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CHAPTER I 

INTRODUCTION 

The problem of water stress is probably the most limiting factor in 

the expansion of soybean (Glycine max (L.) Merr.) production in 

Oklahoma. Total rainfall over the growing season is often low, with a 

wide year-to-year distribution. When applying supplemental irrigation 

water more information is needed on when to start application and how 

much water should be applied to meet the consumptive water use of the 

soybean crop at various physiological stages of growth, along with total 

consumptive water use requirements for producing soybeans in Oklahoma. 

The objective of good water management is to provide sufficient water to 

the soybean roots when needed by the plant to produce the most 

economical soybean yields. All varieties have a maximum yield potential 

that is genetically determined. This genetic yield potential is 

obtained only when environmental conditions are near perfect, but such 

growth conditions do not normally occur. In a field situation, nature 

provides the major portion of the environmental influence on 1soybean 

growth, development and yield; however, soybean producers can partially 

manipulate this environment with proven managerial practices. 

Under most field conditions in Oklahoma an optimum water 

environment is seldom prevalent, and some degree of growth limiting 

water stress in soybeans is the rule rather than the exception. The 

soil system acts as a reservoir for water that permits transpiration 

1 
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to continue day by day between periods of rainfall and irrig~tion. The 

maximum amount of water that can possibly be stored is determined by the 

soil depth and total volume of the voids or pore spaces. However, in 

the plant root zo~e this quantity may have little significance. Of more 

fundamental importance is the tenacity with which water is held in the 

soil by adsorption and capillary forces. This tenacity is expressed in 

terms of the potential energy of the water in the soil, usually with 

respect to free water. As the water content of the soil decreases, the 

potential energy of the remaining water decreases. 

The soybean plant is most affected by moisture stress during the 

reproductive and pod filling stages of growth. With continuous water 

stress during the reproductive stages of growth: from flowering to pod 

set, thee is a marked reduction in yield associated with decreased 

number of pods per plant. Water stress can also reduce the amount of 

nutrients absorbed from the soil by soybean plants, decrease the amount 

of leaf area and lower the photosynthetic potential of soybeans 

especially during the pod filling stages of growth, affect the rate of 

translocation in soybeans and its relationship to other processes, 

particularly source-sink relationships. 

The objectives of this study were to determine the range in 

magnitudes of diffusive resistance, transpiration rate, and leaf water 

potentials of 15 soybean cultivars at different reproductive stages of 

growth and at different levels of water stress. 



CHAPTER II 

LITERATURE REVIEW 

Soil Physical Properties Affecting Water 

Availability For Soybean Production 

The inherent physical characteristics of soil affect root 

distribution and the ability of that soil to intercept, store, and 

release water for plant growth (Winter and Pendleton, 1968; Raper and 

Barber, 1970). Plant available water holding capacity is generally 

greater for medium to fine compared to coarse and very fine textured 

soils. Gardner et al. (1985) reported that a clay loam soil would hold 

about 20% of its weight as available moisture, whereas fine sand would 

hold about 7%. They further estimated that on a soil volume basis, the 

clay loam at field capacity would hold about 17 em available water per 

meter of soil depth whereas the fine sand would hold less than 8 em. 

Texture, structure, layering, and depth of soil are primary in 

determining the capacity for entry, transmission~ and storage of plant 

available water (Mitchell and Russell, 1971). In addition, ttiese factors 

are very important in determining the change in soil moisture content 

and the magnitude of water stress as conditioned by plant growth and the 

atmospheric demands that tak~ place over time (Brady, 1974). Nelson et 

al. (1975) emphasized that soils with,severe compaction problems are not 

recommended for maximum soybean (Glycine max (L.) Merr.) production 

3 
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because both plant and root growth can be restricted and yiel~s 

reduced. The mechanical impedance of soil to root penetration can 

markedly affect root distribution and water uptake (Cassell, 1983). 

Under field conditions, sometimes bulk density is sufficiently high 

enough to preclude good root penetration (Brady, 1974). Hillel (1982) 

postulated that soil stratification and depth have an important bearing 

on the response of plants to soil moisture. Nelson and Larson (1984) 

reported that deep permeable soils thoroughly permeated with roots 

provided good water transfer contact between the soil and the plant. On 

the other hand, claypans, plow soles, sand layers, or bedrock may 

severely restrict the root zone and make the plant much more susceptible 

to drought. Howell (1960) emphasized that to produce maximum soybean 

yields, the soil must be able to provide water as it is needed 

especially during critical reproductive stages of growth. 

Effects of Water Deficits on Growth, Development, 

and Yields of Soybeans 

Water flows from the bulk of the soil to the root surface in 

response to a water potential gradient extending from the root surface 

outward (Kramer, 1983). The increase in total resistance, which 

corresponds to the decrease in transpiration flux, has been attributed 

to increased soil resistance to water flow and would become significant 

only at soil water contents near wilting point. 

Plant resistance to water flow is defined as the resistance to 
i 

liquid flow through the root, xylem, and leaf when soil resistance to 

water flow is not limiting (Jones et al., 1982). Predictions.of plant 
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water relations and transpiration required estimates of resistances to 

water flow in the soil and in the plant and according to Jones et al. 

(1982), calculated plant resistance increased with transpiration flux in 

a non linear relationship. The dependence of plant resistance to water 

flow on transpiration flux implies that the relationship between the 

water potential gradient and the resulting flux through the plant is 

also non linear (Newman, 1972). For soybean plants, the change from 

vegetative growth to pod filling was accompanied by a decrease in the 

initial osmotic potential by -0.4MPa (Zur et al., 1982). Slatyer (1957, 

1967) reported that plants usually wilt at a soil water potential of 

about -1.5t1Pa and permanent wilting occured when the soil water 

potential decreased to the leaf water potential at which wilting occured 

and leaves did not recover turgor at night. Boyer (1971) confirmed that 

6 -1 there was a very high resistance (1.6xl0 s ern ) to water movement 

through soybean plants, which was probably why leaves showed wilting 

even in wet soil on days of very high evaporative demand. 

Germination and root development 

Amen (1963) defined germination as the resumption of active growth 

that resulted in rupture of the seed coat and emergence of the 

seedling. According to Toole et al. (1956), germination includes the 

following physiological and morphological events: (1) imbibition and 

absorption of water, (2) hydration of tissues, (3) absorption of o2, (4) 

activation of enzymes and digestion, (5) transport of the hydrolyzed 

molecules to the embryo axis, (6) increases in respiration and 

assimilation, (7) initiation of cell division and enlargement, and (8) 



embryo emergence. In_the great majority of species, seed germination 

begins with the radicle (embryonic root) rather than epicotyl (shoot) 

protrusion through the seed coat (Berlyn, 1972). 

6 

Gardner et al. (1985) reported that a soil moisture level of field 

capacity was generally optimum for germination and germination proceeded 

at slower rates as soil moisture approached the wilting point. Hadas 

(1969) suggested that after the initial imbibition stage, there came a 

time when physiological changes were started and various biochemical 

reactions were triggered, culminating in germination. Severql model 

studies (Collis-George and Sands, 1959, 1961, 1962) showed that the 

germination rate of oats, lucerne, and perennial ryegrass were 

apparently influenced by matric water potential (the attractive or 

binding force of soil for water), osmotic potential (due to solutes), 

and hydraulic conductivity. These model studies suggested that a 

decreasing matric potential, which occured as soil lost water, 

represented an increasing amount of energy and time required by the seed 

to obtain a unit volume of water. Sedgley (1963) has suggested that the 

effect of matric potential on germination could be explained in terms of 

wetted area and not in terms of matric potential. Collis-George and 

Hector (1966) further reaffirmed their original concept of the 

significance of matric potential when they indicated that matric water 

potential was of great importance because of (1) its direct effect on 

the energy with which the water is held by the soil and the rate of 

water uptake by the seed, (2) its indirect effect on controlling the 

wetted area of contact between soil and seed, and (3) its effects on 

controlling the mechanical strength of the soil and compression of the 
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seed. 

Grable and Danielson (1965) showed that the rate of root 

development of germinated soybean seeds was greater at -0.5 bar than at 

-0.9 bars of tension. Hanks and Thorp (1957) found that soil crust 

strength and soil moisture stress affected the emergence of soybean 

seedlings. They reported that at relatively low soil crust strengths, 

emergence decreased from approximately 90 to 70% as soil moisture 

decreased from field capacity to 25% available and at relatively high 

crust strengths, emergence decreased from 70 to 30% over the same change 

in moisture availability. 

Root growth is exponentially and inversely related to soil bulk 

density (Davies and Runge, 1969). Gardner et al. (1985) reported that a 

resultant increase in bulk density increased impedance of roots and 

reduced o2 or the o2;co2 ratio, which adversely affected·root growth. 

Gardner et al. (1985) reported that water was essential for root growth, 

evidenced by the fact that roots did not grow through dry soil layers. 

However, roots have what might be regarded as a water-stress adjustment 

mechanism whereby solutes accummulate in the tip and elevate.the turgor 

pressure, which can sustain growth for a limited time (Sharp and Davis, 

1979). Wright (1962) reported that soil moisture stress significantly 

reduced root weight of blue panicgrass (Panicum antidotale Retz.), and 

root length of soybean was significantly reduced (16%) by water 

potentials less than -2.0 bars (Sivakumar et al., 1977). A 

moisture-deficient soil also modified soybean rooting patterns: to the 

extent that a smaller percentage of total roots were found in the 

surface layer (0-15 em) compared to the percentage of roots found in 
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deeper soil strata (Mayaki et al., 1976). 

Grimes et al. (1975) reported that the relationship between rooting 

density to absorption of soil water was linear. Machinery rolling 

between plant rows caused compaction and reduced water availability 

(Nelson et al., 1975). Esau (1965) reported that most of the root 

expansion evidently occured in the region of the cell elongation 

immediately behind the meristematic region. Huck et al.(l970) has shown 

that primary root tissue might shrink as a result of water stress, 

especially before the cell walls have thickened sufficiently to give the 

tissue mechanical rigidity. Plant roots also remove water according to 

the needs of the plant and the location of the root system (Klepper et 

al., 1973). Lang and Gardner (1970) showed that as a root removed water 

from the thin layer of soil immediately adjacent to its surface, the 

rhizosphere layer rapidly decreased in conductivity. 

Shoot growth and flower induction 

The terminal meristem is always located at the tip of the stem and 

has primary responsiblity for initiating leaves, developing axillary 

buds, and laying down nodes and internodes (Nelson and Larson, 1984}. 

Vegetative organs (buds, leaves, and stems) have their origin in the 

apical and lateral buds of stems, starting with the embryo in the seed 

(Gardner et al., 1985), They reported that each subunit of structure, 

phytomer, had three components: (1) stem node and internode, (2) leaf, 

and (3) axillary bud. Gardner et al. (1985) defined growth as cell 

division (increase in number) and cell enlargment (increase in size) 

both requiring protein synthesis and were irreversible. They further 
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reported that dry weight accumulation was commonly used as alparameter 
i 

for characterizing growth because it had the greatest economic 
I 

importance. 

The apical meristem of the shoot forms in the embryo and is the 

place where new leaves, branches, and floral parts originate (Salisbury 

and Ross, 1978). Salisbury and Ross (1978) also reported that increased 

stem diameter in gymnosperms and most dicots resulted from radical 

expansion of cells produced by the vascular cambium, just as'in roots. 

In growing stems, cell division occurs in regions much farther from the 
I 

tip than occurs in roots (Sachs, 1965). Salisbury and Ross (1978) 

reported that the earliest sign of leaf development in both gymnosperms 

and angiosperms consisted of divisions in one of the three outermost 

layers of cells near the surface of the shoot apex. They also reported 

that there was a competition for nutrients among vegetative and 

reproductive organs with young fruits possessing a large but unexplained 

ndrawing powern for mineral salts, sugars, and amino acids.. They also 

reported that factors which stimulated shoot growth retarded flower and 

fruit development. 

Hsiao (1973) concluded that a threshold turgor in soybeans must be 

exceeded before any growth occured, although pressure potential (~p) 

might already be at a threshold value of 5 bars, additional pressure was 

needed for growth. He also reported that the growth rate of,soybeans 
I 

was very sensitive to the extent by which ~P was raised above the turgor 

threshold, and growth stopped well before~P reached zero and before the 

tissues were wilted. Salisbury and Ross (1978) reported that a plant 
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required water as the driving force for growth, but continued water 

uptake required mineral salt absorption or sugars and other organic 

solutes provided by translocation or photosynthesis. Kramer (1983) 

attributed the development of moisture stress in soybeans during midday 

to a considerable resistance of water flow from the soil into the root 

xylem and when there was an appreciable volume of readily available 

water in the turgid parenchyma cells of the stems and leaves. 

Subjecting soybeans to water stress during flower induction 

shortens the flowering period and causes flower abortion, whereas stress 

during pod filling reduces seed number and weight (Sionit and Kramer, 

1977). They also reported that shoot growth was reduced more than root 

growth because more severe water deficits developed in the transpiring 

shoots and probably persisted longer. Green (1968) demonstrated that 

any change in turgor pressure effected on immediate growth rate change 

or cessation as turgor pressure changed from positive to negative. The 

delay in new root growth, which results in decreased translocation of 

nutrients and water to the shoot, imparts a significant stress in the 

shoot according to Arkin and Taylor (1981) and Fritter and Hay (1981). 

They also asserted that under such growth conditions, the plant could 

not approach its yield potential. When the supply of water and 

nutrients translocated to the shoot are severely limited, the shoot may 

slow its rate of terminal growth functions which include photosynthesis 

and assimilation, leaf expansion, and flower initiation or retention 

according to Howell (1960) and Levitt (1980). Sojka and Parsons (1983) 

reported that when significant water stress occured during the 

vegetative stages of growth, complete canopy coverage was never achieved 
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for determinate soybean cultivars because vegetative growth tended to 

cease with flowering. 

Leaf water potential and orientation 

Leaf water potential measurements for plants can be valuable in 

evaluating plant water status because they integrate effects of crop 

species, plant age, soil moisture conditions, and atmospheric demand on 

plant water status (Stanley et al., 1981}. They reported that when soil 

moisture was non limiting, atmospheric demand controlled leaf water 

potential responses. Linear relationships were found between 

temperature and water potential by scott et al. (1981}. They also found 

that leaf temperature of nonirrigated soybeans was more sensitive to 

changes in water potential than that of the irrigated soybeans and 

became more sensitive as drought progressed. 

For soybeans, several studies have shown that water deficits led to 

lowered leaf water potentials and, consequently, to partial stomatal 

closure (Brady et al., 1975; Sionit and Kramer, 1977; Sivakumar and 

Shaw, 1978; Wien et al., 1979; Carlson et al., 1979; and Jung and Scott, 

1980}. Xylem pressure potential was very highly correlated with leaf 

vapor pressure deficit (Sojka and Parsons, 1983}. However, plant water 

flux, especially in field grown plants, varies in response to solar 

radiation, atmospheric conditions, and the amount of water stored in the 

plant and rhizosphere and therefore is only rarely in a steady state 

(Reiscosky et al. 1982}. They also postulated that for soybeans leaf 

water potential-evapotranspiration relationship seemed to be affected 

more by irrigation than by row spacing. Upper leaves were more exposed 
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than lower leaves and transpired more rapidly, lowering their water 

potential and causing water to move to them from the shaded lower leaves 

(Boyer et al., 1980). Boyer (1971) estimated that the soybean leaf water 

potential would have to decrease about twice as much to maintain water 

flow at the same rate; hence, soybeans might be under water stress more 

frequently and more severely than many other plants. 

Prior to full ground cover, soybean leaf area is the most 

influential variable affecting water potential; thereafter, atmospheric 

demand is the principal ~ontrolling factor (Laing, 1966; Kato, 1967). 

Kato (1967) estimated the water requirement for soybeans to be 580g g-l 

dry matter produced. Stevenson and Shaw (197la) reported that under 

water stress there was a preferential flow of water to upper leaves, 

because stomatal resistance of mid-canopy leaves increased with time 

more rapidly and to a greater extent than resistance of upper leaves on 

high-demand days. Under high water availability and low atmospheric 

demand conditions, Stevenson and Shaw (197la) also found leaf resistance 

to be substantially less in upper than mid-canopy soybean leaves. Boyer 

(1970a, 1970b), working with whole soybean plants, has shown that leaf 

enlargement was the first process to respond to water deficit, followed 

by respiration, and then photosynthesis. 

Leaflet reorientation in water-stressed soybeans may be a mechanism 

by which water loss is reduced while still maintaining some level of 

productivity (Meyer and Walker, 1981). They also reported that the 

inversion of the leaflets exposed the abaxial surface which maintained a 

higher level of diffuse conductance under water stress conditions than 

did the adaxial surface. The changes in leaf orientation or shape occur 
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as plant water status decreases (Begg and Torssell, 1974; Shackel and 

Hall, 1979; Rawson, 1979; O'Toole and Cruz, 1980). Terminal leaflet 

inversion during midday appeared to be an early indicator of soybean 

plant water stress and was first observed when 60% of plant available 

water had been depleted (Meyer and Walker, 1981). Changes in leaf 

diffusive conductance also occur as plant water potential decreases 

(Meyer and Green, 1980). Boyer (1970a) reported that, for soybeans, the 

rate of change for leaf enlargement was very rapid at leaf water 

poten~ials greater than -4.0 bars. Leaf water potential and turgor 

pressure within the developing cells of soybean are very important in 

determining rate of leaf enlargement and leaf area at full development 

(Lockhart, 1965). 

Photosynthesis and water use efficiency 

Soybean leaves are the principal light-intercepting and 

photosynthesizing organs on the plant with the leaf area being the best 

measure of the photosynthesizing capacity of the plant (Sakamoto and 

Shaw, 1967; Shaw and Weber, 1967). During early growth, soybean growth 

rate is nearly proportional to crop leaf area (Shibles and Weber, 1965). 

Optimal conditions for photosynthesis and good water-use efficiency 

exchange occur on clear days with air temperatures near 30°C and in the 

absence of sensible heat advection (Baldocchi et al., 1981). They 

reported that hot, clear days dominated by sensible heat advection 

limited co2 exchange but increased latent heat flux. As a result, they 

concluded that carbon dioxide-water flux ratio (CWFR) was low. 

Leaflets of upright display (10-l5°C to the vertical) have lower 
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temperature and lower stomatal diffusion resistance than those of 

horizontal, except on overcast days (Stevenson and Shaw, 197lb). Partial 

stomata closure in turn, lowers photosynthesis, transpiration, growth, 

and yield (Beardsell et al., 1973: Iljum, 1957). Stress in the shoot 

resulting from excessive temperature and evaporative demand or 

inadequate light which reduces photosynthetic activity not only slows 

shoot growth but, also limits photosynthate and assimilate translocation 

to the roots, thereby slowing the rate of root growth (Levitt, 1980). 

Water potentials below -11.0 bars inhibit photosynthesis in soybeans and 

any leaf water potential below -11.0 bars is considered a water deficit 

by Boyer et al. (1980). 

Despite the obvious importance of photosynthesis to crop 

production, the relationship is not a direct one (Gifford and Evans, 

1981). Leaf evolution has provided a structure that will withstand 

environmental rigors and yet provide both effective light absorption and 

rapid oo2 uptake for photosynthesis (Gardner et al., 1985). They 

described the leaf as a photosynthetic organ because most crop leaves 

have (1) a large flat external surface: (2) upper and lower protective 

surfaces: (3) many stomata per unit area: (4) extensive internal surface 

and interconnecting air spaces: (5) an abundance of chloroplasts in each 

cell: and (6) a close relationship between the vascular and 

photosynthetic cells. 

When compared to some other species, soybeans appeared to have a 

low leaf porosity (El-Sharkawy and Hesketh, 1965). Working with ryegrass 

(Lolium perenne L.), Wilson and Cooper (1967) found that co2 

assimilation was positively correlated with the product of cell numbers 
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per unit volume x leaf thickness and with the intercellular volume of 

the leaf. For soybeans co2 assimilation is correlated with leaf density 

thickness (Dornhoff and Shibles, 1970). 

Transpiration 

Gates (1968) reported that the water absorbed by soybean roots 

moved up in the xylem to the leaves where it is vaporized and released 

through the stomates in the atmosphere. As a result, plant water stress 

begins when transpiration water loss exceeds absorption by the roots. 

The amount and rate of water loss through plant leaves depend chiefly on 

leaf morphological characteristics and atmospheric conditions, whereas 

absorption of water by roots depend primarily on soil water conditions 

(Ritchie, 1974). 

Shaw and Laing (1966) reported that the degree of stress which 

developed in soybeans depended on the lag between transpiration and 

absorption. According to Shaw and Laing (1966), transpiration is 

basically a passive process determined by: (1) the amount of energy 

input that supplies latent heat required for water evaporation, (2) the 

availability of water at the surfaces of the plant where evaporation 

occurs, and (3) the existence of a transfer mechanism to move the water 

vapor from the plant surfaces where evaporation occurs to the 

atmospheric sink. The driving force for transpiration is the difference 

in vapor pressure of water within the leaf and in the atmosphere beyond 

the boundary layer (Salisbury and Ross, 1978; Mederski et al., 1973). 

They reported that if the stomates were closed or nearly closed, 

resistance to transpiration could be very high; if they were opened, 
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resistance was very low. Mederski et al. (1973) also reported that the 
! 

energy received by the leaf came from solar radiation, reradiation from 

soil and plant surfaces, and the transfer of sensible heat to the 

soybean leaf by air movement. 

Transpiration accounts for 99% of the water used by plants; 

approximately 1% is used to hydrate the plant, maintain turgor pressure, 

and make growth possible (Gardner et al., 1985). The interrelationship 

between soil water and plant growth is affected by atmospheric factors 

that influence the rate of transpiration chiefly because of the high 

temperature and high vapor pressure deficit accompanying a high level of 

irradiance (Boyer et al., 1980; Kramer, 1983). Peters and Johnson (1960) 

using plastic cover irrigated plots assessed soybean transpiration to be 

about 129 mm from beginning bloom until maturity. Chin Choy and 

Kanemasu (1974) studied an evapotranspiration (ET) model for soybeans 

and sorghum in Kansas. They reported that the leaf area index (LAI) for 

sorghum was less than soybeans, which resulted in 13% greater ET from 

the soybean canopy than from grain sorghum because the latter had 

greater surface resistance. 

Yield 

Adequate moisture is the major factor limiting yield in most areas 

where soybeans are grown. Soybeans are also more sensitive to water 

deficits during reproductive development than during vegetative growth 

stages (Brown et al., 1985; Salter and Goode, 1967; Thompson, 1975; Jung 

' and scott, 1980; Doss et al., 1974). They reported that pod filling was 

the critical period when soybean plants needed adequate water for 
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maximum yields. Their results showed that reductions in seed! size and 

seed number were major components responsible for reduced yield in 

moisture stress treatments. 

The sensitivity of soybeans to water stress measured in terms of 

yield reduction tended to increase dramatically as the crop advanced 

through its natural sequence of reproductive ontogeny (Kadhem et al., 

1985). They reported that sensitivity increased to a maximum during the 

late pod elongation and subsequent seed enlargement stages. They also, 

suggested that the full pod (R4) stage was a critical "cross-over" point 

in reproductive ontogeny relative to irrigation timing and its effect on 

seed size. 

Boyer et al. (1980) postulated that differences in midday water 

deficits between cultivars were only two to three bars at most, but 

these differences were associated with significant yield losses probably 

because of the sensitivity of photosynthesis and other processes to 

these water deficits. Stress during early flowering usually results in 

less than 10% yield reduction and flower and pod drop occur in the lower 

parts of the plant, but compensation. in the form of more pods set on 

upper nodes almost negate the pod loss (Boyer, 1970b). The essence of 

good water management is to provide water to the soybean roots when 

needed by the plant to produce the most economical soybean yields. 



CHAPTER III 

MATERIALS AND METHODS 

This experiment was conducted in the greenhouse using a Wynona 

silty clay loam soil (Cumulic Haplaquolls) diluted with sand to give a 

3:1 soil-sand volume ratio. Sufficient quantity of this ratio was mixed 

in a concrete mixer for 30 minutes to ensure that the resulting soil 

texture of each experimental replication would represent a rooting 

medium with the same matric and osmotic water potentials. soil test 

values showed phosphorus (P) and potassium (K) to be at 100% nutrient 

sufficiency levels as determined by the Oklahoma State University soil 

testing laboratory procedures and recommendations. 

The experiment was conducted as a randomized block design with 15 

treatments and 10 replications. One replication consisted of 3 pots, 

each 33 em high with a diameter of 36 em, containing 27.2 kg of the soil 

mixture in which 15 soybean cultivars were randomly planted. All 

soybean cultivars were inoculasted with Rhizobium japonicum and planted 

at a depth of 2.5 em on 5 June 1985 with three seeds of each cultivar 

planted per stand and five cultivars per pot. After two weeks plants 

were thinned to one plant of each cultivar per pot. Soybean treament 

cultivars, maturity groups, and growth habits are shown in Table 1. 

The growth and development periods of soybeans are referred to as 
I 
I 

vegetative and reproductive stages, respectively. These stages last 

different lengths of time and are influenced in different degrees by 

18 
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internal and external factors. For soybeans, it has been convenient to 

divide each main stage (vegetative and reproductive) into substages. 

Although there is a major difference in plant development between 

indeterminate and determinate soybean varieties, these stage 

descriptions are unilaterally applied (Fehr and Caviness, 1977). 

TABLE I 

SOYBEAN TREATMENT CULTIVARS, MATURITY GROUPS, 
AND GRONTH HABITS 

Soybean treatment cultivar Maturity groups Growth Habit 

Weber I indeterminate 
Lakota I indeterminate 

Vinton 81 I indeterminate 
Gnome II determinate 

Century 84 II indeterminate 
Platte II indeterminate 
Hobbit III determinate 

Williams 82 III indeterminate 
Douglas IV determinate 
Crawford IV indeterminate 

Pixie IV determinate 
Forrest v determinate 
Essex v determinate 
Narow v determinate 

Sohoma VI determinate 

Vegetative stages are described by Fehr and Caviness (1977) as 

emergence, unfolding of the cotyledons, and then development of 

successive nodes on the main stem, beginning with the unifoliate nodes, 

taking into account nodes that have a fully developed leaf. Each stage 

description (Table II) is given a vegetative (V) stage designation and 

an abbreviated title to facilitate communication. 



Stage No. 
VE 
vc 

Vl 
V2 

V3 

. 
V( n) 
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TABLE II 

DESCRIPTION OF VEGETATIVE STAGES 

Abbreviated 
Stage Title 
Emergence 
Cotyledon 

First node 
Second node 

Third node 

Description 
Cotyledons above soil surface 
Unifoliate leaves unrolled sufficiently 

so the leaf edges are not touching 
Fully developed leaves at unifoliate nodes 
Fully developed trifoliate leaf at node 

above unifoliate nodes 
Three nodes on the main stem with fully 

developed leaves beginning with the 
unifoliate nodes 

n number of nodes on the main stem with 
fully developed leaves beginning with 

the unifoliate nodes, n can be any num­
ber beginning with 1 for Vl, first node 
stage 

Source: Fehr and caviness (1977). 



stage No. 
Rl 

R2 

R3 

R4 

R5 

R6 

R7 

R8 
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TABLE III 

DESCRIPTION OF REPRODUCTIVE STAGES 

Abbreviated 
Stage Title 
Beginning 

bloom 
Full bloom 

Beginning pod 

Full pod 

Beginning seed 

Full seed 

Beginning 
maturity 

Full maturity 

Description 
One open flower at any node on the main stem 

Open flower at one of the two uppermost nodes 
on the main stem with a fully developed leaf 

Poo 5 mm (3/16n) long at one· of the four 
uppermost nodes on the main stem with a 
fully developed leaf 

Pod 20 mm (3/4n) long at one of the four 
uppermost nodes on the main stem with a 
fully developed leaf 

Seed 3 mm (l/8n) long in a pod at one of 
the four uppermost nodes on the main stem 
with fully developed leaf 

Pod containing a green seed that fills the 
pod cavity at one of the four upppermost 
nodes on the main stem with a fully de­
veloped leaf 

One normal pod on the main stem that has 
reached their mature pod color. Five to 
10 days of drying weather are required 
after R8 before the soybeans have less 

- than 15% moisture 
Ninety-five percent of the pods have reached 

their mature pod color 

Source: Fehr and Caviness (1977). 
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Description of the reproductive stages is made using the 'main 

stem. These stages are based on flowering, pod development, seed 

development, and plant maturation (Fehr and caviness, 1977}. Each stage 

description is given a reporductive (R} stage number and an abbreviated 

title (Table III}. 

Equal watering of the plants in each pot was ensured thrbughout the 

growth stages with 250 ml of water per pot being applied each day for 

the first four weeks of growth. The volume of water was increased to 

500 ml each day per pot up to blooming time when it was increased to 

1000 ml each day per pot. At different physiological stages of growth, 

water stress was induced by withholding water from pots for varying 

periods of time. Under different magnitudes of water stress diffusive 

resistance (sec cm-1} and transpiration (~g cm-2s-1} were measured on 

all soybean cultivars with a Licor LI-1600 autoporometer. Leaf water 

potentials were also determined using leaf cutter thermocouple 

psychrometers as described by Johnson et al. (1984}. Sampling was 

restricted to fully expanded trifoliate leaves in the terminal part of 

the soybean plants. All measurements were made between 1000 and 1200 

hours CDT on stress level dates. 

Plants were harvested at maturity and the following agronomic 

characteristics were evaluated: (1} mature pods {with seeds} per plant, 

(2} immature pods (without seeds} per plant, (3} number of total pods on 

plant, (4} total seeds per plant, and (5} total dry weight {l3 % 

moisture} of seeds per plant. 



CHAPTER IV 

RESULTS AND DISCUSSION 

Soybean Water Stress Periods 

Previous research has shown that soybean yields were drastically 

lowered if water stressed during reproductive stages of growth. All 15 

soybean cultivars were allowed to grow under nonstressed mineral 

nutrition and water conditions until reproductive growth stages were 

reached. Water stress levels were induced by withholding water from the 

plants for a given period at which time diffusive resistance and 

transpiration were determined using the autoporometer. Leaf water 

potentials were also determined at the same time using leaf cutter 
I 

thermocouple psychrometers. 

The magnitude of stress (medium, high, and very high) were observed 

wilting condition of the soybean plants. Medium stress was where upper 

leaves of the soybean plant had started to wilt and curl with the . ' 
' 

terminal buds and 50 percent of the older leaves in the basal part of 

the plant still turgid. High stress was where all soybean leaves had 

wilted with the terminal buds and axillary buds still upright. Leaves 

were rolled and inversion was in progress; however, the soybean plants 

were still erect. Very high stress was where all leaves were wilted, 

rolled, inverted, with drooping of the terminal buds and apical portion 

of the foliage. The loss of water from the pots due to 

evapotranspiration over a given time period varied in the greenhouse 

23 
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depending upon temperature, amount of cloud cover, and soybean growth 

stage. 

26 July 1985 Stress Level 

Qualitatively this stress level was considered to be medium in 

magnitude. Diffusive resistance (DR), transpiration (TR), and leaf 

water potential (LWP) values are shown in Table IV. DR values within 

Maturity Groups I, II, and III were not significantly different (0.05 

level) with the exception of the Williams 82 cultivar. Other than 

Williams 82, the cultivars in these three maturity groups were lower in 

DR values compared to cultivars in Maturity Groups IV, v, and VI with 

the Pixie cultivar being the only exception (Table IV). DR values for 

Williams 82, Douglas, Crawford, Forrest, Essex, and Narow were higher 

compared to the other eleven cultivars (Table IV). 

The rate of TR ranged from a high of 8.75 to a low of 5.3l~g 

-2 -1 em s and as expected varied inversely in magnitude with DR values 

(Table IV). All cultivars in Maturity Groups I, II, and III (with the 

exception of Williams 82), along with Pixie (Maturity Group IV), and 

Sohama (Maturity Group VI) transpired more than the cultivars in 

Maturity Groups IV and V (Table IV). 

LWP ranged from a high of -1.08 to a low of -1.39 MPa for this 

stress level with no significant statistical difference (0.05 level) 

between cultivars (Table IV). These data suggest that indeed soybean 

cultivars with similar LWP transpire at different rates for a given 

water stress level and is due to differences in DR properties of the 

various soybean cultivars. At this water stress level no trend was 



Cultivar 

Weber 
Lakota 
Vinton 81 
Gnome 

TABLE IV 

MEANS FOR THE EFFECT OF WATER STRESS ON THE DIFFUSIVE 
RESISTANCE, TRANSPIRATION, AND LEAF WATER ParENTIAL 

OF SOYBEAN CULTIVARS AT DIFFERENT GROWTH STAGES 
ON 26 JULY 1985 

Maturity Diffusive Leaf water 
group resistance Transpiration potential 

-1 -2 -1 -MPa sec em )Jg em s 

I 0.96 8.29 1.08 
I 0.91 8.49 1.17 
I 0.84 8.50 1.25 

II 0.96 8.66 1.21 
Century 84 II 1.21 8.41 1.32 
Platte II 1.01 8.75 1.19 
Hobbit III 0.97 8.73 1.26 
Williams 82 III 1.96 6.45 J..32 
Douglas IV 1.80 6.75 1.34 
Crawford IV 2.24 5.31 1.25 
Pixie IV 0.99 8. 7l 1.19 
Forrest v 1.89 6.80 1.17 
Essex v 1.92 5.09 1.39 
Narow v 2.09 5.76 1.21 
Sohoma VI 1.66 7.73 1.17 

LSD (0.05) 0.79 1.71 NS 
LSD (0. 01) 1.06 2.27 NS 
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Growth 
stage 

R5 
R5 
R5 
R5 
R5 
R5 
R5 
R4 
R3 
R3 
R3 
R2 
R2 
R1 
Rl 
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noticed for differences in DR, TR and LtVP due to growth habit. 

2 August 1985 Stress Level 

On a qualitative basis this stress level was considered to be 

high. At this high stress level DR values increased greatly in 

magnitude, compared to the 26 July stress level, and ranged from the 

13.55 to 19.54 sec cm-l with no significant statistical differences 

(0.05 level) between treatment cultivars (Table V). Excluding Weber, 

Maturity Groups .I and II had higher TR values when compared to the other 

cultivars. The Lakota, Vinton 81, and Gnome cultivars were higher 

compared to all cultivars in Maturity Groups III, IV, V and VI (Table 

V). 

LWP range from -1.67 to -2.56 MPa indicating water stress in the 

leaves was of larger magnitude than the 26 July stress level. Under 

this high level of water stress it is interesting to note that there is 

a trend for lower leaf water potentials with the exception of the Weber 

and Gnome cultivars (Table V). This observation suggests that there may 

be less resistance to water uptake and movement of water through the 

plant and to the leaves of these two cultivars. Again, there appeared 

to be no associated differences between TR, DR, and LWP values and 

soybean growth habit. 

9 August 1985 Stress Level 

This stress level was also considered to be high on a qualitative 

scale. DR values were similar to those recorded on the 2 August high 

stress level (Table VI). Platte, Hobbit and all cultivars in Maturity 
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TABLE V 

MEANS FOR THE EFFECT OF WATER STRESS ON THE DIFF{JSIVE RESISTANCE, 
TRANSPIRATION, AND LEAF WATER POTENTIAL OF SOYBEAN CULTIVARS 

AT DIFFERENT GROWTH STAGES ON 2 AUGUST 1985 

Maturity Diffusive Leaf water Growth 
Cultivar group resistance Transpiration potential stage 

-1 -2 -1 -MPa sec em llg em s 

Weber I 19.40 0.42 1.67 R5 
Lakota I 14.64 0.62 2.06 R5 
Vinton 81 I 13.55 0.54 2.10 R5 
Gnome II 14.30 0.54 l. 73 R5 
Century 84 II 17.44 0.48 2.00 R5 
Platte II 16.37 0.48 2.53 R5 
Hobbit III 18.95 0.38 2.30 R5 
Williams 82 III 15.80 0.37 2.17 R4 
Douglas IV 15.30 0.40 2.21 R4 
crawford IV 14.24 0.41 2.22 R4 
Pixie IV 19.54 0.41 2.51 R4 
Forrest v 18.16 0.35 2.51 . R3 
Essex v 16.58 0.36 2.56 R3 
Narow v 17.06 0.33 2.56 : R2 
Sohoma VI 16.80 0.39 2. 45 . R2 

LSD (0.05) 6.05 0.20 0.47 
LSD (0.01) 8.06 0.26 0. 62 • 



Cultivar 

Weber 
Lakota 
Vinton 81 
Gnome 
Century 84 
Platte 
Hobbit 
Williams 82 
Douglas 
crawford 
Pixie 
Forrest 
Essex 
Narow 
Sohoma 

TABLE VI 

MEANS FOR THE EFFEcr OF WATER STRESS ON THE DIFFUSIVE 
RESISTANCE, TRANSPIRATION, AND LEAF WATER POI'ENTIAL 
OF SOYBEAN CULTIVARS AT DIFFERENT GROWTH STAGES ON 

9 AUGUST 1985 

Maturity Diffusive Leaf water 
group resistance Transpiration potential 

-1 -2 -1 -MPa sec em l.l g em s 

I 14.98 1.38 2.15 
I 13.82 1.02 2.19 
I 11.17 1.96 1.84 

II 10.30 2.09 1.85 
II 12.26 1. 78 1. 70 
II 17.24 0.81 2.'53 

III 18.23 0.76 2.21 
III 13.60 0.98 2.50 

IV 19.30 0.75 2.01 
IV 15.75 0.93 2.06 
IV 16.02 0.98 2.50 
v 17.24 0.61 2.55 
v 19.40 0.56 2.74 
v 15.36 0.89 2.51 

VI 17.10 0.76 2.34 
LSD (0.05) 4.91 0.45 0.53 
LSD (0.01) 6,54 0.60 0.70 
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Growth 
stage 

R6 
R6 
R6 
R6 
R6 
R6 
R5 
R5 
R5 
R5 
R5 
R2 
R3 
R2 
R2 
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Groups IV, v, and VI had higher DR values compared to Williams 82 and 

the rest of the cultivars in Maturity Groups I and II (Table VI). TR 

values had similar trends as the 2 August stress level with cultivars 

Vinton 81, Gnome, and Century 84 having higher TR rates compared to all 

other cultivars (Table VI). LWP were also on the same order of 

magnitude as the 2 August stress level. Platte, Williams 82, Pixie and 

all Maturity Group v and VI cultivars were lower in LWP compared to all 

other cultivars (Table VI). For these two high stress levels LWP values 

ranged from -1.67 to -2.74 MPa (Tables V and VI). Upon watering all 

cultivars recovered to what visually appeared to be normal turgid 

plants. 

23 August 1985 Stress Level 

This stress level was considered to be very high on a qualitative 

scale and was initiated to test even further the limits of water stress 

and recovery of the 15 soybean cultivars. No measurements were made on 

the Platte cultivar because it was felt it was too far into maturation. 

DR values for all cultivars in Maturity Groups I and II were 

significantly lower (0.05 level) compared to cultivars Hobbit, Williams 

82, and all cultivars in Maturity Groups IV, v, and v (Table VII). TR 

values for all cultivars in Maturity Groups I and II were significantly 

statistically higher (0.01 level) compared to all cultivars in the other 

Maturity Groups (Table VII). Leaf water potentials were significantly 

statistically higher (0.01 level) for all cultivars in Maturity Groups I 

and II compared to the cultivars in all other maturity group~. These 

data suggest that with increased maturity there is less resi~tance to 



Cultivar 

Weber 
Lakota 
Vinton 81 
Gnome 

Table VII 

MEANS FOR THE EFFECT OF WATER STRESS ON THE DIFFUSIVE 
RESISTANCE, TRANSPIRATION, AND LEAF WATER POTENTIAL OF 

SOYBEAN CULTIVARS AT DIFFERENT GROWTH STAGES ON 
23 AUGUST 1985 · 

Maturity Diffusive Leaf water 
group resistance Transpiration potential 

sec em -1 -2 -1 ]Jg em s -MPa 

I 6.97 2.07 1.97 
I 3,75 2.41 2,06 
I 5,06 2.14 1. 90 

II 4.29 1.98 1.97 
Century 84 II 3.67 1.97 1.54 
Platte II 
Hobbit III 10.95 0,86 4.03 
Williams 82 III 10.54 0.88 3.89 
Douglas IV 8.91 1.03 3.12 
Crawford IV 10.90 0.82 3.81 
Pixie IV 12.10 o. 72 4.05 
Forrest v 10.43 0,94 3.93 
Essex v 11.22 0,88 4.43 
Narow v 11.70 0.81 4.38 
Sohoma VI 11.56 0.78 4.36 

LSD (0.05) 2.29 0.54 0.68 
LSD (0.01) 3,05 0. 72 0.90 
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Growth 
stage 

R8 
R7 
R8 
R6 
R7 

R7 
R5 
R5 
R5 
R5 
R4 
R4 
R2 
R3 
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water uptake and movement of water to leaves or maturation in Maturity 

Groups I and II may have begun to play a role in LWP values. Upon 

watering, recovery to turgid normal plants was slow, however, all plants 

for all cultivar replications did recover. 

30 August 1985 Stress Level 

For these measurements the water stress level was considered to be 

qualitatively high. All cultivars in Maturity Groups I, II, and III 

with the exception of Williams 82 were considered too mature for further 

valid DR, TR, and LWP measurements. DR values were significantly 

statistically lower (0.05 level) for the Douglas and Crawford cultivars 

compared to all other cultivars in Maturity Groups IV, v and VI (Table 

VIII). The DR value for Williams 82 was larger, but not significant 

from the Douglas and Crawford cultivars. As expected TR values for 

Williams 82, Douglas, and Crawford were significantly statistically 

higher (0.05 level) compared to all other cultivars (Table VIII). 

LWP ranged from a high of -1.96 to a low of -3.07 MPa (Table 

VIII). The highest LWP were for cultivars Williams 82, crawford, and 

Sohoma. Pixie had the lowest LWP, significant at the 0.01 level, with 

the rest of the cultivars falling into the intermediate range (-2.13 to 

-2.30 MPa) for this stress level. 

6 September 1985 Stress Level 

The last measurements of TR, DR and LWP were made at a high 

qualitative stress level. DR values were on the similar order of 

magnitude as those measured on 30 August (Table IX). The Williams 82, 
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Table VIII. Means for the effect of water stress on the diffusive resis-
tance, transpiration, and leaf water potential of soybean cultivars at 
different growth stages·on 30 August 1985. 

Maturity Diffusive Leaf water Growth 
Cultivar group resistance Transpiration potential stages 

sec ern -1 -2 -1 llgcm s -MPa 

~villiarns 82 III 8.78 2.60 1.96 R6 
Douglas IV 6.34 3.24 2.13 R6 
Crawford IV 6.59 3.02 1.76 R6 
Pixie IV 14.87 1.08 3.07 R6 
Forrest v 15.28 1.17 2.05 R5 
Essex v 16.18 0.95 2.30 R5 
Narow v 13.22 1.20 2.14 R4 
Sohoma VI 12.39 1.53 1.90 R4 

LSD (0.05) 3.77 0.99 0.43 
LSD (0.01) 5.09 1.33 0.58 

Table IX. Means for the effect of water stress on the diffusive resistance, 
transpiration, and leaf water potential of soybean cultivars at different 
growth stages on 6 September 1985. 

Maturity Diffusive Leaf water Growth 
Cultivar groUE resistance TransEiration potential stages 

sec cm-l -2 ]lg em s -1 -MPa 

Williams 82 III 6.25 2.10 2.07 R8 
Douglas IV 4.74 2.94 2.12 R7 
Crawford IV 4.52 2.84 2.35 R6 
Pixie IV 10.44 0.54 2.95 R8 
Forrest v 14.02 0.43 3.30 R5 
Essex v 13.02 0.53 3.50 R5 
Narow v 14.16 0.52 3.13 R5 
Sohoma VI 13.10 0.57 1.86 R5 

LSD (0.05) 3.67 o. 72 0.42 
LSD (0.01) 4.95 0.97 0.56 
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Douglas, and Crawford cultivars were again significantly statistically 

lower (0.01 level) compared to Pixie, Forrest, Essex, Narow, and Sohoma 

cultivars. values of TR were higher for the Williams 82, Douglas, and 

Crawford (Table IX). The inverse relationship between DR and TR values 

also followed similar trends as those obtained on 30 August. LWP were 

significantly higher (0.05 level) for the Williams 82, Douglas, 

Crawford, and Sohoma compared to Pixie, Forrest, Essex, and Narow 

cultivars (Table IX). 

Pods, Total Seeds and Seed Weight Per Plant 

For the six qualitative water stress levels studied over various 

reproductive stages of growth immature pod formation was significantly 

higher (0.01 level) for the Hobbit and Pixie compared to the other 13 

cultivars (Table X). All other cultivars ranged from a low of 0.4 to a 

high 1.8 immature pods/plant. In general the formation of mature pods 

decreased as immature pod production increased for the Hobbit and Pixie 

cultivars, however, this relationship was not evident for the rest of 

the cultivars (Table X). Mature pods production for 

Forrest>Sohoma>Gnome>Essex>Crawford>Century 84 and represents the six 

top mature pod producing cultivars. The other cultivars were similar in 

the number of mature pods produced (Table X). Cultivars Gnome, 

Crawford, and Forrest were the three highest in total seeds produced 

with the Weber, Lakota, Vinton, Hobbit, Pixie, and Narow being the six 

low seed producing cultivars (Table X). 

Seed weight/plant was significantly higher (0.01 level) for the 

Crawford compared to the next three highest (Forrest, Essex, and Sohoma) 



TABLE X 

MEANS FOR THE EFFECTS OF WATER STRESS ON THE NUMBER 
OF IMMATURE, MATURE, AND TOTAL PODS~ TOTAL SEEDS~ AND 

SEED WEIGHT PER PLANT 
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Maturity Irrnnature Mature Total Total Seedt 
Cultivar group pods pods pods seeds weight 

--g--

Weber I 0.9 7.0 7.9 15.4 1.25 
Lakota I 0.7 8.0 8.7 18.0 2.01 
Vinton 81 I 0.6 9.3 9.9 17.6 2.66 
Gnome II 0.8 12.3 13.1 26.3 3.18 
Century 84 II 0.4 10.3 10.7 22.6 3.37 
Platte II 1.6 8.9 10.5 20.9 1.95 
Hobbit III 3.7 8.1 11.8 18.0 1.77 
Williams 82 III 0.3 8.7 9.0 19.7 2.70 
Douglas IV 0.3 9.0 9.3 21.2 3.06 
Crawford IV 0.5 11.5 12.0 28.0 4.86 
Pixie IV 4.9 8.1 13.0 17.4 1.37 
Forrest v 1.8 15.3 17.1 30.3 4.18 
Essex v l.l 12.0 13.3 24.2 3.84 
Narow v 1.2 8.3 9.7 16.3 3.07 
Sohoma VI 0.8 13.4 14.2 24.2 3.85 

LSD (0.05) o. 72 1.47 1.64 3.01 0.47 
LSD (0.01) 0.95 1.94 2.17 3.98 0.62 

tAdjusted to 13% moisture. 
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yielding cultivars. Vinton 81 (Maturity Group I), Century 84! (Maturity 

Group II), Williams 82 (Maturity Group III), Crawford (Maturity Group 

IV), Forrest and Essex (Maturity Group V), and Sohoma (Maturity Group 

VI) were the highest yielding cultivars after being subjected to all six 

water stress levels during reproductive stages of growth. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Fifteen soybean cultivars ranging from I to VI in Maturity Groups 

were subjected to induced water stress levels during reproductive stages 

of growth. Diffusive resistance, transpiration rates, and leaf water 

potential values were measured on six different water stress dates. 

over the six water stress dates measured diffusive resistance values 

ranged from 0.84 (Table IV) to 19.54 (Table V) sec cm-l and varied 

inversely at different degrees of magnitude with transpiration rates 

that ranged from 0. 33 (Table V) to 8. 75 (Table IV) J.l g em - 2s -l. Leaf 

water potentials ranged from -1.08 (Table IV) to -4.43 (Table VII) MPa. 

A range in magnitude of leaf water potentials were related to 

visually described qualitative water stress levels. Qualitatively 

medium stressed soybeans had leaf water potentials of <-1.4 MPa compared 

to a range between -1.7 to -3.0, and >-3.0 MPa for high and very high 

qualitatively described water stress levels, respectively. There was a 

trend for leaf water potentials to be lower for soybean plants in the 

early compared to the later reproductive stages of growth at·a given 
I 
I 

water stress level. These data suggest that there is less r~sistance to 

movement of water from the rooting medium, across root membranes, into 

the xylem, and movement up through the vascular system to the leaves as 

soybean cultivars proceed through reproductive growth stages. 

Diffusive resistance and transpiration rates varied inversely with 
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considerable differences between cultivars in the same Maturity Group 

having similar leaf water potentials. This suggests differences in the 

rate of loss of water from the walls of the mesophyll cells, differences 

in movement of water vapor in the intercellular spaces to and through 

the stomates, and away from the outer air boundary. 

The pod formation, total seeds, and seed weight data should be 

interpreted with great caution in that these agronomic characteristics 

were a result of six predetermined qualitative water stress levels for 

15 different cultivars at different reproductive stages of growth. 

Newly designed experiments are required to ascertain the cause and 

effect relationships between the above mentioned production parameters. 
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