
FORMAL GRAMMAR SPECIFICATIONS OF

USER INTERFACE PROCESSES

by

MICHAEL WAYNE BATES
~

Bachelor of Science in Arts and Sciences

Oklahoma State University

Stillwater, Oklahoma

1982

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
iri partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1984

I

TheSIS
\<-)~~I
R 32c-lf

CO'f·

FORMAL GRAMMAR SPECIFICATIONS

USER INTER,FACE PROCESSES

Thesis Approved:

'Dean of the Gra uate College

ii ' tta9zJ1 1

PREFACE

The benefits and drawbacks of using a formal grammar

model to specify a user interface has been the primary focus

of this study. In particular, the regular grammar and

context-free grammar models have been examined for their

relative strengths and weaknesses.

The earliest motivation for this study was provided by

Dr. James R. VanDoren at TMS Inc. This thesis grew out of a

discussion about the difficulties of designing an interface

that TMS was working on.

I would like to express my gratitude to my major ad­

visor, Dr. Mike Folk for his guidance and invaluable help

during this study. I would also like to thank Dr. G. E.

Hedrick and Dr. J. P. Chandler for serving on my graduate

committee.

A special thanks goes to my wife, Susan, for her pa­

tience and understanding throughout my graduate studies.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION .

II. AN OVERVIEW OF FORMAL LANGUAGE THEORY

Introduction
Grammars . • .
Recognizers . .
Summary . • • .

• • r • •

III. USING FOR~AL GRAMMARS TO SPECIFY USER INTER-
FACES . . . • . • •

Introduction
Definition of a User Interface
Benefits of a Formal Model
Drawbacks of a Formal Model . . .

IV. THE REGULAR AND CONTEXT-FREE GRAMMAR MODELS

Introduction • • . • • ••.
The Regular Grammar Model
The Context-Free Grammar Model . •

V. SVMMARY, CONCLUSIONS, AND SUGGESTED FURTHER
RESEARCH . • . . • . . • • •

Summary
Conclusions
Suggested Further Research

SELECTED BIBLIOGRAPHY

iv

Page

6

6
7

1 1
1 6

18

18
1 9
21
28

35

35
36
41

45

45
49
50

52

LIST OF FIGURES

Figure

1 • An Unrestricted Grammar

2. A Context-Sensitive Grammar •

3. A Context-Free Grammar

4. A Regular Grammar

5. A BNF Grammar

6. A Recognizer

7. A Finite State Machine.

8. State Transition Diagram for a Hypothetical User

Page

7

9

9

10

1 1

1 2

1 5

Interface 23

9. A BNF Descripti~n of a User Interface for a Grade
Keeping System 24

1 0. Expanded Rule (2) from Figure 9 . 30

11. Figure 10 Restructured with Semantic Restrictions . 30

12. State Transition Diagram Modified for a Switch 31

1 3.

1 4.

BNF Description Expanded for a Switch .

A Nondeterministic Grammar Pescription

15. Figure 8 Modified for Complex Stat~s

16. A Recursive Transition Network

17. A Linearized Recursive Grammar

18.

1 9.

20.

A BNF Grammar . . . ,• •

A Modified BNF Grammar

A Modified BNF Grammar

v

32

32

37

39

40

42

43

44

CHAPTER I

INTRODUCTION

For some time now, there has been a general trend to­

ward interactive computing. This is due in part to the

decreased costs of powerful terminals and computing hard-

ware. As the interactive systems become more and more com-

plex, there are increased demands of the user interface for

these systems.

Interactive . systems have typically suffered from the

inability of designers to clearly visualize and easily ex­

press their designs. as concrete, comprehensible models [3].

A common method for cons~ructing the human-computer inter-

face is by ad hoc techniQues. After an ad hoc system has

been implemented, attempting to correct deficiencies or make

minor design changes are often difficult because the origi­

nal design was unclear or incomplete. A tool for writing a

clear and complete specification of: large or complex user

interfaces would be a useful item.

If one looks from the right angle, a great deal of

similarity can be seen between the function of a compiler

and the function of a user interface. The compiler recog-

nizes a legal seQuence of symbols and performs actions, such

as generating code, when certain substrings of legal symbols

1

2

are recognized. The user interface for a software system

also accepts a legal string of input symbols and performs

actions based on the recognition of legal substrings. The

only difference is that the user enters the symbols inter­

actively from a terminal one at a time to the user inter­

face. The input symbols to an interface may be typed

commands, function key presses, joystick motions or other

user input that can be broken down into discrete entries.

Compiler specifications have been based on formal gram­

mars for some time. The grammar describes the rules for

valid program constructions in a rigorous and nonambiguous

manner. It also provides an accurate means of communication

of a specification between two or more people.

It seems that many of the benefits of using a formal

grammar to specify a compiler would also apply to the speci­

fication of an interactive user interface. The interface

should be complete, consistent and unambiguous. It should

also be constructed in such a way that it could be under­

stood and modified by persons other than the original de­

signer(s).

If. formal grammars were used to specify a user inter­

face and a recognizer were built (either by hand or mechani­

cally) to accept the language specified by the grammar,

certain practical limitations to the recognizer should be

understood. For instance, input string of tokens and the

associated actions are generated in an interactive manner.

This implies that "backing up" in the input stream to try to

3

reprocess a token may be difficult or even impossible. It

also implies that no lookahead may be performed in the input

string. These problems may be overcome by choosing a

suitable type of recognizer and building it with these limi­

tations in mind.

There are four classes of formal grammars in the

Chomsky hierarchy of grammars; regular grammars, context­

free grammars, context-sensitive grammars, and unrestricted

grammars. In the hierarchy, each class of grammars contains

all of the previous class of grammars. For example, all

regular grammars are context-free but not all context-free

grammars are regular, all context-free grammars are context­

sensitive but not all context-sensitive grammars are con­

text-free, and so on. A regular grammar can be recognized

by a deterministic finite state machine and a context-free

grammar can be recognized by a pushdown automaton. These

two classes of grammars are well understood and should be

powerful enough to specify a very complex user interface.

Most of the previous work done in the area of using

grammars to specify user interfaces [2, 3, 4, 6, 8, 10, 11,

12, 13] has approached the problem by finding an application

and then applying a grammar to it. There has been little

discussion (with the exception of Jacob [6]) of why a par­

ticular type of grammar was chosen; only that a grammar was

chosen. The orientation of this study is not toward a par­

ticular application, so the grammar models themselves are

4

examined for the types of interfaces they would be most

suited to describe.

This study is a two-part investigation of the use of

formal grammars for the specification of interactive user

interfaces. The first part is a study of the relative bene­

fits and drawbacks to using a formal grammar to specify an

interface. Some of the benefits examined include the use of

a formal grammar as an analytical tool, the capability to

automatically manipulate the grammar, and the capability to

develop fast prototypes of the interface. Another benefit

studied is the ability Cif the grammar to specify the user

interface at more than one level of detail with the same

language.

The drawbacks of using a formal grammar for the speci­

fication of a user interface are also studied. The grammar

takes time to construct and for large or complex interfaces

may be q_ui te large. Other potential difficulties, such as

backing up in the parser, are also discussed.

The second part of this study is a discussion of the

relative strengths and weaknesses of two particular formal

grammar models: the regular grammar model and the context-

free grammar model. The regular grammar, being the simpler

of the two models, is easier to implement. However, the

context-free model is the more powerful model and is capable

of describing a more complex interface. This study drav-rs

these and other distinctions between the two models and

5

examines some types of user interfaces where each model

might be appropriate.

Finally, some conclusions are drawn about the use of

formal grammars to specify user interfaces. The benefits

are weighed against the dra1-rbacks of using a grammar based

specification and the relative strengths and weaknesses of

the regular and context-free grammar models are assesed.

CHAPTER II

AN OVERVIEW OF FORMAL LANGUAGE THEORY

Introduction

It seems appropriate at this point to examine some

basic concepts of formal language theory, particularly those

concepts that may apply to the specification of a user in-

terface. The reader that is familiar with formal language

theory is invited to skim this chapter observin:g only the

notation used in the description and the examples. This

discussion will be limited to the Chomsky hierarchy of gram­

mars and their associated recognizers.

A language L will be defined to be a set of finite

length strings over some finite alphabet ~. If there were

only five strings in a particular language, the strings

could be listed and the language would be completely speci­

fied. However, useful languages such as those that specify

a programming language or a user interface are rarely de­

scribable by a small or even finite number of strings.

Normally, we will want the specification of a language to be

of finite size, even if the number of strings in the lan­

guage is infinite. This chapter presents two methods for

specifying a language. One method generates a language and

the other recognizes a language.

6

7

Grammars

One method for specifying a language is to use a fixed

starting point and a set of rules for forming the strings in

the language. This generative system is called a grammar.

Aho and Ullman provide a common definition for a grammar:

A grammar is a 4-tuple G = (N, ~ ,P,S) where

1 • N is a finite set of non terminal symbols (some-

times called variables or syntactic categories).

2. ~ is a finite set of terminal symbols, disjoint

from N.

3. P is a finite subset of

(N U ~)*N(N U ~)*X (N U ~)*

An element (a, b) in P will be written a -> b and called a

production.

4. S is a distinguished symbol in N called the sen­

tence or start symbol [1, p. 232].

An example grammar is shown in Figure 1 • The nonterminal

symbols are S and A and the terminal symbols are 0 and 1 • S

is the start symbol and e represents the empty string.

G = ({S,A}, {0,1 }, P, S) where P consists of

S -> OA1
OA -> OOA1

OA 1 -> 01

Figure 1 . An Unrestricted Grammar

8

This grammar generates strings of the form 01, 0011, 000111,

and so on indefinitely. The grammar defines this language

of an infinite number of strings in a finite manner by using

recursion within the productions. The second production for

example, contains the nonterminal A on both sides of the

arrow.

The Chomsky hierarchy class.ifies grammars by placing

restrictions on the format of their productions. A grammar

with no restrictions is called an unrestricted grammar.

Productions of the form A -> B, where A and B are contained

in (N U :t)* are allowed. The grammar in Figure 1 is an

example of an unrestricted grammar.

Context-sensitive grammars form a proper subset of

unrestricted grammars. A context-sensitive grammar may only

have productions of the form

1 . a -> b, where a and b are contained in (N U 1:) *
and the length of a is less than or eQual to the length of b

(i a i <= i b i) •

2. S -> e, where S is the start symbol and e is the

empty string.

An example of a context-sensitive grammar is shown in

Figure 2.

'\
I

9

G· = ({S,A}, {0,1}, P, S) where p consists of

s -> A
s -> OA1

OA1 -> OOA11

Figure 2. A Context-Sensitive Grammar

The grammar of Figure 2 generates strings of the form 01 ,

0011 , 000111 and so on exactly as the unrestricted grammar

of Figure does. The term context-sensitive comes from

rules like aBc· -> aZc. The B may only be rewritten when in

the context of a and c.

The next most restrictive type of grammar is the con-

text-free grammar. This grammar contains the added restric-

tion that ptoductions are limited to the form:

1. a -> b, where a is a single nonterminal symbol and

b may be any combination of terminal or nonterminal symbols.

Figure 3 shows a context-free grammar that generates the

same strings as Figures 1 and 2 (01 , 0011 , 000111 , ...) .

G = ({S,A}, {0,1}, P, S) where P consists of .

s -> A
A -> OA1
A -> 01

Figure· 3. A Context-Free Grammar

10

The right-linear or regular grammar is the most re-

strictive type of grammar in the Chomsky hierarchy. Produc-

tions of this grammar are limited to the form:

1 . A -> xB

2. A -> X

where A and B are nonterminal symbols and x is con­

* tained in l .

The language example defined by the three previous grammars

(01 , 0011 , 000111 , ...) cannot be defined by a regular gram-

mar. Because of restrictions applied to the productions,

the regular grammar is not powerful enough to describe it.

The proof of this is simple but not within the scope of this

study. An example of a regular grammar that generates the

language !Oi1j I i,j > 0} is shown in Figure 4.

G = (!S,A}, !0,1}, P, S) where P consists of

S :_> OS
S -> OA
A -> 1 A
A -> 1

Figure 4. A Regular Grammar

An example of a metalanguage for a grammatical descrip-

tion is the Backus Naur Form, particularly for context-free

grammars. In Backus Naur Form, or BNF, the production

symbol "->" is represented by ": :=". Nonterminal symbols

are represented by strings enclosed in angled brackets, "<"

11

and ">". Terminal symbols are directly represented as them-

selves. The vertical bar, "i ", may be used to separate

alternative right hand sides for a single left hand side.

Figure 5 shows a sample grammar written in Backus Naur Form.

<S> : : = <A>
<A> : : = O<A> i 01

Figure 5. A BNF Grammar

The BNF grammar description is vrell known and easily

readable by anybody with a background in compiler design or

language theory. It is also easy to learn by those who have

never seen it before but want to use it.

Recognizers

Another way to specify a language is to define a tool

to recognize it. The language is then defined to be the set

of all strings recognized (accepted) by the tool. Just as

there are several classes of grammars with varying power for

specifying the different types of languages, there are

several classes of recognizing tools for recognizing the

same languages.

A r~cognizer can be viewed as being made up of three

parts: an input/ output tape, a finite state control, and

12

some form of auxiliary memory. Figure 6 shows a logical

description of a recognizer.

Input/Output Tape

1 t 1 t 1 t I
1 1 1 2 1 3 1 •••

{~
I I

l finite
l state
l control

I

It I
I nl

I ----------1<----)\ memory l
I
I

Figure 6. A Recognizer

The input/output tape is a sequence of input symbols

(tokens) from a finite alphabet. The current symbol is used

by the finite state control to determine what to do next.

The tape can be repositioned to the left or right, one sym-

bol at a time by the recognizer. The finite state control

controls the positioning of the tape and the contents of the

auxiliary memory. It can be thought of as a program that

performs the recognition by controlling the sequence of

moves it makes.

A configuration of a recognizer includes the state of

the finite state control, the input/output tape with a

marker at the current symbol, and the contents of the aux-

iliary memory. A move is a transition from one configu-

ration to the next. If there is only one possible move from

13

each configuration for any given input symbol, the recog­

nizer is said to be dete~ministic.

The most general class of recognizers is the Turing

machine. It recognizes the class of language definable by

an unrestricted grammar. The Turing machine may be deter­

ministic or nondeterministic. The input/output tape may be

of infinite length, but the number of non blank symbols on

the tape must be finite. The tape may be read from or writ­

ten to and may be repositioned one symbol to the left or

right as dictated by the finite state control. The Turing

machine halts when it reaches a configuration for which no

move is defined for the current input symbol. The nonblank

portion of the input/output tape is the output of the ma­

chine.

If the potentially infinite input/output tape of a

Turing machine is limited to a finite length, a linear

bounded automaton is the result. A nondeterministic linear

bounded automaton is capable of recognizing the class of

languages definable by a context-sensitive grammar.

This study is most interested in two other types of

recognizers: the pushdown automaton and the finite state

machine. The pushdown automaton is a recognizer with a

read-only input tape, a finite state control, and a pushdown

stack for auxiliary memory. A nondeterministic pushdown

automaton recognizes the class of context-free languages.

However, in order to recognize or reject a string in linear

time, a subset of context-free· languages is usually used.

14

This subset is composed of deterministic context-free lan-

guages. ·These are recognized by a deterministic pushdown

automata.

The pushdown automaton uses the current input symbol,

the contents of the top element of the stack memory, and the

current state of the finite state control to determine an

appropriate move. Certain types of pushdown automata are

allowed to look ahead a fixed number of symbols in the input

tape to assist in making the correct move. Note that for

user interfaces this may be impossible because of tokens the

user has not yet entered.

A finite state machine is equivalent to a pushdown

automaton without the pushdown stack. It uses only the

current input symbol and the current state of the finite

state control to make a move to the next state. Finite

state machines recognize regular sets, or languages defined

by regular grammars. A graphical representation of a finite

state machine is shown in Figure 7. In the graphical repre­

sentation, the /\ defines the start state, the ~ defines

the final states and each labeled arc defines a transition

for the given symbol to the given state. The machine

depicted in Figure 7 recognizes the language generated by

the grammar in Figure 4.

15

Figure 7. A Finite State Machine

Normally, there is more work to be done by a recog­

nizer, or parser, than simply to accept a string as part of

a language. Certain "act ions" are usually performed along

the way as the input string is being parsed. The actions

might be associated with code generation if the parser were

part of a compiler for a programming language. If the

parser were part of a user interface, the actions might be

screen formatting and menu selection.

A pushdown automaton gased on a grammar that generates

a context-free language can be used to parse a string of

input tokens. A "bottom-up" parse is one in which the input

tokens are shifted onto the stack until the right hand side

of a production rule is recognized. The details of how this

is done are beyond the scope of this paper. The symbols

from the right hand side of the recognized rule are then

popped from the top of the stack and the nonterminal symbol

16

from the left hand side is placed on top of the stack in

their place. This is called a rule reduction and action

associated with that rule is performed at this time. The

process continues until the end of the input string is

reached. At that point if the finite state control is in a

final state and the stack is empty, the string is accepted

as part of the language. If the parser reaches a point

where there is no move from a particular configuration for

an input token, the input string is rejected as not in the

language and some type of error recovery may be performed.

Parsing a string in a regular language is a simpler

process. The ony two pieces of information the finite state

control has to act on is the current input symbol and the

current state of the machine. From these the parser can

deduce the next state of the finite state control. Any

action to be performed by the finite state machine is as-.
sociated with each input symbol.

Summary

This chapter presented a simplified look at the Chomsky

hierarchy of grammars and their associated recognizers. A

more complete treatment of grammars and recognizers can be

found in [1, 5]. This study is most interested in context-

free and regular grammars with their respective recog-

nizers. The primary difference between the two is the

primitive form of memory the context-free languages allow

that the regular languages do not. The finite state machine

17

can only determine where it is while the pushdown automaton

can determine something about how it got there.

CHAPTER III

USING FORMAL GRAMMARS TO SPECIFY

USER INTERFACES

Introduction

This chapter describes the use of formal grammar ~odels

to. specify a user interface. The first objective is to

describe what a user interface is. The description will be

more by example than by rule, since there are no hard rules

to define a user interface.

Next is a discussion of the benefits of using a formal

grammar model to specify a user interface. The utility of a

grammar to specify an interface at several levels of detail

with the same language and the prospect for fast prototyping

are among the benefits. Several other benefits are also

discussed in this chapter.

Finally, an examination of some reasons why a formal

grammar might not be the ultimate choice for a specification

tool. The potential large size of the grammar and the time

it takes to construct it are only two of the drawbacks

studied.

18

19

Definition of a User Interface

Separating the user interface from the underlying soft­

ware system is usually a difficult task, particularly when

it is implemented in an ad hoc manner. The user interface

is so closely intermixed with the software system that it is

sometimes difficult to tell whether a piece of code belongs

to the interface or the software system itself. For this

reason, the user interface is difficult to define by any

other means than the functions it performs.

A compiler for a high level language is certainly a

type of user interface. A user would like to instruct the

computer to perform a task, but the thought of creating a

seq_uence of machine readable zeros and ones is not very

appealing. The user would prefer to write instructions in a

high level language and allow the compiler to generate ma­

chine readable code, or at least code that could be auto­

matically converted to machine readable form. The compiler

is the interface between the user writing in a high level

language and the computer that can only use zeros and

ones. Compilers have been specified by formal grammars for

a long time.

Reisner [12] uses the term "action language" to dif­

ferentiate between a programming language and a language

describing a user interface for her graphics user interface

application. The action language. may be defined as the

seq_uence of button pushes, joystick motions, typing actions,

etc., that are performed by a user interacting with a

20

terminal. A close parallel exists between the high level

language described by a formal grammar in a compiler and the

action language that can also be described by a grammar in a

user interface.

Lawson, Bertran and Sanagustin suggest two functions

the user interface for an interactive system should perform.

Firstly it has to produce a seQuence of messages
which are understandable to the computer system
and which correspond to the function specified by
the seQuence of buttons depressed by the user.
This seQuence of keys will in general define an
'operation' and various 'operands', i.e. a 'func­
tion' to be performed on or with some 'variables'.

A second function of [a user] interface is to
detect erroneous seQuences of buttons thus pre­
venting them from reaching the [software] sys­
tem. The principal types of errors to be detected
are the syntactic errors i.e. incorrect ordering,
invalid button combination, etc. Of course, there
are other types of errors which the [software]
system itself has to detect [8, p. 52].

A semantic error, such as reQuesting a record that is not in

the database, is an example of a type of error the software

system itself would have to detect.

A third function of a user interface should be added.

That is the management of the display screen and the input

devices. The interface formats the display with menus or

prompts and accepts all input. Any prompting for additional

information is also handled by the user interface.

For the purposes of this study, a user interface will

be defined as a piece of software that recognizes and ac­

cepts an action language and performs the kind of functions

21

described above. The emphasis of this study is on inter-

active user interfaces which grammars have not been commonly

used to describe. These are the interfaces between a user

sitting at an interactive terminal and a software system

performing the tasks the user reQuests. The software system

may be a database retrieval system, a graphics system, or

some other interactive system.

Benefits of a Formal Model

As software systems grow larger and more complex the

ability of one person to fully comprehend the entire system

becomes limited. The same holds true for user interfaces.

When more than one person is involved in the design of a

user interface the problems of communicating ideas and main­

taining consistency arise. Jacob [6] makes the argument

that one is handicapped in trying to design a good user

interface without a clear and precise techniQue for speci­

fying such an interface. A formal grammar provides a con­

crete model for specifying the user interface.

One very useful property of a formal grammar is its

ability to specify an interface at more than one level of

detail with the same language. For a high level specifica­

tion, some nonterminal symbols may not be defined in terms

of the terminal and nonterminal symbols they represent.

These undefined nonterminal symbols might represent a class

of terminal symbols whose actual makeup may as yet be un­

determined.

22

Figures 8 and 9 are two different descriptions for a

hypothetical user interface for a student grade keeping

system. Figure 8 is a state transition diagram representa-

tion and Figure 9 is a BNF description. The example de-

picted by Figures 8 and. 9 contains several undefined non-

terminal symbols. Among them are the symbols "<id>",

"<cid>", and "<sid>". Each undefined symbol, such as

"<id>", represents one of a set of identifier symbols. The

specification of the contents of the set of undefined

symbols may be deferred to a later time.

The undefined symbols "<browse class>" - ' "<browse stu-

dent>",, <edi t_class>", and "<edi t_student>" are not defined

for a different reason than the symbols above. These sym-

bols represent complete subsystems within the user inter-

face. That is, the symbol "<browse_class>" may expand into

a large piece of the user interface at the lowest level.

However, the details of the commands that browse a class are

not necessary for a specification at this level. The lower

level specification that might include an expanded version

of "<browse class>" would use the same metalanguage for

description as that used by,the higher level specification.

I:t is conceivable that a low level specification might

not ever define a particular nonterminal symbol. There are

cases where it might be better not to fully define a sym-

bol. The symbols "<good_;pw>" and "<bad_pw>" in Figures 8

and 9 are examples of such a case. There is a semantic

relationship between an id and a correct password that

Figure 8. State Transition Diagram for
a Hypothetical User Inter­
face.

[\.)

w

<grade_prog> ::=grader <id> <bad_pw>

<get_cmd>

<c/s>

<a/c>

grader <id> <good_pw> <get_cmd>

. ::=browse <c/s> exit

browse <c/s> <get_cmd>

edit <a/c> exit

edit <a/c> <get_cmd>

.. - class <cid> <browse class> . ·-
class <cid> <browse class>

quit

quit

student <sid> <browse student>

quit end

student <sid> ~browse student>

quit <c/s>

.. - add <cid> <edit class> quit end . ·-

end

<c/s>

add <cid> <edit class> quit <a/c>

change <sid> <edit student> quit

change <sid> <edit student> quit

Figure g. A BNF Description of a User
Interface for a Grade
Keeping System.

end

<a/c>

24

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(1 0)

(1 1)

(1 2)

(1 3)

(1 4)

25

cannot be specified syntactically unless the id and the

password are fixed and cannot be changed. Pragmatically,

fixing the ids and passwords is probably not a good idea.

If an interface needed to be modified a year or more

after it ;.vas designed, the design documentation might be

some of the most important information the person modifying

it needs. This is especially true if the person modifying

the interface was not involved in the original design. The

potential to overlook documentation during the design stage

of a user interface is always present. A formal grammar

description of the design in a common notation, such as BNF,

could prove valuable. When a modification is made to the

interface and the grammar, the same benefits that applied to

the initial design are still valid, such as early checking

for consistency and precisness. In addition, the person

modifying t.he system is less likely to upset the entire

system because of an unknown side-effect with a clear and

concise design to look at.

Reisner [12] cites several other useful properties of a

formal grammar description for a user interface including

the following four:

1. A major value of a formal description of a user

interface is its use as an analytical tool. A paper and

pencil representation of an interface can be analyzed much

earlier than a working model. An early analysis may turn up

design flaws before they are implemented, when they are

easier to correct.

26

2. The fact that a formal model forces the interface

designer to be precise about the spe~ified system can be of

value. Again, the early detection of an ambiguity or an

unexpected case is easier to correct at design time.

3. A· uniform method f·or detecting syntactic errors is

accomplished by a formal description. When errors occur

they can be detected and dealt with consistently.

The interactive nature of the input allows the parser

the luxury of stopping at each syntactic error to allow the

user to fix the problem before going on. The parser detects

an error when there is no valid move defined from the cur­

rent configuration of the recognizer for the next input

token. If an error of this type occurs with a compiler

parsing a program, the compiler must flag the error and fix

itself in such a way that it can continue to parse the pro-

gram. For some simple errors the compiler may be able to

determine a correction that will allow it to continue gener­

ating output code. Nost errors, though, are significant

enough to force the parser to repair itself only well enough

for it to continue syntax checking. The compiler can hardly

stop to ask the user to fix an error so it can go on gener­

ating code, especially if it is running detached from a

terminal. However, a parser for an interactive user inter­

face can stop any time it finds a syntactic error and allow

the user to fix it so it can go on doing useful work.

4. A formal grammar may be automatically manipulated.

For example, it should be possible to construct and examine

27

any desired combination of strings accepted in the language

for testing the relative difficulty or awkwardness of an

interface.

Using tools such as LEX [9] and YACC [7] in the UNIX

[1 3] operating system, a parser may be constructed almost

directly from a BNF grammar description. LEX automatically

builds a recognizer for regular grammars that can be used by

itself or to recognize tokens in combination with a parser

generated by YACC. YACC builds a recognizer for a large

class of context-free languages. A substantial portion of

the input to YACC is a BNF grammar. The parser generated by

YACC could be the basis for a prototype of the user inter­

face.

Prototyping allows one to put together quickly an in­

teractive "slide show" where the user can see the various

static responses to typed input commands. For example, a

prototype of a menu-driven student grade keeping system

could have a set of screens that contain all of the menus

and some screens that contain browse or edit request. A

user would be allowed to select menu options, browse, or

edit while the parser was recognizing the input and causing

the appropriate static screen to be displayed. The parser

can be viewed as the control for a random access slide pro­

jector. A prototype of this type cou.ld be valuable for

discovering weaknesses or inherently awkward portions of the

interface. This type of slide show might also be useful in

28

demonstrating ideas about the interface in a way that could

not be demonstrated as effectively on paper.

The issue of prototyping alone may be enough to justify

the time and effort to construct a grammar for the user

interface. A developing system is subject to numerous de­

sign changes and the ability to. modify a prototype quickly

and accurately could have a very positive effect on the

value of the prototype itself.

Drawbacks of a Formal Model

There are tradeoffs when using a formal grammar to

describe a user interface. It takes time and some skill to

construct a grammar. For a complex user interface the gram­

mar may be quite large if all legal strings are described.

Reisner [12] points out that a straightforward BNF-like

notation might not be the ul tirilate choice. A notation is

desired that can 1) describe all and only all of the legal

strings for the user and 2) show the structure of the lan­

guage with as few nearly redundant rules as possible. These

turn out to be somewhat contradictory requirements unless

the size of the grammar is reduced by introducing some se­

mantic restrictions to prevent illegal strings.

A grammar that describes all and only the legal strings

for an application may contain a large number of nearly

redundant rules. For example, the student grade keeping

interface descriptions in Figures 8 and 9 could become clut­

tered if all correct combinations of an id and a password

29

were included in the desc,ription. Rule (2) in Figure 9

might expand to something like the rules shown in Figure

10. Adding a semantic restriction that the id and password

must correspond to each other would not reduce the number of

grammar rules. However, as shown in Figure 11 , it would

generally clean up the structure of the grammar to more

clearly show the language accepted.

Another potential difficulty is observed by Anson [2].

In certain cases it could be difficult for grammar to ade­

quately represent the features of a real interactive device.

A device such as a knob that must retain its value between

uses and which can be changed by the user at any time is

difficult to be ·simulated by a grammar. If the value is to

be retained it must be stored outside the grammar and it can

only be changed when the interface requests a new value.

For example, the grade keeping user interface might

allow input from a switch on the front of the terminal to

adjust the brevity of error messages. The problem of

storing the current value of the switch (up or down) can be

solved by storing the value in an external variable. The

diagram in Figure 8 would change to look like Figure 1 2.

The rules of Figure 9 would also expand. The first few are

shown in Figure 13.

The point to be made here is that there are some types

of input to a user interface that are very difficult to

describe with a grammar. When there is a global value that

<grade_prog> := grader mike hiccup
grader john dog
grader mary lamb
grader peter piper
grader joe ball

<get cmd>
<get-cmd>
<get-cmd>
<get-cmd>
<get cmd>

Figure 10. Expanded Rule (2) From
Figure· 9.

<grade_prog> ::=grader <id> <good_pw> <get_cmd>

<id> ::=mike
john
mary
peter
joe

<good_pw> := dog
cat
lamb
hiCCUJ?
ball

Figure 11. Figure 10 Restructured With
Semantic Restrictions

30

flip

Figure 12. State Transition Diagram Modified
for a Switch.

flip

w
I-'

32

<grade_prog> .. - <switch> grader <switch> <1d> .. -
<switch> <bad pw>
<switch>
<switch>

rrader <switch> <1d>
good_pw> <switch> <get_cmd>

<get_cmd> .. - <switch> browse <switch> <c/s> .. -
<switch> exit
<switch> browse <switch> <c/s>
<switch> <get_cmd>

<switch> .. - flip .. -
flip <switch>
e (empty string)

Figure 1 3 . BNF Description Expanded for a Switch

Figure 14. A Nondeterministic Grammar
Description

33

can be c_hanged at any time by the user, a grammatical de­

scription may not be sufficient.

Another potential difficulty with a grammatical de-

scription of an interactive interface is the introduction of

nondeterminism into the grammar. There are deterministic

parsers that simulate nondeterministic parsers to parse a

nondeterministic grammar. However, the parser backtracks to

try another path if a 11 dead end 11 is reached. Figure '14

shows a fragment of an example grammar that recognizes the

strings 11 ••• abed ... 11 and 11 ••• abde ... 11 • The grammar is non-

deterministic because there is more than one path from state

1 that is labeled with a 11 b 11 • If a backtracking parser was

trying to recognize the string 11 ••• abde ... 11 , the parser

might arbitrarily choose the path to state 2 when the 11 b 11 is

encountered and perform the action associated with state

2. When the 11 d 11 is encountered, the parser cannot make a

move from state 2 for a 11 d 11 so it must backup to state 1 and

start over on the path to state 4 with the 11 b 11 • One of the

two potential problems with this backtrack in an interactive

system are that some of the input must be saved so that it

can ~e rescanned for a different path. This is n6t as dif-

ficult to overcome as the second problem which is that the

action associated with state 2 (the wrong path) may have

generated output to the user. Hanau points out this problem

and states:

While a compiler may reasonably 'pop' symbols
added to a symbol table on such a false path, an

interactive system can hardly advise the user to
'ignore all messages since .•• ' [4, p. 276].

34

This does not imply that backing up in the parser is impos-

sible, but it may be difficult because of the actions per­

formed.

CHAPTER IV

THE REGULAR AND CONTEXT-FREE GRAMMAR MODELS

Introduction

Two grammar models seem to be particulary sui ted for

the specification of a user interface. The two grammar

models are the regular and context-free grammars.

Previous work in the area of using formal grammars to

specify user interfaces has typically been concerned only

>vi th the benefits and drawbacks of using grammars for the

specification. There has been little discussion of why a

particular grammar was chosen for an application, only that

it was chosen. A notable exception to this is a paper by

Jacob [6].

The focus of this study is not on a specific appli­

cation, but on the grammars themselves. The set of possible

choices of grammars to use for a specification that range

from the simplest regular grammar to the most powerful unre­

stricted grammar. However, because of practical space and

time restrictions, the regular and the context-free grammars

are usually the two models to choose from.

35

36

The Regular Grammar Model

The simplest grammar model for specifying a user inter­

face discussed in this study is the regular grammar. The

language generated by a regular grammar is recognizable by a

finite state machine. The finite state machine itself is a

compact recognizer which requires no extra space for memory

and runs in linear time.

Typically, the regular grammar is depicted as a state

transition diagram. Each transition is associated with the

input of a token from the user. An action to be performed

is also associated with each transition. Whenever the tran-

si tion occurs, the system performs the action. The state

diagram contains an explicit s·equence that is implicit in a

BNF description. The explicit sequence description makes it

easy for the designer to specify when actions are to occur

without any modification to the grammar to provide this

control. The diagram in Figure 8 of the previous chapter

demonstrates a regular grammar for a hypothetical user in­

terface.

The state transition diagram can also aid in top down

design by adding the concept of a "complex state" [3]. A

complex state is formed by substituting a nonterminal symbol

for a section of the diagram that -con~ains one entry and one

exit. The nonterminal symbol is then. described by its own

state transition diagram. Figure 1 5 shows _the grammar of

Figure 8 which has been modified to use complex states.

Figure 15. Figure 8 Modified
for Complex .States.

37

38

The primary drawback to the regular grammar model is

that it is not powerful enough to specify certain construc­

tions in a user interface. For example, the grammar repre­

sented in Figure 16 shows the grammar of Figure 8, which has

been modified to allow the user to suspend the browsing of

the class to browse another class an arbitrary number of

times. Each time the user types "resume'', the next previous

suspended browsing operation is resumed.

There are at least two methods for making the regular

grammar model work for an application that requires nested

recursive calls and the ability to back out to the top level

again.

1. If it is reasonable to limit the number of recur­

sive invocations to a finite and reasonably small number,

the grammar may be "linearized" to form a possibly large but

regular grammar. In a, linearized grammar, each recursive

call is represented by a new state with the transition to

that state labeled with the calling token. There is also a

transition to the previous state to allow the interface to

back out. Figure 17 shows an example of part of a state

transition diagram that allows recursion to nest at most two

levels deep. The linearization of the diagram acts as a

counting mechanism for the grammar.

2. It may not be reasonable to limit the recursion to

a small, finite depth. If a regular grammar is still de­

sired, i·t can be used if the rules are bent slightly. A

simple static variable to act as a counter can be added to

39

<XX>:

\cid)'

Figure 16. A Recursive Transition Network.

Figure 17. A Linearized Recursive Grammar.

+=-
0

41

the implementation of the finite state machine. The counter

can be incremented by the actions that invoke the recursion

and decremented with each level backed out of. The value of

the counter can be tested to determine if the parser is at

the top level or not. The use of a counter, however, only

solves the problem of syntactic parsing. Semantically, if

the environment is to be saved when a recursive rule is

invoked, some type of stacking mechanism may still be re­

quired.

The Context-Free Grammar Model

The context-free grammar and its associated pushdown

automaton recognizer describes a more powerful language than

the language generated by a regular grammar. The ability to

nest recursive calls to a rule indefinitely and pop out to

the top level again is provided by the auxiliary memory the

parser can use.

There is a graphical representation for a context-free

grammar that is very much like the state transition diagram

for regular grammars with complex states. If recursive

calls to these complex states are allowed, the result is

equivalent in power to a BNF grammar [6]. A common name for

this graphical rep~esentation of a context-free grammar is a

recursive transition network or RTN. An example RTN for the

student grade keeping user interface is shown in Figure 16.

In order to gain explicit control over when an action

is performed, a context-free grammar may have to be modified

42

(this is not the case for a regular grammar). This is be-

cause an action is associated with a rule reduction in a

pushdown automaton parser. A finite state machine that

recognizes a regular grammar executes an action with each

token recognized.

With a user interface, it is particularly important to

have explicit control over when actions are performed. Due

to the interactive nature of the interface, many of the

actions are prompts for the next input token. It would

certainly limit the usefulness of the interface if several

tokens had to be entered before the recognizer could execute

the actions to prompt for them.

<S> ::= a<A>d
<A> :: = a<A>d
<A> ::=be

Figure 18. A BNF Grammar

Figure 18 shows an example of a BNF grammar. The gram-

mar recognizes strings of the form { a~bcd i i i>O}. If the

action associated with the recognition of an "a" was to

prompt for an "a" or a "b", it could not be executed until

either rule (1) or rule (2) were reduced. Neither of these

rules can be reduced until a "d" is recognized. By the time

a "d" is recognized, there would be no need for a prompt to

enter an "a'! or a "b" because neither of these symbols could

43

follow a "d". In order to be sure an action can be executed

immediately after recognizing the "a" in rule (1), an other-

wise redundant rule that would be reduced when an "a" is

recognized would have to be added to the grammar. The new

nonterminal symbol associated with this new rule is then

substituted for the "a" in rule (1). The resulting grammar

is as shown in Figure 19.

<S> .. - <X><A>d .. -
<A> .. - a<A>d .. -
<A> .. - be .. -
<X> .. - a .. -

Figure 1 9. A Modified BNF
Grammar

This process may be carried out for each terminal symbol

that appears with other symbols on the right hand side of

any rule for which an action is required immediately after

recognition.

Modifications of this type potentially add as many

otherwise redundant rules to the grammar as there are termi-

nal symbols. Indeed, the action associated with the "a" in

rule (1) of Figure 18 may be different than the action as­

sociated with the "a" in rule (2). In this case, two sepa-

rate rules are added to the grammar as shown in Figure 20.

44

<S> . ·- <X1><A>d (1) .. -
<A> .. - <X2><A>d (2) .. -
<A> .. - be (3) .. -
<X1> .. - a (4) . ·-
<X2> .. - a (5) .. -

Figure 20. A Modified BNF
Grammar

The action to be performed with the reduction of rule (4)

would be different than the action associated with rule

(5). These modifications may add as many rules to the gram-

mar as there are terminal symbols on the right hand side of

the productions that do not appear by themselves. Real-

istically, one would not expect the number of new rules to

be QUite that high. The addition of rules such as rules (4)

and (5) in Figure 20 detract from the clean structure of the

grammar and make it more difficult to read.

CHAPTER V

SUMMARY, CONCLUSIONS, AND SUGGESTED

FURTHER RESEARCH

Summary

A user converses with an interactive software system by

entering a series of discrete tokens, such as typed com­

mands, keypresses, or joystick motions. The software system

contains a user interface that accepts an input token. It

determines if the token entered is a legal token in the

context of the state of the software system and performs the

action requested by the input token. The action may place a

menu on the screen, prompt for more input, or perform a

requested task.

An interactive session consists of a string of input

tokens to the user interface, entered one at a time by a

user, and a string of output messages generated as a re­

sponse to the input tokens. The output messages may be

produced by the user interface itself or by the underlying

software system.

Typically, there are a finite number of distinct input

tokens and an infinite number of ways they can be combined

to form legal input strings to the user interface. However,

not all sequences of input strings are legal inputs. A

46

formal grammar can aid in specifying the set of legal input

strings.

A grammar uses a starting token and a set of production

rules to generate all legal strings in a language. If the

language is the set of all legal strings that a user inter­

face will accept, the grammar that generates the language

serves to specify the user interface. A recognizer based on

this grammar specification can be constructed that will

accept the legal strings in the language generated by the

grammar. The recognizer constructed can be used as the

driver for the user interface.

There are several advantages to specifying a user in­

terface with a formal grammar. The recognizer built from

the grammar specification can be the basis for an easily

modifiable prototype that is quick to construct. Some of

the well known advantages of rapid prototyping include the

early detection of design flaws and early mock-up demon­

stration capability.

Another advantage of using a formal grammar to specify

a user interface is the capability to automatically manipu­

late the grammar into an equivalent but more useful form.

Well known algorithms to manipulate grammars include removal

of useless production rules and removal of left recursion.

Other benefits center around the consistency and com-

pleteness of a formal model. Incompleteness and ambiguity

show up more easily with a grammar model than if the inter­

face was implemented in an ad hoc manner. The construction

47

of the grammar requires a complete design of the input lan­

guage.

There are some drawbacks to using a formal grammar

model for a specification of a user interface. One of the

main drawbacks is that the grammar may be quite large if all

legal strings are described. The application of semantic

restrictions to a smaller set of production rules may help

reduce the size of the grammar. This technique for reducing

the size of the grammar is most effective for grammars that

contain several rules which are nearly alike, with the only

difference being a keyword. Other drawbacks relate to the

time required to construct the grammar and the semantic

problem of backing up the parser in the event of a dead end

rule.

If a decision is made to use a formal grammar for the

specification of a user interface, the type of grammar to

use must be chosen. The most common types of grammars make

up the Chomsky hierarchy of grammars. They are the regular,

context-free, context-sensitive, and the unrestricted gram­

mars. The focus of this study is on the regular and con­

text-free grammar models.

The regular grammar model is the simplest model in the

Chomsky hierarchy. It is recognized by a finite state ma­

chine which is compact, requiring no extra space for memory,

and runs in linear time. The regular grammar is represented

graphically by a state transition diagram. Actions to be

performed by the recognizer are associated with a transition

48

from one state to the next in the state transition dia­

gram. Each transition corresponds to a recognized token

from the input. There is a great degree of explicit control

of actions to be performed built into the regular grammar

model.

A regular grammar may not be the best choice if the

interface to be specified is very complex. User interfaces

with recursive calls to rules are not representable by a

pure regular grammar. There is no mechanism in a finite

state ~achine to keep track of the number of levels of re­

cursion the interface is nested. A regular grammar can

still be used for this application if the rules are bent

~lightly and a counter is allowed.

Another solution is to use. a context-free grammar and

its associated pushdown automaton recognizer. The context­

free grammar is a more powerful grammar for specification

and the pushdown automaton contains a stack memory to aid

parsing. The context-free grammar is typically represented

in Backus Naur Form.

Actions to be executed are associated with a rule re-

duct ion in a context-free grammar. In order to gain ex-.

plicit control over when actions are performed, the grammar

may have to be modified. Rules that are otherwise redundant

may have to be added to force the reduction of a rule when a

particular token is recognized. These extra rules are only

needed for semantic control purposes. They add size to what

49

may already be a large grammar and detract from the clean

structure of the grammar.

Conclusions

The benefits of using a formal model over an ad hoc

design are clear. A formal model provides a clear, con­

sistent foundation upon which to build an effective imple-

mentation. The formal grammar seems to be a suitable model

for the specification of user interfaces. The rigidity of

the grammar model forces design decisions to be made at

design time rather-than during the implementation.

A particular strength of the formal grammar in conjunc­

tion with tools to automatically construct a parser is the

capability for rapid prototyping. The grammar is easily

modified if design flaws or awkward spots show up in the

prototype. If a major modification is required, only the

grammar needs to be rewritten. An ad hoc, hand-built proto­

type may have to be entirely rewritten.

When constructing the grammar, the designer should keep

in mind that the grammar is specifying an interactive

system. Difficulties can arise if any nondeterminism is

introduced into the grammar. Backing up the parser in the

event of a dead end rule may be difficult or impossible if

actions that cannot be undone have already been performed.

Moreover, in an interactive system the parser cannot look

ahead to tokens that have not been input yet to determine an

appropriate move.

50

The regular grammar model is the simpler ·of the two

grammar models to implement. The built-in correspondence

between the recognition of a token and the execution of an

action makes this an appealing model. It should be powerful

enough to specify a large class of useful user interfaces.

This is especially true if the rules are relaxed a small

amount to allow a variable for counting in the implemen­

tation.

The context-free grammar is the more powerful of the

two grammars for specification. However, with the context­

free grammar model, gaining explicit control over when

actions are to be performed may cause ·the grammar to be

cluttered by the addition of extra rules. However, it may

be worth it for an interface that is very complex. If the

rules for a regular grammar had to be bent too much, the

regular grammar model would be cluttered also.

Suggested Further Research

During the investigation of grammars for the specifi­

cation of user interfaces, it became clear that formal gram­

mars might be useful for the specification of a more general

class of software. Any system that requires the recognition

of the input to perform actions seems to be a candidate for

a formal grammar specification.

An even broader question is that of modeling software

systems in general. The model could be a formal grammar or

any other formal model that seems useful. The issue of

51

using a formal model to prove the correctness of a software

system seems likely to provide fertile ground for research.

SELECTED BIBLIOGRAPHY

[1] Aho, Alfred V., and Ullman J. D. The Theory of

[2]

[3]

[4]

[5]

[6]

Parsing, Translation, and Compiling, Vol. 1:
Parsing, Prentice-Hall Publ. Co., Englewood
Cliffs, N.J., 1972.

Anson, E. The Device Model of Inter'action. SIGGRAPH
82 (Computer Graphics), 16,3 (July, 1982), 107-
11 4.

Denert, Ernst. Specification and Design of Dialogue
Syste·ms with State Diagrams. Proceedings of the
International Com~uting Symposium 1977, 4-7
(April, 1977), 417- 24.

Hanau, P. R., and Lenorovitz, D. R. Prototyping and
Simulation for User/Computer Dialog Design.
Computer Graphics, 14,3 (August, 1980), 271-278.

Harrison, Michael A. Introduction to Formal Language
Theory, Addison Wesley Publ. Co., Reading Mass.,
1978.

Jacob, Robert J. K. Using Formal Specifications in the
Design of a Human-Computer Interface. Communica­
tions of the ACM, 26,4 (April, 1983), 259-264.

[7] Johnson, S. C.~ YACC: Yet Another Compiler Compiler.

[8]

[9]

[1 0 J

Unix Programmars Manual, Volume 2A (Janauary,
T1*'97~g~)r.~~~~~~~~

Lawson, Harold w., M. Bertran, and J. Sangustin. The
Formal Definition of Human/Machine Communica­
tions. Software - Practice and Experience, 8,1
(January, 1978), 51-88.

Lesk, M. E., and E. Schmidt. LEX- A Lexical Analyzer
Generator Unix Programmars Manual, Volume 2A
(January, 1 979).

Olsen, Dan R., and Dempsey, Elizabeth P. SYNGRAPH: A
Graphical User Interface Generator. Computer
_Graphics, 1 7, 3 (July, 1 983), 43-80.

52

53

[11] Pilote, Michael. A Programming Language Framework for
Designing User Interfaces. ACM SIGPLAN Notices,
18,6 (June, 1983), 118-133.

[1 2] Reisner, Phyllis. Formal Grammar and Human Factors
Design of an Interactive Graphics System. IEEE
Transactions on Software Engineering, 7,2 (March,
1 983) ' 229-240.

[13] UNIX is a Trademark of Bell Laboratories.

[14] Shaw, M., E. Borison, M. Horowitz, T. Lane, D. Nichols,
and R. Pausch. Descartes: A Programming-Language
Approach to Interactive Display Interfaces. ACTJI
SIGPLAN Notices, 18,6 (Jun3, 1983), 100-111.

Michael Wayne Bates

Candidate for the Degree of

Master of Science

Thesis: FORMAL GRAMMAR SPECIFICATIONS OF USER INTERFACE
PROCESSES

Major Field: Computer Science

Biographical:

Personal Data: Born in Ponca City, Oklahoma, October
21, 1959, the son of Kenneth and Carlene Bates.

Education: Graduated from Ponca City High School,
Ponca City, Oklahoma, in May 1977. Attended
Northern Oklahoma Junior College from August, 1977
to May, 1979. Received a Bachelor of Science de­
gree in Computer Science from Oklahoma State Uni­
versity, July 1982. Completed the requirements for
a Master of Science degree in Computer Science at
Oklahoma State University, July 1984.

Professional Experience: Programmer, Department of
Financial Aids, Oklahoma State University, May 1982
to October 1 982; graduate teaching assistant, De­
partment of Computer Science, Oklahoma State Uni­
versity, October, 1 982 to December 1 983; Program­
mer, TMS Inc., December 1983 to May 1984.

