
SIMULATION OF ERROR CORRECTION

ALGORITHMS USING REED

SOLOMON CODES

By

ARTHURINE RENEE DAVIS BRECKENRIDGE
~

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1975

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fullfillments of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1984

1-hf;sis
1<f8tJ

SI•JO~,.~~

f_J .('...,... -.,! . .;.;?

eo,p. 2

UNIVEf-iSITY

LIBRARY
-~ "-;;? ~~~~~;{')

SIMULATION OF ERROR CORRECTION

ALGORITHMS USING REED

SOLOMON CODES

Thesis Approved:

~
l~01 trUttL-.--q {)!J)JLlfL,~

ii

PREFACE

The Reed-Solomon codes for multiple-error-correction

are examined in this study. The results of a comparison

between the conventional Gorenstein-Zierler method and a

transform method are discussed, and simple examples are

given. Then decoding algorithms are compared in terms of

the numerical complexity. Finally the conclusions of the

simulation are stated.

I wish to acknowledge,arr the members of my family for

their continual assistance throughout my studies at Oklahoma

State University. My husband, Bruce, my children, Jennifer

and Gage, deserve my deepest appreciation for their constant

support, moral encouragement, and understanding. Also I

wish to thank my committee members Dr. J. P. Chandler and

Dr. J. R. Van Doren for their contributions and advise.

Finally, I wish to express my sincerest appreciation to my

major adviser, Dr. J. R. Phillips for his help on this

paper.

iii

Chapter

I.

I I •

I I I.

IV.

v.

VI.

VI I.

VIII.

TABLE OF CONTENTS

INTRODUCTION
BACKGROUND THEORY •
ENCODING OF REED-SOLOMON CODES

Page

1

7

15

Conventional Method • • • • • • • • • 15
Original Method • • • • • • • • • • • • • 22
Interpolation Method ••• , • • • • • • 24
Summary • • • • • • • • • • • 26

TRANSMISSION
STAGE I: CALCUALTION OF THE SYNDROMES •

27

37

Matrix Multiplication • • • • • • • • • • 38
Polynomial Division • • • • • • • 40
Direct Polynomial Evaluation • • • • . • • 41
Fast Fourier Transform • • • • • • 43
Summary • • . . . • • . . . • • • . . • • 53

STAGE II: CALCULATION OF ERROR LOCATOR
AND THE ERROR EVALUATOR POLYNOMIALS • •

Simultaneous Equations ••••••••••
Background Theory • • •
Euclidean Algorithm ••
Berlekamp Algorithm • • • • • • • • •••
Summary • • • • • • • • • • •

STAGE III: EVALUATION OF ERROR LOCATOR
AND ERROR EVALUATOR POLYNOMIALS

55

55
60
64
67
67

70

Factoring Polynomials • • . . • • • • 71
Chien Search • • • • • • • • • • • • • • • 71
Location Values • • • • • 77
Inverse Fast Fourier Transform • • • • 77
Summary • . • • • • • • 79

SIMULATION AND CONCLUSIONS
Outline of a General Decoder for

BCH or RS Codes • • • • •

iv

80

80

Chapter

IX.

Peterson Decoder .
Gorenstein-Zierler
Miller-Reed-Truong
Program Design and
Conclusions • • •

Decoder • • . • •
Decoder • • • • •
Implementation . . .

SUGGESTED FUTURE RESEARCH

SELECTED BIBLIOGRAPHY •
APPENDIXES

APPENDIX A - BASIC FINITE FIELD THEORY

APPENDIX B - CHINESE REMAINDER THEOREM

APPENDIX C - FAST FOURIER TRANSFORM

APPENDIX D- NEWTON'S IDENTITIES . .
APPENDIX E - EUCLIDEAN ALGORITHM

v

Page

83
85
86
86
88

91

95

100

100

107

108

115

117

Table

I •

I I •

I I I.

IV.

TABLES

Parameters For Several Possible Implementations

Calculating The Polynomials By
The Euclidean Algorithm •

Calculating The Polynomials By
The Berlekamp Algorithm •

Greatest Common Divisor of Polynomials

vi

Page

52

66

66

120

LIST OF FIGURES

Figure Page

1. Single-Error-Correcting Hamming Code
Over GF (2) • • • • . • • • • • • • • • • 10

2. Properties of Linear Codes • 12

3. Encoding Reed-Solomon Code (16,12,5) Over GF(l7)
By Conventional Division Method • • • • • • 20

4. Encoding Reed-Solomon Code (15,11,5) Over GF(l6)
By Linear Feedback Shift Register Method • • 21

5. Encoding Reed-Solomon Code (16,12,5) Over GF(l7)
By Reed's Original Method • • • • • . • • • 23

6. Encoding Reed-Solomon Code (16,12,5) Over GF(l7)
By New Interpolation Method • . • • • • 23

7.

B.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Flow Diagram of Error Management Scheme

Calcu~ating the Syndromes By Division
Circuitry • . • • • • • • • • • • •

Polynomial Evaluation - Term by Term ••

Syndrome Calculation By Polynomial Evaluation

Polynomial Evaluation -Horner's Method

Multidimensional Transform Over GF(2**m) .

Arithmetical Operations Performed Modulus
Fermat Prime •••••••••••••

Roots of Unity •••.•••

Calculating the Syndromes By Transform Method

Theorem 1

Decoding Scheme For Double-Error-Correcting
BCH Code • • • • • • • • • • • • • • • •

Definition of Syndrome .••..•.••.••

vii

29

42

44

44

44

47

50

52

52

59

59

62

Figure

19.

20.

Key Equations of Decoding BCH Codes

Berlekamp Algorithm
21. Decoding Reed-Solomon Code (15,11,5) Over GF(l6)

Page

63

68

By Chien Search • . • • • . . . • • • • 73

22. Chien Searcher for Double-Error-Correcting
Binary BCH • • . • • • • • • • • • • • • 75

23. Evaluating the Error Locator Polynomial
By Chien Search • . • • • . . . • • • • 76

24. Evaluating the Error Evaluator Polynomial 76

25. Evaluating the Error Locator Polynomial
By Inverse Fast Fourier Transform . • • • • 76

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Overall Design of Hardware Decoder .

Typical Buffer During Decoding
Overall Design of Simulator
Construction of Field GF(p**m) •

Irreducible Polynomials

• •

Minimal Polynomials
Primitive Root of Unity
Development of Fast Fourier Algorithm

.

. . . .

Polynomial Evaluation at Roots.of Unity

Fast Fourier Transform Algorithm •
Inverse Discrete Fourier Transform Algorithm •

Number of Operations in Loops of FFT • . . • .

Continued-Fractions of Euclidean Algorithm ••

viii

82

82

87

102

103

104

106

110

111

112

114

114

120

CHAPTER I

INTRODUCTION

' (Algebraic coding theory has its origins in the work of

R. w. Hamming and C. E. Shannon, who were colleagues at

Bell Telephone Laboratories in the late forties. However

Hamming was the first coding theorist whose work attracted

widespread interest. Some of Hamming's early work appeared

as an example in Shannon's classic 1948 and 1949 papers

(53). Apparently delayed because of patent considerations,

Hamming's own paper appeared in 1950. Even though both were

concerned with the fundamental problem of communications

over noisy channels, there was a clear difference between

the combinatorial, constructive viewpoint of Hamming and

the statistical, existential viewpoint of Shannon. The

distinction between coding theory and Shannon theory has

increased in subsequent years~ This paper is limited to the

topics of coding theory)
I

The major coding theory papers of the early 1950's

introduced a number of important concepts which laid the

basis for algebraic coding theory. Chapter II of this

thesis introduces some examples of Hamming's work to help

the reader build a foundation for coding theory. Hamming

(23) was concerned both with code construction and the bound

1

2

on the distance of a code's capacity to detect or correct

errors. D. E. Muller (40) and I. S. Reed (46) not only

constructed an important class of codes, they also gave some

preliminary indications about how a large body of knowledge

about finite mathematical structures might be brought to

bear on the coding problem. D. Slepian (52) exposed the

mathematical foundations of the subject of linear codes. M.

J. E. Golay (20) discovered a particular code that has been

shown to contain as subsets some of the most efficient

linear codes.

The big breakthrough in the const~uction of error­

correcting codes came in 1959 and 1960. The codes that are

now universally called BCH codes were discovered by the

French mathematican, A. Hocquenghem (24) and independently

by R. C. Bose and D. K. Ray-Chaudhuri (11). It is important

to remember that only the code theory, not the decoding

algorithms, were discovered by these early writers. The BCH

codes of block length of the form (2**m)-l has been,

perhaps, the outstanding success of the search for codes

based on algebraic structures. Chapter III broadly defines

BCH codes and explains methods for construction. Chapter IV

explains why encoding is necessary to help ensure

reliability of information.

Chapters v, VI, and VII try to explain the decoding of

BCH codes. One of the principal virtues of these codes

turned out to be their capability of being decoded by

relatively straightforward algorithms. w. w. Peterson (42)

was the first to outline an

decoding procedure which was

Bartee and D. I. Schneider (5) in

3

efficient and economical

actually realized by T. C.

a small special-purpose

computer. Peterson's algorithm involved the solution of

simultaneous linear equations over certain finite fields.

More recent work focused attention on the multisymbol

generalization of these codes. One year after Peterson's

algorithm, D. c. Gorenstein and N. Zierler (22) generalized

all the previous work on binary BCH codes to non-binary

codes. It turns out that the polynomial codes discussed by

I.S. Reed and G. Solomon (47) belong to this general code

class and hence may be decoded by the Gorenstein-Zierler

algorithm. The non-binary BCH codes contain the Reed­

Solomon (RS) codes as a proper subset. There are two areas

(at least) of application of codes in non-binary symbols.

First, data to be transmitted may appear in such a form and

second, although the binary BCH codes tend to be highly

efficient for the correction of independent errors, still

greater efficiency may be obtained with non-binary codes

when the errors occur in bursts.

BCH or RS codes are some of the most important classes

of random-error-correcting codes known. Considerable work

has been done on decoding of these codes. Though the

details of an algorithm were first presented by Peterson, ·

many improvements soon followed. By using the fact that

the BCH codes are cyclic, R. T. Chien (15) obtained a

significantly better algorithm, which was then modified and

improved by G. D. Forney (18).

decoding algorithms are based on

4

All of these revolutionary

Algebraic decoding. By

associating the symbols of certain linear cyclic codes with

corresponding elements in a finite field, it is possible to

define an error locator polynomial, whose roots reveal the

locations of the symbols which are in error. The decoding

problem can then be reduced to the computational problem of

setting up this algebraic equation and finding its roots.

The Chien algorithm finds the roots of the error

locator polynomial by testing each candidate, but the tests

are done sequentially as the about-to-be decoded digits

leave the buffer. This method circumvents the computational

problem of finding roots of the error locator polynomial.

Therefore, the determination of the coefficients of the

error locator polynomial became the bottleneck of the BCH

decoding. This bottleneck was broken by an iterative

algorithm presented by E. R. Berlekamp (8). J. L. Massey

(34) pointed out that this same algorithm also solves

the linear feedback shift register synthesis problem. By

introducing the scalar multiples of the reciprocal monic

polynomials upon which Berlekamp's algorithm iterates, one

can decode BCH codes without doing Galois field divisions.

In 1970, v. D. Goppa (21) discovered the codes that

bear his name and are a natural generalization of BCH codes.

Goppa also gave a decoding procedure for his codes that was

analogous to the old Peterson-Gorenstein-Zierler algorithm.

Goppa did not, however, generalize Berlekamp's iterative

5

algorithm. In 1975, Sugiyama, Kasahara, Hirasawa, and

Namekawa (55) discovered that one can use the Euclidean

algorithm to decode Goppa or BCH codes. This algorithm is

easier to understand and sheds considerable light on under­

standing Berlekamp's algorith~. In fact, with hindsight

it is now possible to view Berlekamp's algorithm as an

improved version of algorithms based on Euclid.

Since excellent algorithms now exist, current research

is focused on reducing the numerical complexity of the

conventional BCH or RS algorithms. Recently it was proposed

that the· use of a finite field transform may be possible for

decoding. D. Mandelbaum (30) developed a decoding algorithm

using a transform over GF(p**m). The disadvantage of this

transform method is that the code length is such that the

most efficient fast Fourier transform algorithms cannot be

used to yield transform decoders. This problem was resolved

soon by several solutions. One scheme investigates a

modification of a method by S. Winograd (57) for computing

transforms over GF(2**m) that is based on the Chinese

remainder theorem. Another scheme was proposed by J.

Justesen (25) that transforms over GF(Fermat prime). Many

improvements along this scheme have been proposed (49). J.

H. McClellan (35) recently constructed hardware to implement

the Fermat prime theoretic transforms.

The major goal of this thesis is to provide a numerical

comparison by software simulation to see if the new

transform methods actually reduce numerical complexity.

6

Chapter VIII describes and gives the conclusions of this

simulation. Improvements in decoding using transforms were

also extended to encoding. D. Mandelbaum (31) showed how

to construct error-correcting codes by interpolation by

applying fast Fourier transform and Lagrange interpolation.

Chapter IX discusses further research in the field of

Algebraic coding theory. · Another goal of this thesis is

to interest the reader into further exploring coding theory.

There are several textbooks available including: Peterson

(43), Berlekamp (8), Lin (28), van Lint (29), . Peterson­

Weldon (44), and McWilliams-Sloane (38).

CHAPTER II

BACKGROUND THEORY

C) ~Algebraic coding theory history begins with the Shannon

coding theorems which guarantees the existence of codes that

permit the transmission of information at high rates with

vanishingly small probability of error (53). M. J. E. Golay

R. w. Hamming, D. E. Muller, I. S. Reed, and D. Slepian

made the first essential steps in Algebraic coding theory

with the effective encoding and d~coding techniques of some

particular linear codes (10). This· paper is intended as an

introduction to the encoding and decoding) of the code

developed by I. S. Reed and G. Solomon (47). Reed-Solomon

codes (RS) are the most powerful of the known classes of

block codes for correcting random errors and multiple burst

errors (8,38). However before going into the details of RS

codes, this background chapter was organized for those who

need some acquaintance with coding theory.

Information is said to be placed into code form by

encoding and extracted from code form by decoding. A basic

class of error-control codes is linear block codes. The

encoding procedure of linear block codes consists of two

steps: 1) the initial information sequence is divided into

message blocks of length k; and 2) every message block is

7

8

transformed into a codeword of length n by annexing r

check symbols. Such encoding can not prevent transmission

errors, but can reduce the error's undesirable effects. The

n-k or r check symbols are redundant symbols which carry no

new information but function to provide the code with the

capacity of detecting and correcting errors. Also, the k

message symbols are from an initial alphabet defined by a

Galois finite field GF(q).

A block code is often denoted as an (n,k) code or as an

(n,k,d) code on GF(q) where n, k, d are considered

parameters. N is the block length of the code. There are

q**k different codewords so k is the dimension of the

code. The minimum distance d of a code is the minimum number

of places in which any two codewords differ. "A linear code

with minimum distanced can correct [l/2(d-l)] errors."

(38,p.l0) ([x] denotes the greatest integer less than or

equal to x.) The distance, length, and number of

information symbols in any RS code are related by d=n-k+l.

An (n,k) code uses n symbols to send k message symbols,

so it has a rate or efficiency, R=k/n (8).

Ideally, the decoding process for any code is generally

easier if a message is encoded as a separable, systematic,

and cyclic codeword. A separable code is one which divides

a codeword into an information part and a redundant checking

part. A systematic code is one which has distinguishable

information symbols and check symbols. Over a finite field,

all linear codes are systematic. A cyclic code is a linear

9

block code which any cyclic shift of a codeword is also a

codeword (28).

The encoding problem is given any particular sequence

of k message symbols, the transmitter must follow rules for

selecting r check symbols so the receiver can decode and

recover the message. A simple binary example in Figure 1

d~veloped by R. w. Hamming illustrates basic concepts. Each

check symbol must be some function of the message symbols.

In the simple case of single-parity-check codes, the check

symbol is chosen to be the binary sum of all the message

symbols or parity. If there are several parity checks, one

solution is to set each check symbol equal to the sum of

subsets of the message digits. In the Hamming code example,

a message symbol is a member of a subset if the binary

representation of the number position has a one in that bit

position. Each subset can correspond to a row of a matrix.

A generator matrix G can be written which has one's in the

place of each row where the corresponding check is applied.

In general, the generator matrix of a separable code is an

r by r identity submatrix and a k by r submatrix that

describes the interdependence between information and check

symbols. Notice the matrix in Figure 1 does not generate a

separable code.

After the message sequence is encoded, the codeword is

transmitted across the noisy channel. The channel adds the

noise vector

E = { e
0

' e
2

I • • • I e } where
n-1

(2.1)

10

r

I~
i

Position 1 2 3 4 5 6 7 9 10 11\12 13 14 15

Message * * 1 * 0 1 0 0 1 0 1 0 1 1

Codeword ~ 11. 1 l 0 1 0 lo 0 1 0 1 0 1 1

)o Error 0 0 0 0 0 0 0 0 0 1 0 0 0 0
I

Recieved Vector 0 1 1 1 0 1 0 \0 0 1 1 1 0 1 1
\

Correction 0 0 0 0 0 0 0 10 0 0 1 0 0 0 0

Message * * 1 * 0 1 0 !* 0 1 0 1 0 1 1 I
I

* The check symbols to be determined I
I
I

I
j
I

SYMBOLS RESULTS OF PARITY ON C,HECK
I

Check Positions 1 2 3 4 5 6 7 is
I

9 10 11 12 13 14 15

I

ENCODING
Check 1 = ~ = * +1 +0 +0 +0 +0 +0 +1
Check 2 = iD = * +1 +1 +0 +1 +0 +1 +1
Check 3 = 1 = * +0 +1 +0 +1 +0 +1 +1
Check 4 = 0 = * +0 +1 +0 +1 +0 +1 +1 I

I
I

i
DECODING !

Check 1 = 1 = +0 +1 +0 +0 I +0 +1 +0 +1 I
Check 2 = 1 = +1 +1 +1 +0 I +1 +1 +1 +1
Check 3 = 0 = +1 +0 +1 +0 +1 +0 +1 +1
Check 4 = 1 = +O +0 +1 +1 +1 +0 +1 +1

I

l
SYNDROME = 1011 OR THE ELEVENTH POSITION

Note the syndrome is written with the check 1
associated with the low order bit, so the order
becomes Check 4, Check 3, Check 2, and Check 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Parity check 4
M = 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 Parity check 3

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 Parity check 2
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Parity check 1

Figure 1. Single-Error-Correcting Hamming Code Over GF(2)

11

E = f 0 if the channel does not change the ith digit
f 1 if the channel does change the ith digit

The received vector consists of the code vector plus the

error vector where R = C + E or C = R - E. Therefore if the

decoder is able to find the correct error vector E, then the

code vector C can be found by subtracting the error vector

from the received vector (In the binary case, of course +=-,

or difference= sum).

In the decoding process, one can define parity check

matrix M related as illustrated in Figure 2 to the transpose

of the generator matrix where
(2.2)

T T T T T T
(M C) = (c) M = c M

Using multiplication, the symbol subsets are checked for

correctness. Any occurring abnormalities are called

syndromes. The encoding process assures M*(C Transpose)=O;

and the decoding process assures
(2. 3)

T T T T T T
M R = M (C + E) = M C + M E = M E

Therefore the syndrome depends only on the error and not on

the codeword sent. Also the syndrome vector where
(2. 4)

S=fs ,s , . . . , s }
1 2 d-1

contains all the information regarding the error that has

been added to the codeword during the transmission. If

there is a single error, then the syndrome is exactly the

corresponding column of the parity check matrix and the

error position can be found by table lookup. Once the error

location is known, in the binary case, the error is

A) The information I = a , a ' . . . '
0 1

B) The (n-k) * n parity check matrix H

H = [A I Idenity]
n-k

C) The codeword c = a , '
0

D) The n * (n-k) generator matrix

T
G = [Idenity I -A]

k

T
because H c = 0

[A I Idenity J a
n-k 0

a
n-1

a
k

a
n-1

a
k-1

G

=

=

0

-A

Note: In the binary case -A=A

a
k-1

a
k

, . . . ,

a
0

a
k-1

12

a
n-1

in the non-binary case this is not true

Figure 2. Properties of Linear Codes

13

subtracted from the received vector and the codeword is

corrected. In the non-binary case, the value of the error

must be determined before subtracting. The message symbols

can be separated from the check symbols and thus completing

the decoding process.

A great deal of work in constructive coding theory

followed the appearance of Hamming's pioneering paper (23).

Improvements were pursued especially for a separable code

with the capacity to correct more than a single error. In

fact, a mathematical treatment of the encoding-decoding

process was sought to build a structure so that the code may

be decoded systematically without table lookup (which is

clearly impractical for large code sets). Such a process

was discovered known today as BCH codes. Reed-Solomon codes

are an important subclass of BCH codes. Also the single­

error-correcting Hamming code in Figure 1 can be defined as

the simpliest type of BCH code.

The BCH codes viewed the code sequences as polynomials.

The codeword vector

c = {

n-1
c (x) = L a

i
i=O

a a , .
0 1

i
X = a +

0

where a c
i

(2.5) . . , a }
n-1

1 n-1
a X + . . . + a X

1 n-1

GF (q).

is identified as the coefficents of the powers of a

variable. Also the generator matrix can be constructed by a

polynomial. Fundamentally, the vector representation is the

14

same as the polynomial representation. The code is the

same; rearrangement of columns of the generator matrix only

affects how and where one finds the column corresponding to

the syndrome that emerges. The encoding-decoding process of

the polynomial representation will be explained in the

following chapters. The conceptual gap between ·the Hamming

codes or the single-error-correcting codes and the t-error­

correcting BCH codes is considerable and represents a decade

of research.

CHAPTER III

ENCODING OF REED SOLOMON CODES

An important process in error correction is the

encoding or placing information into codewords. The

encoding of a Reed-Solomon (RS) code can be handled by any

of the following three methods. The first or conventional

method describes techniques which can be used for any cyclic

code. RS codes are cyclic. The next method which is the

original method of I.S. Reed and G. Solomon (47) is

mentioned for theoretical interest though not generally used

because the encoder is not systematic. Finally, a new

scheme for reducing the numerical complexity of the standard

RS encoding algorithm is developed. The new method is a

combination of the Chinese remainder theorem, discrete

Fourier transforms, and Lagrange interpolation •.

Conventional Method

The conventional method of polynomial

requires a codeword to have zero

algebraically by M * {C Transpose) = 0.

encoding still

syndrome defined

This method of

encoding is based on the fact that the coded vector must be,

considered as a polynomial, a multiple of the generator

polynomial G{x). Since a linear code is generally defined

15

16

by a generator, a formal definition of RS codes are needed

to insure proper encoding. Conventionally RS codes are

generated based on the fact RS codes are a subset of BCH

codes which are a subset of cyclic codes.

A cyclic code of length n is based on a generator

polynomial G(x) with the following properties: 1) there is

a unique monic polynomial G(x) of minimal degree in the

code, 2) the code consists of all multiples of a fixed

polynomial G(x), 3) G(x) is a factor of (x**n) -1, 4) the

message I(x) becomes the codeword I(x)G(x), 5) code is

generated by the rows of a generator matrix defined where

multiplication by x corresponds to a cyclic shift where

G =

G(x)
xG(x) . . .

n-r-1
X G(x)

where G(x) = g + g x + • • • + g x
0 1 r

(3 .1)

r

The generator polynomial has degree equal to the

distance of the code minus one or the number of check

symbols. Since G(x) is a factor of the polynomial

representation of the codeword, the generator has distinct

roots w or zeros of the code. The number of zeros of the

generator polynomial depend upon how many errors one wishes

to detect (38).

Each element w**i of the field is a root of a unique

irreducible polynomial M(i)(X) of minimal degree. Terms

basic to theory of finite fields are reviewed in Appendix A.

17

Then G(X) must be divisible by each of the polynomials

M(l)(X), M(2)(X), . , M(d-l)(X) and hence, by their

least common multiple:

(3. 2)
d-1

G(X) = LCM 1T M(i)(X)
i=l

Since each of the factors M(i)(X) is irreducible, the least

common multiple of the M(i)(X) is simply the product of the

minimal polynomials M(i)(X), with the duplicates omitted.

Duplications are quite possible; and occur in fact for any

w**i and w**j that are roots of the same polynomial M(i)(X)

(42).

A cyclic code of length n over GF(q**m) is a BCH code

of designed distance d defined by the distinct roots

(3. 3)

b b+l b+d-2
w , w , • ,w

of the generator. RS codes are a subset of BCH and can be

defined with the following restrictions: 1) the power of

the field is one or GF(q**l), and 2) the zeros generally

start with b=l. An RS code is a cyclic code of length n

over GF(q) defined by the distinct roots

(3 • 4)
1 2 d-1

w , w , .•• ,w

of the generator. Thus an RS code is a block code with

n=q-1 symbols, with k=n-d+l message symbols where d is the

minimum distance. Important special cases are b=l (called

narrow-sense BCH codes) or n=q-1 (called primitive BCH

18

codes). All BCH codes hereafter referred to are assumed

to be narrow-sense and primitive.

In summary, to encode the k information symbols into an

n=q-1 symbol RS code, one must first define the generator

polynomial

(3. 5)
d-1

G(X) = lT i
(x - w

i=l

where w is- a primitive nth root of unity as defined in

Appendix A. The code consists of all multiples of G(X)

subject to the constraint

(3.6)
n

X - 1 = 0

The message polynomial must be exactly divisible by the

generator polynomial. Let I(X) be a temporary polynomial

where the message corresponds to the positions

(3. 7)
a , a ' . .. ,a ,0,. . . ' 0

n-1 n-2 k

and the coefficients of the remaining n-k lower order

positions are momentarily zero. The division of this

message polynomial I(X), by the generator polynomial G(X)

will produce a remainder R(X). The remainder R(X) has

degree less than (n-k) which is the degree of the generator

polynomial.

I(X) = Q(X) G(X) + R(X)
C(X) = I(X) - R(X)

(3. 8)

If the remainder is subtracted from the message polynomial,

then the result is exactly divisible by

polynomial or a codeword. The calculation of

can be accomplished in the general case

division illustrated in Figure 3.

19

the generator

the remainder

by polynomial

However in the binary case, the apparent complexity of

much of the division process for the modular requction of

polynomials over GF(2) can be handled simply by means of

shift registers with feedback paths. 'In Figure 4, the

digits of the message come from the right, the highest power

first with trailing zeros automatically supplied for the

check bits to be determined. The paths below each register

show where the feedback occurs according to the generator

polynomial. A practical encoder is where the message digits

are shifted out and when the remainder is computed, the

remainder is then shifted out to form the entire coded

message. The first digit of the remainder is always

omitted, of course, since it is always zero. In hardware,

encoding is a shift register with the additional logic for

addition by exclusive or in each position. In software,

encoding is a test for a one in the leftmost position. If

one is found, then logically add the pattern of ones

required by the feedback paths or logically add the vector

representation of the primitive polynomial. In either case,

the codeword polynomial is congruent to zero modulo the

generator polynomial. Also in either case, this encoding

method only applies with codes with binary symbols.

20

Powers of x are represented by coefficients with positions:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
X X ·X X X X X X X X X X X X X X

1-7+1+2-2 ll +2 +3 +2
1 -7 +1 +2 +2

+9 +2 +0 +2
+9-63 +9+18+18

-3 -9 +1+18
-3+21 -3 -6 +6

+4 +4 +7 -6
+4-28 +4 +8 -8

-2 +3 +3 +8
-2+14 -2 -4 +4

+6 +5 -5 -4
+6-42 +6+12-12

-4 +6 +1+12
-4+28 -4 -8 +8

-5 +5 +3 -8
Generator Polynomial -5+35 -5-10+10

2 3 4
= (x-6)(x-6)(x-6)(x-6
= (x-6)(x-2)(x-12)(x-4

4 3 2
= x -7x +x +2x -2

Primitive root of unity
for GF(l7) and N=l6 is 6

C(X) = I(x) - R(x)
15 14

+4 +8 +2-10
+4-28 +4 +8 -8

+2 -2 -1 +8
+2-14 +2 +4 -4

-5 -3 +4 +4
-5+35 -5-10+10

-4 +9 -3-10
-4-28 -4 -8 +8

-2 +1 -2 -8

12 3
= x + 2x

13
+ 3x

13
+ 3x

+ 2x - (-2x
2

+ lx
2

+16x

- 2x - 8)
15 14 12 3

= x + 2x + 2x + 2x +2x +8

Figure 3. Encoding Reed-Solomon Code (16,12,5) Over GF(l7)
By Conventional Division Method

State
Feedback

Result

Shift

Shift

Shift

Shift

Shift

Shift

Shift

Shift

Shift

0 1 1 0 0
0 0 0 0 0
0 1 1 0 0

1 1 0 0 1
1 0 0 1 1
0 1 0 1 0

1 0 1 0 1
1 0 0 1 1
0 0 1 1 0

0 1 1 0 0
0 0 0 0 0
0 1 1 0 0

1 1 0 0 0
1 0 0 1 1
0 1 0 1 1

1 0 1 1 0
1 0 0 1 1
0 0 1 0 1

0 1 0 1 0
0 0 0 0 0
0 1 0 1 0

1 0 1 0 0
1 0 0 1 1
0 0 1 1 1

0 1 1 1 0
0 0 0 0 0
0 1 1 1 0

1 1 1 0 0
1 0 0 1 1
0 1 1 1 1

1 1 1 1 0
1 0 0 1 1
:e: 1 1 0 1

1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

Remainder

Message (0 1 1 0 0 1 1 0 0 0 0 * * * *)
Codeword (0 1 1 0 0 1 1 0 0 0 0 1 1 0 1)

21

Figure 4. Encoding Reed-Solomon Code (15,11,5) Over GF(16)
By Linear Feedback Shift Register Method

22

Original Method

The next method of encoding is based on the original

work of I.S. Reed and G. Solomon (47). Reed's work on

coding theory developed because of the decoding failures

that occurred in Hamming's coding if the number of errors

was not equal to one (46). Reed and Solomon proposed a code

which maps k-tuples over GF(q) into 2**n-tuples over GF(q).

Let I(x), be the message symbols to be encoded into a

codeword C(x), using the polynomial P(x) defined in Figure 5

where w is the primitive root of unity of a suitable

irreducible polynomial over GF(q). Therefore the non-zero

elements form a multiplicative cyclic group. The formulas

and an example of this Reed-Solomon encoding method is given

in Figure 5.

However the codeword is not systematic unless regarded

as a mapping of binary sequences of (mn) bits into binary

sequences of n(2**n) bits. However this theoretical approach

suggested a certain viewpoint where RS codes can be said to

result from a generalized interpolation. Observe the P(w**i)

is the remainder when the message I(X), of degree less than

k is divided by a minimal polynomial.

Let w be a primitive element of GF(q**m). Let
M(i)(x) = x- w**i fori= 0, 1 , ••• ,q**(m-2)
Therefore

R(x} = r modulo (x - w**i)
i

R(x) = Q(x) (x - w**i) + r
R(w**i) = r i

i (4,p.298)

So one can say I(x) is encoded into

23

I (X) = (a , a , • . . , a where a E GF(q)
0 1 k-1 i

I (X) = (0,0,0,0,0,0,0,0,2,3,2,1)

1 k-1 k-1 i
P(x) = a +a x + . . . + a X = L a x

0 1 k-1 i
i=O

8 9 10 11
P(x) = 2x + 3x + 2x + X

2
C(x) = p (0) , p (w), P(w) , . . . , P(l)

C(x) = (0,1S,7,3,15,2,3,16,14,14,13,12,9,9,2,12,8)

Figure 5. Encoding Reed-Solomon Code (16,12,5) Over GF(17)
By Reed's Original Method

I (X) = (0,0,0,0,0,0,0;0,2,3,2,1)

i
I (w)= (0,0,0,0,0,0,0,0,0,0,0,0,2,3,2,1)

i
R(w)= (8,9,10,5,8,14,14,4,0,11,4,3,9,2,15,3

3 2 3 2
R(x) = 9 (6x +llx +4x +2} + 10 7x +16x +5x

3 2 3 2
5 (13x +14x +11x +5} + 8 ax +lOx +14x

R(x) = (-8,-2,+1,-2,0,0,0,0,0,0,0,0,0,0,0,0}

C(x} = (+8,+2,16,+2,0,0,0,0,0,0,0,0,2,3,2,1 }

+ 7}

+ 4)

Figure 6. Encoding Reed-Solomon Code(l6,12,5} Over GF(l7}
By New Interpolation Method

r ' • • • ' r
0 k-1

r
k

' . . . , r)
n-1

where r is the residue of I(x) modulo M(i)(X).

24

(3.9)

This

generalization of the Chinese remainder theorem, which deals

with polynomials over the GF(p**m) instead of integers, is

stated in Appendix B. This theorem guarantees the first k

residues are enough to reconstruct the message I(X) in the

absence of errors. If additional residues were sent, the

message might be communicated despite some disruption of the

transmission. Thus the n-k residues are redundant residues

which are included in a codeword for protection against

errors. Reed-Solomon or any code encoded by this method are

called redundant residue codes. Restated

Reed-Solomon codes were the first codes
constructed in terms of interpolation. It is
well-known that a polynomial f(x) of degree k-1
over any field is determined uniquely by its
values at any k distinct points Xl , O<=i<k. If
these k values f(xl) are transmitted, the
receiver can reconstruct the function f(x): this
is called Lagrange interpolation. If one or more
of the values f(xl) are changed by noise, then the
wrong function will be constructed. However, if
r extra (redundant) values of f(x) at r
additional points are transmitted, then by taking
all combinations the most often, the correct
function f(x) will be selected even if noise has
affected up to [r/2] values f(x;) (3l,p.27).

From a practical standpoint, this encoding process makes

complete decoding difficult.

Interpolation Method

However, Reed's original encoding process was the

foundation for current research which states the Chinese

25

remainder theorem another way. After calculation of the

residues, the vector can be viewed as the polynomial

interpolated through the points

(3.10)
i

w , r for 0 <= 1 < n-k
i

Instead of transmitting the residues, the residues are used

to interpolate a polynomial that is a valid codeword before

transmission.

The new encoding procedure of an RS code is composed of

the following two steps:

1) Compute I(w**i) for l<=i<=d-1 by the technique
used to compute syndromes in the decoder.
Note that by

2)

C(x) = I(x) - R(x)
i i

I(w) = R(w)• for 1

Compute R(x) from R(w**i)
interpolation:

d-1

R(x) = L
i=l

where E(x) is

E (X) = rr
i j¢i

i
R(w) E (x)

i

defined by

(
i

X - w)

i j
w - w)

for

<= i <= d-1.

using Lagrange

l<=i<=d-1

(50,p.223)

This method encodes a systematic codeword which results

in the identical symbols transmitted as the conventional

method. An example in given in Figure 6. The immediate

advantage of Lagrange interpolations is that matrix E~ (x)

26

has to be calculated only once when initializing the

encoder. This preprocessing of coefficients reduces the

overall complexity of the encoder.

Summary

Encoding is very important process and the basis for

any error correcting scheme. The methods discussed in this

chapter have one immediate ad~antage. The encoding is very

similar to the first step of decoding. Since the encoding

can be viewed as a syndrome-like calculation, it can be

implemented using the algorithm used in the decoder. Since

the decoding process will be discussed in detail in the

following chapters, program design logic and numerical

complexity are not included at this time. The examples used

in this chapter will be continued throughout the paper.

CHAPTER IV

TRANSMISSION

Recall in a linear block code, a particular sequence of

n digits can be encoded as a codeword. Although there are

q**n different sequences of length n, only q**k of these

sequences are codewords, because the r check symbols within

any codeword are completely determined by the k message

symbols. No matter which codeword is transmitted, any of

the q**n possible sequences of length n may be received if

errors have been induced. The decoder must attempt to

recover the correct codeword by implementing a coding

scheme. When an error detection and correction coding

scheme is considered in a transmission or a storage system,

one should ask 1) what are the sources of errors

what

3)

the

is needed

what error

application.

to achieve the capacity

correction strategy is

Each of these consid-

anticipated, 2)

of the code and

appropriate for

erations play an important role in the design of the coding

scheme.

The selection of an error management scheme is based on

the type and distribution of the errors which occur. To

better understand the type of errors that can be

encountered, a specific example of an optical disc is given

27

28

to illustrate typical sources of errors. The sources can

be divided into the following categories: 1) random-noise

errors, 2) media-defect errors, 3) media-damage errors,

4) media-blockage errors, and 5) equipment-induced errors.

Random-noise errors occur as a result of noise in the

transmission causing a misinterpretation of a symbol.

Media-defect errors occur as a result of imperfect fab­

rication of the optical disc storage media. As state-of-art

technology of the fabrication processing improves, these

errors can also be handled efficiently with encoding.

Media-damage errors are more difficult to deal with since

they occur at any point during the useful life of the

storage media and can be very large in extent. Media­

blockage errors occur as a result of dust or other

pollutants settling on the recording media and causing

optical blockage that prevents proper recording or playback.

Equipment-induced errors are primarily related to dis-

turbances. In the record mode, such a disturbance may

result in a short loss of recorded data. In the playback

mode, these disturbances may cause a decision error in the

demodulator. Figure 7 illustrates an error management

technique which can be implemented to minimize these error

sources {6).

The application or sources of errors determine what

type of errors one needs to detect. Already mentioned are

random errors in a message or namely an equal probability of

an error in each symbol position. However in practice there

PROCTECTIVE
OVERCOAT AND

CARTRIDGE
-media damage-

QUALITY CONTROL
OF DISK

FABRICATION
-media defects-

l Data in -I

'
DATA BLOCKING

FORMATING
-synchronization-

of- messa

'~

DATA ENCODING

~ codew
,,

RECORDING
-media blockage-

'8' , DISK ~err
" ,/

1.-

PLAYBACK
-random noise-

~- rec

DATA DECODING

~ est
of

~ Data out .,

ge u=u •
0

ord c=c •
0

. . u
k-1

c
n-1

or e=e • e
0 n-1

eived r=c+e

• 1\
1mate u
message

Figure 7. Flow Diagram of Error Management Shceme

29

are often

positions

true that

30

reasons for errors to be more common in some

in the message than in others, and it is often

errors tend to occur in bursts and not be

independent. One of the accepted definitions of a burst in

coding theory is the following: "A burst of length b is a

seque~ce of b digits, the first digit of which is non-zero

(16,p.292)." The total number of bursts with a specific

length can be readily determined in a given error sequence.

For instance, a typical error sequence in a binary system

may have the following appearance:

(4.1)

• • • 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0 1 1 1 1 0 0 . . .
·This sequence contains 10 bursts of length one, or 6 bursts

of length two, or 5 bursts of length three, or four bursts

of lengths four and five. In general, codes for correcting

random errors are not efficient for correcting burst errors.

Coding is also required in communication systems to

combat the errors that occur in the guesses of the

demodulator. It has been recognized (18) that there are

advantages in allowing the demodulator not to guess at all

on certain transmissions when the evidence does not clearly

indicate one signal as the most probable. Such events are

called erasures. It is convenient to imagine that in the

event of an erasure the demodulator does make some guess,

perhaps arbitrary, but in addition passes on the side

information to the decoder that this guess is absolutely

unreliable and is to be disregarded. The best strategy is

31

to demodulate sufficiently weak or ambiguous received

signals not as any of the q symbols in the input alphabet

but as an additional symbol, such as ?. An erasure implies

an unknown symbol at a known location and an error implies

that the location and value are both unknown.

In this simulation, Reed-Solomon (RS) codes are

constructed by algorithms that are very effective in

correcting random and burst errors. RS codes are a maximum

distance code capable of correcting d=2t+l random errors.

However due to present technology or applications only

binary codes derived fr~m q-ary RS codes are of interest.

For example, GF(q) will be represented as GF(2**m) where m

is a positive integer. Since each code symbol is an m-tuple

over GF(2), a t-error-correcting RS code is capable of

correcting any error pattern that affects t or fewer m-bit

symbols. In general, the RS code with error correcting

capacity t can be used to correct any of the following

errors:

1) All single bursts of length b no matter where
they start, if b<=m{t-1)+1.

2) Two bursts of length no longer than b each, no
matter where each burst starts, if
b<=m[(t/2)-1]+1, or any p bursts of length no
longer than b each, no matter where each
burst starts, if b<=m[{t/p)-1]+1.

(27,p.206)

For example, when each binary bit is considered as a symbol

only random errors can be detected. A burst of errors in t

adjacent positions is corrected identical to t random

positions. However when a m-tuple of binary bits is

32

considered a symbol, a t-error-correcting code can correct

more than t binary symbols. Let m=5 and t=4 then a burst of

length 16 cannot affect more than four m-bit symbols, and

can be corrected by a four-symbol-correcting code. However,

considered as random one binary bit errors, one would need a

t>=l6 correcting code.

Reed-Solomon codes are also implemented by algorithms

that handle both errors and erasures. An erasure pattern is

correctable if (and only if), by substituting all possible

combinations of symbols at these erased symbols, only one

results in a codeword. With a t-error-correcting code, any

pattern of 2t erasures is correctable. This follows

immediately from the fact that, with s=2t erasures, any two

n-tuple resulting from different substitutions can differ at

most at 2t digits. However the minimum distance is d=2t+l

which means these two n-tuples can not both be codewords.

Erasures are often compounded with non-erasure errors.

Therefore there is a trade-off between the number of

correctable errors and erasures. However a multiple-error-
.

correcting code is capable of correcting any combination of

t errors and s erasures as long as the minimum distance of

the code is at least 2t+s+l<=d. Since the erasure positions

are known, improvements are made in the capacity of the

code.

Now that sources and type of errors have been defined,

one needs to design a coding strategy to achieve the

capacity of the code. Generally speaking the longer the

33

block length n, the more storage the decoder requires, and

the greater the minimum decoding delay. It is also generally

true that the longer the code block the larger the class of

errors to be corrected, hence the more complicated the

decoding circuits or decoding procedures. However, the

distribution of errors in longer code blocks becomes much

more predictable, thereby permitting the use of codes with

smaller redundancy while maintaining the same reliability.

Therefore the actual length of the block will depend on the

application. For example, for intramachine transmission,

such as going in and out of an internal random-access

storage, the primary coding requirements are very high

reliability and speed. For intermachine data transmission,

the primary requirements are still high reliability but also

. high information rate. Since a decoding delay does not

reduce throughput, one would tend to use longer codes with

lower redundancy even though they require more decoding

complexity.

An optimal coding strategy can be achieved and the best

code obtained, only after the designer evaluates several

alternatives. The designer has control over the parameters,

distance, length, and number of information symbols, which

are all related by d=n-k+l. One main consideration is if

the number of errors greater than or equal to the distance

then the algorithm will either misdecode or fail to decode.

A decoding failure is when the decoder will not decode the

received word into any of the possible transmitted message

34

words. A decoding error is when the decoder decodes the

received word into the wrong codeword. This simulation

considers a decoding failure to be preferable to a decoding

error.

If a decoding algorithm decodes every possible received

word into one of the possible transmitted codewords then it

is a complete decoding algorithm. Since different

applications have different requirements there are many

courses of action besides full-power correction with block

codes.

One approach is error detection. The main advantage is

the simplicity of its implementation. An error is detected

if the received message yields a non-zero syndrome. For

cyclic codes, a division circuit plus a test for zero

constitutes a complete decoder. Error detection is an

attractive means of error control provided it is possible

for retransmission. On the other hand, an error due to

permanent damage in the storage medium will not be

successfully avoided by retransmission.

Another approach is partial correction in the error­

control scheme. One major reason is to minimize the

decoding complexity. In the case of multiple-error-correc­

tion, decoding complexity grows exponentially with the

number of errors corrected. Thus, even if a given code can

correct t>2 errors, one may still want to go through a

double- error-correction procedure and test the syndromes

for possible erroneous correction. If single or double

35

errors account for a large portion of the overall error

rate, considerable reduction in average decoding delay can

thereby be achieved. If more than two errors occur the

correction algorithm can output a decoding failure message

or try a more powerful correction procedure.

Another approach is the use of erasures which tends to

reduce the uncorrectable-error rate. "The amount of

improvement is a function of the detailed statistics of the

detected signals and of the thresholds that define the

erasures (56,p.64)." The price of improvement is an

increase in decoding complexity. When correcting com­

binations of errors and erasures with a multiple-error­

correcting code, one must perform the additional step of

transforming the error syndromes in order to separate the

erasures from the non-erasures before the ordinary decoding

procedures can be applied. Another price of improvement is

a decreased information rate. Since q symbols in a field are

represented by m-tuples, in order to represent an unique

erasure symbol an (m+l) bit is necessary. Therefore

decreasing the efficiency of the code defined as R=k/n.

Erasures are not considered in the simulation of this study.

The main reason for exclusion is current literature still

uses conventional algorithms enhanced to correct erasures

developed by G.D. Forney, Jr. (19).

The approach of this simulator is to use a combination

of detection, partial correction, and full-power correction.

The codeword is encoded then transmission is simulated.

36

During this phase, an error vector is added to the code­

word. Continuing the example of Chapter II, then

C(x) = (+8,+2,16,+2,0,0,0,0,0,0,0,0,2,3,2,1)

E(x) = (0, 0, 0, 1,0,2,0,0,0,0,0,0,0,0,0,0)

R{x) = (+8,+2,16,+3,0,2,0,0,0,0,0,0,2,3,2,1)

the received word would be tested to see if it was

codeword. If the syndromes indicate an error,

decoder will attempt to locate the errors. Details

decoder are discussed in the following chapters.

(4 • 2)

a valid

then the

of the

CHAPTER V

STAGE I: CALCULATION OF THE SYNDROMES

Extensive research has been done on decoding BCH codes,

and efficient algorithms exist. Most of the current

research has been focused upon reducing the numerical

complexity of the conventional BCH or Reed-Solomon (RS)

encoding/decoding algorithm. Since the encoding of RS code

is performed block by block (k message symbols encoded to n

code symbols), the received sequence is therefore decoded a

block of n digits at a time. The basic function of a

decoder is to test whether or not the received word is a

codeword (or whether it is divisible by the generator

polynomial G(x) of the code used at the encoder). Detection

of an error and possible correction can be accomplished.

The decoding is generally divided into three stages: 1)

calculation of the syndromes, 2) calculation of error

locator and error evaluator polynomials, and 3) evaluation

of the calculated polynomials for the locations and values

of the errors. This chapter deals only with the initial

stage of calculating the syndromes. Major emphasis has been

placed on evaluating the syndromes from the received vector.

Since the syndromes contain all the information about the

errors, efficient calculations of the syndromes is very

37

38

important in the decoding process. Various methods will be

introduced, however, if more details are desired, references

will be cited.

Matrix Multiplication

One method of syndrome calculation is matrix

multiplication. The codeword represented as a vector

defined the syndrome equal to the parity check matrix times

the transpose of the codeword. The parity check matrix M is

an 2t*n matrix and the received vector R is an n-vector.

The syndrome vector S is the product of M and R. "By

definition, the i-th component of S is the dot product of

the i-th row of M with R. Computing vector S as indicated

requires 2tn multiplications and 2t(n-l) additions."

(4,p.l95)

This straightforward method was used to introduce the

concept of syndrome as illustrated by Hamming's single­

error-correcting code in Figure 1, each of the n columns of

the parity check matrix must contain a different non-zero

binary m-tuple, which is the location position of that

symbol. As long as the n different symbols of the code are

assigned different non-zero location numbers, the order of

the error locations does not matter. For a single-error­

correcting parity matrix, an efficient method is to

rearrange the columns so each of the n error location

positions is considered as a non-zero element in GF(2**m).

Each element can be represented as a binary polynomial of

39

degree < m. Appendix A explains how to construct such a

field. For example if m=4 and if the primitive polynomial

is to be (x**4)+x+1, the parity check matrix for a single-

error-correction code of block length 15 can be given as

(5.1)
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

M = 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

M .: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w ,w

Since w is a root of a primitive polynomial, every non-zero

element in GF(l6) is a.power of w. Therefore one can assign

the successive digits of the error location positions to

successive powers of w.

Such labeling also proves advantageous for multiple­

error-correcting BCH codes. In order to correct additional

errors, one needs additional information obtained by adding

more rows to the parity check matrix. In the non-binary

case, the parity check matrix is given by

1

M = 1

1

w

w
2

2
w

2 2
(w)

2t 2 2t
w (w)

n-1
w

n-1 2
(w)

n-1 2t
(w)

(5. 2)

The first m digits of the parity check matrix give the first

syndrome, the sum of the error locations, the second m

digits give the second syndrome, the sum of the squares of

40

the error locations, etc. Note in the binary case, all

even powers can be computed and need not be columns of the

parity check matrix although there is no harm in including

them.

(5 • 3)
2 2 2 2 2

(i + j) = i + 2ij + j = i + j mod 2

2
or (S) = S

1 2

Polynomial Division

The codeword viewed as a polynomial also assigns the

successive digits of the error positions to successive

powers of w. This assignment of location numbers has the

great advantage that the syndrome of the received vector

becomes a polynomial in w:

T
H R

n-1

=L
i=O

j i j
R (w) = R (w

i

for 1 <= j <= d-1

(5.4}

) = s
i

Also viewing the calculation of syndromes as evaluation of

polynomials enables one to apply many existing improved

algorithms for polynomial operations.

Generally the fastest method of calculating the

syndromes from the received vector R(x) is by hardware

implementation. By the division algorithm,

(5 • 5)
R(x) = Q(x)M(i}(x) + r(x) ; degree r(x) < M(i)(x)

In a single-error-correcting codes G(x)=M(i)(x) or the

41

irreducible polynomial of degree m which is the minimal

polynomial of w, the M(i)(w)=O and R(x)=r(x).

given by

Thus after

the division, the syndrome is

polynomial r(x), evaluated at x=w. In

the remainder

multiple-error-

correcting codes, these syndromes or power sums can be

computed from the received word separately. To compute the

first syndrome, one divides R(x} by M(l}(x}, the minimal

polynomial of w, to obtain the remainder of r 1 (x}. To

compute the i-th syndrome, one divides R(x} by M(i}(x}, the

minimal polynomial of w**i. Figure 8 is an example of

circuitry needed for the first stage of the decoder for

multiple-error-correcting BCH code defined on GF(l6} defined

by (x**4)+x+l (see Appendix A).

One advantage of the polynomial representation over the

matrix representation is the parity check matrix need not be

stored therefore avoiding table-lookup. Another advantage

aside from speed, is that the syndrome calculation can be

implemented by the division algorithm used in the encoder

thus a possible reduction in total hardware cost of the

encoder/decoder system.

Other very

calculation of

representation

evaluation of

Direct Polynomial Evaluation

economical methods include the direct

the syndromes by evaluating the polynomial

of the received word. Algorithms for

polynomials differ in the amount of

computation required, the amount of storage required, and

42

~R=r ,r , ••• ,r ----------~To Stage III
0 1 14

3
w

2
w s,
w

1

r [;:g 3

l w
0

2
w st 0

w

1

3
w

0 0

3 (w3) 3 z. 3
s = r(w } = r + r + r (w) + r (w3)

3 0 1 2 3
3

fl
lo q

= r + r w + r w + r w
0 1 2 3

3 2. 3
(w 3} = r + r w + r (w +w) + r +w

0 1 2 3
2.. (r)w3 = r + r w + r w + + r + r

0 3 2 1 2 3

Figure 8. Calculating the Syndromes by Division Circuitry

43

the effects of arithmetic roundoff. It is somewhat dif­

ficult to compare various algorithms because of the trade­

offs between these various factors that depend on the

hardware of software that is available. However perhaps the

most straightforward way to solve for the syndrome is to

compute each term and add it to the sum of the others

already computed. The program design logic and Figure 9 and

example in Figure 10 evaluates polynomials using 2n-l

multiplications and n additions. However a more efficient

algorithm exists. Figure 11 illustrates the program design

logic for Horner's method of evaluating R(w**i) by using a

simple factorization of R. This reduces the computations to

n multiplications and n additions. Finally the polynomial

evaluation must be repeated for successive powers of w

depending on the error correcting capacity of the code.

Fast Fourier Transform

This repeated evaluation of roots of unity suggests the

use of a transform method. These methods have proven to be

useful when an application such as decoding allows sequences

to be processed in blocks. The most versatile transform is

the discrete Fourier transform (DFT) which has been defined

in finite Galois fields (45) and much more familiarly in the

complex number fields (17). A basic introduction and

program design logic is given in Appendix C. Investigation

into transforms defined in the arithmetic of finite fields

developed so truncation and rounding effects when performing

Input: The coefficients of P(x) in the array R
X and N>=l

Output: S, the value of P(x)

S <-- R(O) + R(l) * X
XPOWER <-- X
For· I <-- 2 to N do

XPOWER <-- 'xPOWER * X
End

Figure 9. Polynomial Evaluation --Term by Term

Received word = (+8,+2,-1,+3,0,2,0,0,0,9~0,0,2,3,2,1)

0 1 2 3 5 12 13 14 15
S(x) =Bx + 2x -lx + 3x + 2x + 2x + 3x + 2x + lx

44

S(w) =8(1)+2(6)-(2)+3(12)+2(7)+2(13)+3(10)+2(9)+(3)mod 17=9
2

S(w)=8(1)+2(2)-(4)+3(8)+2(15)+2(14)+3(11)+2(5)+(10)mod 17=4
3 3 3 2 3 3

S(w)= 8(1)+2(w)-(w) +3(w) ••• = 0
4

S(w)= 4

Figure 10. Syndrome Calculation· by Polynomial Evaluation

P(x) = [••• ((a x + a)x +-a)x + ••• + a]x + a
n n-1 n-2 1 0

Input: The coefficients of P(x) in the array R
X and N>=l

Output: S, the value of P(x)

S <-- R(N)
For I <-- N-1 to 0 by -1

S <-- S * X+ R(I)

Figure 11. Polynomial Evaluation--Horner's Method

45

polynomial operations by transform methods in the complex

number field may be avoided. In any practical application,

such as coding theory, the message symbols are from a finite

field, and therefore without loss of generality, the data

can be considered to be integers with some upper bound. By

special choices of three requirements: 1) the length N, 2)

the modulus F, and 3) the primitive root w, it is possible

to develop improved transform algorithms known as number

theoretic transforms (NTT).

The first improvement is the choice of n or the length

of the polynomial evaluated. The best choice is for n to be

a power of two. If n can not be a power of two, the

disadvantage of such a transform method over GF(2**m) is

that the transform length must be an odd number so that the

most efficient fast Fourier transform (FFT) cannot be used.

The next choice is values of n that are highly composite.

Winograd suggested a method for computing transforms over

GF(2**m) for larger values of n.

Let n= n1• n~ where (n 1 ,n~) = 1. Using the Chinese
remainder theorem, one can represent every integer
i E: {O,l, ••• ,n-1} by a pair of integers (i 1 ,iz.)

where i 1 = i mod n1 , i?. = i mod nz.

Consequently:

ij (i 1 ,iz)(j 1 ,j 2) (i 1 j 1 ,iz.jz.> (i 1 j 1 ,0) (O,i:dz.>
w =w =w =w , w

This means that the computation of DFT of n=n 1 *nL
points can be decomposed into computing the DFT
for n points in which each multiplication is
replaced by computing the DFT of n points.

(57,p.l005)

46

To avoid direct computation of S , a n-point transform

over GF(2**m) defined in equation (5.1) can be decomposed

into a multidimensional transform over GF(2**m) as

illustrated in Figure 12. However observe in Stage r, one

needs only compute the first d-1 points of the transform.

An example is a block length of n=255 over GF(2**8) is

n=n 1 n 2 n~ =17*5*3. Then by suitably applying the above

technique for each factor of n, the original syndrome form

can be reconstituted by using the Chinese remainder theorem

as stated in Appendix B.

Another source of improvements to make these transforms

computationally efficient is in the choice of modulo F. A

systematic investigation of good choices of F, for which the

maximum transform length of N is not too small reveals some

interesting results. Of course, one would like F to have a

minimal binary bit representation in order to facilitate

arithmetic modulo F. The first possibility is 2**k; it has

a prime factor two and therefore the maximum possible

transform length is one. For (2**k)-l, let k be a composite

PQ, where P is prime. Then (2**P)-l divides (2**PQ)-l and

the maximum possible length of the transform will be

governed by the length possible for (2**P)-l. Numbers of

this form are known as Mersenne numbers. Mersenne number

transforms are not highly composite, and therefore fast

FFT-type computational algorithms do not exist to compute

the transforms. For (2**k)+l, say k is odd, then three

47

Given integer j = (j , j , ••
1 2

for l<=k<=r

(0,0 ••• 0,1,0 ••• 0)

.,j) where j = J mod n
r k k

then w = w where 1 is the kth position
k is the primitive n th root of unity

k
then

s = s for (l<=j<=r)
j (j' ,jz., ••• , j,.)

n, -1 n1 -l nr-1 i j i j i
= I: I: I: a

(• • •) WI '
w2 , ••• , w,.

i =0
'

it =0

The r stages

Stage 1

1 n,.,-1
s = ~

(i 1 , i2. ••• ~- 1 jr) £.J
ir =0

Stage 2

2 n~~l

s = ~
(i• ,ia. • .j j,..)

Stage r

r
s = s

j (j,

... , i =0
r-1

ir =0
1, , 1 2 , ••• , 1,..

a
(i', iz. ••• i,..)

for O<=j,.,<=n,.-1
r

i,._, j r-1
w for O<=j <=n -1

j r) r -1 ,.._ I ,._ I

r-1 i 1 j 1
s w for l<=j<=d-1

(i, ,jz··· j,..) · 1

Figure 12. Multidimensional Transform Over GF(2**m)

j

48

divides (2**k)+l and the largest possible transform length

is two. Thus k is even. Integers of the form (2**b)+l where

b is (2**t) and t is a positive integer are known as Fermat

numbers. "Fermat numbers seem to be optimal in the sense of

having transforms whose length is interesting while word

size is moderate." (l,p.90) Ft is called the t-th Fermat

number, and it seems only the first five are prime and all

the others are composite. The first few values are

FO =3 t
Fl = 5 2 b
F2 = 17 Ft =2 + 1 =2 +1
F3 = 257 t
F4 = 65 537 where b= 2

F5 = 4 294 967 297 =641 * 6 700 417
F6 = 274 177 * 67 280 421 310 721

(5.6)

Number theoretic transforms with a Fermat number as a

modulus are called Fermat number transforms (FNT).

In software or hardware realization of the FNT, one

ordinarily defines a binary arithmetic modulo Ft. The

utilization of such a modulus requires b+l bits. The

representation of the quantity 2**b=-l modulo Ft requires

the (b+l)th bit. In order to simplify modular arithmetic

operations, one can limit the realization of the FNT to b-

bit arithmetic. This is possible especially in an

application such as coding theory. No input bits will be in

error due to the message bits being defined on a b-bit

representation. However there may be some error in

representing the redundant check bits. Realistically, the

probability that this number will appear after the

49

arithmetical operations during the transform is approx­

imately 2**-b. If an occasional error is permissible, for

these cases, probablily there is no need for any extra

hardware to represent 2**b. If the need exists, an extra

bit could be used to represent 2**b at the expense of a more

complicated hardware.

The following discussion is based on the b-bit

representation of integers by Agarwal and Burrus (1).

Another binary arithmetic for the Fermat number transform is

suggested by Leibowitz (26) which is only mentioned here as

a reference to indicate that other possible implementations

exist. Various basic arithmetic examples are illustrated in

Figure 13. To negate a number, one has to complement each

bit and add two to the result. When one adds two b-bit

integers, one obtains a b-bit integer and possibly a carry

bit. The carry bit represents 2**b=-l modulo a Fermat

prime. To implement arithmetic modulo Ft, one adds then

subtracts the carry bit. Subtraction is implemented as an

addition by first negating the subtrahend and then adding

the two b-bit integers. When one multiplies two b-bit

integers in general, one gets a 2b-bit product. Let C-low be

the b-bit low-order part of the product and C-high be the

b-bit high order part. Thus all one has to do is subtract

the high order register from the low order register. When

multipling by a power of 2, these computations are

particularly simple to implement in arithmetic modulus the

Fermat number. All one needs to do is left-shift the

A) Negation

(mod 17): 4 = 0100; -4 = 1011 = 1101 = 13
+ 10

1101

B) Addition

(mod 17): 10 + 9 = 17 = 2 mod 17 1010
+1001

10011
1

0010 = 2

C) Subtraction

(mod 17): 10- 4 = 6

D) Multiplication

1010
+1101

10111
1

0110 = 6

(mod 17): 13 * 9 = 117 = 15 mod 17 = 0111 0101
High Low

Low 0101
(-High) 1010

1111 = 15

E) Multiplication By Power of Two

(mod 17): 11 * (2**3) = 88 = 3 mod 17

11 = 0000 1011 Low 1000
Shift left 3 positions (-High) 1100

0101 1000 10100
High Low 1

0011 = 3

Figure 13. Arithmetical Operations Performed Modulus
Fermat Prime

50

51

contents of the register by k bits and subtract the k

overflow bits that are in the high register. Division in a

finite field is multiplication by its inverse.

Finally, since multiplications take most of the

computational effort in calculating the FFT, it is important

that the multiplication by powers of w be a simple

operation. This is possible if the powers of w have very

few bit binary representation; preferably also a power of

two, where multiplication by a power of w reduces to a word

shift. With this in mind, one considers transform lengths

possible in arithmetic modulo various Fermat numbers with

the corresponding values of the root of unity. Since Fermat

numbers up to F4 are prime, one can have an FNT for any

length N=2**m, m<=b. For these Fermat primes the integer 3

is an w of order N=2**b, allowing the largest possible

transform length. However there are other integers which

are of order 2**b. If w is taken as 2 or a power of 2, all

the powers of w would be some power of 2 and for these

cases, the FNT can be computed very efficiently. These

transforms are called Rader transforms (49).

For a better understanding of these prime moduli

consider an example for F2. If the modulus is M=l7 the 3

and 6 are primitive roots that will generate the entire

field as shown in Appendix A. The value 2 is of order 8 and

4 is of order 4. Also note that 6=~in the same sense that

(6**2)=2(modl7). Other excellent choices of the root of

unity are listed in Figure 14.

F2 and N=2**4
3 1

!2=2 -2 =6

F3 and N=2**5
6 2

~ = 2 - 2 =60

F4 and N=2**6
12 4

f2 = 2 - 2

F3 and N=2**6

. 4[2 = 35

F4 and N=2**7

/2 =4938

F3 and N=2**7

812= 42

F4 and N=2**8

8(2 =5574.

Figure 14. Roots of Unity

R(x) = (+8,+2,16,+3,0,2,0,0,0,0,0,0,2,3,2,1) .
R(w•)= (5,9,4,0,4,1,15,8,0,6,1,8,14,1,4,14}

Figure 15. Calculating the Syndromes by Transform Method

t b

3 8

4 16

5 32

6 64

TABLE I

PARAMETERS FOR SEVERAL POSSIBLE
IMPLEMENTATIONS FOR FNT

Ft N;w=2 N;w=./2 N Max

2**8 +1 16 32 256

2**16+1 32 64 65536

2**32+1 64 128 128

2**64+1 128 256 256

w for N Max

3

3

!2
/2

52

53

In summary, Table I gives values of N for the two most

important values of w, and also gives the maximum possible N

for the most important values of b. However, the parameters

chosen depends on the application, but hopefully this

introduction indicates careful study can improve numerical

complexity considerably. Continuing ·the example in the

previous chapters, Figure 15 finds the syndromes by using a

fast Fourier transform with its improvements. The program

design logic and numerical complexity for a general fast

Fourier transform is included in Appendix C since this

algorithm is also used in Stage III.

Summary

The final results depend on the application. If small

values of n and t are used, the implementation by linear

feedback shift registers or direct polynomial evaluation

still may be feasible. However as the complexity of the

code increases the new transform method has been shown (51)

to reduce numerical complexity substantially. This method

applies to either a software or hardware implementation.

However by the end of Stage I regardless of method

implemented, the decoder has found the syndromes

(5. 7)
d-1 k

s , s , . . . , s = L y X
1 2 d-1 i i

i=l

Thus the added error can be described by a vector of values

and locations of its nonzero components. The location

54

will be given in terms of an error location value, which is

simply w**(i-1) for the i-th symbol. Thus each nonzero

component of the error vector is described by a pair of

field elements, Y; (the value of the component) and x: (the

error location number). Y is an element of GF(p) and X is

an element of GF(p**m). The syndromes are calculated from

the received vector, and in order to correct the errors, the

pair (Y • X•) must be found for each of the t or fewer
A ' A

errors. The syndromes are called the weighted power sum

symmetric functions. The syndromes consists of a set of t

equations in t unknowns. Any method of solving these

equations is the basis an error-correction procedure (43).

It appears impossible to solve the equations by any direct

method, and trying all combinations of t of the q field

would require too many computations. There is however, an

interesting solution which is the next step in the decoding

process.

CHAPTER VI

STAGE II: CALCULATION OF THE ERROR LOCATOR

AND THE ERROR EVALUATOR POLYNOMIALS

A major stage in a typical decoding procedure for

Bose-Chaudhuri-Hocquenghem (BCH) codes or Reed-Solomon (RS)

codes is the calculation of the error locator and the error

evaluator polynomials (44, 8). This chapter uses the

syndromes calculated in Stage I to determine these two

polynomials that facilitate in finding the location and the

values of the errors in Stage III. The calculation of these

polynomials is the most complex stage of the decoding

procedure. Several methods are introduced, however, if more
•

details are desired, references will be cited.

Simultaneous Equations

At the end of Stage I, the syndromes of the received

vector were calculated. With the usual notation, one

defines

(6.1)

Received vector = Code vector + Error vector

R(x) = L: \/ C(x) = L: \/ E(x) = L\/
If the error word consists of an error of value Y at

55

56

location x1 and an error of value Y at location X , •.• ,

then the ~yndrome is defined

j
y X

i i
= s

(6. 2)

j

In general, a solution to the system of equations in

Equation 6.2 is the basis for the error-correction

procedure. This stage is complicated by the fact that these

non-linear equations will have many solutions. Using a

vector representation and maximum likehood decoding (23, 8)

seems impossible. Each solution corresponds to different

error patterns in the same coset of the additive group of

codewords (52, 8). The decoder must find a solution where

the error vector has as small a weight v as possible. The

weight of a vector is defined as the number of non-zero

elements in that vector (23). There are only a finite

number of possible solutions, and the correct solution could

be found by simply trying all possible solutions. In

practical application, however, there are simply too many

possible solutions for this to be an effective method.

There is, however, an effective compromise.

Suppose that v<=t errors actually occur. These are

described by v pairs (Y~,X~), for which neither Y nor X is

zero. In order to make a total of t pairs, one can add

t-v pairs of zeros, that is

X = Y = 0 for v < i <= t
i i

(6. 3)

Then let the equation

(X-X) (X-X) • • • (X-X) = ~- cr (X) + •••
1 2 t t t-1

define the quantities <f1, cr 2,. • • , crt.

t-1
+cf (X)

1

57

(6.4)
t

+ (X)

These are the

elementary symmetric functions defined in more detail in

Appendix D. Then if x is substituted for X in Equation

6.4, both sides are zero. This is also true if both sides

are multiplied by Y X • Thus relating the S's and the 's

gives

s cr
j t

·s (f + • • •
j+l t-1

t-1
+ (-1) s a'

j+t-1 1

(6.5)
t

+ (-1) s =0
j+t

which must hold for all j. Since S is found from the

parity check calculations for l<=j<=2t-l, a set of t

equations in which all the S are known can be found: j=l in

the first and j=t-1 in the last (42).

Before presenting more complex theory, a basic example

is necessary. For the binary case, the Y which can not be

zero, must be one. Therefore

(6.6)

j
S = X

j i

Thus the parity checks give the first t odd power-sum

symmetric functions. The proof that it is indeed possible

to solve for the elementary symmetric functions from the

power-sum symmetric functions is given by Theorem 1 in

Figure 16. For example, a double-error-correcting code in

58

GF(2) has the following solutions illustrated in Figure

17. This figure gives a possible decoding scheme to use in

order to keep decoding complexity to a minimum. This scheme

is very practical especially if retransmission is possible

when more than two errors are detected. In fact E. R.

Berlekamp (8) has implemented a complete decoding scheme for

double error correcting binary BCH codes.

In general, the following is ~n iterative algorithm for

finding ~(z), for a BCH code of designed distanced,

assuming v errors occur where v<=t. The t-error correcting

BCH code give, as the parity check on received sequences,

the odd power-sum symmetric functions up to Szi-1 and the

intermediate even functions can be calculated simply from

these. If it is assumed that no more than t errors occur,

then by Theorem 1 in Figure 16, with k=t, it is either

possible to solve for the error position numbers, or there

are t-2 or fewer errors. In the latter case ~t-l=Ut=O and

two equations can be dropped, giving a set of t-2 equations

in t-2 unknowns to which Theorem 1 can be applied again.

Eventually, if there were any errors at all, a set of

equations that can be solved for the elementary symmetric

functions of the error positions will be found (42).

This step involves a certain amount of trial and error

because it is possible to solve the equations and obtain

correct solutions only when the number of equations used

equals or exceeds by one the number of errors that actually

occur. This step might be carried out instead by starting

The k*k Matrix

1 0 0 0 0 0

s s 1 0 0 0
2 1

s s s s 1 0
4 3 2 1

M = 0
k

s s ... s
2k-4 2k-5 . . . k-3

s s . . . s
2k-2 2k-3 ... k-1

Figure 16. Theorem 1

s - () = 0
1 1

s - s ~ + s cr - 3u = o
3 2 1 1 2 3

If s, = 53 = 0 no errors have occurred
3

correct single error If s ;II! 0, s = s . X = S ' 1 3 1 1 1

If s ;II! 0 and Tr (s~ +
5
;, s1:)= o; Correct double error

1

6'(x) = (X - X1) (X - Xz.)

<T(z) = 1 +(fz+<fz where z = 1/x
1 2

2 2
= 1 + (s) z + 53+ s

1 1
z

s,
If s = 0 and Tr (s,3

:,3 s1 s~) = 0
1

or s + s S ;It 0;

More than two errors have occurred

Figure 17. Decoding Scheme for Double-Error-Correcting
BCH Code

59

60

with the assumption that two errors occurred, solving, and

checking the solution. If the solution does not check, four

errors would be assumed, and so forth. When a set of

answers that checks occur, it must be the correct solution.

This step amounts to solving, at most, a set of t

simultaneous linear equations. But one may have to try t-1

times since the actual number of errors present may be

anywhere from one to t. Therefore this method is not

practical unless t is small, but introduced because of its

simplicity. Also this error-correction procedure has

advantages for binary codes, but apparently can not be

generalized for q-ary codes.

Background Theory

However much research as been done on solving these

simultaneous equations. It turns out to be advantageous to

replace the ordering of the position locations and define

the error locator polynomial ~(z} based on the elementary

symmetric functions in Equation 6.4 as follows

(6. 7}
-1 -1 -1

For (w w , . . . , w } then
0 1 n

v
cJ(z} =n (1 - X z

i
i=1

v i
= L crz a' =1

i 0
i=O

v
=1 + rr z + . . . +cr'z

1 v

61

Therefore the roots of a'(z) are the reciprocals of the

locations or the X~ values.-

Once the position of the error has been determined,

then it is necessary to determine the value of the error in

order for correction to take place. Therefore if E~=O, then

an error has occurred in position Xlz, and V={w~ :e;~O}. The

set of error locations and the number of elements in V will

be denoted by v. Using the above notation, one can rewrite

the syndrome vector S(x).

v
S(x) =- L:

i=l

Y• X· z
4 ...

1 - X z
i

(6.8)

The syndrome polynomial can be expressed in this form

due to the reordering of the error positions. Figure 18 is

provided to aide in the theoretical background if necessary

or Berlekamp (8) is an excellent reference.

Therefore the error evaluator polynomial is derived by

multiplying the error locator polynomial and the syndrome

polynomial as indicated in Equation 6.5. Thus relating the

S's and the ~'s gives the following equations defined in

Figure 19. Now observe that if one could somehow find the

polynomials d(z) and ~z), one could recover the transmitted

codeword C from the received word R. Of course there are

efficient algorithms for computing ~(z) and ~z), which are

based on the key equations in Figure 19. That is the

solution can be found provided that one makes the additional

assumption that v, the number of errors that actually

62

n-1 -j
s = L: R w for j=1,2, ••• ,2t and

j i i -1 -1 -1
i=O and w =(w , w ' ... , w)

i 0 1 n-1

2t-1
S(x} = s + s X + . . . + s X + . . .

1 2 2t

2t j-1
= L: s X

j
j=1

2t j-i n-1 -j
= L: X L: R w

i i
j=1 i=O

n-1 2t j-1 -j
= L: R L: X w

i i
i=O j=1

n-1 2t -2t
= L: R X w -1

i
;-t) i=O (x -

n-1 2t
= L: R -1 mod X

i •
i=O -.c.

X - w

n-1 2t
- L: E mod X

= .
i=O

-.c..
X - w

Figure 18. Definition of Syndrome

Key Equation in General Theory

v v
s (z) (f(z) = -r: Y·X•z 1T (1- X z

"' c. j -----
i=l 1 - X· z .j=l

A.

v v
= -y: y X z Tr (1- X z)

i i j.
i=1 j#i

= w (z)

Key Equation in Berlekamp Algorithm

For ease of computation add O'"(z) to both sides
2t+l

Reduce modulus z since the decoder only knows
the first 2t powers of z

2t+1
(1 + s (z)) cr (z) = . "' (z) mod z

Figure 19. Key Equations of Decoding BCH codes

63

64

occurred, satisfies v<=t or v<=[d-1/2]. Notice that the

error evaluator polynomial W(z) depends both on the

locations and the values of the errors, although the error

locator ~(z) depends only on the locations of the errors.

Therefore by defining error locator and error evaluator

polynomials, one defines the generator function of the

sequence. Since ~0 =1, the generator function for the

quotient W(z)/~(z) is well defined. Therefore there are

basically two approaches to find ~(z) and w(z) based on the

key equation derived by the elementary symmetric functions.

The solution can be obtained by using continued fractions

(32, 55) or by using Berlekamp's algorithm to solve the key

equation (8, 34).

Euclidean Algorithm

From the theoretical standpoint, both approaches use

the Euclidean algorithm given in Appendix E. The Euclidean

algorithm is used to prove that the factorization of

polynomials into irreducible polynomials is unique (except

for scalar multiples) over any field and that a polynomial

of degree d can not have more than d roots in any field.

This fact is needed to prove that the error locator

polynomial d(z} cannot have more roots than its degree. If

it did, then the entire decoding procedure would be invalid,

for several different pairs of error locations might

conceivably be reciprocal roots of the same equation.

65

From the practical standpoint, the Euclidean algorithm

is a simple and straightforward algorithm for finding the

greatest common divisor (gcd) between two integers or

two polynomials, or for finding the continued fractions

expansion of a real number. Relative to decoding RS codes,

the Euclidean algorithm is important because of one of

its modifications. The method of convergents of continued

fractions provides the basis for one of the most efficient

methods for implementing division in finite fields. Thus in

the decoding process a(z) and w(z) can be found merely by

applying Euclidean algorithm to x**2t and S(x) and stopping

at the index i as soon as the degree of the remainder drops

below t. Thus setting

(6.9)

~(z) = t (z)
i

and W(z) = r (z)
i

Many algorithms are known for computing greatest common

denominator. A survey of classical techniques for gcd's was

conducted by D. E. Knuth (55). An excellent algorithm is

given in Aho, Hopcroft, and Ullman (4}. A generally

accepted method is E. R. Berlekamp's iterative algorithm

using continued fractions in GF(p**m). This algorithm can

be easily implemented on the computer (8). This algorithm

is the one used to define the Euclidean algorithm in

Appendix E. Table II illustrates the example of finding the

polynomials by the Euclidean Algorithm.

1

-1

0

1

2

3

4

1+

2

5 •

""'
1

0

1

4x + 8

TABLE II

CALCULATING THE POLYNOMIALS BY
THE EUCLIDEAN ALGORITHM

0

3

r •
)J

4
X

1 4x + 4x + 9

2
4x 16x + 2x

116• 2 +lsx ~J J 3.··: 9 J
3 2

7x +13x +16 llx +lx +2x +4 2

3 4
4x + 4x + 9 X 0

TABLE III

CALCULATING THE POLYNOMIALS BY
THE BERLEKAMP ALGORITHM

2 3 4
S = 1 + 9z + 4z + Oz + 4z + .

k D(k) B(k} CS'(k} 1:"(k} W(k)

0 0 0 1 1 1

1 1 1 1+ 8z 2 1

2 1 0 1+ 9z 15+z 1+ z
2

3 2 1 1+13z+l5z 9+13z 1+5z
2 2 2

4 2 0 1+15z+l6z 4+lz+9z 1+7z+2z

q •
....

13x

13x + 9

llx +13

lOx +13

66

<((k) A(k)

0 9

2 8

15 2

9+9z 13

4+3z Stop

67

Berlekamp Algorithm

The last method of locating and evaluating the errors

is also based on using the generalized Newton's identities.

This method is known as the Berlekamp algorithm for solving

the key equation. For a more theoretical background and a

heuristic solution of the key equation in more detail, one

can refer to the original work by E.R. Berlekamp (8). The

decoder can solve the key equation given in Figure 19 by

using the program design logic given in Figure 20. This

algorithm is the complete second stage of the decoder.

Given S(z), one can find both cr(z) and w(z) from these

equations. The unknown polynomials crtz) and W(z) both have

degrees <= v, the number of errors that actually occurred.

The algorithm proceeds recursively and includes many

conditions that ensures the smallest degree polynomials are

found. Table III illustrates the example of finding the

polynomials by the Berlekamp algorithm.

Summary

All the methods presented form the theoretical

background for Berlekamp's algorithm. This algorithm is

basically an improvement by Berlekamp on his own continued

fractions algorithm. However any of the methods presented

can be used to find the error locator and error evaluator

polynomials. In comparison, Aho, Hopcroft, and Ullman (4)

describe an algorithm which computes the

divisor of two polynomials of degree n in

greatest common
a

Order (nlog n)

Initially define: (f(0)·=1
f(O)=O

Proceed recursively as follows:

~(0)=1
D(O)=O

If S is unknown, stop; Otherwise
k+l

W(0) =1
B(O)=O

k+l
Define 6 (k) and the. coefficient of z

l· in the product (l+S) and <l(k)

G'"(k+l) = Cl(k) - ~(k)*~*T<k>

(JJ(k+l) = W(k) A (k) *z* ((k)

If [A (k)=O] I [D(k)>(k+l)/2] I [A(k)=O & D(k)=(k+l)/2

D(k+l) = D(k)

B(k+l) = B(k)

"l(k+l) = z*'t(k)

r<k+l) = z* ((k)

68

& B(k)=O]

But if [A (k)=O] & [(D(k)<(k+l)/2) I (D(k)=(k+l)/2) & B(k)=l)]

D(k+l) = k + 1 - D(k)

B(k+l) = 1 - B(k)

7(k+l) = cf'(k)/A (k)
' 1

r< k + 1) = w < k) I .6. < k)
1

Figure 20. Berlekamp Algorithm

69

steps. By using this modified version of the Euclidean

algorithm, Justesen (25) shows that a t-error-correcting

Reed-Solomon code of length n can be decoded in Order

(nlog2n) arithmetic operations.

Similarly, a primitive binary BCH code of length n can

be decoded up to its designed distance in Order(nlogn)

arithmetic operations. These results are better than those

obtained with the Euclidean algorithm, but unfortunately

only for excessively large values of n. For practical

purposes the original version of the Berlekamp algorithm is

probably the fastest, although this depends on the machinery

available for the decoding. Nevertheless, decoding using

the Euclidean algorithm is by far the simplest to

understand, and is certainly at least comparable in speed

with the other methods (for n<l0**6) (38). However, by the

end of Stage II regardless of method implemented, the

decoder has found the error locator and the error evaluator

polynomials.

CHAPTER VII

STAGE III: EVALUATION OF ERROR

LOCATOR AND ERROR EVALUATOR POLYNOMIALS

The final stage in a typical decoding procedure for

Bose-Chaudhuri-Hocquenghem (BCH) codes or Reed-Solomon (RS)

codes is the evaluation of the error locator polynomial and

error evaluator polynomial. This stage can be divided

essentially into two steps: 1) finding the error locations

and 2) finding the error values if necessary. Once the

roots of the error locator polynomial are found, the

location of the errors are known. Generally, there are

several methods that find the roots of the e~ror locator

polynomial. By Peterson's decoding procedure, each nonzero

element of the field is generated and substituted in a trial

and error search for the roots. This stage turned out to be

the most time consuming. This chapter will discuss some of

the solutions found to reduce the numerical complexity of

Stage III. One solution was suggested by R.T. Chien (15)

and another solution is based on transform methods. However

even though the decoder knows the error locations, it is

difficult to correct the errors immediately because the

values of the errors still needs to be determined. It turns

out to be simpler to wait until the erroneous symbols leave

70

71

the received word buffer, and then correct the errors as

they leave. Thus the decoding procedure is complete.

Factoring Polynomials

The location of the errors depends on the roots of the

error locator polynomial, ~(z). If ~(z) has degree one or

two, the zeros can be found directly. Over GF(2**m)

quadratic equations can be solved almost as·easily as linear

equations. The following references on factoring polynomials

over finite fields are relevant: Berlekamp (6, 7, 8), Chien

et al. (14), and McEliece (37).

Chien Search

In general the simplest technique is just to test each

power of w in turn to see if it is a zero of the error

locator polynomial shown in Equation (6.7). This part of

the decoding is often called the Chien search. This

approach avoids the explicit solution of the error locator

polynomial ~(z), whose roots are the reciprocal of the error

locations. The Chien search may be used to test each of the

locations to see if the symbol in the position X~ now

leaving the buffer is a reciprocal root of the ~(z).

By examining the relationship between the coefficients

of a(z) ·and the roots of this polynomial, Chien observed

that the "coefficients are homogeneous sums of square free

products of the roots of order d-1." (15,p.361) He used

this homogeneous property to develop a way to obtain all

72

the roots of (z} by counting and by successive trans-

formations. To simplify circuitry, the element to be

detected is chosen to be the unit element of GF(2**m}, one

sees that

(7.1}
1 2 t

O"(z) = 1 + crz + "(j z + . . . (fz = 0
1 2 t

or

t i = 1 2 t

:E (j z (fz + cr z + +rJz = 1
k 1 2 t

k=l

If the transformation equals one after i , i , ... shifts,

respectively, the roots of (z) are w**(n-i), w**(n-i),

In Figure 21, the procedure is illustrated with a

binary example defined on GF(2**4) as defined in Appendix A.

Each successive transformation is listed.

The implementation of the error correction procedure

for binary codes follows the above theory in a

straightforward manner. Once the decoder has found the

coefficients 0"1, (f2, • • • , crt, the Chien search proceeds as

follows. First the decoder computes (w). Next, the decoder

computes (w**2), then (w**3) •••• In order to calculate

these polynomials quickly, the decoder uses t+l registers.

At the k-th step these registers contain the quantities

(7.2)

Register 0 1 2 t

Contents 1
lk

C!w
1

2k
(fw

2

3 .

3k
(fw

3
<fw

t

In order to proceed to the (k+l) step, the decoder

tk

73

C(x) = (0 1 1 0 0 1 1 0 0 0 0 1 1 0 1

E(x) = 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

R(x) = (0 1 1 0 1 1 1 0 0 1 0 1 1 0 1

STAGE I : s = w**l4 s = 0
1 3

STAGE I I : 14 13 2
O(z) = 1 + w z+ w z

14 3 13 2 3
6 = = 1 + w o= w = 1 +w + w

1 2

STAGE III:
6, *

2
w a:* w ~

3 2 3
Initial Value 1 + w 1 + w + w , 1

After 1 shift 1 1 ,;. 1
2

2 shifts w w 1 1
2

3 shifts w 1 + w f. 1
3 2 3

4 shifts w w + w :1 1
2

5 shifts 1 + w 1 + w ~ 1
2 2

6 shifts w + w 1 + w + w = 1 root

••••••••••• > •••••••••••••••••••••••••••••

3 3
10 shifts w + w w f: 1

2 2
11 shifts 1 + w + w w + w = 1 root

...
15-6 9 15'-11 4

Roots w = w and w = w

E(x) = (0 0 0 0 1 0 0 0 0 1 0 0 0 0 0)

Figure 21. Decoding Reed-Solomon Code (15,11,5) Over GF(l6)
By Chien Search

74

multiplies the register 0 by (w**O), register 1 by (w**l),

register 2 by (w**2), certain relatively small values of t

and m, it is feasible to build circuitry to multiply the

registers by wired constants in a single clock cycle. For

the binary example in Figure 21, the Chien search may be

accomplished by the circuit of Figure 22. Initially, the

top register of the circuit of Figure 22 is loaded with if2

and the bottom register with ~1. At each clock cycle, the

top register is multiplied by (w**2) and the bottom register

by (w). After k clock cycles, the adders evaluate the

polynomial (w**k). If this polynomial is zero, then (w**-

k) is a reciprocal root of the error polynomial, and a one

is added into the erroneous symbol at location (w**-k) which

is now leaving the buffer. If (w**k) does not equal zero,

then the symbol leaving the buffer remains unchanged because

it is not in error.

For larger values of t and m, the cost of building

wired circuitry to multiply by (w**t) in GF(2**m) in one

clock cycle becomes substantial. For moderate values of t,

one may multiply by (w**t) by executing t successive

multiplications by w. This method requires only registers

wired to multiply by w, but it requires too many shifts if t

is large. In these cases, it is usually more economical to

allow m clock cycles for each of the multiplications.

Figure 23 illustrates how to evaluate the error locator

polynomial calculated in Table II and III by Chien search.

multiplies by w**2

mu.l,tiplies by w

Figure 22. Chien Searcher for Double-Error-Correcting
Binary BCH Code

75

13 2 2
<f(6) = 6'"(10) =

11
1+15z+l6z = 1+15(10)+16(10) =

2
0 mod 17

()(6) = (1"(5) = 1 + 15(5) + 16(5) = 0 mod 17

16-13 3 16-11 5
Therefore errors at 6 = 6 = 12 and 6 = 6 = 7

Figure 23. Evaluating the Error Locator Polynomial
By Chien Search

Euclidean Algorithm

w= 9 + 3x

Reciprocal of w= 9x+ 3

y = 9(12) + 3 = 1
1 ---------

12 (12-7)

y = 9 (7) + 3 = 2·
2 ---------

7 (7-12)

Berlekamp Algorithm
2

w = 1 + 7x + 2z
2

Reciprocal of w=x +7z + 2
2

y =(12) +7(12) + 2 = 1
1 ---------------

12 (12-7)
2

y =(7) +7(7) + 2 = 2
2 ---------------

7 (7-12)

Figure 24. Evaluating the Error Evaluator Polynomial

Given s
j+2

- cr s
1 j+l

+ crs
2 j

= 0
2

or 1 + 15z + 16z

Calculate the remainder of the Syndromes and Perform
Inverse Fast Fourier Transform

S(x)=(3, 9, 4, 0, 4, 8, 3, 14, 14, 8, 13, 0, 13, 9, 1,, 3)
E(x)=(O, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Figure 25. Evaluating the Error Locator Polynomial
By Inverse Fast Fourier Transform

76

77

Location Values

The final step of the decoder is to determine the

values of the errors once the error locations are known.

This step is unnecessary in the binary case. Since is

not zero it must be one. The location of the error is all

one needs to know in order to correct it, and thus the error

pattern in described completely by a list of error locations

values X •

In the non-binary cases, when a zero of ~(z) is found,

indicating the presence of an error, the value of the error

must be calculated as illustrated in Figure 24. The decoder

can evaluate the polynomial w(z) obtaining

(7.3)

-1 TT w(z) =W(X) = Y, (1- X X
1 1 j i

-1

j.ci

Thus the decoder can evaluate the errors according to the

formula

(7. 4)
-1 -1 reciprocal -1

C.U(X) XW(X) of <w<x·•)) -X w(X)
y = = = =

i lT (1-x.x.) x.1f<x.-x.> x.lf<x. -x.) (f' (X.)
J 1 1 1 J 1 1 J 1

j~i j;a!i j;a!i

Inverse Fast Fourier Transform

Current research has shown improvements in Stage III

that eliminates the need for the Chien search and the error

evaluator polynomial. Since the S 'sand ~'s in Stage II

78

are related by a set of simultaneous linear equations,

then for all j, the syndromes S satisfy the recurrence

s
j+v

- (j s
1 j+v-1

+ • • • +
v

(-1) cf s
v j

(7.5)

= 0

Thus upon completion of Stage II, then compute the remaining

syndromes S for d<=k<=n from the known (z). Every RS code

is a field generated by some polynomial G(x), i.e. a

polynomial is a codeword if and only if it is divisible by

G(x). This means that a vector is a codeword if and only if

it satisfies. the recursion relation corresponding to the

polynomial (x**n-1)/G(x).

There is a close relationship between Fourier

transforms and polynomial evaluation and interpolation.

Given a (n-1) degree polynomial, this polynomial can be

uniquely represented in two ways, either bt a list of its

coefficients a0 ,a,, .•• ,at'_, or by a list of its values at n

distinct points x 0 ,x 1 , ••• ,xn-l • The process of finding

representation of a polynomial given its values is inter-

polation. Computing the Fourier transform of a vector

is equivalent to converting the coefficient representation

at its roots of unity. Likewise the inverse Fourier

transform is equivalent to interpolating a polynomial given

its value of the n-the roots of unity. Therefore the final

step involves performing an inverse fast Fourier transform

to recover the error vector. Figure 25 completes the

decoding example presented 1n the previous chapters.

Observe that Stage I involved the computation of fast

79

Fourier transforms and all the imp~ovements discussed

applies to the inverse as well. Details of the inverse

Fourier transform are given in Appendix C.

Summary

In the cyclic procedure of the Chien search, it can be

shown that Stage III may be accomplished in n clock periods

and therefore realizes a great savings in decoding delay.

For decoders with serial readout the error correction is

accomplished during readout, hence it requires no additional

time at all. However if the Chien search is simulated, the

evaluation of each coefficients would require n(t-1)

multiplications and nt additions. In comparison, the inverse

fast Fourier transform has been shown how it can be used in

recovering the error vector. Being able to apply these

faster forms of evaluating polynomials to coding theory

allows the process of Stage III to take advantage of all the

FFT speed. Therefore depending on the application, the

inverse FFT will generally give better results.

CHAPTER VIII

SIMULATION AND CONCLUSIONS

The encoding and decoding described in the previous

chapters was implemented in a software simulation. This

program is used to correct any combination of t errors

occuring in an RS codeword. The overall design of the

program was to compare the conventional decoding with the

new transform decoding. This chapter will give an outline

of a general decoder, restate a summary of the algorithms,

discuss the numerical·complexity of each stage and explain

the simulation design and implementation.

Outline of a Decoder for BCH Codes

Any decoding scheme that is to be used in a real-time

application will eventually need to be implemented in a

hardware design. The program simulation can not achieve

cosequential processing but one needs to consider possible

hardware implementations when designing the simulator. The

following is a general discussion of the overall decoding of

the Gorenstein-Zierler decoder which is the conventional

method.

A sketch of an overall design for a RS code is shown in

Figure 26. The decoder consists of four principal parts:

80

81

1) a buffer of 2n symbols, 2) shift registers wired to

divide the incoming word by each irredicible factor of the

generator polynomial, 3) a central Galois field processor

to form ~(z), and 4) a Chien searcher. An optional part is

logic circuitry to calculate the error values. At a typical

instant of time, the buffer will hold parts of three

successive blocks as shown in Figure 27. The first i symbols

of the incoming word; the next n symbols of the buffer hold

the entire buffered word; the last n-i symbols of the buffer

hold the last n-i symbols of the outgoing word. The Chien

searcher is in the process of computing (w**i) in order to

determine whether or not the next symbol to leave the buffer

should be corrected. The shift registers are busy

calculating the syndromes. The central processor is engaged

in trying to find the error-locator polynomial for the

buffered word.

When all the n symbols of the incoming block have been

received, then all the symbols of the outgoing block have

left. The buffer then appears as in Figure 27. The

buffered block then becomes the outgoing block, and the

incoming block becomes the buffered block. The coefficients

of ~(z) are read out of the central GF processor and into

the Chien searcher, as the remainders of the received word

or the syndromes are read into the central GF processor. As

the next n digits of the incoming word arrive from the

channel, the central GF processor must compute the coeffi­

cients of the error locator polynomial for the buffer word.

82

I Channel I Delay r I

Find
Error

H L
Value

Form s. I 'Form<S'(z) :0.

H Form I
sl I Not

~.
ff&.

Evaluated'(w.;.) · • 4 Form l
. .

st-t:_J !Tu

STAGE I STAGE II STAGE III

Figure 26. Overall Design of Hardware Decoder

Figure 27. Typical Buffer During Decoding

83

The linear feedback shift registers that perform the

division of the incoming polynomial by the irreducible

factors of the generator polynomial and the Chien searcher

must both operate in synchronization with the codewords in

the buffer. The central GF computer, however, is totally

disconnected from the rest of the deco¢er except between

blocks when it outputs the error locator it has just

computed and inputs the syndromes from the next block. It

is not really essential that input and output of this

central processor be executed simultaneously. If the

central processor is so fast that it is able to compute the

error locator before the new received word arrives then the

buffer size may be reduced. In the extreme case of Hamming

codes, the central processor may be eliminated altogether

since S is the location of the only correctable error. The

buffer may be reduced to n digits. In the other cases of

q-ary symbols, the buffer may need to be extended to allow

for finding the values of the errors after the Chien search.

Peterson Decoder

The Peterson algorithm has since been improved

substantially and no longer is considered the standard

decoding method. However for completeness of theory and

hardware clock comparisons, it is briefly included. The

Peterson binary procedure consists of three stages:

Stage I: Compute the power sums S~ from the
received sequence through the relations S
=r(w**i) for i=l,3,5, ••. ,2t-l

Stage II: Compute the elementary symmetric

functions k(k=l,2, .•. ,t) from the power sums
by using Newton's identities. The elementary
symmetric functions are coefficients of the
polynomial ~(z).

Stage III: Find the roots of the polynomial ~(z)
by trial and error. These are the error
locations.

(10,p.l30)

84

Peterson (43) has given a rough estimate of the

processing time required for each step of his procedure. It

is assumed that addition or multiplication in GF(2**m) can

be performed within one clock period, and division in a few

clock periods. Following this computation, Stage I takes n

clock periods where n is the length of the code block.

Examples of circuits for accomplishing this are given in

Figure 8. Stage II amounts to solving, at most, a set of t

simultaneous linear equations. But one must try t-1 times,

since the actual number of errors present may be anywhere

from one to t. Roughly speaking, Stage II may take as many

as (t**4)/2 clock periods. In accomplishing Stage III by the

trial and error method, one generates each nonzero element

in GF(2**m) in turn and substitutes it in ~(z). One

substitution may take 2t multiplications and t-1 additions,

and this has to be done n times. Stage III, therefore, may

take approximately 3tn clock periods. One might conclude

that Stage III is the most time consuming of the three

stages.

Gorenstein-Zierler Decoder

The Gorenstein-Zierler decoder has generally been

accepted as the standard decoding method for q-ary RS codes.

85

In summary the multiple-error-correcting decoding procedure

consists of three stages:

Stage I: Find the weighted power sum symmetric
functions s, ,S~ , .•. ,Stt. For k=l,2, ••. ,2t, S
may be found from the formula SK=rk(w**k), where
r~ (x) is the remainder of the received
polynomial R(x) divided by the minimal
polynomial of w**k over GF(q), M(k)(x).

Stage II: Knowing the generating function for
S(z) mod z**(2t+l), use Berlekamp algorithm to
solve the key equation for the polynomials ~(z)
and w(z).

Stage III: A) Using a Chien search over the n-th
roots of unity over GF(q), find the reciprocal
roots of the error locator polynomial (z).
These are the error locations, and B) find the
error values from Equation (7.6).

(8,p.221)

Mandelbaum (30) has given the approximate processing time

required for each step of the Gorenstein-Zierler algorithm.

The comparisons are based on the number of operations in a

software simulation. Stage I, the calculation of the

·syndromes require 2tn multiplications and the same number of

additions assuming the polynomial is calculated by Horner's

method. Stage II, the Berlekamp algorithm is used in both

algorithms to be compared and is known to be Order(nlogn).

The Chien search in Stage III can be simulated requiring

n(t-1) multiplications and nt additions. In the non-binary

case, the evaluation of the error values requires 2(t**2)

multiplications and t(2t-l) additions.

Miller-Reed-Truong Decoder

In this thesis the methods developed by Miller, Reed,

and Truong are applied to compute the syndromes in Stage I

and establish the error vector in Stage III. In summary, the

procedure consists of three stages:

Stage I: Compute the transform over GF(2**m) of
the received n-tuple R(x) to obtain the
syndromes SK for l<=k<=d-1.

Stage II: Compute the error locator polynomial by
Berlekamp algorithm. '

Stage III: A) Compute the remaining syndromes s
for d<=k<=n from the known error locator
polynomial and B) compute the inverse transform
of Sk for O<=k<=n-1 to recover the error vector.

(5l,p.l36)

86

The approximate processing times for each step of this

algorithm is easily calculated from the program design

logic. Stage I, the calculation of the syndrome requires

Order(nlogn) operations using the DFT. Stage II, the

Berlekamp algorithm is used in both algorithms and is known

to be Order(nlogn). The calculation of the rest of the

syndromes in Stage III requires at most t(n-2t)

multiplications and additions. The final step of Stage III,

the inverse DFT is also Order(nlogn).

Program Design and Implementation

The decoding procedure described in the previous

sections was implemented on the Vax 11/780 computer using

PL/I language. The overall basic structure of the program

is given in Figure 28. It is divided into a main program

and six major subroutines. The main program is the driver

of the rest of the program. It initializes the encoding and

decoding processes and keeps track of the number of

operations performed. The input subroutine obtains a code

vector. The encoding subroutine encodes the code vector

using the new interpolation method discussed in Chapter III.

87

Main

STAGE I

STAGE II

STAGE III

Correct R(x)

Figure 28. Overall Design of Simulator

88

The transmission subroutine adds the error vector to the

codeword and simulates the buffer. Stage I, Stage II, Stage

III subroutines simulate the stages of the Gorenstein­

Zierler algorithm and the Miller-Reed-Truong algorithm. The

stage subroutines of either methods can be included in the

simulation in any combination.

Conclusions

In Stage II, both methods used the same algorithm so it

was not included in the comparison. The basic differences

between the two algorithms is Gorenstein-Zierler method

computed the syndromes directly instead of using the FFT­

like techniques of the Miller-Reed-Truong method. Also, the

slower Chien search was used to find the roots of ~(z)

instead of another direct inverse transform of the syndrome

vector. The overall conclusion is that the Miller-Reed­

Truong algorithm reduces the numerical complexity. An

important advantage of this new transform decoder is that

the complexity of the syndrome calculation is substantially

reduced. Furthermore, the Chien search is completely

eliminated. The results is a simpler and faster decoder for

finding the roots of the error locator polynomial than can

be obtained by conventional means.

A specific example can be given how numerical

complexity is reduced by this simulation's implementation.

The Galois field operations of addition and multiplications

are performed by PL/I ~tatements. Addition is simple, and

89

basically an "exclusive OR" operation. However multi-

plication is more difficult. Multiplication is done by

using two tables in memory: the logs and antilogs of a

Galois field element. Two multiply two symbols, w, and w~,

one first finds from a table the exponents i and j such that

w, =B** i and w?.. =B**j. The w1*wL=B**(i+j) and the symbol

corresponding to the exponent i+j must be found in the

antilog table.

decoding the

It should be noted that in transform

symbol w· ... is multiplied with all the

coefficients thus the log of w~ need only be found once.

Not this savings does not apply when calculating the

syndromes by Horner's method in which multiplication must be

followed by an addition and then a multiplication, etc.

One disadvantage of the new q-ary codes is application.

Often transmission is still in binary symbols and would need

to be grouped to form q-ary symbols. Another disadvantage

is solving the simultaneous equations based on the Newton's

identities when t is small can not be generalized to q-ary

symbols. In many applications the errors can be assumed to

be independent either by nature or by the use of interleaved

codes. Using this assumption, an error pattern containing a

small number of erroneous symbols has a higher probability

of occurrences than an error pattern containing a large

number of erroneous symbols. In this case a good strategy in

decoding BCH codes is to try the correction of a single

error first. If the correction is unsuccessful, an attempt

is made to correct a double error. It this correction is

90

still not successful, attempts are made to correct more

errors. The advantage of this strategy is the increase in

decoding speed which is crucial in many applications of

error correcting codes. The aforementioned strategy was not

impl~mented in this simulation because the simulation was a

comparison of algorithms not a comparison of specific

applications.

One final note on comparing the two decoding methods.

Any decoding scheme has to be based on a specific appli­

cation. Even though the Miller-Reed-Truong algorithm is

numerically faster for a full-power correction scheme,

there are so many variables involved in chosing a correction

scheme it may not be the best for the application • These

variables influence one's choice but hopefully this thesis

and simulation has developed an overview of many of the

choices.

CHAPTER IX

SUGGESTED FUTURE RESEARCH

The BCH and RS codes have become very important in

coding theory. In one of Peterson's conclusions, he stated

relatively simple coding and error-correcting
methods have been described for Bose-Chaudhuri
codes. The study of coding and error-correcting
methods for these codes gives additional insight
into the remarkable structure of the codes."
(42,p.60).

Restated BCH or RS codes are codes with remarkable algebraic

structures that allow decoding to occur in real-time

applications. Methods of constructing efficient, very long

codes have been devised; furthermore these codes have met

the essential requirement that they can be implemented

practically. "Recent work at RCA has concentrated on Reed­

Solomon codes, which are felt to be more suitable to the

optical disk." (6,p.37) RS are the most efficient among the

known classes of codes. RS codes have the minimum redundancy

for a given distance. RS theory has found significant

applications in space communication systems, military com­

munication systems, data communication systems, information

retrieval systems, and in large

computer systems (41).

91

secondary memories for

92

While the problems of coding theory have originated

from real engineering situations, coding theory in the early

1950's was distinctly academic. The fast development of

practical applications came as a pleasant shock. Unlike the

notion that the theory of finite fields might be applied to

coding theory came as an unpleasant shock to certain pure

mathematicians. This structure of the codes led to many

improvements. Research in coding theory has developed over

the past three decades and will continue to be important in

the future. McWilliams and Sloane (38) suggest further

research was needed to solve one major problem. "One

version of the main problem of coding theory is to find

codes with large R (for efficiency) and large d (to correct

many errors). Of course these are conflicting go~ls."

(38,p.23)

Coding theory has to develop with technology. For

example, if a decoding procedure is implemented that has

minimal decoding delay on current architectures, will this

also be true on state-of-the-art designs? Also as

transmission channels improve the emphasis may change where

coding is used to overcome imperfections in the storage

media rather than errors in transmission.

In comparison to current architecture, the Bartee and

Schneider decoder which implemented Peterson's original

decoding algorithm was at least on order of magnitude away

both in hardware complexity and decoding delay. The need

93

existed for more efficient procedures and simpler circuits.

The Chien search and the Berlekamp algorithm or the greatest

common denominator algorithm improved the decoding procedure

subtantially making the coding of RS codes practical. How­

ever the new transform algorithm has great potential in

reducing the numberical complexity and therefore decoding

delay. Similar to the finite theory application, the notion

that the vast amount of research already done on fast Fourier

transforms can be applied to coding theory is encouraging.

Research has shown that by the choices of three

requirements: 1) the length N, 2) the modulus M, and the

primitive root w, it is possible to develop improved

transform algorithms. As transmission rates increase, the

possible extensions of block length may be necessary.

Research also has not been extensive on choices of modulus.

A systematic investigation of those modulus which require

more than two bit repie~entation is difficult but may lead

to interesting improvements. However achieved, improvements

in transform methods would allow substantial improvements in
.

the coding algorithm since the transform is performed in

Stages I and III.

Stage II uses the efficient Berlekamp algorithm.

Current research has made only minor improvements to this

procedure. However it has not been proved and it would· be

interesting to see if the number of iterations the algorithm

uses is minimal (8).

Another interesting

decoding algorithm for

problem

all BCH

94

is "find a complete

codes." (38,p.277) The

complete decoding of double-error- correcting BCH codes is

given by Berlekamp (8). Complete decoding of some (perhaps

all) triple-error-correcting BCH codes is given by Van de

Horst and Berger (38). Their algorithm applies to all

triple-error- correcting BCH codes if the following problem

is settled: "show that the maximum weight of a coset leader

of any coset of a triple-error- correcting BCH code is

five." (38,p.293). The decoding algorithms discussed in

this paper only correct t or fewer errors in a RS code or

BCH code of designed distance 2t+l. If more than t errors

are present a decoding error or decoding failure occurs.

Further research may be able to eliminate both of these

possibilities.

SELECTED BIBLIOGRAPHY

[1] Agarwal, R.C. and C.S. Burrus. "Fast Convolution
Using Fermat Number Transforms · With
Application To Digital Fillering." IEEE
Trans. on Acoustics, Speech, and Signal
Processing. ASSP-22 (1974), 87-97-.--

[2] Alanen, J.D. and D.E. Knuth. "Tables of Finite
26 (1964), 305-328. Fields." Sankya.

[3] Albert, A.A. Fundamental ConceBts of Higher
Algebra. Ch1cago: Univers1ty of Chicago
Press, 1956.

[4] Aho, A.V., J.E. Hopcroft, and J.D. Ullman. The
Desi$n and Analysis ~ Computer AlgorithffiS:

[5]

Read1ng, MA: Addlson-Wesley Publishing
Company, 1978.

Bartee, T.C.,
Decoder
Codes."
17-24.

and D.I. Schneider. ·"An Electronic
For Bose-Chaudhuri-Hocquenghem

IEEE Trans. Info. Theory, 8 (1962),

[6] Beiser, L., Ed. Advances in Laser Scanning
San D1ego, CA: SPIE, 1981. Technology.

[7] Berlekamp, E.R. "Factoring Polynomials Over
Finite Fields." Bell Syst. Tech. ii_., 46
(1967) , 1853-1859.

[8] Berlekamp, E.R. Algebraic Coding Theory New York:
MacGraw-Hill, 1968.

[9] Berlekamp, E.R. "Factoring Polynomials Over Large
Finite Fields." Math. Comp, 24 (1970),
713-735.

[10] Berlekamp, E.R., Ed.
Coding Theory.

Key Papers in Development of
New York: IEEE Press, 1974.

[11] Bose, R.C., and D.K. Ray-Chaudhuri. "On a Class
of Error Correcting Binary Group Codes."
Info. and Control, 3 (1960), 68-79.

95

96

[12] Bose, R.C., and D.K. Ray-Chaudhuri. "Further
Results On Error-Correcting Binary Group
Codes." Info. and Control, 3 (1960),
279-290.

[13] Burton, H.O. "Inversionless Decoding of Binary
BCH Codes." IEEE Trans. Inform. Theory, 17
(1971), 464-4~

[14] Chien, R.T., B.D. Cunningham, and I.B. Oldham.
"Hybrid Methods For Finding Roots of a
PolynomialWith Application to BCH Decoding."
IEEE Trans. Inform. Theory, 15 (1969),
329-335.

[15] Chien, R.T. "Cyclic Decoding Procedure For the
Bose-Chaudhuri-Hocquenghem Codes." IEEE
Trans. Info. Theory, 10 (1964), 357-363.--

[16] Chien, R.T., and D.T. Tang. "On Definition of a
Burst." IBM Journal, (July 1965), 292-293.

[17] Cooley, J.W., and J.W. Tukey. "An Algorithm For
the Machine Computation of Complex Fourier
Series." Math. Comput. 19 (1965), 297-301.

[18] Forney, G.D., Jr. "On Decoding BCH Codes." IEEE
Trans. Info. Theory, 11 (1965), 549-557.--

[19] Forney, G.D., Jr. Concatenated Codes. Cambridge,
MA: MIT Press, 1966.

[20] Golay, M.J.E. "Notes on Digit Coding." Proc.
IEEE, 37 (1949), 657.

[21] Goppa, V.D. "A New" Class of Linear
Correcting Codes." Problems of
Trans., 6 (1970), 207-212.

Error­
Info.

[22] Gorenstein, D.C., and N. Zierler. "A Class of
Error-Correcting Codes in P**M Symbols." J.
Soc. Indus. Applied Math., 9 (1961T,
207-214.

[23] Hamming, R.W. "Error Detecting and
Correcting Codes." Bell Syst. Tech.
(1950), 147-150.

Error
!I_., 29

[24] Hocquenghem, A. "Codes Correcteurs D'Erreurs."
Chiffres (Paris), 2 (1959), 147-156.

97

[25] Justesen, J. "On the Complexity of Decoding Reed­
Solomon Codes." IEEE Trans. Info. Theory,
22 (1976), 237-23a:--

[26] Leibowitz, L.M. "A Simplified Binary Arithmetic
For the Fermat Number Transform." IEEE
Trans. ,2Q Acoustics, STeech, and Signa!
Process1ng, ASSP:24 (1976 , 356-359.

[27] Lim, R.S. "A (31,15) Reed-Solomon Code For Large
Memory Systems." AFIPS Conference
Proceedings, 48 (1979), 205-208.

[28] Lin, s. An Introduction to Error-Correcting
Codes-.- Englewood Cl1ffs-,-NJ: Prentice-Hall,
1970.

[29] van Lint, J.H. Coding
Springer, 1971.

Theory. New York:

[30] Mandelbaum, D. "On Decoding of Reed-Solomon
Theory, 17 Codes." IEEE Trans. Info.

(1971), 707-712.

[31] Mandelbaum, D. "Construction of Error Correcting
Codes By Interpolation." IEEE Trans.
Inform. Theory, IT-25 (1979), 27-35.

[32] Mandelbaum, D. "A Method for Decoding Generalized
Goppa Codes." IEEE Trans. Inform. Theory,
IT-23 (1977), 137-140.

[33] Marsh, R.W. Table of Irreducible Polynomials Over
GG(2) Throug~Degree 19. Washington, DC:
Dept. of Commerce, 1957.

[34] Massey, J.L. "Shift-register
Decoding." IEEE Trans.
(1969), 122-127.

Synthesis and BCH
Info Theory, 15

[35] MacCle1lan, J.H. "Hardware Realization of a
Fermat Number Transform."· IEEE Trans. On
Accoustics, Speech, and Signa! Processin~
ASSP-24 (1976), 216-225.

[36] MacCoy,N.H. The Theory of Numbers.
MacMillTan Company, 1965.

[37] MacEliece, R.J. ~Theory of
Coding. Read1ng, MA:
Publishing Company, 1977.

New York: The

Information and
Addlson-Wesley

98

[38] MacWilliams, F.J., and N.J.A. Sloane. The Theory
of Error-Correcting Codes Amsterdam: North­
Holland Publishing Company, 1977.

[39] Mills, W.H. "Continued Fractions
Recurrences." Math. Comp,
173-180. --

and Linear
29 (1975)'

[40] Muller, D.E. "Application of Boolean Algebra to
Switching Circuit and to Error Detection."
~Trans. Computer, 3 (1954), 6-12.

[41] Oldham, I.B., R.T. Chien, and D.T. Tang. "Error
Detection and Correction in a Photo-Digital
Storage System." IBM~· Res. Develop., 12
(1968), 422-430.

[42] Peterson, w.w. "Encoding and Error-Correction
Procedure for the Bose-Chaudhuri Codes."
~Trans. Info. Theory, 6 (1960), 459-470.

[43] Peterson, w.w. Error-Correcting Codes.
Cambridge, MA: MIT Press, 1961.

[44] Peterson, w.w. and E.J. Weldon, Jr. Error­
Correcting Codes, 2nd ed. Cambridge, MA:
MIT Press, 1972.

[45] Pollard, J.M. "The Fast Fourier Transform in a
Finite Field." Math. Comp., 25 (1971.),
365-374.

[46] Reed, I.S. "A Class of Multiple-Error-Correcting
Codes and The Decoding Scheme." IEEE Trans.
Info. Theory, 4 (1954), 38-49.

[47] Reed, I.S., and G. Solomon. "Polynomial Codes
Over Certain Finite Fields." J. SIAM, 8
(1960)' 300-304. - --

[48] Reed, I.S., and T.K. Truong. "Simple Proof of the
Continued Fraction Algorithm for Decoding
Reed-Solomon Codes." Proc. IEEE, 125
(1978)' 1318-1320. -- --

[49] Reed, I.S., R.A. Scholtz, T.K. Troung, and L.R.
Welch. "The Fast Decoding of Reed-Solomon
Codes Using Fermat Theoretic Transforms and
Continued Fractions." IEEE Trans. Inform.
Theory, IT-24 (1978), 100-106.

99

[50] Reed, I.S., T.K. Truong, and R.L. Miller. "Fast
Algorithm for Encoding the (255,223) Reed­
Solomon Code Over GF(2**8)." Electronic
Letters, 16 (1980), 222-223.

[51] Reed, I.S., T.K. Truong, and R.L. Miller.
"Efficient Program for Decoding the
(255,223) Reed-Solomon Code Over GF(2**8)
With Both Errors and Erasures Using
Transform Decoding." IEE Proc., 127, Pt. E,
No. 4 (1980), 136-142.

[52] Slepian, D. "A Note On Two Binary
Alphabets." IEEE Trans. Info.
(1956), 84-86.

Signaling
Theory, 2

[53] Slepian, D.,Ed. Key Papers in the Development of
Information Theory, New- York: IEEE Press,
1974.

[54]

[55]

Stone, J. J. "Multiple-Burst
the Chinese Remainder
Indust. Applied Math,
74-81.

Error Correction with
Theorem." J. Soc.
11, No. I (1963T,

Sugiyama, Y., M.
· Namekawa.

Equation for
and Control,

Kasahara, s. Hirawaa, and T.
"A Method for Solving Key
Decoding Goppa Codes." Info.

27 (1975), 87-99. ----

[56] Tang, D.T., and R.T. Chien. "Coding for Error
Control." IBM ill·.!!·, 8 (1969), 48-49.

[57] Winograd, s. "On Computing The Discrete Fourier
Transform." Proc. Nat. Acad. Sci., 73, No.
4 (1976)' 1005-1006-. -

APPENDIX A

BASIC FINITE FIELD THEORY

Basic to understanding algebraic coding theory is a

general background in finite field theory. This appendix is

designed as a basic tutorial to define the terms: 1)

Galois feild, 2) irreducible polynomials, 3) minimal.

polynomials, and 4) primitive nth root of unity. For the

reader who is interested in more detail coverage, references

are cited •

. The integers modulo p form a field of order p-1,

denoted by GF(p), where pis a prime number. The elements

of GF(p) are

1 2
{ 1 w w w

3
' . . . p-2

' w }
p-1

with w = 1

(A.1)

where w is the generator of the field. The set of p-1 non-

zero elements is a cyclic multiplicative group with

addition, subtraction, multiplication, and division carried

out modulus p. Also there is essentially only one field of

order (p**m)-1 called a Galois Field, denoted by GF(p**m).

Any member of GF(p**m) can also be written as a m-tuple of

elements from GF(p) (3) • Extensive tables of binary

irreducible polynomials can be found in Marsh (33) and

Peterson (43). Or extensive tables of non-binary

100

101

irreducible polynomials can be located in Alanen and Knuth

(2) •

The knowledge of constructing a finite field is

important in coding theory. The construction of GF(p**m) is

possible if there exists an irreducible polynomial over

GF(p) that has degree m. A polynomial f(x) is irreducible

over a field if it is not the product of two polynomials of

lower degree in the field. The set of all polynomials of

degree <= m-1 and coefficients from GF(p) with calculations

performed modulo f(x) form a field. An example of

construction of a field GF(2**4) is given in Figure 29

(28).

One method of finding the irreducible polynomials is

simply the enumeration shown in Figure 30.

are 2**degree polynomial combinations.

enumeration is of interest, the number

polynomials of any degree can be obtained

In general there

If any futher

of irreducible

by an explicit

formula which is an immediate consequence of the multi­

plicative Moebius inversion theorem (8, 38). Also relative

and of interest is the reciprocal of an irreducible polynom­

ial is also irreducible (3).

If w is a root in GF(p**m) of an irreducible polynomial

of degree m over GF(p) then every element in GF(p**m) is a

root of some minimal polynomial over GF(p). A minimal

polynomial over GF(p) of every element Beta is the lowest

degree polynomial M(x) with coefficients from GF(p) such

that M(Beta) = 0. Several examples are given in Figure 31.

102

4 4
GF(2) Defined by x + X + 1 Represented as

Power of w Negative power Polynomial Binary Log w
0 15

w w 1 0 0 0 1 0

1 14
w w w 0 0 1 0 1

"2 13 2
w w w 0 1 0 0 2

3 12 3
w w w 1 0 0 0 3

4 11
w w w +1 0 0 1 1 4

5 10 2
w w w +w 0 1 1 0 5

6 9 3 2
w w w +w 1 1 0 0 6

7 8 3
w w w +w +1 1 0 1 1 7

8 7 2
w w w +1 0 1 0 1 8

9 6 3
w w w +w 1 0 1 0 9

10 5 2
w w w +w +1 0 1 1 1 10

11 4 3 2
w w w +w +w 1 1 1 0 11

12 3 3 2
w w w +w +w +1 1 1 1 1 12

13 2 3 2
w w w +w +1 1 1 0 1 13

14 1 3
w w w +1 1 0 0 1 14

n n - 1
w = (w) w Modulo Primitive Polynomial

where w is Primitive Root of Unity

Figure 29. Construction of Field GF(p**m)

BY ENUMERATION

Degree = 1

Degree = 2

Degree = 3

Degree = 4

Degree = 5

Degree = 6

X
X + 1

2

irreducible
irreducible

x*x

103

X

2
X

2
X + X

2

(x + 1) (x + 1)

x (x + 1)

X + X + 1

3
X

3
X

3
X + X

3
X + X + 1

3 2
X + X

3 2
X + X + 1

3 2
X + X + X

3 2
X + X + X + 1

irreducible

x*x*x
2

(x+l)(x +x+l)
2

x (x + 1)

irreducible
2

x (x + 1)

irreducible
2

x(x + x + 1)
3

(x + 1)

Only three are irreducible out of 2**4

4 4 3 4 3 2
X + X + 1 i X + X + 1 i X + X + X + X + 1

Only six are irreducible out of 2**5

5 2 5 4 3 2 5 4 3
x +x +1; x +x +x +x +1; x +x +x +x +1

and their inverses

Only nine are irreducible out to 2**6

6 4 2 6 5 2 6
x +x +x +x +l;x +x +x +x +1; x +x +1

6 5 3 2 6 3
x +x +x +x +l;x +x +1; and inverses

Figure 30. Irreducible Polynomials

ELEMENTS OF GF MINIMAL POLYNOMIAL OF ELEMENTS

P**M = 2**1 where x -x = x (x+l)

0
1

X
X + 1 = M(0)

.4 2
P**M = 2**2 where x -x = x (x+l)(x +x+l)

0
1

1 2
w , w

X

X + 1
2

X + X + 1

= M(0)

= M(1) =M(2)

P**M = 2**4 since M is divisible by 1,2,4 then

16 2 4 4 3 4 3 2

104

x -x = x(x+1)(x +x+1)(x +x+l)(x +x +1)(x +x +x +x+1)

GF(2**4) DEFINED BY X**4 + X + 1

1

0
1

2 4
W r W , W , W

8

3 6 12 9
w , w , w , w

5 10
w , w

7 14 13 11
w , w , w , w

EXAMPLE

4 3
X + X + X

3 4
(w) + (w

12 9
w + w

2

X

X + 1
4

= M(0)

X + X + 1 = M(l)=M(2)=M(4)=M(8)
4 3 2

X + X + X + X + 1 = M(3)=M(6)=M(12)=M(9)
2

X + X + 1
4 3

X + X + 1

3

= M(5)=M(10)

= M(7)=M(l4)=M(l3)=M(11)

4
+ X + 1 = 0 for w modulo X + X + 1

3 3 3 2 3
) + (w) + w + 1 = 0 1 1 1 1

1 0 1 0
6 3 0 1 1 0 0

+ w + w + w = 0 1 0 0 0
0 0 0 1

0 = 0 -------
0 0 0 0

Figure 31. Minimal Polynomials

105

In coding theory minimal polynomials are sometime referred

to as primitive polynomials. A primitive polynomial is the

minimal polynomial of a primitive element of GF(p**m) and

has degree m (38).

Basic to coding theory is Fermat's theorem that

Every element Beta of a field F of order p**m
satisfies the identity

= Beta

or equivalently is a root of the equation

or

""' xP = x thus

- X = (x - Beta)

"' xP - x = Product of all irreducible
polynomials over GF(p) whose

degree divides m (38,p.96}.

The factorization of this polynomial can be separated into

the zero element and the non-zero element. Therefore there

are n distinct zeros which are called the nth roots of unity

defined in Figure 32.

In constructing GF(p**m) from a primitive irreducible

polynomial f(x), the basis

1 2 n-1
{ 1 , w w ' . • • , w }

where w is a zero of f(x). However there are other

possibilites- (8). One such possibility is a trace

Trace (13) =
2. m-1 rn-1 J

R RP ap RP = L IJP
f'J+f'J+y+ •• • + fJ

j::.C

Trace (13) = element of GF(p)
1'\'"\

where Beta or IJ£ GF (p

GIVEN

THEN

EXAMPLE

n = 0

q q-1
X - X = X (X - 1) where q = 2 ** M

X (X

n-1
n lT X - 1 =

i=O

where w is

a) w '#.

b) n
w =

c) n/2
w =

d) n-1

:E
i=O

q= 17 and n

1 2 3 4 5

n
-1) where n = q - 1

n
i

(x "'" w) =lT
i=l

primitive root of

1

1 modulo q

l

(x - w)

unity if

-1 modulo q if n is even

ip
a = 0 for l<=p<=n

= 16

6 7 8 ~ 10 11 12 13 14 15 16
--·-------

n
2 = 1 2 4 8 16 15 13 9 1 2 4 8 16 15 13 9 1

n
3 = 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1

n
4 = 1 4 16 13 1 4 16 13 1 4 16 13 1 4 16 13 1

n
6 = 1 6 2 12 4 7 8 14 16 11 15 5 13 10 9 3 1

Only 3 and 6 generate the entire field GF(l7)

6 =v'2 in the sense that 6**2 = 2 modulo 17

Figure 32. Primitive root of unity

106

APPENDIX B

CHINESE REMAINDER THEOREM

The Chinese remainder theorem for polynomial is used to

guarantee that a polynomial can be recovered from its

residues.

Chinese Remainder Theorem For Polynomial. Let m0
(x), ••• ,ml<-l (x) be polynomials over GF(q) which
are pairwise relatively prime, and set M(x)=m 0 (x)
m.(x) ••• mk-\ (x). If r 0 (x), ••• ,r t<.-1 (x) are any
polynomials over GF(q), there exists exactly one
polynomial u(x) with deg u(x) < deg M(x) such that

u (x) = r (x) -(mod m (x)) ,
i i

for all i=O, ••• ,k-1. In fact, let a~(x) be such
that

M(x)
a (x) = 1 (mod m (x)), i= 0, ••• , k-1.

m (x) i i
i

(Such an a;(x) exists by Euclidean algorithm.)
The the solution to Equation B.l is

k-1 M(x)
u(x) = ~ r (x) a (x) reduced mod M(x).

~ m (x) i i
i=O i

(38,p305)

107

(B.l)

(B.2)

(B.3)

APPENDIX C

DISCRETE FOURIER TRANSFORMS

In many applications it is convenient to transform a

problem into another, easier problem. In this appendix, one

will be introduced to the Fourier transform, its inverse,

and its numerical complexity. An efficient algorithm called

the fast Fourier transform (FFT} is developed. The

algorithm which is based on techniques of polynomial

evaluation by division, makes use of the fact that a

polynomial is being evaluated at the roots of unity.

Appendix A gives the necessary background material for the

n-th root of unity.

The Fourier transform is usually defined over the

complex numbers. For example,

(c .1)

2 1T i/n
=V-1 e where i

is a principal nth root of unity in the ring of complex

numbers. However for application in coding theory, one can

define the Fourier transform over a arbitrary field.

Computing the discrete Fourier transform of the codeword

vector means evaluating the polynomial representation at

each of the nth roots of unity.

108

109

(c. 2)

0 1 2 n-1 k
(w ,w ,w , ••. , w) where n=2 for k>=O

The algorithm is developed by grouping the terms of

P(X) with even powers and the terms of P(X) with odd powers

as illustrated in Figure 33. As the algorithm design is

presented the breakdown of the polynomial seems systematic

enough that one should be able to carry out the scheme with

a divide and conquer algorithm.

To help suggest the pattern of the computation, an

example is presented in a tree diagram in Figure 34.

Computation can be simplified by starting at the leaves.

The leaves are components of the vector P permuted in the

following way. Let t be an integer between 0 and n-1. Then

t can be represented in binary as and the reverse of t be

the number represented by the bits in reverse order.

t=[bb ••
0 1

rev(t) = [b
k-1

b]
k-1

where n = 2**k

b b]
1 0

(C.3)

Therefore the algorithm in Figure 35 computes the values of

P(X) at the nth roots of unity or it computes the discrete

Fourier transform of the vector P.

The inverse discrete Fourier transform is

n-1
1 I:
n k=O

-ik
a w

k
O<=i<n

(c. 4)

In the inverse transform, substitute w**-1 for w and

P(X) = p + p X

0 1

where n

(n/2)-1
P(x) =z::

i=O

de£ ine P (X)
even

then

2
P(X)= p (x

even

Recall n/2

+ . .

= 2**k

p X
2i

2i

. +

for

+

(n/2)-1 =r:
i=O

n-1
p X

n-1

k >= 0

(n/2)-1
X L:

i=O

p X
2i

i
and

n-1
= L

i=O

2i
p X

2i+l

p
i

p (X)
odd

l

X

(n/2)-1

=L:
i=O

2 2

110

i
p X

2i+l

+ x p (x) and P(-X)= p (x)
2

- x p (x)
odd odd even

w = -1 so for 0 <= j <= (n/2)-1
(n/2)+j

w = - w

1 n-1
or { 1, w ,w , . • • , w }

Roots of unity is equivalent to

(n/2)-1 (n/2)-1
{ 1, w , . . . ,w ,-1,-w, . • . , -w }

or it suffices to evaluate p and p at
even odd

(n/2)-1 2
{ 1, w , . . • , (w) }

Figure 33. Development of Fast Fourier Algorithm

111

15
P(X) = p + p X + • • + p X

15 0 1

p + p X + . • • + p X
0 2 14

2 3 2 3
p+p x+p x+p x p+p x+p x+p x

0 4 8 12 2 6 10 14

p +p X p +p X p +p X p +p X
0 8 4 12 2 10 6 14

7
p + p X .+ • . • + p X

1 3 15

2 3
p+p x+p x+p x p+p x+p x+p x

1 5 9 13 3 7 . 11 15

p p p p p p p p p p p p p p p p
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Figure 34. Polynomial Evaluation At Roots of Unity

112

Input: Then-vector P=(p ,p , ••• ,p) where n=2**k for k>O

Output: VAL, the Discrete Fourier Transform of P

Comment: Omega is an array containing the nth primitive
root of unity ·
VAL is initialized to contain the values for
level k-1 in the tree of Figure 2C.

Comment: Initialization of VAL

1. for t <-- 0 to n-2 by 2 do

2. VAL(t) <-- p
rev(k)

(t) + p (t+l)
rev(k)

3. VAL(t+l) ·<-- p
··rev(k)

(t) - p (t+l)
rev(k)

4. end

Comment: NVAL is number of points at which each polynomial
at the current level is evaluated.
The levels are indexed by 1.

5. m <-- n/2: NVAL <-- 2

6. for 1 <-- k-2 to 0 by -1 do

7. m <-- m/2: NVAL <-- 2 * NVAL

8. for t <-- 0 to [(2**1)-l]NVAL by NVAL:

9. for j <-- 0 to (NVAL/2)-1 do

10. XPODD <-~ OMAEGA(mj)* VAL[t + (NVAL/2) + j]

11. VAL[t + (NVAL/2) + j] <-- VAL(t + j) - XPODD

12. VAL (t + j) <-- VAL(t + J) + XPODD

13. end

14. end

Figure 35. Fast Fourier Transform Algorithm

113

multiply each result by the inverse of n. These changes

are given in Figure 36.

An analysis of the operations done by the FFT gives the

following results. Lines 10,11, and 12, which do one

multiplication, one addition, and one subtraction, respec­

tively, all in a triply nested loop. NVAL=2**(k-l) so the

ranges of the loops indexes indicate that the number of

each operation done .in these lines is given in Figure 37.

Line 2 and Line 3 do n/2 additions and n/2 subtractions.

Therefore there are n*(logn/2)+n additions/subtractions and

n/(2*(logn/2) multiplications. Even with the reversing of

the bits of k, the running time of the FFT is Order(nlogn)

(4) •

114

Input: A,n, where A is an n-vector,;n is a power of 2.

Output: The vector B=(b ,b , •.• ,b),the inverse FFT of A.
0 1 n-1

1. Compute FFT of A using Fast Fourier Transform Algorithm
in Figure 3C and leaving the results in VAL.

2. b <-- VAL(O)/n
0

for i <--1 to n-1; b <-- VAL(n-i)/n
i

Figure 36. Inverse Discrete Fourier Transform

k-2

L
1=0

J.. NVAL
2

2

=
k-2

L
1=0

k-2

Q. k-i-1
2 2

= L 2k-t

1=0

k-1
= (k-1) 2 , (n/2) log (n/2)

Figure 37. Number of Operations in Loops of FFT

APPENDIX D

NEWTON'S IDENTITIES

A polynomial P(x0 , ••• ,xn_,) inn indeterminates x is

called "symmetric" if it is invariant under the symmetric

group of all permutations of its subcripts. For the n=3

example, particular symmetric polynomials which are the

coefficients in the expansion are

(D.l)

~ = X + X + X ;
1 1 2 3

O=xx+xx+xx;
2 1 2 1 3 2 3

0= X X X
3 1 2 3

3
(X - X) (X - X) (X - X) = X

1 2 3

2
-<rx+crx

1 2
-cr

3

In general such polynomials are called elementary symmetric

polynomials (in n variables)

L
(D. 2)

(j = r: X ,<5' = L: X X cr = X X X , ••• , r:s-: X • • • X
1 i i 2 i<j i j 3 i<j<k i j k n 1 n

Since (-l)**k O"k is the coefficient of t**(n-k) in the

expansion of

(D. 3)

P(x) = -rr (X -X)
k "k

As a polynomial in X, the expression ~give the coefficients

of P(x) as functions of its roots. In conclusion, any

115

116

symmetric polynomial can be expressed as a polynomial in

the elementary symmetric polynomials. For example,

2 2 2 2
X + y = (x+y) - 2xy =a

1
- 2 C)

2

The elementary symmetric functions G'i
.

are

(D. 4)

related to

the power sum symmetric functions by Newton's identities

which are

s
1

s
2

s
3

s
4

s
5

cr' = 0
1

- s (J' + 2cl = 0
1 1 2

- s (j' + s (j - 3 C)=
2 1 1 2 3

-S() +S(j' -SO"'+
3 1 2 2 1 3

-scr +sc>-scr'+
4 1 3 2 2 3

etc.

(D. 5)

0

4 <r = 0
4

SU-5cr'=O
1 4 5

APPENDIX E

EUCLIDEAN ALGORITHM

This information is included in an appendix because it

does not deal directly with the problem of decoding BCH or

RS codes. The reader should bear in mind, however, that our

goal is to solve the key equation in Figure 19 for ~(z) and

W(z), given S(x). Throughout this section a(x) and b(x) will

be fixed polynomials over field F, with deg(a)>=deg(b)>=O.

When applied to coding theory a(x) will be replaced by

x**2t, and b(x) by the syndrome polynomial S(x).

The Euclidean algorithm is a simple and straightforward

algorithm for finding the greatest common divisor (gcd) of

two intergers or polynomials, or for finding the continued

fraction expansion of a real number. This algorithm is

discussed only as it applies to polynomials. if a(x) and

b(x) are polynomials, by a gcd of a(x) and b(x), one means a

polynomial of highest degree which divides both a(x) and

b(x).

By the division algorithm, one may divide a(x) by b(x):

(E.l)

a(x) = b(x) * q (x) + r (x)
1 1

It follows that the gcd of a(x) and b(x) is the same as the

117

118

gcd of b(x) and r 1 (x). This procedure can now be repeated

on b(x) and r 1 (x); divide b(x) by r, (x):

(E. 2)

b(x) = r (x) * q (x) + r (x)
1 2 2

Next

r (x) = r (x) * q (x) + r (x)
1 2 3 3

Finally
r (x) = r (x) * q (x) + 0

n-1 n . n+l

In other words, one continues to divide each remainder by

the suceeding remainder. Since the remainder continually

decrease in degree, there must ultimately by a zero

remainder.

But one sees that since rn(x) is a divisor of r n-• (x),

it must be the gcd of rn(x) and rn_,(x). Thus

gcd [a(x),b(x)] = gcd [b(x) ,r (x)] =
1

gcd [r (x) , r (x)]
n-1 n

= r (x)
n

As a by-product of the Euclidean algorithm, the

s (x) * a(x) + t (x) * b(x) = r (x)
n n n

is also produced which expresses rn (x) as a

(E. 3)

(E.4)

linear

combination of a(x) and b(x). The algorithm involves four

sequences of polynomials which initial conditions are

119

(E.S)

s (x) = 1 t (x) = 0 r (x) = a(x) q (x) = not defined
-1 -1 -1 -1

s (x) = 0 t (X) = 1 r (x) = b(x) q (x) = not defined
0 0 0 0

For i>=1,q~(x) and r~(x) are defined to be the quotient and

remainder, respectively, when r~-~(x) is divided by r~. 1 (x)

as shown in Equation E.2. The polynomials are then defined

by

(E.6)

r (x) = q r + r
i i-2 i-1 i

s (x) = s (x) - q (x) * s (x)
i i-2 i i-1

t (x) = t (x) - q (x) * t (x)
i i-2 i i-1

Since the degrees of the remainders r are strictly

decreasing, there will be a last non-zero one: call it rn

(x). It turns out that rn(x) is the gcd ot a(x) and b(x),

and furthermore the desired equation (E.l) is acheived.

When the algorithm terminates with r 0 =0, the desired

multipliers s~-l and t~-l as well as the gcd (rn_,) have all

been computed. This method is called the continued-fractions

version of Euclidean algorithm. The reason for this

nomenclature is shown in Figure 39. It caq be shown that the

quotients Sk/t~ represent the successive convergents of this

continued fraction. The reader interested in learning more

about continued fractions will find an excellent intro-

duction in McCoy (36), Mills (39), and Reed (48). Figure

38 is an example of finding the greatest common divisor.

i

-1

0

1

2

3

4

5

TABLE IV

GREATEST COMMON DIVISOR OF POLYNOMIALS

s
i

1

0

1
3

X +1 X
4 6 4

X + X +1 X + X +
5 4 3 2 7 6

X + X + X + X X + X +
6 4 2

X + X + X + x+l

r = q +
-2 0

r q +
-1 1

q +
2

5

t
i

0

1
2

X +1
3 2

+ X + X
3 2

X + X +1
3

X + X +1
8

X

1

1

1

1
+-

q
n

r
i

8
X

6 4 2
x +x + X + X +1

3
X + X +1

2
X

X +1

1

0

120

q
i

2
X +1

3
X +1

X

X +1

X +1

Figure 38. Continued-Fractions of Euclidean Algorithm

121

The main result of this algorithm applied to coding

theory is that

(E. 7)

s(x)a(x) + t(x)b(x) = r(x)

t(x)b(x) = r(x) mod a(x)

where
deg(t) + deg(r) < deg(a)

Then there exists a unique index i and a polynomial A(x)

such that

t(x) = >.(x)

s(x) = A(x)

r(x) = A(x)

However, if t(x) and r(x)

polynomial ~(x) must be a

t

s

r

(E.S)

(x) = t (x)
i i
(x) = s (x)
i i
(X) = r (x)
i i

are relatively prime, the

constant. Finally if t(x) is

defined as a monic polynomial, .then the constant must be

one.

VITA

Arthurine Renee Davis Breckenridge

Candidate for the Degree of

Master of Science

Thesis : SIMULATION OF ERROR CORRECTION ALGORITHMS
USING REED SOLOMON CODES

Major Field: Computer Science

Biographical:

Personal Data: Born in Oklahoma City, Oklahoma, August
18, 1953, the daughter of Wendell B. and Ludie A.
Davis.

Education: Graduated from Del City High School, Del
City, Oklahoma, in May 1971; received Bachelor of
Science degree in Social Studies Education from
Oklahoma State University in December, 1981;
completed requirements for the Master of Science
degree at Oklahoma State University in May, 1984.

Professional Experience: High School Mathematics
Teacher at Oilton High School, Oilton, Oklahoma,
August 1978 to May, 1981. Programmer at AMOCO
Production Company, Tulsa, Oklahoma, June, 1983 to
August, 1983. Graduate Teaching Assistant,
Department of Mathematics, Oklahoma State
University, Stillwater, Oklahoma, August, 1981 to
December, 1983.

