
-
ALGORITHM DESIGN OF A COMPUTER AIDED

INSTRUCTION PACKAGE FACILITATING

THE INSTRUCTOR-STUDENT

RELATIONSHIP

By

LEE MERLE COLAW

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1975

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1985

ALGORITHM DESIGN OF A COMPUTER AIDED

INSTRUCTION PACKAGE FACILITATING

THE INSTRUCTOR-STUDENT

RELATIONSHIP

Thesis Approved:

Thesis Adviser

A]. l. ~

ii

ACKNOWLEDGEMENTS

I wish to express my appreciation and gratitude to the

U.S. Army, who deemed me worthy of the privilege to attend

graduate school through the Army's Fully-Funded Graduate

School Program.

I thank my advisors Dr. Kelvin L. Davis, Dr. G.E.

Hedrick, and Dr. Michael E. Kerr for their guidance,

support, and friendship throughout my graduate endeavor.

I am indebted to the many faculty members which have

provided assistance to my studies and made my graduate

education a success. I thank Dr. Sharilyn A. Thoreson, Dr.

Donald w. Grace, Dr. Donald D. Fisher, and Mr. Arlen N. Long

for their help and constructive comments throughout my

graduate program.

Finally, a special thanks to my wife and two sons,

Cheryl, Christopher and Benjamin.

iii

Chapter

I.

TABLE OF CONTENTS

INTRODUCTION

Background Information ••
Nature of the Problem .
Need for the Study ••.
Objectives of the Study •
Assumptions for the Study

Page

1

1
4
5
5
6

II. REVIEW OF LITERATURE 7

Historical Perspective. . • . . . • . • • • 7
Need for Computer Aided Instruction • • . • 8
Disadvantages • • • • • • • • • • . • • • • 10
Modes of Computer Aided Instruction . • • • 10
Computer Aided Instruction Production . 12
Instructor Authoring. • • • • . • • • • • • 14
Programming Structure • • • • • . • • • . • 15

III. COMPUTER AIDED INSTRUCTION ALGORITHM PACKAGE . . 18

Introduction .•••..••••
Explanation of Terminology •••
Orientation of Design Concept •
Algorithm Tools •••.•
Summary

IV. ASSIGNMENT PRESENTATION SYSTEM

18
18
21
27
37

38

Introduction. • . • • • • 38
General Design Concept. • 38
Algorithm Development • • . . • • • • • • • 39
Part 1 of the Assignment Presentation

Algorithm. • . • . • • • • • • • 42
Part 2 of the Assignment Presentation

Algorithm. • • • • • • • . • • • . 49
Part 3 of the Assignment Presentation

Algorithm. • • . • • • • • • • 6 5
Part 4 of the Assignment Presentation

Algorithm. • • • • . • . • . 79
Summary 9 0

iv

Chapter

V. RESPONSE EVALUATION ALGORITHM ••

VI.

Introduction •.••••
General Design Concept.
Algorithm Development •
Summary . • • • • • • •

SUMMARY AND FUTURE WORK. .

Summary • •
Future Work

SELECTED BIBLIOGRAPHY
APPENDIX.

v

Page

91

91
91
93

101

102

102
103

105

115

LIST OF TABLES

Table Page

I. Symbol Legend of Computer Aided Instruction
Algorithm Package • . . • . . 46

vi

LIST OF FIGURES

Figure

1.

2.

3.

4.

Illustration of a Display Screen .•

Illustration of Subjects and Topics: •

Conceptual Design Structures of this Computer
Aided Instruction Algorithm •.•.

Representation of an m X n Matrix .••.

5. Representation of a Subject Co~sisting of

6.

Five Topics. . ••.•••

Topic Presentation Consisting of Three
Display Screens •.••••••.••

7. Display Screen With 3 Possible Answers in Which

Page

19

20

22

23

24

25

to Branch to Next Topic Display Screen • 26

8. Flowchart Symbols.

9. Terminal Symbol ••

Connector Symbol • 10.

11. Input/Output Symbol .••

12. Comment Symbol .

Process Symbol
Flowline Symbol. .
Decision Symbol. . .
Predefined Process Symbol.

.

.

.
Example of Assignment Symbol

.

.

.

.

.

13.

14.

15.

16.

17.

18. Example of Comparison Operator

vii

. . . .

.

.

.

.

. . .
. .
. .

. . .
. .
. .

.

.

.

.

.

.

28

29

30

31

31

32

33

34

34

35

36

Figure

19.

20.

Example of Concatenate Operator .•.

Example of Unconcatenate Operator ••

21. Minimum Essential Functions Necessary Inorder
to Produce an Assignment Presentation

Page

36

37

Algorithm. . . • • • • • • • . . • • . • . . 4 0

22. A Way in Which to Visualize Physical Storage
of Information Utilized by the Assignment
Presentation Algorithm • • • • . • • • • . • 41

23. Part 1 of Assignment Presentation Algorithm. • 42

24. Locate/Edit Algorithm Subprogram ••

25. Sublist Lpcate Subprogram Algorithm.

26. Locate Subprogram Algorithm •••••

27. Memory Aid Visualizing List Flow of
Assignment Pre~entation Algorithm. •

28. Header and Topic Node Formats ••

29. Create/Add Subprogram Algorithm.

30.

31.

32.

33.

Delete Subprogram Algorithm ••.

Conceptual View of Response Evaluation
Algorithm.

Response Evaluation Algorithm ••

Algorithm Control Flow Template.

viii

50

58

62

65

67

"69

81

92

94

116

CHAPTER I

INTRODUCTION

Background Information

Since the beginning of time, mankind has continuously

sought to improve his personal knowledge of the surrounding

world. But only during .the recent years has there been a

vast amount of educational tools in which to better facili­

tate the learning process. Even with all of the modern tech­

nology available there are still a vast number of problems

facing the instructors of today.

As an example, look at a computer science class which

may be concerned with learning several introductory program­

ming languages. The study of different computer languages

poses a unique instructor-student situation. On one hand,

the instructor may have students who are studying their

first computer programming language. These students are

probably both anxious and apprehensive concerning the course

and it's contents. On the other hand, some of the students

within the computer programming class may be knowledgeable

of the programming language being studied and the thought

processes required to formulate a problem into a working

1

2

program. This situation is further compounded by students

who like the course of study and consider it beneficial for

their future well being, compared to those who have no

desire or personal motivation for the subject and are under­

taking the course only to meet some stated requirement.

Class sizes ~re usually large which means that individual

attention is minimal. Furthermore, class discussions are

usually perceived by the less able students as no more than

dialogues with the more advanced and exceptional students.

Instructors are further plagued by demands upon their time

to publish, keep abreast of current and emerging industry

trends, and class preparation time. This scenario is

specifically related to an environment within the computer

science arena, however it's similarities with other courses

should be evident.

Current modes of instructional presentation begins with

the textbook. Most course textbooks are targeted for par­

ticular audiences based upon the student's assumed previous

background. In addition, most textbooks are not 100% compa­

tible with the current trends or local facilities. Intro­

ductory level textbooks are usually boring or difficult,

even to the most dedicated of students. The use of various

types of audiovisual aids is usually limited to pictures in

the textbook, the chalk-board, and/or the overhead projec­

tor. Other teaching devices exist in the form of video

cassettes, films and educational television. Each of these

3

forms of media are either difficult to produce and modify,

or they incur significant expense. But, perhaps one of the

best and most flexible tools to come to the aid of a in­

structor is the computer.

The computer provides the instructor with the means to

disseminate knowledge at an accelerated rate to those who

need or desire the information thus freeing classroom time

to concentrate on specific applications and emerging techni­

cal theory. Information accessed through a computer termi7

nal by a student can be presented by a computer aided in­

struction (CAI) module or by a computer managed instruction

(CMI) module. A CAI module consists of lesson objectives

presented to the student through a terminal, with a text

orientation usually followed by an on-line test based on the

previous instructional information. Whereas CMI consists of

various instructional blocks which may or may not contain

exercises which supports an instructor's already established

objectives, tests, and other forms of presentation materials

external to the displays of the computer terminal (Dimas

1978; Spitler and Corgan 1979). CMI is considered to be a

prerequisite of CAI learning. Either way, through the use

of CAI or CMI, the computer is seen as a new means of com­

munication for instructors to deliver course assignments and

to evaluate student's responses concerning those assign­

ments. In this type of environment, a student would proceed

through assignments in an interactive mode which would re-

4

quire the computer to evaluate the responses.

Nature of the Problem

This study is concerned with the development of an al­

gorithm package designed to facilitate computer aided in­

stFuction assignment presentation and interactive response

evaluation. Presently, there are only a few commercially

produced computer aided instruction packages obtainable by

educators. The cost of such products is usually high and

the quality of its content and ease of use is dependent upon

its user. In response to this situation and the continuing

trend of computer proliferation, instructors ·from all dis­

ciplines have been taking computer programming classes.

After completion of these classes, several instructors have

created computer aided instruction courses specially orient­

ed toward their area of specialization. Concerning both the

commercial product and the instructor originated computer

aided instruction packages, there is a tremendous amount of

redundancy in reinventing the underlying structure for each

new block of instruction produced. It is this redundancy

which is the basis for this study. The published research

on this issue is virtually nonexistent from the commercial

vendors and the information from instructor originated com­

puter aided instruction is usually undisciplined and ineffi­

ciently organized.

5

Need for the Study

Because of the lack of published algorithm packages

concerning computer aided instruction modules, it becomes

imperative that computer scientists should publish algorithm

packages in this area as tools for the academic community to

build on. This algorithm package should serve as a computa­

tional recipe to those instructors that want to program

their own computer aided instruction modules. This algo­

rithm package should also prove useful for the development

of training packages for personnel in both the industrial

and military environments.

Objectives of the Study

Objectives are to perform an exploratory study concern­

ing the following:

To design an algorithmic computer aided instruction

package which will:

a) serve as a mechanism for the creation of an

assignment presentation system by a course instructor

b) serve as a mechanism for the creation of a

response evaluator for interactive responses entered by a

student

Assumptions for the Study

The assumptions made for this study are as follows:

a) Currently, there are very few commercial products

available which perform a function similar to the designed

algorithm package.

6

b) Most computer aided instruction modules are created

by instructors who have learned a programming language

secondary to their primary profession, and generally these

computer products are oriented toward a specific topic •

. c) There are very few clear and understandable pub­

lished algorithms concerning computer aided instruction

packages which serve as templates for programmers and educa­

tors to follow. Thereby creating an environment where the

"wheel is constantly being reinvented".

d) Instructors are thoroughly knowledgeable with their

particular area of specialization to establish a presenta­

tion system consisting of text, questions and answers.

CHAPTER II

REVIEW OF LITERATURE

Historical Perspective

Over the last couple of decades, computers in education

and industry have experienced an unprecedented growth. The

number of computer applications seems boundless, and its

usefulness is of an infinite magnitude.

Since its conception, computer aided instruction has

experienced an exceptional growth throughout the 1960-70's,

thus stimulating the growth of a new (Watson, 1972) educa­

tion discipline known as the area of education technology.

Within this new discipline there were two evolving conceptu­

alizations; first, the education process could be improved

through the more efficient use of mechanical tools and in­

strumentation (i.e., TV, motion pictures, etc.). The second

conceptual line of thought was that to improve the learning

process, the theoretical framework of communication theory

must be associated with the long time desired goal of indi­

vidualized instruction and structured into a format of

specific objectives accomplished by learning machines.

Another influential factor promoting computer aided instruc-

7

8

tion was the rapid growth of the data processing industry.

There was hardly any facet of the surrounding world (Robin­

son, 1970) which has not been affected by this industry.

Pioneering efforts into the possibilities of instructional

computing (Atkinson and Wilson, 1968) was conducted at the

University of Illinois on the PLATO I educational system.

With the development of time-sharing computer systems, the

research of the PLATO I system was enhanced by allowing in­

structional presentations to be available to many users at

once. The federal government established its dedication to

instructional computing through the passage of the Elementa­

ry and Secondary Education Act of 1965 which provided mone­

tary resources for further computer.aided instruction

research.

Commercial vendors (Watson, 1972) such as IBM, RCA, and

Philco-Ford, contributed immensely to this new instructional

presentation concept. Several grants initiated exploration

into this arena at Stanford University, Florida State

University, and Dartmouth (Chambers and Sprecher, 1968).

Need For Computer Aided Instruction

A belief as to why computer aided instruction is such

an interesting topic in modern society goes back in time to

one of the basic goals of the education process, that is the

achievement of providing individualized instruction.

Through the use of computer aided instruction this goal is

9

being obtained, however there is sufficient room for im-

provement. Course presentations have been created to sup­

port class lectures and assignments, and also to stand alone

as a totally separate block of instruction.

A supporting factor which contributes to the need of

computer aided instruction is the growth of information

availability. The computer can purge great amounts of in­

formation in a relatively short period of time thus provid­

ing easy access to desired information. The computer also

allows itself to be utilized as a tool (Willis, Johnson and

Dixon, 1983; Taylor, 1980). It performs many manual tasks

more efficiently and expeditiously than the old counterparts

could perform the function, for example a computer can per­

form many mathematical calculations in a reasonably short

period of time as compared to slide rule or pencil and paper

techniques. This efficiency and ease of use produced by

this tool allows an instructor to provide more in depth in­

formation concerning a topic, than how to do the mechanics

of the topic.

Another requirement which makes computer aided instruc­

tion desirable is the shortage of qualified teachers (Hick­

ey, 1968). Computer aided instruction allows instructional

presentations to fill in the gaps created by inundated

faculty and the ability to simulate conditions difficult or

impossible to reproduce in the education environment.

10

Disadvantages

Major disadvantage of computer aided instruction

presentations are the lack of structure and the ability to

create a robust block of instruction. This particular si­

tuation has done more to mar the image of computer aided in­

struction than any other possibility. A particular failure

of the authors designing computer aided instruction is not

targeting the audience, therefore leading to the creation of

oversimplified block of instructions, which produce immedi­

ate boredom and apathy toward this type of product. Another

adverse condition is the high initial cost of implementing

computer aided instruction. Specific machinery may be re­

quired and may only run particular language implementations.

Additionally, the actual production of computer aided in­

struction screen presentations is extremely expensive. An

estimate of "over 100" hours of author time to prepare ma­

terials for one hour of student time (Rushby, 1979) indi­

cates a major hurdle of existing computer aided instruction

presentations.

Modes of Computer Aided Instruction

There are many modes of computer aided instruction in

existence, however they can be segregated into five modes of

presentations. The first four modes are universally accept-

11

ed, however, the final mode of existence, as a form of in­

struction is subject to much criticism.

Drill and practice is the most common form of computer

aided instruction. A student sits in front of a terminal

and practices repetitive tasks. This concept is used pri­

marily as a means to emphasis previously discussed material

(Ellis, 1974~ Bitter, 1984).

Tutorial mode of presentation allows a computer through

the use of a terminal to interact with a student in the form

of presentation screens. This technique is widely used and

is an area of much needed improvement. Strides to modify

presentations have produced tutorial subtypes (Computer­

Assisted Instruction Guide, 1968~ Bitter, 1984). The old

original tutorial is referred to as a linear tutorial. Us­

ing that style, every student must go through the same set

of presentation screens in the same order. The technique

does not utilize the capabilities of the computer and has

been the subject of much controversy concerning the educa­

tional benefit verses the cost. The next subtype is the in­

trinsic branching tutorial (Computer-Assisted Instruction

Guide, 1968). It allows a more individualized block of in­

struction by branching to the next presentation screen based

off the previous student response. Finally, the adaptive

tutorial response is the most advanced technique in that it

determines where to branch for the next presentation screen

based off a series of previous answers (Computer-Assisted

12

Instruction Guid~, 1968).

Simulation presentations are the most realistic tech­

niques used to present computer aided instruction. This

mode allows the illustration of situations which would be

difficult, expensive, or dangerous to replicate in the real

world (Bitter, 1984; Willis, Johnson, Dixon, 1983).

Problem solving computer aided instruction is the util­

ization of the computer to perform some type of manual func­

tion automatically. An everyday example of this process is

the performance of a mathematical equation. The computer is

simply used as a tool to facilitate the learning endeavor

(Taylor, 1980; Bitter, 1984).

The previously mentioned controversial mode of computer

aided instruction is the game(s) concept. Some educators

associate games as an extension of the aforementioned simu­

lation ~ode, while others do no~ recognize its existence in

education.

Computer Aided Instruction Production

Currently, there are three ways of producing computer

aided instruction systems. That is to utilize an existing

authoring system, to utilize a special authoring language

and/or a general computer programming language (Burke,

1982).

The computer aided instruction authoring system is the

most advanced technique for producing automated instruction,

13

however this technique is still in its infancy. The au­

thoring system can be visualized as a package of. software

programs, written in any language. By implying it is at the

infancy stage, only means this technique is still regimented

to doing only particular actions in a certain presentation

mode. This system is very was~eful of computer storage

space, difficult to modify and may not maintain all the data

desired. However, it allows an instructor to produce a com­

puter aided instruction product without being knowledgeable

of computer science principles.

The computer aided instruction authoring language op­

tion allows an instructor mqre flexibility than the author­

ing system. However, it requires a larger amount of time to

become proficient in utilizing this technique. This method

of instruction is similar to using a regular computer pro­

gramming language except that it possesses special tech­

niques which allows certain aspects of computer aided in­

struction production to be more efficient (Burke, 1982;

Tagg, 1981).

The final approach to developing computer aided in­

struction is through the use of a regular computer program­

ming language. This method allows the maximum flexibility

to the instructor, but requires the greatest amount of time

to produce. The technique requires an extensive amount of

computer literacy covering facets of the computer language,

data structures and storage techniques. It is this approach

14

to computer aided instruction development that this study

is concerned.

Instructor Authoring

An important issue in the development of computer aided

instruction is the determination of what objectives are to

be accomplished by its development. Several situations (Di­

mas, 1978) which must be determined in advance of program-

ming are, should the computer aided instruction be self suf­

ficient, or should it provide subject reinforcement (Spitler
.

and Corgan, 1979), should the computer aided instruction

provide course enrichment and/or some type of ~emedial

learning. Once the goal has been established, then it must

be implemented into a structure which facilitates the learn­

ing process. Spitler and Corgan (1979) consider eight areas

essential in authoring good computer aided instruction pro­

grams. First, an index is required to perform the function

of a table of contents. This index should provide informa-

tion as to how long a subject will take to complete and pro­

vide the student access to a particular block of instruction

if desired by the student. Second, a fine index should

break down a subject into topics and provide access to them

directly. This allows a student limited in time to pick an

area to study. Third, the concept of a pretest at the be­

ginning of each subject in order to determine the students

competency in the subject matter. Fourth, the presentation

15

of lesson objectives so the student can have a conceivable

idea of what is to be learned. Fifth, is the actual lesson.

Sixth, an assisted quiz which utilizes the facilities of

the computer reinforcing material previously covered.

Should a student answer with a wrong answer, then the diag­

nostic ability of the computer analyzes the response and

provide feedback in helping the student to understand the

·principle being evaluated. Should the student continue to

inaccurately respond, then hints and the correct answer with

an explanation should be given. Seventh, a lesson summary

should be provided to insure the student achieved what was

expected. Finally, the eighth essential element is the

presentation of a final exam covering the aforementioned

subject matter.

Programming Structure

Various computer aided instruction articles along with

the authors Spitler and Corgan (1979) have summarized

several points which make or break the design of computer

aided instruction programs. They are:

Instructions must be present throughout the entire

course informing students what they can and can not do.

Course feedback, one of the leading weaknesses in com­

puter aided instruction presentations. If the answer is

wrong, why is it wrong, and what is the correct answer. If

the answer is correct, why is it correct.

16

Branching, an essential element of modern day comput­

er aided instruction. It is the essential element which in­

dividualizes a course of instruction based upon the demon­

strated knowledge of the student.

Availability to mail messages to the instructor inform­

ing of text and program errors. This also allows feedback

to the instructor concerning students appraisal of the

course.

Ability of student participation within the computer

aided instruction program. Provide mechanisms which allow

the student to control the flow of the instruction by paging

forward, backwards, or going to specific locations.

Provide a large question and/or answer bank. Several

questions may have a single answer and vice-a-versa. This

allows information to be randomly generated, thus reducing

redundancy in the eyes of the student.

The computer aided instruction program should be easy

to operate by the targeted audience. Requirements specify­

ing prior knowledge of computer operations should not be re­

quired.

Students should be monitored as a means of determining

the strengths and weaknesses of the computer aided instruc­

tion program and to provide results of their performance.

Programming logic of the computer aided instruction

presentation must be reliable and resilience (Rushby, 1979).

Computer terminals and programs must be capable of tolerat-

ing mishandling without faltering, and if they do they

must be repairable quickly.

17

CHAPTER III

COMPUTER AIDED INSTRUCTION ALGORITHM PACKAGE

Introduction

The study was concerned with the design of a computer

aided instruction algorithm package which was intended to

serve as a fundamental building block in the development of

interactive course presentation systems. This algorithm

package is comprised of two unique algorithm modules. One

module will facilitate the creation of a course presentation

system, and the other an interactive response evaluation

system.

Explanation of Terminology

Throughout this study, terminology will be used which

may be unfamiliar or confusing in its applied definition.

Therefore, to eliminate any discrepancies associated with

specific terms utilized, definitions are provided to accu­

rately portray the meanings of these terms.

The term "screen" or display screen (synonymous with

"frame" in some literature) represents a snapshot picture in

time of an area of space equivalent to the size of a

18

19

computer terminal's display screen. The size of a screen

can vary greatly depending upon the computer terminals

manufacturer and its intended purpose. Some terminal

screens are 60 characters wide by 23 lines in length com­

pared to others which are 132 characters wide by 25 lines

deep. Regardless of the size, a screen can contain any

wording, shape, coloring or image. Figure 1 graphically il­

lustrates the concept of a display screen.

DISPLAY
SCREEN

Figure 1. Illustration of a Display Screen

A "subject" is defined as a major block of instruction

as defined by the instructor. Several subjects may make up

a particular course. In addition, a subject may consist of

20

several subcomponents referred to as "topics".

"Topics"-are described as the lowest unit of instruc­

tion on which knowledge can be portrayed in this algorithm

package. Figure 2 represents an example of subjects and to­

pics.

COURSE: How to Construct a Building

SUBJECT 1: Site Preparation
TOPIC 1: Clear land of brush and trees
TOPIC 2: Escavation required

SUBJECT. 2: Construct Building
TOPIC 1: Foundation construction
TOPIC 2: Wall construction

etc.

Figure 2. Illustration of Subjects and Topics

It should be noted the definitions given for subjects and

topics are somewhat abstract in their meanings to allow the

maximum flexibility in adapting to an instructor's course

development desires. However, for this study, these terms

should be considered as guides to provide a means of laying

21

out instructions in a regulated and formated fashion.

Orientation of Design Concept

Before an implementor can develop this algorithm there

must be an understanding of how an instructor will organize

a course of instruction. Initially an instructor must

create the presentation system consisting of text screens

with questions and possible text answers for each subject

and topic to be taught. Once these have been established, a

determination must be made of what instructional display

screen will be next. Details concerning how to format and

construct display screens, both artistically and education­

ally are beyond the scope of this study since these are

areas worthy of their own research.

Now, assume an instructor has developed his course ade­

quately and is ready to utilize the assignment presentation

algorithm to create the interactive course. Before discuss­

ing what the instructor must do next, visualize the underly­

ing structure of this algorithm package and look at the ma­

jor conceptual structures which serve as its foundation.

The first structure can be thought of as a matrix configura­

tion consisting of a grid system composed of the previously

defined subjects and topics. The other structure is

represented as an on-going list of possible answer responses

maintained in some type of empirical order (Figure 3).

,_
"' -..,j ,_
u
w ., ...
:::1

"'

3

l

TOPIC LIST

3

CURRENT
SURJECT
NUMBER
FlELD

~---·

-l

I
I

L- - - -1

-1-

CURRENT
TOPIC
NUMBER
FIEL

NEXT
SUBJECT
NUMBER
FIELD

ANSWER
NUI~SER

FIELD

22

ANSWER
!NFOHMATION
FIELD

ANSWER FILE

NEXT
TOPIC
NU~IflER
FIELD

Figure 3. Conceptual Design Structures of this Computer
Aided Instruction Algorithm

Notice one of the underlying structures is displayed as

being representative of a matrix configuration of size m X

23

n. m, n are symbolic representations concerning the size

of the matrix.

2... 3 • • • rY)

- l. _I- I_ ..L _I_
.l I I I I I

- +- -r -1- -r-
3 I I 1· I
: - r r T ~ -[-
. _l_ L t- ..1. -I-

n I I 1

- 1- 1-1-r- ~

Figure 4. Representation of an m X n matrix

For this design topology, each row represents the presenta­

tions required to cover a particular subject of a course.

Whereas each column represents different topics of the con­

cerned subject. A different way to think of subjects and

topics is to assume a subject consists of five components

(i.e. A, B, C, D, E). These five components can then be

thought of as being synonymous with the five topics. Look

at Figure 5 as a representation of a subject area consisting

of five topics. Do not be concerned with the arrows

annotated between the topics at this time.

2

Figure 5. Representation of a Subject Consisting of
Five Topics

24

Next, realize that each grid position of the matrix

(for an example, the position represented by the intersec­

tion of row 1 and column 1 in Figure 3) can represent a par­

ticular set of display screens of a subject for covering a

topic. In short, this indicates that a topic cannot be ful­

ly discussed on one display screen and that additional

display screens must be utilized. Each display screen of

information is represented in this algorithm by a box

25

symbol. Refer to Figu~e 6_which illustrates one grid posi-

tion on the subject/topic matrix consisting of more than the

one topic display screen of information.

Figure 6.·

I

I

Topic Presentation Consisting of Three
Display Screens

Notice within the last screen of each topic position of

the grid matrix there is at least one smaller box. This no­

tation is to exhibit the number of possible paths that exist

from this topic to the next topic to be instructed. The ar­

rows indicate the possible logical flows of control from one

display screen to the next display screen. These paths can

26

be associated with a question being asked on the most re­

cent topic screen, and the mapping to an answer on the ·

aforementioned answer structure. Which in turn specifies

the next topic of instruct~on (Figure 7). Another associa­

tion given to these paths is when the most recent screen no­

tation only contains one small box, thi~ represents the·

instructor's desire to branch directly to another topic

screen without having to access the answer list structure.

Refer back to Figure 3.

I

I
r

-1

~

I

Figure 7. Display Screen With 3 Possible Answers in Which
to Branch to Next Topic Display Screen

27

Algorithm Tools

In order to develop this algorithm, several tools are

required to allow the clear and concise presentation of this

algorithm's flow. The chosen method to represent this

study's algorithm is through the use of flowcharting symbols

which conform to the International Organization for Stan­

dardization Recommendation Rl028 Flowchart Symbols for In­

formation Processing. The choice to illustrate this algo­

rithm by using flowchart symbols is based upon this author's

belief that they are easily understood by most persons capa­

ble of relating to logical structured thought patterns. The

flowchart representations utilized will consist of a set of

symbols which will indicate particular operations to be per­

formed (Figure 8).

28

(___) TERMINAL

0 CONNECTOR

INPUT/OUTPUT

---c COMMENT

PROCESS

FLOWLINE

DECISION

PREDEFINED PROCESS

Figure 8. Flowchart Symbols

29

a. The terminal symbol is used to indicate a beginning

or end point in an algorithm, or a return from a subprogram.

Figure 9. Terminal Symbol

b. The connector symbol is used to signify when the

logical completion point has been reached, and for an exit

from one page to an entry point on another page. Connector

symbols are connected to the line of flow symbols. Labels

placed within connectors serve as a means of identifying al­

gorithm control flow.

\

I
I

Figure 10. Connector Symbol

c. The input/output symbol indicates some type of

input/output operation which allows information to become

available to the algorithm or information produced by some

action of the algorithm.

30

GET PUT
X 'MESSAGE'

Figure 11. Input/Output Symbol

d. The comment symbol allows additional descriptive

information for clarification purposes. It is attached

through the use of a dotted line to any symbol or flowline

as required.

THIS IS
A COMMENT

Figure 12. Comment Symbol

31

32

e. The process symbol reflects any operation performed

which changes values, locations, or assignments of informa­

tion. It can contain any number of these manipulations.

C ~A+ B

Figure 13. Process Symbol

f. The flowline symbols reflect the sequence of opera­

tions from beginning to end. Normal procedural flow is from

left to right and top to bottom. For clarification, arrow

heads may be used to reduce any possible confusion.

33

Figure 14. Flowline Symbol

g. The decision symbol demonstrates the changing of

flow of control or switching operations to other alternative

choices which proceed with the operation.

I ZERO
\V

~POSITIVE

Figure 15. Decision Symbol

34

/ NEGATIVE
\V

h. The predefined process identifies one or ~ore sub­

programs specified on another flowchart.

Figure 16. Predefined Process Symbol

35

Besides the above flowcharting symbols which are fairly

standardized, there are several unique forms of notation

which must be understood for this study.

The "assignment operator" signified by a (<-), illus­

trates the movement of data from one position or form to

another position or form.

Example

X ~ y

Take the value designated'as Y and place
that value in the place of X, overwriting
whatever was previously in X.

Figure·l7. Example of Assignment Symbol

Take the value designated as Y and place that value in the

place of X, overwriting whatever was previously in X.

The "comparison operator" is signified by a colon (:)

which represents a binary operation and usually involves the

comparison of two quantities. This operator is generally

found within decision blocks in order to alter algorithm

flow of control.

Example

X : 0 Compare X to zero.

Figure 18. Example of Comparison Operator

36

The "concatenation operator" is represented by a· (&)

sign. This operator will join two entities together forming

a single entity. Applications of this operator usually ap­

plies to string values.

Example

AB ~ A & B

Figure 19. Example of Concatenation Operator

The "unconcatenate operator" is illustrated by a verti­

cal bar (!)which causes a single string entity to be

37

separated into two or more entities.

Example

A, B ~ A I B

Figure 20. Example of Unconcatenate Operator

Summary

This chapter highlighted the terminology and logical

representations which take place in the remainder of this

study. A critical point pertinent to this algorithm's study

is the conceptual understanding of the basic underlying

structures. The grid matrix referenced by subject and topic

is a precise way to portray a display screen's .exact loca­

tion in a course and it's relationship with its contem­

poraries. The answer list structure allows an infinite

number of possible answers to a topic's question(s) and al­

lows an infinite number of mappings from an answer to anoth­

er topic presentation.

CHAPTER IV

ASSIGNMENT PRESENTATION ALGORITHM

Introduction

The purpose of this chapter is to describe the algo­

rithm design of a computer aided instruction module which

will facilitate the creation of an interactive assignment

presentation instruction system, relate the overall design

concept, and discuss the rational of how the algorithm func­

tions.

General Design Concept

Before being able to produce a computer aided instruc­

tion design module as an assignment presentation system, it

is important to first understand the general scheme of what

the overall architecture of this endeavor looks like. Fig­

ure 3 pictorially represents the concept concerning this

study's algorithmic approach to a computer aided instruction

assignment presentation system. It looks rather complicat­

ed. However, it is simply a collection of display screen

presentations with a mapping to the next display screen

based upon a particular answer or default action. A break-

38

39

down of what Figure 3 is portraying will reveal the under­

lying simplicity of this design concept.

Algorithm Development

Algorithm development is concerned with designing a

computational recipe in which someone experienced-with com­

puter programming could follow to produce some desired

result in a finite number of steps. Another perspective of

an algorithm is to consider it similar to a kitchen recipe

for making cookies. Most cookie recipes call for flour,

sugar, nuts, etc.; however, it is up to the cook using the

recipe to determine how much of each ingredient to use, if

any at all. It is this same idea that serves as the funda­

mental concept of an algorithm.

In producing the assignment presentation algorithm, we

must first consider what actions an instructor would need to

create, maintain, and/or remove display screens of informa­

tion, questions and answers. To begin with a course con­

sisting of no (0) display screens, an instructor would need

the capability to create screens of text with questions and

answers. Once several screens of information and their as­

sociated answers are created, an instructor might want or

need to find a certain screen or answer to modify it. Also,

an instructor may need to totally delete a currently exist­

ing screen or add a new screen of information. These opera­

tions would have to be performed without seriously affecting

40

the overall ·intent of the assignment presentation algo­

rithm. (Refer to Figure 21 for a listing of required func­

tions necessary to produce a computer aided instruction as­

signment presentation system.)

A. Create a screen w/question(s) or answer(s).
B .. Locate a particular screen for some desired action.
c: Edit capability of existing material.
D. Delete ability to remove entire inappropriate screens

or answers.
E. Addition ability to insert entire screens or answers

within an existing file.

Figure 21. Minimum Essential Functions Necessary In order
to Produce Assignment Presentation Algorithm

For the purposes of studying this algorithm you can

visualize the physical storage of this information to be

similar to Figure 22. In reality however, the physical

storage of data manipulated by the implementation of this

assignment presentation algorithm could be of any form

dependent upon a particular computer's organization. This

algorithm is applicable for implementation on real-time mass

storage systems to small microcomputers utilizing tape or

diskette storage devices. The only critical feature which

41

must be considered during implementation is a determina­

tion if sufficient memory exists for the creation of a new -

screen's information prior to it being created or added to

the existing system.

Main routine file,
used to perfonn
actions of this
algorithm

SCREEN

SCREEN

SCREEN

SCREEN

SCREEN

_____ _,

~aintains
screen

organizations

I
I
I
I

I

I
I

'

legend

Q = file

r- --..._

ANSWER

ANSWER

ANSWER

Maintains~ f\.

answer '\} ~
ANSWER

ANSWER
organizations

-~

Figure 22. A Way in Which to Visualize Physical Storage of
Information Utilized by the Assignment
Presentation Algorithm

42

For this study, conceptualize in your mind the screen

and answer file structures shown in Figure 3. Knowledge of

these structures will facilitate the understanding of the

following algorithm.

To begin the assignment presentation algorithm it is

assumed that a course exists and it is desired to perform

several operations upon that course.

Part 1 of the Assignment Presentation Algorithm

Part 1 of the assignment presentation·algorithm (Figure

23) tries to identify exactly what action an instructor

wants to accomplish upon this system.

Pouible tunucUon
•odes:

LOC:Ite
Crnte/Add
Oelete
End COIIDUtec" tided

instruction
algorith•

BEGIN

Figure 23. Part 1 of Assignment Presentation Algorithm

LOCATE/EDIT
5

L.OCATE/EDIT CREATE/ADD

Figure 23. {Continued)

STOP

DELETE

8

DELETE
7

43

Tracing through Part 1 of this algorithm by the block

44

numbers annotated at the top right of each flowchart sym­

bol will clearly portray what actions are occurring.

Block 1: initiates the assignment presentation algorithm.

Block 2: an input/output block which needs information from

the instructor indicating what action is to be performed by

the algorithm, if any.

Block 3: determines if the instructor's previous response

was to exit this algorithm. If yes, then the algorithm is

terminated by proceeding to Block B. Otherwise, proceed to

the next block.

Block 4: determines what action is needed to direct

algorithm's flow of control to perform the instructor's

desired wishes. Notice the instructor's options have been

reduced to three choices, i.e. locate/edit, create/add or

delete.

The reduction of choices available to an instructor in

this algorithm reflects this author's opinion that combining

of the functions, locate and edit, will only improve the

readability of the algorithm. · For an edit function to be

performed, one must first be able to locate the desired

screen or answer. If the desired screen can be located,

then it is left up to the algorithm implementor to create

edit functions dependent upon the application computer sys-

45

tern, operating system and/or the instructor's desire. The

combination of the functions, create and add, is merely a

play on semantics. The process of creating something is ex­

actly the same process as adding something that was previ­

ously nonexistent. For the algorithm these two terms can be

considered as synonyms of each other.

Blocks 5, 6, 7: are algorithm subprogram calls which will

be discussed as Parts 2, 3 and 4 of this algorithm.

Proceeding from this point, the algorithm continues in

a loop back to Block 2 until the instructor terminates the

algorithm.

Block 8: terminates the assignment presentation system al­

gorithm.

Before introducing the components of this algorithm,

refer to the legend at Table I. This table explains all

symbols used in the study.

TABLE I

SYMBOL LEGEND OF COMPUTER AIDED
INSTRUCTION ALGORITHM PACKAGE

A Variable for answer file subject identification.

AF Answer file.

AFN Answer number in answer file.

AIF Answer information field in answer file.

B Variable for answer file topic identification.

BMP Pointer to bottom (end) of subject list.

C Variable for particular answer in answer file.

CAI Computer aided instruction terminal screen

display.

46

CSNF

CTNF

D

Current subject number field in answer file.

Current topic number field in answer file.

Variable for answer file identifying next subject

identification in which to branch.

DP

E

FIRST

GP

Header node down pointer.

Variable for answer file identifying next topic

identification in which to branch.

First node on any list.

Generic pointer--points to next available node on

a one way linear list.

HEAD

HN

I

LIST

LOC

N

NEW

NHN

NN

NSNF

NTN

NTNF

p

PHN

PRN

PTN

SCN

SI

SL

SN

SP

T

TEM

TABLE I (Continued)

Initial point of origin for subject list.

Header node.

Location of next available node.

Generic l~st--any one way linear list.

Current location on subject list.

Header node subject number.

Symbolizes the newly created node.

Next header node on subject list.

N'ext node on 1 i st-.

Next subject number field in answer file.

Next topic node on topic list.

Next topic number field in answer file.

Pointer to data areas within header node.

Previous header node on subject list.

Previous node on list.

Previous topic node of topic list.

Screen list.

Computer aided instruction screen information.

Subject list.

Screen number of topic node.

47

Screen pointer, points to next node in screen list

per a subject and topic identification.

Pointer to data areas within topic node.

Temporary. location marker.

48

TABLE I (Continued)

TL Topic list.

TMP Pointer to top (beginn·ing) of subject 1 i st.

TN Topic number of node.

TOP Topic node.

TP Topic pointer, points to next node in topic list.

UP Header node up pointer.

X Variable for course subject identification.

Y Variable for course topic identification.

Z Variable for course screen identification.

49

Part 2 of the Assignment Presentation Algorithm

The first algorithm of Part 2 to be discussed is the

Locate/Edit Subprogram algorithm. It is the purpose of the

algorithm to search through the various lists by subject,

topic and screen identifications and determine the presence

of the requested display screen. ·It is assumed henceforth

that these lists are referenced by the string of natural

numbers (0, 1, 2, .•• ,).

LOCATE/EDIT
SUBPROGRAM

POSSIBLE LOCATE
MODES:

SCREEN
ANSWER
RETURN

Figure 24.

so

1

14

RETURN

Locate/Edit Algorithm Subprogram

SUSLIST
LOCATE
(X,SL)

LOCATE
(Y, TL)

LOCATE
(Z,SCN)

8

Figure 24.

PUT
'SCREEN

DOES NOT
EXIST'

(Continued)

51

52

Figure 24. (Continued)

AB+-AlB

LOCAT[
(AB,AF)

Figure 24.

PUT
'NO ANSWER
EXISTS•

(Continued}

53

Figure 24.

PARTICULAR ANSWER
22

LOCATE
(C,AF)

(Continued)

54

Block 1: beginning of subprogram algorithm.

Block 2: requests information from the instructor as to

whether to locate/edit some data on the screen or answer

file, or to exit from the .subprogram call.

55

Block 3: is a decision block trying to determine if the au­

thor is finished with this function prior to being returned

to the program's main mode.

Block 4: decision block to determine if the answer file is

to be accessed.

Block 5: requests input concerning the screen's location by

subject, topic and screen identification numbers.

Block 6: is a subprogram call to a routine which determines

if the screen can be located on the doubly linked subject

list.

Block 7: decision block to determine if X was found on the

subject list. If X is not on the list, branch to Block 13.

Block 8: subprogram call to a routine which determines if Y

is on the topic list.

Block 9: determines if Y was found on topic list. If not,

branch to Block 13.

Block 10: subprogram call to a routine which determines

if Z is on the screen list.

Bloc~ 11: was z found on the screen list. If not, branch

to Block 13.

Block 12: Display a terminal screen of information to the

user. Algorithm then branches back to Block 2 in order to

perform another iteration, if so desired.

Block 13: Same as Block 12 above.

56

Block 14: return specifies no more action required of this

algorithm. Algorithm returns to Part 1 previously dis­

cussed.

Block 15: input/output symbol signifying the instructor

must input the subject number and topic number in order to

locate the answer field information within the answer file.

Block 16: indicates the subject number is to be concatenat­

ed with the topic number to form a single natural number.

Block 17: a subprogram call to a linked list routine to

determine if AB is in the answer file.

Block 18: was AB found in the answer list (file). If not,

proceed to Block 25.

Block 19: instructor must signify if all answers per a

certain subject and topic number are to be displayed or

only a particular answer.

Block 20: was answer number found in the answer file?

Implementors of the algorithm could insert a loop at

this point in the program and be able to select more than

one answer to look at.

Block 21: Display all answers addressed by a particular

subject and topic identification.

Block 22: subprogram call to a one way list routine that

determines if the particula~ answer requested by the in­

structor is present in the answer file.

Block 23: was the particular answer found?

57

Block 24: print out the text contained in the answer field

of that particular entry in the answer file.

Block 25: put out a message the sought after answer does

not exist in the answer file.

The second algorithm (refer to Figure 25) represents a

search through a two way list structure by subject number

until the correct location is or passed. This subprogram

algorithm must be accessable from all transaction modes ap­

plicable to the entire assignment presentation system.

SUBLlST
LOCATE

SUBPROGRAM

=

X FOUNO
IN LJ.ST

3

Figure 25.

START

TEM+LOC
LOC .. UP(SL(I))

14·1·1

1

TEM\IfoLDC
LOCf-OP(SL(I))

1+-1•1

Sublist Locate Subprogram Algorithm

58

X NOT
F'OUND

X FOUND
IN l.IST

1

Figure 25. (Continued)

59

Block 1: begins subprogram called "sublist locate".

Block 2: is a decision block to determine if the desired

course subject number is equal to, less than, or greater

than the value at current position in the list.

Block 3: signifies the course subject number has been lo­

cated in the two way list.

60

Block 4: if the Block 2 decision symbol indicated the

course number was less than the current position then the

search would have.to proceed back up the list toward the be­

ginning, one node at a time. Dur in·g each step of the move­

ment, the current position is always assigned to a temporary

position prior to backing up to the previous node.

Block 5: if the block 2 decision symbol specified a subject

number which was greater than the current location marker,

the algorithm would require the current location marker to

be incremented. First action required is to assign the

current position marker to a temporary marker. Then the

current position would be incremented down one subject posi­

tion toward the end.

Block 6: proceeding after Block 4, this block determines if

the sought after subject number is less than the current po­

sition marker. If so, loop back to Block 4.

Block 7: determines if the subject number sought is equal

61

to the current position marker. If true, then X is found,

else X. is not found~

Block 8: signifies the searched for value does not exist in

the list.

Block 9: leave this algorithm and return to the calling al­

gorithm.

Block 10: means the sought after value has been found.

Block 11: follows Block 5. Determines if the subject

number is greater than the current position marker. If

true, loop back to Block 5, else branch to Block 7.

The third algorithm of Part 2 (refer to Figure 26) is

used to locate a point on either the topic, screen or answer

lists. It represents a way in which to traverse a list in a

linear order from the current location or point of origina­

tion to the desired position or end of list, whichever oc­

curs first.

LOCATE
SUBPROGRAM

=

.lC F'OUNO
IN t.IST

Figure 26.

START

l~O
LOC ('-GP(L.IST(I))

TEN<E-NUL.L.
1~1+1

r~M~LOC
LOC""'GP{LIST{I))

r~ r~1

1

Locate Subprogram Algorithm

62

X NOT
'0UNO

X FOUNO
IN LIST

11

Figure 26. (Continued)

63

Block 1: begin Locate subprogram.

Block 2: decision block to determine if the sought after

number is equal to, less than, or greater than the current

position marker.

Block 3: indicates the value sought has been found.

Block 4: if the sought after number is less than the

current position on the list then initialize the list back

to its beginning and assign the temporary pointer to null.

This first position is assigned to the current marker and

the pointer is advanced forward to the next node.

64

Block 5: decision block to determine if the first position

is equal to the desired list number.

Block 6: assigns current position to a temporary marker and

assigns next nodal information to current position.

Block 7: determines if the desired position is greater than

the current position. If so, loop back to Block 6.

Block 8: decision block to determine if the desired posi­

tion is equal to the current position.

Block 9: searched for value does not exist in the list.

Block 10: depart this algorithm and return to the calling

algorithm.

65

Block 11: searched for value has been located in the

list.

Part 3 of the Assignment Presentation Algorithm

Part 3 of the assignment presentation algorithm deals

with the creating and adding of new display screens and

answers for the computer aided instruction course being con­

structed. The algorithm should allow for screens and

answers to be added at any time during the duration of a

course. Figure 27 is a memory aid to emphasize this point

prior to discussing Part 3.

Figure 27. Memory Aid Visualizing List Flow of Assignment
Presentation Algorithm

66

The "Head" equates to the origination point of all sub­

jects on the subject list. For a display screen to exist at

least one header node must be on the subject list. This

header node represents the subject to be presented and which

may consist of numerous topics. Each header node will point

to at least one topic node. A topic node is the structure

which will actually contain the computer aided instruction

screen information in this algorithm. Since a topic may be

so large that not all of the information can be contained on

one display screen, this requires a screen list. For pur­

poses of this algorithm, the mere existence of a topic node

equates to the existence of a screen list of the quantity

one. The subject list (refered to as sublist) is portrayed

in this algorithm as a two-way list. This means from any

position on the list~ you may traverse toward the bottom of

the list or toward the top of the list. It is assumed in

this study the lists are created and maintained in some type

of sequential ordering, thereby making decisions easier as

to which way to traverse the applicable lists. Both the to­

pic list and screen list can be conceived as representing a

linear list structure. Which means the lists are traversed

in one direction only. Should a position being searched for

lay behind the current position being performed, then the

list search would have to start at the beginning of that ap­

plicable list. However, I have assumed the instructors

67

authoring computer aided instruction products will more than

likely present computer aided instruction display screens in

a logically sequential order just as they would as if they

were teaching a class. Based upon this assumption, the

search tim~ required for searching a list could be minimal

since you are probably at the correct location or just a few

steps from it forward of your current position.

In order to establish a common base line of understand-

ing concerning the perceptual interpretation of what a

header node and a topic node are; refer to Figure 28. This

format will be used throughout this entire algorithm.

HEADER NUDE

I ""' L UP
POINTER

SUBJECT TOPIC
NUMBER NUMBER POINTER -

DOWN
PQ[NTER

I TOPIC NODE

TOPIC NODE POINTER (rOINTER W!T~OOE)
I /

TOPIC SCREEN
NUMBER POINTER

P~~~~~R - ~

CAl
SCREEN SCREEN

INrOilMAT ION •'UlN fER

Figure 28. Header and Topic Node Formats

68

A topic of concern to the implementing instructor of

this algorithm is how to physically represent these node

structures. This particular challenge is left to the in­

structor and the capabilities of the utilized programming

language. When dealing with certain high level programming

languages, they allow a structure called a record. This

record structure would allow the implementation of this al­

gorithm to be more easily performed than when compared to a

language not possessing this structure. In this case, this

situation might require an array of arrays, or any other

technique deemed appropriate by the implementor.

When creating or adding information to the answer file

there is no absolute need for the information to be in a

sequential order, but it could prove advantageous in the

economy of time. An alternative applicable to the answer

file is to add (and delete) all answers in a random order

and when exiting the assignment presentation system to per­

form some sort routine to realign the sequential ordering.

For the purposes of this algorithm, theorize the structure

of the record field information to look like that displayed

in Figure 3.

CREATE/ADO
SUBPROGRAM

MODE CONSISTS
OF':

SCREEN
ANSWE~
RETURN

Figure 29.

SUBLIST
LOCATE

(X,SL)

1

Create/Add Subprogram Algorithm

69

ADDS A NEW
HEADER NODE
SICNIFING A
NEW SUBJECT

AREA

NEXT J ALGORITHM
STEPS DETERMINE

WHERE HEADER
NODE IS INSERTED

IN THE SUBJECT LIST

ADDING HEADER
NODE TO

INTERIOR OF
SUBJECT I.IST

ADOS
TOPIC NODE TO

CREATE HN
P~Ptl
SL~SL•l

HN(N(P))+-X
HN(TN(P))f- 0

HN(TP(P))+oNULL

8

HN(DP(P)) ~NHN
NHN(UP(P))~ HN(NEW)

BMPt--P

o;"! !~= 1 ~u~~i~r /
L

Figure 29.

INITIAL
HEADER NODE

ADDEO TO
SUBJECT L 1ST

HN(OP(P))+--NULI.
HN(UP(P))+-HEAD

TMP~P
BMP.-P

HEAD~HN(NEW)

15

14

HN(DP(P))~NULL
BMP~P

13

HN(UP(P))~HEAD
HN(DP(P))<(- NHN

NHN(UP(P)) to HN(NEW)'
HEAO+-HN(NEW}

BMP~P

ADDING HEADER
NODE TO
TOP OF

SUBJECT LIST

CONNECT NEW
HEADER NODE
TO THE END

OF SUBJECT LIST

(Continued)

I
I
I
I
I

.:.l

HN(UP(P))+PHN
PHN(OP(P))+HN(NEW)

17
CREATE TOP

TOP (TN(T))~ V
TOP(SP(T))~NULL

TOP(SN(T))Eo Z
TOP(SI(Tll<E=-CAI INFO

TOP(TP(T))"-NULl.
HN(TP(P))<{--TOP(NEW)

70

r

...

FOLLOWING ALGORITHM
STEPS TRY TO
OETERNINE lF

AN ANSWER
EXISTS, IF NOT

IT IS ADDED

SEEKS INFORMATION
AS TO WHERE

THE NEW ANSWER
WILl. POINT FOR
THE NEXT SCREEN

NSNF~O
NTN,~E

ABC~A&BIC

LOCATE
(ABC,AF)

21

23

CREATE ANSWER FIELD
CSNF+oA
CTNF"4-S
AFN~C

A IF'(' ANSWER INFO

Figure 29. (Continued)

71

ADOS A
TOPIC NODE

TO THE INfEFilOR
OF SCREEN liST

CREATE TOP
TOP(TN(T))(- V

TOP(SP(T) l+-PTN(SP(T))
PTN(SP(T) J+-- TOP(NEW)

TOP(SN(T))(-Z
TOP(Sl (T) l"- CAl INFO

TOP(TP(T))~NULL

Figure 29.

CREATE TOP
TOP(TN(T))i- y

TOP(SP(T))~NULl.

ADOS A
TOPIC NODE TO
END OF SCREEN

LIST

39

PTN(SP(T)) <E- TOP(NEW)
TOP(SN(T))(-Z

TOP(Sl{T))4-CAI INFO
TOP(TP(T))of-NULL

CREATE TOP
TOP(TN(T))~Y
TOP(SN(T) l'E-- Z

38

TOP(Sl(T))~CAI INFO
TOP(SP(T))~ NTN

(Continued)

ADDS A TOPIC NODE
TO THE FRONT

END OF SCREEN LIST

72

CONNECTS TOPIC NODE
SOHEWHERE BETWEEN

THE HEADER NODE
AND BEFORE THE

LAST TOPIC NODE IN
THE TOPtCLIST

LOCATE
(y. Tl.)

CREATE TOP
TOP(TN(T))+-Y

TOP(SP(T))+-NULL
TOP(SN(T))~Z

TOP(SI(T))~ CAI INFO
TOP(TP(T))~PTN(TP)
PTN(TP)~ TOP(NEW)

27

I
L

PUT
'SCREEN
ALREAD'I
EXISTS'

LOCATE
(Z,SCN)

32

31
CREATE TOP
TOP(TN(T))~Y

TOP(SP(T))~NULL
TOP(SN(T))~Z

TOP(SI (T))~CAI INFO
TQP(TP{T})~NULL

PTN(TP{ T)) ~TOP(NEW)

CONNECTS TOPIC NODE
TO THE END OF
THE TOPICLIST

Figure 29. (Continued)

73

C_,CTS NEll
TOPIC NOO£

INTERIOR OF TH!
TOPICLIST

TOP(TP(T))+- NTN

Figure 29. (Continued)

CONNECTS FIRST
TOPIC NODE ON
TOPICLIST TO
HEADER NODE

44

HN(TP(P))~ TOP(NEW)

43

TOP(TP(T))+- NULL

CONNECTS NEW
TOPIC NODE TO

THE END OF .
TOPICLIST

74

75

Block 1: beginning of the Create/Add subprogram.

Block 2: an input/output block requesting information as to

what area is to be manipulated, or do you want to quit.

Block 3: is a decision block to determine if the return

mode was selected in order to terminate this function.

Block 4: wants to know if the answer file is what needs to

be manipulated.

Block 5: input the subject, topic and screen identification

numbers for the computer aided instruction display screen

you want to create.

Block 6: call to subprogram routine described in Part 2 of

this algorithm to see if X already exists on the subject

list.

Block 7: was X found on the subject list?

Block 8: process node which creates a header node and sets

the values and pointers to an initial position.

Block 9: decision block determines if this is the very

first header node on the subject list.

Block 10: this decision block wants to isolate the new

header node if it is to be added to the end of the subject

list.

Block 11: analyzes if the new header node is to be added

to the front of an existing subject list.

76

Block 12: process block which inserts the header node some­

where within the interior of the subject list.

Block 13: aligns the connectors to allow the header node to

be inserted at the front of the $Ubject list.

Block 14: moves the bottom-pointer to acknowledge the pres­

ence of another header node on the subject list and to align

the downward pointer of the header node.

Block 15: this process block initializes the first node

onto the subject list.

Block 16: terminator symbol signifying return from this

function back to the main procedure.

Block 17: creates a topic node with the computer aided in­

struction screen information for any new header node just

created on the subject list.

Block 18: realigns the connectors when adding a header node

to the end of the subject list.

Block 19: after having selected the mode to create or add

answers to the answer file, this input/output block requests

information as to what subject, topic and answer identifica­

tion numbers you desire to input a new piece of answer

77

information.

Block 20: this process block concatenates the previous in­

put identification numbers in a single number. This is done

only to try and improve the search time required in the next

block.

Block 21: call to a subprogram routine which determines if

and where this identification number exists.

Blocks 22: was the identification number found in the

answer file?

Block 23: says to create an answer structure in order to

insert the reference field data into the answer node.

Block 24: requests the computer aided instruction answer be

input so the answer information field can be completed.

Block 25: desires information from the instructor as to

what display screen by subject and topic identification

number follows this answer.

Block 26: display a message to user stating that answer al­

ready exists.

Block 27: call to an algorithm subprogram to determine if Y

is on the topic list.

Block 28: question to determine if Y was found on

78

topic list.

Block 29: decision block to determine the exact location of

where a new topic node should be inserted, either in the in­

terior or at the end of the topic list.

Block 30: process block which creates and connects topic

node some where between the header node and before the last

topic node on the topic list.

Block 31: creates a topic node and aligns the connectors

for adding the topic node to the end of the topic list.

Block 32: call to a subprogram to determine if Z is on the

screen list.

Block 33: produces a message to the user that the display

screen already exists.

Block 34: was Z found on the screen list?

Block 35: wants to determine if the topic node to be added

will go at the end of the screen list.

Block 36: analyzes the projected position of the new topic

node to see if it should be the first topic node on the

screen list.

Block 37: is the process which creates a new topic node and

inserts it somewhere in the interior of the screen list.

Block 38: adds a topic node to the front of the screen

list and realigns the connectors.

79

Block 39: creates a topic node and inserts it at the end of

the screen list and carefully sets all connectors.

·Block 40: asks the question if the new topic node is in­

serted between the header node and the current first topic

node on the topic list.

Block 41: determines if the new topic node should be in­

serted at the end of the screen list or to the interior.

Block 42: connects the newly formed topic node somewhere to

a location within the interior of the topic list.

Block 43: aligns the connectors of the previously formed

topic node so it may reflect its insertion at the end of the

topic list.

Block 44: establishs the connectors for a topic node in­

serted at the head of the topic list just after the header

node.

Part 4 of the Assignment Presentation Algorithm

This part of the assignment presentation algorithm per­

forms the function of deleting header nodes, topic nodes and

answers, while at the same time realigning the flow of con­

trol connectors. It would seem a very trivial task to

80

delete a node, and it is; however the resulting ramifica-

tions caused by the deletion are not so trivial of a situa­

tion. In this particular proposed algorithm, allowances

must be made to determine the exact location of the topic

node to be deleted. With its deletion, a determination must

be made as to if only the screen list was affected or does

it require a modification to the topic list also. This

problem can percolate on up the subject list, and continue

to the course origination point called the "head".

Carefully interpret the algorithm instructions within

the following diagram. Several subtle linkages can be easi­

ly over looked.

DELETE
SUBPROGRAM

POSSIBLE lltOOES
ARE:

SCREEN
ANSWER
RETURN

Figure 30.

START

GET
x,v ,l

SUBL IST
!.OCATE
(X,SL)

1

17
RETURN

6

Delete Subprogram Algorithm

81

LOCATE
(Y, TL)

LOCATE
(Z,SCN)

Figure 30.

82

(Continued)

DELETES THE
FIRST TOPIC NODE:

lllrTHIN A SCREEN
LIST WITH MORE

THAN ONE,. TOPIC NODE

NN(SCN(TP))+-TDP(TP(T))
NN(SCN)+-PTN(TP)

REMOVE TOP

Figure 30. (Continued)

r-
1

I
L

DELETES AN
lNTERlOA TOPIC NODE

Wl THIN THE
SCREENLlST

83

THE F'OLLOWING
ALGORITHM STEPS

WILL TRY TO ISOLATE
ANSWER lNF'ORMATION

SO IT MAY BE DELETED

ABC+--A681C

LOCATE
(ABC,Ar)

REMOVE ANSWER
INF'ORMIIITION

Figure 30.

84

19

20

22

(Continued)

DELETES A
TOPIC NODE WHICH

IS INTERIOR TO
THE TOPICLIST

26

PTN(TP} ~TOP(TP(T))
REMOVE TOP

32

PRN(SCN(SP})'fo NULL
REMOVE TOP

DELETES THE LAST
TOPIC NODE JN A

SC:AEENLIST WHICH
CONTAINS HOAE THAN

ONE TOPIC NODE

Figure 30. (Continued)

85

J

REMOVE TOP

PHN(OP) .. HN(OP(P))
HHN(UP) .. HH(UP(P))

REMOVE HN
P.fl .. l

BM~ SMP .. l

31

I­
I

r
I

DELETES. THE
ONLY TOP tC NODE

PEA A SUBJECT

FOLLOWING ALCOA rTHM
STEPS IDENTIFY

H-tE POSITION
OF THE HEADER

NODE AND PERFORMS
THE APPROPRI.TE DELETION

HEAO .. HN(OP(P))
REMOVE HN

~·-1
TMP,BMP~O

35

PHN(OP) .. HN(OP(P))
REMOVE HN
..... 1

BMP BMP-1

HEAO~HH(OP(P))
NHN(UP)4-HEAD

REMOVE HN
P(I-P•l

TMP~TMP•l

DELETES
THE HEADER
NODE IN THE
INTERIOR OF

THE SUBJECT LIST

Figure 30. (Continued)

DELETES THE
ONLY EXISTING

HEADER NODE

DELETES THE
HEADER NODE
AT THE END

OF THE SUBJECT
LIST

DELETES THE
HEADER NODE

AT THE FRONT
OF THE SUBJECT

LIST

86

Block 1: begin the deletion subprogram.

Block 2: acquire the appropriate mode for the particular

action to be performed.

Block 3: was the "return" option selected?

Block 4: was the "answer option chosen in order to modify

the answer file?

87

Block 5: input the subject , topic and screen number of the

computer aided instruction display screen to be eliminated.

Block 6: call subprogram to determine if the subject is on

the subject list.

Block 7: was the subject found on the list?

Block 8: call subprogram to determine if the topic desired

exists.

Block 9: was the desired topic found?

Block 10: call the subprogram to find out if the screen

desired exists.

Block 11: was the screen found on the screen list?

Block 12: decide if the screen desired is in the last topic

node of the screen list.

Block 13: determine if the location of the topic node

88

is in the interior or at the first of the screen list.

Block 14: process which deletes the first topic node within

the screen list if it contains more than one topic node.

Block 15: the actions performed to delete a topic node lo­

cated in the interior of the screen list.

Block 16: output a message that it is impossible to delete

a screen that does not exist.

Block 17: causes the exit from this subprogram back to the

calling algorithm.

Block 18: needs input concerning the subject, topic and

answer numbers of the desired answer field to be deleted.

Block 19: concatenates the three previous input values.

Block 20: calls a subprogram to perform a search to deter­

mine if this particular answer exists.

Block 21: was the answer found to exist?

Block 22: delete answer information.

Block 23: answer does not exist, therefore it can not be

deleted.

Block 24: determines if the topic node desired is the last

node in the screen list.

Block 25: determines if the sought after topic node is

the only topic node in the topic list.

89

Block 26: this process block deletes a topic node which is

located in the interior of the topic list.

Block 27: this process deletes the header node in the inte­

rior of the subject list which no longer has any topic nodes

associated with it.

Block 28: decision block determining if the header node to

be deleted is the first on the subject list.

Block 29: determines if the header node to be deleted is in

the last position of the subject list.

Block 30: determines if the header node about to be elim­

inated is the only header node on the subject list.

Block 31: delete the topic node.

Block 32: deletes the last topic node in a screen list

which contains more than one topic node.

Block 33: deletes the header node at the front of the sub­

ject list.

Block 34: Deletes the header node at the end of the subject

list.

Block 35: process to delete the only existing header node

90

on the subject list.

Summary

This chapter has presented the assignment presentation

algorithm module which is the first part of the computer

aided instruction package being formulated. The overall

design concept has been illustrated and the rational of what

each block of the algorithm is performing has been given.

Appendix A at the end of this study provides several

examples of screen implementation situations which exercises

the aforementioned algorithm. Each exercised example

rep~esents critical points within this algorithm of the na­

ture which could produce catastrophic affects if not proper­

ly performed.

CHAPTER V

RESPONSE EVALUATION ALGORITHM

Introduction

This chapter attempts to describe the algorithm design

of a computer aide~ instruction module which will serve as a

template for student response evaluation while interactively

participating in an on-line course of instruction. Discus­

sion will be focused on the design concept and how the algo­

rithm functions.

General Design Concept

The general design concept of th~ Response Evaluation

Algorithm can be visualized as the procedure which executes

the computer aided instruction display screens and evaluates

a student's responses in relation to requests put forward by

the block of instruction. After evaluating a user's

response, the automated course displays an appropriate com­

ment or answer, before proceeding to the next display screen

of information based off the user's previous response. Fig­

ure 31 illustrates the general conceptual flow of the

response evaluation algorithm.

91

92

TOPlC LIST

ANSWER FILE

3

--
I

-1-T

1

Figure 31. Conceptual View of Response Evaluation Algorithm

Now suppose a subject topic presentation consists of

more than one screen's worth of information which must be

shown to the student. In this case, it is assumed the stu-

dent will be informed to press the "enter" key or some other

defined operator in order to advance to the next display

screen of information. Refer to the area encapsulated by

the dotted box in Figure 31 which portrays this flow se­

quence.

Algorithm Development

93

In developing the response evaluation algorithm to show

the sequenced flow of control during execution of the course

of instruction, an initial point of debarkation must be es­

tablished. For this algorithm the initial display screen of

computer aided instruction material begins at subject and

topic grid positions one. In reality this initial point

could be a menu screen of some type telling a user what to

do, or where to begin. But for this study this trivial

point is bypassed and left to the discretion of the

algorithm's implementor.

This algorithm uses the same terminology as the previ­

ously mentioned assignment presentation module. It uses the

assignment presentation package as a building block for the

initialization required to execute this module. The control

flow of this proposed design should prove quite flexible to

a wide variant of implementations. Figure 32 reveils the

response evaluation algorithm.

RESPONSE
EVALUATION
ALGORITHM

Figure 32.

1

BEGIN

CREATE COURSE FROM
ASSIGNMENT

PRESENTATION
ALGORITHM

x+-1
•+-1

SUBLIST
LOCATE
(X,SL)

LOCAT!
(Y, TL)

PUT
'NOTIF'Y INSTRUCTOR

CONCERNING
PROBLEM WITH

COURSE'

Response Evaluation Algorithm

94

GET
STUDENT

RESPONSE •

CONVERT STUDENT
RESPONSE INTO

RECOGNIZABLE
F'OAM

\

A<4:-HN(SN)
B¥T0P(TN)

C~STUOENT RESPONSE

Figure 32.

95

9

10

19
STOP

(Continued)

ABI:+-A6BlC

LOCATE
(ABC,AF)

Xf-0
Yf-E

Figure 32.

96

18

TOP~ TOP(SP(T))

14

(Continued)

97

Conceptually, this algorithm displays a screen of in­

formation, acquires a response from the user, ext~apolates

and interprets the meaning of the user's response, performs

an action or displays an answer, and then repeats this pro­

cess until discontinued.

As ~ith the previous assignment presentation module,

lets walk through this algorithm by the numbers in order to

obtain an understanding of what is taking place.

Block 1: begins the response evaluation algorithm.

Block 2: signifies a process which initializes or creates

the course from the various input files or data sets into a

structure which can be visualized like Figure 3. For in­

structional purposes only this algorithm course begins with

the first display screen located at subject 1 and topic 1

(matrix position 1, 1). X & Yare variables which receive

the values accordingly.

Block 3: is a subprogram call to a routine to determine the

location of X on the subject list.

Block 4: was X found on the subject list?

Block 5: subprogram call to determine the position of Y on

the topic list. The identification of this position on the

topic list is the location of the first display screen for

98

this item of information.

Block 6: was Y found on the topic list?

Block 7: display the computer aided instruction text screen

located at this position.

Block 8: acquire user's response.* {"*" means this subject

will be discussed more in depth at the end of this

algorithm's walk through)

Block 9: this process block signifies the user's response

wi 11 be interpreted ·from whatever fo_rm it maybe input, into

a recognizable form which can specify a unique answer in the'

answer file based off the subject and topic identifica­

tions.*

Block 10: assigns the subject number, topic number and

determined student response to variables for later manipula­

tion.*

Block 11: was the understood response to discontinue execu­

tion of the course.

Block 12: determines if the display screen previously shown

the user was in the last topic node of the screen list.

Block 13: concatenates the subject, topic and answer values

preparing for an up coming search for the value in the

answer list.

Block 14: subprogram call to determine location of answer

sought as a response to the u~er's previous input.

Block 15: was this position found on the answer list.

Block 16: display the answer to the user.

99

Block 17: acquire from the answer structure the location of

the next computer aided instruction display screen in which

to show and assign those values to the X and Y variables.

Block 18: is the process which increments to the next

display screen on the screen list.

Block 19: terminates the response evaluation algorithm.

Block 20: print a message to the user the response evalua­

tion module can not find the next display screen of informa­

tion, and that the program contains a flaw. This condition

should not occur, but if it does it must be brought to the

attention of the instructor immediately.

Blocks 8, 9 and 10 of this module were annotated with a

star (*) to signify the possible expansion of these blocks

to incorporate additional information when this algorithm is

implemented. Block 8 of this module specifies an input will

be·received from the student user. The context of this in­

put could be in the form of a standard response to finite

number of possible answers (i.e., a question has four

100

possible answers: A, B, C, or D), or could be a response

expressed by a word, phrase, sentence, or a picture. It is

not to difficult to see, that if the answer could take on a

variable posture of not being a specific answer that the in­

put could become quite ~ntailed. This brings about the im­

portance of Block 9 which is a process which puts the

response in a recognizable form. If the instruction system

posed a question with four possible answers (A, B, C, D),

then the algorithm implementor may want to create a symbol

table in order the response evaluation system could under­

stand that a input of the character "1" would mean the same

as the required answer of "A", and so forth. If however,

the answer required was more of an obscure nature, then the

implementor may want to incorporate a natural language pro­

cessor module in order to determine the intent of the user's

input. An example of such a process could be a question

which asks for a phrase to be written in another language,

like German. This phrase would have to undergo close scru-

_tiny in order to determine if the question was satisfactori­

ly answered since there may be several correct answers. it

is at this point that Block 10 becomes important. Block 10

takes evaluated user responses from the previous block and

establishes the location of the specified answer for the

previous question. Block 10 also is where a historical stu­

dent response list would be updated in order to provide sta­

tistical information as to a students progress and /or areas

101

needing additional emphasis because of poor performance.

Summary

The algorithm described within this chapter portrays a

template for creating an interactive student response

evaluation system. It illustrated the overall design con­

cept and reveiled areas of possible expansion based upon the

needs and expertise of the implementor.

CHAPTER VI

SUMMARY AND FUTURE WORK

Summary

Purpose of this study was to create a algorithm package

consisting of a computer aided instruction assignment

presentation and response evaluation system. The design

serves as a template for experienced programmers developing

their own computer aided instruction presentation systems.

Descriptions of this algorithm package are illustrated

using the standard flowcharting symbols accompanied by

pseudo-English statements representing specific actions tak­

ing place in a particular order. Implementations of this

algorithm design will produce a computer aided instruction

course capable of further expansion depending upon the pro­

gramming experience of the implementor.

The assignment presentation system algorithm portrays

the linkage required for an instructor to be able to

create/add, edit/locate, and delete course presentation

screens and answers. It handles the special conditions of

manipulating screens at the beginning, end, and interior of

the presentation text. The physical arrangement of answers

102

103

on the answer list and the mapping mechanism for accessing

them allows for an infinite (in theory) number of response

possibilities.

The response evaluation module is a very flexible algo­

rithm which allows many variations, from a very controlled

student response to a very abstract response scheme utiliz­

ing state of the art natural language processing.

Future Work

Availability of future applications surrounding the

area of computer aided instruction is only restricted by

one's imagination. Technology is changing so fast that

ideas are barely keeping ahead of physical applications.

Proposed areas of further research associated with the

software aspects of computer aided instruction are:

Creation of more versatile software capable of analy'z­

ing and coordinating actions facilitating computer aided in­

struction with video disks, lasers, satellites, remote sens­

ing and oral communication devices.

Research into the development of better fault tolerant

modes of instructional presentation systems.

Development of advanced authoring systems which util­

ize artificial intelligence.

Exploratory research into the capability of allowing

students to ask questions of the computer while actively en­

gaged in some form of computer aided instruction.

104

Algorithm research into the creation .of new storage

compaction techniques specifically oriented toward computer

aided instruction presentations.

BIBLIOGRAPHY

Aho, Alfred V., Hopcroft, John E., ana Ullman, Jeffery D.
Data Structures And Al$orithms. Reading, MA:
Addison-Wesley Publishlng Company, 1983.

Aiken, Robert, and Braun, Ludwig. "Into The SO's With
Computer-Based Learning." COMPUTER 13, 7 (1980).

Alessi, Stephen M., and Trollip, S~anley R. Computer-Based
Instruction. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1985.

Anderson, Ronald, and Klassen, Daniel. "A Conceptional
Framework For Developing Computer Literacy Instruc­
tion." AEDS Journal 14, 3 (1981), 128.

Atkinson, R. c., and Wilson, H. A. "Computer Assisted In­
struction." Science. 162, 1968, 73-77.

Baase, Sara. Comeuter Algorithms. Reading, MA: Addison­
Wesley Publlshing Company, 1978.

Ballaben, G. and Ercoli, P. "Computer-Aided Teaching of As­
sembler Programming." In 0. Lecarme and R. Lewis
(Eds.), Computers in Education , IFIP (Part 1). Am­
sterdam: North-Holland, 1975, 217-227.

Barr, A., Beard, M., and Atkinson, R. c. "A Rationale and
Description of a CAI Program to Teach the BASIC Pro­
gramming Language." Instructional Science 4 (1975), 1-
31.

Barr, A., Beard, M., and Atkinson, R. c. "Information Net­
works for CAI Curriculums." In 0. Lecarmi and R. Lewis
(eds.), Computers in Education , IFIP (Part 1). Am­
sterdam: North-Holland, 1975, 477-582.

Barr, A., Beard, M., and Atkinson, R. c. "The Computer as a
Tutorial Laboratory: The Stanford BIP Project." Inter­
national Journal of Man-Machine Studies 8 (1976), 567-
596.

105

106

Bayman, P. and Mayer, R. E. "A Diagnosis of Beginning
Programmers' Misconceptions of BASIC Programming State­
ments." Communications of the ACM 26, 9 (1983), 677-
679. - -- --

Bitter, Gary G., and Camuse, Ruth A. Using A Microcomputer
In The Classroom. Reston, VA: Reston Publishing Com­
pany;-Inc., 1984.

Blaschke, C. L. "Microcomputer Software Development for
Schools: What, Who, How?" Educational Technology 19,
10 (1979), 26-28.

Bork, A. Learning With Computers. Bedford, MA: Digital
Press, 1981.

Bork, A. and Franklin, S. "Personal Computers in Learning."
Educational Technology 19, 10 (1979), 7-12.

Brown, J. S., Burton, R. R., and Bell, A. G. "SOPHIE: A
Step Toward Creating a Reactive Learning Environment."
International Journal of Man-Machine Studies 7 (1975), _
675-696 0 - --

Brown, P. J., Griffiths, M., Griswold, R. E., Lawson, H. w.,
Niblett, B., Richards, M., Spratt, E. B., Waite, w. M.,
and Wichmann, B. A. Software Portability. London,
England: Cambridge Un1vers1ty Press, 1977.

Burke, Robert L. CAI Sourcebook. Englewood Cliffs, NJ:
Prentice-Hall~nc., 1982.

Calvin, Allen D. Programmed Instruction. Bloomington, IN:
Indiana University Press, 1969.

Carbonell, J. "AI in CAI: An Artificial-Intelligence Ap­
proach to Computer-Assisted Instruction." IEEE Transac­
tions on Man-Machine Systems MMS-11, 4 (197QT; 190-202.

Chambers, J. A. and Sprecher, J. w. "Computer Assisted In­
struction: Current Trends and Critical Issues." Com­
munications of the ACM 23, 6 (1980), 332-342.

Chan, Julie M. T., and Korostoff, Marilyn. Teachers' Guide
To Designing Classroom Software. Beverly Hills, CA:
SAGE Publicat1ons, Inc., 1984.

Clancey, William J. "Tutoring Rules For Guiding A Case
Method Dialogue." Intelligent Tutoring Systems. New
York, NY: Academic Press, Inc., 1982, 201-226.

107

Coburn, Peter, Kelman, Peter, Roberts, Nancy, Snyder, Thomas
F. F., Watt, Daniel H., and Weiner, Cheryl. Practical
Guide To Computers ~ Education. Reading, MA:
Addlson-Wesley Publ1sh1ng Company, 1982.

Collins, William J. "A Data-Oriented Introduction To Pro­
gram Design." SIGCSE BULLETIN 11, 4, Dec (1979), 49-55.

Computer-Assisted Instruction Guide. 2 Ed. Newbury, MA:
ENTELEK, Inc., 1968.

Cox, Margaret J. "CAL In A Changing Curriculum." Computer
Education Jun (1982), 24-25.

Critchfield, M. "Beyond CAI: Computers as Personal Intel­
lectual Tools." Educational Technology 19, 10 (1979),
18-25.

Curtin, Constance. "Publication Practices For Microcomputer
Programs." Journal Of Computer-Based Instruction 7, 4,
123.

Davies, Colin S. "Peer Tutors: Their Utility And Training
In The Personalized System Of Instruction." Educational
Technology 11 (1978), 23-25.

Dean, C. and Whitlock, Q. A Handbook of Computer Based
Training. New York: -N1chols Publishing Co., 1983.

Dijkstra, Edsger w. ~ Discipline of Programming. Englewood
Cliffs, NJ: Prentice Hall, Inc., 1976.

Dimas, C. "A Strategy for Developing CAI." Educational
Technology 18, 4 (1978), 26-29.

Dromey, R. G. How to Solve It £y Computer. London:
Prentice/Hall--InternatiOnal, Inc., 1982.

Ellis, Allen B. The Use &.Misuse Of Computers Ig Education.
Newton, MA: McGraw-Hlll, Inc., 1974.

Endsley, William R. PEER Tutorial Instruction. Englewood
Cliffs, NJ: Educat1onal Technology Publ1cations, Inc.,
1980.

Fine, Benjamin. Teaching Machines. New York, NY: Sterling
Publishing Company, Inc., 1962.

Foltz, Charles I. The World of Teaching Machines. Washing-

108 .

ton, DC: Electronic Teaching Laboratories, 1961.

Gagnet Robert M., Wager, Walter, and Rojas, Alicia. "Plan­
ning And Authoring Computer-Assisted Instruction Les­
sons." Educational Technology 9 (1981), 17-21.

Garson, James w. "Getting Problem-Solving Advice From A
Computer." BYTE 6, 5, May (1981), 186.

Gauthier, Richard, and Ponto, Stephen.
Programs. Englewood-Cliffs, NJ:
1970.

Desisning Systems
Prent1ce Hall, Inc.,

Goldberg, A. and Suppes, P. "A Computer-Assisted Instruc­
tion Program for Exercises on Finding Axioms." Educa­
tional Studies in Mathematics 4 (1972), 429-549.

Goldstein, I. I. Training: Pro ram Development and Evalua­
tion. Monterey, CA: Brooks Cole, 1974.

Goodman, s. E., and Hedetniemi, S. T. Introduction To The
Design ~ Analysis of Algorithms. New York, NY:
McGraw-Hlll, Inc., 1977.

Gray, D. C., Hulskamp, J. P., Kumm, J. H., Lichtenstein, S.,
and Nimmervoll, N. E. "COAL-A - A Minicomputer CAI
System." IEEE Transactions on Education E-20, 1 (1977),
73-77. -- -

Harper, Dennis 0., and Stewart, James H. RUN: Computer
Education. Belmont, CA: Wadsworth, Inc., 1983.

Hazen, Margret. "Computer-Assisted Instruction With PILOT
On The Apple Computer." Educational Technology 11
(1982), 20-22.

Heines, Jesse M. "Courseware Development And The NSF." COM­
PUTER 13, 7 (1980),

Heines, J. M. Screen Design Strategies for Computer-Assisted
Instruction. Bedford, MA: Digital Press, 1984.

Hickey, Albert E. Computer-Assisted Instruction: ~ Survey
Of The Literature. Newburyport, MA: ENTELEK, Inc.,
196a:-

Hoare, C. A. R. "An Axiomatic Basic For Computer Program­
ming." Communications of the ACM. 12, 10 (1969), 576-
583.

Hofmeister, Alan. Microcomputer Applications In The Class-

109

room. New York, NY: CBS College Publishing, 1984.

Holmes, Glyn. "Computer-Assisted Instruction: A Discussion
Of Some Of The Issues For Would-Be Implementors." Edu­
cational Technology 9 (1982), 7-13. ----

Jones, Bush. "Teaching Algorithm Design." SIGCSE BULLETIN
11, 4, Dec (1979), 27-30.

Jurgemeyer, Fred H. "Programmed Instruction: Lesson It Can
Teach Us." Educational Technology 5 (1982), 20-21.

Katz, M. R. and Chapman, w. "SIGI: An Example of Computer­
Assisted Guidance." Educational Technology

Keeton, Roy "Teaching Data Processing By Case Study." Com­
puter Education 11 (1981), 2-7.

Kehler, T. P. and Barnes, M. "Design for an On-Line Consul­
tation System." AEDS Journal 14, 3 (1981), 113-127.

Knuth, Donald E. The Art Of Computer Programming. 1, Read­
ing, MA: AddiSOn-Wesley Publishing Company, 1968.

Koffman, E. B. and Blount, s. E. "Artificial Intelligence
and Automatic Programming in CAI." Artificial Intelli­
gence 6 (1975), 215-234.

Lagowski, J. J. "Computer-Assisted Instruction in Chemis­
try." In W. H. Holtzman (ed.), Computer-Assisted In­
struction, Testing, and Guidance. New York: Harper &
Row, 1970, 283-298.

Lahey, George. "The Effect Of Instructional Sequence On
Performance In Computer-Based Instruction." Journal Of
Computer-Based Instruction 7, 4, 111.

Lantz, B. s., Bregar, w. S., and Farley, A.M. "An Intelli­
gent CAI System for Teaching Equation Solving." Journal
of Computer-Based Instruction 10, 1 & 1 (1983), 35-52.

Lathrop, Ann, and Goodson, Bobby. Courseware In The Class­
room. Reading, MA: Addison-Wesley Publishing Company,
Inc. , 1983.

Levien, R. E., and Mosmann, c. "Instructional Uses of Com­
puters." The Emerging Technology. New York, NY: The
Rand Corporation, 51-82.

Lorton, P. Jr. and Cole, P. "Computer-Assisted Instruction
in Computer Programming: SIMPLER, LOGO, and BASIC,

110

1968-1970." In P. Suppes (ed.), University-Level
Computer-Assisted Instruction ~ Stanford: 1968-1980.
Stanford, CA: Stanford Un1vers1ty, Inst1tute for
Mathematical Studies in the Social Sciences, 1981,
841-876. .

McGowan, Clement L., and Kelly, John R. Top-Down Structured
Pro rammin Techni9ues. London, England:
Mason Charter Publ1shers, Inc., 1975.

Mcisaac, Donald N., and Baker, Frank B. "Computer-Managed
Instruction System Implementation On A Microcomputer."
Educational Technology. 10 (1981), 40-46.

Me Vay, P. O. "Tapping The Appeal Of Games." PIPELINE
Spring (1981),8.

Magidson, E. M. "Issue Overview: Trends in Computer­
Assisted Instruction." Educational Technology 18, 4
(1978), 5-8.

Matthews, J. I. "Microcomputer vs. Minicomputer for Educa­
tional Computing." Educational Technology 18, 11
(1978), 19-22.

Maynard, J. Modular Programming. Princeton: Auerbach Pub­
lishers, 1972.

Meredith, J. C. The CAI Author/Instructor. Englewood
Cliff.s, NJ: Educational Publ1cat1ons, Inc, 1971.

Merrill, M. D., Schneider, Edward w., and Fletcher, Kathie
A. TICCIT. Englewood Cliffs, NJ: Educational Tech­
nology Publications, Inc., 1980.

Miller, Lance A., and Thomas, John c. "Behavioral Issues In
the Use of Interactive Systems." International Journal
of Man-Machine Studies. 9, 1977, 509-536.

Mitzel, Harold E. "On The Importance Of Theory In Applying
Technology To Education." Journal Of Computer-Based In­
struction 7, 4, 93.

Morris, John M. "The Case For CAI." SIGCUE Bullentin.
Winter (1984), 11-14.

Morris, Judith. "Questions About Computer Based Learning."
Computer Education Nov (1981), 26-28.

PIPELINE. "Are We Ready For Computer-Assisted Instruction?"
PIPELINE Spring (1981), 3.

Rahmlow, Harold F., Fratini, Robert C., and Ghesquiere,
James R. PLATO. Englewood Cliffs, NJ: Educational
Technology Publications, Inc, 1980.

111

Ramsey, H. R., Atwood, M. E., and Van Doren, J. R.·
"Flowchart versus Program Design Languages: An Experi­
mental Comparison." Communications of the ACM 26, 6
(1983), 445-549.

Robertson, G., Me Cracken, D., Newell, A. "The ZOG Approach
To Man-Machine Communication." London, England:
Academic Press, Inc., 1981, 461-48B.

Robinson, L. "An Orientation to Computer Technology." in
Margolin, J. B. and Misch, M. R., Eds., Computers In
The Classroom. New York, NY: Spartan Books (1970T;
5-61.

Roblyer, M.D. "When Is It-"Good Courseware"? Problems In
Developing Standards For Microcomputer Courseware."
Educational Technology 10 (1981), 47-54.

Roecks, Alan L. "How Many Ways Can The Computer Be Used In
Education? A Baker's Dozen." Educational Technology 9
(1981), 16.

Roth, Joel A. "CAI-An Overview." Computerized Educational
Technology. 1, Detroit, MI: Management Informat1on
Services, 5-12.

Rushby, Nicholas J. Computers !Q The Teaching Process. New
York, NY: Halsted Press, 1979.

Santos, S. M. dos and Millan, M. R. "A System for Teaching
Programming by Means of a Brazilian Minicomputer." In
0. Lecarmi and R. Lewis (eds.), Computers in Education,
IFIP (Part 1). Amsterdam: North-Holland, 1975, 211-
216.

Schuyler, J. A. "Programming Languages for Microprocessor
Courseware." Educational Technology 19, 10 (1979), 29-
35.

Self, John A. "Student Models in Computer-Aided Instruc­
tion." International Journal of Man-Machine Studies.
6, (1974), 261-276. - --

Shapiro, S. C. and Kwasny, S. C. "Interactive Consulting
via Natural L~nguage." Communications of the ACM 18, 8

112

(1975), 459-562.

"Special Section On Machine Learning." SIGART NEWSLETTER 76,
Apr (1981), 25.

Silver, Greald A., and Silver, Joan B. Computer Algorithms
and Flowcharting. New York, NY: McGraw-Hill, Inc.,
1975.

Skinner; B. F. "Why We Need Teaching Machines." Harvard
Education Review 31 (1961), 377-398. Reprinted 1n J.
P. De Cecco (ed.), Educational Technology. New York:
Holt, Rinehart, and W1nston, 1964, 92-112.

Sleeman, D., and Brown, J. S. Intelligent Tutoring Systems.
New York, NY: Academic Press Inc, 1982.

Smith, P. R. Computer Assisted Learning. Elmsford, NY:
Pergamon Press Inc, 1981.

Smith, R. L., Graves, H., Blaine, L. H., and Marinov, V. G.
"Computer-Assisted Axiomatic Mathematics: Informal
Rigor." in Computer Education. (0. Lecarne and R.
Lewis, Eds.) North Holland, Amsterdam, 1975.

Spitler, C. Douglas, and Corganr Virginia E. "Rules For Au­
thoring Computer-Assisted Instruction Programs." Educa­
tional Technology 11 (1979), 13-20.

Soloway, E., Rubin, E., Woolf, B., Bonar, J., and Johnson,
W. L. "MENO-II: An AI-Based Programming Tutor." Jour­
nal of Computer-Based Instruction 10, 1 & 2 (1983),
20-34.

Steinberg, Esther R. Teaching Computers To Teach. Hills­
dale, NJ: Lawrence Erlbaum Associates, Inc., Publish­
ers, 1984.

Su, S. Y. w. and Eman, A. E. "Teaching Software Systems on
a Minicomputer: A CAI Approach." In 0. Lecarmi and R.
Lewis (eds.), Computers in Education, IFIP (Part 1).
Amsterdam: North-Holland, 1975, 223-229.

Sugarman, R. "A Second Chance for Computer-Aided Instruc­
tion." IEEE Spectrum 15, 8 (1978), 29-37.

Suppes, P. "On Using Computers to Individualize Instruc­
tion." In D. D. Bushnell and D. w. Allen (eds.), The
Computer in American Education. New York: John Wiley,
1967, 11-24.

113

Suppes, P., and Morningstar, M. Computer-Assisted Instruc­
tion at Stanford, 1966-68: Data, Models, and Evalua­
tlon of the Ar1thmetTC PrograiDS: New York-:--Academ1c
Press, 1972.

Suppes, P. "Current Trends in Computer-Assisted Instruc­
tion." In M. C. Yovits (ed.), Advances in Computers
(Vol. 18). New York: Academic Press, 1979, 173-229.

Suppes, P. and Macken, E. " The Historical Path from
Research and Development to Operational Use of CAI."
Educational Technology 18, 4 (1978), 9-12.

Suppes, P. and Sheehan, J. "CAI Course in Logic." In P.
Suppes (ed.), University-Level Computer-Assisted In­
struction at Stanford: 1968-1980. Stanford, CA:
Inst1tute for Mathematical Stud1es in the Social Sci­
ences, 1981, 193-225.

Tagg, w. "A ·command Language For C.A.I." Computer Education
NOV (1981), 29.

Taylor, Robert P. The Computer ~The School: Tutor, Tool,
Tutee. New York, NY: Teachers College Press, 1980.

Ulloa, Miguel. "Teaching And Learning Computer Programming:
A Survey Of Student Problems, Teaching .Methods, And In­
structional Tools." SIGCSE BULLETIN 12, 2, Jul (1980),
48-64.

Walker, Decker F., and Hess, Robert D. Instructional
Software. Belmont, CA: Wadsworth Publ1sh1ng Company,
1984.

Ward, D. L. and Irby, T. C. "Classroom Presentation of
Dynamic Events Using Hypertext." SIGCSE Bulletin 13, 1
(1981) 1 126-131.

Wardlow, A. "Computer Assisted Learning." Computer Educa­
tion Feb (1983), 12.

Watson, Paul G. Using ~Computer ~Education. Englewood
Cliffs, NJ: Educat1onal Technology Publ1cations, Inc,
1972.

Wexler, J. D. "Information Networks in Generative
Computer-Assisted Instruction." IEEE Transactions on
Man-Machine Systems MMS-11, 4 (1970), 181-190.

Wilkes, Sharon J. C. "C.A.L. In Language Teaching At King

114

Edward VI Five Ways School." Computer Education Feb
(1980), 7-11.

Williams, D. M. "C.A.L. Portability and Documentation."
Computer Education

, 3-5.

Willis, Jerry W., Johnson, D.L., and Dixon, Paul N. Comput­
ers, Teaching & Learning. Beaverton, OR: dilithium
Press, 1983.

Wirth, Niklaus. Algorithms + Data Structures = Programs.
Englewood Cliffs, NJ: Prlntlce-Hall, Inc., 1976.

APPENDIX

SAMPLE ALGORITHM CONTROL FLOW

Affects of the Create/Add Algorithm Module

Provided is a sample demonstration of the create/add

algorithm control flow. Each example lists the block

numbers annotated at the top right of each flowchart symbol

in the chronological order in which they would occur for the

scenerio given. Figure 33 serves as a template to assist in

the visualization of the actions being performed.

Legend:

X, A = subject identification variable

Y, B = topic identification variable

Z = screen identification variable

C = answer identification variable

NOTE: All control flow examples originate at the beginning

of the algorithm module and precede to the return or stop

symbol.

115

I r

* ~I
.. ,__. -4------j ::,

I

,--

I

I

r
r

r
r

r
r

r
r

T

r

f-

-
1-

f-

r

f-

-
1-

f-

1-

'-

f-

1-

I

1-

1-

1-

f-l

-

r
f

f-
:...

1- 1- 1-
!- 1-

1-
J

-
r

1-
r 1-

- 1-

f- 1-

-J

1-

I
1-

r -

r
r

l 1-

1- 1- 1-

1-
1-

1

f
r r

r
1-

r
- 1-

- 1-

1-
1-

r
r r

f 1-r""
r

t- 1-

1-

f-

J
I

r r
r r

1-t--l
'-- 1-

1-

1-

r
r

I

1 T

r

1- 1-

1-

1-

r

f-

f-

1- 1-

1-

1-

r

1-

1-
f- 1-

1-

1-

1- 1-

1-

1-

116

c.
E
CIJ
1-

3:
0 ,....

LL.

0
s..

+oJ
s:
0

(..)

....
s..
0
0'1 ,....
<

("")
("")

CIJ
s..
::::s
0'1 .,...

LL.

CREATE/ADD a screen to an empty preseptation system.

(X=3, Y=3, Z=2)

117 .

Blocks: 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 17, 2, 3, 16.

ADD a second screen to the end of the screen list, same sub­

ject and topit as in previous example. (X=3, Y=3, Z=4)

B 1 oc k s : 1 , 2 , 3 , 4 , 5 , 6 , 7 , 2 7 , 2 8 , 3 2 , 3 4 , 3 5 , 3 9 ,

2, 3, 16.

ADD a third screen to the interior of the screen list, same

subject and topic as in previous example. (X=3, Y=3, Z=3)

B 1 oc k s : 1 , 2 , 3 , 4 , 5 , 6 , 7 , 2 7 , 2 8 , 3 2 , 3 4 , 3 5 , 3 6 ,

37, 2, 3, 16.

ADD a fourth screen to beginning of screen list, same sub­

ject and topic as in previous example. (X=3, Y=3, Z=l)

Blocks: 1, 2, 3, 4, 5, 6, 7, 27, 28, 32, 34, 35, 36,

38, 40, 44, 41, 43, 2, 3, 16.

ADD another screen to the.end of the topic list, same sub­

ject as in previous example. (X=3, Y=4, Z=l)

B 1 oc k s : 1 , 2 , 3 , 4 , 5 , 6 , 7 , 2 7 , 2 8 , 2 9 , 31 , 2 , 3 , 16 •

ADD another screen to the beginning of the topic list, same

subject as in previous example. (X=3, Y=l, Z=l)

B 1 oc k s : 1 , 2 , 3 , 4 , 5 , 6 , 7 , 2 7 , 2 8 , 2 9 , 3 0 , 2 , 3 , 16 •

ADD another screen to the interior of the topic list, same

subject as in previous example. (X=3, Y=2, Z=1)

Blocks: 1, 2, 3, 4, 5, 6, 7, 27, 28, 29, 30, 2, 3, 16.

ADD another screen to the beginning of the subject list, new

topic. (X=l, Y=l, Z=l)

Blocks: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,. 11, 13, 17,

2, 3, 16.

118

ADD another screen to the interior of the subject list, new

topjc. (X=2, Y=l, Z=l)

Blocks: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 17,

2, 3, 16.

ADD another screen to the end of the subject list, new to­

pic. (X=4, Y=l, Z=l)

Blocks: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 18, 17, 2,

3, 16.

ADD a screen that already exists, should produce a message

to the user. (X=l, Y=l, Z=l)

Blocks: 1, 2, 3, 4, 5, 6, 7, 27, 28, 32, 34, 33, 2, 3,

16.

ADD a new answer to the answer file. (A, B, C=any natural

number)

Blocks: 1, 2, 3, 4, 19, 20, 21, 22, 23, 24, 25, 45, 2,

3, 16.

ADD an answer that already exists to the answer file, should

produce a message to the user. (A, B, C=any natural number)

1, 2, 3, 4, 19, 20, 21, 22, 26, 2, 3, 16.

Affects of the Delete Algorithm Module

Provides a sample demonstration of the control flow

performed by the delete algorithm module. Control flow is

illustrated by utilizing the block numbers at the top right

of each flowchart symbol in the order of occurrence.

Refer to Figure 33 as a tool for understanding the opera­

tions being performed.

119

DELETE the only screen from the presentation system. (X=3,

Y=3, Z=l)

Blocks: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24, 25,

31, 30, 35, 2, 3, 17.

DELETE the interior screen from the sceen list consisting of

three (or more) screens in an environment of only one sub­

ject and topic list. (X=3, Y=3, Z=2)

Blocks: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15,

2, 3, 17.

DELETE the last screen from a screen list consisting of two

(or more) screens in an environment of only one subject and

topic list. (X=3, Y=3, Z=3)

Blocks: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24, 32,

2, 3, 17.

DELETE the first screen from a screen list consisting of two

(or more) screens in an environment of only one subject and

topic list.

Blocks: 1, 2, 3, 4, 5, 6, 7, ·a, 9, 10, 11, 12, 13, 14,

2, 3, 17.

DELETE the only screen of a screen list in the second topic

list consisting of only one topic in an environment of three

(or more) subjects. (X=2, Y=l, Z=l)

Blocks: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24, 25,

120

31, 30, 29, 28, 27, 2, 3, 17.

DELETE the only screen of a screen list in the second topic

list consisting of two (or more) topics in an environment of

three (or moreO subjects. (X=2, Y=l, Z=l)

Blocks: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24, 25,

26, 2, 3, 17.

DELETE the only screen of a screen list in the first topic

list consisting of only one topic in an environment of three

(or more) subjects. (X=l, Y=l, Z=l)

B 1 oc k s : 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 11 , 12 , 2 4 , 2 5 ,

31, 30, 29, 28, 33, 2, 3, 17.

DELETE the only screen of a screen list in the last topic

list consisting of only one topic in an environment of three

(or more) subjects. (X=3, Y=l, Z=l)

Blocks: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24, 25,

31, 30, 29, 34, 2, 3, 17.

DELETE the only screen of the screen list from the first,

interior, or last topic in the topic list in an environment

of two (or more) topics within a single subject. (X=l, Y=l,

Z=l)

B 1 oc k s : 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 11 , 12 , 2 4 , 2 5 ,

26, 2, 3, 17.

DELETE a screen which does not exist, should produce a mes­

sage to the user. (X=l, Y=lO, Z=l)

B 1 oc k s : 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 16 , 2 , 3 , 1 7 •

DELETE an answer that exists on the answer file. (A, B,

121

C=any natural number}

Blocks: 1, 2, 3, 4, 18, 19, 20, 21, 22, 2, 3, 17.

DELETE an answer that does not exist, should produce a mes­

sage to the user. (A, B, C=any natural number}

Blocks: 1, 2, 3, 4, 18, 19, 20, 21, 23, 2, 3, 17.

VITA

Lee Merle Colaw

Candidate for the Degree of

Master of Science

.Thesis: ALGORITHM DESIGN OF A COMPUTER AIDED INSTRUCTION
PACKAGE FACILITATING THE INSTRUCTOR-STUDENT
RELATIONSHIP

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Tulsa, Oklahoma, May 1,1953,
son of Merle C. and Lois Lee Colaw. Married to
Cheryl A. Colaw on September 13, 1975.

Education: Graduated from Will Rogers High School,
Tulsa, Oklahoma, in May, 1971~ received Bachelor
of Science Degree in Zoology from Oklahoma State
University in May, 1975~ completed requirements
for the Master of Science degree at Oklahoma State
University, in December, 1985.

Professional Experience: Professional Soldier, US
Army, May, 1975 to present~ Senior Computer Sys­
tems Analyst, 3d Support Command, Frankfurt, Ger­
many, October, 1980 to September, 1981~ Com­
mander, 17th Data Processing Unit, 3d Support Com­
mand, Frankfurt, Germany, September, 1981 to June,
·1982~ Executive Officer, 17th Data Processing
Unit, 3d Support Command, Frankfurt, Germany,
June, 1982 to July, 1983.

