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PREFACE 

The Reed-Solomon codes for multiple-error-correction 

are examined in this study. The results of a comparison 

between the conventional Gorenstein-Zierler method and a 

transform method are discussed, and simple examples are 

given. Then decoding algorithms are compared in terms of 

the numerical complexity. Finally the conclusions of the 

simulation are stated. 
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CHAPTER I 

INTRODUCTION 

' (Algebraic coding theory has its origins in the work of 

R. w. Hamming and C. E. Shannon, who were colleagues at 

Bell Telephone Laboratories in the late forties. However 

Hamming was the first coding theorist whose work attracted 

widespread interest. Some of Hamming's early work appeared 

as an example in Shannon's classic 1948 and 1949 papers 

(53). Apparently delayed because of patent considerations, 

Hamming's own paper appeared in 1950. Even though both were 

concerned with the fundamental problem of communications 

over noisy channels, there was a clear difference between 

the combinatorial, constructive viewpoint of Hamming and 

the statistical, existential viewpoint of Shannon. The 

distinction between coding theory and Shannon theory has 

increased in subsequent years~ This paper is limited to the 

topics of coding theory) 
I 

The major coding theory papers of the early 1950's 

introduced a number of important concepts which laid the 

basis for algebraic coding theory. Chapter II of this 

thesis introduces some examples of Hamming's work to help 

the reader build a foundation for coding theory. Hamming 

(23) was concerned both with code construction and the bound 

1 
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on the distance of a code's capacity to detect or correct 

errors. D. E. Muller (40) and I. S. Reed (46) not only 

constructed an important class of codes, they also gave some 

preliminary indications about how a large body of knowledge 

about finite mathematical structures might be brought to 

bear on the coding problem. D. Slepian (52) exposed the 

mathematical foundations of the subject of linear codes. M. 

J. E. Golay (20) discovered a particular code that has been 

shown to contain as subsets some of the most efficient 

linear codes. 

The big breakthrough in the const~uction of error

correcting codes came in 1959 and 1960. The codes that are 

now universally called BCH codes were discovered by the 

French mathematican, A. Hocquenghem (24) and independently 

by R. C. Bose and D. K. Ray-Chaudhuri (11). It is important 

to remember that only the code theory, not the decoding 

algorithms, were discovered by these early writers. The BCH 

codes of block length of the form (2**m)-l has been, 

perhaps, the outstanding success of the search for codes 

based on algebraic structures. Chapter III broadly defines 

BCH codes and explains methods for construction. Chapter IV 

explains why encoding is necessary to help ensure 

reliability of information. 

Chapters v, VI, and VII try to explain the decoding of 

BCH codes. One of the principal virtues of these codes 

turned out to be their capability of being decoded by 

relatively straightforward algorithms. w. w. Peterson (42) 



was the first to outline an 

decoding procedure which was 

Bartee and D. I. Schneider (5) in 

3 

efficient and economical 

actually realized by T. C. 

a small special-purpose 

computer. Peterson's algorithm involved the solution of 

simultaneous linear equations over certain finite fields. 

More recent work focused attention on the multisymbol 

generalization of these codes. One year after Peterson's 

algorithm, D. c. Gorenstein and N. Zierler (22) generalized 

all the previous work on binary BCH codes to non-binary 

codes. It turns out that the polynomial codes discussed by 

I.S. Reed and G. Solomon (47) belong to this general code 

class and hence may be decoded by the Gorenstein-Zierler 

algorithm. The non-binary BCH codes contain the Reed

Solomon (RS) codes as a proper subset. There are two areas 

(at least) of application of codes in non-binary symbols. 

First, data to be transmitted may appear in such a form and 

second, although the binary BCH codes tend to be highly 

efficient for the correction of independent errors, still 

greater efficiency may be obtained with non-binary codes 

when the errors occur in bursts. 

BCH or RS codes are some of the most important classes 

of random-error-correcting codes known. Considerable work 

has been done on decoding of these codes. Though the 

details of an algorithm were first presented by Peterson, · 

many improvements soon followed. By using the fact that 

the BCH codes are cyclic, R. T. Chien (15) obtained a 

significantly better algorithm, which was then modified and 



improved by G. D. Forney (18). 

decoding algorithms are based on 

4 

All of these revolutionary 

Algebraic decoding. By 

associating the symbols of certain linear cyclic codes with 

corresponding elements in a finite field, it is possible to 

define an error locator polynomial, whose roots reveal the 

locations of the symbols which are in error. The decoding 

problem can then be reduced to the computational problem of 

setting up this algebraic equation and finding its roots. 

The Chien algorithm finds the roots of the error 

locator polynomial by testing each candidate, but the tests 

are done sequentially as the about-to-be decoded digits 

leave the buffer. This method circumvents the computational 

problem of finding roots of the error locator polynomial. 

Therefore, the determination of the coefficients of the 

error locator polynomial became the bottleneck of the BCH 

decoding. This bottleneck was broken by an iterative 

algorithm presented by E. R. Berlekamp (8). J. L. Massey 

(34) pointed out that this same algorithm also solves 

the linear feedback shift register synthesis problem. By 

introducing the scalar multiples of the reciprocal monic 

polynomials upon which Berlekamp's algorithm iterates, one 

can decode BCH codes without doing Galois field divisions. 

In 1970, v. D. Goppa (21) discovered the codes that 

bear his name and are a natural generalization of BCH codes. 

Goppa also gave a decoding procedure for his codes that was 

analogous to the old Peterson-Gorenstein-Zierler algorithm. 

Goppa did not, however, generalize Berlekamp's iterative 
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algorithm. In 1975, Sugiyama, Kasahara, Hirasawa, and 

Namekawa (55) discovered that one can use the Euclidean 

algorithm to decode Goppa or BCH codes. This algorithm is 

easier to understand and sheds considerable light on under

standing Berlekamp's algorith~. In fact, with hindsight 

it is now possible to view Berlekamp's algorithm as an 

improved version of algorithms based on Euclid. 

Since excellent algorithms now exist, current research 

is focused on reducing the numerical complexity of the 

conventional BCH or RS algorithms. Recently it was proposed 

that the· use of a finite field transform may be possible for 

decoding. D. Mandelbaum (30) developed a decoding algorithm 

using a transform over GF(p**m). The disadvantage of this 

transform method is that the code length is such that the 

most efficient fast Fourier transform algorithms cannot be 

used to yield transform decoders. This problem was resolved 

soon by several solutions. One scheme investigates a 

modification of a method by S. Winograd (57) for computing 

transforms over GF(2**m) that is based on the Chinese 

remainder theorem. Another scheme was proposed by J. 

Justesen (25) that transforms over GF(Fermat prime). Many 

improvements along this scheme have been proposed (49). J. 

H. McClellan (35) recently constructed hardware to implement 

the Fermat prime theoretic transforms. 

The major goal of this thesis is to provide a numerical 

comparison by software simulation to see if the new 

transform methods actually reduce numerical complexity. 
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Chapter VIII describes and gives the conclusions of this 

simulation. Improvements in decoding using transforms were 

also extended to encoding. D. Mandelbaum (31) showed how 

to construct error-correcting codes by interpolation by 

applying fast Fourier transform and Lagrange interpolation. 

Chapter IX discusses further research in the field of 

Algebraic coding theory. · Another goal of this thesis is 

to interest the reader into further exploring coding theory. 

There are several textbooks available including: Peterson 

( 43), Berlekamp ( 8), Lin ( 28), van Lint ( 29), . Peterson

Weldon (44), and McWilliams-Sloane (38). 



CHAPTER II 

BACKGROUND THEORY 

C) ~Algebraic coding theory history begins with the Shannon 

coding theorems which guarantees the existence of codes that 

permit the transmission of information at high rates with 

vanishingly small probability of error (53). M. J. E. Golay 

R. w. Hamming, D. E. Muller, I. S. Reed, and D. Slepian 

made the first essential steps in Algebraic coding theory 

with the effective encoding and d~coding techniques of some 

particular linear codes (10). This· paper is intended as an 

introduction to the encoding and decoding) of the code 

developed by I. S. Reed and G. Solomon (47). Reed-Solomon 

codes (RS) are the most powerful of the known classes of 

block codes for correcting random errors and multiple burst 

errors (8,38). However before going into the details of RS 

codes, this background chapter was organized for those who 

need some acquaintance with coding theory. 

Information is said to be placed into code form by 

encoding and extracted from code form by decoding. A basic 

class of error-control codes is linear block codes. The 

encoding procedure of linear block codes consists of two 

steps: 1) the initial information sequence is divided into 

message blocks of length k; and 2) every message block is 

7 
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transformed into a codeword of length n by annexing r 

check symbols. Such encoding can not prevent transmission 

errors, but can reduce the error's undesirable effects. The 

n-k or r check symbols are redundant symbols which carry no 

new information but function to provide the code with the 

capacity of detecting and correcting errors. Also, the k 

message symbols are from an initial alphabet defined by a 

Galois finite field GF(q). 

A block code is often denoted as an (n,k) code or as an 

(n,k,d) code on GF(q) where n, k, d are considered 

parameters. N is the block length of the code. There are 

q**k different codewords so k is the dimension of the 

code. The minimum distance d of a code is the minimum number 

of places in which any two codewords differ. "A linear code 

with minimum distanced can correct [l/2(d-l)] errors." 

(38,p.l0) ([x] denotes the greatest integer less than or 

equal to x.) The distance, length, and number of 

information symbols in any RS code are related by d=n-k+l. 

An (n,k) code uses n symbols to send k message symbols, 

so it has a rate or efficiency, R=k/n (8). 

Ideally, the decoding process for any code is generally 

easier if a message is encoded as a separable, systematic, 

and cyclic codeword. A separable code is one which divides 

a codeword into an information part and a redundant checking 

part. A systematic code is one which has distinguishable 

information symbols and check symbols. Over a finite field, 

all linear codes are systematic. A cyclic code is a linear 
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block code which any cyclic shift of a codeword is also a 

codeword (28). 

The encoding problem is given any particular sequence 

of k message symbols, the transmitter must follow rules for 

selecting r check symbols so the receiver can decode and 

recover the message. A simple binary example in Figure 1 

d~veloped by R. w. Hamming illustrates basic concepts. Each 

check symbol must be some function of the message symbols. 

In the simple case of single-parity-check codes, the check 

symbol is chosen to be the binary sum of all the message 

symbols or parity. If there are several parity checks, one 

solution is to set each check symbol equal to the sum of 

subsets of the message digits. In the Hamming code example, 

a message symbol is a member of a subset if the binary 

representation of the number position has a one in that bit 

position. Each subset can correspond to a row of a matrix. 

A generator matrix G can be written which has one's in the 

place of each row where the corresponding check is applied. 

In general, the generator matrix of a separable code is an 

r by r identity submatrix and a k by r submatrix that 

describes the interdependence between information and check 

symbols. Notice the matrix in Figure 1 does not generate a 

separable code. 

After the message sequence is encoded, the codeword is 

transmitted across the noisy channel. The channel adds the 

noise vector 

E = { e 
0 

' e 
2 

I • • • I e } where 
n-1 

(2.1) 
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r 

I~ 
i 

Position 1 2 3 4 5 6 7 9 10 11\12 13 14 15 

Message * * 1 * 0 1 0 0 1 0 1 0 1 1 

Codeword ~ 11. 1 l 0 1 0 lo 0 1 0 1 0 1 1 

)o Error 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
I 

Recieved Vector 0 1 1 1 0 1 0 \0 0 1 1 1 0 1 1 
\ 

Correction 0 0 0 0 0 0 0 10 0 0 1 0 0 0 0 

Message * * 1 * 0 1 0 !* 0 1 0 1 0 1 1 I 
I 

* The check symbols to be determined I 
I 
I 

I 
j 
I 

SYMBOLS RESULTS OF PARITY ON C,HECK 
I 

Check Positions 1 2 3 4 5 6 7 is 
I 

9 10 11 12 13 14 15 

I 

ENCODING 
Check 1 = ~ = * +1 +0 +0 +0 +0 +0 +1 
Check 2 = iD = * +1 +1 +0 +1 +0 +1 +1 
Check 3 = 1 = * +0 +1 +0 +1 +0 +1 +1 
Check 4 = 0 = * +0 +1 +0 +1 +0 +1 +1 I 

I 
I 

i 
DECODING ! 

Check 1 = 1 = +0 +1 +0 +0 I +0 +1 +0 +1 I 
Check 2 = 1 = +1 +1 +1 +0 I +1 +1 +1 +1 
Check 3 = 0 = +1 +0 +1 +0 +1 +0 +1 +1 
Check 4 = 1 = +O +0 +1 +1 +1 +0 +1 +1 

I 

l 
SYNDROME = 1011 OR THE ELEVENTH POSITION 

Note the syndrome is written with the check 1 
associated with the low order bit, so the order 
becomes Check 4, Check 3, Check 2, and Check 1 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Parity check 4 
M = 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 Parity check 3 

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 Parity check 2 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Parity check 1 

Figure 1. Single-Error-Correcting Hamming Code Over GF(2) 
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E = f 0 if the channel does not change the ith digit 
f 1 if the channel does change the ith digit 

The received vector consists of the code vector plus the 

error vector where R = C + E or C = R - E. Therefore if the 

decoder is able to find the correct error vector E, then the 

code vector C can be found by subtracting the error vector 

from the received vector (In the binary case, of course +=-, 

or difference= sum). 

In the decoding process, one can define parity check 

matrix M related as illustrated in Figure 2 to the transpose 

of the generator matrix where 
(2.2) 

T T T T T T 
( M C ) = ( c ) M = c M 

Using multiplication, the symbol subsets are checked for 

correctness. Any occurring abnormalities are called 

syndromes. The encoding process assures M*(C Transpose)=O; 

and the decoding process assures 
( 2. 3) 

T T T T T T 
M R = M ( C + E ) = M C + M E = M E 

Therefore the syndrome depends only on the error and not on 

the codeword sent. Also the syndrome vector where 
( 2. 4) 

S=fs ,s , . . . , s } 
1 2 d-1 

contains all the information regarding the error that has 

been added to the codeword during the transmission. If 

there is a single error, then the syndrome is exactly the 

corresponding column of the parity check matrix and the 

error position can be found by table lookup. Once the error 

location is known, in the binary case, the error is 



A) The information I = a , a ' . . . ' 
0 1 

B) The (n-k) * n parity check matrix H 

H = [ A I Idenity ] 
n-k 

C) The codeword c = a , . .. . ' 
0 

D) The n * (n-k) generator matrix 

T 
G = [ Idenity I -A ] 

k 

T 
because H c = 0 

[ A I Idenity J a 
n-k 0 

a 
n-1 

a 
k 

a 
n-1 

a 
k-1 

G 

= 

= 

0 

-A 

Note: In the binary case -A=A 

a 
k-1 

a 
k 

, . . . , 

a 
0 

a 
k-1 

12 

a 
n-1 

in the non-binary case this is not true 

Figure 2. Properties of Linear Codes 
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subtracted from the received vector and the codeword is 

corrected. In the non-binary case, the value of the error 

must be determined before subtracting. The message symbols 

can be separated from the check symbols and thus completing 

the decoding process. 

A great deal of work in constructive coding theory 

followed the appearance of Hamming's pioneering paper (23). 

Improvements were pursued especially for a separable code 

with the capacity to correct more than a single error. In 

fact, a mathematical treatment of the encoding-decoding 

process was sought to build a structure so that the code may 

be decoded systematically without table lookup (which is 

clearly impractical for large code sets). Such a process 

was discovered known today as BCH codes. Reed-Solomon codes 

are an important subclass of BCH codes. Also the single

error-correcting Hamming code in Figure 1 can be defined as 

the simpliest type of BCH code. 

The BCH codes viewed the code sequences as polynomials. 

The codeword vector 

c = { 

n-1 
c (x) = L a 

i 
i=O 

a a , . 
0 1 

i 
X = a + 

0 

where a c 
i 

(2.5) . . , a } 
n-1 

1 n-1 
a X + . . . + a X 

1 n-1 

GF (q). 

is identified as the coefficents of the powers of a 

variable. Also the generator matrix can be constructed by a 

polynomial. Fundamentally, the vector representation is the 
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same as the polynomial representation. The code is the 

same; rearrangement of columns of the generator matrix only 

affects how and where one finds the column corresponding to 

the syndrome that emerges. The encoding-decoding process of 

the polynomial representation will be explained in the 

following chapters. The conceptual gap between ·the Hamming 

codes or the single-error-correcting codes and the t-error

correcting BCH codes is considerable and represents a decade 

of research. 



CHAPTER III 

ENCODING OF REED SOLOMON CODES 

An important process in error correction is the 

encoding or placing information into codewords. The 

encoding of a Reed-Solomon (RS) code can be handled by any 

of the following three methods. The first or conventional 

method describes techniques which can be used for any cyclic 

code. RS codes are cyclic. The next method which is the 

original method of I.S. Reed and G. Solomon (47) is 

mentioned for theoretical interest though not generally used 

because the encoder is not systematic. Finally, a new 

scheme for reducing the numerical complexity of the standard 

RS encoding algorithm is developed. The new method is a 

combination of the Chinese remainder theorem, discrete 

Fourier transforms, and Lagrange interpolation •. 

Conventional Method 

The conventional method of polynomial 

requires a codeword to have zero 

algebraically by M * {C Transpose) = 0. 

encoding still 

syndrome defined 

This method of 

encoding is based on the fact that the coded vector must be, 

considered as a polynomial, a multiple of the generator 

polynomial G{x). Since a linear code is generally defined 

15 
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by a generator, a formal definition of RS codes are needed 

to insure proper encoding. Conventionally RS codes are 

generated based on the fact RS codes are a subset of BCH 

codes which are a subset of cyclic codes. 

A cyclic code of length n is based on a generator 

polynomial G(x) with the following properties: 1) there is 

a unique monic polynomial G(x) of minimal degree in the 

code, 2) the code consists of all multiples of a fixed 

polynomial G(x), 3) G(x) is a factor of (x**n) -1, 4) the 

message I(x) becomes the codeword I(x)G(x), 5) code is 

generated by the rows of a generator matrix defined where 

multiplication by x corresponds to a cyclic shift where 

G = 

G(x) 
xG(x) . . . 

n-r-1 
X G(x) 

where G(x) = g + g x + • • • + g x 
0 1 r 

( 3 .1) 

r 

The generator polynomial has degree equal to the 

distance of the code minus one or the number of check 

symbols. Since G(x) is a factor of the polynomial 

representation of the codeword, the generator has distinct 

roots w or zeros of the code. The number of zeros of the 

generator polynomial depend upon how many errors one wishes 

to detect (38). 

Each element w**i of the field is a root of a unique 

irreducible polynomial M(i)(X) of minimal degree. Terms 

basic to theory of finite fields are reviewed in Appendix A. 
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Then G(X) must be divisible by each of the polynomials 

M(l)(X), M(2)(X), . , M(d-l)(X) and hence, by their 

least common multiple: 

( 3. 2) 
d-1 

G(X) = LCM 1T M(i)(X) 
i=l 

Since each of the factors M(i)(X) is irreducible, the least 

common multiple of the M(i)(X) is simply the product of the 

minimal polynomials M(i)(X), with the duplicates omitted. 

Duplications are quite possible; and occur in fact for any 

w**i and w**j that are roots of the same polynomial M(i)(X) 

(42). 

A cyclic code of length n over GF(q**m) is a BCH code 

of designed distance d defined by the distinct roots 

( 3. 3) 

b b+l b+d-2 
w , w , • ,w 

of the generator. RS codes are a subset of BCH and can be 

defined with the following restrictions: 1) the power of 

the field is one or GF(q**l), and 2) the zeros generally 

start with b=l. An RS code is a cyclic code of length n 

over GF(q) defined by the distinct roots 

( 3 • 4 ) 
1 2 d-1 

w , w , .•• ,w 

of the generator. Thus an RS code is a block code with 

n=q-1 symbols, with k=n-d+l message symbols where d is the 

minimum distance. Important special cases are b=l (called 

narrow-sense BCH codes) or n=q-1 (called primitive BCH 
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codes). All BCH codes hereafter referred to are assumed 

to be narrow-sense and primitive. 

In summary, to encode the k information symbols into an 

n=q-1 symbol RS code, one must first define the generator 

polynomial 

( 3. 5) 
d-1 

G(X) = lT i 
(x - w 

i=l 

where w is- a primitive nth root of unity as defined in 

Appendix A. The code consists of all multiples of G(X) 

subject to the constraint 

(3.6) 
n 

X - 1 = 0 

The message polynomial must be exactly divisible by the 

generator polynomial. Let I(X) be a temporary polynomial 

where the message corresponds to the positions 

( 3. 7) 
a , a ' . .. ,a ,0,. . . ' 0 

n-1 n-2 k 

and the coefficients of the remaining n-k lower order 

positions are momentarily zero. The division of this 

message polynomial I(X), by the generator polynomial G(X) 

will produce a remainder R(X). The remainder R(X) has 

degree less than (n-k) which is the degree of the generator 

polynomial. 

I(X) = Q(X) G(X) + R(X) 
C(X) = I(X) - R(X) 

( 3. 8) 

If the remainder is subtracted from the message polynomial, 



then the result is exactly divisible by 

polynomial or a codeword. The calculation of 

can be accomplished in the general case 

division illustrated in Figure 3. 
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the generator 

the remainder 

by polynomial 

However in the binary case, the apparent complexity of 

much of the division process for the modular requction of 

polynomials over GF(2) can be handled simply by means of 

shift registers with feedback paths. 'In Figure 4, the 

digits of the message come from the right, the highest power 

first with trailing zeros automatically supplied for the 

check bits to be determined. The paths below each register 

show where the feedback occurs according to the generator 

polynomial. A practical encoder is where the message digits 

are shifted out and when the remainder is computed, the 

remainder is then shifted out to form the entire coded 

message. The first digit of the remainder is always 

omitted, of course, since it is always zero. In hardware, 

encoding is a shift register with the additional logic for 

addition by exclusive or in each position. In software, 

encoding is a test for a one in the leftmost position. If 

one is found, then logically add the pattern of ones 

required by the feedback paths or logically add the vector 

representation of the primitive polynomial. In either case, 

the codeword polynomial is congruent to zero modulo the 

generator polynomial. Also in either case, this encoding 

method only applies with codes with binary symbols. 



20 

Powers of x are represented by coefficients with positions: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
X X ·X X X X X X X X X X X X X X 

1-7+1+2-2 ll +2 +3 +2 
1 -7 +1 +2 +2 

+9 +2 +0 +2 
+9-63 +9+18+18 

-3 -9 +1+18 
-3+21 -3 -6 +6 

+4 +4 +7 -6 
+4-28 +4 +8 -8 

-2 +3 +3 +8 
-2+14 -2 -4 +4 

+6 +5 -5 -4 
+6-42 +6+12-12 

-4 +6 +1+12 
-4+28 -4 -8 +8 

-5 +5 +3 -8 
Generator Polynomial -5+35 -5-10+10 

2 3 4 
= (x-6)(x-6 )(x-6 )(x-6 
= (x-6)(x-2 )(x-12)(x-4 

4 3 2 
= x -7x +x +2x -2 

Primitive root of unity 
for GF(l7) and N=l6 is 6 

C(X) = I(x) - R(x) 
15 14 

+4 +8 +2-10 
+4-28 +4 +8 -8 

+2 -2 -1 +8 
+2-14 +2 +4 -4 

-5 -3 +4 +4 
-5+35 -5-10+10 

-4 +9 -3-10 
-4-28 -4 -8 +8 

-2 +1 -2 -8 

12 3 
= x + 2x 

13 
+ 3x 

13 
+ 3x 

+ 2x - (-2x 
2 

+ lx 
2 

+16x 

- 2x - 8) 
15 14 12 3 

= x + 2x + 2x + 2x +2x +8 

Figure 3. Encoding Reed-Solomon Code (16,12,5) Over GF(l7) 
By Conventional Division Method 



State 
Feedback 

Result 

Shift 

Shift 

Shift 

Shift 

Shift 

Shift 

Shift 

Shift 

Shift 

0 1 1 0 0 
0 0 0 0 0 
0 1 1 0 0 

1 1 0 0 1 
1 0 0 1 1 
0 1 0 1 0 

1 0 1 0 1 
1 0 0 1 1 
0 0 1 1 0 

0 1 1 0 0 
0 0 0 0 0 
0 1 1 0 0 

1 1 0 0 0 
1 0 0 1 1 
0 1 0 1 1 

1 0 1 1 0 
1 0 0 1 1 
0 0 1 0 1 

0 1 0 1 0 
0 0 0 0 0 
0 1 0 1 0 

1 0 1 0 0 
1 0 0 1 1 
0 0 1 1 1 

0 1 1 1 0 
0 0 0 0 0 
0 1 1 1 0 

1 1 1 0 0 
1 0 0 1 1 
0 1 1 1 1 

1 1 1 1 0 
1 0 0 1 1 
:e: 1 1 0 1 

1 1 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 

0 0 0 

0 0 

0 

Remainder 

Message ( 0 1 1 0 0 1 1 0 0 0 0 * * * * ) 
Codeword ( 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 ) 
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Figure 4. Encoding Reed-Solomon Code (15,11,5) Over GF(16) 
By Linear Feedback Shift Register Method 
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Original Method 

The next method of encoding is based on the original 

work of I.S. Reed and G. Solomon (47). Reed's work on 

coding theory developed because of the decoding failures 

that occurred in Hamming's coding if the number of errors 

was not equal to one (46). Reed and Solomon proposed a code 

which maps k-tuples over GF(q) into 2**n-tuples over GF(q). 

Let I(x), be the message symbols to be encoded into a 

codeword C(x), using the polynomial P(x) defined in Figure 5 

where w is the primitive root of unity of a suitable 

irreducible polynomial over GF(q). Therefore the non-zero 

elements form a multiplicative cyclic group. The formulas 

and an example of this Reed-Solomon encoding method is given 

in Figure 5. 

However the codeword is not systematic unless regarded 

as a mapping of binary sequences of (mn) bits into binary 

sequences of n(2**n) bits. However this theoretical approach 

suggested a certain viewpoint where RS codes can be said to 

result from a generalized interpolation. Observe the P(w**i) 

is the remainder when the message I(X), of degree less than 

k is divided by a minimal polynomial. 

Let w be a primitive element of GF(q**m). Let 
M(i)(x) = x- w**i fori= 0, 1 , ••• ,q**(m-2) 
Therefore 

R(x} = r modulo ( x - w**i) 
i 

R(x) = Q(x) ( x - w**i) + r 
R(w**i) = r i 

i (4,p.298) 

So one can say I(x) is encoded into 
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I (X) = (a , a , • . . , a where a E GF(q) 
0 1 k-1 i 

I (X) = (0,0,0,0,0,0,0,0,2,3,2,1) 

1 k-1 k-1 i 
P(x) = a +a x + . . . + a X = L a x 

0 1 k-1 i 
i=O 

8 9 10 11 
P(x) = 2x + 3x + 2x + X 

2 
C(x) = p ( 0) , p ( w), P(w ) , . . . , P(l) 

C(x) = ( 0,1S,7,3,15,2,3,16,14,14,13,12,9,9,2,12,8 ) 

Figure 5. Encoding Reed-Solomon Code (16,12,5) Over GF(17) 
By Reed's Original Method 

I (X) = ( 0,0,0,0,0,0,0;0,2,3,2,1) 

i 
I ( w )= ( 0,0,0,0,0,0,0,0,0,0,0,0,2,3,2,1) 

i 
R(w )= ( 8,9,10,5,8,14,14,4,0,11,4,3,9,2,15,3 

3 2 3 2 
R(x) = 9 ( 6x +llx +4x +2} + 10 7x +16x +5x 

3 2 3 2 
5 (13x +14x +11x +5} + 8 ax +lOx +14x 

R(x) = (-8,-2,+1,-2,0,0,0,0,0,0,0,0,0,0,0,0} 

C(x} = (+8,+2,16,+2,0,0,0,0,0,0,0,0,2,3,2,1 } 

+ 7} 

+ 4) 

Figure 6. Encoding Reed-Solomon Code(l6,12,5} Over GF(l7} 
By New Interpolation Method 



r ' • • • ' r 
0 k-1 

r 
k 

' . . . , r ) 
n-1 

where r is the residue of I(x) modulo M(i)(X). 
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(3.9) 

This 

generalization of the Chinese remainder theorem, which deals 

with polynomials over the GF(p**m) instead of integers, is 

stated in Appendix B. This theorem guarantees the first k 

residues are enough to reconstruct the message I(X) in the 

absence of errors. If additional residues were sent, the 

message might be communicated despite some disruption of the 

transmission. Thus the n-k residues are redundant residues 

which are included in a codeword for protection against 

errors. Reed-Solomon or any code encoded by this method are 

called redundant residue codes. Restated 

Reed-Solomon codes were the first codes 
constructed in terms of interpolation. It is 
well-known that a polynomial f(x) of degree k-1 
over any field is determined uniquely by its 
values at any k distinct points Xl , O<=i<k. If 
these k values f(xl ) are transmitted, the 
receiver can reconstruct the function f(x): this 
is called Lagrange interpolation. If one or more 
of the values f(xl) are changed by noise, then the 
wrong function will be constructed. However, if 
r extra (redundant) values of f(x) at r 
additional points are transmitted, then by taking 
all combinations the most often, the correct 
function f(x) will be selected even if noise has 
affected up to [r/2] values f(x;) (3l,p.27). 

From a practical standpoint, this encoding process makes 

complete decoding difficult. 

Interpolation Method 

However, Reed's original encoding process was the 

foundation for current research which states the Chinese 
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remainder theorem another way. After calculation of the 

residues, the vector can be viewed as the polynomial 

interpolated through the points 

(3.10) 
i 

w , r for 0 <= 1 < n-k 
i 

Instead of transmitting the residues, the residues are used 

to interpolate a polynomial that is a valid codeword before 

transmission. 

The new encoding procedure of an RS code is composed of 

the following two steps: 

1) Compute I(w**i) for l<=i<=d-1 by the technique 
used to compute syndromes in the decoder. 
Note that by 

2) 

C(x) = I(x) - R(x) 
i i 

I(w ) = R(w )• for 1 

Compute R(x) from R(w**i) 
interpolation: 

d-1 

R(x) = L 
i=l 

where E(x) is 

E (X) = rr 
i j¢i 

i 
R(w ) E (x) 

i 

defined by 

( 
i 

X - w ) 

i j 
w - w ) 

for 

<= i <= d-1. 

using Lagrange 

l<=i<=d-1 

(50,p.223) 

This method encodes a systematic codeword which results 

in the identical symbols transmitted as the conventional 

method. An example in given in Figure 6. The immediate 

advantage of Lagrange interpolations is that matrix E~ (x) 
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has to be calculated only once when initializing the 

encoder. This preprocessing of coefficients reduces the 

overall complexity of the encoder. 

Summary 

Encoding is very important process and the basis for 

any error correcting scheme. The methods discussed in this 

chapter have one immediate ad~antage. The encoding is very 

similar to the first step of decoding. Since the encoding 

can be viewed as a syndrome-like calculation, it can be 

implemented using the algorithm used in the decoder. Since 

the decoding process will be discussed in detail in the 

following chapters, program design logic and numerical 

complexity are not included at this time. The examples used 

in this chapter will be continued throughout the paper. 



CHAPTER IV 

TRANSMISSION 

Recall in a linear block code, a particular sequence of 

n digits can be encoded as a codeword. Although there are 

q**n different sequences of length n, only q**k of these 

sequences are codewords, because the r check symbols within 

any codeword are completely determined by the k message 

symbols. No matter which codeword is transmitted, any of 

the q**n possible sequences of length n may be received if 

errors have been induced. The decoder must attempt to 

recover the correct codeword by implementing a coding 

scheme. When an error detection and correction coding 

scheme is considered in a transmission or a storage system, 

one should ask 1) what are the sources of errors 

what 

3) 

the 

is needed 

what error 

application. 

to achieve the capacity 

correction strategy is 

Each of these consid-

anticipated, 2) 

of the code and 

appropriate for 

erations play an important role in the design of the coding 

scheme. 

The selection of an error management scheme is based on 

the type and distribution of the errors which occur. To 

better understand the type of errors that can be 

encountered, a specific example of an optical disc is given 

27 
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to illustrate typical sources of errors. The sources can 

be divided into the following categories: 1) random-noise 

errors, 2) media-defect errors, 3) media-damage errors, 

4) media-blockage errors, and 5) equipment-induced errors. 

Random-noise errors occur as a result of noise in the 

transmission causing a misinterpretation of a symbol. 

Media-defect errors occur as a result of imperfect fab

rication of the optical disc storage media. As state-of-art 

technology of the fabrication processing improves, these 

errors can also be handled efficiently with encoding. 

Media-damage errors are more difficult to deal with since 

they occur at any point during the useful life of the 

storage media and can be very large in extent. Media

blockage errors occur as a result of dust or other 

pollutants settling on the recording media and causing 

optical blockage that prevents proper recording or playback. 

Equipment-induced errors are primarily related to dis-

turbances. In the record mode, such a disturbance may 

result in a short loss of recorded data. In the playback 

mode, these disturbances may cause a decision error in the 

demodulator. Figure 7 illustrates an error management 

technique which can be implemented to minimize these error 

sources {6). 

The application or sources of errors determine what 

type of errors one needs to detect. Already mentioned are 

random errors in a message or namely an equal probability of 

an error in each symbol position. However in practice there 
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reasons for errors to be more common in some 

in the message than in others, and it is often 

errors tend to occur in bursts and not be 

independent. One of the accepted definitions of a burst in 

coding theory is the following: "A burst of length b is a 

seque~ce of b digits, the first digit of which is non-zero 

(16,p.292)." The total number of bursts with a specific 

length can be readily determined in a given error sequence. 

For instance, a typical error sequence in a binary system 

may have the following appearance: 

(4.1) 

• • • 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0 1 1 1 1 0 0 . . . 
·This sequence contains 10 bursts of length one, or 6 bursts 

of length two, or 5 bursts of length three, or four bursts 

of lengths four and five. In general, codes for correcting 

random errors are not efficient for correcting burst errors. 

Coding is also required in communication systems to 

combat the errors that occur in the guesses of the 

demodulator. It has been recognized (18) that there are 

advantages in allowing the demodulator not to guess at all 

on certain transmissions when the evidence does not clearly 

indicate one signal as the most probable. Such events are 

called erasures. It is convenient to imagine that in the 

event of an erasure the demodulator does make some guess, 

perhaps arbitrary, but in addition passes on the side 

information to the decoder that this guess is absolutely 

unreliable and is to be disregarded. The best strategy is 
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to demodulate sufficiently weak or ambiguous received 

signals not as any of the q symbols in the input alphabet 

but as an additional symbol, such as ?. An erasure implies 

an unknown symbol at a known location and an error implies 

that the location and value are both unknown. 

In this simulation, Reed-Solomon (RS) codes are 

constructed by algorithms that are very effective in 

correcting random and burst errors. RS codes are a maximum 

distance code capable of correcting d=2t+l random errors. 

However due to present technology or applications only 

binary codes derived fr~m q-ary RS codes are of interest. 

For example, GF(q) will be represented as GF(2**m) where m 

is a positive integer. Since each code symbol is an m-tuple 

over GF(2), a t-error-correcting RS code is capable of 

correcting any error pattern that affects t or fewer m-bit 

symbols. In general, the RS code with error correcting 

capacity t can be used to correct any of the following 

errors: 

1) All single bursts of length b no matter where 
they start, if b<=m{t-1)+1. 

2) Two bursts of length no longer than b each, no 
matter where each burst starts, if 
b<=m[(t/2)-1]+1, or any p bursts of length no 
longer than b each, no matter where each 
burst starts, if b<=m[{t/p)-1]+1. 

(27,p.206) 

For example, when each binary bit is considered as a symbol 

only random errors can be detected. A burst of errors in t 

adjacent positions is corrected identical to t random 

positions. However when a m-tuple of binary bits is 
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considered a symbol, a t-error-correcting code can correct 

more than t binary symbols. Let m=5 and t=4 then a burst of 

length 16 cannot affect more than four m-bit symbols, and 

can be corrected by a four-symbol-correcting code. However, 

considered as random one binary bit errors, one would need a 

t>=l6 correcting code. 

Reed-Solomon codes are also implemented by algorithms 

that handle both errors and erasures. An erasure pattern is 

correctable if (and only if), by substituting all possible 

combinations of symbols at these erased symbols, only one 

results in a codeword. With a t-error-correcting code, any 

pattern of 2t erasures is correctable. This follows 

immediately from the fact that, with s=2t erasures, any two 

n-tuple resulting from different substitutions can differ at 

most at 2t digits. However the minimum distance is d=2t+l 

which means these two n-tuples can not both be codewords. 

Erasures are often compounded with non-erasure errors. 

Therefore there is a trade-off between the number of 

correctable errors and erasures. However a multiple-error-
. 

correcting code is capable of correcting any combination of 

t errors and s erasures as long as the minimum distance of 

the code is at least 2t+s+l<=d. Since the erasure positions 

are known, improvements are made in the capacity of the 

code. 

Now that sources and type of errors have been defined, 

one needs to design a coding strategy to achieve the 

capacity of the code. Generally speaking the longer the 
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block length n, the more storage the decoder requires, and 

the greater the minimum decoding delay. It is also generally 

true that the longer the code block the larger the class of 

errors to be corrected, hence the more complicated the 

decoding circuits or decoding procedures. However, the 

distribution of errors in longer code blocks becomes much 

more predictable, thereby permitting the use of codes with 

smaller redundancy while maintaining the same reliability. 

Therefore the actual length of the block will depend on the 

application. For example, for intramachine transmission, 

such as going in and out of an internal random-access 

storage, the primary coding requirements are very high 

reliability and speed. For intermachine data transmission, 

the primary requirements are still high reliability but also 

. high information rate. Since a decoding delay does not 

reduce throughput, one would tend to use longer codes with 

lower redundancy even though they require more decoding 

complexity. 

An optimal coding strategy can be achieved and the best 

code obtained, only after the designer evaluates several 

alternatives. The designer has control over the parameters, 

distance, length, and number of information symbols, which 

are all related by d=n-k+l. One main consideration is if 

the number of errors greater than or equal to the distance 

then the algorithm will either misdecode or fail to decode. 

A decoding failure is when the decoder will not decode the 

received word into any of the possible transmitted message 
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words. A decoding error is when the decoder decodes the 

received word into the wrong codeword. This simulation 

considers a decoding failure to be preferable to a decoding 

error. 

If a decoding algorithm decodes every possible received 

word into one of the possible transmitted codewords then it 

is a complete decoding algorithm. Since different 

applications have different requirements there are many 

courses of action besides full-power correction with block 

codes. 

One approach is error detection. The main advantage is 

the simplicity of its implementation. An error is detected 

if the received message yields a non-zero syndrome. For 

cyclic codes, a division circuit plus a test for zero 

constitutes a complete decoder. Error detection is an 

attractive means of error control provided it is possible 

for retransmission. On the other hand, an error due to 

permanent damage in the storage medium will not be 

successfully avoided by retransmission. 

Another approach is partial correction in the error

control scheme. One major reason is to minimize the 

decoding complexity. In the case of multiple-error-correc

tion, decoding complexity grows exponentially with the 

number of errors corrected. Thus, even if a given code can 

correct t>2 errors, one may still want to go through a 

double- error-correction procedure and test the syndromes 

for possible erroneous correction. If single or double 
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errors account for a large portion of the overall error 

rate, considerable reduction in average decoding delay can 

thereby be achieved. If more than two errors occur the 

correction algorithm can output a decoding failure message 

or try a more powerful correction procedure. 

Another approach is the use of erasures which tends to 

reduce the uncorrectable-error rate. "The amount of 

improvement is a function of the detailed statistics of the 

detected signals and of the thresholds that define the 

erasures (56,p.64)." The price of improvement is an 

increase in decoding complexity. When correcting com

binations of errors and erasures with a multiple-error

correcting code, one must perform the additional step of 

transforming the error syndromes in order to separate the 

erasures from the non-erasures before the ordinary decoding 

procedures can be applied. Another price of improvement is 

a decreased information rate. Since q symbols in a field are 

represented by m-tuples, in order to represent an unique 

erasure symbol an (m+l) bit is necessary. Therefore 

decreasing the efficiency of the code defined as R=k/n. 

Erasures are not considered in the simulation of this study. 

The main reason for exclusion is current literature still 

uses conventional algorithms enhanced to correct erasures 

developed by G.D. Forney, Jr. (19). 

The approach of this simulator is to use a combination 

of detection, partial correction, and full-power correction. 

The codeword is encoded then transmission is simulated. 
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During this phase, an error vector is added to the code

word. Continuing the example of Chapter II, then 

C(x) = (+8,+2,16,+2,0,0,0,0,0,0,0,0,2,3,2,1) 

E(x) = ( 0, 0, 0, 1,0,2,0,0,0,0,0,0,0,0,0,0) 

R{x) = (+8,+2,16,+3,0,2,0,0,0,0,0,0,2,3,2,1) 

the received word would be tested to see if it was 

codeword. If the syndromes indicate an error, 

decoder will attempt to locate the errors. Details 

decoder are discussed in the following chapters. 

( 4 • 2 ) 

a valid 

then the 

of the 



CHAPTER V 

STAGE I: CALCULATION OF THE SYNDROMES 

Extensive research has been done on decoding BCH codes, 

and efficient algorithms exist. Most of the current 

research has been focused upon reducing the numerical 

complexity of the conventional BCH or Reed-Solomon (RS) 

encoding/decoding algorithm. Since the encoding of RS code 

is performed block by block (k message symbols encoded to n 

code symbols), the received sequence is therefore decoded a 

block of n digits at a time. The basic function of a 

decoder is to test whether or not the received word is a 

codeword (or whether it is divisible by the generator 

polynomial G(x) of the code used at the encoder). Detection 

of an error and possible correction can be accomplished. 

The decoding is generally divided into three stages: 1) 

calculation of the syndromes, 2) calculation of error 

locator and error evaluator polynomials, and 3) evaluation 

of the calculated polynomials for the locations and values 

of the errors. This chapter deals only with the initial 

stage of calculating the syndromes. Major emphasis has been 

placed on evaluating the syndromes from the received vector. 

Since the syndromes contain all the information about the 

errors, efficient calculations of the syndromes is very 

37 
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important in the decoding process. Various methods will be 

introduced, however, if more details are desired, references 

will be cited. 

Matrix Multiplication 

One method of syndrome calculation is matrix 

multiplication. The codeword represented as a vector 

defined the syndrome equal to the parity check matrix times 

the transpose of the codeword. The parity check matrix M is 

an 2t*n matrix and the received vector R is an n-vector. 

The syndrome vector S is the product of M and R. "By 

definition, the i-th component of S is the dot product of 

the i-th row of M with R. Computing vector S as indicated 

requires 2tn multiplications and 2t(n-l) additions." 

(4,p.l95) 

This straightforward method was used to introduce the 

concept of syndrome as illustrated by Hamming's single

error-correcting code in Figure 1, each of the n columns of 

the parity check matrix must contain a different non-zero 

binary m-tuple, which is the location position of that 

symbol. As long as the n different symbols of the code are 

assigned different non-zero location numbers, the order of 

the error locations does not matter. For a single-error

correcting parity matrix, an efficient method is to 

rearrange the columns so each of the n error location 

positions is considered as a non-zero element in GF(2**m). 

Each element can be represented as a binary polynomial of 
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degree < m. Appendix A explains how to construct such a 

field. For example if m=4 and if the primitive polynomial 

is to be (x**4)+x+1, the parity check matrix for a single-

error-correction code of block length 15 can be given as 

(5.1) 
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 

M = 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 

M .: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w 

Since w is a root of a primitive polynomial, every non-zero 

element in GF(l6) is a.power of w. Therefore one can assign 

the successive digits of the error location positions to 

successive powers of w. 

Such labeling also proves advantageous for multiple

error-correcting BCH codes. In order to correct additional 

errors, one needs additional information obtained by adding 

more rows to the parity check matrix. In the non-binary 

case, the parity check matrix is given by 

1 

M = 1 

1 

w 

w 
2 

2 
w 

2 2 
(w ) 

2t 2 2t 
w ( w ) 

n-1 
w 

n-1 2 
(w ) 

n-1 2t 
(w ) 

( 5. 2) 

The first m digits of the parity check matrix give the first 

syndrome, the sum of the error locations, the second m 

digits give the second syndrome, the sum of the squares of 
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the error locations, etc. Note in the binary case, all 

even powers can be computed and need not be columns of the 

parity check matrix although there is no harm in including 

them. 

( 5 • 3 ) 
2 2 2 2 2 

(i + j) = i + 2ij + j = i + j mod 2 

2 
or (S ) = S 

1 2 

Polynomial Division 

The codeword viewed as a polynomial also assigns the 

successive digits of the error positions to successive 

powers of w. This assignment of location numbers has the 

great advantage that the syndrome of the received vector 

becomes a polynomial in w: 

T 
H R 

n-1 

=L 
i=O 

j i j 
R (w ) = R ( w 

i 

for 1 <= j <= d-1 

(5.4} 

) = s 
i 

Also viewing the calculation of syndromes as evaluation of 

polynomials enables one to apply many existing improved 

algorithms for polynomial operations. 

Generally the fastest method of calculating the 

syndromes from the received vector R(x) is by hardware 

implementation. By the division algorithm, 

( 5 • 5 ) 
R(x) = Q(x)M(i}(x) + r(x) ; degree r(x) < M(i)(x) 

In a single-error-correcting codes G(x)=M(i)(x) or the 
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irreducible polynomial of degree m which is the minimal 

polynomial of w, the M(i)(w)=O and R(x)=r(x). 

given by 

Thus after 

the division, the syndrome is 

polynomial r(x), evaluated at x=w. In 

the remainder 

multiple-error-

correcting codes, these syndromes or power sums can be 

computed from the received word separately. To compute the 

first syndrome, one divides R(x} by M(l}(x}, the minimal 

polynomial of w, to obtain the remainder of r 1 (x}. To 

compute the i-th syndrome, one divides R(x} by M(i}(x}, the 

minimal polynomial of w**i. Figure 8 is an example of 

circuitry needed for the first stage of the decoder for 

multiple-error-correcting BCH code defined on GF(l6} defined 

by (x**4)+x+l (see Appendix A). 

One advantage of the polynomial representation over the 

matrix representation is the parity check matrix need not be 

stored therefore avoiding table-lookup. Another advantage 

aside from speed, is that the syndrome calculation can be 

implemented by the division algorithm used in the encoder 

thus a possible reduction in total hardware cost of the 

encoder/decoder system. 

Other very 

calculation of 

representation 

evaluation of 

Direct Polynomial Evaluation 

economical methods include the direct 

the syndromes by evaluating the polynomial 

of the received word. Algorithms for 

polynomials differ in the amount of 

computation required, the amount of storage required, and 
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~R=r ,r , ••• ,r ----------~To Stage III 
0 1 14 

3 
w 

2 
w s, 
w 

1 

r [ ;:g 3 

l w 
0 

2 
w st 0 

w 

1 

3 
w 

0 0 

3 (w3) 3 z. 3 
s = r(w } = r + r + r ( w ) + r (w3) 

3 0 1 2 3 
3 

fl 
lo q 

= r + r w + r w + r w 
0 1 2 3 

3 2. 3 
(w 3} = r + r w + r (w +w ) + r +w 

0 1 2 3 
2.. (r )w3 = r + r w + r w + + r + r 

0 3 2 1 2 3 

Figure 8. Calculating the Syndromes by Division Circuitry 
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the effects of arithmetic roundoff. It is somewhat dif

ficult to compare various algorithms because of the trade

offs between these various factors that depend on the 

hardware of software that is available. However perhaps the 

most straightforward way to solve for the syndrome is to 

compute each term and add it to the sum of the others 

already computed. The program design logic and Figure 9 and 

example in Figure 10 evaluates polynomials using 2n-l 

multiplications and n additions. However a more efficient 

algorithm exists. Figure 11 illustrates the program design 

logic for Horner's method of evaluating R(w**i) by using a 

simple factorization of R. This reduces the computations to 

n multiplications and n additions. Finally the polynomial 

evaluation must be repeated for successive powers of w 

depending on the error correcting capacity of the code. 

Fast Fourier Transform 

This repeated evaluation of roots of unity suggests the 

use of a transform method. These methods have proven to be 

useful when an application such as decoding allows sequences 

to be processed in blocks. The most versatile transform is 

the discrete Fourier transform (DFT) which has been defined 

in finite Galois fields (45) and much more familiarly in the 

complex number fields (17). A basic introduction and 

program design logic is given in Appendix C. Investigation 

into transforms defined in the arithmetic of finite fields 

developed so truncation and rounding effects when performing 



Input: The coefficients of P(x) in the array R 
X and N>=l 

Output: S, the value of P(x) 

S <-- R(O) + R(l) * X 
XPOWER <-- X 
For· I <-- 2 to N do 

XPOWER <-- 'xPOWER * X 
End 

Figure 9. Polynomial Evaluation --Term by Term 

Received word = (+8,+2,-1,+3,0,2,0,0,0,9~0,0,2,3,2,1) 

0 1 2 3 5 12 13 14 15 
S(x) =Bx + 2x -lx + 3x + 2x + 2x + 3x + 2x + lx 
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S(w) =8(1)+2(6)-(2)+3(12)+2(7)+2(13)+3(10)+2(9)+(3)mod 17=9 
2 

S(w )=8(1)+2(2)-(4)+3(8)+2(15)+2(14)+3(11)+2(5)+(10)mod 17=4 
3 3 3 2 3 3 

S(w )= 8(1)+2(w )-(w ) +3(w ) ••• = 0 
4 

S(w )= 4 

Figure 10. Syndrome Calculation· by Polynomial Evaluation 

P(x) = [ ••• ( (a x + a )x +-a )x + ••• + a ]x + a 
n n-1 n-2 1 0 

Input: The coefficients of P(x) in the array R 
X and N>=l 

Output: S, the value of P(x) 

S <-- R(N) 
For I <-- N-1 to 0 by -1 

S <-- S * X+ R(I) 

Figure 11. Polynomial Evaluation--Horner's Method 
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polynomial operations by transform methods in the complex 

number field may be avoided. In any practical application, 

such as coding theory, the message symbols are from a finite 

field, and therefore without loss of generality, the data 

can be considered to be integers with some upper bound. By 

special choices of three requirements: 1) the length N, 2) 

the modulus F, and 3) the primitive root w, it is possible 

to develop improved transform algorithms known as number 

theoretic transforms (NTT). 

The first improvement is the choice of n or the length 

of the polynomial evaluated. The best choice is for n to be 

a power of two. If n can not be a power of two, the 

disadvantage of such a transform method over GF(2**m) is 

that the transform length must be an odd number so that the 

most efficient fast Fourier transform (FFT) cannot be used. 

The next choice is values of n that are highly composite. 

Winograd suggested a method for computing transforms over 

GF(2**m) for larger values of n. 

Let n= n1• n~ where (n 1 ,n~) = 1. Using the Chinese 
remainder theorem, one can represent every integer 
i E: {O,l, ••• ,n-1} by a pair of integers ( i 1 ,iz.) 

where i 1 = i mod n1 , i?. = i mod nz. 

Consequently: 

ij (i 1 ,iz)(j 1 ,j 2 ) (i 1 j 1 ,iz.jz.> (i 1 j 1 ,0) (O,i:dz.> 
w =w =w =w , w 

This means that the computation of DFT of n=n 1 *nL 
points can be decomposed into computing the DFT 
for n points in which each multiplication is 
replaced by computing the DFT of n points. 

(57,p.l005) 
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To avoid direct computation of S , a n-point transform 

over GF(2**m) defined in equation (5.1) can be decomposed 

into a multidimensional transform over GF(2**m) as 

illustrated in Figure 12. However observe in Stage r, one 

needs only compute the first d-1 points of the transform. 

An example is a block length of n=255 over GF(2**8) is 

n=n 1 n 2 n~ =17*5*3. Then by suitably applying the above 

technique for each factor of n, the original syndrome form 

can be reconstituted by using the Chinese remainder theorem 

as stated in Appendix B. 

Another source of improvements to make these transforms 

computationally efficient is in the choice of modulo F. A 

systematic investigation of good choices of F, for which the 

maximum transform length of N is not too small reveals some 

interesting results. Of course, one would like F to have a 

minimal binary bit representation in order to facilitate 

arithmetic modulo F. The first possibility is 2**k; it has 

a prime factor two and therefore the maximum possible 

transform length is one. For (2**k)-l, let k be a composite 

PQ, where P is prime. Then (2**P)-l divides (2**PQ)-l and 

the maximum possible length of the transform will be 

governed by the length possible for (2**P)-l. Numbers of 

this form are known as Mersenne numbers. Mersenne number 

transforms are not highly composite, and therefore fast 

FFT-type computational algorithms do not exist to compute 

the transforms. For (2**k)+l, say k is odd, then three 
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Given integer j = (j , j , •• 
1 2 

for l<=k<=r 

(0,0 ••• 0,1,0 ••• 0) 

.,j ) where j = J mod n 
r k k 

then w = w where 1 is the kth position 
k is the primitive n th root of unity 

k 
then 

s = s for (l<=j<=r) 
j ( j' ,jz., ••• , j,.) 

n, -1 n1 -l nr-1 i j i j i 
= I: I: I: a 

( • • • ) WI ' 
w2 , ••• , w,. 

i =0 
' 

it =0 

The r stages 

Stage 1 

1 n,.,-1 
s = ~ 

( i 1 , i2. ••• ~- 1 jr) £.J 
ir =0 

Stage 2 

2 n~~l 

s = ~ 
(i• ,ia. • .j j,..) 

Stage r 

r 
s = s 

j (j, 

... , i =0 
r-1 

ir =0 
1, , 1 2 , ••• , 1,.. 

a 
(i', iz. ••• i,..) 

for O<=j,.,<=n,.-1 
r 

i,._, j r-1 
w for O<=j <=n -1 

j r ) r -1 ,.._ I ,._ I 

r-1 i 1 j 1 
s w for l<=j<=d-1 

(i, ,jz··· j,..) · 1 

Figure 12. Multidimensional Transform Over GF(2**m) 

j 
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divides (2**k)+l and the largest possible transform length 

is two. Thus k is even. Integers of the form (2**b)+l where 

b is (2**t) and t is a positive integer are known as Fermat 

numbers. "Fermat numbers seem to be optimal in the sense of 

having transforms whose length is interesting while word 

size is moderate." (l,p.90) Ft is called the t-th Fermat 

number, and it seems only the first five are prime and all 

the others are composite. The first few values are 

FO =3 t 
Fl = 5 2 b 
F2 = 17 Ft =2 + 1 =2 +1 
F3 = 257 t 
F4 = 65 537 where b= 2 

F5 = 4 294 967 297 =641 * 6 700 417 
F6 = 274 177 * 67 280 421 310 721 

(5.6) 

Number theoretic transforms with a Fermat number as a 

modulus are called Fermat number transforms (FNT). 

In software or hardware realization of the FNT, one 

ordinarily defines a binary arithmetic modulo Ft. The 

utilization of such a modulus requires b+l bits. The 

representation of the quantity 2**b=-l modulo Ft requires 

the (b+l)th bit. In order to simplify modular arithmetic 

operations, one can limit the realization of the FNT to b-

bit arithmetic. This is possible especially in an 

application such as coding theory. No input bits will be in 

error due to the message bits being defined on a b-bit 

representation. However there may be some error in 

representing the redundant check bits. Realistically, the 

probability that this number will appear after the 
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arithmetical operations during the transform is approx

imately 2**-b. If an occasional error is permissible, for 

these cases, probablily there is no need for any extra 

hardware to represent 2**b. If the need exists, an extra 

bit could be used to represent 2**b at the expense of a more 

complicated hardware. 

The following discussion is based on the b-bit 

representation of integers by Agarwal and Burrus (1). 

Another binary arithmetic for the Fermat number transform is 

suggested by Leibowitz (26) which is only mentioned here as 

a reference to indicate that other possible implementations 

exist. Various basic arithmetic examples are illustrated in 

Figure 13. To negate a number, one has to complement each 

bit and add two to the result. When one adds two b-bit 

integers, one obtains a b-bit integer and possibly a carry 

bit. The carry bit represents 2**b=-l modulo a Fermat 

prime. To implement arithmetic modulo Ft, one adds then 

subtracts the carry bit. Subtraction is implemented as an 

addition by first negating the subtrahend and then adding 

the two b-bit integers. When one multiplies two b-bit 

integers in general, one gets a 2b-bit product. Let C-low be 

the b-bit low-order part of the product and C-high be the 

b-bit high order part. Thus all one has to do is subtract 

the high order register from the low order register. When 

multipling by a power of 2, these computations are 

particularly simple to implement in arithmetic modulus the 

Fermat number. All one needs to do is left-shift the 



A) Negation 

(mod 17): 4 = 0100; -4 = 1011 = 1101 = 13 
+ 10 

1101 

B) Addition 

(mod 17): 10 + 9 = 17 = 2 mod 17 1010 
+1001 

10011 
1 

0010 = 2 

C) Subtraction 

(mod 17): 10- 4 = 6 

D) Multiplication 

1010 
+1101 

10111 
1 

0110 = 6 

(mod 17): 13 * 9 = 117 = 15 mod 17 = 0111 0101 
High Low 

Low 0101 
(-High) 1010 

1111 = 15 

E) Multiplication By Power of Two 

(mod 17): 11 * (2**3) = 88 = 3 mod 17 

11 = 0000 1011 Low 1000 
Shift left 3 positions (-High) 1100 

0101 1000 10100 
High Low 1 

0011 = 3 

Figure 13. Arithmetical Operations Performed Modulus 
Fermat Prime 
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contents of the register by k bits and subtract the k 

overflow bits that are in the high register. Division in a 

finite field is multiplication by its inverse. 

Finally, since multiplications take most of the 

computational effort in calculating the FFT, it is important 

that the multiplication by powers of w be a simple 

operation. This is possible if the powers of w have very 

few bit binary representation; preferably also a power of 

two, where multiplication by a power of w reduces to a word 

shift. With this in mind, one considers transform lengths 

possible in arithmetic modulo various Fermat numbers with 

the corresponding values of the root of unity. Since Fermat 

numbers up to F4 are prime, one can have an FNT for any 

length N=2**m, m<=b. For these Fermat primes the integer 3 

is an w of order N=2**b, allowing the largest possible 

transform length. However there are other integers which 

are of order 2**b. If w is taken as 2 or a power of 2, all 

the powers of w would be some power of 2 and for these 

cases, the FNT can be computed very efficiently. These 

transforms are called Rader transforms (49). 

For a better understanding of these prime moduli 

consider an example for F2. If the modulus is M=l7 the 3 

and 6 are primitive roots that will generate the entire 

field as shown in Appendix A. The value 2 is of order 8 and 

4 is of order 4. Also note that 6=~in the same sense that 

(6**2)=2(modl7). Other excellent choices of the root of 

unity are listed in Figure 14. 



F2 and N=2**4 
3 1 

!2=2 -2 =6 

F3 and N=2**5 
6 2 

~ = 2 - 2 =60 

F4 and N=2**6 
12 4 

f2 = 2 - 2 

F3 and N=2**6 

. 4[2 = 35 

F4 and N=2**7 

/2 =4938 

F3 and N=2**7 

812= 42 

F4 and N=2**8 

8(2 =5574. 

Figure 14. Roots of Unity 

R(x) = (+8,+2,16,+3,0,2,0,0,0,0,0,0,2,3,2,1 ) . 
R(w•)= (5,9,4,0,4,1,15,8,0,6,1,8,14,1,4,14} 

Figure 15. Calculating the Syndromes by Transform Method 

t b 

3 8 

4 16 

5 32 

6 64 

TABLE I 

PARAMETERS FOR SEVERAL POSSIBLE 
IMPLEMENTATIONS FOR FNT 

Ft N;w=2 N;w=./2 N Max 

2**8 +1 16 32 256 

2**16+1 32 64 65536 

2**32+1 64 128 128 

2**64+1 128 256 256 

w for N Max 

3 

3 

!2 
/2 
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In summary, Table I gives values of N for the two most 

important values of w, and also gives the maximum possible N 

for the most important values of b. However, the parameters 

chosen depends on the application, but hopefully this 

introduction indicates careful study can improve numerical 

complexity considerably. Continuing ·the example in the 

previous chapters, Figure 15 finds the syndromes by using a 

fast Fourier transform with its improvements. The program 

design logic and numerical complexity for a general fast 

Fourier transform is included in Appendix C since this 

algorithm is also used in Stage III. 

Summary 

The final results depend on the application. If small 

values of n and t are used, the implementation by linear 

feedback shift registers or direct polynomial evaluation 

still may be feasible. However as the complexity of the 

code increases the new transform method has been shown (51) 

to reduce numerical complexity substantially. This method 

applies to either a software or hardware implementation. 

However by the end of Stage I regardless of method 

implemented, the decoder has found the syndromes 

( 5. 7) 
d-1 k 

s , s , . . . , s = L y X 
1 2 d-1 i i 

i=l 

Thus the added error can be described by a vector of values 

and locations of its nonzero components. The location 
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will be given in terms of an error location value, which is 

simply w**(i-1) for the i-th symbol. Thus each nonzero 

component of the error vector is described by a pair of 

field elements, Y; (the value of the component) and x: (the 

error location number). Y is an element of GF(p) and X is 

an element of GF(p**m). The syndromes are calculated from 

the received vector, and in order to correct the errors, the 

pair (Y • X•) must be found for each of the t or fewer 
A ' A 

errors. The syndromes are called the weighted power sum 

symmetric functions. The syndromes consists of a set of t 

equations in t unknowns. Any method of solving these 

equations is the basis an error-correction procedure (43). 

It appears impossible to solve the equations by any direct 

method, and trying all combinations of t of the q field 

would require too many computations. There is however, an 

interesting solution which is the next step in the decoding 

process. 



CHAPTER VI 

STAGE II: CALCULATION OF THE ERROR LOCATOR 

AND THE ERROR EVALUATOR POLYNOMIALS 

A major stage in a typical decoding procedure for 

Bose-Chaudhuri-Hocquenghem (BCH) codes or Reed-Solomon (RS) 

codes is the calculation of the error locator and the error 

evaluator polynomials (44, 8). This chapter uses the 

syndromes calculated in Stage I to determine these two 

polynomials that facilitate in finding the location and the 

values of the errors in Stage III. The calculation of these 

polynomials is the most complex stage of the decoding 

procedure. Several methods are introduced, however, if more 
• 

details are desired, references will be cited. 

Simultaneous Equations 

At the end of Stage I, the syndromes of the received 

vector were calculated. With the usual notation, one 

defines 

(6.1) 

Received vector = Code vector + Error vector 

R(x) = L: \/ C(x) = L: \/ E(x) = L\/ 
If the error word consists of an error of value Y at 

55 
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location x1 and an error of value Y at location X , •.• , 

then the ~yndrome is defined 

j 
y X 

i i 
= s 

( 6. 2) 

j 

In general, a solution to the system of equations in 

Equation 6.2 is the basis for the error-correction 

procedure. This stage is complicated by the fact that these 

non-linear equations will have many solutions. Using a 

vector representation and maximum likehood decoding (23, 8) 

seems impossible. Each solution corresponds to different 

error patterns in the same coset of the additive group of 

codewords (52, 8). The decoder must find a solution where 

the error vector has as small a weight v as possible. The 

weight of a vector is defined as the number of non-zero 

elements in that vector (23). There are only a finite 

number of possible solutions, and the correct solution could 

be found by simply trying all possible solutions. In 

practical application, however, there are simply too many 

possible solutions for this to be an effective method. 

There is, however, an effective compromise. 

Suppose that v<=t errors actually occur. These are 

described by v pairs (Y~,X~ ), for which neither Y nor X is 

zero. In order to make a total of t pairs, one can add 

t-v pairs of zeros, that is 

X = Y = 0 for v < i <= t 
i i 

( 6. 3) 



Then let the equation 

(X-X ) (X-X ) • • • (X-X ) = ~- cr (X) + ••• 
1 2 t t t-1 

define the quantities <f1, cr 2,. • • , crt. 

t-1 
+cf (X) 

1 
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(6.4) 
t 

+ (X) 

These are the 

elementary symmetric functions defined in more detail in 

Appendix D. Then if x is substituted for X in Equation 

6.4, both sides are zero. This is also true if both sides 

are multiplied by Y X • Thus relating the S's and the 's 

gives 

s cr 
j t 

·s (f + • • • 
j+l t-1 

t-1 
+ (-1) s a' 

j+t-1 1 

(6.5) 
t 

+ ( -1) s =0 
j+t 

which must hold for all j. Since S is found from the 

parity check calculations for l<=j<=2t-l, a set of t 

equations in which all the S are known can be found: j=l in 

the first and j=t-1 in the last (42). 

Before presenting more complex theory, a basic example 

is necessary. For the binary case, the Y which can not be 

zero, must be one. Therefore 

(6.6) 

j 
S = X 

j i 

Thus the parity checks give the first t odd power-sum 

symmetric functions. The proof that it is indeed possible 

to solve for the elementary symmetric functions from the 

power-sum symmetric functions is given by Theorem 1 in 

Figure 16. For example, a double-error-correcting code in 
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GF(2) has the following solutions illustrated in Figure 

17. This figure gives a possible decoding scheme to use in 

order to keep decoding complexity to a minimum. This scheme 

is very practical especially if retransmission is possible 

when more than two errors are detected. In fact E. R. 

Berlekamp (8) has implemented a complete decoding scheme for 

double error correcting binary BCH codes. 

In general, the following is ~n iterative algorithm for 

finding ~(z), for a BCH code of designed distanced, 

assuming v errors occur where v<=t. The t-error correcting 

BCH code give, as the parity check on received sequences, 

the odd power-sum symmetric functions up to Szi-1 and the 

intermediate even functions can be calculated simply from 

these. If it is assumed that no more than t errors occur, 

then by Theorem 1 in Figure 16, with k=t, it is either 

possible to solve for the error position numbers, or there 

are t-2 or fewer errors. In the latter case ~t-l=Ut=O and 

two equations can be dropped, giving a set of t-2 equations 

in t-2 unknowns to which Theorem 1 can be applied again. 

Eventually, if there were any errors at all, a set of 

equations that can be solved for the elementary symmetric 

functions of the error positions will be found (42). 

This step involves a certain amount of trial and error 

because it is possible to solve the equations and obtain 

correct solutions only when the number of equations used 

equals or exceeds by one the number of errors that actually 

occur. This step might be carried out instead by starting 



The k*k Matrix 

1 0 0 0 0 0 

s s 1 0 0 0 
2 1 

s s s s 1 0 
4 3 2 1 

M = . . . ... . .. 0 
k 

s s ... s 
2k-4 2k-5 . . . k-3 

s s . . . s 
2k-2 2k-3 ... k-1 

Figure 16. Theorem 1 

s - () = 0 
1 1 

s - s ~ + s cr - 3u = o 
3 2 1 1 2 3 

If s, = 53 = 0 no errors have occurred 
3 

correct single error If s ;II! 0, s = s . X = S ' 1 3 1 1 1 

If s ;II! 0 and Tr (s~ + 
5
;, s1:)= o; Correct double error 

1 

6'(x) = (X - X1 ) (X - Xz.) 

<T( z) = 1 +(fz+<fz where z = 1/x 
1 2 

2 2 
= 1 + ( s ) z + 53+ s 

1 1 
z 

s, 
If s = 0 and Tr (s,3 

:,3 s1 s~) = 0 
1 

or s + s S ;It 0; 

More than two errors have occurred 

Figure 17. Decoding Scheme for Double-Error-Correcting 
BCH Code 
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with the assumption that two errors occurred, solving, and 

checking the solution. If the solution does not check, four 

errors would be assumed, and so forth. When a set of 

answers that checks occur, it must be the correct solution. 

This step amounts to solving, at most, a set of t 

simultaneous linear equations. But one may have to try t-1 

times since the actual number of errors present may be 

anywhere from one to t. Therefore this method is not 

practical unless t is small, but introduced because of its 

simplicity. Also this error-correction procedure has 

advantages for binary codes, but apparently can not be 

generalized for q-ary codes. 

Background Theory 

However much research as been done on solving these 

simultaneous equations. It turns out to be advantageous to 

replace the ordering of the position locations and define 

the error locator polynomial ~(z} based on the elementary 

symmetric functions in Equation 6.4 as follows 

( 6. 7} 
-1 -1 -1 

For (w w , . . . , w } then 
0 1 n 

v 
cJ( z} =n ( 1 - X z 

i 
i=1 

v i 
= L crz a' =1 

i 0 
i=O 

v 
=1 + rr z + . . . +cr'z 

1 v 
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Therefore the roots of a'(z) are the reciprocals of the 

locations or the X~ values.-

Once the position of the error has been determined, 

then it is necessary to determine the value of the error in 

order for correction to take place. Therefore if E~=O, then 

an error has occurred in position Xlz, and V={w~ :e;~O}. The 

set of error locations and the number of elements in V will 

be denoted by v. Using the above notation, one can rewrite 

the syndrome vector S(x). 

v 
S(x) =- L: 

i=l 

Y• X· z 
4 ... 

1 - X z 
i 

(6.8) 

The syndrome polynomial can be expressed in this form 

due to the reordering of the error positions. Figure 18 is 

provided to aide in the theoretical background if necessary 

or Berlekamp (8) is an excellent reference. 

Therefore the error evaluator polynomial is derived by 

multiplying the error locator polynomial and the syndrome 

polynomial as indicated in Equation 6.5. Thus relating the 

S's and the ~'s gives the following equations defined in 

Figure 19. Now observe that if one could somehow find the 

polynomials d(z) and ~z), one could recover the transmitted 

codeword C from the received word R. Of course there are 

efficient algorithms for computing ~(z) and ~z), which are 

based on the key equations in Figure 19. That is the 

solution can be found provided that one makes the additional 

assumption that v, the number of errors that actually 
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n-1 -j 
s = L: R w for j=1,2, ••• ,2t and 

j i i -1 -1 -1 
i=O and w =(w , w ' ... , w ) 

i 0 1 n-1 

2t-1 
S(x} = s + s X + . . . + s X + . . . 

1 2 2t 

2t j-1 
= L: s X 

j 
j=1 

2t j-i n-1 -j 
= L: X L: R w 

i i 
j=1 i=O 

n-1 2t j-1 -j 
= L: R L: X w 

i i 
i=O j=1 

n-1 2t -2t 
= L: R X w -1 

i 
;-t) i=O (x -

n-1 2t 
= L: R -1 mod X 

i • 
i=O -.c. 

X - w 

n-1 2t 
- L: E mod X 

= . 
i=O 

-.c.. 
X - w 

Figure 18. Definition of Syndrome 



Key Equation in General Theory 

v v 
s ( z) (f( z) = -r: Y·X•z 1T ( 1- X z 

"' c. j -----
i=l 1 - X· z .j=l 

A. 

v v 
= -y: y X z Tr ( 1- X z ) 

i i j. 
i=1 j#i 

= w (z) 

Key Equation in Berlekamp Algorithm 

For ease of computation add O'"(z) to both sides 
2t+l 

Reduce modulus z since the decoder only knows 
the first 2t powers of z 

2t+1 
( 1 + s ( z ) ) cr ( z ) = . "' ( z ) mod z 

Figure 19. Key Equations of Decoding BCH codes 
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occurred, satisfies v<=t or v<=[d-1/2]. Notice that the 

error evaluator polynomial W(z) depends both on the 

locations and the values of the errors, although the error 

locator ~(z) depends only on the locations of the errors. 

Therefore by defining error locator and error evaluator 

polynomials, one defines the generator function of the 

sequence. Since ~0 =1, the generator function for the 

quotient W(z)/~(z) is well defined. Therefore there are 

basically two approaches to find ~(z) and w(z) based on the 

key equation derived by the elementary symmetric functions. 

The solution can be obtained by using continued fractions 

(32, 55) or by using Berlekamp's algorithm to solve the key 

equation (8, 34). 

Euclidean Algorithm 

From the theoretical standpoint, both approaches use 

the Euclidean algorithm given in Appendix E. The Euclidean 

algorithm is used to prove that the factorization of 

polynomials into irreducible polynomials is unique (except 

for scalar multiples) over any field and that a polynomial 

of degree d can not have more than d roots in any field. 

This fact is needed to prove that the error locator 

polynomial d(z} cannot have more roots than its degree. If 

it did, then the entire decoding procedure would be invalid, 

for several different pairs of error locations might 

conceivably be reciprocal roots of the same equation. 
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From the practical standpoint, the Euclidean algorithm 

is a simple and straightforward algorithm for finding the 

greatest common divisor (gcd) between two integers or 

two polynomials, or for finding the continued fractions 

expansion of a real number. Relative to decoding RS codes, 

the Euclidean algorithm is important because of one of 

its modifications. The method of convergents of continued 

fractions provides the basis for one of the most efficient 

methods for implementing division in finite fields. Thus in 

the decoding process a(z) and w(z) can be found merely by 

applying Euclidean algorithm to x**2t and S(x) and stopping 

at the index i as soon as the degree of the remainder drops 

below t. Thus setting 

(6.9) 

~(z) = t (z) 
i 

and W(z) = r (z) 
i 

Many algorithms are known for computing greatest common 

denominator. A survey of classical techniques for gcd's was 

conducted by D. E. Knuth (55). An excellent algorithm is 

given in Aho, Hopcroft, and Ullman (4}. A generally 

accepted method is E. R. Berlekamp's iterative algorithm 

using continued fractions in GF(p**m). This algorithm can 

be easily implemented on the computer (8). This algorithm 

is the one used to define the Euclidean algorithm in 

Appendix E. Table II illustrates the example of finding the 

polynomials by the Euclidean Algorithm. 
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TABLE II 

CALCULATING THE POLYNOMIALS BY 
THE EUCLIDEAN ALGORITHM 

0 

3 

r • 
)J 

4 
X 

1 4x + 4x + 9 

2 
4x 16x + 2x 

116• 2 +lsx ~J J 3.··: 9 J 
3 2 

7x +13x +16 llx +lx +2x +4 2 

3 4 
4x + 4x + 9 X 0 

TABLE III 

CALCULATING THE POLYNOMIALS BY 
THE BERLEKAMP ALGORITHM 

2 3 4 
S = 1 + 9z + 4z + Oz + 4z + . 

k D(k) B(k} CS'(k} 1:"(k} W( k) 

0 0 0 1 1 1 

1 1 1 1+ 8z 2 1 

2 1 0 1+ 9z 15+z 1+ z 
2 

3 2 1 1+13z+l5z 9+13z 1+5z 
2 2 2 

4 2 0 1+15z+l6z 4+lz+9z 1+7z+2z 

q • 
.... 

13x 

13x + 9 

llx +13 

lOx +13 

66 

<(( k) A(k) 

0 9 

2 8 

15 2 

9+9z 13 

4+3z Stop 
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Berlekamp Algorithm 

The last method of locating and evaluating the errors 

is also based on using the generalized Newton's identities. 

This method is known as the Berlekamp algorithm for solving 

the key equation. For a more theoretical background and a 

heuristic solution of the key equation in more detail, one 

can refer to the original work by E.R. Berlekamp (8). The 

decoder can solve the key equation given in Figure 19 by 

using the program design logic given in Figure 20. This 

algorithm is the complete second stage of the decoder. 

Given S(z), one can find both cr(z) and w(z) from these 

equations. The unknown polynomials crtz) and W(z) both have 

degrees <= v, the number of errors that actually occurred. 

The algorithm proceeds recursively and includes many 

conditions that ensures the smallest degree polynomials are 

found. Table III illustrates the example of finding the 

polynomials by the Berlekamp algorithm. 

Summary 

All the methods presented form the theoretical 

background for Berlekamp's algorithm. This algorithm is 

basically an improvement by Berlekamp on his own continued 

fractions algorithm. However any of the methods presented 

can be used to find the error locator and error evaluator 

polynomials. In comparison, Aho, Hopcroft, and Ullman (4) 

describe an algorithm which computes the 

divisor of two polynomials of degree n in 

greatest common 
a 

Order (nlog n) 



Initially define: (f( 0 )·=1 
f(O)=O 

Proceed recursively as follows: 

~(0)=1 
D(O)=O 

If S is unknown, stop; Otherwise 
k+l 

W( 0) =1 
B(O)=O 

k+l 
Define 6 (k) and the. coefficient of z 

l· in the product (l+S) and <l(k) 

G'"(k+l) = Cl(k) - ~(k)*~*T<k> 

(JJ(k+l) = W(k) A ( k) *z* (( k) 

If [A (k)=O] I [D(k)>(k+l)/2] I [A(k)=O & D(k)=(k+l)/2 

D(k+l) = D(k) 

B(k+l) = B(k) 

"l(k+l) = z*'t(k) 

r<k+l) = z* ((k) 

68 

& B(k)=O] 

But if [A (k)=O] & [ (D(k)<(k+l)/2) I (D(k)=(k+l)/2) & B(k)=l ) ] 

D(k+l) = k + 1 - D(k) 

B(k+l) = 1 - B(k) 

7(k+l) = cf'(k)/A (k) 
' 1 

r< k + 1 ) = w < k ) I .6. < k ) 
1 

Figure 20. Berlekamp Algorithm 
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steps. By using this modified version of the Euclidean 

algorithm, Justesen (25) shows that a t-error-correcting 

Reed-Solomon code of length n can be decoded in Order 

(nlog2n) arithmetic operations. 

Similarly, a primitive binary BCH code of length n can 

be decoded up to its designed distance in Order(nlogn) 

arithmetic operations. These results are better than those 

obtained with the Euclidean algorithm, but unfortunately 

only for excessively large values of n. For practical 

purposes the original version of the Berlekamp algorithm is 

probably the fastest, although this depends on the machinery 

available for the decoding. Nevertheless, decoding using 

the Euclidean algorithm is by far the simplest to 

understand, and is certainly at least comparable in speed 

with the other methods (for n<l0**6) (38). However, by the 

end of Stage II regardless of method implemented, the 

decoder has found the error locator and the error evaluator 

polynomials. 



CHAPTER VII 

STAGE III: EVALUATION OF ERROR 

LOCATOR AND ERROR EVALUATOR POLYNOMIALS 

The final stage in a typical decoding procedure for 

Bose-Chaudhuri-Hocquenghem (BCH) codes or Reed-Solomon (RS) 

codes is the evaluation of the error locator polynomial and 

error evaluator polynomial. This stage can be divided 

essentially into two steps: 1) finding the error locations 

and 2) finding the error values if necessary. Once the 

roots of the error locator polynomial are found, the 

location of the errors are known. Generally, there are 

several methods that find the roots of the e~ror locator 

polynomial. By Peterson's decoding procedure, each nonzero 

element of the field is generated and substituted in a trial 

and error search for the roots. This stage turned out to be 

the most time consuming. This chapter will discuss some of 

the solutions found to reduce the numerical complexity of 

Stage III. One solution was suggested by R.T. Chien (15) 

and another solution is based on transform methods. However 

even though the decoder knows the error locations, it is 

difficult to correct the errors immediately because the 

values of the errors still needs to be determined. It turns 

out to be simpler to wait until the erroneous symbols leave 
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the received word buffer, and then correct the errors as 

they leave. Thus the decoding procedure is complete. 

Factoring Polynomials 

The location of the errors depends on the roots of the 

error locator polynomial, ~(z). If ~(z) has degree one or 

two, the zeros can be found directly. Over GF(2**m) 

quadratic equations can be solved almost as·easily as linear 

equations. The following references on factoring polynomials 

over finite fields are relevant: Berlekamp (6, 7, 8), Chien 

et al. (14), and McEliece (37). 

Chien Search 

In general the simplest technique is just to test each 

power of w in turn to see if it is a zero of the error 

locator polynomial shown in Equation (6.7). This part of 

the decoding is often called the Chien search. This 

approach avoids the explicit solution of the error locator 

polynomial ~(z), whose roots are the reciprocal of the error 

locations. The Chien search may be used to test each of the 

locations to see if the symbol in the position X~ now 

leaving the buffer is a reciprocal root of the ~(z). 

By examining the relationship between the coefficients 

of a(z) ·and the roots of this polynomial, Chien observed 

that the "coefficients are homogeneous sums of square free 

products of the roots of order d-1." (15,p.361) He used 

this homogeneous property to develop a way to obtain all 
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the roots of (z} by counting and by successive trans-

formations. To simplify circuitry, the element to be 

detected is chosen to be the unit element of GF(2**m}, one 

sees that 

(7.1} 
1 2 t 

O"(z) = 1 + crz + "(j z + . . . (fz = 0 
1 2 t 

or 

t i = 1 2 t 

:E (j z (fz + cr z + +rJz = 1 
k 1 2 t 

k=l 

If the transformation equals one after i , i , ... shifts, 

respectively, the roots of (z) are w**(n-i ), w**(n-i ), 

In Figure 21, the procedure is illustrated with a 

binary example defined on GF(2**4) as defined in Appendix A. 

Each successive transformation is listed. 

The implementation of the error correction procedure 

for binary codes follows the above theory in a 

straightforward manner. Once the decoder has found the 

coefficients 0"1, (f2, • • • , crt, the Chien search proceeds as 

follows. First the decoder computes (w). Next, the decoder 

computes (w**2), then (w**3) •••• In order to calculate 

these polynomials quickly, the decoder uses t+l registers. 

At the k-th step these registers contain the quantities 

(7.2) 

Register 0 1 2 t 

Contents 1 
lk 

C!w 
1 

2k 
(fw 

2 

3 . 

3k 
(fw 

3 
<fw 

t 

In order to proceed to the (k+l) step, the decoder 

tk 
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C(x) = ( 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 

E(x) = 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

R(x) = ( 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 

STAGE I : s = w**l4 s = 0 
1 3 

STAGE I I : 14 13 2 
O(z) = 1 + w z+ w z 

14 3 13 2 3 
6 = = 1 + w o= w = 1 +w + w 

1 2 

STAGE III: 
6, * 

2 
w a:* w ~ 

3 2 3 
Initial Value 1 + w 1 + w + w , 1 

After 1 shift 1 1 ,;. 1 
2 

2 shifts w w 1 1 
2 

3 shifts w 1 + w f. 1 
3 2 3 

4 shifts w w + w :1 1 
2 

5 shifts 1 + w 1 + w ~ 1 
2 2 

6 shifts w + w 1 + w + w = 1 root 

••••••••••• > ••••••••••••••••••••••••••••• 

3 3 
10 shifts w + w w f: 1 

2 2 
11 shifts 1 + w + w w + w = 1 root 

......................................... 
15-6 9 15'-11 4 

Roots w = w and w = w 

E(x) = ( 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 ) 

Figure 21. Decoding Reed-Solomon Code (15,11,5) Over GF(l6) 
By Chien Search 
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multiplies the register 0 by (w**O), register 1 by (w**l), 

register 2 by (w**2), certain relatively small values of t 

and m, it is feasible to build circuitry to multiply the 

registers by wired constants in a single clock cycle. For 

the binary example in Figure 21, the Chien search may be 

accomplished by the circuit of Figure 22. Initially, the 

top register of the circuit of Figure 22 is loaded with if2 

and the bottom register with ~1. At each clock cycle, the 

top register is multiplied by (w**2) and the bottom register 

by (w). After k clock cycles, the adders evaluate the 

polynomial (w**k). If this polynomial is zero, then (w**-

k) is a reciprocal root of the error polynomial, and a one 

is added into the erroneous symbol at location (w**-k) which 

is now leaving the buffer. If (w**k) does not equal zero, 

then the symbol leaving the buffer remains unchanged because 

it is not in error. 

For larger values of t and m, the cost of building 

wired circuitry to multiply by (w**t) in GF(2**m) in one 

clock cycle becomes substantial. For moderate values of t, 

one may multiply by (w**t) by executing t successive 

multiplications by w. This method requires only registers 

wired to multiply by w, but it requires too many shifts if t 

is large. In these cases, it is usually more economical to 

allow m clock cycles for each of the multiplications. 

Figure 23 illustrates how to evaluate the error locator 

polynomial calculated in Table II and III by Chien search. 



multiplies by w**2 

mu.l,tiplies by w 

Figure 22. Chien Searcher for Double-Error-Correcting 
Binary BCH Code 

75 



13 2 2 
<f(6 ) = 6'"(10) = 

11 
1+15z+l6z = 1+15(10)+16(10) = 

2 
0 mod 17 

()(6 ) = (1"(5 ) = 1 + 15(5) + 16(5) = 0 mod 17 

16-13 3 16-11 5 
Therefore errors at 6 = 6 = 12 and 6 = 6 = 7 

Figure 23. Evaluating the Error Locator Polynomial 
By Chien Search 

Euclidean Algorithm 

w= 9 + 3x 

Reciprocal of w= 9x+ 3 

y = 9(12) + 3 = 1 
1 ---------

12 (12-7) 

y = 9 ( 7 ) + 3 = 2· 
2 ---------

7 (7-12) 

Berlekamp Algorithm 
2 

w = 1 + 7x + 2z 
2 

Reciprocal of w=x +7z + 2 
2 

y =(12) +7(12) + 2 = 1 
1 ---------------

12 (12-7) 
2 

y =(7 ) +7(7) + 2 = 2 
2 ---------------

7 (7-12) 

Figure 24. Evaluating the Error Evaluator Polynomial 

Given s 
j+2 

- cr s 
1 j+l 

+ crs 
2 j 

= 0 
2 

or 1 + 15z + 16z 

Calculate the remainder of the Syndromes and Perform 
Inverse Fast Fourier Transform 

S(x)=(3, 9, 4, 0, 4, 8, 3, 14, 14, 8, 13, 0, 13, 9, 1,, 3) 
E(x)=(O, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) 

Figure 25. Evaluating the Error Locator Polynomial 
By Inverse Fast Fourier Transform 
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Location Values 

The final step of the decoder is to determine the 

values of the errors once the error locations are known. 

This step is unnecessary in the binary case. Since is 

not zero it must be one. The location of the error is all 

one needs to know in order to correct it, and thus the error 

pattern in described completely by a list of error locations 

values X • 

In the non-binary cases, when a zero of ~(z) is found, 

indicating the presence of an error, the value of the error 

must be calculated as illustrated in Figure 24. The decoder 

can evaluate the polynomial w(z) obtaining 

(7.3) 

-1 TT w(z) =W(X ) = Y, ( 1- X X 
1 1 j i 

-1 

j.ci 

Thus the decoder can evaluate the errors according to the 

formula 

( 7. 4) 
-1 -1 reciprocal -1 

C.U(X ) XW(X ) of <w<x·•)) -X w(X ) 
y = = = = 

i lT (1-x.x. ) x.1f<x.-x.> x.lf<x. -x.) (f' (X. ) 
J 1 1 1 J 1 1 J 1 

j~i j;a!i j;a!i 

Inverse Fast Fourier Transform 

Current research has shown improvements in Stage III 

that eliminates the need for the Chien search and the error 

evaluator polynomial. Since the S 'sand ~'s in Stage II 
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are related by a set of simultaneous linear equations, 

then for all j, the syndromes S satisfy the recurrence 

s 
j+v 

- (j s 
1 j+v-1 

+ • • • + 
v 

(-1) cf s 
v j 

(7.5) 

= 0 

Thus upon completion of Stage II, then compute the remaining 

syndromes S for d<=k<=n from the known (z). Every RS code 

is a field generated by some polynomial G(x), i.e. a 

polynomial is a codeword if and only if it is divisible by 

G(x). This means that a vector is a codeword if and only if 

it satisfies. the recursion relation corresponding to the 

polynomial (x**n-1)/G(x). 

There is a close relationship between Fourier 

transforms and polynomial evaluation and interpolation. 

Given a (n-1) degree polynomial, this polynomial can be 

uniquely represented in two ways, either bt a list of its 

coefficients a0 ,a,, .•• ,at'\_, or by a list of its values at n 

distinct points x 0 ,x 1 , ••• ,xn-l • The process of finding 

representation of a polynomial given its values is inter-

polation. Computing the Fourier transform of a vector 

is equivalent to converting the coefficient representation 

at its roots of unity. Likewise the inverse Fourier 

transform is equivalent to interpolating a polynomial given 

its value of the n-the roots of unity. Therefore the final 

step involves performing an inverse fast Fourier transform 

to recover the error vector. Figure 25 completes the 

decoding example presented 1n the previous chapters. 

Observe that Stage I involved the computation of fast 
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Fourier transforms and all the imp~ovements discussed 

applies to the inverse as well. Details of the inverse 

Fourier transform are given in Appendix C. 

Summary 

In the cyclic procedure of the Chien search, it can be 

shown that Stage III may be accomplished in n clock periods 

and therefore realizes a great savings in decoding delay. 

For decoders with serial readout the error correction is 

accomplished during readout, hence it requires no additional 

time at all. However if the Chien search is simulated, the 

evaluation of each coefficients would require n(t-1) 

multiplications and nt additions. In comparison, the inverse 

fast Fourier transform has been shown how it can be used in 

recovering the error vector. Being able to apply these 

faster forms of evaluating polynomials to coding theory 

allows the process of Stage III to take advantage of all the 

FFT speed. Therefore depending on the application, the 

inverse FFT will generally give better results. 



CHAPTER VIII 

SIMULATION AND CONCLUSIONS 

The encoding and decoding described in the previous 

chapters was implemented in a software simulation. This 

program is used to correct any combination of t errors 

occuring in an RS codeword. The overall design of the 

program was to compare the conventional decoding with the 

new transform decoding. This chapter will give an outline 

of a general decoder, restate a summary of the algorithms, 

discuss the numerical·complexity of each stage and explain 

the simulation design and implementation. 

Outline of a Decoder for BCH Codes 

Any decoding scheme that is to be used in a real-time 

application will eventually need to be implemented in a 

hardware design. The program simulation can not achieve 

cosequential processing but one needs to consider possible 

hardware implementations when designing the simulator. The 

following is a general discussion of the overall decoding of 

the Gorenstein-Zierler decoder which is the conventional 

method. 

A sketch of an overall design for a RS code is shown in 

Figure 26. The decoder consists of four principal parts: 

80 



81 

1) a buffer of 2n symbols, 2) shift registers wired to 

divide the incoming word by each irredicible factor of the 

generator polynomial, 3) a central Galois field processor 

to form ~(z), and 4) a Chien searcher. An optional part is 

logic circuitry to calculate the error values. At a typical 

instant of time, the buffer will hold parts of three 

successive blocks as shown in Figure 27. The first i symbols 

of the incoming word; the next n symbols of the buffer hold 

the entire buffered word; the last n-i symbols of the buffer 

hold the last n-i symbols of the outgoing word. The Chien 

searcher is in the process of computing (w**i) in order to 

determine whether or not the next symbol to leave the buffer 

should be corrected. The shift registers are busy 

calculating the syndromes. The central processor is engaged 

in trying to find the error-locator polynomial for the 

buffered word. 

When all the n symbols of the incoming block have been 

received, then all the symbols of the outgoing block have 

left. The buffer then appears as in Figure 27. The 

buffered block then becomes the outgoing block, and the 

incoming block becomes the buffered block. The coefficients 

of ~(z) are read out of the central GF processor and into 

the Chien searcher, as the remainders of the received word 

or the syndromes are read into the central GF processor. As 

the next n digits of the incoming word arrive from the 

channel, the central GF processor must compute the coeffi

cients of the error locator polynomial for the buffer word. 
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I Channel I Delay r I 

Find 
Error 

H L 
Value 

Form s. I 'Form<S'(z) :0. 

H Form I 
sl I Not 

~. 
ff&. 

Evaluated'(w.;.) · • 4 Form l 
. . 

st-t:_J !Tu 

STAGE I STAGE II STAGE III 

Figure 26. Overall Design of Hardware Decoder 

Figure 27. Typical Buffer During Decoding 
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The linear feedback shift registers that perform the 

division of the incoming polynomial by the irreducible 

factors of the generator polynomial and the Chien searcher 

must both operate in synchronization with the codewords in 

the buffer. The central GF computer, however, is totally 

disconnected from the rest of the deco¢er except between 

blocks when it outputs the error locator it has just 

computed and inputs the syndromes from the next block. It 

is not really essential that input and output of this 

central processor be executed simultaneously. If the 

central processor is so fast that it is able to compute the 

error locator before the new received word arrives then the 

buffer size may be reduced. In the extreme case of Hamming 

codes, the central processor may be eliminated altogether 

since S is the location of the only correctable error. The 

buffer may be reduced to n digits. In the other cases of 

q-ary symbols, the buffer may need to be extended to allow 

for finding the values of the errors after the Chien search. 

Peterson Decoder 

The Peterson algorithm has since been improved 

substantially and no longer is considered the standard 

decoding method. However for completeness of theory and 

hardware clock comparisons, it is briefly included. The 

Peterson binary procedure consists of three stages: 

Stage I: Compute the power sums S~ from the 
received sequence through the relations S 
=r(w**i) for i=l,3,5, ••. ,2t-l 

Stage II: Compute the elementary symmetric 



functions k(k=l,2, .•. ,t) from the power sums 
by using Newton's identities. The elementary 
symmetric functions are coefficients of the 
polynomial ~(z). 

Stage III: Find the roots of the polynomial ~(z) 
by trial and error. These are the error 
locations. 

(10,p.l30) 
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Peterson (43) has given a rough estimate of the 

processing time required for each step of his procedure. It 

is assumed that addition or multiplication in GF(2**m) can 

be performed within one clock period, and division in a few 

clock periods. Following this computation, Stage I takes n 

clock periods where n is the length of the code block. 

Examples of circuits for accomplishing this are given in 

Figure 8. Stage II amounts to solving, at most, a set of t 

simultaneous linear equations. But one must try t-1 times, 

since the actual number of errors present may be anywhere 

from one to t. Roughly speaking, Stage II may take as many 

as (t**4)/2 clock periods. In accomplishing Stage III by the 

trial and error method, one generates each nonzero element 

in GF(2**m) in turn and substitutes it in ~(z). One 

substitution may take 2t multiplications and t-1 additions, 

and this has to be done n times. Stage III, therefore, may 

take approximately 3tn clock periods. One might conclude 

that Stage III is the most time consuming of the three 

stages. 

Gorenstein-Zierler Decoder 

The Gorenstein-Zierler decoder has generally been 

accepted as the standard decoding method for q-ary RS codes. 
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In summary the multiple-error-correcting decoding procedure 

consists of three stages: 

Stage I: Find the weighted power sum symmetric 
functions s, ,S~ , .•. ,Stt. For k=l,2, ••. ,2t, S 
may be found from the formula SK=rk(w**k), where 
r~ (x) is the remainder of the received 
polynomial R(x) divided by the minimal 
polynomial of w**k over GF(q), M(k)(x). 

Stage II: Knowing the generating function for 
S(z) mod z**(2t+l), use Berlekamp algorithm to 
solve the key equation for the polynomials ~(z) 
and w(z). 

Stage III: A) Using a Chien search over the n-th 
roots of unity over GF(q), find the reciprocal 
roots of the error locator polynomial (z). 
These are the error locations, and B) find the 
error values from Equation (7.6). 

(8,p.221) 

Mandelbaum (30) has given the approximate processing time 

required for each step of the Gorenstein-Zierler algorithm. 

The comparisons are based on the number of operations in a 

software simulation. Stage I, the calculation of the 

·syndromes require 2tn multiplications and the same number of 

additions assuming the polynomial is calculated by Horner's 

method. Stage II, the Berlekamp algorithm is used in both 

algorithms to be compared and is known to be Order(nlogn). 

The Chien search in Stage III can be simulated requiring 

n(t-1) multiplications and nt additions. In the non-binary 

case, the evaluation of the error values requires 2(t**2) 

multiplications and t(2t-l) additions. 

Miller-Reed-Truong Decoder 

In this thesis the methods developed by Miller, Reed, 

and Truong are applied to compute the syndromes in Stage I 

and establish the error vector in Stage III. In summary, the 



procedure consists of three stages: 

Stage I: Compute the transform over GF(2**m) of 
the received n-tuple R(x) to obtain the 
syndromes SK for l<=k<=d-1. 

Stage II: Compute the error locator polynomial by 
Berlekamp algorithm. ' 

Stage III: A) Compute the remaining syndromes s 
for d<=k<=n from the known error locator 
polynomial and B) compute the inverse transform 
of Sk for O<=k<=n-1 to recover the error vector. 

(5l,p.l36) 
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The approximate processing times for each step of this 

algorithm is easily calculated from the program design 

logic. Stage I, the calculation of the syndrome requires 

Order(nlogn) operations using the DFT. Stage II, the 

Berlekamp algorithm is used in both algorithms and is known 

to be Order(nlogn). The calculation of the rest of the 

syndromes in Stage III requires at most t(n-2t) 

multiplications and additions. The final step of Stage III, 

the inverse DFT is also Order(nlogn). 

Program Design and Implementation 

The decoding procedure described in the previous 

sections was implemented on the Vax 11/780 computer using 

PL/I language. The overall basic structure of the program 

is given in Figure 28. It is divided into a main program 

and six major subroutines. The main program is the driver 

of the rest of the program. It initializes the encoding and 

decoding processes and keeps track of the number of 

operations performed. The input subroutine obtains a code 

vector. The encoding subroutine encodes the code vector 

using the new interpolation method discussed in Chapter III. 
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Main 

STAGE I 

STAGE II 

STAGE III 

Correct R(x) 

Figure 28. Overall Design of Simulator 
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The transmission subroutine adds the error vector to the 

codeword and simulates the buffer. Stage I, Stage II, Stage 

III subroutines simulate the stages of the Gorenstein

Zierler algorithm and the Miller-Reed-Truong algorithm. The 

stage subroutines of either methods can be included in the 

simulation in any combination. 

Conclusions 

In Stage II, both methods used the same algorithm so it 

was not included in the comparison. The basic differences 

between the two algorithms is Gorenstein-Zierler method 

computed the syndromes directly instead of using the FFT

like techniques of the Miller-Reed-Truong method. Also, the 

slower Chien search was used to find the roots of ~(z) 

instead of another direct inverse transform of the syndrome 

vector. The overall conclusion is that the Miller-Reed

Truong algorithm reduces the numerical complexity. An 

important advantage of this new transform decoder is that 

the complexity of the syndrome calculation is substantially 

reduced. Furthermore, the Chien search is completely 

eliminated. The results is a simpler and faster decoder for 

finding the roots of the error locator polynomial than can 

be obtained by conventional means. 

A specific example can be given how numerical 

complexity is reduced by this simulation's implementation. 

The Galois field operations of addition and multiplications 

are performed by PL/I ~tatements. Addition is simple, and 
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basically an "exclusive OR" operation. However multi-

plication is more difficult. Multiplication is done by 

using two tables in memory: the logs and antilogs of a 

Galois field element. Two multiply two symbols, w, and w~, 

one first finds from a table the exponents i and j such that 

w, =B** i and w?.. =B**j. The w1*wL=B**(i+j) and the symbol 

corresponding to the exponent i+j must be found in the 

antilog table. 

decoding the 

It should be noted that in transform 

symbol w· ... is multiplied with all the 

coefficients thus the log of w~ need only be found once. 

Not this savings does not apply when calculating the 

syndromes by Horner's method in which multiplication must be 

followed by an addition and then a multiplication, etc. 

One disadvantage of the new q-ary codes is application. 

Often transmission is still in binary symbols and would need 

to be grouped to form q-ary symbols. Another disadvantage 

is solving the simultaneous equations based on the Newton's 

identities when t is small can not be generalized to q-ary 

symbols. In many applications the errors can be assumed to 

be independent either by nature or by the use of interleaved 

codes. Using this assumption, an error pattern containing a 

small number of erroneous symbols has a higher probability 

of occurrences than an error pattern containing a large 

number of erroneous symbols. In this case a good strategy in 

decoding BCH codes is to try the correction of a single 

error first. If the correction is unsuccessful, an attempt 

is made to correct a double error. It this correction is 
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still not successful, attempts are made to correct more 

errors. The advantage of this strategy is the increase in 

decoding speed which is crucial in many applications of 

error correcting codes. The aforementioned strategy was not 

impl~mented in this simulation because the simulation was a 

comparison of algorithms not a comparison of specific 

applications. 

One final note on comparing the two decoding methods. 

Any decoding scheme has to be based on a specific appli

cation. Even though the Miller-Reed-Truong algorithm is 

numerically faster for a full-power correction scheme, 

there are so many variables involved in chosing a correction 

scheme it may not be the best for the application • These 

variables influence one's choice but hopefully this thesis 

and simulation has developed an overview of many of the 

choices. 



CHAPTER IX 

SUGGESTED FUTURE RESEARCH 

The BCH and RS codes have become very important in 

coding theory. In one of Peterson's conclusions, he stated 

relatively simple coding and error-correcting 
methods have been described for Bose-Chaudhuri 
codes. The study of coding and error-correcting 
methods for these codes gives additional insight 
into the remarkable structure of the codes." 
(42,p.60). 

Restated BCH or RS codes are codes with remarkable algebraic 

structures that allow decoding to occur in real-time 

applications. Methods of constructing efficient, very long 

codes have been devised; furthermore these codes have met 

the essential requirement that they can be implemented 

practically. "Recent work at RCA has concentrated on Reed

Solomon codes, which are felt to be more suitable to the 

optical disk." (6,p.37) RS are the most efficient among the 

known classes of codes. RS codes have the minimum redundancy 

for a given distance. RS theory has found significant 

applications in space communication systems, military com

munication systems, data communication systems, information 

retrieval systems, and in large 

computer systems (41). 
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secondary memories for 
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While the problems of coding theory have originated 

from real engineering situations, coding theory in the early 

1950's was distinctly academic. The fast development of 

practical applications came as a pleasant shock. Unlike the 

notion that the theory of finite fields might be applied to 

coding theory came as an unpleasant shock to certain pure 

mathematicians. This structure of the codes led to many 

improvements. Research in coding theory has developed over 

the past three decades and will continue to be important in 

the future. McWilliams and Sloane (38) suggest further 

research was needed to solve one major problem. "One 

version of the main problem of coding theory is to find 

codes with large R (for efficiency) and large d (to correct 

many errors). Of course these are conflicting go~ls." 

(38,p.23) 

Coding theory has to develop with technology. For 

example, if a decoding procedure is implemented that has 

minimal decoding delay on current architectures, will this 

also be true on state-of-the-art designs? Also as 

transmission channels improve the emphasis may change where 

coding is used to overcome imperfections in the storage 

media rather than errors in transmission. 

In comparison to current architecture, the Bartee and 

Schneider decoder which implemented Peterson's original 

decoding algorithm was at least on order of magnitude away 

both in hardware complexity and decoding delay. The need 
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existed for more efficient procedures and simpler circuits. 

The Chien search and the Berlekamp algorithm or the greatest 

common denominator algorithm improved the decoding procedure 

subtantially making the coding of RS codes practical. How

ever the new transform algorithm has great potential in 

reducing the numberical complexity and therefore decoding 

delay. Similar to the finite theory application, the notion 

that the vast amount of research already done on fast Fourier 

transforms can be applied to coding theory is encouraging. 

Research has shown that by the choices of three 

requirements: 1) the length N, 2) the modulus M, and the 

primitive root w, it is possible to develop improved 

transform algorithms. As transmission rates increase, the 

possible extensions of block length may be necessary. 

Research also has not been extensive on choices of modulus. 

A systematic investigation of those modulus which require 

more than two bit repie~entation is difficult but may lead 

to interesting improvements. However achieved, improvements 

in transform methods would allow substantial improvements in 
. 

the coding algorithm since the transform is performed in 

Stages I and III. 

Stage II uses the efficient Berlekamp algorithm. 

Current research has made only minor improvements to this 

procedure. However it has not been proved and it would· be 

interesting to see if the number of iterations the algorithm 

uses is minimal (8). 



Another interesting 

decoding algorithm for 

problem 

all BCH 
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is "find a complete 

codes." (38,p.277) The 

complete decoding of double-error- correcting BCH codes is 

given by Berlekamp (8). Complete decoding of some (perhaps 

all) triple-error-correcting BCH codes is given by Van de 

Horst and Berger (38). Their algorithm applies to all 

triple-error- correcting BCH codes if the following problem 

is settled: "show that the maximum weight of a coset leader 

of any coset of a triple-error- correcting BCH code is 

five." (38,p.293). The decoding algorithms discussed in 

this paper only correct t or fewer errors in a RS code or 

BCH code of designed distance 2t+l. If more than t errors 

are present a decoding error or decoding failure occurs. 

Further research may be able to eliminate both of these 

possibilities. 
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APPENDIX A 

BASIC FINITE FIELD THEORY 

Basic to understanding algebraic coding theory is a 

general background in finite field theory. This appendix is 

designed as a basic tutorial to define the terms: 1) 

Galois feild, 2) irreducible polynomials, 3) minimal. 

polynomials, and 4) primitive nth root of unity. For the 

reader who is interested in more detail coverage, references 

are cited • 

. The integers modulo p form a field of order p-1, 

denoted by GF(p), where pis a prime number. The elements 

of GF(p) are 

1 2 
{ 1 w w w 

3 
' . . . p-2 

' w } 
p-1 

with w = 1 

(A.1) 

where w is the generator of the field. The set of p-1 non-

zero elements is a cyclic multiplicative group with 

addition, subtraction, multiplication, and division carried 

out modulus p. Also there is essentially only one field of 

order (p**m)-1 called a Galois Field, denoted by GF(p**m). 

Any member of GF(p**m) can also be written as a m-tuple of 

elements from GF(p) ( 3) • Extensive tables of binary 

irreducible polynomials can be found in Marsh (33) and 

Peterson (43). Or extensive tables of non-binary 

100 



101 

irreducible polynomials can be located in Alanen and Knuth 

( 2) • 

The knowledge of constructing a finite field is 

important in coding theory. The construction of GF(p**m) is 

possible if there exists an irreducible polynomial over 

GF(p) that has degree m. A polynomial f(x) is irreducible 

over a field if it is not the product of two polynomials of 

lower degree in the field. The set of all polynomials of 

degree <= m-1 and coefficients from GF(p) with calculations 

performed modulo f(x) form a field. An example of 

construction of a field GF(2**4) is given in Figure 29 

(28). 

One method of finding the irreducible polynomials is 

simply the enumeration shown in Figure 30. 

are 2**degree polynomial combinations. 

enumeration is of interest, the number 

polynomials of any degree can be obtained 

In general there 

If any futher 

of irreducible 

by an explicit 

formula which is an immediate consequence of the multi

plicative Moebius inversion theorem (8, 38). Also relative 

and of interest is the reciprocal of an irreducible polynom

ial is also irreducible (3). 

If w is a root in GF(p**m) of an irreducible polynomial 

of degree m over GF(p) then every element in GF(p**m) is a 

root of some minimal polynomial over GF(p). A minimal 

polynomial over GF(p) of every element Beta is the lowest 

degree polynomial M(x) with coefficients from GF(p) such 

that M(Beta) = 0. Several examples are given in Figure 31. 
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4 4 
GF(2 ) Defined by x + X + 1 Represented as 

Power of w Negative power Polynomial Binary Log w 
0 15 

w w 1 0 0 0 1 0 

1 14 
w w w 0 0 1 0 1 

"2 13 2 
w w w 0 1 0 0 2 

3 12 3 
w w w 1 0 0 0 3 

4 11 
w w w +1 0 0 1 1 4 

5 10 2 
w w w +w 0 1 1 0 5 

6 9 3 2 
w w w +w 1 1 0 0 6 

7 8 3 
w w w +w +1 1 0 1 1 7 

8 7 2 
w w w +1 0 1 0 1 8 

9 6 3 
w w w +w 1 0 1 0 9 

10 5 2 
w w w +w +1 0 1 1 1 10 

11 4 3 2 
w w w +w +w 1 1 1 0 11 

12 3 3 2 
w w w +w +w +1 1 1 1 1 12 

13 2 3 2 
w w w +w +1 1 1 0 1 13 

14 1 3 
w w w +1 1 0 0 1 14 

n n - 1 
w = ( w ) w Modulo Primitive Polynomial 

where w is Primitive Root of Unity 

Figure 29. Construction of Field GF(p**m) 



BY ENUMERATION 

Degree = 1 

Degree = 2 

Degree = 3 

Degree = 4 

Degree = 5 

Degree = 6 

X 
X + 1 

2 

irreducible 
irreducible 

x*x 
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X 

2 
X 

2 
X + X 

2 

(x + 1) (x + 1) 

x (x + 1) 

X + X + 1 

3 
X 

3 
X 

3 
X + X 

3 
X + X + 1 

3 2 
X + X 

3 2 
X + X + 1 

3 2 
X + X + X 

3 2 
X + X + X + 1 

irreducible 

x*x*x 
2 

(x+l)(x +x+l) 
2 

x (x + 1) 

irreducible 
2 

x (x + 1) 

irreducible 
2 

x(x + x + 1) 
3 

(x + 1) 

Only three are irreducible out of 2**4 

4 4 3 4 3 2 
X + X + 1 i X + X + 1 i X + X + X + X + 1 

Only six are irreducible out of 2**5 

5 2 5 4 3 2 5 4 3 
x +x +1; x +x +x +x +1; x +x +x +x +1 

and their inverses 

Only nine are irreducible out to 2**6 

6 4 2 6 5 2 6 
x +x +x +x +l;x +x +x +x +1; x +x +1 

6 5 3 2 6 3 
x +x +x +x +l;x +x +1; and inverses 

Figure 30. Irreducible Polynomials 



ELEMENTS OF GF MINIMAL POLYNOMIAL OF ELEMENTS 

P**M = 2**1 where x -x = x (x+l) 

0 
1 

X 
X + 1 = M( 0) 

.4 2 
P**M = 2**2 where x -x = x (x+l)(x +x+l) 

0 
1 

1 2 
w , w 

X 

X + 1 
2 

X + X + 1 

= M( 0) 

= M( 1) =M( 2) 

P**M = 2**4 since M is divisible by 1,2,4 then 

16 2 4 4 3 4 3 2 
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x -x = x(x+1)(x +x+1)(x +x+l)(x +x +1)(x +x +x +x+1) 

GF(2**4) DEFINED BY X**4 + X + 1 

1 

0 
1 

2 4 
W r W , W , W 

8 

3 6 12 9 
w , w , w , w 

5 10 
w , w 

7 14 13 11 
w , w , w , w 

EXAMPLE 

4 3 
X + X + X 

3 4 
(w ) + (w 

12 9 
w + w 

2 

X 

X + 1 
4 

= M( 0) 

X + X + 1 = M(l)=M(2)=M(4)=M(8) 
4 3 2 

X + X + X + X + 1 = M(3)=M(6)=M(12)=M(9) 
2 

X + X + 1 
4 3 

X + X + 1 

3 

= M(5)=M(10) 

= M(7)=M(l4)=M(l3)=M(11) 

4 
+ X + 1 = 0 for w modulo X + X + 1 

3 3 3 2 3 
) + (w ) + w + 1 = 0 1 1 1 1 

1 0 1 0 
6 3 0 1 1 0 0 

+ w + w + w = 0 1 0 0 0 
0 0 0 1 

0 = 0 -------
0 0 0 0 

Figure 31. Minimal Polynomials 
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In coding theory minimal polynomials are sometime referred 

to as primitive polynomials. A primitive polynomial is the 

minimal polynomial of a primitive element of GF(p**m) and 

has degree m (38). 

Basic to coding theory is Fermat's theorem that 

Every element Beta of a field F of order p**m 
satisfies the identity 

= Beta 

or equivalently is a root of the equation 

or 

""' xP = x thus 

- X = ( x - Beta) 

"' xP - x = Product of all irreducible 
polynomials over GF(p) whose 

degree divides m (38,p.96}. 

The factorization of this polynomial can be separated into 

the zero element and the non-zero element. Therefore there 

are n distinct zeros which are called the nth roots of unity 

defined in Figure 32. 

In constructing GF(p**m) from a primitive irreducible 

polynomial f(x), the basis 

1 2 n-1 
{ 1 , w w ' . • • , w } 

where w is a zero of f(x). However there are other 

possibilites- (8). One such possibility is a trace 

Trace ( 13 ) = 
2. m-1 rn-1 J 

R RP ap RP = L IJP 
f'J+f'J+y+ •• • + fJ 

j::.C 

Trace ( 13 ) = element of GF(p) 
1'\'"\ 

where Beta or IJ£ GF (p 



GIVEN 

THEN 

EXAMPLE 

n = 0 

q q-1 
X - X = X ( X - 1) where q = 2 ** M 

X ( X 

n-1 
n lT X - 1 = 

i=O 

where w is 

a) w '#. 

b) n 
w = 

c) n/2 
w = 

d) n-1 

:E 
i=O 

q= 17 and n 

1 2 3 4 5 

n 
-1) where n = q - 1 

n 
i 

(x "'" w ) =lT 
i=l 

primitive root of 

1 

1 modulo q 

l 

(x - w ) 

unity if 

-1 modulo q if n is even 

ip 
a = 0 for l<=p<=n 

= 16 

6 7 8 ~ 10 11 12 13 14 15 16 
------------------------------------------------·-------

n 
2 = 1 2 4 8 16 15 13 9 1 2 4 8 16 15 13 9 1 

n 
3 = 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1 

n 
4 = 1 4 16 13 1 4 16 13 1 4 16 13 1 4 16 13 1 

n 
6 = 1 6 2 12 4 7 8 14 16 11 15 5 13 10 9 3 1 
-------------------------------------------------------

Only 3 and 6 generate the entire field GF(l7) 

6 =v'2 in the sense that 6**2 = 2 modulo 17 

Figure 32. Primitive root of unity 
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APPENDIX B 

CHINESE REMAINDER THEOREM 

The Chinese remainder theorem for polynomial is used to 

guarantee that a polynomial can be recovered from its 

residues. 

Chinese Remainder Theorem For Polynomial. Let m0 
(x), ••• ,ml<-l (x) be polynomials over GF(q) which 
are pairwise relatively prime, and set M(x)=m 0 (x) 
m.(x) ••• mk-\ (x). If r 0 (x), ••• ,r t<.-1 (x) are any 
polynomials over GF(q), there exists exactly one 
polynomial u(x) with deg u(x) < deg M(x) such that 

u ( x) = r ( x) -(mod m ( x) ) , 
i i 

for all i=O, ••• ,k-1. In fact, let a~(x) be such 
that 

M(x) 
a (x) = 1 (mod m (x)), i= 0, ••• , k-1. 

m (x) i i 
i 

(Such an a;(x) exists by Euclidean algorithm.) 
The the solution to Equation B.l is 

k-1 M(x) 
u(x) = ~ r (x) a (x) reduced mod M(x). 

~ m (x) i i 
i=O i 

(38,p305) 
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APPENDIX C 

DISCRETE FOURIER TRANSFORMS 

In many applications it is convenient to transform a 

problem into another, easier problem. In this appendix, one 

will be introduced to the Fourier transform, its inverse, 

and its numerical complexity. An efficient algorithm called 

the fast Fourier transform (FFT} is developed. The 

algorithm which is based on techniques of polynomial 

evaluation by division, makes use of the fact that a 

polynomial is being evaluated at the roots of unity. 

Appendix A gives the necessary background material for the 

n-th root of unity. 

The Fourier transform is usually defined over the 

complex numbers. For example, 

( c .1) 

2 1T i/n 
=V-1 e where i 

is a principal nth root of unity in the ring of complex 

numbers. However for application in coding theory, one can 

define the Fourier transform over a arbitrary field. 

Computing the discrete Fourier transform of the codeword 

vector means evaluating the polynomial representation at 

each of the nth roots of unity. 
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(c. 2) 

0 1 2 n-1 k 
(w ,w ,w , ••. , w ) where n=2 for k>=O 

The algorithm is developed by grouping the terms of 

P(X) with even powers and the terms of P(X) with odd powers 

as illustrated in Figure 33. As the algorithm design is 

presented the breakdown of the polynomial seems systematic 

enough that one should be able to carry out the scheme with 

a divide and conquer algorithm. 

To help suggest the pattern of the computation, an 

example is presented in a tree diagram in Figure 34. 

Computation can be simplified by starting at the leaves. 

The leaves are components of the vector P permuted in the 

following way. Let t be an integer between 0 and n-1. Then 

t can be represented in binary as and the reverse of t be 

the number represented by the bits in reverse order. 

t=[bb •• 
0 1 

rev(t) = [ b 
k-1 

b ] 
k-1 

where n = 2**k 

b b ] 
1 0 

(C.3) 

Therefore the algorithm in Figure 35 computes the values of 

P(X) at the nth roots of unity or it computes the discrete 

Fourier transform of the vector P. 

The inverse discrete Fourier transform is 

n-1 
1 I: 
n k=O 

-ik 
a w 

k 
O<=i<n 

(c. 4) 

In the inverse transform, substitute w**-1 for w and 



P(X) = p + p X 

0 1 

where n 

(n/2)-1 
P(x) =z:: 

i=O 

de£ ine P (X) 
even 

then 

2 
P(X)= p (x 

even 

Recall n/2 

+ . . 

= 2**k 

p X 
2i 

2i 

. + 

for 

+ 

(n/2)-1 =r: 
i=O 

n-1 
p X 

n-1 

k >= 0 

(n/2)-1 
X L: 

i=O 

p X 
2i 

i 
and 

n-1 
= L 

i=O 

2i 
p X 

2i+l 

p 
i 

p (X) 
odd 

l 

X 

(n/2)-1 

=L: 
i=O 

2 2 
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i 
p X 

2i+l 

+ x p (x ) and P(-X)= p (x ) 
2 

- x p (x ) 
odd odd even 

w = -1 so for 0 <= j <= (n/2)-1 
(n/2)+j 

w = - w 

1 n-1 
or { 1, w ,w , . • • , w } 

Roots of unity is equivalent to 

(n/2)-1 (n/2)-1 
{ 1, w , . . . ,w ,-1,-w, . • . , -w } 

or it suffices to evaluate p and p at 
even odd 

(n/2)-1 2 
{ 1, w , . . • , (w ) } 

Figure 33. Development of Fast Fourier Algorithm 
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15 
P(X) = p + p X + • • + p X 

15 0 1 

p + p X + . • • + p X 
0 2 14 

2 3 2 3 
p+p x+p x+p x p+p x+p x+p x 

0 4 8 12 2 6 10 14 

p +p X p +p X p +p X p +p X 
0 8 4 12 2 10 6 14 

7 
p + p X .+ • . • + p X 

1 3 15 

2 3 
p+p x+p x+p x p+p x+p x+p x 

1 5 9 13 3 7 . 11 15 

p p p p p p p p p p p p p p p p 
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15 

Figure 34. Polynomial Evaluation At Roots of Unity 
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Input: Then-vector P=(p ,p , ••• ,p ) where n=2**k for k>O 

Output: VAL, the Discrete Fourier Transform of P 

Comment: Omega is an array containing the nth primitive 
root of unity · 
VAL is initialized to contain the values for 
level k-1 in the tree of Figure 2C. 

Comment: Initialization of VAL 

1. for t <-- 0 to n-2 by 2 do 

2. VAL(t) <-- p 
rev(k) 

(t) + p (t+l) 
rev(k) 

3. VAL(t+l) ·<-- p 
··rev(k) 

(t) - p (t+l) 
rev(k) 

4. end 

Comment: NVAL is number of points at which each polynomial 
at the current level is evaluated. 
The levels are indexed by 1. 

5. m <-- n/2: NVAL <-- 2 

6. for 1 <-- k-2 to 0 by -1 do 

7. m <-- m/2: NVAL <-- 2 * NVAL 

8. for t <-- 0 to [(2**1)-l]NVAL by NVAL: 

9. for j <-- 0 to (NVAL/2)-1 do 

10. XPODD <-~ OMAEGA(mj)* VAL[t + (NVAL/2) + j] 

11. VAL[t + (NVAL/2) + j] <-- VAL(t + j) - XPODD 

12. VAL (t + j) <-- VAL(t + J) + XPODD 

13. end 

14. end 

Figure 35. Fast Fourier Transform Algorithm 
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multiply each result by the inverse of n. These changes 

are given in Figure 36. 

An analysis of the operations done by the FFT gives the 

following results. Lines 10,11, and 12, which do one 

multiplication, one addition, and one subtraction, respec

tively, all in a triply nested loop. NVAL=2**(k-l) so the 

ranges of the loops indexes indicate that the number of 

each operation done .in these lines is given in Figure 37. 

Line 2 and Line 3 do n/2 additions and n/2 subtractions. 

Therefore there are n*(logn/2)+n additions/subtractions and 

n/(2*(logn/2) multiplications. Even with the reversing of 

the bits of k, the running time of the FFT is Order(nlogn) 

( 4) • 
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Input: A,n, where A is an n-vector,;n is a power of 2. 

Output: The vector B=(b ,b , •.• ,b ),the inverse FFT of A. 
0 1 n-1 

1. Compute FFT of A using Fast Fourier Transform Algorithm 
in Figure 3C and leaving the results in VAL. 

2. b <-- VAL(O)/n 
0 

for i <--1 to n-1; b <-- VAL(n-i)/n 
i 

Figure 36. Inverse Discrete Fourier Transform 

k-2 

L 
1=0 

J.. NVAL 
2 

2 

= 
k-2 

L 
1=0 

k-2 

Q. k-i-1 
2 2 

= L 2k-t 

1=0 

k-1 
= (k-1) 2 , (n/2) log (n/2) 

Figure 37. Number of Operations in Loops of FFT 



APPENDIX D 

NEWTON'S IDENTITIES 

A polynomial P(x0 , ••• ,xn_,) inn indeterminates x is 

called "symmetric" if it is invariant under the symmetric 

group of all permutations of its subcripts. For the n=3 

example, particular symmetric polynomials which are the 

coefficients in the expansion are 

(D.l) 

~ = X + X + X ; 
1 1 2 3 

O=xx+xx+xx; 
2 1 2 1 3 2 3 

0= X X X 
3 1 2 3 

3 
(X - X ) (X - X ) (X - X ) = X 

1 2 3 

2 
-<rx+crx 

1 2 
-cr 

3 

In general such polynomials are called elementary symmetric 

polynomials (in n variables) 

L 
(D. 2) 

(j = r: X ,<5' = L: X X cr = X X X , ••• , r:s-: X • • • X 
1 i i 2 i<j i j 3 i<j<k i j k n 1 n 

Since (-l)**k O"k is the coefficient of t**(n-k) in the 

expansion of 

(D. 3) 

P(x) = -rr (X -X ) 
k "k 

As a polynomial in X, the expression ~give the coefficients 

of P(x) as functions of its roots. In conclusion, any 
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symmetric polynomial can be expressed as a polynomial in 

the elementary symmetric polynomials. For example, 

2 2 2 2 
X + y = (x+y) - 2xy =a 

1 
- 2 C) 

2 

The elementary symmetric functions G'i 
. 

are 

(D. 4) 

related to 

the power sum symmetric functions by Newton's identities 

which are 

s 
1 

s 
2 

s 
3 

s 
4 

s 
5 

cr' = 0 
1 

- s (J' + 2cl = 0 
1 1 2 

- s (j' + s (j - 3 C)= 
2 1 1 2 3 

-S() +S(j' -SO"'+ 
3 1 2 2 1 3 

-scr +sc>-scr'+ 
4 1 3 2 2 3 

etc. 

(D. 5) 

0 

4 <r = 0 
4 

SU-5cr'=O 
1 4 5 



APPENDIX E 

EUCLIDEAN ALGORITHM 

This information is included in an appendix because it 

does not deal directly with the problem of decoding BCH or 

RS codes. The reader should bear in mind, however, that our 

goal is to solve the key equation in Figure 19 for ~(z) and 

W(z), given S(x). Throughout this section a(x) and b(x) will 

be fixed polynomials over field F, with deg(a)>=deg(b)>=O. 

When applied to coding theory a(x) will be replaced by 

x**2t, and b(x) by the syndrome polynomial S(x). 

The Euclidean algorithm is a simple and straightforward 

algorithm for finding the greatest common divisor (gcd) of 

two intergers or polynomials, or for finding the continued 

fraction expansion of a real number. This algorithm is 

discussed only as it applies to polynomials. if a(x) and 

b(x) are polynomials, by a gcd of a(x) and b(x), one means a 

polynomial of highest degree which divides both a(x) and 

b(x). 

By the division algorithm, one may divide a(x) by b(x): 

(E.l) 

a(x) = b(x) * q (x) + r (x) 
1 1 

It follows that the gcd of a(x) and b(x) is the same as the 
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gcd of b(x) and r 1 (x). This procedure can now be repeated 

on b(x) and r 1 (x); divide b(x) by r, (x): 

(E. 2) 

b(x) = r (x) * q (x) + r (x) 
1 2 2 

Next 

r (x) = r (x) * q (x) + r (x) 
1 2 3 3 

Finally 
r (x) = r (x) * q (x) + 0 

n-1 n . n+l 

In other words, one continues to divide each remainder by 

the suceeding remainder. Since the remainder continually 

decrease in degree, there must ultimately by a zero 

remainder. 

But one sees that since rn(x) is a divisor of r n-• (x), 

it must be the gcd of rn(x) and rn_,(x). Thus 

gcd [ a(x),b(x) ] = gcd [b(x) ,r (x) ] = 
1 

gcd [ r ( x) , r ( x) ] 
n-1 n 

= r (x) 
n 

As a by-product of the Euclidean algorithm, the 

s (x) * a(x) + t (x) * b(x) = r (x) 
n n n 

is also produced which expresses rn (x) as a 

(E. 3) 

(E.4) 

linear 

combination of a(x) and b(x). The algorithm involves four 

sequences of polynomials which initial conditions are 
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(E.S) 

s (x) = 1 t (x) = 0 r (x) = a(x) q (x) = not defined 
-1 -1 -1 -1 

s (x) = 0 t (X) = 1 r (x) = b(x) q (x) = not defined 
0 0 0 0 

For i>=1,q~(x) and r~(x) are defined to be the quotient and 

remainder, respectively, when r~-~(x) is divided by r~. 1 (x) 

as shown in Equation E.2. The polynomials are then defined 

by 

(E.6) 

r (x) = q r + r 
i i-2 i-1 i 

s (x) = s (x) - q (x) * s (x) 
i i-2 i i-1 

t (x) = t (x) - q (x) * t (x) 
i i-2 i i-1 

Since the degrees of the remainders r are strictly 

decreasing, there will be a last non-zero one: call it rn 

(x). It turns out that rn(x) is the gcd ot a(x) and b(x), 

and furthermore the desired equation (E.l) is acheived. 

When the algorithm terminates with r 0 =0, the desired 

multipliers s~-l and t~-l as well as the gcd (rn_,) have all 

been computed. This method is called the continued-fractions 

version of Euclidean algorithm. The reason for this 

nomenclature is shown in Figure 39. It caq be shown that the 

quotients Sk/t~ represent the successive convergents of this 

continued fraction. The reader interested in learning more 

about continued fractions will find an excellent intro-

duction in McCoy (36), Mills (39), and Reed (48). Figure 

38 is an example of finding the greatest common divisor. 



i 

-1 

0 

1 

2 

3 

4 

5 

TABLE IV 

GREATEST COMMON DIVISOR OF POLYNOMIALS 

s 
i 

1 

0 

1 
3 

X +1 X 
4 6 4 

X + X +1 X + X + 
5 4 3 2 7 6 

X + X + X + X X + X + 
6 4 2 

X + X + X + x+l 

r = q + 
-2 0 

r q + 
-1 1 

q + 
2 

5 

t 
i 

0 

1 
2 

X +1 
3 2 

+ X + X 
3 2 

X + X +1 
3 

X + X +1 
8 

X 

1 

1 

1 

1 
+-

q 
n 

r 
i 

8 
X 

6 4 2 
x +x + X + X +1 

3 
X + X +1 

2 
X 

X +1 

1 

0 

120 

q 
i 

2 
X +1 

3 
X +1 

X 

X +1 

X +1 

Figure 38. Continued-Fractions of Euclidean Algorithm 
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The main result of this algorithm applied to coding 

theory is that 

(E. 7) 

s(x)a(x) + t(x)b(x) = r(x) 

t(x)b(x) = r(x) mod a(x) 

where 
deg(t) + deg(r) < deg(a) 

Then there exists a unique index i and a polynomial A(x) 

such that 

t(x) = >.(x) 

s(x) = A(x) 

r(x) = A(x) 

However, if t(x) and r(x) 

polynomial ~(x) must be a 

t 

s 

r 

(E.S) 

(x) = t (x) 
i i 
(x) = s (x) 
i i 
(X) = r (x) 
i i 

are relatively prime, the 

constant. Finally if t(x) is 

defined as a monic polynomial, .then the constant must be 

one. 
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