapter II. 

Following Von Neumann and Richtmeyer, if we now introduce the 

artificial viscosity term Q such that P ~ P + Q, Q > 0 for ~0 < ~ < ~0 
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and 0 elsewhere, in (C-2) then equations (C-3) become the Hugoniot jump 

relations across the shock. 

2 MU(l + EIC ) - af(P + Q) c1 , 

and 

Mrv + au ; c3 . (C-5) 

Examination of the slab symmetric form of (2-11) shows that 

E' + (P + Q)V' ; 0 

and thus we find 

These expressions are usually written in fluid mechanical analysis of 

shocks as the jump relations in the notation 

At this point it is important to note that the explicit form of the 

artificial viscosity term naturally depends on the assumed equation of 

state. We now stipulate for this development the equation of state 

p ; (Y- 1) EIV. 

The choice of this is contingent on the requirement that the analytical 

form of the term Q ensures that the transition between points 

~a and ~b is affected smoothly and extends over a few zones. Thus from 

with Q assuming the form 

we have 

2 2 2 v• 2 
Q ; k ~~ M -V 
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1 1 Y+l 1; ( J.l - Mt + J.lo) 
V =- (V + V ) +- (V - V )sin[(-) 2 ] 

2 a b 2 a b 2 k~ JJ 

where }.1 0 is a constant of integration. Therefore 

(C-6) 

Examination of this relation shows that for suitable choices of 

~JJ, k andY, the shock is spread over several zones thus converting the 

shock's mechanical energy into internal energy. 

The spherically symmetric general relativistic problem for 

arbitrary pressure although extremely complex is analogous to this 

discussion. Here we simply give the form of the artificial viscosity 

term employed in our numerical scheme as suggested by the earlier work 

of May and White 

Q p > 0, 

0 p ~ o. 
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APPENDIX D 

THE COMPUTER CODE 

THIS PROGRAM CALCULATES AND PRINTS VALUES FOR PHYSICAL 
QUANTITIES AT TIME INTERVALS DURING THE HYDRODYNAMIC 
EVOLUTION OF A STELLAR OBJECT. AS THIS PROGRAM IS BASED 
ON THE NUMERICAL TECHNIQUE OF MAY AND WHITE, REFERENCE 
10, WE WIL~ GIVE THE EQUATION NUMBERS FROM THEIR ARTICLE 
WHERE THEY OCCUR IN OUR PROGRAM. 

WE DEFINE THE FOLLOWING QUANTITIES: 
JSTEPS=NUMEER OF RADIAN ZONES 
JJ=OUTER ZONE LABEL 
JL=OUTER BOUNDARY LABEL 
JM=NEXT TO OUTERMOST ZONE 
JN=RADIAL PRINT PARAMETER 
NN=NUMBER OF TIME.STEPS TO BE CALCULATED 
NNN=NUMBER OF TIME STEPS COMPLETED 
T=ELAPSED TIME AFTER NNN TIME STEPS 
NAA=TIME PRINT PARAMETER 
EMTOT=TOTAL INITIAL MASS OF THE OBJECT 
RHOAVE=UNIFORM INITIAL PROPER MASS DENSITY 
EPSAVE=UNIFORM INITIAL SPECIFIC PROPER ENERGY 
G=UNIVERSAL GRAVITATION CONSTANT 
CSQ=SQUARE OF SPEED OF LIGHT 
DELTTT=INITIAL TIME STEP SIZE 
DELTT=l20% OF PREVIOUS TIME STEP. SERVES TO INCREASE 

STEP SIZE WHEN QUANTITIES VARY SLOWLY. 
DELTC=TIME STEP ACCORDING TO ALLOWED PERCENT OF SPEED 

OF SOUND, PC 
DELTE=TIME STEP ACCORDING TO ALLOWED PERCENT CHANGE 

IN EPS, PE 
DELTR=TIME STEP ACCORDING TO ALLOWED PERCENT CHANGE 

IN RHO, PR 
DELRR=INITIAL RADIAL STEP SIZE 
X=Y=Z=ARBITRARY REAL NUMBERS EMPLOYED TO FIND MINIMUM 

VALUES AMONG DELTC, DELTE, DELTR, DELTT, AND DELTTT. 

IMPL!C!TREAL*8(A-H,O-Z) 
DIME~SION DELT(5),R(402,5),DELR(402,5),RSQ(402,5) 

C,DELEM(402,5),RH0(402,5),EPS(402,5),EM(402,5), 
CGA(402,5),U(402,5),DELMU(402),P(402,5),W(402,5) 
C,FF(402),A(402,5),PQ(402,5),Q(402,5),AA(402,5), 
CEEPS(402,5),UR(402,5),PP(402,5),DELTE(402), 
CDELTR(402),F(402),CS(402,5),DELTC(402) 

JSTEPS=200 
JJ=JSTEPS*2 
JL=JJ+l 
JM=JJ-2 
JN=SO 
AJJ=JSTEPS 
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c 

NN=lOOOOO 
NAA=25 
EMTOT=l.DO 
RHOAVE=l.86D-4 
EPSAVE=l.198Dll 
G=l.2Dll 
CSQ=9.D10 
X=10.DO 
Y=X 
Z=X 
PC=.2DO 
PE=.02DO 
PR=.02DO 
NA=NAA 
FOURPI=4.D0*3.14159265358979DO 
DELRR=(3.DO*EMTOT/FOURPI/RHOAVE)**(1.D0/3.DO)/AJJ 
DELTTT=1.D-6 
DELT(2)=DELTTT 
DELT(4)=DELTTT 

50 

C THIS SECTION SERVES TO DETERMINE INITIAL VALUES FOR ALL 
C FUNCTIONS EROM THE INITIAL AND BOUNDARY CONDITIONS. 
c 

DO 10 J=2,JJ,2 
DELR(J,3)=DELRR 
RHO(J,3)=RHOAVE 
EPS(J,3)=EPSAVE 

10 CONTINUE 
DO 20 J=2,JJ,2 
Il=J+l 
I2=J-l 

c (103) 
R(I1,3)=R(I2,3}+DELR(J,3) 

c (104) 
RSQ(J,3)=(R(I2,3}**2+R(I2,3}*R(I1,3}+R(I1,3)**2)/3.DO 

c (105) 
DELEM(J,3)=FOURPI*RHO(J,3}*(1.DO+EPS(J,3)/CSQ)*RSQ(J,3} 

C*DELR(J,3) 
c (106) 

EM(I1,3)=EM(I2,3)+DELEM(J,3) 
c (107) 

IF(J.EQ.2) GA(2,3}=DSQRT(1.DO-G/CSQ*EM(3,3)/R(3,3}) 
IF(J.GT.2) GA(J,3)=DSQRT(1.DO-G/CSQ*(EM(I1,3)/ 

CR(Il,3)+EM(I2,3)/R(I2,3))} 
C (lOB) 

DELMU(J)=FOURPI*RHO(J,3}*RSQ(J,3)*DELR(J,3)/GA(J,3) 
c ( 110) 

P(J,3)=2.D0/3.DO*RHO(J,3)*EPS(J,3)-4.D0/3.D0*4.9778D6 
c (112) 

W(J,3)=1.DO+(EPS(J,3)+P(J,3)/RHO(J,3))/CSQ 
20 CONTINUE 

DO 50 J=2,JJ,2 
I1=J+l 
I3=J+2 

c (109) 
IF(J.EQ.2) DELY.U(l)=DELMU(2)/2.DO 
DEJ:.MU(I1)=(DELMU(J)+DELMU(I3))/2.DO 

c (113) 
IF(J.EQ.2) W(1,3)=W(2,3) 
W(I1,3)=(W(J,3)*DELMU(J)+W(I3,3)*DELMU(I3))/2.D0/DELMU(I1) 

c (114) 
P(I1,3)=(P(I3,3)*DELMU(J)+P(J,3)*DELMU(I3))/2.DO/DELMU(I1) 



50 CONTINUE 
c (115) 

A(JL,3)=l.DO/W(JL,3) 
A(JJ,3)=A(JL,3) 
DO 60 J=2,JM,2 
Il=J+l 
I3=J+2 

c ( 117) 
FF{I1)=(EPS(I3,3)-EPS(J,3)+P(I1,3)*(l.DO/RHO(I3,3)-1.DO/ 

CRHO(J,3)))/W(I1,3)/CSQ 
60 CONTINUE 

DO 70 J=2,JM,2 
M1=JJ-J 
M2=JJ-J+2 
M3=JJ-J+l 

c (116) 
A(M1,3)=A(M2,3)*W(M2,3)/W(Ml,3)/(1.DO+FF(M3)+FF(M3)**2 

C/2.DO) 
70 CONTINUE 

DO 80 J=2,JM,2 
I1=J+l 
I3=J+2 

c (118) 
IF(J.EQ.2) A(l,3)=A(2,3) 
A(I1,3)=(A(J,3)*W(J,3)+A(I3,3)*W(I3,3))/2.DO/W(I1,3) 

80 CONTINUE 
c 
C THIS SECTION CALCULATES THE TIME EVOLVED VALUES OF 
C ALL FUNCTIONS. 
c 

DO 1000 N=l,NN,1 
c (119) 

DELT(3)=(DELT(2)+DELT(4))/2.DO 
IF(N.GT.1) T=DELT(2)+T 
NNN=N-1 
NA=NA+l 
DO 90 J=2,JJ,2 
Il=J+1 
I2=J-l 
I3=J+2 

c ( 120) 
IF(J.EQ.2) PQ(1,3)=P(2,3)+Q(2,2) 
PQ(I1,3)=((P(I3,3)+Q(I3,2))*DELMU(J)+{P(J,3)+Q(J,2))* 

CDELMU(I3))/2.DO/DELMU(I1) 
c ( 122) 

IF(J.EQ.2) GA(1,3)=1.DO 
GA (I 1-, 3) = ( GA ( J, 3) *DELMU { J) +GA (I 3, 3) *DELMU (I 3) ) /2. DO 

C/DELMU{I1) 
c (123) 

U(I1,4)=U(I1,2)-DELT(3)*A(I1,3)*(FOURPI*R(I1,3)**2* 
CGA(I1,3)/W(Il,3)*(P{I3,3)+Q(I3,2)-P(J,3)-Q(J,2))/DELMU(Il) 
C+G*EM(Il.3)/R(Il.3)**2+FOURPI*G/CSQ*PQ(I1,3}*R(Il,3)) 

IF(N.GT.1) GO TO 95 
c (124) 

AA(J,4)=A(J,3) 
c (125) 

IF(J.EQ.2) AA(l,4)=A(1,3) 
AA ( Il, 4) =A ( Il, 3) 

c (126) 
EEPS(J,4)=EPS(J,3) 
GO TO 96 

c (124) 
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95 
c 

c 

c 
96 

c 

c 

c 

c 

c 

c 
110 

120 
c 

c 

c 

c 

c 

c 

c 

c 
90 

c 

c 

AA(J,4)=A(J,3)+DELT(4)/2.DO/DELT(2)*(A(J,3)-A(J,1)) 
(125) 

IF(J.EQ.2) AA{1,4)=A(l,3)+DELT(4)/2.DO/DELT(2)*(A{1,3) 
C-A(l,l)) 

AA(I1,4)=A(I1,3)+DELT(4)/2.D0/DELT(2)*{A(I1,3)-A(I1,1)) 
(126) 

EEPS(J,4)=EPS(J,3)+DELT(4)/2.DO/DELT(2)*(EPS(J,3)-EPS(J,1)) 
(127) 

DELR(J,5)=DELR(J,3)+DELT(4)*(AA(I1,4)*U(I1,4)-AA(I2,4)* 
CU (I 2, 4) ) 

(128) 
R(I1,5)=R(I2,5)+DELR(J,5) 

(129) 
DELR(J,4)=(DELR(J,5)+DELR(J,3))/2.DO 

(130) 
R(I1,4)=(R(I1,5)+R(Il,3)}/2.DO 

(131) 
RSQ(J,5)=(R(I2,5)**2+R(I2,5)*R(I1,5)+R(I1,5)**2)/3.DO 
GAMABS=DABS(GA(J,3)) 
IF(GAMABS.LT.1.D-3) GO TO 110 
IF(DELRlJ,4).EQ.O.DO) GO TO 110 

(132) -- -
UR(J,4)=(U(I1,4)-U(I2,4))/DELR(J,4) 
GO TO 120 

(133) 
IF{J.EQ.2) UR(2,4)=(FOURP!*CSQ*RH0(2,3)*RSQ(2,3)*(GA(3,3) 

C-GA(1,3))/DELMU(2)+FOURPI*G*RH0(2~3)*(1.DO+EPS(2,3)/CSQ)* 
CDSQRT(RSQ(2,3))-G/2.DO*EM(3,3)/R(3,3)**2)/(U(3,4)+ 
cu ( 1 '4) ) 

IF(J.GT.2) UR(J,4)=(FOURPI*CSQ*RHO(J,3)*RSQ(J,3)*(GA(!1,3) 
C-GA(I2,3))/DELMU(J)+FOURPI*G*RHO(J,3)*(1.DO+EPS(J,3)/CSQ)* 
CDSQRT(RSQ(J,3))-G/2.DO*{EM(I1,3)/R(I1,3)**2+EM(I2,3)/ 
CR(I2,3)**2)}/(U(I1,4)+U(I2,4)) 

CONTINUE 
(135) 

F(J)=AA(J,4)*UR(J,4)*DELT(4) 
(134) 

RHO(J, 5) =RHO(J, 3 )*RSQ(J•, 3) /RSQ(J, 5) /( l.DO+F (J) +F (J)** 
C2/2.DO) 

(136) 
RHO(J,4)=(RHO(J,5)+RHO(J,3))/2.DO 

(137) 
IF(RHO(J,5).GT.RHO(J,3)) Q(J,4)=2.DO*RHO(J,4)*(R(I1,4)**2 

C*U(I1,4)-R(I2,4)**2*U(I2,4))**2/GA(J,3)/RSQ(J,3)**2 
(138) 

PP(J,4)=2.D0/3.DO*RHO(J,4)*EEPS(J,4)-4.D0/3.D0*4.9778D6 
(139) 

EPS(J,5)=EPS(J,3)-(PP(J,4)+Q(J,4))*(1.DO/RHO(J 5)-1.DO/ 
CRHO(J,3)) ' 

(110) 
P(J,5)=2.D0/3.DO*RHO(J,5)*EPS(J,5)-4.D0/3.D0*4.9778D6 

(140) 
W(J,5)=1.DO+(EPS(J,5)+(P(J,5)+Q(J,4))/RHO(J,5))/CSQ 
CONTINUE 
DO 130 J=2,JJ,2 
Il=J+1 
I3=J+2 

(120) 
PQ(Il,5)=({P(I3,5)+Q(I3,4))*DELMU{J)+(P(J,5)+Q(J,4))* 

CDELMU(I3))/2.DO/DELMU(I1) 
(121) 

IF(J.EQ.2) W(1,5)=W(2,5) 
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W(Il,S)=(W(J,S)*DELMU(J)+W(I3,5)*DELMU(I3))/2.DO/DELMU(Il) 
130 CONTINUE 
c (141) 

A(JL,5)=1.DO/W(JL,5) 
A(JJ,5)=A(JL,5) 
DO 140 J=2,JM,2 
Il=J+l 
I3=J+2 

c (143) 
FF(I1)=(EPS(I3,5)-EPS(J,5)+PQ(Il,5)*(1.DO/RHO(I3,5) 

C-l.DO/RHO(J,5)))/W(I1,5)/CSQ 
140 CONTINUE 

DO 150 J=2,JM,2 
M1=JJ-J 
M2=JJ-J+2 
M3=JJ-J+1 

c (142) 
A(Ml,5)=A(M2,5)*W(M2,5)/W(Ml,5)/(l.DO+FF(M3)+FF(M3)** 

C2/2.DO) 
150 CONTINUE 

DO 160 J=2,JM,2 
Il=J+l 
I3=J+2 

c (144) 
IF(J.EQ.2) A(l,S)=A(2,5) 
A(I1,5)=(A(I3,5)*W(I3,5)+A(J,5)*W(J,5))/2.DO/W(I1,5) 

160 CONTINUE 
DO 170 J=2,JJ,2 
Il=J+l 

c (148) 
GA(J,S)=FOURPI*RHO(J,S)*RSQ(J,5)*DELR(J,5)/DELMU(J) 

c (149) 
DELEM(J,S)=GA(J,S)*(l.DO+EPS(J,5)/CSQ)*DELMU(J) 

c (150) 
EM(Il,5)=EM(I2,5)+DELEM(J,5) 
ABSEPS=DABS(EPS(J,5)-EPS(J,3}) 
ABSRHO=DABS(RHO(J,5)-RHO(J,3)) 

c (152) 
DELTE(J)=PE*EPS(J,5)*DELT(4)/ABSEPS 

c (153) 
DELTR(J)=PR*RHO(J,S)*DELT(4)/ABSRHO 

c (160) 
CS(J,S)=DSQRT(2.D0/3.DO*EPS(J,5)/(l.DO+EPS(J,5)/CSQ)) 

c (154) 
DELTC(J)=PC*DELMU(J)/RHO(J,SJ/RSQ(J,S)*A(J,S)/CS(J,S) 

170 CONTINUE 
DO 190 J=2,JJ,2 
X=DMINl(X,DELTE(J)) 
Y=DMINl{Y,DELTR(J)) 
Z=DMIN1(Z,DELTC(J)) 

190 CONTINUE 

c 

DELTT=l.2DO*DELT(4) 
X=DMINl(X,Y} 
X=DMINl(X,Z) 
X=DMINl(X,DELTT) 
X=DMINl(X,DELTTT) 

C THIS SECTION PRINTS NNN,T,R,U,A,GA,RHO,EPS,P AND Q AT 
C SPECIFIED INTERVALS. 
c 

IF(NA.LT.NAA) GO TO 200 
WRITE(6,2000)NNN 
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WRITE(6,3000)T 
DO 210 J=JN,JJ,JN 
Il=J+l 
WRITE(6,12000)J 
ZZ=R(Il,3) 
WRITE(6,4000)ZZ 
ZZ=U(Il,2) 
WRITE(6,5000)ZZ 
ZZ=A(J,3) 
WRITE(6,6000)ZZ 
ZZ=GA(J,3) 
WRITE(6,7000)ZZ 
ZZ=RHO(J,3) 
WRITE(6,8000)ZZ 
ZZ=EPS(J,3) 
WRITE(6,9000)ZZ 
ZZ=P(J,3) 
WRITE(6,10000}ZZ 
ZZ=Q(J,2) 
WRITE(6,11000)ZZ 

210 CONTINUE 
NA=O 

200 CONTINUE 

c 

DELT(2)=DELT(4) 
DELT( 4) =X 
X=lO.DO 
Y=X 
Z=X 

C THIS SECTION REASSIGNS QUANTITIES TO PREVIOUS TIME 
C DESIGNATIONS IN ORDER TO BEGIN THE NEXT TIME CYCLE. 
c 

DO 220 J=2,JJ,2 
Il=J+l 
P(J,3)=P(J,5) 
Q(J,2)=Q(J,4) 
GA(J,3)=GA(J,5) 
GA(I1,3)=GA(I1,5) 
U ( I1, 2) =U ( I1, 4) 
A ( I1, 1) =A ( I1, 3) 
R(Il,3)=R(Il,5) 
R(Il,S)=O.DO 
W(Il,3)=W{I1,5) 
EM(I1,3)=EM(I1,5) 
EM(Il,S)=O.DO 
A(J,1)=A(J,3) 
EPS(J,l)=EPS(J,3) 
A(J,3)=A(J,5) 
A ( I1, 3) =A ( I1, 5) 
EPS(J,3)=EPS(J,5) 
DELR(J,3)=DELR(~,S) 
RSQ(J,3)=RSQ(J,5) 
RHO(J,3)=RHO(J,5) 

220 CONTINUE 
A(l,l)=A(l,3) 
A(l,3)=A(2,5} 
GA(l,3)=GA(l,5) 

1000 CONTINUE 
2000 FORMAT(lX,4H N= ,IlO) 
3000 FORMAT(lX,4H T= ,1024.16) 
4000 FORMAT(l0X,4H R= ,1D24.16) 
5000 FORMAT(l0X,4H U= ,1D24.16) 
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6000 
7000 
8000 
9000 
10000 
11000 
11500 
11600 
12000 

FORMAT(l0X,4H A= ,1D24.16) 
FORMAT(lOX,SH GA= ,1D24.16) 
FORMAT(l0X,6H RHO= ,1D24.16) 
FORHAT(l0X,6H EPS= ,1D24.16) 
FORMAT(l0X,4H P: ,1D24.16) 
FORHAT(l0X,4H Q= ,1D24.16) 
FORHAT(l0X,4H M= ,1D24.16) 
FORMAT(l0X,5H RS= ,1D24.16) 
FORHAT(6X,4H J= ,IlO) 
STOP 
END 
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