
A STUDY OF DYNAMIC HASHING AND DYNAMIC

HASHING WITH DEFERRED SPLITTING

By

HU CHANG
i\

Bachelor of Science

Fu-Jen Catholic University

Taipei, Taiwan

1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1985

;! ,,

A STUDY OF DYNAMIC HASHING AND DYNAMIC

HASHING WITH DEFERRED SPLITTING

Thesis Approved:

Dean of the Graduate College

ii

PREFACE

This thesis is a discussion and evaluation of both

dynamic hashing and dynamic hashing with deferred splitting.

The study includes a program design and implementation under

the UNIX system. Comparisons and analyses are made using

empirical results.

I would like to express sincere gratitude to my major

advisor, Dr. Michael J. Folk for his guidance, motivation,

and invaluable help. I am also thankful to Dr. Donald D.

Fisher and Dr. Donald w. Grace , not only for serving on my

graduate committee, but also for their encouragement during

my stay at Oklahoma State University.

My wife, Beny, my father, Chien-Yeh Chang, my mother,

Chien-Yun Wu, my sisters Rosa and Lily deserve my deepest

appreciation for their continual support, moral

encouragement, and understanding.

Kevin, my son, came to this world during my work on the

thesis and gave me endless courage to finish it.

iii

TABLE OF CONTENTS

Chapter

I • INTRODUCTION

II. GENERAL DESCRIPTION

Dynamic Hashing
Search • •
Insertion
Deletion •
Performance •

A Variant - Dynamic
Splitting ••.

1st Variant
2nd Variant
Performance

.
Hashing With Deferred .

III. IMPLEMENTATION .••

Data Structures •
Logic Design . • • •

Search • •
Insertion
Deletion •.••
Random Function
Hash Function •••.

IV. RESULTS AND DISCUSSIONS

v.

Space Utilization
Disk Access • • .
Index Size ••.
Path Length . • .
Fixed Main Memory ••
Bucket Size vs Number

SUMMARY AND CONCLUSIONS

.
of Records

Conclusions • . • • .
Suggested Future Work • • .

SELECTED BIBLIOGRAPHY

APPENDIX - EMPIRICAL RESULTS

iv

Page

1

5

5
10
11
13
15

16
19
23
26

30

30
31
31
33
35
36
37

38

38
38
39
39
40
41

42

42
43

44

46

LIST OF TABLES

Table Page

I. Number of Disk Accesses for Dynamic Hashing 15

II. Number of Disk Accesses for Dynamic Hashing
with Deferred Splitting . • • • • 27

III. Combinations of Keys Distribution •

IV. Percentage of Increase of Number of Records
Stored by Dynamic Hashing with Deferred
Splitting vs Dynamic Hashing with Main

28

Memory Size 14K . • • • . . • . 47

v

LIST OF FIGURES

Figure

1. Binary Trie Containing 8 Keys

2. Binary Tree Related to Binary Trie in Figure 1 . .
3. Data Structure of Index Node

4. Initial File Structures
5. File Structure of Dynamic Hashing

Page

6

7

8

9

11

6. File Structure From Figure 5 After 1 Split • • 12

7. File Structure of Dynamic Hashing Before
and After One Merge ~ • . • • • • • • . . . 14

8. File Structure Containing Inactive Node 3 18

9. File Structure Containing Two Inactive Nodes • 20

10. Bucket Structure Before and After Split . . . 21

11. File Structure of Dynamic Hashing With Deferred
Splitting Before and After One Split • • • • • 22

12. File Structures of Dynamic Hashing With Deferred
Splitting Before and After One Split • • • • • 24

13. File Structures of Dynamic Hashing With Deferred
Splitting Before and After One Split • 25

14. Data Structure of Index Node •• 31

15. Structure and Relation Between Home Bucket
and Overflow Bucket • • • • • • • • • • 35

16 •· Space Utilization with Bucket Size

17. Space Utilization with Bucket Size

18. Space Utilization with Bucket Size

19. Space Utilization with Bucket Size

vi

10 . .
20 . .
30 . .
40 . .

• •

. .

. .

. .

48

49

50

51

Figure Page

20. Space Utilization with Bucket Size 50 . . • . • . 52

21. Average Number of Disk Accesses (Bucket Size 10) . 53

22. Average Number of Disk Accesses (Bucket Size 20) . 54

23. Average Number of Disk Accesses (Bucket Size 30) • 55

24. Average Number of Disk Accesses (Bucket Size 40) . 56

25. Average Number of Disk Accesses (Bucket Size 50) . 57

26. Index Size vs Number of Records (Bucket Size 10) . 58
\/

27. Index Size vs Number of Records (Bucket Size 20) . 59
'.•

28. Index Size vs Number of Records (Bucket Size 30) . 60
:'

29 .• Index Size vs Number of Records (Bucket Size 40) . 61

30. Index Size vs Number of Records (Bucket Size 50) . 62
'

31. Average Index Path Lengths (Bucket Size 10) . . . 63

32. Average Index Path Lengths (Bucket Size 20) . . . 64

33. Average Index Path Lengths (Bucket Size 30) • • . 65

34. Average Index Path Lengths (Bucket Size 40) . • . 66

35. Average Index Path Lengths (Bucket Size 50) . . . 67

36. Difference Between Maximum and Minimum Path Length
(Bucket Size 10) 68

37. Difference Between Maximum and Minimum Path Length
(Bucket Size 20) • . . . • . • . . 69

38. Difference Between Maximum and Minimum Path Length
(Bucket Size 30) • 70

39. Difference Between Maximum and Minimum Path Length
(Bucket Size 40) • • . . . 71

40. Difference Between Maximum and Minimum Path Length
(Bucket Size 50) 72

vii

CHAPTER I

INTRODUCTION

For the past two decades, schemes for structuring large

files have evolved from two areas that were initially con

sidered as requiring distinct approaches: data structures

for main memory, and access methods to slow, high-capacity

secondary storage devices.

The first schemes used for structuring data were more

appropriate to static than to dynamic data. "Static" means

the extent and structure of the data remain unchanged during

processing: only values may be changed. "Dynamic" means

data elements may be inserted and deleted.

The array and the sequential file are the best known

examples of static structures. Insertions and deletions

lead to at least one of two undesirable results: the use of,

·special routines (such as a flag to indicate that a record

still in the structure should be considered as having been

deleted), and frequent expensive restructuring of the entire

file (especially when the number of holes left by deletions

has grown so large as to degrade performance).

The evolution from static to dynamic data structures

proceeded rapidly in those applications where data could be

kept in main memory. List structures, invented to accommo-

1

2

date highly dynamic data, became popular during the 1950s

[1]. The problem of possible degeneracy of list structures

(e.g. when a dynamic tree degenerates into a linear list be

cause of a biased sequence of insertions and deletions) was

recognized. The height-balanced tree [2] was a pioneering

step toward the development of data structures that adapt

gracefully to repeated insertions and deletions.

The development of comparable dynamic file structures

for secondary storage devices was slower. With the advent

of disks, sequential files appropriate to tapes were quickly

modified to indexed-sequential files [3] which permit access

to any record, ideally in two steps. First a directory is

searched, which points to the proper cylinder or track.

Second, this track is searched sequentially. For static

files this scheme is as fast as the hardware restrictions on

disk access permit. For highly dynamic files indexed

sequential access can le.ad to poor performance because long

linear chains of overflow buckets may be traversed. Bal

anced trees turned to be a good solution for storing highly

dynamic files on disks. The B-tree [4] is the most effec

tive file organization that permits gradual adaptation of

structures to fit the data.

Data structures for main memory fall into three

categories: linearly or sequentially accessible (in time

O(n), where n is the number of items), accessible by tree

structures (in time O(log(n))), and directly accessible by

hashing [5,6,7,8,9,10] (in time 0(1)). Hashing schemes have

been adapted to dynamic files on secondary storage devices

by the inefficient technique of chaining overflow buckets

when needed. If an adaptable hashing scheme can be designed

to remain in balance as buckets are inserted and deleted,

the suitability of hashing for secondary storage devices

would be greatly enhanced.

3

Dynamic hashing [11] is a file organization technique

based on normal hashing. With dynamic hashing the file size

can be increased and decreased dynamically without reorgan

izing the whole file and with no overflow records. The al

located secondary storage is divided into buckets of size b.

If a record is to be inserted into a bucket which is full,

the bucket is split into two buckets of the same size b, and

all the records in the full bucket together with the "over

flow" record are distributed between the two buckets.

Dynamic hashing uses an index to the record file. A

bucket is associated with the given record's key, and the

bucket'·s location is identified by searching through the in

dex. The size of the index grows and shrinks dynamically

according to the number of records. Retrieval is fast if the

bucket's location has been found. Since there are no over

flow records, only one access to secondary storage is re

quired if the index is small enough to be kept in main

memory.

To improve space utilization further, dynamic hashing

can be modified by allowing overflow records [12]. Split

ting of a bucket is deferred until a certain number of over-

flow records have been inserted. Retrieval of a record may

require more than one disk access. This modified dynamic

hashing method provides a smaller index size and a higher

space utilization.

4

The idea of this thesis is to implement dynamic hashing

and dynamic hashing with deferred splitting on a UNIX system

and compare performance by examining empirical results.

Analysis will focus on number of disk accesses, space utili

zation, index size, and index path length.

Chapter II presents a description of these two file or

ganization methods. Chapter III shows the basic logic

design for different routines. Chapter IV illustrates empir

ical results and discussions. A summary and conclusions are

included in Chapter v.

CHAPTER II

GENERAL DESCRIPTION

Dynamic Hashing

Dynamic hashing keeps an index in main memory. The in

dex is organized as a forest of binary trees [13,14] which

are closely related to binary tries. Figure·1 shows the

binary trie that is formed when the eight keys are treated

as 7 bits binary numbers. The keys are shown in octal nota-

tion.

Key 7 bit binary number

066 0110110
130 1.011000
102 1000010
061 0110001
121 1010001
023 0010011
160 1110000
012 0001010

Figure 2 shows the related binary tree. Notice that

the number of trie nodes in Figure 1 is equal to the number

of internal nodes in Figure 2. Therefore, the number of

nodes in a binary trie is equal to the number of internal

nodes in a related binary tree. Knuth stated that if n dis

tinct binary numbers are put into a binary trie as

described, then the number of nodes of the tree is equal to

the number of partitioning stages required if these numbers

5

160 1 130

121

1 0 102

1

'
1 I 066

0
0 061

023

0 012

Figure 1. Binary Trie Containing 8 Keys

0'\

0

1 0
160

012 023 102

121 130

061 066

Figure 2. Binary Tree Related to the Binary Trie in Figure 1
-...]

are sorted by radix-exchange. Thus, if we assume that our

keys are infinite-precision random uniformly distributed

real numbers between 0 and 1, the number of trie nodes will

be (n/(ln2))+n*g(n}+O(l). Here g(n) is a complicated func

tion which may be neglected since its value is always less

than 10**(-6}. Also the number of nodes needed to store

random keys in a binary trie, with the tree branching ter

minated for subfiles of s or fewer keys, is approximately

n/(s*ln2) [10]. Figure 3 shows the structure of the inter

nal and external nodes of the binary trees.

TAG=O

LEFT

FATHER

RIGHT

TAG=l

RCRD

FATHER

BKT

internal node external node

Figure 3. Data Structure of Index Node

8

TAG is a flag indicating whether a node is internal or

external. FATHER is a pointer to the father of the current

node; if FATHER is null, then the node is a root node. LEFT

and RIGHT are pointers to the left and right sons of the

current node. BKT is a pointer to the bucket on secondary

storage. RCRD is the number of records in the bucket.

9

Besides the index, a data file on secondary storage is

also employed by dynamic hashing and is organized as a vari

able number of buckets of fixed size. Here the word "vari-

able" means that the file size is not fixed, it will change

dynamically according to the number of records stored in the

file.

Let m denote the number of binary trees in the forest.

Then at the beginning, m root nodes (FATHER=NULL) are ini

tialized. These root nodes are currently external nodes

(TAG=l) and each one contains a pointer (BRT) which points

to a bucket on secondary storage, and there are no records

stored in the file (RCRD=O). After initialization, m nodes

are allocated in main memory and m buckets allocated on

secondary storage. Figure 4 shows the.initial situation

with m = 2.

,----, ,----, index

+ + v v

data file

Figure 4. Initial File Structures

10

Denote the set of keys by K(i), 1 <= i <= n where n,

the number of keys, may change with time. A normal hashing

function is needed to map the set of keys K(i) into the set

{1,2,3, ••• ,mJ where m <= n. It defines an entry point in

the index.

Before operations can be performed by dynamic hashing,

pseudo random function should be introduced. It is designed

to generate 0 or 1 with probability of 0.5 when called. The

binary sequence generated by this function should be unique

ly determined by the seed.

Search

The structure of the index and use of the random func

tion make searching a straightforward procedure:

1. Hash the key to locate an entry in the forest of

binary trees.

2. scan down the tree by using the random function

with the seed being the key until an external node

is reached.

3. Follow the pointer to locate the bucket, and bring

the bucket into main memory and search for the key.

If the key is in the bucket, the search ends suc

cessfully, otherwise the search fails.

The binary sequence generated by the random function

constitutes an unique path in the binary tree which guaran

tees only one disk access to search for a key, either suc

cessfully or unsuccessfully.

11

Insertion

Insertion involves_searching for the bucket correspond

ing to the key. If the bucket is found and is not full, the

key is inserted. If the bucket is full, a split is per

formed, so that the keys in the full bucket together with

the "overflow" key are distributed between the two buckets

and the index is adjusted accordingly.

One result of bucket splitting is that the internal

search path for all corresponding keys is increased by at

least one level. Normally the result of bucket splittin~

will increase the path length by one level. For example,

consid-er the tree in Figure 5 with a bucket size of 4. If

Key Search Path

A 01
B 01
c 01
D 01

-1 I

+ 1+1
v v

~-A B C D

Figure 5. File Structure of Dynamic Hashing

12

the key E is added with search path 01, it becomes necessary

to split bucket 2. The next bit in the search path must be

computed by random function for A, B, C, D, and E. Suppose,

e.g., the updated paths are the following:

Key Search Path

A 010
B 010
c 011
D 010
E 011

the revised tree is shown in Figure 6.

l=r-1 l=rl
v v v

I I A B D I I c E

Figure 6. File Structure From Figure 5 After one split

Bucket 2 is split into buckets 2 and 3. Keys A, B, and

13

D are in bucket 2 and C and E in bucket 3. Node 5 becomes a

father and has two sons: node 6 and node 7.

Deletion

To delete a key in the file, first perform the search

routine. If the key is not in the bucket, then the key is

not in the file, otherwise delete the key from the bucket.

It is obvious that after heavy deletion operations the file

will become sparsely occup1ed, which decreases the space

utilization of the file. To avoid this setback, a merge

routine is associated with the deletion operation. After

each deletion operation is performed, a check routine is

then performed to see if the total number of records in the

current bucket and its brother bucket (the bucket pointed

to by the brother node of the node that points to the

current bucket) becomes less than or equal to the capacity

of one bucket. If it doe_s, a merge routine is called to

merge the two brother buckets by moving all keys in either

bucket into the other bucket and freeing the bucket that has

become empty. At the same time the index is updated. Figure

7 shows the file structure after one merge.

Bucket 2 and bucket 3 are merged, all keys are moved

into bucket 2. Bucket 3 is freed. The pointer which points

to bucket 3 is copied to node 3, and node 4 and 5 are freed.

Node 3 becomes an external node. This merge operation im

proves the space utilization of the file even if heavy

insertions and deletions are involved.

14

I 2 I

I I 4 I I 5 I
+ + v v v 1- 1 I 1- 2 I 1- 3

(A) Before Merge

I 2 I
T

I 3 I
FT

v v +------------+ ,I- 1 I I 2 I 3
+------------+

(B) After Merge

Figu·re 7. File Structures of Dynamic Hashing Before
and After One Merge

15

Performance

It takes only pne disk access to search for a key if

the index is kept in.main memory. This guarantees perfor

mance efficiency. The number of disk access needed when in

serting a key can be determined and is in table I.

Splitting or
Merging does
not occur

Splitting or
Merging
occurs

TABLE I

NUMBER OF DISK ACCESSES FOR
DYNAMIC HASHING

' Insertion

The bucket
is or becomes 1 write
empty

The bucket is
not empty 1 read

1 write

1 read
2 write

Deletion

1 read

1 read
1 write

2 read
1 write

As mentioned, it may take more than one split to insert

a key. Let s denote the number of splits and b the bucket

size. The probability that s splits are needed to insert a

key is

b b(s-1)
P(s) = (1-0.5)*0.5 s = 1,2,31 ••• [15].

16

The derivation of P(s) together with an example will be

given later when dynamic hashing with deferred splitting is

introduced.

With a bucket size of 10, the probability of 2 splits

is then 9.766*10**-4, the number decreases to 8.882*10**-16

when bucket size increases to 50 (**means exponential).

Each index tree in the forest is an extended binary

tree in which every node has either two sons or none and the

number of internal nodes is always one less than the number

of external nodes. Therefore, a forest of m extended binary

trees with a total of k internal nodes has k+m external

nodes. With the fact that index trees are closely related

to binary tries, the number of internal and external nodes

in the index is approximated with n being the number of keys

in the file:

Number of internal nodes = n/(b*ln2)-m

Number of external nodes = n/(b*ln2)

Assuming each external node is associated with a buck-

et, ·the space utilization becomes: (n/b)/(n/(b*ln2)) which

has the value of 0.693, i.e., 69.3%.

A Variant - Dynamic Hashing With Deferred Splitting

The space utilization of dynamic hashing can be im-

17

proved by deferring splitting of a bucket until a certain

number of overflow keys have been inserted. The price paid

for the improvement of space utilization is that more than

one dis~ access may be needed to search for a key.

, When splitting the bucket, b*y+l keys are to be distri-

buted between two allocated buckets each with a bucket size

of b. The random function is called to generate the next

binary value for each key. The keys with. a binary value of

0 will be put into one bucket, and the keys with a binary

value of 1 will be put into the other bucket. However, if

the number (b') of keys which generate 0(1) exceeds bucket

size b, then the current splitting fails because a bucket

can only store at most b keys. At this point two options

may be chosen to complete the splitting operation. The

first option is that we actually store the remaining

(b*y+l)-b' of the keys in one bucket and split the b' keys

again until we can successfully separate the keys and store

them in two buckets. More than two buckets may be allocated

by choosing this option which tends to decrease space utili

zation. The second option is that we keep splitting the

bucket until the (b*y+l) keys can be separated and stored

into two buckets. The second option is used in this thesis

because it is easier to make a mathematical study and it

does not decrease space utilization dramatically like the

first option. An example follows.

Let us assume that the random function is called twice

to separate the keys, and the index is updated accordingly.

18

Figure 8 shows the index structure after the split.

~I
_l=f-_1 _l=f-_1 --

v v
-1 1 ~--2-

Figure B. File Structure Containing Inactive Node 3

The first time the random function is called, nodes 2

and 3 are allocated~ they both are external nodes. Since

the keys cannot be separated, the random function is called

again and nodes 4 and 5 are allocated; node 2 becomes an

internal node. This time the keys are separated and distri

buted between buckets 1 and 2. Notice that node 3 is an

external node, but it does not have a pointer that points to

a bucket on secondary storage; it has a null pointer. Side

effect will take place if, after a while, a key needs to be

19

inserted and by traversing the path, node 3 is reached.

Since node 3 is an external node, it is assumed that the key

should be inserted in the bucket pointed to by node 3. With

the fact that there is not a bucket associated with node 3,

the key is lost!

To avoid this situation, it should not be assumed that

all external nodes point to a bucket. In the process of in

serting a key, by scanning down the binary tree, when an

external node is reached, one more check is needed to decide

if the external node is active (it does have a pointer

pointing to a bucket). If a node is found to be inactive

(contains a null pointer), a restore process should be per

formed by traversing back to its father node and going down

to its brother node. Then start scanning down the tree

again until another external node is reached. At this point

the node may or may not be active, so a check should be made

whenever an external node is reached until an active node is

found. Figure 9 shows a situation in which there are two

(nodes 3 and 7) inactive external nodes along a path.

1st Variant

Let us assume that splitting of a bucket is deferred

until y*b keys have been inserted into the bucket, where y

is a number greater than 1. There are two cases: y <~ 2 or

y > 2. First consider the case where y <= 2 (Figure lOa).

When a "home" bucket has become full (bucket 1) and a key is

to be inserted into this bucket, a new "overflow" bucket

20

(bucket 2) is allocated and chained to bucket 1. The over-

flow key is then inserted into the overflow bucket. Any

3

I~
./

7 I

8 9

__ ,, __ ,, __
Figure 9. File Structure Containing Two Inactive Nodes

other overflow key which is to be inserted into bucket 1 is

now inserted into bucket 2 until there are (y-l)*b keys in

bucket 2. The next time a key is inserted into bucket 1,

splitting occurs. A new bucket (bucket 3) is allocated and

all the keys in buckets 1 and 2, together with the current

overflow key, are distributed between buckets 1 and 3.

Bucket 2 is freed (Figure lOb). The index is updated in

1 2

177//J ~------> 1211 II
(A) Before Split

1 2

I~ II
3

1//J II
(B) After Split

Figure 10. Bucket Structure Before and After Split

21

exactly the same way as in the dynamic hashing scheme. ·Now

consider the case where y > 2 (Figure lla). When the home

bucket is full, the first overflow bucket is allocated and

chained to the home bucket. When the first overflow bucket

is full, another overflow bucket is allocated and chained to

the first overflow bucket, and so on, until y*b keys have

-been inserted. When splitting occurs (Figure llb), the index

is updated, node 1 becomes an internal node, two allocated

external nodes (nodes 2 and 3) become sons of node 1, and

__ '=r'
-1----------

v

fZRJI---->11 ///J ~--~->fZ/'J II
(A) Before Split

v v

17ffll r.vzr ~----> 1~·<>1 II
(B) After Split

Figure 11. File Structures of Dynamic Hashing With
Deferred Splitting Before
And After One Split

22·

each of them points to a chain of one or more buckets. The

y*b+l keys are then separated by the random function and

23

distributed among new chains of buckets.

Deferred splitting of buckets means deferred growing of

of index. The approximate numbers of internal and external

nodes are:

Number of internal nodes = n/(y*b*ln2)-m

Number of external nodes = n/(y*b*ln2)

The index size is approximately decreased by a factor of

(1-1/y). When the index is kept in main memory, the number

of disk accesses to search for a key is CEIL(y} in the worst

case.

2nd Variant

Space utilization can be improved considerably by using

shared overflow buckets. Consider the structure in Figure

10 and assume that the bucket size is 10 and y is 1.5. When

splitting occurs, only 5 keys are in bucket 2. The rest of

the space is wasted. This wasted space can be utilized when

another home bucket (bucket 3} has overflowed. Instead of

allocating another overflow bucket to bucket 3, the second

half of bucket 2 is used as an overflow area for bucket 3

(Figure 12a}.

Sooner or later either bucket 1 or bucket 3 is split.

If bucket 1 is split, a new bucket (bucket 4) is allocated

and 16 keys are distributed between buckets 1 and 4. Half of

the space in bucket 2 is freed (Figure 12b}. Two things may

occur now. The first is that bucket 2 is split before

another home bucket needs the overflow space in bucket 2. A

1 11 I I I I 1/J ~------------------I
v

2 r//.,........-,./~.,....._~.....,....,..""H

3 ~~~ ~ ,-----------------------
t

(A) Before Split

1 177~ H
21 t\~AI

4 V//1 H ·1
3 ts~ ~ ~ ~~~~----------~------------

(B) After One Split

Figure 12. File Structures of Dynamic Hashing With
Deferred Splitting Before And
After One Split

24

11/////J""
4

11// II · H
3 1~~ H
5 1~"''1 H

21 __

(A) Before Split

1 11/ II 11 H
2 1/J ~~~'II

4 VI IJ H l
3 I ,, ---, '"., '", '.,,,,------------------ ---

... ' "'-. "· . ··,, "
6 ~~~I ~/jlj ~------------------

(B) After One Split

Figure 13. File Structures of Dynamic Hashing With
Deferred Splitting Before And
After One Split

25

)

new bucket (bucket 5) is allocated, and bucket 2 is freed

(Figure 13a). The second thing that may occur is before

bucket 2 is split, another home bucket (bucket 6) needs

overflow space. Bucket 2 is chained to bucket 6 and the

first half of the space is now available to store overflow

keys (Figure 13b).

26

1/(y-1) home buckets may share the same overflow-buck

et. In this q~~e space utilization shQ~lQ be considerably
' ' ~ ' ' ' ' ' ' ' ' ' ' ' \ ' '

improved at the expense of complexity in bucket management.

The index size and worst case number of disk accesses are

the same as the first variant.

Performance

It may take more than one disk access to search for a

key. The number of disk accesses needed when inserting or

deleting a key (assuming y < 2) can be determined and is

shown in table II. The probability of s splits to insert a

key obeys the geometric probability law with parameter p

where 0 <= p <= 1:

P(s)
(s-1)

= p(l-p)

= 0

s = 1,2,3, •..

otherwise.

In order to obtain the value of p, which is the proba

bility of success, we need to supply the binomial probabili

ty law with parameter nand p', where n = 1,2,3, ••. , and

0 <= p' <= 1.

P (X) = ~ p 1 (1-p 1) ()
x n-x

for x = 0,1,2, •..

= 0 otherwise.

The expected number of splits is then

b
E(s) = 1/[~ (c~1) 0. 5 o.s]

x=c+1-b

An example is as follows: assume b=lO, y=l.S, and

TABLE II

NUMBER OF DISK ACCESSES FOR DYNAMIC HASHING
WITH DEFERRED SPLITTING

Insertion Deletion

Splitting or The bucket
Merging does is or becomes 1 write 1 read
not occur empty

1 read 1 read
The bucket is 1 write 1 write
not empty ----------- -----------

1 read 2 read
2 write 1 write

2 read
Splitting or 1 write
Merging 2 read -----------
occurs 2 write 3 read

1 write

27

c=b*y=l5. When a split occurs, the keys may.be distributed

in a number of ways. Table III lists all of the possible

different combinations of keys. Notice that only under the

28

condition that 6 <= x <= 10 do we have successful distribu-

tions. All other conditions are failure ones. Therefore,

TABLE I II

COMBINATIONS OF KEYS DISTRIBUTION

X

0
1
2
3
4
.5
6
7
8
9

10
11
12
13
14
15
16

* y=1.5
** b=10

bucket 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(s -1)
P(s) = p(1-p) where

bucket 2

16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

10 (16) x 16-x p = f;6 x p' (1-p') where p' = 0.5.

P(s=1) = 0.78988(0.21012)**0 = 0.78988

cond1t1on

fa1lure
failure
failure
failure
failure
failure
success
success
success
success
success
failure
failure
failure
failure
failure
failure

P(s=2) = 0.78988(0.21012)**1 = 0.16597

P(s=3) = 0.78988(0.21012)**2 = 0.03487

P(s=4) ='0.78988(0.21012)**3 = ~.00732

E(s) = 1/p = 1/0.78988 = 1.266

1.266 splits are expected to distribute successfully

the ~eys each.tim~ a split operation is performed!

29

CHAPTER III

IMPLEMENTATION

An implementation of the two schemes has been done

under UNIX and written in C. The implementation of dynamic

hashing with deferred splitting is by using shared overflow

buckets with y = 1.5. For both schemes, the number of

binary trees in the forest is 10 and bucket sizes range from

10 to 50 with an interval oj 10. 30,000 random numbers are

chosen as keys. However, some keys appeared more than once

which tend to decrease the randomness of the keys. The pro

cedures are presented in algorithmic form.

Data Structures

The data structure of a single node in the index is in

Figure 14.

A "union" is a type of variable which may hold (in the

same place but at different times) objects of different

types and sizes, with the compiler keeping track of size and

alignment requirements. Union provides a way to manipulate

different kinds of data in a single area of storage, there

fore internal nodes and external nodes can be used inter

changeably [16].

Two buffers are maintained in main memory; each one can

30

hold a bucket. They serve as an intermediate area

struct {

short TAG

int FATHER

union {

int LEFT

int RCRD

}

union {

int RIGHT

int BKT

}

}

Figure 14. Data Structure of Index Node

between main memory and secondary storage.

Logic Design

Search

The basic design of the search routine for dynamic

hashing is:

1. Hash the key to locate a root node in the index.

31

2. Initialize random function using the key as the

seed.

32

3. Scan down the tree until an external node is found.

4. Read the bucket associated with the external node

into the buffer.

5. Search for the key in the buffer.

The way to scan down the tree is decided by the binary

value generated by the random function. If a 0 is generat

ed, go to the left son, otherwise go to the right son. The

binary sequence generated by the random function from the

root to an active external node determines the unique path

of a key in the index.

The design of the search routine for dynamic hashing

with deferred splitting is slightly different.

1. Hash the key to locate a root node in the index.

2. Initialize the random function by supplying the key

as the seed.

3. Scan down the tree until an external node is found.

4. If the node is inactive, restore the path and go to

step 2.

5. Read the home bucket associated with the external

node into the buffer.

6. Search for the key.

7. If the key is not found and there is an overflow

bucket chained to this home bucket, read the over

flow bucket into the buffer and search for the key.

If in a binary sequence, a value leads the search to an

33

inactive external node, then the value is switched to the

opposite value and the search goes on. For example, if

1011001 is the path to an active external node, but the

second 0 leads the search to an inactive external node, the

path becomes 1011101. At step 6, if the key is not found in

the home bucket, then read the overflow bucket chained to

the home bucket buffer and search for the key again. This

is the reason why it may take more than one disk access to

search for a key.

Insertion

The insertion routine for dynamic hashing is:

1. Perform the first 4 steps of the search routine.

2. If the bucket is full, perform splitting.

3. Insert the key.

Dynamic hashing with deferred splitting is more complex

because more situations have to be handled in order to in

sert a key successfully. Following is the basic design:

1. Perform the first 5 steps of the search routine.

2. If the number of keys in the bucket is less than b,

then insert the key into the home bucket.

3. If the number of keys in the bucket is equal to b,

then

(a) if there is an available overflow bucket, chain

the overflow bucket to the home bucket and in

sert the key into the overflow bucket.

(b) if there is no available overflow bucket, allo-

34

cate a new overflow bucket and chain it to the

home bucket, then insert the key into the over

flow bucket.

4. If the number of keys in the bucket is greater than

b but less than y*b, then insert the key into the

overflow bucket which is chained to the home buck

et.

5. If the number of keys in the bucket is equal to

y*b, perform splitting and insert the key.

The complexity is in bucket management. For an over

flow bucket, in order to distinguish which part of the space

belongs to which home bucket, extra storage needs to be al

located. The way of implementing it is to allocate address

fields in the buckets. The address field in a home bucket

contains the address of the overflow bucket while the ad

dress field in an overflow bucket contains addresses of all

the home buckets that are chained to the overflow bucket.

The order of the qddresses determines which part of the

space in the overflow bucket belongs to which home bucket

(Figure 15).

Buckets 1 and 2 are home buckets and bucket 3 is the

overflow bucket. Bucket 1 uses the first half of the space

in bucket 3 because its address is stored in the first ad

dress field of bucket 3. Bucket 2 uses the second half of

the space in bucket 3 because its address is stored in the

second address field of bucket 3.

35

I
1

_______ v ________ ~~

------------------~~~------------------,
v

3 I ~~~~~PI

2 .1 _________________ 1~1--------------------------t 1
f--

Figure 15. Structure and Relation Between Home
Bucket and Overflow Bucket

Delet:i"on

The design of deletion routine for dynamic hashing is

1. Perform search routine.

2. If the-key is not found, the key is not in the

file, otherwise delete the key.

3. Try to merge two brother buckets if the key is in

the file and deleted.

If the total number of keys in the home bucket and it's

brother bucket is less than or equal to b, a merge is car

ried out by moving all the keys in two brother buckets into

the left bucket, freeing the right bucket and updating the

index by freeing two external nodes associated with two

brother buckets.

The same routine for dynamic hashing with deferred

splitting is a little more complicated. Following is the

design.

1. Perform the search routine.

2. If the key is not found, the key is not in the

file, otherwise delete the key.

36

3. If an overflow bucket is associated with the home

bucket and, after the deletion, the number of keys

in the home bucket and the overflow bucket is equal

to b, the overflow bucket is freed if there is no

other home bucket chained to it.

4. Try to merge two brother buckets if the key is in

the file and deleted.

Random Function

Let the real number x, 0 <= x < 1, correspond to the

binary sequence < X(n) > where the binary representation of

x is (O.X(O)X(l) .••) . Under this correspondence, almost

all x correspond to binary sequences which are random [17].

With this property in mind, a random function that meets the

requirement mentioned in the previous chapter is readily

constructed.

When the random function is called for the first time,

a seed is supplied, and the random function converts the

seed into a real number such that 0 <= x < 1. This forms

the initialization. Subsequent calls (seed = 0) to the ran-

37

dom function will cause X(j), j = 1,2,3, ••• to be extracted

and returned as the binary value generated by the random
-

function. For a floating point number, the random function

generates up to 24 random binary numbers before it exhausts

the mantissa (precision) of the floating point number, while

for a double precision floating point number, it can gen

erate up to 56 random binary numbers. If the internal path

leng~h of the index tree exceeds 56, the precision can be

extended up to infinity. Therefore we can assume that the

random function can generate as many random binary numbers

as needed. The random function is used in much the same way

as a random number generator.

Hash Function

The hash function employed is nothing but an ordinary

hash routine implemented by using the division technique.

The only thing it does is to locate a root node in the

forest. Following is the algorithm.

1. Add up the ASCII value of all the characters in the

key.

2. Divide the result of step 1 by m (the number of

root nodes in the index) and return the remainder.

.. ..

CHAPTER IV

RESULTS AND DISCUSSIONS

The empirical results of both dynamic hashing and

dynamic hashing with deferred splitting are presented in

this chapter. Figures and table indicating empirical

results are listed in the Appendix.

Space Utilization

No matter what the bucket size is, average space utili-

zation of dynamic hashing approaches 69% while for dynamic

hashing with deferred splitting, the result approaches 81%, .
a considerable improvement. Figures 16 through 20 show the

empirical results of space utilization for both schemes.

It is observed that cyclical variations occur in space

utilization perfor~ance. The.reason is that as buckets be

come full, space utilization increases. After a while buck-

ets become completely full and are split almost simultane-

ously and space utilization decreases.

Disk Access

For dynamic hashing, the number of disk access needed

to search for a key is always 1. For dynamic hashing with

deferred splitting, the number is slightly more than 1.

38

39

Figures 21 through 25 show the empirical results.

Again, oscillatory performance of search operations oc

curs for dynamic hashing with deferred. splitting. ·The ~re

quency of occurrence of overflow keys increases as space

utilization increases, resulting i~ an increase in the cost,

in terms of disk accesses, of searches as accessing of the

overflow keys becomes increasingly common.

Index Size

Deferred bucket splitting slows down the growth of in

dex trees, i.e. decreases the index size. Choosing a larger

bucket size can also decrease index size (Figures 26 through

30).

Path Length

It is obvious that the less the number of splits occur,

the shorter the index path length will be. A bucket with a

larger size tends to be split less frequently than a bucket

with a smaller size. Therefore a larger bucket size causes

shorter index path lengths.

As mentioned above the deferred splitting of bucket

slows down the growing of index trees. Therefore the index

path length is decreased (Figures 31 through 35).

Since the index is organized as a forest of binary

trees, it may ~ecome unbalanced after all the keys have been

loaded. A heavily unbalanced tree will create some very

long path lengths and therefore affect performance. Figure

36 to 40 shows the empirical results of tree balancing for

both schemes.

40

Empirical results show that with bucket size 10, the

difference of maximum and minimum index path length of

dynamic hashing does not exceed 4; the difference is 17 for

dynamic hashing with deferred splitting which indicates that

the index trees employed by dynamic hashing is more balanced

than the index trees employed by dynamic hashing with de

ferred splitting. The reason for the heavily unbalanced in

dex trees for dynamic hashing with deferred splitting is

analyzed in chapter IV. For larger bucket sizes, the index

trees are well balanced for both schemes. When b=20, the

difference between maximum and minimum index path lengths

for dynamic hashing does not exceed 3; the difference does

not exceed 4 for dynamic hashing with deferred splitting.

When b=30, the difference does not exceed 3 for both

schemes. When b=40 and 50, the difference does not exceed 2

for both schemes. Well balanced index trees are observed

when larger bucket sizes are employed for both dynamic hash

ing and dynamic hashing with deferred splitting.

Fixed Main Memory

With fixed main memory size, if all the memory space is

used to allocate index nodes, the number of keys that can be

stored in the file is increased by using dynamic hash~ng

with deferred splitting. As mentioned in chapter II, the

index size is decreased by a factor of y. We can then ex-

41

pect that with ~ fixed main memory size, the number of keys

that can be stored should increase by a factor of y. Table

III shows the results under the ass~mption that main m~mory

size is 14K.

Notice that when b = 10, results indicate the increase

is ~ot as. large as expected. This is because the number of

inactive nodes in the index tends to increase with a small

bucket size, and since inactive external nodes do not point

to a bucket that contains keys, the number of keys increased

is less than what we have expected. For all the other buck

et sizes, the percentage of increase of number of records by

using dynamic hashing with deferred splitting is very close

to y{l.S), which is what we expected.

Bucket Size vs Number of Records

It is obvious from the empirical results that by choos

ing a larger bucket size, the overall performance for both

dynamic hashing and dynamic hashing with deferred splitting

is better. However, under certain circumstances this may

not be the case. For example, if 30,000 records are loaded

on a file only for retrieval purpose, in order to save

space, a bucket size of 30 should be chosen because the

space utilization with a bucket size of 30 is better than

the space utilization with all the other bucket sizes.

Larger bucket size may not always result in better perfor

mance.

CHAPTER V

SUMMARY AND CONCLUSIONS

Dynamic hashing and dynamic hashing with deferred

splitting are two file organization methods that· do not re

quire complete file reorganization. They can be very useful

for applications that store records in a volatile file main

tained on direct access auxiliary storage because a volatile

file does not reduce the performance at all. However, if

the index is too large to be kept in main memory, part of it

must be stored on secondary storage which definitely will

affect performance. Therefore any method that can reduce

the index size so it can be maintained in main memory is

highly desirable.

Conclusions

Dynamic hashing employs an index in main memory to

guarantee one disk access for a search operation. Space

utilization is about 69%. If index size is not a major fac

tor, this scheme ensures performance to a satisfying degree.

The purpose of dynamic hashing with deferred splitting is

aimed at improving space utilization. By doing so, index

size is decreased too to a certain degree, thus provides a

higher probability of keeping the index in main memory. One

42

43

disadvan~age is slight performance degradation in trying to

search for a key, another disadvantage is the complexity in

bucket management and various routines.

From the empirical results presented above, it is ob

served that trade-?ffs exist between dynamic hashing and

dynamic hashing with deferred splitting. If time is a major

factor, dynamic hashing shows better performance since it

guarantees only one disk access to search for a key. Howev

er, if main memory size as well as secondary storage is at a

premium, dynamic hashing with deferred splitting shows

better performance because it employs a smaller main memory

size and increases space utilization.

Suggested Future Work

The results in the thesis are obtained by loading

30,000 randomly chosen keys and searching all the keys. It

would be an interesting topic if the file becomes dynamic,

1.e., if heavy insertions and deletions are involved. This

topic is left to future study.

If the keys are in natural order, then after the keys

are loaded on the file, the results may be different from

the ones in this thesis. This topic is also left to future

study.

SELECTED BIBLIOGRAPHY

[1] Newell, A., and Simon, H. A. "The logic theory machine:
A complex information processing system." IRE
Trans. Inform. Theory, 2,3(Sept. 1956), 61-79.

[2] Adelson-Velskii, G.M., and Landis, Y.M. "An algorithm
for the organization of information." ·Dokl. Akad.
Nauk SSSR, 146(1962), 263-266 (Russianr:-Engl1sh
transr:-Tn Soviet Math. Dokl. 3(1962), 1259-1262.

[3] OS/VS2 ISAM Logic, IBM ~Y26-3833.

[4] Bayer, R., and McCreight, E. "Organization and mainte
nance of large ordered indexes." Acta Informatica,
1(1972) 1 173-189. --

[5] E. G. Coffman and J. Eve, "File structures using hashng
functions.'' Communications ACM, Vol 13, No 7,
(1970), 427-432.

[6] P. G. Sorenson, J. P. Tremblay and R. F. Deustcher,
"Key-to-address transformation techniques." INFOR
(Canada) Vol. 16, no 1, (1978), 397-409.

[7] G. D. Knott, "Hashing functions." Computer Journal, Vol
18, (August 1975), 265-278.

[8] J. L. Carter and M. N. Wegman, "Universal classes of
hash functions." RC 6687, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598,
1977.

[9] 0. Hanson, Design of Computer Data Files, Computer Sci
ence Press, 1982.

[10] D. E. Knu~h, The art of computer programming, Vol 3:
Sort1ng and searching, Addison-Wesley, Reading,
Mass., 1969. ·

[11] Larson, P. "Dynamic hashing." BIT, 18(1978), 184-201.

[12] M. Scholl, "New file organizations based on dynamic
hashing." ACM TODS, Vol 6, No 1, (1981), 194-211.

[13] J. Nievergelt, "Binary search trees and file organiza-

44

tion." Computing Surveys, Vol. 6, No. 3, (Sep
tember 1974), 195-207.

45

[14] E. H. Sussenguth, "Use of tree structures for process
ing files." Communications ACM, Vol. 6, No. 5,
(May 1963), 272-279.

[15] A. M. Mood, F. A. Graybill, and D. C. Bees, Introduc
tion to the Theory of Statistics. McGraw-Hlll
series-in probability and stat1stics, 1974.

[16] B. W. Kernighan, D. ~· Ritchie, The £ Programming
Language, Prentlce-Hal1, Englewood Cliffs, New
Jersey, 1978.

[17] D. E. Kn~th, ~art of computer programming, Vol. 2:
Sem1-numer1cal algorithms, Addison-Wesley, Read
ing, Mass., 1969.

APPENDIX

46

TABLE IV

PERCENTAGE OF INCREASE OF NUMBER OF RECORDS STORED BY
DYNAMIC HASHING WITH DEFERRED SPLITTING

VS DYNAMIC HASHING WITH MAIN
MEMORY SIZE 14K

bucket dynam1c hash1ng dynam1c hash1ng percent

47

size with deferred increased
splitting

10 3521 4242 20.48%
20 6876 9916 44.21%
3'0 10216 14935 46.19%
40 13604 19770 45.32%
50 16742 24878 48.60%

* y = 1.5

s
p
A
c
E

u
T
I
L
I
z
A
T
I
0
N

0.825j

~
0.8001

~
122.775-1

J
I

0.750~
j

0.725-1

~
0.700~

0.6751

., , ,.
+--+-+-.... I \ ... -..... +- ,..-+,.,. r-+--+ '" ,' '• _.. ,., ""+--• _~--·--·--·--· ,., ,. _,.- -

" J

--- Dynamic Hashing with Deferred Splitting

____ Dynamic Hashing

''--. -----~---~ -...._,.__..--.---............,__..__

"1--r-r-r-1-~1"1"''-r-ri-·.,..-,.-T"""f I I I 1~-r-r-r-r--r~,......-r-~r-~ I I "I I I r-T I I I I I I I I I I I I I I I

0 5000 10000 15860 26686 25000 34?.H3eEi

NUMBER OF RECORDS

PIGURB 16. SPACE UTILIZATION VS NUMBER OF RECORDS (BUCKET SIZB 10) """ OJ

0.825

s 0.800
p
A
c
E 0.775

u
T
I 0.750
L
I
z
A 0.725
T
I
0
N 0.700

0.675

0

• I '1.
I \
I \
I \ .-,
I \ I ' ..+

t I \ t " ..+-, .--+- ,+, .,.,. ..
\ I \ f ', ' ' ' _ , ' " .,... _ _.. ..
\ I ~I J/' _., ~-..... ~""
\ I '"......__.,
\ I v-

\ f
\ '

Dynamic Hashing with Deferred Splitting

Dynamic Hashing

,------'1 ~-----.------.---..---.---.· I I I I I I 1--------T----.-~-------.-T-r-"T----r-r~-----r--.---.----r-T~~.-----~~~

5000 10000 15000 20000 25000 30000

NUMBER OF RECORDS

FIGURE 17. SPACE UTILIZATION VS NUMBER OF RECORDS (BUCKET SIZE 20)
""' \0

0.84

s 0.81
p
A
c
E 0.78

u
T
I 0.75
L
I
z
A 0.72
T
I
0
N 0.69

0.66

0

• I
I
I
I ,..._

I I " I I \ ,~ , .. ,_
I I \, , \ ... , , ' ,.......,,
I + \ ? \ ,+--+ \\ 1' -. Ai--K ,' ... \ I \ I , ~ ..,. .. _._, ,.. ..
I I '- , \ J ...,., ., ,.- .,..- +
I I .. \ 1" ... - # ,
l I \ I
\ I ,._, .,

Dynamic Hashing with Deferred Splitting

Dynamic Hashing

6000 10000 16000 20000

NUMBER OF RECORDS

25000 30000

FIGURE 18. SPACE UTIIJZATION VS NUYBER OP' RECORDS (BUCKET SIZE 30) U1
0

s
p
A
c
E

u
T
I
L
I
z
A
T
I
0
N

0.851.
-l
:j

e.aei

0.70~
..1

~ .,

0.651
~
J,

\ ,~ ..
\ ~- ..-""\ . \
\ """' , • .' \ ,.+-~+-.. \ - _.._ .. -+--...
\ " \ r '" .. +--..... \ ,. ' ',.__ _...,..
\ _ .. ., \ r ' tf •' -+---+-~-+-"' \ , \ ,

..... -+'"... ~ ~ ...

--- Dynamic Hashing with Deferred Splitting

____ Dynamic Hashing

?~
I ""'~--I

~-..-,--r--rr-'1"'-r-T··-r·rr--r--'1""1"-r-T'"'r-T""'"I' r I I I 1-r I I I I I I I I I r I I I I I ~-r-"r"l I I I I I I I I I I I I I

0 500121 10000 15000 20066 25000 :3l?.i!?.0a

NUMBER OF RECORDS

FIGURE 19. SPACE UTILIZATION VS NUMBER OF RECORDS (BUCKET SIZE 40) U1
1-'

0.81

s 0.78
p
A
c
E 0.75

u
T
I 0.72
L
I
z
A 0.69
T
I
0
N 0.66

0.63

0

--.o-., .. -, ,A,_ ... -+' ... +', -+--o-.
i' ... , 1: , " , " • " ,-

f ', / ', ,,.,, ,II ' ,..+, •' "~/ ~, '-.o-
' \.1 ', "+- '-.o."' \. I

I '--A '• ,' I .. _.

I
I
I
I
I
I
I
I •

Dynamic Hashing with Deferred Splitting

Dynamic Hashing

5000 10000 15000 20000 25000 30000

NUMBER OF RECORDS

FIGURE 20. SPACE UTIIJZATION VS NUMBER OF RECORDS (BUCKET SIZE 50) (11

"'

N
u
M
B
E
R

0
F

A
c
c
E
s
s

1 . 18

1 . 15

1 . 1 2

1. 09

1. 06

1 . 03

1. 00

a

't ..
\
\
\
\

~ ' ,..,
\ I \

\ I lo. ~ +
\ I ~ + '.-- ',

' ' ' ' --+--~ ~ ' ' . --~ --• ' ' ' +-~

' ' - --' ' ·~ _, ·- ...
.. ' , -.... ·--+--+---·--•' -~-+--+--•--

--- Dynamic Hashing with Deferred Splitting

____ Dynamic Hashing

• I • I ' I I I • ' • I I I I • I I ' ' I I I I I I I

5000 10000 15000 20000 25000 30000

NUMBER OF RECORDS

FIGURE 21. AVERAGE NU11BER OF DISK ACCESSES (BUCKET SIZE 10) U1
w

1 . 18

1 . 15
N
u
M
B
E
R

0
F

A
c
c
E
s
s

0

• \
I
\
I
I
I
I

\ tl
I 1 I

t I \
I I I

I : \ , ... ·~\
\ . \ . ' , ... -.... _. ' . . , ' •' ' . . ' , \ ' ',
' • • I ' .-' '
< < ' ' ' T ', ...

' . ' . ' , - ·-' . ' , ' , ', ·--~ ' , ' , ' .--',.., \ , ... _.... --. , -- .
' * •-.... --·--
' _,

Dynamic Hashing with Deferred Splitting

Dynamic Hashing

•
5000 10000 15000 20000 25000 30808

NUMBER OF RECORDS

FIGURE 22. AVERAGE NUMBER OP DISK ACCESSES (BUCKET SIZE 20) l1l

"'"

N
u
M
8
E
R

0
F

A
c
c
E
s
s

1 . 150

1 . 125

1 . 100

1 .076

t • 050

1 .026

1 . 000

0

" I \
I \ 6-
1 1 r \
1 I 1 \
I I I \ 4,.
I I I I I' '-
1 I I I I '-
1 I I I I "-
1 I I I I ...

I ~ : ~ ~ .. ,
: I 1 \ I \
1 I I I I \

I I I I \
II I I I I \,.__.,..

1.1.. \ I \ I' ~
I I y I I \ I' '-,

1 + I I I +, Jl _ ... 'P' I \ A , ' ~ I ' I ' y ' •' "' \ I .. , \ I \ ,.. '
,, \ I \ /If '

\ I \ I'
\ I \ I'

~~ ' / ' ,. .. 1/f
Dynamic Hashing with Deferred Splitting

Dynamic Hashing

• i I i I I I I

5000 10000 15000 20000 25000 30000

NUMBER OF RECORDS

FIGURE 23. AVERAGE NtJMBER OF DISX ACCESSES (BUCKET SIZE 30) U1
U1

N
u
M
B
E
R

0
F

A
c
c
E
s
s

1. 2a

1 . 15

1 . t a

1. a5

1. aa

a

• \

' \
' \
'

Dynamic Hashing with Deferred Splitting

Dynamic Hashing
I
I
I

' I
I

'
....

+ I \ .-\

I 0 1 • --...
0 I ' "' ' 0 0 0 I 0 ,

0 0 0 I 0 , '
0 0 \ I 0 j \
\I 0 I 0 I ' I 0 I 0 I

0
0 I 0 I 0 I 0 -·
O 0 1 ' O I 0 .-
0 I y y 0 I 0 --\ I 0 I ~ ~ \ -"

0 0 0 ' T ' • • I • I • , ' AI ' , '• -
0 0 0 I 0 I ,. •' 0 0 0 I ' I ', •

\ ' • , .. f ·--·--·--·-

1 I '. I \ 1
I I \ I \ I

~ • 'v

• .-----.-------.-----.. ,-----..... ~
50 a a 100a0 15a0a 200a0 25a0a 3aaaa

NUMBER OF RECORDS

FIGURE 24. AVERAGE NUJ.IBER OF DISK ACCESSES (BUCKET SIZE 40) U1
0'\

N
u
M
B
E
R

0
F

A
c
c
E
s
s

1 . 158

I . 125

1 . 108

t • 875

1 . 858

1. 825

1 • 000

8

.-,
I I
I \ -,
I I f \
I I \
I I I •

• I \ I \
,, I I I 1
II I I I I
I I I I : I
I I I I I
I I I I I I
I I I I : I ,.+'".._
I I I l A. \ 1 ,._ - ..
I 11. T I I '"\.
I \1 I I \ I \
I II I I \ + \
I \ I I 1c I \
I II I I 'I(I \
I II I I \ I •
I I I I I \ / \'
I \I \ I \ + .._

..l + I \ I '
T I ,' \ I \
I \ I &. I '
I I I ' / \
I I I \ • \

I I 1 \ 1 \
I I .l I I \

•' ' r ' 1 '
' I \ I \ ... , \ .: \ ' , ' ... ~, '

Dynamic Hashing with Deferred Splitting ... ~...... A ·--Dynamic Hashing

• I 1 I

5000 18008 15000 20000 25000 30080

NUMBER OF RECORDS

FIGURE 25. AVERAGE NUMBER OF DISK ACCESSES (BUCKET SIZE 50) U1
-..]

9000

8000

7000

6000
I
N
D 5000
E
X

4000
s
I
z 3000
E

2000

1000

0
T

0

--- Dynamic Hashing with Deferred Splitting

___ Dynamic Hashing

,..,,'
_.~~r'

.--•"
,K

,I¥

,.
.,.;'

~,#
.111' .. -

,,•''

.,.
,

.... ~ , ..
......

5000 10000 15000 20000

NUMBER OF RECORDS

,ill'

...... , ..
......

K""

25000

FIGURE 26. INDEX SIZE VS NUMBER OF RECORDS (BUCKET SIZE 10)

A" .. ,. ..

..

30000

(.11
00

I
N
D
E
X

s
I
z
E

5000

0

--- Dynamic Hashing with Deferred Splitting

___ Dynamic Hashing

. ,, .. ,,-_ ..

....... ""'
.... __ . __

..........

..,. ..

..... ,
......

...,.

..... ..,.

61210121 11211211210 151210121 2121121121121

NUMBER OF RECORDS

..... , --+--.... _ - ..
...,., '

261210121 312101210

FIGURE 27. INDEX SIZE VS NUMBER OF RECORDS (BUCKET SIZE 20) Ul
\0

I
N
D
E
X

s
I
z
E

3000

2500

e

--- Dynamic Hashing with Deferred Splitting

___ Dynamic Hashing

___ ...,. , # .. -"'

_,. -.................. --
.......

......
A', ... ,

,#111"

. ,.#'

se00 100e0 tse0e 20000 2s0e0

NUMBER OF RECORDS

.....

FIGURE 28. INDEX SIZB VS NUKBBR OF RECORDS (BUCDT SIZE 30)

.. ,.-'
....

~ ...

30e00

0'1
0

251210

2000

I
N 1500
D
E
X

s 101210
I
z
E

500

--- Dynamic Hashing with Deferred Splitting

___ Dynamic Hashing

,,
.. ..--·--•-' , ...

.... ~-•'
..... •'

.... ~-·-~-~-~-~ ,., '

•'
.,Af'"''

,, .~~· ,..,
~~·-~·--·-~-~-~-~-~

0 -'~ir-TI-,i~i~ir-Ti~i~i~ir-Ti-,i~i~ir-Ti-,i~i~ri~i-,i~i~r;~;-,;~;r-r;-,;~;~;r-TI-,i~l~ir-TI-,I~i~ri~i-,i~ir-TI-,I~i~i~·Ti-,l~l~r;~;-,;~;r-r;~;-,;~;r-Ti-,i-,i~lr-Ti-,1~1~
0 5000 10000 15000 20000 25000 30000

NUMBER OF RECORDS

nGURE 29. INDEX SIZE VS NUliBBR OJ' RECORDS {BUCKET SIZE 40) 0\ ._..

1500

1250

I
N 1000
D
E
X

750
s
I
z
E 500

250

0

0

--- Dynamic Hashing with Deferred Splitting

___ Dynamic Hashing

........ --.... -.... , ..
,.K

,. --•'

,
,'

,fl

,.K ...
............ .-.-...---+---+-_.#"

,. ..

.....
,'

5000 10000 15000 20000

NUMBER OF RECORDS

•' ,'
•'

,'
,J!F

~t'
,. ,'

25000

FIGURE 30. INDEX SIZE VS NmlBER OF RECORDS (BUCKET SIZE 50)

........ -..o
v""¥

30000

0"1
I'V

1 1

10

9

p 8
A
T
H 7

L
E 6
N
G
T 5
H

4

3

2
T

0

....
" , ,

" ,
t!' ,

,.N
.,.k

....... -•-.,. -
.........

.........

...o---+-..........

,/,' --- Dynamic Hashing with Deferred Splitting

___ Dynamic Hashing

..... _

T 1 t t 1 t 1111 t 1 e---,-----r-.~-~--r-r-~1 111 t"""T~~ • • 1 • 11 t 11 t ·~

5000 10000 16000 20000 25000 30000

NUMBER OF RECORDS

FIGURE 31. AVERA.GE INDEX PATH LENGTHS (BUCKET SIZE 10) 0\
w

8--_j

7j
~

p 6-l

~ ~
H i
L 5-_j

~ 4 ~
T ~
H

3

?

, ..
l

I
I

I

J

, ..
tf
" I

Jf'

~·------.--·•
~.~'~--·-~-+-•-+-~

~
.......... " -

.,..._ -·--
. .-/,. ..

.,.K '"'
--- Dynamic Hashing with Deferred Splitting

___ Dynamic Hashing

·y--r-r--~·-y-•'f'"'r"'!~-rr·'t"""''""'~'"t"'"T'-1 I 1 I ...-..-.T-r-r-r-T~r...,....-r-r-r-r~T"'T'" I I I I I r r-! ••••••• I ' I

0 5000 10000 15000 2!.30130 25000 3.01?J00

NUMBER OF RECORDS

FIGURE 32. AVERAGE INDEX PATH LENGTHS (BUCKET SIZE 20) en ..,.

p

7i

61
A 5
T
H

L
E
N J
G I

T 3~ Hj
I·

,
I

I
I

I
I

I
I

f

f(,
I , , ,•

,'

.~ .. , ..

,.,
,' ,•

,./

...... --+_ ~.AT
....
..... ... ~ ,.,~

-~__..._._. ..
~ _

, -~-+--+--+ _ _.._.,.._-+_ ... _

Dynamic Hashing with Deferred Splitting

Dynamic Hashing

··r-,.....,-......,--,-·r..,-""~l"-r-r-r·"T-,.-.,.....,."r~r-rr-r-"r-r--r-T...,--T·-r·T-r-T""-r-·..-r-r-1 ·r 1 1 r-T 1 1 1 1 ...--r-~ 1 1 1 1 1 1 1 1 1 1 1

0 5000 10(2)00 15000 200138 25000 30000

NUMBER OF RECORDS

FIGURE 33. AVERAGE INDEX PATH LENGTHS (BUCKET SIZE 30) 0"1
U1

7-l

~ sl
H 4~
~ ~
N
G 3
T
H

2

If-'* ,
/

I
I

I
I

I
I

I
I

I
I

I
.f

,'
,l

I

•' ,'
... -~.,..#"

~_._..

~~ ~-~,~-~-~-~-._-·--•--+--+

........ --+-~-~-~-
.11"'' ,

............ ,.,.

--- Dynamic Hashing with Deferred Splitting

___ Dynamic Hashing

I I I I I I I I I I I I I---.~T I I I I I I j I I I I I I I I I I I I ' I I I I ' ' I I I I I I I ' • I •• I I • I J

0 5000 10000 15000 2eeee 25000 3001210

NUMBER OF RECORDS

PIGURE 34. AVERAGE INDEX PATH LENGTHS (BUCKET SIZE 40) m
m

p
A
T

6

5

H 4

L
E
N
G 3
T
H

2

I
I

I

f

e

___. -_._._ _.................. . ·--·-~ .-,·--

,.,
, , ,

......... -, .. ,

,
..............

,.II''

..... _ ·--·--·- -, -
#'

......... -....

~ .. ~ --- Dynamic Hashing with Deferred Splitting

,/ __ Dynamic Hashing
I ,•

I

seee teeee tseee 2eeee 2seee
NUMBER OF RECORDS

FIGURE 35. AVERAGE INDEX PATH LENGTHS (BUCKET SIZE 50)

seeee

m
-.I

18

15

p
A 12
T
H

L 9
E
N

D
I
F
F

0

--- Dynamic Hashing with Deferred Splitting

___ Dynamic Hashing
,..-+-+-+--•
I

~-1.. ~-+--•--•-...
I ', ,'

/ v
I

,~ .. _

, ,.

I
I
I
I
I , , , ,

I ,
~-+--+--•--• ,

r ' I
,. ', J ,. •--+-+-+-.. ,

I ,
I

~-+--4

/""'. /""'. /""" • • • • • • • • • •

5000 10000 15000 20000 25000 30000

NUMBER OF RECORDS

FIGURE 36. DIFFERENCE BE~EN KAX AND KIN PATH LENGTHS (BUCKET SIZE 10) en
(X)

p
A
T
H

L
E
N

D
I
F
F

5

4

0

t--+--+-~
I \
I \

I \
I \
I \

I \
I \

I \

t--•--•--•--+-+-4 ~--+--+--o--+--+--•--•--•--o.
I
I
I

I
I

I
I

I
I

t--+--+--+--+--+
I
I

I
I

I
I

I
I
I -·

5000

Dynamic Hashing with Deferred Splitting

Dynamic Hashing

10000 15000 20000

NUMBER OF RECORDS

25000 30000

FIGURE 37. DIFFERENCE BETWEEN MAX AND MIN PATH LENGTHS (BUCKET SIZE 20) 0'1
1.0

3

p
A 2
T
H

L
E
N

D
I
F
F

a

a s0a0

' • • -+--+--+--+--+-+-+-+--+--+

Dynamic Hashing with Deferred Splitting

Dynamic Hashing

ta0a0 tse0a 20000

NUMBER OF RECORDS

25aa0 3a0a0

FIGURE 38. DIFFERENCE BETWEEN MAX AND MIN PATH LENGTHS (BUCKET SIZE 30) -.....)

0

p
A
T
H

2

L 1
E
N

D
I
F
F

0

a

.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

+

I
I
I
I
I

·I
I
I
I
I
I

£ .l

t--t -+-+--,
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I

I I
I I
I I
I I
I I
I ' I I
I I

' I
I I
I I
I I
I I - - -

Dynamic Hashing with Deferred Splitting

Dynamic Hashing

-+-+---+--+--

- -

.. I I I I I I I I •• -----. •• I I I I

5000 100130 151300 20000 250013 300130

NUMBER OF RECORDS

FIGURE 39. DIFFERENCE BETWEEN MAX AND MIN PATH LENGTHS (BUCKET SIZE 40) -..,J
~

p
A
T
H

2

L 1
E
N

D
I
F
F

0

0

M -+-+--t
I I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~-~-+--•--t -•--•--+--+
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
l I
I I
I I
I I
I I
I I
I I

• • • •--4 ~ • • z --~~~--~~~---.-4
L ...

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ..

Dynamic Hashing with Deferred Splitting·

Dynamic Hashing

5000 10000 15000 20000

NUMBER OF RECORDS

25000 30000

FIGURE 40. DIFFERENCE BETWEEN MAX AND MIN PATH LENGTHS (BUCKET SIZE 50) -....]
rv

VITA

Hu Chang

Candidate for the Degree of

Master of Science

Thesis: A STUDY OF DYNAMIC HASHING AND DYNAMIC HASHING
WITH DEFERRED SPLITTING

Major Field: Computing and Information Science

Biographical:

Personal Data:
September
Chien-Yeh
1983.

Born in Taiwan, Republic of China,
7, 1958, the son of Chien-Yun and
Chang. Married to Be-Ny Wu on July 17,

Education: Graduated from Chien-Kuo Hign School,
Taiwan, R.O.C., in July, 1976; received Bachelor
of Science degree in Applied Mathematics from
Fu-Jen Catholic University, Taiwan, R.O.c., in May
1981; Completed requirements for Master of Science
degree at Oklahoma State University in December,
1985.

