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CHAPTER I

INTRODUCTION

Thousands of chemicals are introduced into the enviromment yearly.
A 1981 estimate shows that almost six to eight million chemicals existed
with an estimated 400,000 being added yearly (Craig and Enslein, 1981).
The rapid growth of chemical technology with a concomitant increase in
the introduction of chemicals into the environment makes it imperative
that methods be developed to use biological, chemical, and physical prop-
erties of existing chemicals for predicting the activities of new ones.
Such methods should be fast, efficient, and easy to use when compared
with existing biological measurements. Maki (1983) noted that the
ultimate enforcement of existing regulations requires the techniques
to evaluate and predict types and degree of deleterious effects of chem-
icals. The precision of chemical measurements together with the existing
large data base of biological inf smation on existing chemicals offer
an attractive possiblity for integrating biochemical data into predictive
models.

Quantifying biological activity using physical or chemical proper-
ties was first proposed by Meyer (1899) and Overton (1899). They
independently observed that the narcotic activity of many substances
can be explained by their fat-water partition coefficients. When the

relationship between biological, physical, and chemical parameters is



quantified, it is referred to as Quantitative Structure-Activity Rela-
tionship (QSAR).

Since the early dbservations by Meyer and Overton, landmark
achievements in QSAR have been observed in different areas of science.
Recently, envirommentalists have evaluated some QSAR models for predict-
ing fate and effect of contaminants based on physical and chemical para-
meters.

In 1978, Schultz et al. studied the relationship between par-
tition coefficient (log P) of a compound between octanol and water and
toxicity of five organic contaminants associated with aqueous coal con-
version effluents, the aromatic campounds containing two or more methyl
groups were more toxic than those with one or no alkyl substitutions.

A series of 11 nitrogen-containing heterocyclic compounds which may be
associated with the effluents fram coal conversion technologies were
examined by Schultz, Cajina-Quezada, and Dumont {1980). They concluded
that an increasing linear relationship existed between octanol/water
partition coefficient (log P), molecular weight, and boiling point.

The relationship between LC50 and log P, High Performance Liquid
Chraomatography (HPLC) ret ntion indices, solubility, and molecular con-
nectivity indices using guppies as test organisms was examined by
Konemann (1981). 1In this study, log P gave the best correlation with
the LC50 values. Konemarm and Musch (1981) evaluated the influence of
pH on the QSAR of chlorophenols. They observed a high correlation
between log (1/LC50) and both log P and dissociation constant, pKa.
Their observation led to the conclusion that the influence of pKa on
toxicity is because the molecular form of an acid can passiveély diffuse

through the membrane faster than the ionic form. These earlier attempts



at predicting toxicity from different parameters using QSAR form the

basis for my thesis.
Objective

The major objective of the present study is to develop a method
capable of predicting the toxic effect of organic chemicals based upon
physicochemical properties of chemicals with a similar mode of action.
The Linear Free Energy Relationship (LFER) or Hansch approach to QSAR
was adopted because it is relatively fast, efficient, and easy to use
(Hansch, Muir, Fujita, Maloney, Geiger, and Streich, 1963). Statistical
analyses were performed in order to determine if it was possible to use
an apparent relationship between existing biological data and certain
molecular properties for predicting the toxicity of a group of substi-
tuted and unsubstituted aromatic compounds with anesthetic effects.
Hydrophobic consant (7T) and molar refractivity, (MR) were chosen as the
appropriate parameters to determine the toxicity of nonpolar aromatic
campounds. The choice of hydrophobic constant was based on a prior know-
ledge that log P is not only linearly related to m but that log P can
be used to predict toxicity. The major advantage of using m instead
of log P is that i. eliminates the need to determine the individual
partition coefficient of each compound. A knowledge of the presence
of a substituent can be used to estimate a compound's toxicity. This
approach to QSAR, known as the moiety or group approach, recognizes the
contribution of each group to the overall hydrophobicity of a compound.

A camparison of the degree of correlation between MR and T with
toxic effects both individually and collectively, will help in deter-
miriing how accurately toxicity can be predicted through the knowledge

of a compound's size or hydrophcobicity.



Hypotheses

The hypotheses for this research were as follows:

l. Ho: There is no significant linear relationship between the
log of the inverse of oral ID50 (1/log 10 oral LD50) and hydrophobic
constant (7).

2. Ho: There is no significant linear relationship between the
log of the inverse of oral ID50 (1/log 10 oral ID50) and molar refrac-
tivity (MR).

3. Ho: There is no significant linear relationship between the
log of the inverse of oral IDS0 (1/log 10 oral ID50) and both hydrophobic

constant and molar refractivity.

Assumptions and Limitations

The major assumptions of the Hansch-type quantitative structure-
activity relationship methodology are the following:

1. A significant relationship exists between the structure of a
compound and its biological activity,

2. The relationship between the biological activity and molecular
properties can be described mathematically (Martin, 1981),

3. Substituent effects on the biological activities of a com
pourd is additive and constitutive (Fujita, Iwasa, and Hansch, 1964),
and

4. The partitioning of a compound between octanol and water simu-
lates its partitioning in lipophilic biological substances,

The limitations of the Hansch-type QSAR methods include:

1. Multicolinearity and cross correlation of independent variables

(Cammarata, Allen, Seydel, and Wempe, 1970; Craig, 1971). The



possibility of cross correlation between the two parameters used in this
study will be checked through the use of a correlation matrix.

2. The possiblity of chance correlation when too many variables
are used to correlate too few biological data. 1In order to prevent the
possiblity of chance correlation, at least 12 compounds were used in
the analysis.

3. Inappropriate scaling of parameters. This was avoided by using
a well tested scaling scheme for molar refractivity.

The Hansch approach is also inappropriate for correlation of data
where compounds fall into many different structural series or no series

at all (Cramer, Redl, and Berkoff, 1974).



CHAPTER II

LITERATURE REVIEW

Historical Development

It was shown in 1899 that biological activities of chemicals could
be predicted from their physicochemical properties (Meyer, 1899; Overton,
1899). Relating the activity of anesthetics to their lipid-water parti-
tion coefficient, Meyer and Overton also proposed that anesthetics induce
equal effects at equimolar concentrations in certain cell lipids. For
the next six decades, extensive research was directed towards testing
the relationship between diverse chemical structures using different
biological systems and to defining different parameters which could be
used to quantify this relationship. ILangley (1905) proposed that the
characteristic properties associated with an dbserved activity in a given
biological assay could be correlated with vhysical properties such as
solubility and refractive index. Other investigators have found a
correlation between the toxicity of insect fumigants and increasing
boiling point and decreasing vapor pressure (Moore, 1917). Tiley and
Schaffer (1926) proposed the existence of relationships between toxicity
and structures within different homologous series. Clark (1933) cbserved
a rapid decrease in the toxic ooncentration of alcohol to frogs' hearts.
This did not continue indefinitely with an increase in molecular weight.
A point existed in a series when a compound of maximum toxicity was

reached. While also working with a homologous series, Meyer and Hemmi



(1935) reported a correlation between the concentration of same chemicals
within the series and physical properties such as water solubility, vapor
pressure, and surface activity. They proposed that such a correlation
was indicative of the equilibrium that existed between the concentration
of the chemicals and the surroundings.

An outstanding contribution to quantifying structure-activity rela-
tionships during this period was from the study of the effect of steri-
cally remote substituents on the equilibrium or rate constants of organic
reaction (Hammett, 1935). His observations led to the formulation of
the Hammett Sigma (o) constant. Hammett Sigma constants are measures
of the electronic contribution of a substituent attached to a parent
campound. The first application of the thermodynamic processes to
structure-activity studies in biological systems was by Fergusson
(1939). He proposed that the chemical potential of chemicals could be
used for determining their toxicity. Bell and Roblin (1942) evaluated
the use of pKa on the relative negativity of the SO, groups of sulfan-
ilamide campounds, while Albert, Rubbo, Goldcare, Davey, and Stone (1945)
demonstrated that the degree of ionization of acridine molecules was
important in determining antibacterial activities. Beckett (1956)
demonstrated a relationship between pKa and the analgesic potency of
tertiary amines and some synthetic analgesics. Brodie and Hogben (1957)
observed a relationship between gastrointestinal absorption of drugs,
the pKa, ard the partition ratio of organic electrolytes in gastric juice
and plasma. Vogel (1948) performed extensive studies on measuring of
the contribution to refractivity by same substituents. Taft (1952)
extended Hammett's concepts to steric effects of substituents on
nonaromatic parent compounds. The sustituent was subsequently known

as Taft (Es) constant.



Although, it was generally known that hydrophobicity played an
important role in determining biological activity, many unsolved problems
remained. According to a review by Martin (1978), such problems
included:

1. Lack of agreement on the solvent system to be used to simulate
biological systems,

2. The nonrecognition of statistical methods,

3. The lack of high speed computers, and

4. Inadequate attention was paid to predicting partition coeffi-
cient from structures.

Between 1960 and 1970, major advances in quantitative structure-
activity relationships were performed by Hansch et al. (1963), Hansch
and Steward (1964), Fujita et al. (1964), and Iwasa, Fujita, and Hansch
(1965). Hansch and co-workers proposed the Linear Free Energy Rela-
tionship (LFER) or extradynamic approach to quantitifying structure-
activity relationships. For the first time, structure-activity relation—
ships were examined for statistical significance. They proposed that
the log of octanol water partition coefficient should be taken as a
measure of lipophilicity. In addition, they pointed out that the
coefficient is additive and constitutive and can, therefore, be calcu-
lated from molecular structure. They also defined the hydrophobic para-
meter, T, which is a measure of the contribution to the hydrophobicity
of a parent compound by a substituent. An alternate QSAR method was
proposed by Free and Wilson (1964). Known as the de novo or Free-
Wilson approach, it assumed that the contribution to biological action
by substituents at different positions were additive and independent
of the effect of substituents at other positions. Building on the idea

first put forward by Hammett, Swain and Lupton (1968) separated



electronic effects into field, ¥, and resonance, R, effects. Leo,
Hansch, and Church (1969) observed that substituent partition coef-
ficient, m, gave better correlations over several series of compounds
than those obtained by the use of polarizability, parachor, and molar
attraction constants.

Between 1970 and 1980 existing models and parameters were modified
(Purcell, Bass, and Clayton, 1970; Canas-Rodriguez and Tute, 1972; Davis,
1973; Nys and Rekker, 1973; Goldfarb, 1973; and Leo, Yow, Silipo, and
Hansch, 1975), other statistical methods and parameters were developed
(Weiner and Weiner, 1973; Hansch, Leo, Unger, Kim, Nikaitani, and Lien,
1973; Martin, 1978; and Mager, 1980), and extensive computer models in
QSAR studies were developed (Verloop, Verloop, Hoogenstraaten, and
Tipker, 1976). The Hansch equation was generalized to include other
variables such as new parameters, new structural and topographical
features, molecular orbital indices, and indicator or dummy variables.
Statistical applications included the use of discriminant analysis,
principal component and factor analysis, cluster analysis, and combined
multivariate analysis (Blankley, 1983). Increasing availability of
computers stimulated different applications of computer models. For
instance, Kirschner and Kowalski (1979) developed a model based on the
patterm recognition called ARTHUR. Verloop et al. (1976) developed the
STERIMOL parameter for modelling molecular shape, while Stuper and Jurs
(1975) developed the ADAPT system. Most of these early applications
of computer modelling in QSAR were in different areas of medicinal
chemistry. The first application of ccmpﬁter modelling for predicting
toxicity of chemicals was developed by Cramer et al. in 1974, followed

two years later by the works of Craig and Waite (1976) and Craig and
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Enslein (1981). Craig and Enslein modified the substructural approach
first proposed by Cramer for predicting the toxicity of some compounds.
By the 1980s, emphasis had shifted from attempting to explain the
observed behavior of a set of compounds to using such a behavior for
predictive purposes. The two major QSAR methods that have been widely
used for studies were the Linear Free Energy Relationship (LFER), or
the Hansch approach, and the substructural approach. The Free-Wilson
additivity model was not useful for predictive purposes. Although the
substructural approach required a large number of structurally diverse
chemicals and involved more complex statistical applications than LFER,
it can be applied to a wider range of chemicals when compared to LFER.
The Linear Free Energy Relationship, or Hansch approach, to quanti-
tative structure-activity relationships was considered appropriate for
use in my study due to the fact that it is a relatively simple approach

to use.

Parameters and Quantitative Structure-

Activity Relationship

Different parameters can be used in evaluating the environmental
impact of chemicals released into the environment. They can be either
biological parameters, such as ID50 (i.e., the lethal dose of a chemical
that kills 50% of the organisms present); physical parameters such as
vapor pressure; and chemical parameters such as the rate of photolysis.
Certain parameters may reflect both the pvhysical and chemical character-
istics of a chemical and these are referred to as the physicochemical
parameters. In the hazard assessment of chemicals, these different types
of parameters can be grouped into three broad categories. These are

those used in envirommental fate assessment, in predicting environmental
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distribution of the chemic¢als, and in predicting the toxicity of the
chemicals.

These three categories are not entirely independent of one another.
Parameters used for evaluating the fate of a chemical within an environ-—
ment can be equally useful for predicting its distribution and toxicity.
For instance, the envirommental fate of a chemical is governed by it's
equilibrium distribution between soil, water, air, and biota (Kenaga,
1982). The distribution of the chemical between water and biota can
be assessed through the use of the logarithm of its octanol/water parti-
tion coefficient (log P). This parameter is equally useful in predicting
the toxicity of the chemical to an organism (Konemarn and Musch, 1981).

Parameters for predicting the fate and distribution of chemicals
have been extensively studied. Chiou, Virgil, Schmedding, and Kohnert
(1977) determined the relationship between the n—octanol/water partition
coefficient and a variety of compounds including aliphatic and aromatic
hydrocarbons. The relationship between lipophilicity and biocaccumulation
potential has been demonstrated in sediments (Southworth, Beauchamp,
and Schieder, 1978; Karickhoff, Brown, and Scott, 1979), fish (Kenaga,
1980), earthworms (Lord, Briggs, Neale, and Manlov, 1980), and soil
(Kenaga and Goring, 1980). Various envirommental models using either

or the "model ecosystem approach" are

the "envirommental rate approad
available for predicting fate and distribution of chemicals within the
enviroment (Branson, 1978).

Parameters that can be used in predicting the toxicity of a compound
are referred to as either biological parameters or physicochemical para-
meters. Biological parameters refer to the effect of the compourd, i.e.,
acute, chronic, or subtle. Acute toxicity is measured by the use of

values such as IC50, ID50, or ED50. When compared with the chemical
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measurements, inherent difficulties, such as variability and poor repro-
ducibility, may be associated with measurements of biological effects.
The precision of chemical measurements provides an alternative to
measurements of biological effects. Physicochemical parameters are
intrinsic characteristics of chemicals that can be used in quantifing
toxicity of chemicals using the existing data base of toxicity para-
meters. Various attempts have been made to correlate the toxicity of
compourds with their physicochemical properties. McGowan (1965) was
able to predict the toxicity of some compounds from their boiling point.
Trucco, Engelhardt, and Stacey (1983), correlated molecular weight with

toxicity.

Biological Systems and Physicochemical

Parameters

Two solvent systems are essential for assessing the behavior of
a chemical within biological systems, a polar solvent system and a non-
polar solvent system. An example of a polar system is the cytoplasm
which is basically a dilute solution of salt in water (Martin, 1978).
Enzymes that catalyze essential biochemical synthesis and mei abolism
are locgted in the cytoplasm. The membrane is considered a vital non-
aqueous system. Not only do membranes surround most living things, but
they form a barrier to the movement of chemicals in and out of a cell
(Tanford, 1973; Martin, 1978) and selectively permit movement of
essential chemicals. They also serve as surfaces for membrane bound
enzyme catalyzed reactions (Martin, 1978). According to the fluid mosaic
model proposed by Singer (1971), the membrane is ocomposed of a lipid
bilayer interrupted by protein rich regions. The lipid layers maintain

the integrity and cohesiveness of the mambrane while the protein regions
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are responsible for the functional properties of the membranes. Mem—
branes are regarded as models for the types of interactions that take
place between a chemical and any biological system.

Covalent and noncovalent interactions occur between chemical and
biological systems, Noncovalent interactions form the basis for
specificity and strength of covalent interactions of a chemical for its
site of action. It is chosen over covalent interaction because it
represents the first level of interaction of a chemical to its site of
action. That is, a loose noncovalent bond preceeds most covalent bonds
(Martin, 1978). WNoncovalent bonds are important when specific covalent
interactions between a chemical and its site of action is obscure. The
major types of noncovalent interactions between a chemical and a bio-
logical system are steric attraction or repulsion, electrostatic, and
hydrophobic interactions. Other forms of noncovalent interactions
include solute-solvent and charge transfer interactions and hydrogen
bonding.

Two different approaches are available for quantifying the non-
covalent interaction of a chemical at its site of action (Ariens, 1971).
The first is the integrated approach which considers the molecule as
a whole and recognizes the overall physicochemical p.operty of the chemi-
cal. An example is the use of log P as a measure of the partition of
a molecule between polar and nonpolar phases. The second approach is
the group or moiety approach which recognizes the contribution of certain

chemicals through the use of substituent constants.
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Substituent Constants and Quantitative
Structure-Activity Relationship

(QSAR)

The Hansch method used in the present study assumes that a variation
in certain biological activity of some chemicals can be analyzed in terms
of their free energy related physicochemical parameters. The use of
the substituent or moiety approach was adopted instead of the integrated
approach because it eliminated the necessity for determining separately
the properties of individual compounds. Instead, the parameters can
be calculated from an existing data base of substituents. The use of
substituent constants for correlation analysis has been reviewed by
Hansch (1973); Exner (1978); Martin (1978); Hansch and Leo (1979); Craig
and Enslein (1981); and Govers, Ruepert, and Aiking (1984).

Different types of substituent parameters have been used for esti-
mating hydrophobic, steric, or electronic effects. Hydrophibic para-
meter, m, and fragment constant, f have been used for quantifying hydro-
phobic substituent effects. Taft Es, molecular weight, Verloop L para-—
meter, Parachor, and Molar Refractivity have been used for quantifying
substituent steric effects based on bulk, siz=2, or volume. The para-
meters used in quantifying electronic effects include Hammett 0, Field
(F), Resonance parameters (R), Molar Refractivity and Van der Waals
radius. Goodforb (1973) has outlined the criteria for determining which
of these parameters will be used for predictive purposes.

1. The prior relevance of the parameter,

2. Its predictability,

3. Orthogonality with respect to other parameters,
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4. General applicability,

5. Availability of parameter, and

6. Record of success.

Additional guidelines include the type of chemical used in the

analysis and the ease of calculating and applying the parameters.
Substituent Parameters

Hydrophobic forces are considered to be "the most important single
factor providing the driving force for noncovalent interactions in
aqueous solutions" (Jencks, 1969). Martin (1978) defined the hydrophobic
bond as the tendency of water molecules to associate with themselves
rather than nonpolar substituents. Hydrophobic forces are, therefore,
vital in the distribution of a compound within a biological system.
Parameters used for quantifying hydrophobic effects of substituents were
hydrophobic constant, 7, and fragment, f constant. Fujita et al., (1964)

defined the hydrophobic constant as:

Ty = 1log Py - log Py

where Py is the partition coefficien! of a derivative, PH is the parti-
tion coefficient of the compound and 7 is the hydrophobic constant for
the substituent.

The T parameter, therefore, includes the contribution of individ-
ual substituents to the overall hydrophobic effects of a compound.
Fujita et al. (1964) showed that the partition coefficient was an addi-
tive constitutive property; i.e. multiple substituents exert an influence
equal to the sum of individual substituents and the effect of a sub-

stituent varies depending on the molecule to which it is attached or

its enviromment (Martin, 1978). Ariens (1971) cbserved that any
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substituent which has a predominant effect on the hydrophobicity of a
compourd will affect its potency, because passive membrane transport
process was based upon partition over different compartments. The use
of hydrophobic constant T assumes that the T for hydrogen is zero. This
was later shown to be erroneous (Davis, 1973). Nys and Rekker (1973)
calculated a new set of hydrophobic parameters called fragment constant,
f. Additional measurements of fragment, f constants were undertaken
by Hansch and Leo (1979). The hydrophobic constant (7) was chosen over
fragment constant (f) because it was relativel? easier to calculate and
because f did not offer any advantage over T in determining toxicity
of nonpolar aromatic compounds. ILeo et al. (1969) demonstrated the
superiority of T parameter over several nonpolar parameters. Fujita
and Bans (1971) observed that hydrophobic constant 1 inherently includes
the effect of hydrogen bonding. Some of the limitations associated with
the use of the constants included the approximate nature of any partition
coefficient calculation (Canas-Rodrigquez and Tute, 1972), and the fact
that a steric effect of substituent might be important in predicting
the overall biological effect of a compound (Blankley, 1983). The addi-
tive constitutive properties of T breaks down when a strong electron
withdrawing group is present within the compound. Compounds used in
this study were nonpolar and did not have any strong electron withdrawing
groups.

Steric attraction or repulsion can occur when two charged molecules
come close together. In 1894, Meyer proposed that the atomic weight
of artho substituents determine the ease of esterification of ortho sub-
stituted aromatic acids. Taft (1952) proposed that the rate of hydro-
lysis of substituted carboxylic acids should be used as a measure of

steric effects. For nonpolar compounds, molar refractivity (MR),
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parachor, or molecular weight could be used as an estimate of bulk or
size of substituents. Both parachor and MR were highly correlated and
could be used interchangeably (Hansch and Leo, 1979). Molar refractivity
was also correlated with molecular weight and could, therefore, be used
as a "crude" estimate of size (Hansch et al., 1973b; Hansch et al.,
1973). MR was chosen instead of molecular weight as a parameter for
quantifying bulk because MR provides a better correlation (Hansch and
Leo, 1979). It was also easier to apply MR when compared to both Van
der Waals radius and Verloop parameters. Like hydrophobic constant T,
molar refractivity was additive and constitutive. MR has been suc-
cessfully utilized in QSAR (Hansch, Greico, Silipo, and Vittoria 1977;
Yoshimoto and Hansch, 1976, and Shah and Coats, 1977).

The effect of a substituent on the overall electronic effect of
a campound was first parameterized by Hammett sigma (o) wvalue (1935).

He defined sigma as:

o} =logkx-long

where K is the ionization constant for benzoic acid in water at 25°C
ard kx is the ionizi -ion constant for a meta or para derivation. The
Hammett sigma constant is additive (Jaffe, 1953). It was later realized
that a need existed to separate the inductive (polar) part of an elec-
tronic effect fram the resonance component (Taft and Lewis, 1959). Swain
and Lupton (1968)developed a completely different approach to determining
polar (F) and resonance (R) constants. These substituent constants can
be used for polar compounds. In the case of nonpolar compounds, the
most appropriate parameter fof quantifying electronic contribution of
the substituent is molar refractivity (MR). Molar refractivity is the

dispersion bond which holds nonpolar molecules together in a liquid phase
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when other forms of electrostatic bonds are absent (Martin, 1978).
Dispersion bonds occur when an instantaneous dipole induces another
dipole in a neighboring molecule. The instantaneous dipole is a result
of the vibrations of electrons with respect to the nucleus of molecules
with no permanent dipole (Martin, 1978).

Martin (1978) observed that since noncovalent forces are weak, they
may require a combination of forces between bonds. The hydrophobic con-
stant 7 and molar refractivity are selected as the substituent constants
to be used in predicting toxicity of nonpolar aromatic compounds. There
are oconflicting reports about the amount of correlation between the two
parameters 7 and MR. Some reports have indicated a significant corre-
lation (Craig, 1971; Wootlon, Sheppey, Hudson, and Goodforb, 1976), while
others have shown little or no correlation between the two parameters

(Hansch et al., 1973; Yoshimoto and Hansch, 1975).



CHAPTER IIT
METHODS
Model Development

The regression analysis at the Oklahoma State University Computer
Center was used in elucidating relationships between the biological
effects of selected chemicals and their physical and chemical para-
meters. For predictive purposes, equations were cbtained at 95%
confidence intervals. The correlation analysis was used in eliminating
the problem of oolinearity between the parameters used. About 23 com-
pourds were selected initially in the regression equations in order to
obtain statistically significant equations. Parameters which were used
in this study were chosen in such a way as to reflect some or all of
the following effects:

1. The ability of the chemicals to partition themselves in bio-
log:_éal systems as measured by T.

2. Electronic interactions of chemicals at the site of action as
measured by MR.

3. Steric effects of molecules as measured by MR.

Correlation, linear regression, and multiple linear regression
analysis were chosen over other statistical methods. The correlation
analysis was used to check for the possiblity of colinearity between T
and MR. An all-equation multiple linear regression approach was used.

In this approach, the computer calculated all possible equations and

19
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provided a limited output for each. Multiple linear regression analysis
was chosen over other statistical analyses because it is a relatively
simple statistical procedure for use by nonstatisticians. It can also
e performed at most computer installations. Important statis-

tical calculations required for QSAR studies include (Martin, 1978;
Blankley, 1983):

1. S, the standard error of estimate (or standard deviation).

2. ® , the percentage of data variance accounted for by the model.
The R° values were used with the all-possible regression equation
approach. The intent was to obtain an equation where adding more inde-
pendent variables resulted in only a small increment in R value rather
than maximizing rR? (Neter, Wasserman, and Kutner, 1983).

3. F, a statistic for assessing overall significance of the derived
equation including the degree of freedom and confidence level.

The Statistic;a’l/l:\}lalysis System (SAS) available at the Oklahoma
State University Camputer Cente:r.: was used. SAS was chosen because it
satisfies the conditions required for a successful statistical analysis
in QSAR outlined by Martin (1978). In QSAR methodologies, biological
data are selected as the dependent variable and the chemical or physical
parameters are considered the independent variable. Since biological

data are usually more variable.
Calculation of Substituent Constants

The hydrophobic constant T can be calculated or taken from Table
VI-I in Hansch and Leo (1979). Due to the additive and constitutive
nature of T constants, they can be estimated from Leo et al. (1975) and

Fujita et al. (1964).
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The equation for calculating m is:
Ty =1log P, - log By

where Px is the partition coefficient of a derivative and PH that of

the parent compound. For example,

Weil

Octanol/water partition system was chosen as the preferred system
for estimating log P because octanol is assumed to simulate biological
systems. Log P values were dotained from Appendix II of Hansch and Leo
(1979).

MR values were taken from a compilation by Hansch and Leo (1979).
The MR values were then scaled by 0.1, thereby making it equiscalar with
respect to ™ (Hansch and Yoshimoto, 1974). When only ocne substituent
is attached to the benzene ring, the value was simply taken and multi-
plied by 0.1. For example:

MR(C1)
MR(Br)

0.1 x 6.03 = 0.60
0.1 x 8.88 = 0.89

When two or more substituents were present, an additional 1.03 was sub—
tracted for each H that is replaced on the ring. The MR value for H

was 1.03. For example:.
Preliminary Screen of Compounds

Both the substituent parameters and the groups of chemicals were

carefully selected to complement each other (Table I). Chemicals and



ORIGINAL LIST OF COMPOUNDS USED IN

TABLE T

THE QOSAR ANALYSIS

Oral
ID50 (rat)

Compound mg/kg MR m
Benzene 4894 1.03 0.00
Braomobenzene 2699 0.89 0.86
Butylbenzene 5000 1.9 2.13
Chlorobenzene 2910 0.60 0.71
p Dichlorcobenzene 500 1.00 1.42
0O-diethybenzene 5000 1.85 2.04
Ethylbenzene 3500 1.03 1.02
Fluorobenzene 4399 0.09 0.14
Hexachlorobenzene 10000 3.00 4.26
Todobenzene 1799 1.39 1.12
Pentachlorobenzene 1080 2.50 3.55
Toluene (methyl benzene) 5000 0.57 0.56
0. Chlorotoluene 1231 1.05 0.17
Xylene (dimethyl benzene) 5000 0.92 1.12
Ethyltoluene 5000 1.39 1.58
oooTrifluorotoluene 15000 0.50 N.88
Propylbenzene 4830 1.50 1.55
1,2,3,4 Tetramethylbenzene 6408 2.00 2.24
Tetrachlorobenzene 1500 2.00 2.84
1,2,4,5 Tetramethylbenzene 6984 1.85 2.24
1,2,4 Trichlorcbenzene 756 1.50 2.13
Triethylbenzene 5000 2.78 3.06
Trimethylbenzene 5000 1.39 1.68
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their toxicity data were selected fram the Registry of Toxic Effects
of Chemical Substances (RTECS, 1983). Chemicals were selected such that
all contain an identical parent compound, benzene. The substituents
present on the parent campound do not have strong electron withdrawing
or donating effects on the parent campound. In addition, all chemicals
have the same mode of action. Ariens (1971) noted that structure-
activity correlation was possible only if the compounds had an identical
mode of action. The compounds selected were substituted aromatic com-
pounds with anesthetic effects. Anesthetics are capable of depressing
essential functions of all types of cells (Burger, 1960).

This initial group of chemicals was screened with the following
procedure in order to obtain a final group of compounds:

1. Scatter plots of the inverse of the log of oral ILD50 of the
initial group of chemicals against each of the independent variable.

2. A scatter plot of the hydrophobic constants and molar refractiv-
ity for the initial list of compounds.

3. A correlation analysis between the two independent variables.
High correlation between the two variables were reduced by introducing
new less hydrophobic compounds and eliminating obvious outliers.

4. A regression analysis between the biological response
(1/1log 10 oral ID50) and each independent variable for the initial group

of campourds.
Selection of Appropriate Regression Models

The relationship between the biological response (1/log 10 oral
ILD50) and the independent parameters, hydrophobic constant (m) and molar
refractivity (MR) were modeled by the procedure outlined below. The

square terms were included in order to investigate the possibility of
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quadratic relationships between the dependent and the independent
variables. At this point, certain compounds were withheld from the
regression equations for the purpose of evaluating selected regression
models.

The first step was to identify appropriate regression models
through the use of an all possible equation approach. The R criterion
was used in selecting the appropriate combination of variables which
resulted in an acceptable predictive equation. The R® criterion required
an examination of the coefficient of multiple determination, R*. The
coefficient measured the appropriate reduction in total variation in
the dependent variables explained by the independent vari{:lbles. The
second step involved a correlation analysis between the independent
variables. ‘ oo

Homoscedasticity and aptness of the simple and q\.iadratic linear
equations were tested through the plots of residuals against each of
the independent variables and the plots of the residuals versus predicted
variables. The appropriateness of the fitted regression models was
1;:ested through the plot of the dependent versus independent variables.
F-tests were used to test for the significance of the relationships

expressed by the fitted regression models.



CHAPTER IV
RESULTS AND DISCUSSION

In order to obtain an appropriate model that fits a set of data,
it is necessary that the set of data be analyzed repeatedly (Neter et
al., 1983). A preliminary screen of the original data set, involved
linear regression, correlation and residual analysis (Appendix C), and
scatter plots of the dependent versus independent variables resulted
in the elimination of same chemicals. These plots (Figures 1 and 2)
ard residual (observed - predicted) values revealed same chemicals which
differed sustantially fram the rest of the data set and were subsequently
eliminated fram further regression analysis since their presence would
unnecessarily bias the results of regression analysis. These compounds
‘included three alkyl substituted benzene compounds, namely butylbenzene,
o-diethylbenzene, and ethylbenzene. These compounds did not show any
variation in toxicity with increasing hydrophobic or molar refractivity
values. Others included same chlorobenzenes with unusually low LD50
values, namely p-dichlorobenzene, 1,2,4-trichlorobenzene, and o-chloro—
toluene.‘ Also eliminated were same chlorobenzenes with unusually high
ID50 values, namely ooo-trifluorotoluene and hexachlorobenzene.

An initial high correlation existed between the hydrophobic constant
and of molar refractivity (Figure 3). An R value of 0.92287 was obtained
through the use of matrix correlation analysis. This initially high

value was reduced to 0.8838 through the introduction of less hydrophcbic

-
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Figure 1. A scatter plot of the relationship between the inverse
log of oral ID50 (rat) and molar refractivity for
initial group of compounds
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Figure 2. Scatter plot of the relationship between the inverse
log of the oral 1D50 (rat) and hydrophcbic constant
for initial group of chemicals
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Figure 3. Hydrophobic constant as a function of molar refractivity
for the initial group of compounds
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chemicals. At this point, some of the chemicals were withheld for evalu-
ating the regression models. The remaining compourds used in subsequent
regression analysis are listed in Appendix A. Figure 4 is a scatter
plot of the relationship between the two variables for the final group
of chemicals. The correlation between the two variables remained high
as evident by the plot and the correlation matrix in Table IITI. This
high correlation indicated that the variables can be used inter-
changeably.

In order to select the appropriate model for the group of chemicals
analyzed, the first step involved an all possible equation approach
(Table II). The second step involved a correlation analysis of the
dependent variables that would be used in the regression analysis.

Table III shows the correlation matrix between the two independent vari-
ables and their squares. The probability levels at which the relation-
ship is significant is indicated beneath each correlation coefficient.
Thus, the lowest corelation coefficient, R, was 0.81659 between T 2 and
MR with a probability of 0.0012. This high correlation coefficient also
indicates that the two variables could be used interchangeably.

The 12 possible equations in Tabl: II were evaluated based upon
1. the nuwber of chemicals used in the regression models, 2. the result
of the R analysis in Table II, and 3. the correlation between the
variables in a regression equation. A minimum of five chemicals was
required per independent parameter to obtain statistically significant
equations. With 12 chemicals used, only equations containing two or
less independent variables were considered. In addition to this require-
ment, the introduction of a new parameter must result in a substantial
difference in the R’ parameter. The high correlation between some vari-

ables resulted in eliminating of same equations. The R® analysis
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Scatter plot and fitted regression line of the
relationship between hydrophobic constant and
molar refractivity
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TABLE IT

R-SQUARE STATISTICS FOR ALL~POSSIBLE COMBINATIONS
OF INDEPENDENT VARTABLES

N= 12 Regression Models for Dependent Variable Y

Nurber in
Model R-Square Variables in Model

1 0.62400036 2
1 0.63551929 MR2
1 0.66083486 MR
1 0.75724121 'rr
2 0.66240083 MR MR®
2 0.67480847 MR T2
2 0.70857310 | MR T
2 0.75796103 MRE T
2 1 0.76602637 MR T
2 . 0.7903339 m I
3 0.71653892 MR MRg ﬂi
3 0.77590834 MR MR® T
3 0.79082001 MR? T T2
3 0.79231614 MR T T2

4 0.79355448 MR MR? T w2




TABLE IIT

CORRELATION MATRIX FOR INDEPENDENT VARIABLES

MR T MR? : 72
1.00000 0.88378 0.96355 0.81659
0.0000 0.0001 0.0001 0.0012
1.00000 0.90285 0.96363
0.0000 0.0001 0.0001
1.00000 0.86699
0.0000 0.0003
1.00000

0.0000
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shows that the equation containing T and % provided a high correlation
with the biological response, log 10 (1/LD50) comparable to equations
containing three or four variables. The addition of one or two more
variables did not represent a substantial increase in the K values when
campared with the equation containing ™ and T % terms.

By using the criteria outlined above, the equations in Table IV
were selected as being appropriate for the group of chemicals analyzed.
Equation 1 represented the relationship between toxicity and molar
refractivity. The R value was relatively high and indicated that about
66% of the variation in the observed biological response could be
explained by molar refractivity. The equation was also significant at

the 0.05 level of significance (Appendix D).

TABLE IV

SELECTED REGRESSION EQUATIONS

Sample
Equation R? F Size (N) S
1. 1log 1/LD50 = -3.698 + 0.323 MR 0.661 19.48*% 12 0.134
2. log 1/LD50 = -3.619 + 0.1777 0.757 31.19% 12 0.114
3. log 1/1D50 = -3.683 + 0.310m
- 0.03972 0.790 16.96* 12 0.111

* = gignificant at « = 0.05

The equation derived using T provided a higher R® value (R* = 0.757)
(Appendix E) when compared with Equation 1, thereby demonstrating the

superiority of T over MR in predicting toxicity. Equation 2 in
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Table IV shows that toxicity can be predicted from T at 0.05 level of
significance (Appendix E).

Bquation 3 in Table IV provided the best fit for the regression
analysis. The equation indicated a quadratic relationship between the
dependent and independent variables (Appendix F). This implied that
an optimal hydrophobicity existed to dbserve a maximum biological
response for the group of chemicals analyzed. Although the equation
was significant at 0.05, due to the high correlation between the two
variables, it was rnot possible to identify the contribution of the square
term in the equation. The high correlation was expected since one was
the square of the other. However, the equation would have limited
application providing that no extrapolations were attempted beyond the
range of values analyzed. The three equations have low standard error
of estimate or standard deviation (S). The lowest S value of 0.111 was
obtained in Equation 3.

The predicted and doserved values of the actual biological response
(log 10 1/LD50) versus the two independent variables MR and T were within
the 95% confidence limit (Figures 5 and 6).

A quadratic relationship between the dependent variable, log 10
1/1D50, and the independent variables T and T2 provide a better fit than
one containing only (Figure 7).

Figure 8 is the computer generated quadratic relationship between
the biological response and hydrophobic constant using Equation 3 in
Table IV. The graph shows that there was an increase of the log 10
(LD50) values with increasing T and T2 values. However, an optimum value
of hydrophc;bic constant existed for which no further increase in the

biological response occurred.
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10G 16 1/0ORAL LD50
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Figure 5. Actual and predicted values versus molar refracth1ty
with 95% confidence intervals
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Figure 6. Actual and predicted values versus hydrophobic

constant with 95% confidence intervals
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Figure 7. Quadratic relationship between the log of the inverse
of oral ID50 (rat) and hydrophobic constant
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Figure 8.

Three dimensional camputer-generated plot of
response function using m and 72
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Residual values obtained by substracting the predicted from actual
or cbserved \}alues were used in evaluating the assumption of homo-
scedasticity and the aptness of the simple and quadratic linear equations
selected. Scatter plots of the residual values versus MR and T were
randam and did not show any systematic deviation (Figures 9 and 10).

This indicated that the assumption of homoscedasticity was not violated
and that linear regressions provide good fits for the data set.

Figure 11 shows the plot of the residuals versus predicted values for
the multiple regression analysis using hydrophobic constant. The plot
also showed the error variance was independent.

The variation between predicted and observed values about the
regression line was more when MR was used when compared with the varia-
tion when T was used (Figures 12 and 13). This was consistent with an
earlier observation which showed that T provided a better estimate of
the biological response than MR.

Finally, the dbserved, predicted, and residual values using the
selected equation in Table IV were calculated in Tables V, VI, and VII.
The chemicals initially withheld fraom the analysis were reintroduced
in order to evaluate the regression equation. In Table V, the max mum
residual value obtained was -0.4136 for trimethylbenzene. In Table VI,
ad-dichloro-p-xylene had the highest residual value of 0.3690 while Table
VII showed trimethylbenzene as the chemical with the highest difference
between predicted and observed residual value. BAs a whole, the equations
provide good estimates of biological response with the R values ranging
from 0.66 to 0.79.

The results of the regression analysis indicated that a high
correlation existed between MR and toxicity and between T and toxicity.

Thus proving the hypothesis that toxicity can be predicted from
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Figure 10. Scatter plot of the residual values versus
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Figure 11. Residual versus predicted values using m and 7°
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TABLE V

ORAL LD50 VALUE FOR RATS USING EQUATION OBTAINED

FROM T AND 72

Log 1/ID50 Iog 1/LD50
Compound Observed Predicted Residuals
Benzene -3.6897 -3.6833 -0.0064
Bromobenzene -3.4312 -3.4596 0.0284
Chlorobenzene -3.4639 -3.4849 0.0210
Ethylbenzene -3.5441 -3.4115 -0.1326
Fluorobenzene -3.6434 -3.6526 0.0092
Todobenzene -3.2550 -3.3885 0.1335
Pentachlorobenzene -3.0334 -3.0698 0.0364
Toluene (methylbenzene) -3.6990 -3.5377 -0.1613
Xylene (dimethylbenzene) -3.6990 -3.3885 -0.3105
Propylbenzene -3.6839 -3.3045 -0.3794
Tetrachlorobenzene -3.1761 -3.1168 -N.0593
Trimethylbenzene -3.6990 -3.2854 -0.4136
O-bramo—-aoo~trifluorotoluene -3.4346 -3.3707 -0.0639
P-tert-butyltoluene -3.1761 -3.1709 -0.0052
1-fluoro-2-bramotoluene =-3.2672 -3.4671 -0.1999
oo dichloro p-xylene -3.2504 -3.2345 -0.0159
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TABLE VI

ORAL ID50 VALUE FOR RATS USING THE EQUATION
OBTAINED FROM MOLAR REFRACTIVITY

Log 1/ID50 Iog 1/LD50

Compound Observed Predicted Residuals
Benzene ~-3.6897 -3.45%4 -0.2303
Bromobenzene -3.4312 -3.4919 0.0607
Chlorobenzene ~3.4639 -3.5591 0.0952
Ethylbenzene -3.5441 -3.4594 -0.0847
Fluorobenzene -3.6434 -3.6773 0.0339
Iodobenzene -3.2550 -3.3760 0.1210
Pentachlorobenzene -3.0334 -3.1188 0.0854
Toluene (methylbenzene) -3.6990 -3.5661 -0.1329
Xylene (dimethylbenzene) -3.6990 -3.4849 -0,.3141
Propylbenzene -3.6839 -3.3505 -0.3334
Tetrachlorobenzene -3.1761 -3.2347 -0.0586
Trimethylbenzene -3.6990 -3.6773 -0.0217
O-bramo=acc—trifluorotoluene -3.4346 -3.2949 -0.1397
P-tert-butyltoluene -3.1761 -3.1095 -0.0666
1-fluoro~-2-bramotoluene -3.2672 -3.4664 ~0.1992
oadichloro p-xylene -3.2504 -3.6194 -0.3690
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TABLE VII

ORAL ID50 VALUE FOR RATS USING THE EQUATION
OBTAINED FROM T

Log 1/LD50 Log 1/LD50
Compound Observed Predicted Residuals

Benzene -3.6897 -3.6190 -0.0707
Bromobenzene -3.4312 -3.4774 0.0462
Chlorobenzene -3.4639 -3.4951 0.0312
Ethylbenzene -3.5441 -3.4420 -0.1021
Fluorobenzene -3.6434 -3.6013 0.0421
Iodobenzene -3.2550 -3.4243 0.1692
Pentachlorobenzene -3.0334 -3.9995 0.0339
Toluene (methylbenzene) -3.6990 -3.5305 -0.1385
Xylene (dimethylbenzene) -3.6990 -3.4243 -0.2747
Propylbenzene -3.6839 -3.3535 -0.3304
Tetrachlorobenzene -3.1761 -3.1234 -0.0527
Trimethylbenzene -3.6990 -3.3358 ~0.3632
O-bramo—oco~trifluorotoluene -3.4346 -3.4101 -0.0245
P-tert-butyltoluene -3.1761 -3.1761 -0.0322
1-fluoro-2-bromotoluene -3.2672 -3.4827 -0.2155
0o dichloro p-xylene -3.2504 -3.2845 -0.0341
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individual parameters. It was, however, not possible to predict toxicity
fram an equation containing the combined parameters (T or MR) because
of the high correlation between them.

The results obtained in this study can be compared with earlier
attempts at predicting toxicity fram physical and chemical parameters
(Appendix B). While using the log of octanol/water partition coefficient
(log P) as an estimate of toxicity, Konemann (1981) obtained R’ values
that ranged from 0.962 to 0.974. The use of molecule conmnectivity index
resulted in R? values ranging from 0.314 to 0.64 (Konemann and Musch,
1981). R? value of 0.962 was obtained when toxicity was estimated by
log P and pKa. Schultz et al. (1980) obtained a R? value of 0.962.

R? vlaue of 0.991 was obtained for only three azarenes using molecular
weight (Southworth et al., 1978b). An estimate of toxicity using sub-
structural approach attempted by Craig and Enslein (1978) gave low R?
values when compared with the results from Hansch type approach to QSAR.
The substructural approach is, however,’ applicable to a wider range of
chemicals.

Based upon a comparison with published literature, it would appear
that the use of log P of a whole molecule provides a better estimate
of toxicity than the use of the substituerii:, T, evaluated in this study.
However, using T resulted in the elimination of the need to experimen-
tally measure the partition coefficient of individual chemicals. Even
though more rapid procedures have been developed to estimate hydro-
phobiéity by high pressure liquid chromatographic analysis (Konemann,
1981), a considerable amount of time and costly equipment would be
required to experimentally estimate hydrophobicity for all chemicals.

Therefore, the use of substituent effects (7) may be justified in some
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cases where log P data is not available and could not be easily measured.
Substituent effects data could be quickly and easily calculated for
organic chemicals and used to make preliminary predictions of relative

toxic effects.



CHAPTER V
SUMMARY AND CONCLUSION

The Toxic Substances Control Act (1970) requires that new chemicals
be tested for their health and envirommental effects. The act also
provides that authorization should not unduly impede or create an
unnecessary economic barrier to technological innovations. With an
estimated 400,000 chemicals synthesized yearly, the cost of individual
testing is rapidly becoming prohibitive. The use of Quantitative
Structure-Activity Relationship (QSAR) studies can substantially reduce
the amount of toxicological testing required for new chemicals. This
can be done by making use of the existing data base of physical, chemi-
cal, and biological parameters. QSAR methods assume that an observed
biological response is a function of the structure of the chemical induc-
ing it. As such, it should be possible to predict the toxicity of a
chemical fram a knowledge of its structure.

QSAR methods are relatively inexpensive and the required statistical
analysis can be performed at most computer installations. The methods
can, therefore, provide for time and cost effective means of screening
industrial chemicals. With this approach, QSAR methods supplement rather
than replace other forms of biological testing. A preliminary quick
screen of bioIogical activity of chemicals through the use of QSAR should

proceed detailed biological or ecotoxicological testing.
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In this study, the use of substituent effects in quantifying a bio-
logical activity of selected organic compounds was attempted. Specifi-
cally, the contribution of a substituent's size or hydrophdbicity to
the toxicity of the chemicals was determined. Chemicals were selected
fran the Registry of Toxic Substances (1983). The selected compounds
have the same parent compound, namely benzene, the same mode of action,
and contain relatively nonpolar substituents. The substituents' hydro-
phobicity was estimated by the use of hydrophobic constant, T , and the
size by its molar refractivity, MR. Attempts were made to derive regres—
sion equations which will provide good estimates of the observed
toxicity. Statistical analysis allowed the evaluation of the possible
equations derived fram the data set which contained statistically signif-
icant equations.

The results indicated that toxicity, as measured by log (1/LD50)
for rats, can be predicted from either molar refractivity or hydrophobic
constant. Hydrophobic constant, however, provides a better estimate
of toxicity than molar refractivity. An estimation of the combined
effects of both molar refractivity and hydrophobic constant was not pos—
sible due to high correlation between the two parameters. The dbserved
high correlation indicated that the two parameters estimated essentially
the same thing and can be used interchangeably.

The best estimate of toxicity was obtained when a square term was
introduced into an equation containing m. This indicated that an optimum
biological response existed for the chemicals analyzed when hydrophobic
constant was used.

A test of the regression equation with four chemicals not included
in the analysis showed that all chemicals can be predicted with less

than 0.4136 log units deviation between observed and calculated LD50.
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By using substituent effects of chemicals in estimating their toxicity,
a considerable amount of money and time was saved when compared with
experimental estimation.

Further research efforts should be directed towards:

1. Estimating the contribution of T and MR at specific positions
on the molecules by factoring ™ and MR by position in order to understand
the three dimensional contribution of the shape of a chemical in esti-
mating toxicity,

2. Evaluating the use of other parameters in toxicity estimation,

3. Detailed examination of the biological activities of deviant
molecules whose activities did not conform with other members of the
same group, and

4, Incorporating dotained statistical models and large data base
of useful parameters and biological data in a more sophisticated program

for easy retrieval and utilization.
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APPENDIX A

FINAL LIST OF COMPOUN]IS USED IN

THE QSAR ANALYSIS
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OBS Compound Subst IDS0 MR T Iog(l/LD50)  MR? 2
1 Benzene H 4894 1.03 0,00 -3.6897 1.0609  0.0000
2  Bromobenzene BR 2699 0.89 0.80 —-3.4312 0.7921 0.6400
3  Chlorobenzene CL 2910 0.60 0.70 =3.4639 - 0.3600 0.4900
4  Ethylbenzene C2H5 3500 1.03 1.00 =3.5441 1.0609 1.0000
5 Fluorobenzene FL 4399 0.09 0.10 -3.6434 0.0081 0.0100
6  Iodobenzene I 1799 1.39 1.10 =3.2550 1.9321 1.2100
7 Pentachlorobenzene 5CL 1080 2.50 3.50 -=3.0334 6.2500 12.2500
8 Toluene (Methylbenzene) CH3 5000 0.57 0.50 =3.6990 0.3249 0.2500
9 Tetrachlorobenzene 4CL 1500 2.00 2.80 =3.1761 4.0000 7.8400
10 O-bromo-aoco trifluoro toluene CH3 BR 2720 1.74 1.18 =3.4346 3.0276 1.3924
11 P-tert-butyl toluene C(CH3)3CH3 1500 2.54 2.32 =3.1761 6.4516 5.3824
12 1-floro-2-bromo benzene F BR 1850 1.00 0.77 =3.2672 1.0000 0.5929
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REGRESSION EQUATIONS FOR PREDICTING TOXICITY

OF SELECTED ORGANIC COMPOUNDS
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Source Type of Chemicals Equation R? N S
Konemann, H. Benzene and log 1/IC50 = 0.845 log Poct - 4.63 0.974 12 0.133
1981 chlorobenzene
Nondissociating
organic chemicals log 1/1C50 = 0.907 log Poct - 4.94 0.976 21 0.201
log 1/1C50 = 0.871 log Poct - 4.87 0.976 50 0.237
log 1/1C50 = 0.698 log S + 0.09 0.941 27 0.214
log 1/1C50 = 0.799 %Y - 7.05 0.640 50 0.929
log 1/1C50 = 0.269 OXV - 6.034 0.314 14 0.538
log 1/1C50 = 0.626 OXV - 5,62 0.881 36 0.318
Konemann, H. and Chlorophenols log 1/IC50 = 1.12 log Poct + 0.43 Pka - 8.35
Musch, A. at pH - 7.8 0.962 11 0.102
1981
Schultz, T.W. Nitrogen-containing 1log LC100 = -1.042 log P + 2.900 0.962 11 ==———
et al., 1980 heterocyclic
compounds
Southworth, G.R. Azaarenes log ILC50 = =0.0219 (MW) + 4.047 0.991 3 —=———

et al., 1978b
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STATISTICAL ANALYSIS OF ORIGINAL

LIST OF CHEMICALS
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Dependent Variable: Y

Sum of Mean F
Source DF Squares Square Value PR > F
Model ‘ 1 0.00644883 0.00644883 0.06 0.8163
Error 21  2.44696144 0.11652197
Corrected Total 22  2.45341026
Dependent Variable: Y

Sum of Mean F
Source DF Squares Square Value PR > F
Model 1 0.00069271 0.00069271 0.0l 0.9437
Error 21  2.84435255 0.13544536

Corrected Total 22

2.84504525
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Cbserved Predicted Iower 95% CL. . Upper 95% CL

Observation Value Value Residual for Mean for Mean
1 ~-3.68966397 -3.39830424 ~-0.29135973 -3.56034265 -3.23626582
2 ~3.43120288 -3.40199325 -0.02920964 -3.57981279 -3.22417371
3 -3.69897000 -3.37379867 -0.32517134 -3.58503034 -3.16256690
4 -3.46389299 -3.40963477 -0.05425822 ~-3.63211018 -3.18715936
5 -2.69897000 ~3.39909474 0.70012474 -3.54609986 -3.23408962
6 -3.69897000 -3.37669717 -0.32227283 -3.57048328 -3.18291107
7 -3.54406804 -3.39830424 -0.14576381 -3.56034265 -3.23626582
8 ~3.64335396 -3.42307331 -0.22028065 -3.74411550 -3.10203112
9 -3.25503116 -3.38881821 0.13378705 -3.53791922 -3.23971720
10 ~3.03342376 ~3.35956962 0.32614587 -3.67317679 -3.04596246
11 -3.69897000 -3.41042527 -0.28854473 -3.63816495 ~-3.18268560
12 -3.09025805 -3.39777724 0.30751918 ~3.55797672 -3.23757775
13 -3.69897000 -3.40120275 ~0.29776726 -3.57524715 ~3.22715834
14 -3.68394713 -3.38591970 -0.29802743 -3.54021225 ~3.23162715
15 -3.80672250 -3.37669717 -0.43002533 -3.57048328 -3.18291107
16 -3.17609126 =3.37274466 0.19665340 -3.59702122 -3.15476811
17 -3.84410423 -3.37669717 -0.46740706 -3.57048328 -3.18291107
18 -2.87852180 -3.38591870 0.50739791 -3.54021225 -3.23162715
19 -3.43456890 -3.37959568 -0.05497322 -3.55792193 -3.20126944
20 -3.17609126 -3.35851562 0.18242436 -3.68036689 -3.03666435
21 -2.82607480 -3.39909474 0.57301994 -3.56409986 -3.23408962
22 ~3.26717173 -3.39909474 0.13192301 -3.56409986 -3.23408962
23 -3.25042000 -3.41648579 0.16606579 -3.68718908 -3.14578250
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Cbserved Predicted Iower 95% CL Upper 95% CL

Observation Value Value Residual for Mean for Mean
1 -3.68966397 -3.52703587 -0.16262809 -3.81155896 -3.24251279
2 -3.43120288 -3.53113280 0.09992992 -3.72866988 -3.33359573
3 -3.69897000 -3.53779032 -0.16117969 -3.71506040 -3.36052023
4 -3.46389299 -3.53062069 0.06672770 -3.73728478 -3.32395660
5 -2.69897000 -3.53420550 0.83523550 -3.69607112 -3.37233989
6 -3.69897000 -3.53727820 -0.16169180 -3.70858999 -3.36596641
7 -3.54406804 -3.53215704 -0.01191101 —-3.71374239 -3.35057169
8 -3.64335396 -3.52754799 -0.11580597 -3.79987025 ~3.25522573
9 -4,00000000 -3.54854476 -0.45145524 -3.96985217 -3.12723735
10 -3.25503116 -3.53266915 0.27763799 -3.70763981 -3.35769850
11 -3.03342376 -3.54495995 0.51153619 -3.87218221 -3.21773768
12 -3.69897000 -3.52959646 -0.16937355 -3.75635400 -3.30283891
13 -3.09025805 -3.52754799 0.43728994 -3.79987025 -3.25522573
14 ~-3.69897000 -3.53266915 -0.16630085 -3.70763981 -3.35769850
15 -3.69897000 ~3.53512731 -0.16384269 -3.69471443 -3.37554019
16 -4,17609126 -3.53113280 -0.64495845 -3.72866988 -3.33359573
17 -3.68394713 -3.53471762 -0.14922951 -3.69476809 =-3.37466715
18 -3.80672250 -3.53830243 -0.26842007 -3.72254462 -3.35406025
19 -3.17609126 -3.54137513 0.36528387 -3.78300017 -3.29975009
20 -3.84410423 -3.53830243 -0.30580180 -3.72254462 -3.35406025
21 -2.87852180 ~3.53779032 0.65926852 -3.71506040 ~-3.36052023
22 -3.69897000 -3.54239936 ~-0.15657064 -3.80711970 -3.27767902
23 -3.69897000 ~-3.53522974 -0.,16374027 -3.69483981 -3.37561966
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Dependent Variable: Y

Sum of Mean F
Source DF Squares Square Value PR > F
Model 1 0.35209838 0.35209838 19.48 0.0013
Error 10 0.18071004 0.01807100

Corrected Total 11

0.53280842
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REGRESSTON ANALYSIS USING HYDROPHOBIC

CONSTANT
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Dependent Variable: Y

Sum of Mean F
Source DF Squares Square Value PR > F
Model 1 0.40346449 0.40346449 31.19 0.0002
Error 10 0.12934393 0.01293439

Corrected Total 11

0.53280842
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REGRESSION ANALYSIS USING T AND 72
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Dependent Variable: Y

Sum of Mean P
Source DF Squares » Square Value PR > F
Model 2  0.42109659 0.21054830 16.96 0.0009
Error 9 0.11171183 0.01241243

Corrected Total 11 0.53280842
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Upper 95% CL

Observed Predicted ILower 95% CL

Observation Value Value Residual for Mean for Mean
1 ~-3.68966397 -3,68327220 -0.00639176 -3.84956740 -3.51697701
2 -3.43120288 -3.45964261 0.02843972 -3.54533327 -3.37395194
3 -3.46389299 -3,48489323 0.02100024 -3.56890139 -3.40088508
4 -3.54406804 -3.41145828 -0.13260977 -3.50586827 -3.31704828
5 ~3.64335396 -3.65261543 0.00926147 -3.79784829 -3.50738257
6 -3.25503116 -3.38852457 0.13349341 -3.48844788 -3.28860126
7 -3.03342376 -3.06980774 0.03638399 -3.29004847 -3.84956702
8 -3.69897000 -3.53771140 -0.16125860 -3.62779956 -3.44762324
9 -3.17609126 -3.11681456 -0.05927670 ~3.24945541 -3.98417370
10 -3.43456890 -3.37073367 -0.06383524 -3.47511755 -3.26634978
11 -3.17609126 -3.17091953 -0.00517173 -3.29816074 ~3.04367832
12 -3.26717173 -3.46713670 0.19996497 -3.55206498 -3.38220843
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