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forme [10], no one seems to have noticed that "indexed"

STRUCTURES AND TOPOLOGY
CHAPTER T
INTRO DUCTION

From the very beginning, topologies have been de-

fined in terms of neighborhood systems. Yet, even after

v o . - \ o
the publication of Weil's Sur les ispaces & Structure Uni-

neighborhood systems may be used in tie most general space
as well as in the relatively special uniform space., This

is strange for at least two reasons.

First, as will be seen, unifcrmly indexed systems
of neighborhoods - what we shall call "structures" in this
dissertation - provide a natural bridge from topological'
spaces in general to uniform spaces and metric spaces in
particular., Indeed, starting in a metric space, point-set
topology is reached by traversing this bridge in the reverse
direction; when the metric is last seen, it is seen in the
form of an indexed system of neighborhoods, viz., the sys-
tem of open spheres Vs(x) of radius € centered at x which
provide the definitiou of open set. It was this observa-
tion, no doubt , that led Well to formulate the notion df

uniformity.

Secondly, much of the work in point-set topology

has been concerned with generalizing results from analysis -
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results which more often than not require concepts like uni-

form continuity, Caucny sequences, totally bounded sets,
contraction maps, etc., and these conceonts in turn require

that one be able to compare the “sizes" of neighborhcods at

different points in tne s-aces concerned. But one does not
need uniform spaces - much less metric spaces - to meet
this -requirement. xll of the concepts named and wany more
can be defined in tne most gereral vopological space in

terms oi neiznborhood "structures", as we shall see.

Of course tne mere apility to define a concept in
an extremely general settin does not carry witih it the
possibility of obtainin: signiricant results wita that con-
cept in that setting., Ic is one ol the theses implicit in
this dissertation tmat not only do metric concep®s zeneral-
ize quite naturally to the most abstract of spaces, but
many of the familiar theorems couched in terms of those

concepts can be extended to such spaces as well.

In Chapter II tne fundamental ideas in this work
are formulated and in terms of tnem we investigate tihe re-
lationship between certain families of dyadic relations over
a set and the resulting topologies for the set. This chap-
ter 1s something of a footnoie to Welil's treatise, for here

we are simply pushing his ideas to their natural conclusion.

What we are dealing with are various generalizations

of Weil®s concept of uniform structure, which in turn may be
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thought of as a kind of generalized equivalence relation
(though Wweil did not oresent it in this way). Given a set
X, an equivalence relation over X is a dyadic relation
V& XXX satisfying

i) (x,x‘) e.V H

ii) (y,x) eV imolies (x,y)eV;
and iii) (x,y) eV and (y,2) eV imply (x,z) eV,
for all x,y,ze¥X. low substitute for Vv a family of rela-
tions V.= [V _]

I a~ael
i') for ezch ae I, (x,x) eV, s

closed unaer intersection and satisfying

ii') for each ae I, there is a be I such that
(y,x) ¢ Vy implies (x,7) ¢ Vs
and iii') <for each ae I, there is a be I such that

(x,¥) eV, 2nd (y,2) eV, imply (x,¥) eV,;
for all x,y,zeX. VI then is a uniform structure for X.
What were equivalence classes before now become the "uni-
formly indexed neighborhoods" referred to above, viz., tae
subse ts Va(x) =[ye¥: (x,¥5) eV, ), with xe X, aeI. A uni-
formity is a uniform structure to which belongs every rela-

tion which contains a member of that structure.

One of weil's principal results is that topological
spaces which admit unirformities are precisely those which

are completely regular, which means that for every point x

and every closed set F disjoint from x in such a space there

is a continuous real-valued function which vanishes at x and

is identically 1 on F. In Chapter II we characterize more
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general kinds of topological spaces in terms of the kinds
of "structures'" they admit. (Much of Chapter II is taken

from the author's Indexed Systems of Neighborhoods for Gen-

eral Topological Spaces [3].)

Another important result proved by Weil is that
every uniform space has a completion, In Chapter III we
shall show that, in one sense, the theory of uniformities
is "minimal" if one wishes to deal only with svaces which
do have completions without exception. Somewhat more pre-
cisely, what we prove is thnat resular spaces which héve
regular completions without excepytion are already complete-
ly regular. 7This result deperds heavily on the particular
definition of "Cauchy filter" which we choose to use. It
is possible that a different definition would yield a more

elegant theory.

Also in Chapter III we consider various kinds of
weak "commutative laws" for a family of relations VI under
composition, For example, VI might satisfy the condition:
for each ae I and each beg I, there is a c e I such that ]
VaVCSEVbVa. It turns out that conditions like this corres-
pond in a natural way to various kinds of "continuity" of
the members of VI' In terms of onre of these definitions
of "relational continuity" we gzive yet another sufficient

condition for a space to be completely regular and conjec-

ture that the condition is also necessary.
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Finally, in Chapter IV, we extend the metric idea

of "contraction map" to apply to transformations of quite
general topological spaces which are equipped with "struc-
tures" and we prove a fixpoint theorem analogous to the

one discussed by Kolmogorov and Fomin in their Functional

Analysis [6]. The author owes his interest in the subject
treated in Chapter IV to conversations with Dr. J. Mathews
who has generalized the Kolmogorov-Fomin fixpoint theorem

in a somewhat different direction. [Cf., 7.]




CHAPTER II

STRUCTURES AND TOPOLOGY

In this chapter the main concepts of this disser-
tation are defined, In terms of these concepts we then
investigate the relationship between certain families of
dyadic relations over a set and the resulting topologies

for the set.

2.1. Basic Definitions. A family VI==[Va]aEI of

dyadic relations over a set X will be called reflexive if

each Va contains the diagonal.lk of XX, symmetric if for
each a¢ I there is a be I such that (the transpose) vglg;va,

and transitive if for each a ¢ I there is a be I and a

ce I such that VCVbSEVa. (Composition is denoted by juxta-
position and, for powers, by superscripts.) VI is locally

transitive if for each xe X, each ae I, Vch(x)QVa(x),

where b and ¢ may depend upon x as well as upon a,

If V.. is reflexive and closed under the operation

I
of intersection, it will be called a structure for X. Thus

a reflexive symmetric transitive family of dyadic relations,
closed under intersection, is a uniform structure for the

set concerned. So it is that vniformities are generalized

equivalence relations. Here, however, we are concerned

6
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with structures which may be much weaker than those which

are uniform.

If VI and UJ

be said to be as fine as the first if for each e e I there

are structures for X, the second will

is a de€ J such that UdSEVe. Two structures are‘equivalent

if each is as fine as the other.

By a space we shall mean a set together with an
equivalence class of structures for that set. Notation:
(X, VI), where Vi is a representative structure for X. If

YCX and, for each ace I, U, =V, NYxY, then (Y, UI) is a

subspace of (X, VI).

Given a map f:X — Y: x — f(x) from a set X into a

space (Y, VI), the structure induced by f on X is the family

ly_ ¢

I I
X, is symmetric if VI is symmetric, etc.) If X happens to

-1 -1 .
(f Vajf]asI' (Clearly £ V. f is a structure for

J9 and if UJ is as fine

f, then f is said to be uniformly continuous. Two

be already equipped with a structure U

as f_lv

I
spaces are isomorphic if there exists a one-one uniformly

continuous mapping of the one onto the other whose inverse

is also uniformly continuous.

Bach time a concept is defined in terms of the notion
of structure, one may ask, Is it invariant with respect to
equivalence of structures and with respect to isomorphism
of spaces? TUnless specifically noted to the contrary, it

may be taken for granted that all such concepts defined in
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this dissertation are indeed well-defined relative to
equivalence and isomorphism. The proof of this in each

" case is easy and will be omitted.

By and large, concepts which can be defined without
mentioning particular points im the space are "uniform" (or
"global"), and for each of these there is usually a corres-
ponding "local" concept. For example, a structure UJ is

(locally) as fine as a structure VI at some point x of the

space if for each eeg I there is a deg J such that Ua(x)s;
Ve(x), where d depends perhaps on x as well as on e, Two

structures are locally equivalent if each is everywhere lo-

cally as fine as the other. A map f:X — Y of (X, UJ) into
(Y, V;) is continuous if U; is locally as fine as f-lVI.f.

Homeomorphisms between spaces, being one-one bicontinuous

maps, are what one might term "local isomorphisms"{

The thing that locally equivalent structures have in
common, of course, is a topology. Given'a space (X, VI),
its topology is the class g)of subsets G& X which are open
with respect to VI. That is, for each xe G there is an ag I
such that Va(xDS;Gu Clearly :j)satisfies the more usual |
definition: it is closed under finite intersection and un-

restricted union, ESJis the topology for X defined by VI.

Since locally equivalent structures are not necessar-
ily equivalent (and homeomorphisms need not be isomorphisms),

the concept of topological space, viz., a set plus a topology,
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is less definite than the notion of "space" defined above
in terms of structuré. Nevertheless, every topological

space admits a defining structure, as we shall see.

An open neighborhood structure for a set X is a
s truc ture UI with the property that each subset of the form
U,(x) (aeI, xeX) is open in the topology of the space,
the adjective "open" being omitted if this property is re-
placed by

n.s.) given aegI, there is a be I
such that for each xe X and each ye¢ Ub(x),
there is a ¢ € I such that Ué(y)g;Ué(x).

(n.8.) may be thought of as a very rudimentary and provin-

cial "triangle inequality".

Given a structure VI for a set, it is nct difficult
to see that it may be replaced by an open neighborhood struc-
ture U, which is as fine as VI and which defines the same

I
topology. If VI is symmetric or locally transitive, then

U. can be made symmetric or locally transitive. If VI sat-

I
isfies (n.s.), then Up may be chosen equivalent to VI.
Henceforth, unless otherwise noted, we shall assume that all

structures treated are neighborhood structures.

2.2. General Topological Spaces. First we show

that every topological space admits a "uniformly indexed"
system of open neighborhoods. The postulates for open neighé

borhood structures are recapitulated in

Theorem 2.2.1. The pair CX,:f ), where X is a set
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and ¥ is a family of subsets, is a topological space if and
only‘if there exists a family VI of dyadic relations over X
satisfying
i) for each xeX, x¢ QI Va(x) H
ii) to each pair ae I, be I, there
corresponds some ce I such that for all xe X,
V(%) = Vo (x) NV, (%) 5
iii) given yeV_(x), there is a bel

such that V, (y) € Va(x) ;
and iv) Ge J if and only if for each xe G

there is an ae¢ I such that V,(x) € G.

The prooit of sufficiency is standard and is omit-
ted. Assume, then, that a topological space (X, J) is
given and define for each'Ge:Qﬂ the subset V. = [XxG]U
[(X-G)*X] of XxX. Iet I be the class of all finite sub-
families of O and define, for each aegI, V

v Then

GQ
VI is easily seen to meet all the requirements of. the theor-

\

a” Gega

em,

Z

The usefulness of this

2

N

WON
Q

of Theorem 2.2.1 are not neces- Fig. 1

7

theorem is limited by the fact

that the structure VI cannot

=

G
in general be made symmetric. EHf
\

The reason for this can be

found in the fact that the Va :

sarily neighborhoods of the diagonal in the product topology.

(See Theorem 2.3.1.)
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2.3. Ro- paces. The next question'then is, For ‘
which topological spaces can the Va be. chosen as neighbor-
hoods of the diagonal? It turns out that only a very mild
"regularity" condition is needed. Since it seems that the
spaces which satisfy this condition have not appeared ex-
plicitly in the literafure before, several characterizations

will be given in the next theorem.

In a topological space (X,Cf) let A and B be subsets

of X. A is said to be separated from B by an open set G if

ACGand GNB=¢g . This is the case if and only if ANB=4.

A and B are entirely separated if they are separated by dis-

Joint open sets. We shall refer to singletons as "points".
Thus a Tl-space is a‘topoldgical space in which distinct

points are separated from one another,

Theorem 2.3.1l. The following statements about a

topological space (X,Ef) are equivalent:

a) closed sets are separated from the
points that they exclude;

b) every open set contains the closure
of each of its points;

c) Gfis defined by a structure VI for
X, such that each Va is an open neighborhood

of the diagonal;
d)CSJis defined by a symmetric open

neighborhood structure;

e) for all xeX, ye X, either [XINI[F]
= ¢ or [5'] = [i];
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f)QS/is isomorphic (lattice-theoretically)
to the topology of a T,-space. ‘

An R -space, by definition, is one which satisfies ary,

hence all, of these conditions.

Proof: (a) implies (b): If G is an open set con-~
taining x, then X -G is a closed set excluding it. Hence

(X-G)N[X1=4, i.e., [X] CG.

(b) implies »(c):‘ Let [Va]agI be the family of all
open neighborhoods (in the product topolog'y) of the diag-
onal, Property (i) of Theorem 2.2.1 is equivalent to
Acl)v,. (ii) is satisfied with V_=V,(V,. Now let
GsSand xe G be given, Define U= [XxGJU[(X- [X])xX],

Since [X] € G, U is an open neighborhood of A. Hence U=V_,
for some ag I, and Va(x) =G, Thus (iv) holds. Then so does
(iii), since Va(x) is open in X whenever V, is open in XxX.

(¢) implies (d): Symmetry of U

statement that U;]' =

J is implied by the

a? for all agJ. Now if Va is an open

neighborhood of &, then so are Vaﬂvgl and Vauvgl. Since

-1

-1 . .
Vanva cV, c__‘_VaUva , the family V. of open neighborhoods

I

of A is equivalent to the family U. consisting of all sym-

)
metric open neighborhoods formed in this manner,

(d) implies (e): If ze [XIJNLyl, then [2] C [XINLF].
Also, for all ae I, x¢ Ua(z), whence z ¢ Ua(x). Then xe [Z], !

and so [%] C [2]1 C [§]. Similarly, [§j]< (X]. In summary,
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if [XTAL§F1# 6, then [§1 = [X].

(e) implies (f): For each GsCf, define G* = [x* C
X: x*=1[X], for some xeGJ. Letsj* be the family of all such
sets. Then (X*,JI*) is .a T,-space and G —> G* is. a one-one
mapping of Jonto I* which preserves unions and ihtersections.
The proof of the latter depends only on the properties of
open sets and the fact that if xeX~-G, with GeJ, then
[(X] € X -G, which is true in any space. For the proof that
T» is a Ty-topology, note that if [%1 # (71, then [X] (e
X -[¥], whence [X]) e (X-(§1)*. Similarly, [y) e (X-I[x1)*,

so thit [%] and [§] are separated from each other in (X*,J*).

(f) implies (a): Suppose that &* is the Tl-topology
to whichJis isomorphic. C(Clearly, the corresponding lat-
tices Z and Z* of closed sets are also isomorphic. Now the
latvice of closed sets for a Tl-space ié characterized by
the fact that each of its members is a join of atoms, i.e.,
of members which cover the null-element. Let [Aa]asJ be

the atoms of Z. Then for each xeX, [X]-= for some

aed Aast’

X
Jx € J. Then xe A, for some x¢ Iy and since Ax is closed,

[X] € A,. But, since A is an atom (and [X] #4),[X] = Ax.
(On the other hand, each atom, being a minimal nonvoid
closed set, must be the closure of some point in X.) Thus
for each ye X and each szLeJF [x] in Z, either ye F or
FN[¥y]l =4, and so closed sets are separated from the points
that they exclude. ‘
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This closes a cycle of implication through the state-

ments to be shown equivalent; the proof is complete.

Corollary. Tl-SPaces are precisely those which are
both RO and TO. (A To-space is one in which at least one of

each pair of distinct points is separated from the other.)

Proof: Statement (f) asserts that every T,-space is
an R -space. On the other hand, (e) asserts that xe [¥]
implies ye [X1, and in 2 To-space this can happen only when
Yy=X. Thus in an Ro-space which is also To’ distinct points

are separated from each other.

Just as there are many examples of To—spaces which
are not Tl’ there are many examples of Ro-spaces which are
not even To‘ (Consider, for instance, the points of the
plane with topology given by the pseudo-metric d: 4d((x,y),
(x'y3") =lx-x'.)

In a metric space the closure of a set is the set of
all points zero-distant from it. It is perhaps surprising
that a useful analogue of this statement can be formulated,
not only for uniform spaces, but for spaces which, in a

sense, are no stronger than a To-space:

Theorem 2,3.2. (X,CY) is an R,-space if and only if

is defined by a structure VI such that, for each A CX,

1=Llv.

acl
(where V () = L) v () ).
Proof: Using a structure VI for X which defines S’
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in accordance with Theorem 2.3.1 (d), the proof of A =

g;} Va(A) proceeds exactly as it does in the theory of uni-

formities., Conversely, if for each xe X, Ei]==£;} Va(x),
then every open set contains the closure of each of its

points and so, by Theorem 2;3.1 (b), (X,3) is an R,-space.

2.4. Interlude: Trennungsaxiome and regularity.

Statement (f) of Theorem 2.3.1 suggests the question, What
topologies are isomorphic to the topologigs of To—spaces?

The answer is, Every topology is isomorphic to a TOQtépol—
ogy: The To~separation axiom, while restricting the space,
imposes no condition at all on the lattice of open sets.
(This may be shown by using the isomorphism induced by the
mapping x =» [X] which occurs in the proof of Theorem 2.3.1.)

Continuation of this line of questioning leads to a simple

clasgsification scheme for axioms ~( any )
.~ ‘space
of separation and regularity. It %%://,3r/' A
. T P R
is offered here as a natural ex- A° V /Eo
tension of a remark made by Kel- '¢} 12/‘/” 4}

ley [5, p.130] on pseuvdo-metrics. %? /’,u/ *&

' ‘ - !

The scheme is diagrammed T £, i
3
. . , - _ A pseudo
in Fig. 2. Each Tk is a separa ; _~( metric )
tion axiom (this is the standard <metric spaces
: spaces

notation) and each Rk is what we
are calling, somewhat arbitrari- Fig. 2

ly, an "axiom of regularity". The R,~spaces were character-

ized in Theorem 2.3.1. R;-spaces are %tnose in which the
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closures of points are entirely separated wherever they do
not coincide, -and R,-spaces are those which are properly
called regular - those in which points and closed sets are
entirely separated wherever the former are not contained in
the latter. Each solid arrow represents an implication (ab-
sence represents absence), and each fractured arrow repre-
sents the gxistence of isomorphisms between topologies. Fi-
nally, each separation axiom is defined as the conjunction
of two weaker axioms: Ty =Ry AT, ;=R _;A Ty (But the
usual definition of "normality" must be modified slightly if

R3 is to be the axiom for normal spaces,

2¢5. Rl- paces. These seem to have appeared for

the first time in Fig. 2. Now and then one finds theorems

"~ in the literature which Begin with the premise, "If (X,9)

is either Hausdorff or regular," and which could be both
simplified and strengthened by replacing the phrase "either
Hausdorff or regular" by "Rl-space". As an example, the
folloﬁing is the strengthened version of a theorém quoted

by Kelley (5, p.146, guo vide for definitions].

Theorem 2.5.,1. Every locally compact Rl-Space has

a compact local base at each of its points,

Proof: Let V. define the topology of the locally

I
compact R,-space (x,:{). Given‘Va(x), let W be a compact
neighborhood of x. Since W - Va(x) is closed in W, it is

compact,  Now, for each yeW-V,(x), we have [FI1N[X] = 6.
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Thiz is true and the following is possibie since the space
is By, Choose b and ¢ so that Vb(x)nvc(y) = #. Choose

from the covering [vc(y)]yew-va(x) a finite subcovering

n n
[V, (7012 .. Then [A\Vy, (x)1NG=4g, where G=_J V. (7:).
c Ui i=1 ]Ql bi ' il %1 i

Hence X -G is a closed neignborhood of x, and U=WN[X -G]
is a compact neighborhood of x. Since W-Va(x) CG, X-GC
X- [W—Va(x)] y whence UC WN\(X - [W—Va(x)]) =WOV, (x) €
Va(x). Thus we have found a compact neighborhood of x con-

tained in the given neighborhood Va(x).

We have not yet characterized Rl-spaces in terms of

the structures they admit. This is done in

Theorem 2,5.2. An R -space X,S) is R, if and only

if its topology is defined by a symmetric structure VI such

that, for every xe X,

N v2 (0 = L)v x).

bel ael "a

Proof: First suppose that (X,) is R,. Since then
it is also RO,C)Jis defined by a symmetric structure VI. In
fact, we may take each V (ae I) to be symmetric. If yeX -
| V.(x), then [X]1N([§] =g, whence there is a be I such that
aegl "a : m
Vb(x)n Vb(y) =@%, Then yeX=- Vb(Vb(x)). That is, ytas I Va(x)
implies ye bLz—:)I [ X-V%(x)] =X—£QIV§(x). Thus b@: v%(x) c
a(s?[ Va(x). The reverse inclusion is immediate. Conversely,
if the Va are symmetric (acI) and VI satisfies the above
condition, then the space is Ry. For if Vi (x)NV,(y) ##

> .

for every bel, then xevb(y) for every beI. Thus x¢ Q
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V(T (7)) C_;Q V,(¥)=[§]. CThet is, (%] = [FI.

Corollary. 1In an R, ~space with topology defined by

a structure satisfying the conditions of tne theorem,
OAvm - )v,x.

2.6. Regular spaces. Topological spaces were crea-

ted by barishing the metric from metric spaces. The prob-
lem of metrization of topological spaces is essentially the
problem of describing in non-metrical terms - 1in fact, in
terms of topological invariants - the amount of "structure"
a space must have in order to re-admit a metric. But the
question may be turned around: What metric-like properties
does a space with a given "amount" of topological structure
have?

OLe virtue of neighborhood structures is that they
often show very clearly which metric or pseudo-metric prop-
erties are restored with each step toward metrizability.
Regular spaces provide a good example of this, Since they
are but a half-step away from completely regular spaces,

the following result should not be too unexpected:

Theorem 2,6.1l. A topological space (X,QY) is regu-

lar if and only'iifgfis defined by a symmetric structure VI
which satisfies the "local triangle inequality":
v) given xeX and ag I, there is a
be I, such that if zevb(x) and -yst(z),

then y ¢ Va(x) .
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That is, regular spaces are those whose topologies are de-

fined by symmetric structures which are locally transitive.

Proof: We use the fact that a space is regular if
axd only if each mneighborhood of a point contains a closed

neighborhood of that point.

Now if (X,g) is regular, 7 7
then a forteriori it is an /% o /////A
N

Ro-space and so we may choose

VI to be the family of all \é(") U{x

open neighborhoods of A in

0,

“—
Vv

choose a closed neighbor- F‘j3 X -

the product topology. Giv- ;
!

L

en Va(x) from this systenm,

hood U of x contained in

Va(x). Choose a second closed neighborhocd V satisfying

xeV € U° (the interior). Define W= [(X=- UxXIU (X =-VV,(x)]
U [xxU°]. (See Fig. 3.) Then W contains/\ and is open,
whence W=V,, for some be I. Moreover, Vi (T (%)) =Vb(U°) =

Va(x) , as desired.

Conversely, suppose VI symme tric and locally transi-
tive. Then given any neighborhood U of x, there exists an
acIand a bel, such that xeVy(xX) € Tp(x) = § ) Vo (Vy(x))
- Vb(vb(x))C_:_ Va(x) C U, and so the space is regular,

The fact that the b in Property (vi) depends in gen-

~eral not only on a, but on x, makes (vi) a local property.

If, for each a, the b could pve chosen "uniformly," i.e.,
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independently of x, then of course we would be in a uniform

space,

Locally transitive structures whose members are sym—
metric will be called regular. (By the method indicated in
the proof of "(c) implies (d)" of Theorem 2.3.1, any symmet-
ric structure for a set may be replaced by an equivalent

structure each of whose members is symmetric.)




CHAPTER III

COMPLETENESS; RELATIONAL CONTINUITY

What we are aiming at in the first section of this
chapter is the result that, roughly speaking, regular spa-
ces which have regular completions without exception are
already completely regular. Ir the remainder of the chap-
ter some questions on "relational continuity" will be trea-
ted,

3,1. Completeness, By a Cauchy filter in a space

(X,VI) we shall mean a filter P which contains "small
sets", That is, for each a eI there is a pasX such that
Va(pa) € “6) This is one of the more usual formulations of

the Cauchy property.

To get the same results with nets as are obtainable
with fllters, one must work with nets xD==[Xn]n8D which
satisfy: TFor each ae I, there is a P € X and an n(a) €D
such that for all n> n(a), X, € Va(pa). These might be

termed semiregular in deference to the fact that Cauchy

nets are sometimes called "regular"., The latter are de-

fined by the comndition that for each ae I there be an

n(a) e D such that m>n(a) and n>n(a) imply X € Va(xn).

21
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(If V, is uniform, the two concepts coincide.)

I

b Semiregular nets are not necessarily Cauchy. In
fact, even convergenf nets (which are always semiregular)
may not be Caudhj if the structure is not symmetric. On
the other hand, semiregular nets and Cauchy filters are
intimately related through the points [pa]asI which, if I
is directed by defining a>b to mean Va g.Vb, also form a
net. (Dragnet might be an appropriate name, since it
"drags" the given net or filter along with it.) By means
of this relationship it is easily shown that spaces in
which semiregular nets always converge are precisely those

spaces in which Cauchy filters always converge. Such spa-

ces are comglete.

Thus completeness may be studied in any space what-
soever, One fundamental result, well-known from the study

of uniform spaces, is

Theorem 3.l.l. Any closed subspace of a complete

space is complete (re the relativization of the given struc-
ture). Conversely, in a Hausdorff (T2) space, complete sub-
spaces are always closed.

Proof: Standard.

We shall say that a structure V., for X is finite if

I
for each ag I there is a finite subset Fa QX such that
X gVa(Fa). The space (X,VI), when VI is finite, is said

to be totally bounded. It happens that every topological

space admits a finite structure:
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Theorem 3.,1.,2. There is a finite structure defining

the topology of any given space. If the space is R, (or Bos
or completely regular), then that strﬁgture may'be chosen
also to be symmetric (and locally transitive, and transi-
tive).

Proof: ©For spaces in general, the construction used
in the proof of Theorem 2.2.1 is easily seen to yield fin-
ite structures. Given an R -space (X,Qf), then, let I be
the family of all finite open coverings. For each ag I,
define V =(-) G*G. Clearly VI is reflexive and syumetric.
Moreover, Vaf1Vb==[éEg GxG](\[éEé HXHJ==é:g ([G*GIMN [HxH]) =
éﬁ% ([G(\H]x[G(\H])==Vc, where ¢ is the finite open cover-
ing whose members are of the form GNH with Gega and He b.
Thus V. is closed under intersection. Now given(}sQYand

I
xe G, let a={Gy, X-[X] J. Then agI and Va(x) =G. So Vg
defines QY.' Finally, (X,VI) is totally hounded: Given
ag I, let Fa be a selection o0.” points, one from each member
of a. Then X=V_(F,) and F, is finite. Now if (X,&) hap-
pens to be regular, an argument similar to the one used in

the proof of Theorem 2.6.1 will show that V. is locally

I
transitive. Proofs of existence of finite uniform struc-

tures for completely regular spaces are well-known,

As in the theory of uniformities, total boundedness
may-be characterized in terms of the existence of semiregu-

lar nets:

Theorem 3.l.3. A space is totally bounded if and
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only if each net (filter) has a semiregular subnet (Cauchy

superfilter),

Procf:; Standard, using universal subnets (or ultra-

filters).

As usual, a topological space is said to be compact
if each of its open coverings has a finite subcovering.
Totally bounded spaces are "precompact" in the following

sense:

Theorem 3,1.4. A space has a compact topology if
and only if it is totally bounded and complete.

Proof: Compact spaces (X,VI) are totally bounded
since each covering of the form [Va(x)]:xex has a finite

subcovering. (If V. is not an open neighborhood structure,

I
choose an equivalent structure which is.) Since every fil-
ter has a limit point, compact spaces are also complete.
Now, conversely, suppose (X;VI) is totally bounded and com-
plete. By Theorem 3.1.3, every net in X has a semiregular
subnet which, by completeness, converges. It is well-known

that the existence of convergent subnets without exception

is equivalent to compactness,

For compact Hausdorff spaces, not only are all uni-
formities equivalent - a standard result - Dbut indeed

all regular structures are equivalent:

Theorem 3.1.5. All regular structures defining a

compact Rl-topology are equivalent; all are uniform.
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Proof: Firét we show that if V. is a regular struc;

I

ture defining a compact Rl—topology for X, then'VI==C7;ja€I
(closure taken in the product topology) generates an equiv-

alent structure., We need two auxiliary results:

Lemma A. Let (X,QS) be defined by a symmetric struc-
ture VI' For each RC XxX, R= aQ VaRva‘
Lemma B, If VI is a regular structure, then g:}v€==

ael Va'
The first may be proven Just'as it is in the theory
of uniformities; the second may be shown using a modifica-

tion of the proof of Theorem 2.5.2.

Now, given a e I, we have QV.D=Q Q:chbvc SQV2=
er with [x-JV51bEI form an open covering of the compact set
X*X. The existence of a finite subcovering gives us

n

N, 7 ’ ' i -
i=1 Vbi c Yy for some choice of bl""’bn‘ Thus the struc

ture generated by VI (by taking finite intersections) is as
fine as the structure VI. But then it is clear that the

two are in fact equivalent, as was to be shown.

To finish the proof of Theorem 3,1.5, one may now
proceed as in the proof of the corresponding theorem for
uniformities, showing that all regular structures are equiv-
alent to the structure consisting of the family of all neigh-
borhoods of&\ in X*X and that this family is in fact a uni-

formity. The crucial ingredient in the standard proof is
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the existence of a structure defining gJall of whose mem-
bers are closed, z2nd this is provided by VI’
Theorem 3.1.6. (Gal) ILet X have a regular topology

and let X be dense in X. If every net in X has a cluster

point in X, then X is compact.

Proof: By Theorem 3,1.3, X is totally bounded re
any structure VI defining its topology, since every net in
X, having as it does a -subnet convergent in f, has a semi-
regular subnet. Let VI be a regular structure. We shall
show that each net Xp in'f has a cluster point. For each
(ayn) € I*D, choose Xg,n€ Va(xn)ﬂ X. If I*D is directed by
letting (a,n) > (b,m) mean that n>m and Vo, ©Vys then X1.D
is a net in X and so has a cluster point p in X. Now given
ae I, let beg I be such that V%(p) C_:Va(p). Given ne D, let
m>n and ¢>b be such that Xo m® Vb(p). Then since also
xc’mevc(xm) E_‘.Vb(xm), we have xmsV%(p) C_:Va‘(p). Thus p is

a cluster point for x We conclude (using the cluster-

D.
points-for-nets characterization of compactness) that X

must be compact, q.e.d.

Remark: The use of structures simplifies and illu-~

minates the proof of GAl's theorem considerably. (Cf.y 4.)

Now we are ready to consider the question of comple-

tions for regular spaces. By a completion of a space (X,VI)

we mean a complete space which contains an isomorphic rep-

lica of (X,VI) as a dense subspace. Our result is a negative
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one: It says that there can be no general procedure for
constructing regular completions of spaces which do not have

uniform struectures.

Theorem 3.1.7. Let (X,@f) be a regular topblogical

space, If for each regular structure V. defining G}jthere

I
is a regular completion of (X,VI), then.(X,Cf) is complete-

ly regular,

Proof: Given a regular space (X,Jy) there is, by
Theorem 3.,1,2, a finite regular structure U; defining .
Let (f,VI) be a completion of (X,UI) whose topology is reg-
ular. Since (X,UI) is totally bounded, each of its nets
has a semiregular subnet (Theorem 3.1,3) and each such sub-
net converges to a point in X. That is, each net in X has
a cluster point in X. Then by Theorem 3.1.6, (i;VI) has a
compact topology. It is well known that subspaces of com-
pact Hausdorff spaces are completely regular.. Since we

have shown that (X,QS) is such & space, our proof is done.

Remark: Cohen [2] has found a way of completing spa-
ces whose structures seem to be intermediate between thoée
which are regular and those which are uniform. He has not
-shown, however (nor has the present author), that the topol-
ogies of these spaces are not necessarily completely regular.
Counterexamples abound, of course, to show that spaces which
admit regular structures need not admit uniformities, so

Theorem 3.,1.7 is not without some significance.
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3,2, Relational Cortinuity. If £f:X > X is a

transformation of a space (X,VI) into itself, it is not
difficult to see that f is continuous (i.e., V; is locally
as fine as f"lVIf) if and only if at each xeX it is possi-
ble to find a ce I for each be I so that £(V (x)) g.Vb(f(x)).
Extending this property to dyadic relations, we shall say

that a relation R € XxX is right-continuous (re VI) if for
each xe¢ X, each beg I, there is a ce I such that RVc(x) c

VbR(x). R is left-continuous if, given xeX, be I, there

is a ceg I such that VCR(X‘) c RVb(x). (A function £:X —» X
is left-continuous as a relation if and only if it is an
"open map", i.e., transforms open sets into open sets,)

Uniform left- and right-continuity are defined by making

the usual modifications in the above definitions. For
symmetric relations in a space with a symmetric structure

it turns out that uniform left- and uniform right-continuity
are equivalent concepts. (To see this, use the fact that if
R, S, and T are symmetric relations, then RT C SR and TR C RS

are equivalent statements.)

If every member of a structure is both [uniformly]
left- and right-continuous relative to that structure, then

the structure is said to be (uniformly] smooth. The prob'-

lem of constructing smooth structures for a space is a dis-
tant cousin of the problem, proposed by Menger [{8] and
solved by Bing [1]l, of constructing convex metrics for cer-

tain metric spaces. (Cf., 1 or 8 for definitioms.) For if




29
a space has a ccnvex metric, then it has a uniform structure
VI (defined by that metric) which is uniformly smooth. In

fact, such structures are even commutative: vaa=vavb’

for all a, beg I. The problem of determining in general

which spaces admit smooth, uniformly smooth, or commutative
structures is still open. We can show, however, that spa-
ces with regular structures which are smooth and closed un-

der composition must be completely regular.

Temma: Let VI be a smooth regular structure for X
and assume that VI is closed under composition. Then for

each xeX, ae¢ I, and be I, there is a c e I such that
VchVa(x) C VbVa(x).

Proof: Given a, beglI and xe X, choose k,1,myne I so
~that at x: VoV S VpVao V]_V:L S Vi Vm(VaVl) cC (VaVl)Vl, and
vV, € VoV, TLet V. =VmﬂVn. Then, at x, VV V. € V.V V. c

VU Vg ©V (VV,) ©V, U V) ©V,V, ©VV,, as desired.

Theorem 3.2.1. If V. is a smooth regular structure

I
for a set X and is closed under composition, then the top-

ology of the space (X,VI) is completely regular,

Proof: We wish to show that for each open G & X and
each xe G there is a continuous real valued function
f:X > [Reals] such that f(x)=0 and f(X-G)=1. First
choose ag I so that V,(x) C G and define inductively the
sequence a,, 8,4 85y eoo in I as follows: Put a =a. As-

suming that a_ has been defined for all m<un, let W(Jn)' be
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the set of all compositions of the form Va V, eea V., 7V ’
n, 2n “8p &p
A t t-1 1 (o]
where O§n°<nl< eee<n,<n. For each bed, let an(b) be

(n) (n) ;
such that van(b)van(b)wb (x) c_:van_lwb (x), using the

above lemma, Then define Vy = (b), which is possible,
n

My
bed a,
gsince J is finite. The desired function f may now be de-

fined in terms of these Va (n=0,1,24...). The reader is
n

referred to Weil [10, p.13] or to N8bling [9, p.193] for

details.

Comment: By replacing the phrasé "smooth regular
structure" in the premise of the lemma and of the tkesorem
with "unifofmity", and modifying the proof of the lemma
accordingly, one obtains Weil's classical result (and its
proof) that spaces which admit uniformities are completely
regular. The converse of that result is also true. But

whether or not completely regular spaces always admit smooth

regular structures - or for that matter, smooth uniformi-
ties - still remains to be decided. OQOur conjecture is that
" they do.




CHAPTER IV

FIXPOINT THEOREM FOR CONTRACTIONS
OF A WELL-CHAINED SPACE

If a map A:X -» X: x => Ax in a complete metric
space (X,d) is such that, for some c <1, d(Ax,Ay)< cd(x,y)
holds for all x,yeX, then the eqﬁation Ax=x has in X a
unique solution. The usefulness of this "principle of
contraction mappings" in analysis has been well illustra-

ted by Kolmogorov and Fomin in [5, pp.43--51].

Presented with an elegant little theorem of great
applicability such as this, one is moved to wonder, How
far can it be pushed? Can the concept of "contraction"
be made meaningful in more general spaces and, if so, does
the quoted fixpoint theorem have a significant generaliza-
tion? For regular developable spaces an affirmative answer
has been provided by Dr. J. Mathews [7]. This final chap-
ter offers a fixpoint theorem for well-chained spaces with
transitive structure. The definitions proposed in the first
section and the lemmata leading to Theorem 4.2,2 are formu-
lated in as general a manner as seemed compatible with nat-

uralness. It may be that they are of interest independently

. of the particular fixpoint theorem presented here.

51
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4,1. Definitions. A space (X,V.I) is said to be

well-chained from xe X to yeX if for each ae I there is

a natural number k such that yevg(x). A well-chained
space 1is one which is well-chained between each pair of its
points., This is simply a generalization of the correspond-

ing concept for metric spaces.

For a metric space (X,d), the structure defined by

d is the femily of relations of the form Va= [(x,¥) € XxX;
d(x,y)<al, for a>0 real. Such a structure is of course

uniform.

Now a map A:X - X: X -> Ax is called an r/s-map

I
numbers, if for every ace I,

relative to.Aa structure V. for X, r and s being natural

S -l.r

vScaT g,
or equivalently,

. s r

AVa c VaA ’
which is to say: 1if two points of X are no more than an
a-chain of length s apart, then their images under A will
be no more than an a-chain of length r apart. If r<s,
the space "contracts" more or less uniformly under such a
map. Notice that these properties are not invariant with

respect to equivalence of structures.

An eventual contraction of a space (X,VI) is a map

A:X =5 X some iteratiom of which, say An, is an r/s-map

with r<s, relative to some VI-equivalent structure for X.
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These definitions were suggested by the familiar
notion of a contraction map in a metric space (X,d). A

map A:X - X is an eventual metric contraction of (X,d)

if, for some metric d* equivalent to d, some number m, and

some real c¢<1, d*(Amx,AnS')g_ cd*(x,y), for all x, yeX.
(d and d* are equivalent if there exist constants a# 0 and

b such that ad< d* < bd; equivalent metrics define equiv-

alent structures.)

4,2, Results. First we note that eventual contrac-

tions do indeed generalize the concept of an eventual met-

ric contraction:

Theorem 4.2,1. Every eventual metric contraction is

an eventual contraction of the space whose structure is de-

fined by the given metric,

Proof: Le't A:X - X be an eventual metric contrac-
tion of (X,d) and let d* be the metric required by the
above definition. It is not difficult to see that if n is
chosen large enough (viz., > -log 2m/1og c), then d*(An‘x,A%f)
_<_% d*(x,y), for all x, yeX. Given a<O0, suppose ysvi(x)o
I.e., d*(x,2z)<a and d*(z,y) <a, for some zeX. Then

d*(Anx,Anz) < ; and d*(Anz,Any) < g , Wwhence Anya Vi(Anx) c
2

Va(Anx). Thus AD is a 1/2-map relative to a structure for

X equivalent to that defined by d, and so A is an eventual
contraction of the space.

The converse of Theorem 4,2,1 i: false, as can be
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seen bj this | ,
Example: ILet <Xi’di) be a metric space with d ;< 1,
for i=1,2, and suppose X0 X%, =g. Define (X,d) by taking
‘X=X1UX2 and d=d; on Xi*Xi(i =1,2), d=1 on XI*XQUXZIXI.
Choose xlle, x25X2, and define A:X > X by
i - Xo if xle.
Xy if xexg.
Then A is an r/s-map for every pair r,s (relative to the
structure defined by d), yet for every n and every metric
d* for X we have d*(A™x;,A"x,) =d*(xy,x,) # 0, so that 4

is not an eventual metric contraction.

o

The following lemmas lead to a fixpoint theorem,

Lemma A. With respect to locally transitive struc-
tures, r/s-maps are continuous. If either r=1 or the

structure is transitive, an r/s-map is uniformly continuous.

Proof: Straightforward, using A(Vb(x)) C_:_.Avg(x) c
V%‘(AX)'§ vV, (Ax), for b properly chosen.

Lemma B. An r/s-map (relative to some structure) is
also an mr/ms-map relative to the same structure, for every
m=1,2, «o. o Likewise, for s'< s and r'>r, r/s-maps are
also r'/s'-maps.

Proof: If VS c A~ vTa, then v2® ca~vianrvTa. ..o~ Wi

2 = a a = a a a
(n times) =A—1'V2rA, since AA™Y = A\. Thus r/s-maps are

mr/ms-maps. The second assertion is also immediate.

Remark: The "cancellation law" converse of Iemma B
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is not valid in general,

th

Lemma C. The n’" iteration of an r/s-map is an

rn/sn—map (re the same structure).

- Proof: By induction on n. Let A:X > X be an
r/s-map relative to Vi. Basis: For n=1 the assertion

holds by hypothesis. Induction Step: Suppose that A% is

n+l

an rn/sn—map. Then A" is also an sr%/s -map, by Lemma

B, and A is also an rn+1/rns-map:

n+1l n+l An+l

n
v C ATEYST R g.A‘n‘lv-;’

1

S5
a 9

n+l/sn+l

, n .
for each a¢ I, whence A" '~ is an r -map.,

Lemma D. If r<s and A is an r/s-map relative to a
[locally] transitive structure V., then there exists a
structure equivalent to [defining the same topology as] VI

relative to which some iteration of A is a 1/2-map.

Proof: Chodse n so that sn_>_.2rn and define UI by
putting Ua=V§11 s for each aeI. It is easily seen that UI
and VI are equivalent if the latter is transitive (and that
they define the same topology if the latter is locally
transitive). But for each aeg I, Ui gvgngA"nvgnAn=A-nUaAn,
by Temma C, whence A" is a 1/2-map relative to Ur-

Lemma E. Let A be an r/s-map of X relative to Vi
Suppose that, for some x e X, the space is well-chained from
x to Ax. If r<s, then for each aeg I there is an n such

m n
that, for all m=1,2, eeey A xaVa(x).
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Proof: By induction on m. Let k be such that
Axsvg(x) and put n=ks. Basis: m=1: Axsvg(x) gvj(x).
Induction step: Suppose AmXE:V;(X). Then by Lemma B,

Ay e S caa™EE a(x) = vER(ax),
and by definition of k and the fact that r<s,

Tk -~ Tk kK sk

vEE(ax) e vIE(x) ¢ vEE().
Thus A™*x e vI(x). |

Lemma F. In a well-chained space, the successive

images of a given point under iterations of a 1/2-map form

a Cauchy sequence.

Proof: Let (X,VI) be well-chained and suppose that

A is a 1/2-map relative to V We wish to show that, for

I°
every ae¢ I, there is an n such that if m> n then A% e Va(Anx),
xeX being given, Let N be, by Lemma E, large enough so
that all images of x under iterations of A belong to Vg(x),
and choose nzvlogZNo Then, if m> n, we have ‘

AT By ¢ Vg(x) c vin(x) c AW AN (%),
by Lemma C (since 1%=1). That is, AmxeA..nA-nVaAn(x) =
Va(Anx), as desired.

Theorem 4.2.2. Every eventual contraction of a se-

gquentially complete well-chained T,-space with transitive

structure has a unique fixpoint.

Proof: If A is an eventual contraction of (X,VI),
then some iteration of A is an r/s-map, with r<s, relative

to a structure equivalent to VI. Since VI and all equivalent




structures are transitive, Lemma D tells us that a further
iteration of A, say Al = B, is a 1/2-map relativ'e to a VI-
equivalent structure, say UJ. Since the spac‘e is well-
chained, Lemma F gives us a Cauchy sequence x, Bx, B2x, cee
(xegX). But by completeness, this sequence converges to some
point pe X. Then, B being continuous (Lemma A), we have
Bp=B plim, B = ni3% B
It is B's only fixpoint. For suppose that Bgq=q. Since

m+lx=p, so p is a fixpoint for B.

the space is well-chained, for each ae J there is a k large

ky gk (using Lemma C and re-

enough so that (p,q) € Uikc_: B~ U,B
membering that B is a 1/2-map re UJ). But then (p,q) =
(ka,qu) e U, Thus, for every aeJ, ana(p) and, in a
like manner, psUa(q). Since the space is T, this implies
qd=p. Now we can show that p is a fixpoint for A: Since

Il"’:Lp=ABp=Ap and since B has but one fixpoint, Ap = p.

BAp=A
Finally, p is the only fixpoint for A because it is the only
one for B=AP,

Comment: The example followirig Theorem 4.2.1 shows
that the assumption that the space be well-chained is essén—
tial in Theorem 4.2.2. It is crucial not only in the proof
of existence of a fixpoint but also in the proof of unique-
ness (as can be seen by interchanging X and X5 in the def-
inition of A in the example). So Theorem 4.2.2 is not quite
a true generalization of the fixpoint theorem for metric
contractions quoted in the opening paragraph of this chapter.

Finally, note that A:X —» X need not be assumed continuous,

as was done in [6, p.50],
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