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CHAPTE~ I 

INTRODUCTION 

The Photorefractive Effect in LiNbO 
3 

Creating laser-induced refractive-index changes [Photorefractive 

Effect (PRE)] in LiNbO crystals has been an important topic in research 
3 

for many years ~-4]. The photorefractive effect is crucial for mate-

rial used in applications requiring the transmission of laser beams 

because the refractive index changes act as optical damage centers [5,6]. 

In addition, holographic images can be formed through the PRE for optical 

storage and for establishing gratings used in phase conjugation and beam 

scattering. Therefore, it is important to have a detailed understanding 

of the physical processes underlying the PRE so materials can be produced 

with optimum characteristics. 

Photorefractive patterns in the form of gratings can be produced in 

materials using crossed laser beams. This is called the holographic 

technique. Information concerning the holographic grating can then be 

extracted using various methods. One such method is to monitor the 

efficiency of scattering a laser probe beam off of the grating at the 

Bragg diffraction angle. Another method is to measure the decay time of 

the scattering efficiency while the grating is being erased by another 

source o£ light. It is assumed that the grating formed during the holo-

graphic technique is in the form of a purely sinusoidal pattern with a 

1 
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well defined Bragg conditi~n so that the theoretical analysis of the· 

data gives the modulation or grating depth of the refractive index 

grating. The properties of the charge carrier generation, dynamics of 

relocation, and trapping unde~lying the PRE that produces the grating 

can be determined by measuring the changes in scattering efficiency. 

These changes in scattering efficiency occur when properties such as 

defect content or temperature of the sample are changed or when experi­

mental conditions such as grating spacing or erasure beam are changed. 

One problem with the experimental method described above is that 

absolute measurements of scattering efficiencies are not very precise. 

Inaccuracies occur because of additional surface and bulk scattering 

processes as well as limitation due to the angular distribution of the 

fields present in the probe and scattered beams. Nonlinearities in the 

photorefractive grating produce complex grating shapes instead of pure 

sinusoidal gratings. Although advances have been made in obtaining 

fundamental properties of the charge carrier-defect dynamics in some 

photorefractive materials, [7-9] there is still much to be understood 

about these processes which are nonlinear due to the coupling between 

the electrostatic field and the migrating charges. Nonlinearities of 

the charge relocation within the volume of the crossed Gaussian beams 

make the assumption of a purely sinusoidal grating with a well defined 

Bragg condition highly questionable for most conditions and the exact 

thickness of the grating is difficult to determine. A new technique 

is needed to account for a nonsinusoidal grating and that will give 

accurate values for the grating depth and grating thickness. The 

goal of this study is to develop an expression to describe the diffrac­

tion efficiency of light by a nonlinear optical material. From this 



expression, values for the grating depth and grating thickness can be 

obtained for various doped and undoped crystals of LiNbO . 
3 

Summary of Thesis 

In this study, the properties of the photorefractive effect were 

investigated using the holographic grating technique in doped and un-

doped nominally pure LiNbO crystals. Gratings were created with 
3 

different write beam crossing angles between 2.5° and 8.0° and the 

angular distributions of the scattered probe beam intensity were 

measured. Scattering maxima were observed at several different angles 

and each spot was found to have a different erasure decay rate. This 

is attributed to diffraction from 'a complex grating having multiple 

Fourier components. A theoretical method is presented for analyzing 

3 

these types of data and obtaining information concerning the refractive 

index modulation of each component of the grating. In addition, com-

puter fits of small angle scattering patterns for each diffraction 

maximum are shown to provide very accurate values of the grating depth 

and thickness. A comparison is made between results obtained from this 

technique and those obtained by measurements of the scattering effi-

ciency at the Bragg angle with special attention focused on the 

importance of beam geometries in laser-induced grating experiments. 



CHAPTER II 

THEORETICAL DEVELOPMENT 

In this section the expression describing the diffraction efficiency 

of light by a nonlinear optical material whose dielectric constant and 

conductivity are aperiodically spatially modulated is derived. In gen­

eral, the aperiodic modulation of the material constants cannot be 

accurately described by a simple sinusoidal pattern with a single spacial 

frequency. A better description of complex gratings is to use the super­

position of several sinusoidal patterns with different grating vectors. 

If two or more grating vectors are present simultaneously, it is impossi­

ble for a given incident beam to satisfy Bragg condition for all of the 

grating vectors at the same time. Kogelnik~O] analyzed light scattering 

off Bragg's condition for the case of a single grating vector. It is 

important to determine if his results are valid for the different dif­

fraction maxima which appear for multicomponent gratings. The subject 

of this section is to go beyond the level of accuracy developed by 

Kogelnik by considering the diffraction of a nonsinusoidal grating. 

Roughly speaking, the basic qualitative conclusion of the present study 

is as follows: If the modulated index of refraction pattern is resolved 

into its Fourier components as characterized by different grating vectors, 

then under Bragg condition for a given grating vector the diffracted 

light is largely independent of the other grating vectors. Off Bragg 

condition, the diffraction pattern is influenced by the presence 

4 
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of other grating vectors. Experimental observations substantiate this 

feature. Insofar as the present study represents an extension of 

Kogelnik's theory [10], his notations will be followed with as slight 

modifications as possible. In this study, i will be used whereas in 

Kogelnik's theory, j = -i is used. Equations are in MKS units. 

The situation to be studied is shown schematically in Figure 1. 

An incident light beam R is brought into a medium containing a photo-

refractive grating. The average dielectric constant and conductivity 

of the medium are € and cr, respectively. Choose the z-axis normal 

to the surface of the medium and the x-axis in the plane of incidence. 

Let the material be infinite in extent in the y-direction so that no 

physical quantities will have a y-dependence. The incident light enters 

a region (O<z<d) where the material constants are modulated and emerges 

as s1 , s2 after suffering changes in the propagation direction. 

Actually the experiments to which the theory is intended to apply 

can be carried out during the erasure time of the grating. This means 

that the dielectric constant and conductivity of the medium are not 

only spatially modulated but can also be time-dependent. Under these 

circumstances Maxwell's equations together with Ohm's law dictate the 

behavior of the electric field E associated with the light. 

± + + + 
V X (V X E) = V X 

+ + + 2+ a ± + 
V (V·E) - V E = - at (V x B) 

2 
-V E = a 

at (pJ + ll a! <ei» 

(1) 

(2) 

(3) 

(4) 
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2 a + a + 
'V E-- (].!O'E + ].1 at (e:E)) = 0 at (5) 

2 a 
'V E--at 

+ 
(].IO'E + ( at 

J.1 E: at + 
+ ae:) 
E at = 0 (6) 

+ a2e: 
llE = 0 

at2 
{7) 

2+ + 
a2t 

2].1 (~:) (~!) a2e: aE dO' + + 
'V E - ].10' at - ].1 -E - llE: 

at2 -
- ].1 

at2 
E = 0 at 

(8) 

where ].!, cr, and e: are respectively the permeability, conductivity, and 

dielectric constant of the medium. 
+ 

If the E field is monochromatic with 

an angular frequency w, and the time variations of the dielectric con-

stant and the conductivity are slow in comparison with time variations 

of the field, then in Equation {8) the third and last two terms may be 

disregarded. Equation (8) becomes 

2 a~ v E - J.IO' at - ].IE: = 0 (9) 

If, in addition, the incident light is polarized perpendicular to the 

+ 
plane of incidence, only the y-component of the E-field, denoted by 

E(x,z) will be of interest. 

2+ . + 2+ 
'V E + 1].10'WE - ].lEW E 0 (10) 

This obeys the Helmholtz equation 

2 2 
('V + k )E(x,z) = 0 (11) 

where the complex propagation constant k is given by 



The dielectric constant and conductivity in the modulated region are 

written respectively as 

N 
+ + 

E = E + .r1e.cosK.·x 
0 ~= ~ ~ 

N 
+ + a= a + .r1a.cosK.·x 

0 ~= ~ ~ 

8 

(12) 

(13) 

(14) 

where the summation over i contains the N terms needed to describe the 

+ grating modulation, x = (x,y,z) is a position vector, ~. = K. (sin~. ,0, 
~ ~ ~ 

cos¢.) is the grating vector of 
~ 

the ith modulation component, and E. 
~ 

+ 
and cr. are the cosine transforms associated with the K. contribution 

~ ~ 

to the spatial modulation of the dielectric constant and conductivity, 

respectively, and may themselves be time-dependent (albeit slowly com-

pared with the field time-variation). 

Modifications of the index of refraction and the absorption con-

stant of the medium are related to these modulations. The index of 

refraction can be written as 

n 
N 

+ + 
n + .r1 ~n. cos (K.·x) 

0 ~= ~ ~ 

where n is the average value and ~n. is the change in the index of 
0 . ~ 

(15) 

f t . d h .th 1 . re rae ~on ue to t e ~ modu at~on. In a similar manner, the absorp-

tion constant can be written as 

N 
a= a + .r1 ~a. cos 

0 ~= ~ 

+ + 
(K. •x). 

~ 

Under conditions of weak modulation, 

(16) 



::: 1/2; €. 
~ 

n € !J.n. ::: 
0 0 ~ 1/2 2e: 

0 

and 
CJ.IO CJ.IO, 

a 0 
!J.a ~ = 1/2; = . 

0 2€ 2e: 
1/2 

0 0 

Upon introducing the average propagation constant S via 

s = 
2 1/2 

'Jl'E 
0 

2'fl'n 
0 

9 

(17) 

(18) 

(19) 

where A is the wavelength in a vacuum, and the coupling constants K, via 
~ 

K, = (1/4) 
~ 

2'fl'E, 
~ 

(AE 1/2) 
0 

CJ.IO, ll'!in. !J.g.~ 

+ i -l=-'J7.2~1 ::: -,.-~- + i 2 ..... 
€ 

0 

(20) 

The coupling constants describe the coupling between the reference wave 

R and the signal wave s. For K = 0 there is no coupling between R and S, 

thus no diffraction. Equation (12) may be rewritten 

k2 = 2 . 
J.IEW + ~llOW (21) 

k2 
2 2 icJ.IOW 

= 
].l€4'Jl' c 

+ 
n2A2 c 

(22) 

k2 
2 

iCJ.IWO 4'Jl' € =--+ VA A2 
(23) 

k2 
2 

2'fl'iCJ.10 4'fl' € 
= --+ 

A2 A 
(24) 

k2 = 2~- [2~€ + iCJ.IO - iCJ.IO + ic11a0 ] 
0 

(25) 

[2~E 2 1/2] 
k2 2'fl' a E 

= -r + iCJ.IO - iCJ.IO + icll o o 
0 CJ.I 

(26) 



21T 
A 

21T 
A 

21Te j 
(e:-e ) + ---0- + ic~(cr-cr ) + 2i~ E 11 2 

o A o o o 

10 

(27) 

(28) 

2 21T 
k = >: f21r e:. cos <it·~) + 21Te:o + ic~cr. cos (i(, -~) + 2i~ e: 11-;1 (29) 

[} ~ ~ A ~ ~ o o ~ 
2 4 . 1/2 41T e: 1T~~ E 4 2 2 0 0 0 1T + + 

k = ----=- + ----'--- + - 2- e:. cos (K. •x) + 
A2 A A ~ ~ 

21TiC~ 

A 
+ + 

cr. cos (K. • x) 
~ ~ 

1T~~ e: 4 2 21T~c~cr. 
oo 1T ~ + + 

4 . 1/2 [~ . ~ 
+ + --2 e . + , cos (K. • x) 

A A ~ A ~ 

(30) 

(31) 

41Ti~ E 
112 

[21Te: 
11r 21TE. )· 27TE 

112 (ic~cr. ~ oo 0 ~ + 0 ~ (+ +) 
+ --:A-"--- + A 1/2 A 1/2 cos K. • x 

s A e: A ~ 
0 0 (32) 

41Ti~ E 21TE0 21TE. ~c~cr. 
oo ~ ~ + + 1/2 1/2~ . ~ 

+ ---- --r;2 + 112 cos (Ki ·x) 
A AE AE 

0 0 

1/2 ~ l 81TE 0 ~ 21TE i + ic~cr i 

A \~ , 1/2 1/2 
AE E J 0 0 

87TE 112 N 
0 + + 

• L: 1 K. cos (K. •x) 
~= ~ ~ 

+ + cos (K. ·x) 
~ 

(33) 

(34) 

(35) 

(36) 

(39) 

(40) 



11 

The electric field inside the modulated region of the photorefrac-

tive material is the superposition of the incident and diffracted waves: 

.+ + N 1.r•x 
E = R(z)e + i~lsi (z)e 

+ 

+ + 
is .• x 

l. 
(41) 

Here r = S (sinG·, 0, cos8) is the propagation vector of the incident 

+ 
wave, si are the propagation ve~tors associated with the diffracted waves 

and are related to the incident wave vector through the grating vector 

+ 
K. I 

l. 

+ 
s. 

l. 

+ + 
r. - K 

l. i 
(42) 

with Cartesian components (8sin~ -K.sin~., 0, 8cos0-K,cos<f>.). The condi-
l. l. l. l. 

+ tion for exact Bragg scattering for grating vector K, is specified by 
l. 

(43) 

for angle e = e . A convenient measure of the departure from this exact 
B 

condition is given by the dephasing parameters r;;, defined by 
l. 

r;; = 
i 

+ These are zero at exact Bragg condition forK .• 
l. 

Now substitute Equations (40) and (41) into Equation (11) • 

. ~ :1 S ( ) l.S • X __ O 
~. z e 
l. 

(44) 

(45) 
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2 D2 ( ) ii-~ 2 N I~-~ ii-~ 
V E + ~ R z e + S .t1s. (z)e + 2ia SR(z)e + 

~= ~ 0 

(46) 

.+ + + + .+ + .+ + 2 2 ~r·x 2 is•x ~r·x ~s·x 
V E + (3 R(z)e + f3 S. (z)e + 2ia (3R(z)e + 2ia as. (z)e + 

~ 0 0 ~ 

++ N ++ ++ 
is·x i2r•x -is·x 2ia as. (z)e + 2a.t1.K.R(z)e e 

0 ~ ~= ~ 

N ,+ + N .+ + 
-~s·x ~r·x 

2a.i:1K.R(z)e + 2a.t1K.S, (z)e 
~= ~ ~= ~ ~ 

++ 
-2is·x 

e 

(47) 

= 0 (48) 

The seventh and tenth terms are neglected because they oscillate too fast 

and average out to zero. After comparing the terms proportional to 

+ + ,.+ + exp(ir·x) and exp ~s·x), the equations for the complex wave amplitudes 

become 

ca2 2 N 
R" + 2ir R' + 2ia SR + - r )R + 2a.t1K.S. = 0 

z 0 z ~= ~ ~ 
(49) 

S" + 2is. s~ + 2ia as. <a2 2 + 2K.aR = 0 + - s. ) s. 
~ l.Z ~ 0 ~ ~ ~ ~ 

(50) 



13 

where i runs from 1 to N and the primes indicate derivatives with respect 

to z. In Equation (49) the fourth term goes to zero because the inci-

dent beam is normal to the sample. Equations (49) and (50) indicate that 

the energies associated with the incident and diffracted waves can be 

depleted through absorption. Also indicated is that there is a direct 

energy interchange between the incident and diffracted waves through the 

coupling constants while there is only an indirect energy interchange 

between the diffracted waves through sharing the same incident wave (R) • 

As in Kogelinik's analysis [10], the second space derivatives of the R 

and S. fields are neglected. This is justified insofar as the field 
~ 

envelopes change slowly. Neglecting the second derivatives leaves a set 

of differential equations of the form 

N 
2ir R' + 2ia SR + 2S.E1K.S. = 0 z 0 ~= ~ ~ 

(51) 

2 2 2is. s.' + 2ia SS. + (S -s. )S. + 2K.SR = 0 • 
~z ~ o ~ ~ ~ ~ 

(52) 

In Equation (51) , the second term originates from the absorption of the 

fields propagating in the lossy medium and the third term describes the 

coupling between the incident (R) and scattering (S.) fields. Similarly, 
~ 

in Equation (52) the second term is due to absorption, the third term 

is due to phase changes due to the wave diffracted from the grating, and 

the fourth term is due to the coupling between the R and s. fields. The 
~ 

term describing the phase change due to diffraction reflects only direc-

tional relationships between probe, diffracted, and grating wave vectors. 

The terms describing the coupling between the R and S. fields are depen­
~ 

dent on the coupling constant K .• This coupling constant depends on the 
~ 

depth of both the real and imaginary parts of the index of refraction. 
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The validity of simplifying Equations (51) and (52) requires that the 
N 

second derivative R" must be smaller than 2S.2:1K.S. and that the sec­
l.= l. l. 

ond derivative s:• must be smaller than 2K. SR. These conditions set up 
l. l. 

a lower limit on the refraction index depth (or coupling parameter K·) 
l. 

for which Equations (51) and (52) can be used to <;Jive a physically 

ll}eaningful descriptipn c;>f obseryeq d~:f;:t;raction patterns. 
L z 

Letting CR = S case be the directional cosine with respect 

to the normal of the incident light, Equation (51) may be rewritten as 

N 
2ir R' + 2ia. SR + 2!3.2:1K.S. = 0 

z 0 1.= l. l. 

-ir R' ia. 
2 N 

0 - SR + i S.2:1K.S. = 
z 0 1.= l. l. 

N 
-r R' - a. SR = -i f3. 2:1 k. S. 

z 0 1.= l. l. 

r N z 
R' ii=h Ki 5 i s + a. R= 

0 

N 

c R' +a. R = i .2:1K.S. 
R o 1.= l. l. 

in a similar manner, defining c = s. 
s. 

l.Z 

s case - K cos¢ · i --13--, Equat1.on 
l. 

(52) may be rewritten as 

( 122 2 2is. s: + 2ia. SS. + ~ -s. )S. + 2K.SR 
l.Z l. 0 l. l. l. l. 

0 

2 2 
s - s. 

is. s: + ia. es. + l. s. -K.SR 
l.Z l. 0 l. 2 l. l. 

S' s2 2 s. - s. 
l.Z l. l. iS. iK.R + a s. s 0 l. 2S l. l. 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 
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{61) 

c8 .S! + {a - i~.)S. = iK.R, 
~ ~ 0 ~ ~ ~ 

i=l,2, ••• ,N {62) 

Equations {57) and {62) are supplemented with the boundary conditions 

R(O) = 1, S.(O) = 0, 
~ 

i = 1,2, ••• ,N (63) 

Equations (57), (62), and (63) constitute the basic equations for determi-

ning the diffraction efficiencies n1 in the directions of si. With 

the incident wave amplitude normalized to unity and the power flow being 

normal to the surface, the requisite diffraction efficiences are given by 

* = S.(d)S. (d). 
~ ~ 

(64) 

The requisite diffraction efficiencies are the fractional energy flows 

associated with the diffracted waves after emerging from the modulated 

region. 

Since the shape of the grating is not known beforehand, the number 

of coupled differential equations in Equations (57) and (62) is unknown. 

Even if that were known and the required number of equations were 

solved ~xactly, the final results would be too complicated to be 

physically transparent and useful. It is therefore more advantageous 

to solve them approximately. The procedure for approximate solutions 

may be illustrated by considering the situation in which two grating 

-+ -+ 
vectors K1 and K2 are pertinent. The extension to other situations is 

obvious. 

Two case may be distinguished. The first case occurs when one 

diffracted wave (say s1 ) takes precedence over the other (S2). This 
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happens if K1>>K2 , or when the coupling constants are comparable if the 

Bragg condition for K1 is nearly fulfilled. For this case it is per­

missible to ignore all the S. terms in Equation (57) except for S • The 
1 1 

resulting equation together with the two Equations (62) (for i = 1 and 2) 

can then be solved. The equations to solve are 

Rewriting Equation (66) gives 

-ic ao - i~l 
__ s_l_ s• - i sl • 

K 1 Kl R= 

Now substitute Equation (68) into Equation (65). 

icRcSl 

Kl 

ia. 
2 

S" -
1 

S" 
1 

z;;a. 
0 0 s -

1 Kl Kl 

cRcSl 
S" -

Kl 1 

ia.ocR 
S' -

cRz;;l 

Kl 1 K 

Sl - iKlSl = 0 

a. ocR 
S' 

cRiz;;l 
+ 

Kl 1 Kl 

S - K S = 0 
1 1 1 

-c s1 . 8 , 
--1 

Kl 1 

S' -
icsla.o 

1 Kl 

S' -
csla.o 

1 Kl 

(65) 

(66) 

(67) 

(68) 

(69) 

S' 
1 

(70) 

S' 
1 

(71) 
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-(cRcSl)Sl - (cRao+ cSlao - cRi~l)Si - (ao2 - i~lao + Kl2)Sl = 0 

(72) 

Assume a solution of the form s 1 (z) = AeAZ and substitute into Equation 

(72) • 

(73) 

The quadratic equation will give solutions for A. 

A 
1 feRae + i~l cR) + EcRao + 

. ) 2 - a c a c - ~~lcR 
2cRcSl o Sl - o Sl 

lj -4 (cRCSl) (ao 
2 

- i~ a 2j (75) 
1 0 + Kl ) 

A 
1 

+ i~lcR .±. ~ 2 2 2 2 [c a - cslao R ao + csl ao 
2cRcSl R o 

(76) 

~ 12cR2 - 2i~a c 2 - 2c c 1a 2 + 2c c 1i~a ) - 4c c 1 K1 21 
oR RS o RS o RS j (77) 

- c a + i~1c + ~c a - c a - i~1cR) 2 -
Sl o R - ~ R o Sl o 

(78) 
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(79) 

Using a more general solution, s1 (z) ~y now be written as 

(80) 

U.tilizing the boundary condition that s1 (O) = 0 enables the relationship 

between A1 and B1 to be determined (A1 = -B1). Therefore, 

(81) 

Since in Equations (57) and (62) R is coupled to S, R must have the same 

general solution as s. This can be verified by following the s~~e pro-

cedure to find R as was followed for s. Assuming a solution for R yields 

A z 
a 

R =A e 
2 

Utilizing the boundary condition that R(O) = 1 gives 

1 = 

A (z) 
A z 

a = e 

(82) 

(83) 

(84) 

Evaluating Equations (65) and (66) at the boundary conditions gives the 

expression for R' (O) and Si (0). 

R' (0) = 
-a. 

0 

c 
R 

(85) 
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(86) 

Using the solution for s1 (z) and the expression for si (0) allows for the 

coefficient B1 to be found. 

iKl 
s I (0) = - = B (A - A ) 

1 cSl 1 b a 

The solution 

s 1 (z) = 

-iK 
1 

for sl (z) 

-iK 
1 

cSl (Aa -

is therefore, 

Ab) 
G Abz Aa~ e - e 

(87) 

(88) 

(89) 

Similarly, for R(z) look at Equation (84) for the general solution for 

R(z) and evaluate the first derivative at z = 0. 

B (A - A ) = 
2 b a 

-1 (a 
CR 0 

-a 
0 = --

+ A c ) 
a R 

The solution for the incident wave R is 

R(z) 
A z 

a 
= e + 

a + A c 
o a R 

c (A - Ab) R a 

(90) 

(91) 

(92) 

(93) 

The solution for s 2 (z) is made up of both a particular (S2P{z)) and 

homogeneous (s2H(z)) solution. First find the homogeneous solution 



AssumE' a solution of the form s2 (z) 

r = 

so the homogeneous solution for s2 (z) is 

S {z) = A e 
2H 3 

(a - i1; ) z 
0 2 

c s 

Now find the particular solution. Assume a solution of the form 

A z 
s2 {z) =De a 

and plug into Equation {67). Also substitute Equation (93) into 

Equation {67). Notice that Equation (98) is of the same form as 

the solution of R. 

A z 
a 

A c 2oe 
a s 

a + A c 
o a R 

cR (Aa - Ab) 

a + A c A z 
o a R a e 

c (A - A ) 
R a b 
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{94) 

(95) 

(96) 

{97) 

(98) 

{99) 

= 

(100) 



~bz 
+ G(AbC + ~ - i~ )e S2 o 2 
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= 

(101) 

the coefficients D and G can be found by equating the coefficients of 

the exponential power Aaz and Abz. First look at D. 

D(A c 2 + ~ - i~2 ) = 
a s o 

iK c (A - A ) - iK2(~0 + A c ) 
2 R a b a R 

c (A - Ab) R a 

D = 
iK c A - iK c A - iK ~ - iK A c 

2 R a 2 R b 2 o 2 a R 

D = 

(AacS2 + ~o - i~2)cR(Aa - Ab) 

-iK 
2 

Now solve for G in the same manner. 

c (A. - Ab) 
R a 

G 

iK (~ + A c ) 
2 o a R 

c (A - Ab) R a 

~ + A c 
o a R 

c Ab + ~ - i~ S2 o 2 

The particular soltuion for s 2 (z) is therefore 

-iK [ "o +cRAb 
s2P(z) 

2 
= 

Ab) - i;:;;2 c (A - cS2Aa + ~ R a 0 

~ + A c 
_'b•J 0 a R 

CS2Ab + ~ - i~ 0 2 

A z ·a 
e 

(102) 

(103) 

(104) 

(105) 

(106) 

(107) 

(108) 



The total solution ~or S2 (z) is S2 (z) = S2p (z) + S2H (z) 

-iK 
2 

c (A. - 1.. ) 
R a b 

c (A. - A ) 
R a ·b 

a. + A. c 
o a R 

A. z 
a 

e + 

Use the boundary condition that s 2 (0) = 0 to determine A3 • 

-iK 
2 0 = --:-:--;;.._~:-

c (A. - A.b) R a 

iK 
2 

c (A. - A.b) R a 

Th~... final 

"K 
l. 2 

c (A. - A.b) R a 

expression 

-iK 
2 

a. + c A. o R b 
c A. + a. - ir; 

S2 a o 2 

for 

a. + A. c 
o a R 

+ c A. 
Rb 

+ a. - ir; 
0 2 

s 2 (z) is 

CRAb 

+ 

f a + s 2 (z) 
S2t..: + cR (Aa - f..b) - ir; a. 

0 2 

a. + cRA.a t..bz l a + 
cRAb 0 0 

cS2Ab + - ir; 
e c A. a. + a. 

0 2 S2 a 0 

-(a. - i,2)z} 
i,J e 

.o 
Cl. + c A. CS2 o R a 

cs2 1'b + a. 
0 

A z a 
e 

ir;2 

22 

(109) 

(110) 

(111) 

(112) 

Note that the expression for s1 is identical to Kogelnik's result for 

the amplitude of a singly diffracted wave, but that the s2 result is 

dif~erent [10]. These results provide the quantitative basis for the 

statement made earlier that, under the Bragg condition for a given 
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grating vector, the diffraction is largely independent of the presence 

of other grating vectors, and the same is not true for scattering off 

the Bragg condition. Since Equations (65-67) are symmetric with 

respect to an interchange of subscripts 1 and 2, the situation opposite 

to what has just been described is realized if K2>>K1 , or when the 

coupling constants are comparable. This happens if the Bragg condition 

-+ 
is fulfilled for K2• The solution for this situation is obtained from 

Equations (79), (89}, (93}, and (112} by interchanging subscripts 1 and 

2. 

The final case to consider is when the departure from the Bragg 

condition of the coupling constants and phases for the two grating 

vectors are comparable. Under these conditions, K1 = K2 , c51 = c52 = 

c5 , and ~l = ~2 = ~. Applying these conditions to Equations (65-67} 

yields 

c R' +a. R = ' (K + K2}Si R 0 ~ 1 

cssi. + (a.o - i~}S. = iK,R 
~ ~ 

Rewriting Equation (114) gives 

-ic a.o - ir; s R = s. - i s. K, ~ K. ~ 
~ ~ 

Now substitute Equation (115) into Equation (113} 

-ic c 
R S 

K. 
~ 

S" - ic 
i R 

a. - i~ 
0 

K, 
~ 

s~ 
~ 

s~ 
~ 

a. 
0 

K, 
~ 

ir; 
s. = 
~ 

(113} 

(114) 

(115} 

(116} 



icRcS 

K. 

a z;; 
0 

K. 
~ 

~ 

S". + 
~ 

ic Rao cRz;; 
S' + 

K. ~ K. 
~ ~ 

ia ia 2 c 
s~ + 0 s 

s~ 
0 

+ 
~ K. ~ K. 

~ ~ 

Assume a solution of the form Si(z) = A4eYz and substitute into 

Equation (ll8) • 

2 Yz 
y cRc8A4e + y(cRa0 - cRiz;; + a0 c8 ) 

Yz 2 
A e + (a - a iz;; + 4 0 0 

(Kl + K2}2) A4eYz 0 

The quadratic formula will give solution for y. 

2c c R o R o S - ~ R o o S 
R S 

24 

s. + 
~ 

(117) 

(118) 

(119) 

(120) 

y = 1 {-c a + iz;;c - a c ) + "c a - iz;;cR + a c ) 2 -

4 (cRcS) (a0 
2 - i!;~0 + (<1 + <2) ~ 11

] (121) 

y = 

Y= 

1 
2c c 

R S 

- a c + ~z;;c - a c + c a { . G 2 2 
oR R os- R o 

. 2 . 2 
2~z;;c a - 2~z;;a c c + 2a c c 

R o oRS o RS 

1 
2c c 

R S 

2 4c c a + 
R S o 

(122) 



. 2 . 2 2 
2~~a0cR + 2~~a c c - a c c oRS o RS 

1 
y = 2cRcS 

4cRcS(Kl + K2) 

= (!.) [ ao + 
ya,b 2 L cs 

4(Kl + K2)2] 1/} 

cRcS 

- i 

Assume a solution for R of the form 

+ 

c a s 0 

Using the boundary condition that R(O) = 1 and following the same 

25 

(123) 

(124) 

2 

(125) 

(126) 

procedure as done earlier in Equations (83-93) will give the result for 

R. 
~z 

+ 
a + y c 

o a R 

cR(ya- yb) 

The solution for S. (z) is made up of both a particular (S. (z)) and 
~ ~p 

(127) 

a homogeneous (SiH(z)) solution. The method for obtaining the solution 

is the same as was done in Equations (94-112). Going through this 

procedure gives the following solution for s. (z) , 
~ 

-iK. f ao + cRyb 
y z 

s. (z) 
~ a 

= 
cR(ya- yb) - i~ 

e 
~ csya +a 

0 

a + c y ybz ~a + 
cRyb 0 R a 

CS~a CSyb + a - i~ 
e + a - i~ 

0 0 
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(128) ' 

For comparison of these theoretical predictions with experimental re-

sults, some geometrical simplifications consistent with typical experi-

mental situations can be imposed. Consider the first case treated above 

+ + 
and let K1 and K2 lie along the same direction (e.g. the c-axis of a 

LiNb03 crystal) perpendicular to the normal as shown in Figure 1. Then 

~ - ~ = ~ and c - c - c - case. Now introduce the dimensionless ~1 - ~2 2 R - Sl - S2 -

coupling constants 

K,d 
~ v. = --

~ case 
(i 1,2) 

and the dimensionless dephasing parameters 

z;. d 
~ 

~i = -2-c-os-e-- (i = 1,2) 

The expression in Equation (79) for A a,b becomes 

1 {- c::e 
a z;, 

A 
0 

i ~ 
+ + a,b 2 case case -

V2} z;. 2 4K.J i -~-) - cos~e case 

[-1 2a z;i Gp A 
0 + i + 

- o>e 
= a,b 2 case case -

a z;i t 1;.2 
0 i 

~ 

Aa,b = + + case 2cose - 2 
4cos e 

(129) 

(130) 

G a 
a 

( 0 0 -case case 

(131) 

2] 1/2 
4K, 

co>e 
(132) 

vi2] 1/2 

(133) 
d2 
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ThE expression in Equation (89) for the amplitude of the primary curve 

at the exit sur~ace using Equations (129) , (130) , and (133) becomes 

s1 (d) 

2] \)1 

d2 

s1 (d) = 

.f-
a d i';;ld [- 7; 2d2 

0 + i 
1 

cose 2cose + 2 -iv cose 4cos e 1 
dcose 

{-
a 7;1 t 7;12 0 + i + cos\:) 2cose 2 4cos e 

a d 
0 7;12d2 {- 7;12 _ v12] 1/J i - --+ cose 

-e 

a 
0 

cose 

t ad 
co~e + il;;l] 

ivl e 

-iet 

a d 
0 

cose 

2cose 2 
4cos e d2 

7;1 
7; 2 

+ i 
1 

2cos8 - [- 2 4cos e 

v12 J 1/2 
d2 

(134) 

i(i;;l2 + 
2 1/2 

\)1 ) 
2 2 1/2 

-i(i;;l + \11 ) 
e 

l-
2 2 

7;1 d 

2 
4cos e 

r .. ' 2 ~l.sl.n v 1 

2ll/2 
+ i;;lj 

-e 

~1/2 [ \) + -
1 

2 1/~ 
+ 1;;1 ) J 

2 2 1/2 
sin (v1 + ~;; 1 ) 

7; 2d2 J/2 1 
2 \)1 

4cos e 

(135) 

(136) 

(137) 

The di~fraction efficiency, as defined by Equation (64), is 



28 

2 -2a d 
0 

2 1/2 vl e cose . 2 ( 2 
111 ~ 2 2 s.~n v1 + ~1 ) (138) 

(~1 + vl ) 

The same procedure can be followed for the second spot. The amplitude 

of the secondary wave at the exit surface can be rewritten as 

1 
2 

v --- + Jl/} f a0d 1 cose i 

- (A 
6 

where 

+ B e 
6 

t a d 
0 

+ B6)e cose 

a + c >. o R a 

and reduces to 

+ i 

z;ld { 2d2 
z;l 

2 2cos0 4cos 0 

!~:a}} 

-v/J/2} 

- i(~ 2 
1 

(140) 

2 1/2] 
+ v ) 

1 . 
+ 

(141) 

(142) 
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+ cos0 
a --

o 2 
{ 

a a 
- _o_ - --::2_ + 

cos0 cos0 
~l [ a a ~l 2 

i -- + (-o- - _o_ -- i --) -
cos0 cos0 cos0 cos0 

cos 0 0 + { 
a a 

-2- - cos0 - cos0 

4Kl 2J"l/2} 

2 cos -

G . 2 
~1 a a ~~1 

i--- 0 0 ) 
cos0 cos0 - cos0 - cos0 

1 2 4\11 cos 0 
+- - ~ -[ 

2 2 ]1/2 

2 1 d2 

A6 = ----,;;;:[::-------::-2--:::2-=::J=-1-/7"2---
i~l 4v1 cos 0 

- ! - ~ 2 - - i~ 
2 2 1 d2 2 

+ (- ~ 2 2 1/2 
i~ - \) ) 

A6 = 1 1 1 
1/2 

~ 2 2 
i~l - (- - \) ) - 2i~ 1 1 2 

2 2 1/2 
(~1 + "1 ) + ~1 

A6 = ----~~--~------~~ 
2 2 1/2 

~ - 2~ - (~ + "1 ) 1 2 1 

and similarly for B6 

(143) 

(144) 

(145) 

(146) 

(147) 
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i 

i?;1 2 4Kl2 T/} 
cose> 2 + 01.0 - i?; 

cos e 2 

(148) 

i1';1 t [-
2 2 Jl/2 

2 
4v1 cos e 

--- + 1'; -
d2 2 1 

B6 = 

; [- J/2 2 2 
i1';1 2 4v1 cos e 

- iz; 
2 + z;1 - 2 

d 2 

(149) 

(-~ 2 2 1/2 
-i~ + - v ) 1 1 1 (150) B6 = 

(-~ 2 2 1/2 
i~1 - 2i~2 + - v ) 

1 1 

2 2 1/2 
(~1 + "1 ) - ~1 

(151) 

The diffraction efficiency for the second spot is 

2 2 1/2 
i (1:1 ) "' + "1 



2 2 1/21 t 2 1/2 
i~ + i(~ + v ) _j ~ - i(~ 2 + v ) -

1 1 1 + A6(A6 + B6)e 1 1 1 
2is] 

2 
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+ 

. (t:' 2 2 1/2 
~ "'1 + \)1 ) 

2 1/2 J ~(t:' 2 ) 't:' 
~ "'1 + v1 - 2~"'2 

[ 
v2 2 J _ 2a.adf, [ 2i(~ 2 1 case 1 

~2 = 4 t:"
1

2 2 e A6B6 e 
"' + v1 

2 1/2 
+ \)1 ) 

+ 

(152) 

-2i(~ 2 
1 

+ \)1 ) 2 1/2] 
[ 

i( -~ + 2~ + ( ~ 2 
e 1 2 1 

2 1/2 
+ v1 ) ) 

+ e 

-i (-~1 + 2~2 + <~/ 
e 

2 1/2] + v ) ) 
1 [ 

i <-~ + 2~ -
+ B ) 1 2 6 e 

2 2 1/2 2 2 
t:' -i(- t:'1 + 2 t:'2 - (t:'1 + \)1 ) '"'1 + \)1 ) ) ~ "' "' 

+ e 

2a. d 
a 

case e 

(153) 
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(~ 2 2 1/2 J 
[ 2'2 

- ~ - + " } 1 1 1 -
A6 (A6 + B6 )cos2 2 

[2<2 - ~ + (~ 2 
2 1/2 

J} 1 1 + "1 } 

B6(A6 + B6 )cos2 2 (154} 

(155) 

+ At the exact Bragg condition for K1 or when ~1<<v1 , Equation (154} is 

reduced as follows 

1 t2 2] - ::~: { 1 ( 1 n2 =- -- e A A 
2 " 2 

1 

+ B1 } sin2 

(156} 

where 

(157} 

(158}. 

Now substitute in and reduce 
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[ 
2 J 2a6d f v~ + 1 v --- v 41;2 v 

. 2~<2 -
n2 = __ 2__ e ccse 1 1 

2 2 21; 41; 2 2 
s~n 

v1 2 - v1 - v 2 
2 1 

v1 4< v [ 21;2 + v~-
2 

sin2 (v1} 
2 1 2 v1 

21;2 + v1 s 2 v 2 sin 2 
4s 2 2 

4 2 - 1 v1 2 (159) 

2 ~s . 2 
s~n 

(160) 



CHAPTER III 

COMPUTER SIMULATIONS 

Properties of Lossless Phase Gratings 

In this section, properties of lossless phase gratings predicted by 

the theory are described. Most of the conclusions drawn from this analy-

sis can be applied to amplitude grating having purely imaginary coupling 

constants K. and for combined amplitude and phase gratings where the 
~ 

coupling constants are complex numbers. For a phase grating, the 

coupling constants defined by Equation (20) have only a real part, 

K~ 
~ 

~~n. 
~ 

-A- and ~ = ~~. = o. 
~ 

(161) 

The depth of modulation of the index of refraction ~n varies sinusoidally 

in a direction perpendicular to the z axis. This produces a nonuniform 

modulation of the phases of the electric field of the probe beam. The 

modulation is in a direction perpendicular to the z axis causing diffrac-

tion to occur. 

Figures 2 and 3 are different angular diffraction profiles for the 

first spot under a variety of conditions which are relevant to experi-

mental studies of LiNbo3• These patterns are for the case of unslanted 

gratings close to the Bragg condition where the scattering is domi-

nated by a single spatial frequency component of the grating. A Bragg 

angle of eB = 3° is assumed and the computer simulated diffraction 

34 
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0 
patterns between ~1 of the Bragg angle are generated by Equation (138). 

The di:l;fraction patterns. are norii}alized to a peak intens..:j.. ty o,:t; 1. 0. 

In Figure 2 the grating thickness is fixed at 400 wm while the 

modulation depth is varied between 2 x 10-4 and 4 x 10-4 • The diffrac-

tion patterns all have a pronounced central peak with side lobes on 

both wings. The shape of this central peak is very sensitive to changes 

in ~n and change as the product of ~n and d, the grating thickness.. For 

a deep grating (long write time, large write angle), the central peak 

is very sharp. For a shallow grating (short write time, small write 

angle), the diffraction pattern exhibits a broad, split central peak. 

The splitting of the diffraction pattern which causes the maximum 

scattering to occur off Bragg condition is a real physical effect [11] 

and not a theoretical artifact of the computer generated pattern. Also, 

for a given grating thickness, the angular separation of the side lobes 

is constant while their amplitudes decrease with an increase in grating 

depth. 

In Figure 3, scattering profiles generated for a fixed grating 

-4 depth of ~n = 3 x 10 and grating thicknesses of 300 ~m, 400 ~m, and 

500 ~m are shown. As in Figure 2, the width and shape of the pro-

nounced central peak change with changes in d and vary as the produce 

on ~n and d. For thick gratings the central peak is sharp while thin 

gratings produce a broad, split central peak. In addition, both the 

amplitude and angular separation of the side lobes are strongly depen-

dent upon the grating thickness. As the thickness of the grating 

decreases, the frequency of the side lobe decreases and the amplitude 

of the side lobes increases·. 
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The computer ~enerated diffraction patterns show that as gratings 

become deeper or thicker, the intensity of the scattered wave becomes 

concentrated in a well defined region at the Bragg angle. In the 

limit of an infinitely thick or infinitely deep grating, the scatter-

ing pattern has the form of a delta function in the direction satisfying 

the Bragg phase matching condition. For most real experimental situa-

tions, laser-induced gratings will produce scattering patterns with a 

significant amount of intensity at angles slightly varying form 8B. 

Uncollimated Beams 

The probe and signal beams are never perfectly collimated. This 

section determines how the signal seen by a detector with a small accept-

ance angle compares to that predicted for perfect Bragg scattering. 

Figures 4 and 5 show this comparison as a function of grating depth and 

grating thickness, respectively. At the Bragg angle, the scattering 

efficiency is found from Equation (138) to be 

U2a d J [ J o . 2 w~nd 

cos8B s~n (/..cos8B) • 
(162) 

The scattering efficiency averaged over a small angle ~8 around the 

Bragg angle is 

8 + ~8 B· d8 .. 
<n> J n (8 .. ) 

(2~8) 
8 - ~8 

B 
(163) 

where n(8 .. ) is given by Equation (138). The curves in the figure were 

0 0 
generated for ~8 = + 0.025 and a Bragg angle of 3 . 
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Figure 4 compares the dependence of scattering efficiency on grating 

modulation depth with a grating thickness of 400 ~m for a well collimated 

probe beam versus- a slightly converging or diverging beam. For very 

deep gratings, an oscillatory dependence appears for both collimater and 

averaged scattering efficiencies due to the interference effect of the 

phase modulated signal contributions scattered from different parts of 

the grating. At smaller modulation depths, the curve for the collimated 

signal obeys the simple relationship 

(164) 

This relationship is frequently used in describing the results of laser 

induced grating experiments. The deviation from the quadratic depen-

dence occurs above a scattering efficiency of 90%. This indicates that 

the validity of Equation (164) is not limited to small angles of nB. 

For large values of ~n, the curve for the averaged scattering 

efficiency closely follows the curve for n • This is not surprising 
B 

since for deep gratings most of the light is scattered in the Bragg 

direction leading to 

However, at small values of ~n, <n> departs from the quadratic depen-

dence predicted by Equation (164) due to the splitting of the central 

peak as seen in the diffraction patterns. Averaging the signal over 

(165) 

small angles around the Bragg peak includes more of the scattered light 

intensity than seen at the exact Bragg angle leading to 

<n>>n • 
B 

The curve in Figure 4 tends toward a constant value of <n> for small 

(166) 
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An. Although the deviation from a quadratic dependence is real, the 

exact dependence shown is unphysical and due to the simplifications 

made in deriving Equations {49-52) in which the second derivatives of 

the fields R" and S" were neglected compared to the coupling constant 
i 

K. • 
~ 
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Figure 5 compares the dependence of scattering efficiency on grating 

-4 thickness for a grating of depth An = 1.0 x 10 for a well collimated 

probe beam versus a slightly diverging or converging beam. The angular 

average is again taken for A8 = + 0.025° around e = 3°. For very thick - B 

gratings both nB and <n> show an oscillatory behavior due to interference 

effects of light scattered from different parts of the grating. For thin 

gratings both nB and <n> vary quadratically with d as predicted by 

Equation {163). The magnitude for the angular average scattering effi-

ciency is greater than the exact Bragg scattering efficiency due to the 

splitting of the central peak. The smaller the value of d, the greater 

the range of An for which Equation{l64) will be valid. 

Restrictions of Expression for 

Computer Simulations 

The above discussion of computer simulated scattering results shows 

that the simple expression given in Equation {164) which is generally 

used to interpret scattering data from laser-induced gratings is valid 

only for very restricted conditions. One condition is having a simple 

sinusoidal grating which is produced only if the laser beams writing 

the grating are exactly collimated beams with uniform intensity throughout 

the region to be probed and if the charge relocation dynamics are simple 
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enough to replicate the shape of the laser interference pattern. Another 

condition is haying the modul~tion depth and thickness large enough to 

have most of the scattered light concentrated in the central Bragg peak 

but not so large that interference effects occur from light scattered 

from different parts of the grating. The probe and signal beams must 

also be well collimated so that the detector only sees light scattered 

at the exact Bragg condition. 

Keeping in mind the above restrictions, angular scattering patterns 

can be fitted. Fitting these curves is a method for obtaining accurate 

values for the grating depth and grating thickness. The accuracy of 

these values cannot be obtained from the results of Bragg scattering 

efficiency measurements. In the following sections experimentally mea­

sured scattering patterns are reported and compared to these theoreti­

cally predicted patterns in order to determine the physical properties 

of the gratings. 



CHAI;'TER IV 

EXPERIMENTAL PROCEDURE 

Samples 

Four sets of samples were analyzed using the technique described 

earlier. The first set of samples consisted of good optical quality 

single crystals of poled LiNb03• This was "nominally pure" material 

obtained commercially and contained a total concentration of transition 

metal ion impurities of between 25 and 50 ppm. 

The second set of samples consists of four crystals of poled LiNb03 

obtained from Union Carbide. These four crystals contained different 

amounts of magnesium doping. The mole percentages of magnesium doping 

was at 1.8%, 3.6%, 5.0%, and 8.8%. The first three crystals were 

stoichiometric melt and the 8.8% crystals was congruent melt. 

The third set of samples consists of four good optical quality 

single crystals of poled LiNb03 that have been chemically diffused with 

protons. Each sample was soaked in benzoic acid at 240°C in a sealed 

tube for a varying amount of time. This is a standard technique of 

proton exchange. Benzoic acid has been shown to have an appropriate 

dissociation constant, melting temperature, and stability as a liquid 

for use in this process [12]. Sample #1 was soaked for 2 days, sample 

#2 for 4 days, sample #3 for 8 days, and sample #4 for 14 days. Each of 

the four crystals was annealed at 400°C for six days in sealed tubes. 

44 



45 

The tubes were then opened exposing the samples to the atmosphere and they 

were again annealed at 400°C for nine more days. Annealing converts 

the step index profile obtained with photon exchange to a gradiant-index 

profile having a lowered value of ~n at the guide surface ~3]. Post-

annealing also controls the crystal phase of the exchange layer and 

stabilize the surface index [12]. 

The fourth set of samples consists of two doped crystals of LiNb03 • 

The first was LiNb03 :cu2+. In this crystal there was 1% doping of Cu 

in LiNbo3• The second crystal was LiNb03 :Er with approximately 0.05% 

Erbium. 

Absorption Spectra 

The absorption spectral of the five samples probes is shown in 

Figure 6. Neither the 442 nm write beam nor the 632 nm probe beam lies 

on a sharp absorption band. The nominally pure absorption band and the 

proton diffused absorption band are similar. The absorption coefficient 

is approximately the same at the wavelength of the write and probe beams. 

. . . h . 2+ This can also be sa1d for L1Nb03 :Er and L1Nb03 :Mg. In t e L1Nb03 :cu 

absorption band, the absorption coefficient at the wavelength of the 

write beam is almost four times greater than at the wavelength of the 

probe beam. 

Apparatus 

Photorefractive gratings were established and probed using the 

experimental setup shown as a block diagram in Figure 7. The 442 nm 

emission from a 16 roW He-Cd laser was used to write and erase the photo-

refractive holograms. The 632 nm emission from a 6 mWHe-Ne laser 
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was used to probe the grating without damaging the hologram. The 

scattered signal beam waa chopped and then detected by an RCA C31034 

photomultiplier tube and reco~ded with the help of a lock-in amplifier 

to improve the signal to noise ratio. 
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In these experiments, the write beam was split into two components 

with the use of a beam splitter. These two components were then super­

imposed inside the sample producing an interference pattern in the shape 

of a grating. The charge relocation associated with the PRE in the peak 

regions of the grating reached steady state conditions in 20 seconds to 

15 minutes. The time for steady state conditions depends upon dopings 

and characteristics of the crystal used. The properties of the result­

ing holographic grating were investigated by monitoring the scattering 

efficiency of the probe beam as a function of scattering angle. This 

was accomplished by slight rotations of the base on which the sample 

was mounted which is equivalent to varying the angles of the probe and 

signal beams with respect to the induced grating. The details of this 

geometry are shown in Figure 7. 

The phase grating developes in LiNbo3 because of the interference 

pattern of the two write beams. The phase grating originates from 

charges that have become detrapped and migrate because of drift, dif­

fusion, and the bulk photovoltaic effect. The transportation of charge 

causes a periodic electrostatic field to develop inside the crystal. 

The electrostatic field in turn causes a modulation of the index of 

refraction of the material. The final shape of the refractive grating 

index can be different from the sinusoidal interference pattern of the 

crossed laser beams. 
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The above technique was used on the four sets of samples and a 

grating thickness and modulation depth was determined using the computer 

fit described earlier. For the first set of samples, write beam cross-

0 0 0 
ing angles of 2.5 , 4.0 , and 8.0 were used. For the other sample sets 

a write angle of 4° was used. Different write times will give different 

values for a grating thickness and grating depth. The scattering 

pattern is very dependent upon the write time. If the write time is too 

long or too short, then Equation (138) does not provide a good fit for 

the data. The write time was varied from 20 seconds to 15 minutes for 

the first set of samples. For the second and third sample sets a write 

time of 2 minutes proved to provide the best pattern. A write time of 

30 seconds was used on the third set of samples. The scattering pattern 

each sample was fitted with the computer. 

In the "nominally pure" crystal of LiNbo3 , the erasure of the 

hologram was monitored and compared with the scattering properties for 

honograms with different grating spacings. Erasure was accomplished by 

inserting the movable mirror into the path of the HeCd laser beam as 

shown in Figure 7~ The uniform illumination of the sample with the 

HeCd laser beam relocates the trapped charges in a random distribution. 

This uniform illumination therefore "erases" the photorefractive grating 

hologram. The grating was created with a one minute write time and then 

partially erased. The scattering properties of the hologram are then 

recorded and erasure was continued. To avoid problems with partially 

erased gratings in the other samples, the samples were thermally annealed 

0 
in air at 500 C £or one hour after each measurement of the diffraction 

pattern. 



CHAPTER. V 

EXPERIMENTAL RESULTS AND DISCUSSION 

Introduction 

As presented earlier, the main scope of this study is to develop 

and apply an expression for the angular distributions of the scattering 

pattern. The grating which produces this diffraction pattern is a 

complex grating having multiple Fourier components. From the expression 

developed, information concerning the refractive index modulation of 

each component of the grating can be obtained. The results of this 

technique are given in the following sections. 

Results for "Nominally Pure" LiNbo3 

The results presented here were obtained from "nominally pure" 

crystals of LiNb03• The diffraction pattern that developed in LiNbo3 

was observed to consist of three primary maxima. The scattering pattern 

of the three primary maxima for a write angle of 4.5° is shown in Figure 

8. The direction of these three diffracted beams show that they origi­

nate from different spacial frequencies of the write beams' interfer­

ence pattern. These different spacial frequencies contributing to the 

refractive index grating consist of the fundamental, first, and second 

harmonics of the write beams' interference pattern. The presence of 

the harmonic frequencies is caused by the nonlinearities in the charge 

50 
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transport of the ions. The charge transport is induced by the inter-

action between the light interference pattern and the space charge field 

which is built up by the charge relocation. Different frequency com-

ponents of the grating were observed to have different erasure times. 

This was observed by measuring the different time dependences of the 

three scattering maxima under uniform illumination of the sample causing 

grating erasure. Different erasure times are shown in Figure 9. The 

rate of decay of the Fourier component is different for each component 

and increases as you increase the order of the spot (whether it be lst, 

2nd, or 3rd). The decay rates of each spot is shown in Figure 9 for a 

grating formed at a write angle of 4.2°. 

Figure 10 shows examples of the small angle scattering patterns 

around the three primary scattering maxima measure on LiNbo3 at a write 

beam crossing angle of 2.5° and a write time of 2 minute. Computer 

fits to the observed data were obtained from Equation (138) treating 

the grating modulation depth and thickness as adjustable parameters. 

A good fit is obtained from the scattering pattern associated with the 

fundamental grating frequency as shown in Figure lO.(A). This was 

-4 
obtained for values of ~n1 = 3.48 x 10 and d1 = 370 ~m and is extremely 

sensitive to the choice of both parameters. It was determined that it is 

best to adjust the thickness parameter until the frequency of the side 

bands were equal, and then to adjust the grating depth until the full 

width half maximum of the central peak was the same. These values were 

used as initial parameters for the fitting routine. The fit between 

theory and experiment is poorer for the pattern associated with the lst 

harmonic of the laser interference pattern as shown in FigurelO(B). 
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However, the best fit gives estimates for the depth and thickness of 

-4 this co~onent of the grating as ~n2 = 4.62 x 10 and d2 ~ 401 pm. 

The scattering from the grating cp~ppnent associated with the second 

harmonic of the laser interference pattern shown in Figure lO(C) has a 

very asymetric central peak and therefore cannot be described by 

Equation (138). 

The results of comparing experimentally observed scattering patterns 

with computer generated patterns for multi-Fourier component gratings as 

shown in Figure 10 demonstrate that the assumptions underlying the 

derivation of Equation (138) are valid for scattering from the fundamen-

tal grating component but become less valid for scattering from progres-

sively higher order frequencies of the grating. This is due to the fact 

that the nonlinear interaction between the migrating charges and the 

induced space charge field is greater for higher spacial frequencies. 

The nonlinear interaction results in a greater departure from a sinu-

soidal grating shape which breaks down the assumption that the probe and 

scattered waves couple through a single frequency of the Fourier 

series of the refractive index grating. The experimentally observed 

pattern shown in Figure lO(c) has large phase correlated contributions 

associated with scattering from different spacial frequencies of the 

grating. These show up as large oscillations in the wings of the 

scattering pattern with nondecaying amplitudes. This type of pattern 

is predicted in the theory by Equation (154) • Equation (154) describes 

the case of a grating with two spacial frequencies probed off Bragg 

conditions and with comparable coupling constants for the probed and 

scattered fields for both grating components. This effect appears to 

a smaller extent in the pattern shown in Figure lO(B). However the 
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pattern in Figure lO(A) exhibits the predicted decaying amplitude side 

lobes. This indicates that near Bragg condition for scattering from 

the grating frequency component,associated with the fundamental of the 

write beam interference pattern, the effects of scattering from other 

grating frequency components are negligible. 

The results discussed above indicate that deviations from theore-

tically predicted scattering patterns will be observed when the inter-

action between the migrating charges and the electrostatic field are 

strong. This will occur for deep gratings and those with small spatial 

frequencies. The experimental conditions producing these conditions 

are long write times and large write beam crossing angles, respectively. 

Figure 11 shows an example of a scattering profile obtained after 

0 
writing a grating for 15 minutes at a write beam crdssing angle of 8.0 • 

The asymmetry of the pattern and the strong side lobes resemble the 

shape of the pattern in Figure ll(C). Again this can be attributed to 

phase correlated contributions associated with scattering originating 

from different spacial frequency components of the grating interfering 

with the scattering from the fundamental component near its Bragg 

condition. 

One way to reduce the interference effects produced by scattering 

from multi-Fourier component gratings is to create gratings with only a 

small population of charge relocation. This can be accomplished by 

reducing the writing time of the gratings. Figure 12 shows the small 

angle scattering patterns obtained for small amounts of charge reloca-

tion. For the small write angle results shown in part (A) , a write 

time of two minutes could be used and still have a good fit between the 

experimental results and the predictions of Equation (138) . For longer 
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write times, discrepancies between theory and experiment begin to occur. 

Part (B) of the figure shows similar results for a larger write angle. 

In this case the good fit shown between theory and experimental results 

could be obtained for write times of only 20 seconds or less. This 

demonstrates that the smaller grating spacing produced at larger write 

angles results in significant electrostatic field effects for smaller 

numbers of charges relocated compared to the effects seen for gratings 

with large spacings. 

Results of Magnesium Doped LiNbo3 

Different dopings of magnesium in LiNb03 give different index of 

refraction modulation depths. The change in grating depth as compared 

with concentration of magnesium is shown in Figure 13. A write beam 

crossing angle of 4.0° and a write beam time of two minutes was used. 

The scattering pattern associated with the fundamental grating frequency, 

0 located at an angle of 6.0 , was then examined. The thickness of the 

grating formed in the magnesium doped samples stayed constant at d = 

300 ~m. The grating depth decreases as the concentration of magnesium 

increases. 
-4 A grating depth of 17 x 10 was found for a concentration 

of 1.8% m/o magnesium. 
-4 

The grating depth decreased to 11 x 10 when 

the concentration of magnesium was increased to 3.6% m/o. The depth 

of the grating then appears to reach a threshold value for 5% m/o 

magnesium. 
-4 

At 5% m/o magnesium the grating depth was 4.1 x 10 and 

-4 
changed only slightly to 3.9 x 10 for a magnesium concentration of 

8.8% m/o. 

The data shown in Figure 13 agrees qualitatively with earlier data 

and confirms the 5% m/o threshold value of magnesium in LiNbo3 • 
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The threshold level depends upon both the magnesium concentration and 

the lithium vacancy concentration in the crystal. When electrons are 

released in LiNbo3 with a doving concentration of magnesium greater than 

2+ . 5% m/o, the Mg ~ons act as a trapping site and the photorefractive 

effect is quenched. It should be noted at this time that the threshold 

Mg doping level is not a constant but depends upon the ratio of Mg ions 

to lithium vacancies [14]. Published results report that the damage 

resistance of lithium niobate is increased by a factor of 10 to 100 when 

the crystals are heavily doped with Mg [15]. For undoped LiNbo3 a 

typical value of the index of refraction modulation depth is 8n = 2 x 10-4 . 

-5 
and after introducing MgO, 8n = 2 x 10 • From results obtained in this 

-4 experiment, 8n = 10 The thickness of the grating depth was d = 500 ~m 

as given from the computer. This value of the grating thickness was 

too small to give an index of refraction modulation depth of 8n ~ 10-5 

as was anticipated. Therefore, it is concluded that the scattering 

pattern will give a value for the grating depth which is a factor of 

10 greater than that obtained from the scattering efficiency. At this 

moment, the discrepancy in values of 8n extracted from the two methods 

are confined to dopings of magnesium but it is very probable that any 

material which quenches the photorefractive effect will give similar 

results. 

Results of Proton Diffused LiNbO 
3 

The diffusion of protons into LiNb03 introduces deep traps for the 

migrating charges. Therefore, proton di~fusion reduces the grating 

depth. The effect of diffusing protons into LiNbo3 by means of soaking 

the sample in benzoic acid for varying periods of time is shown in 
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Figure 14. For a write beam crossing angle of 4.1° and a write time 

-4 of two ~nutes, the ~adulation depth ranges from 3.5 x 10 to 2.75 x 

10-4 with a constant grating thickness d = 400 ~m. For diffusion times 

. -4 -4 
of 2 days, 4 days, 8 days, and 14 days values of 3.5 x 10 , 3.15 x 10 , 

-4 -4 
3.13 x 10 , and 2.75 x 10 were obtained, respectively. Figure 15 

shows the different decay times for the fundamental, first, and second 

harmonics of the write beams' interference pattern. Other than the 

fact that once again the different harmonics of the interference pattern 

have different decay rates, the decay rates of the proton diffused 

samples differ from the decay rates of the "nominally pure" samples. 

This indicates a different combination of processes in the charge 

transport. The scattering pattern for proton diffused LiNbo3 at a 

write beam crossing angle of 4.5° is shown in Figure 16. 

The quenching of the photorefractive effect also takes place due to 

proton diffusion. The quenching happens somewhere under two days of 

proton diffusion. Earlier published papers on proton diffusion in 

LiNb03 gives index of refraction modulation depths of ~n = 2.62 x 10-5 

[16]. As in Mg doped LiNb03 , the effect is the same but not as drastic 

as earlier reports would indicate. The qualitative agreement of results 

can be attributed to the fact that the shape of the scattering pattern 

and the scattering efficiency behave the same. The discrepancy in values 

for the grating depth is once again attributed to the shape of the 

scattering pattern giving a different value for the modulation depth 

than that obtained from the scattering efficiency. 

Results of Cu and Er Doped LiNb03 

The fundamental, first, and second harmonics of the write beams' 
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interference pattern in copper doped LiNbo3 also have different decay 

times. The decay rates are shown in Figure 17. The scattering 

patterns around the three primary scattering maxima for a write beam 
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0 crossing angle of 4.5 are shown in Figure 18. The central peak of the 

scattering pattern becomes less broad as the higher harmonic frequen-

cies of the grating are approached. In Figure 19, the small angle 

scattering patterns around the fundamental scattering maxima for varying 

write beam crossing angles are examined. As the write beam crossing 

angle is increased, the grating thickness and grating depth become 

small. For a write time of 30 seconds and a write beam crossing angle 

0 of 4.1 , the best computer fit for copper doped LiNbo3 gives values for 

the depth and thickness of the grating at 14 x 10-4 and 100 ~m, res-

pectively. The copper enhances the photorefractive effect in LiNbo3 by 

introducing charge carriers. The doping of copper increases the index 

of refraction modulation depth by a factor of 10 as anticipated. 

Erbium doped LiNb03 was also examined and for a write time of 30 

0 seconds and a write beam crossing angle of 4.1 , values for the grating 

depth and thickness were obtained. Equation (138) gave values of ~n = 

-4 5.4 x 10 and d = 280 ~m. The Erbium produced no significant change 

in the grating depth and the results were as expected. 

Figure 20 shows experimental results and theoretical fits for copper 

doped LiNbo3 ,(A); Erbium doped LiNbo3 ,(B); and proton diffused LiNbo3 ,(C). 

Results of Erasure 

The effect of erasing the holographic grating formed in "nominally 

pure" LjNbO was examined. A holographic grating was formed by crossing 
3 

two write beams at an angle of 4.1° for one minute. The grating was 
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p~rtially erased and the bes.t ~it was found ~or the scatterin~ pro~iles. 

Erasure w~s continued and v~lues ~or the scatterin~ e~~iciency, the 

grating depth, and the grating thickness were obtained. 

Figure 21 demonstrates the effect of erasing the grating on the 

scattering efficiency. This data can be approximated by a double expo-

nential curve. This curve originates from the presence of two different 

gratings having different types of charge dynamics [8]. 

Figure 22 is a plot of the index of refraction modulation depth as 

a function of the erasure time. The data in this case is approximated 

by a single exponential curve. The index of refraction modulation depth 

varies from ~n = 2.73 x 10-4 at no erasure to ~n = 2.12 x 10-4 after 

three minutes of erasure. Both the scattering efficiency and the grating 

depth were extracted from the same 'data run so it was assumed that 

Figures 21 and 22 would exhibit the same behavior. The discrepancy can 

be explained as follows: the accepted procedure for obtaining the index 

of refraction modulation depth as been to assume a constant grating 

thickness and to measure the scattering efficiency. Kogelnik derived 

an expression for describing the first order Bragg diffraction from a 

thick hologram refractive-index grating. In the case of shallow 

gratings, his result simplifies to 

2 
I al~nl s 

where I is the intensity of the. scattered signal beam and the grating 
s 

depth (~n) is the difference in-the refractive index n between the peak 

and valley regions of the gratin~. Then usin~ Equation (164) the grating 

depth can be determined. The scattering efficiency looks at a combination 
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of grating vectors giving a double exponential curve. Using Equation 

{_138), a single grating vector is. examined during erasure <;Jiving a 

single exponential decay as a demonstrated in Figure 23. The decay rate 

of Figure 23 was expected to equal one of the components of Figure 22. 

This did not occur and at present this aspect is not understood. 

It is observed from Figure 21 that some of the grating remains even 

after three minutes of erasure. This can be explained due to the fact 

the He-Cd laser beam was used in the erasure process. The energy levels 

before and after the migration of charges do not match.and some of the 

energy levels remain full after erasure. In order to completely erase 

the holographic grating, white light or annealing of the sample should 

be used. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Summary 

The analysis of the total angular scattering patterns from laser­

induced refractive index gratings in LiNbo3 reveals intensity maxima in 

several directions. These maxima are associated with different compo-

nents of a multi-Fourier component grating. This observation has not been 

investigated until now. An extension of Kogelnik's theory to a two fre­

quency component grating predicts that the scattering efficiency at exactly 

Bragg condition for one component is not significantly affected by the 

presence of the other components, but scattering at other angles shows 

interference effects associated with scattering from different grating 

frequency components. Analysis of the small angle scattering patterns 

around the multiple scattering maxima observed for LiNbo3 shows that this 

prediction is true for the lowest frequency grating component but it fails 

for the higher frequency components. A more rigorous theoretical treat­

ment is needed for the higher frequency component in order to describe the 

nonlinear interaction between the migrating charges and the induced space 

charge field. 

The dependence of the shapes, of the small angle scattering patterns 

upon the write times, has been reported before [11]. However, the tech­

nique of fitting computer simulated scattering patterns to experimentally 
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obaeryed patterns has not been uaed before to obtain information about 

laser-induceq grating parametera. The reaults presented here ahow that 

this technique is a very sensitrve way to me~sure the grating thickness 

and the modulation depth. This method has significant advantages over the 

normal technique of measuring the scattering efficiency at the Bragg angle 

and relating the result to the index modulation depth by assuming a value 

for the effective thickness of the grating. Using the analysis of the 

scattering patterns, the value for the effective thickness of the grating 

does not have to be assumed. Along with the significantly greater degree 

of accuracy of determining the modulation depth and grating thickness, 

the analysis of the scattering patterns has the advantage of being use­

ful over a wider range of experimental conditions than the range of 

validity of the more simplier relationship used in the Bragg angle scat­

tering efficiency measurement (Equation (163)). In addition, the shapes 

of the central peak and the side lobes of the scattering pattern can 

provide information concerning interference effects from multiple scat­

tering. These effects cannot be directly detected in simple Bragg angle 

scattering efficiency measurements and can contribute to erroneous results 

using this technique. 

Scattering efficiency measurement at exact Bragg condition also 

suffer from experimental geometry problems. It has been shown that a 

detector acceptance angle of a few hundredths of a degree provided by a 

slightly converging or diverging signal beam can give erroneous results. 

This problem becomes very crucial for ahallow· gratings. 

When doping LiNbo3 for the purpose of quenching the photore!ractive 

effect, it has been found that values for the grating depth and grating 
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thickness obtained from the scattering patterns differ ~rom ·v~lues 

obtained from the scattering efficiency. It has been suggested that this 

is due to the scattering eff~ciency looking at a combinat~an pf the funda­

mental, first, and second harmonics of the grating whereas the technique 

of the scattering pattern isolates one of the harmonics of the gratings. 

This assumption can also be applied to the effect of erasure upon the 

holographic grating. 

Future Work 

The application of the small angle scattering analysis technique on 

LiNbo3 demonstrates the changes that occur in the scattering pattern as 

a function of write angle and write time. This is not where the research 

ends, but where it begins. The research to be done in the future is both 

exciting and challenging. The most obvious future research is the appli­

cation of the small angle scattering analysis technique on other photo­

refractive materials. Another area is the discrepancy in the erasure 

data. The reason for obtaining a double exponential from the scattering 

efficiency versus a single exponential obtained from the small angle 

scattering analysis technique must be found. Using the same experimental 

set-up, defect resonance can be investigated. A grating is to be written 

with a wavelength corresponding to the absorption band of the impurity. 

The small angle scattering analysis pattern is then examined to see what 

effect writing on the writing band produces. Another area to investigate 

is the relationship between the study of decay dynamics [8], the 

scattering efficiency technique [10], and the small angle scattering 

analysis technique. Each technique is powerful by itself, but the 

techniques have never been combined. 



Two new and relatively simple but enlightening experiments are 

~cro~luorescence and internal stark splitting. Micro~luorescence is 

micro-Raman spectroscopy. A deep grating i$ ~ormed in iron doped 

2+ 
LiNb03 . Then usin,g the Raman techniql.le, the wavelength o~ Fe and 

Fe3+ absorption are used to scan across the grating and the emission is 

detected. 
2+ 

This is a simple experiment to determine if areas of Fe 

3+ 
and Fe exist. Internal stark splitting studies the splitting of the 
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emission band due to the internal electric field set up inside the crystal 

after the grating is formed. External stark splitting has been investi-

gated previously but internal stark splitting has not been investigated. 

These will provide additional information as to the processes occurring 

during the photorefractive effect. 
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