
MULTIPLE PARALLEL GKS WORKSTATIONS

By

MUKUND JAGANNATHAN
I\

Bachelor of Science
Bangalore University

Bangalore, India
1978

Master of Science
Kansas State University

Manhattan, Kansas
1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
- May, 1986

--lt\..LA~£l
t'~~Uf
,j c;l t\ 1'\'\

L_c.'>p 'd--

I

MULTIPLE PARALLEL GKS WORKSTATIONS

Thesis Approved:

~~er

I ~ ,

21m~)7 (tt/Lu~
Dean of the Gradu~ College

1251278

ii

PREFACE

This work deals with the design and implementation of a

graphical workstation , applicable to the Graphical Kernel

System (GKS). A full implementation of the design

methodology includes a level m subset of GKS as well. The

design is implemented under UNIX.

I wish to thank my advisor Dr. G.E. Hedrick, for all

the timely help, suggestions and encouragement for this work

as well as during the course of my academic pursuits. I

thank Dr. M.J Folk and Dr. D.W. Grace for having served on

oy Graduate Committee and expressing interest and enthusiasm

on this project. I thank Mr. Mark Vasoll and Mr. Gregg

Wonderly for their help in the skillful use of UNIX. A

number of graduate students and faculty members of the

Department of Computing and Information Science, deserve a

note of thanks, for maintaining an atmosphere of

friendliness and good humor.

I express my gratitude and thanks to my brother Dr. J.

Murali and Mrs. Murali for providing a good part of

financial support. I thank J. Mitra and my parents for

their encouragement and support.

iii

TABLE OF CONTENTS

Chapter Page

I • INTRODUCTION 1

Introduction • • • • • • • • • • • • 1
Graphical Standards Development • • • • 3
GSPC Core System • • • • • . • • • • • 5
Core System Overview. • • • • • • • • • 6

Core System Description. • • • • • • • 6
Status of GSPC Core System • . • • • • 8

II. GKS. 9

9
10
15
16

GKS Development • • • • • • •
GKS Functional Description ••
GKS and GSPC Core System. • •
Current Status of GKS • • • •

.
III. LITERATURE SURVEY ••• 18

18
19

Simultaneously Active GKS Workstations.
Literature Review •••••••••••

IV. GKS WORKSTATION DESIGN AND SUBSET IMPLEMENTATION 23

Multiple GKS Workstations • • • • • • • • • 23
Multiple Parallel GKS Workstations. • • • • 24
Minimum GKS Subset. • • • • • • • • 29
Merits of the Design. • • • • • • • • • 30
Applications. • • • • • . • • • • • • • 31

v. RESULTS AND CONCLUSIONS •• . . . 32

Results • • • • • • • • • • • • • • • • 32
Discussion. • • • • • • • • • • • • • • • • 32
Scope of Further Work • • • • • • • • • • • 35

SELECTED BIBLIOGRAPHY • • ••••
APPENDIX A - GKS LEVEL m IMPLEMENTATION

APPENDIX B - GKS USER'S GUIDE •••••

37

40

64

68 APPENDIX C - GKS SYSTEM'S PROGRAMMER'S GUIDE.

iv

Chapter

APPENDIX D - LIST OF SOME COMPUTER GRAPHICS
TERMINOLOGIES •••••••••

v

Page

78

LIST OF FIGURES

Figure

1. Description of Graphics Terminologies. . .
2.

3.

4.

5.

6.

7.

8.

9.

Virtual Workstation

Virtual Workstation Design

Virtual Workstation Design - Subroutine Interface.

Global Data Interface : an Example • • • •

Snapshot of Process Priorities •••

Structured Representation of Control Module ••

Structure of Polyline Output Function ••

Structure of Device Driver Interface •

vi

.
. .

Page

. 12

26

26

27

27

34

73

77

77

ACM

ANSI

ANSI/X3H3

COMSC

CRT

DIGGRAF

DIN

gdi

GINO-F

GKS

GRAF

GSPC

I DIGS

IF IPS

LIST OF ACRONYMS

- Association of Computing Machinery

- American National Standards Institute

- ANSI subcommittee for Graphics Standards

Development

- Computer Science. Used to specify Comput

ing & Information Sciences Department at

Oklahoma State University.

- Cathode Ray Tube

- Device Independent Graphics from FORTRAN

- Deutsches Institute fur Normung, the West

German Standards Organization

- Global Data Interface

- Graphics Input/Output

- Graphical Kernel System

- Graphical Extensions to Fortran

- Graphics Standard Palnning Committee of

ACM.

- Interactive Device Independent Graphic Sys

tem A graphics standard of Norway (also

adopted by The Netherlands)

- International Federation of Information

Processing Societies

vii

IFIPS/WG 5.2

ISO

ISO/TC97/SC5/

0 WG2

MIT

NGS.

Omnigraph

osu

PHIGS

SIGGRAPH

UIMS

UNIX

VDI

vws

- IFIPS Working Group 5.2 (Graphics Stan

dards)

- International Standards Organization

- International Standards Organization

Information processing . Subcommittee 5 ,

Working Group 2.

- Massachusetts Institute of Technology

Network Graphics System

- A Simple Terminal -independent Graphics

Software Released by Xerox Palo Alto

Research Center

. ,

- Oklahoma State University, Stillwater, Ok

lahoma.

- Programmer's Hierarchical Interface to

Graphics Systems

- Special Interest Group on Graphics of the

ACM

- User Interface Management System

An Operating System. UNIX is a trademark

of AT&T Bell Laboratories.

- Virtual Device Interface

- Virtual WorkStation

viii

CHAPTER I

INTRODUCTION

Introduction

Computer Graphics is the science of synthesis of

pictures, either real or imaginary. Graphical displays

using computer based systems have been in use for over three

decades. The MIT's Whirlwind Computer and the Defense

Department's SAGE Air Defense System of the 1950's used

CRT's for graphical displays. The number of leading

publications and books pertaining to Computer Graphics is

too large for enumeration. It suffices to mention that

quality research has been pursued in this area and the trend

will continue in the future.

The development of a standard of practice follows an

initial period of growth of an industry. Computer Graphics

is no exception to this phenomenon. Initially the

developers of graphics systems such as GINO-F, Omnigraph,

GRAF etc., adopted a uniform standard of practice and

consistent product guidelines as far as their product

releases were concerned. Each package that existed would

claim that its package was an industry standard. The diverse

standards so established called for national bodies such as

Association of Computing Machinery - USA (ACM) and their

1

2

counterparts in the United Kingdom, Germany, The Netherlands

etc., to consider the issue of graphics standards

development seriously. This led to the formation of GSPC

(Graphics Standard Planning Committee) for developing the

GSPC Core Graphics System (hereafter referred to as the Core

System). The GINO-F package of Britain was the British work

item for graphics standardization, GKS (Graphical Kernel

System) under DIN of Germany, !DIGS (of The Netherlands)

etc., were other standards that were being developed around

that time. Due to active interaction in the field of

graphics among many nations, a special group under the

International Standards Organization (ISO) was formed to

develop an International standard for computer graphics.

The development of manufacturers standards and subsequently

the various national standards were the precursors to the

ISO GKS. The current draft proposed international graphics

standard known as GKS is the result of an intense effort put

forth by the special group under ISO/TC97/SC5/WG2 (The

working group under subcommittee 5 of the Information

Systems group of the International Standards Organization).

In this thesis, a unique GKS workstation design is

being considered. It is necessary to provide a brief look

at graphics standards, before outlining the workstation

design. In later sections of this chapter, a Core System

overview is provided. Chapter II describes GKS along with

some notes of comparison with respect to the Core System.

This is followed by an implementation of a GKS subset under

3

UNIX, residing at level m of ANSI GKS [28]. In chapter IV,

the unique workstation design is being outlined. Results

and discussions of the design and implementation follows the

above.

Graphical Standards Development

The history of computer graphics spans approximately

three decades. A recognized contribution in terms of

research in computer graphics started in the early 1960's.

In 1963 a Ph.D thesis submitted at MIT [32] by Ivan

Sutherland was a turning point for the computer graphics

industry. This thesis is referred to as the SKETCHPAD.

SKETCHPAD described computer graphics as a complete system

by itself. The concepts of a graphical model, hierarchy of

graphic entities of a model, the data structures necessary

for graphic primitives and topology of the model were among

the many introduced. Geometric models, transformations,

clipping and windowing were discussed at length. The

manipulation of a graphics model in an interactive manner

was also described. No such comprehensive picture of a

graphics system existed prior to SKETCHPAD. Following this

pioneering work, research in the field of computer graphics

centered around the improvement of basic algorithms for

primitives, models and graphic systems. Graphics hardware

was becoming increasingly sophisticated with a high degree

of local control.

4

Manufacturers such as Tektronix, digital, California

Computer Products etc., produced sophisticated hardware for

graphics. Direct view storage tube, silicon target tube,

color plotters etc., with easy to use display processors

were being designed. A principal shortcoming that existed

during this fast pace of technological strides was a lack of

unity among manufacturers and a total neglect of a unified

standard of practice. The user community found it extremely

difficult to port graphics applications across systems.

Even upward compatibility was remote. Naturally a reluctance

in investing in graphical systems was observed.

In 1974 ACM's special interest group in graphics,

hereafter referred to as SIGGRAPH, formed a committee to

look into the development of a graphics standard. This

committee was known as GSPC (Graphics Standard Planning

Committee). In 1975 the IFIP (International Federation for

Information Processing) formed a working group known as

IFIP/WG 5.2 to develop a methodology for computer graphics

standardization. The growth of graphics in Europe was rapid

as well. As mentioned in the previous section, European

nations were developing their individual computer graphics

standards at the time. However, the European nations had

realized the need for a computer graphics standard to

promote better cooperation among community nations. There

definitely existed a need for a graphics standard.

5

GSPC Core System

The GSPC was formed in 1974 to look into the matter of

computer graphics standardization in the USA. In 1975, the

IFIP formed a working group to consider the matter of a

computer graphics methodology. A workshop on graphics known

as "Workshop on Graphics Methodology" was conducted in

Seillac, France in 1976. Members of GSPC were present at

the workshop. The GSPC was highly influenced by the efforts

of IFIP and in particular, the workshop proceedings of

Seillac. The workshop brought to attention, the need to

study the structure of application programs in order to

arrive at a software design method. The need to separate

the picture generating functions (core) from the modeling

functions etc., were discussed. The members of GSPC were

very much influenced by this workshop to direct a focussed

effort in developing the Core System.

In 1977, the recommendations of the GSPC were published

as a status report[l4]. In 1978, a whole issue of ACM

Computing Surveys (Dec. 1978) was devoted to describing the

activities of GSPC and the Core System. The development of

functional capabilities and programming considerations were

discussed in detail. In the next section a brief review of

the Core System will be provided.

6

Core System Overview

Core System Description

The Core System is based on the criterion of "what is

good for most programmers on generally available displays

most of the time". It is a rich package with 3D

capabilities. A powerful 2D subset is part of the standard.

It also has raster graphics extensions. Newman and van

Dam[34] discussed the history, design goals, application

program structure and modularization of the Core System. A

detailed review of the Core System's functional capabilities

by Michner and van Dam provides a complete picture of the

Core System.

The Core System falls into five functional groups~

viz.,

1} Output primitives

2} Viewing

3) Segments

4} Input

5) Control

The Core System has four levels of implementation. The

levels are arranged to have increasing capabilities and

degree of sophistication. These levels were chosen to

provide a reasonable amount of functionality for varied

hardware environments and software requirements.

The users object is described by invocations of the

output primitive functions. An output function has an output

primitive such as MOVE or DRAW with it's associated

attributes. The attributes have a current value that needs

to be set by the application.

7

The viewing transformation selects a portion of the

user's world known as the window. The synthetic camera

describes t~e projection of the object on the window, such

that it can be displayed on a view surface area known as the

viewport. The viewport is specified in normalized device

co-ordinates. Two dimensional and three dimensional window

descriptions as well as clipping specifications are

included.

A segment is said to define an image. The Core System

allows for retained and nonretained segments. The minimum

Core System application runs as a nonretained segment. The

Core System segments can be modified dynamically for

visibility, highlighting, detectability and total image

transformations of scaling, rotation and translation.

The input is specified through logical input devices.

Sampled and event causing classification of input devices

have been specified. The input devices are classified into

the following: pick, locator, valuator, keyboard and button

devices. Each device belongs to either an event causing or

sampling class but not both.

The Core System control takes place at various

functional areas of the system. Multiple view surface

control, inquiry functions and batch mode of segment

handling have also been provided.

Status of GSPC Core System

A second status report of GSPC was published in 1979

[33]. Issues such as viewing versus modeling, 2D versus 3D

relationships etc., were addressed. Between 1977 and 1979

many implementations of the Core System were underway.

Foley et al.,[lO] published a Core System implementation.

Warner et al., [16] implemented a FORTRAN version known as

DIGGRAF. This provided an attempt at language binding for

the Core System. A Pascal implementation by Nicol and

Kilgour [9] and a University of Pennsylvania package [8]

were also among the published implementations.

8

Many industries have invested considerable man-years in

developing the Core System. Towards 1984, the ISO graphics

standard, namely the GKS was released for public review.

Many industries are opposed to having ISO GKS as well as the

current ANSI GKS, primarily due to the investment in Core

System already made. A relatively strong letter to the ACM

[5] by Joseph to oppose acceptance of GKS as an American

standard is an indication of the time and effort invested in

the Core System. The SIGGRAPH executive committee meeting

of 1985 [2] has adopted a "wait and see" policy before

finalizing the rejection or acceptance of the Core System as

an ACM standard.

CHAPTER II

GKS

GKS Development

Members from North America, Europe etc., representing

graphics standardization institutions in their respective

nations convened at Seillac, France in 1976. A proposal to

draft an internationally acceptable standard in computer

graphics was debated at this workshop. Following this

workshop the GSPC took an active interest in the Core

System. Efforts to standardize computer graphics practice

were underway in Britain (GINO-F), Germany (GKS),

Netherlands (IDIGS) etc., around the same time. A strong

need for an acceptable international graphics standard was

realized at Seillac. Representatives of appropriate

committees within GSPC, DIN as well as national standards

organizations of other nations jointly formed a committee

under ISO in 1977, towards developing an international

graphics standard.

In 1979 a meeting in Amsterdam resolved the selection

of a work item on which to build the proposed international

standard. A 2D candidate was considered as a more readily

acceptable item for an international standard at the time.

GKS was 2D and was also small. The DIN was ready to sponsor

9

10

GKS for an international standards development. The ISO

charged the working group WG2 in 1979, to recognize GKS as a

work item. GSPC moved it's operation to the American

National Standards Institute (ANSI) under the X3H3

(Committee for Graphical Standards) committee to redirect

-efforts to build the GKS.

GKS - Functional Description

The GKS originally started as a 2D graphics standard.

3D extensions to GKS have been included recently. GKS

developers maintained a set of design guidelines as follows:

i) To include capabilities essential for a wide variety of

graphics applications ranging from passive output to highly

interactive system.

ii) Graphic devices including vector, raster, microfilm

recorders, storage tube displays, refresh displays and color

displays are to be controlled uniformly.

iii) To keep GKS small and yet cater to the majority of

applications.

iv) To be consistent and compatible with existing norms of

computer graphics practice. The modules of GKS are to be

orthogonal. Orthogonality (of Graphics Systems) is a

principle that states that functions or modules of the

system should be independent of each other, or the

dependency shall be well structured.

The GKS design of user interface is clear, allows for

user friendliness and has excellent error handling

11

specification. GKS allows for total device independence.

It can be implemented using existing ANSI standard

languages. However, languages which are not as yet accepted

as ANSI standard can still implement GKS.

The functional components of GKS can be classified into

the following groups based on the GKS function description:

Control Functions

Output Functions

Output Attributes

Workstation Attributes

Transformation Functions

Segment Functions

Input Functions

Metafile Functions

Utility Functions

Inquiry Functions

Error Handling

In what follows, each module is briefly described

outlining it's principal function. Figure 1 describes

graphics terminologies such as workstation, viewport, window

and the associated co-ordinate system.

Control Functions - These are a set of functions that

initialize GKS environment. These functions provide for

proper handling of workstations, segments, escaping to and

restoring from device dependent functions and error

handling.

12

10 .. we 1- NDC

y

D
y

6 1 1
0 0 I

0 X 10 0 ... X 1

(A) World and Normalized Device Co-ordinates

10- we
1

NDC

8· yt
y 1 • 3- --2

0 0 ~
I I

0 0 .3 ~X 1

Window 'Viewport

(B) Window and Viewport with Clipping of Image

Display
Surface

" _. • • • • • a

Input
Device

(C) Workstation

Computer

NDC - Normalized Device Co-ordinates
WC - World Co-ordinates

Figure 1. Description of Graphics Terminologies

13

Output Functions - An image or a picture is described

to GKS through invocations of graphic primitive output

functions. Each function invoked needs a primitive such as

draw or move together with it's set of attributes.

Output Attributes - The output attributes are

specifications as to how an output primitive is to be

displayed. GKS allows both individual attributes setting as

well as bundled attributes. The GKS state list and

workstation state lists maintain explicit predefined

attribute bundles.

Workstation Attributes - A GKS workstation is one which

has a single real or abstract display surface for graphical

output and any number of real input devices. Workstation

attribute functions specify output attributes in a device

independent manner. The mapping from device-independent

specification to device-dependent specification is done by

GKS using the workstation state list data. The workstation

state list contains information among others screen size and

screen units which aid in the mapping. GKS maintains a

workstation state list for every open workstation.

Transformation Functions - These functions define the

mapping from workstation window to workstation viewport.

The workstation window defines a rectangle in world co

ordinates. The transformation functions provide an image on

the workstation viewport, which corresponds to the normal

projection of the user's world on the workstation window.

The workstation viewport is a specified section of the

14

actual display screen.

Segment Functions - When an image or a picture needs to

be modified and redisplayed, or, several instances of the

same image needs to be generated, it is convenient to store

the image. A set of output functions and their attributes

that define an image can be stored as a segment in GKS. A

segment can be considered to be an abstract data type where

the model is a GKS specification of an image, together with

the operations of scaling,translation and rotation. The

operations are further qualified using segment visibility,

highlighting and priority setting. GKS segments are named

for identification.

Input Functions - GKS classifies input devices into six

categories.

1) Locator - specifies a position by it's (x,y) value.

2) Pick - identifies a displayed object.

3) Choice - selects from a set of alternatives.

4) Valuator- inputs a value.

5) String - inputs a string of characters.

6) Stroke - inputs a sequence of (x,y) positions.

Sampling and event causing distinctions are made. A set of

functions define the input device initialization. Sample

and event functions are specified. A set of functions for

request of input are also provided.

Metafile Functions - A mechanism for long time storage

even after GKS is closed. The metafile stores a GKS

transaction in an address format. A GKS metafile is treated

as an output workstation. It has the following

characteristics:

1) Output functions are stored if the workstation is

active.

2) Attribute functions are stored.

3) Segments are stored if the workstation is active.

4) Geometric data is stored in NDC.

5) Non GKS data maybe written by a special function.

15

Each metafile is a sequence of items, each of which has the

following components:

1) Item type

2) Item data record length

3) Item data record

Utility Functions - These functions aid other GKS

functions. Evaluation of transformation matrix etc., are

examples of utility functions.

Inquiry Functions - This set of functions retains

values corresponding to GKS state, workstation state,

segment state etc., which can be used for further

processing.

GKS and GSPC Core System

The Core System and GKS were two graphics standards that

were developed almost at the same time. The functional

similarities between the two standards is largely due to

similar design goals. However, differences between the two

standards are evident.

16

The Core System published in 1979 [21] was a 3D system.

GKS [28], originally 2D, has 3D extensions included after an

initial draft proposed ISO GKS was released. The Core

System is exhaustive and detailed. GKS is small, yet

functionally complete. Attribute handling in GKS was

originally inadequate to specify individual attributes. GKS

originally used bundled attributes. The Core System used

individual attribute specification. Considerable effort put

forth by members of GSPC led to the inclusion of individual

attributes in GKS. The current version of GKS provides for

both bundled and individual attributes. The workstation

concept was a unique contribution of GKS. A GKS workstation

is based on the concept of abstract graphical workstations.

An abstract graphical workstation provides a logical

interface through ·which the application program controls

physical devices. A clear relation between output and input

devices was lacking in the Core System. The Core System of

1979 [21] lacked a workstation definition. The Core System

did not originally provide for the storage of application

programs. The GKS metafile on the other hand readily

provides for a mechanism to store application programs using

a metacode format.

Current Status of GKS

The ANSI used the Core System as its groundwork for

contribution towards GKS. GKS uses metafile to store

graphics instructions in an address format. This format is

17

a GKS standard and as such is both system and device

independent. Hence, an application program is easily ported

across systems. The ISO group had meetings in Europe and

USA to resolve issues pertaining to input handling, multiple

window to viewport transformations and bundled attributes

[24]. Text and segment handling were f~ne tuned. A draft

proposed GKS standard was published in 1981 [26]. In 1983 a

draft ISO GKS was released. ANSI released ANSI GKS [28] on

July 1, 1984.

The ANSI GKS is currently under public review. It's

use is widespread in Europe. It is evident from the minutes

of the SIGGRAPH meetings that GKS will be passed as an

acceptable ANSI standard.

CHAPTER III

LITERATURE SURVEY

Simultaneously Active GKS Workstations

The ANSI GKS[28], while specifying the functional

details of each GKS function vividly, does not address

implementation aspects of the concepts. This is, however,

deliberate. A standards specification need to be system

independent. Specifically GKS does not specify a design

methodology or guideline for workstation design. The

subject matter of this thesis is to consider an efficient

design methodology for GKS workstations. As a first step it

would be necessary to examine GKS workstations in greater

detail.

At this point it would be appropriate to recall and

restate the GKS workstation concept. A workstation in GKS

consists of a single display surface with its associated set

of input peripherals attached to a single line to the

computer. Before a display can be made on the screen or

input received for interaction, GKS should first open a

given workstation. Several workstations can be open at the

same time. However, prior to actual input from or output to

a workstation, it (workstation) needs to be activated. This

will allow the user to control the portions of the picture

18

that need to be displayed at a given workstation. GKS

directs output to all active workstations.

19

In the next section, a review of workstation designs

adopted in the past will be considered. Following this, a

unique design method for GKS workstations under UNIX will be

outlined.

Literature Review

In this section attention is devoted to previous work

carried out in the area of workstation design. When a

multiple GKS workstation environment is considered, it is

possible to have a network of GKS workstations. This

situation will call for user protocols. Common network

protocol methods will be considered for completeness of

survey.

As the graphics standards were developed there have

been useful extensions to them. A raster graphics extension

to the Core System [27] were presented by Foley. This

contribution was adopted by GKS as well. A three

dimensional extension to GKS is currently being finalized.

In order for GKS to be an acceptable ANSI standard, GKS may

have to undergo some modifications and accept extensions in

the future. Since in the future graphics will involve

highly interactive methods, GKS may have to include

interactive components, as well as network extensions. The

need for interactive components and extensions to a network

approach are seen as essential in the near future.

20

Simmons has implemented a Minimal GKS [4]. The Minimal

GKS is one that comprises the lowest output level and level

'a' input of GKS. This was developed at Sandia

Laboratories. The implementation is under UNIX and coded

using C. The Minimal GKS [4] uses a virtual device interface

(VDI) that lies between the device drivers and the

application. Each device driver that lies under the VDI is

responsible for maintaining the devices under it. The

workstation state list associated with each workstation is

maintained by the appropriate VDI. A subroutine or data

interface is suggested as a method of implementation.

Simmons describes the implementation of simultaneous

workstations using the C function pointers. The devices are

obligated to be under the control of the VDI. The GKS

functions need not pass the workstation identifier across

the VDI. A multiple simultaneous workstation has been

implemented with the VDI and C function pointer approach.

Guttman and Weiss [29] implemented a device independent

decentralized graphics system for GKS. The GKS output is in

the form of a pseudo-code. A device supervisor performs the

decoding, subsequent device output and input handling. A

salient feature of this system is the decentralization of

certain GKS support functions. Clipping, zooming, rotation,

scrolling, viewing etc., are handled at the device. This

causes reduction of code in the main memory and processing

time of the host computer. A principal disadvantage with

this system, not mentioned by the authors, is that the

design assumes sophisticated devices. GKS is device

independent and thus cannot leave some processing at the

device end.

21

DIGGRAF [16] which is a Core System implementation uses

subroutine interface between the device and the VDI.

Kellner at al., [34] ~mplemented a Core System in a

multiuser environment. The virtual device concept is used,

with device drivers being dynamically linked as need arises.

Interactive methods in workstation design has been the

source of attention in designing the emerging Programmer's

Hierarchical Interface to Graphics Systems (PHIGS). UIMS

[6] (User Interface Management system) describes the user

interaction methods on a workstation. User-to-application

program interaction is described. Mark Green [11] has

addressed the methodology for user-to-application interface,

with no attention being given to, user-to-user

communication. The protocols necessary for user-to-user

communication can parallel that of communication protocols

among processes. Datagrams and virtual circuits are

standard methodologies for process communication. A packet

is a prescribed number of bytes defined as a unit for

network data transfer purposes. Typical values are 64-byte

128-byte etc. Packets are transmitted via datagrams or

virtual circuits. In a datagram packets are transported as

isolated units addressed to a specific destination. The

receiver may or may not receive the data in the same order.

In a virtual circuit the network provides a channel in which

22

the packets are sent error free and arrive in the precise

order in which they were sent. A user-to-user protocol in a

workstation environment needs to use the process

communication methods and adapt them to graphic workstation

environment. The need to establish a standard practice for

user communication in a GKS environment may be necessary in

an industrial use of GKS workstations.,

CHAPTER IV

GKS WORKSTATION DESIGN AND

SUBSET IMPLEMENTATION

Multiple GKS Workstations

A survey of past work in the area of workstation design

for GKS and other graphics systems reviewed in the previous

chapter indicates that a layer of software needs to be

maintained between the device independent portions and the

device dependent code. The VDI and the device drivers under

it are seen as essential. Some designs use a

decentralization of certain GKS functions. This may have its

advantage in terms of host computer's memory and processor

time saving. However GKS has to be device independent.

Hence central processing is seen as more desirable. Minimal

GKS [14] maintains a workstation state list at the VDI level

for that workstation. This complicates the use of GKS

inquiry functions.

GKS stipulates that the output functions and attributes

are to be executed in all active workstations. The concept

of simultaneousness is used in the sense that at a given

time many workstations are to be serviced with the same

display.

23

24

A close study of GKS indicates that the output on

active workstations can proceed in parallel. In a simple

GKS workstation design, the parallel paths exist between the

VDI and the device drivers.

Based on the workstation design strategy, parallelism

can exist-at more than one phase of a workstation layout.

In the next section a unique GKS workstation design will be

outlined, that utilizes the parallelism inherent in the

workstation specification.

Multiple Parallel GKS Workstations

Consider an abstract display surface which is

partitioned into many viewing sections. If a GKS

application has many active workstations with an output

component, then each output display surface maybe conceived

as one viewport of the abstract display surface. Each such

viewport would belong to at most one type of workstation. A

given type of workstation may have one or more viewports on

the abstract display surface subscribing to its type. Thus

all viewports belonging to a given type need at most one

device driver. Let this type of a workstation be called a

Virtual Workstation (VWS). Figure 2 describes a vws.

It is clear from the description of VWS that parallel

processing is possible at two points in its layout.

i) The VDI provides as output, the pseudo-code corresponding

to GKS output functions. The VDI has the set of active

device drivers under it, which it can execute in parallel.

25

ii) The VWS has a single device driver to serve all

viewports on the display surface subscribing to a given type

of GKS workstation. Hence the device drivers can service

the viewports under them in parallel.

The aspect of parallel execution of GKS workstations

has not been addressed in the past. A design method that

exploits the parallel execution of the phases of a GKS

workstation will be superior and faster. A conceptual

outline of the design is as follows:

- Each GKS output function needs to display the

graphical information to a single Virtual Workstation.

- Each real GKS workstation, having a display

component, will occupy a viewport on the Virtual

workstation display surface.

- The VWS will group the virtual viewports according to

their GKS types.

- Each device driver will receive a copy of the

pseudocode output from the VDI.

- The device driver will display the graphical output

on all virtual viewports under it, through device calls.

Figure 3 provides a block diagram representation of the

above design. Figure 4 provides a block diagram

representation of a workstation design, if the design

included a subroutine interface to the device drivers.

Using figure 3, a brief description of the implementation of

the above design is provided. Each GKS output function,

----- --------

[J······D
GKS Output .
~ 3 .

l . . -. . . .

0 D i
4

l - Virtual Display Surface
2 - Workstation as a Viewport
3 - GKS
4 - GKS Application

Figure 2. Virtual workstation

1 - GKS Output
2 - Global Data

Interface
3 - Virtual Device

Interface
4 - Device Driver

Process List
5 - Device Drivers
6 - Output Device

Figure 3. Virtual Workstation Design

26

1 - GKS Output
2 - Global Data

Interface
3 - Virtual Device

5
Interface

4 - Device Driver
Process List

5 - Device Drivers
6 - Output Device

Figure 4. Virtual Workstation Design - Subroutine
Interface

OPCODE MOVE

Parameter 1 200

Parameter 2 200

Parameter 3 ---
Parameter 4 ---

Figure 5. Global Data Interface: An Example

27

28

control function and attribute function uses a global work

area known as the global data interface (gdi). In the gdi

the operation (an op-code) and the necessary parameters are

written. The Virtual Device Interface (VDI) reads the gdi

and buffers the data in an appropriate form (buffers all

data in data-type character). The VDI has access to the set

of device driver process list. Each device driver that has

at least one active workstation under it exists as a child

process directly under the VDI. The use of UNIX mechanisms

of fork, pipe and the call "execlp" are used to achieve this

goal. The call "execlp" is used to execute another program

(the device driver) without returning. This call needs the

full path name to the executable file. The UNIX system call

fork, splits the program into two copies both of which

continue to run. The UNIX system call pipe, creates an I/0

mechanism. A call to pipe returns 2 file descriptors. The

file descriptors at the device driver process end, are

further duplicated to act as standard input and standard

output. The VDI which belongs to the parent process, writes

the GKS data buffer to the file descriptors resident at it's

end. Hence with the help of the above UNIX mechanisms it is

possible to allow the device drivers to reside as

independent executable code. The fork mechanism allows

multiple workstations to execute simultaneously, while the

GKS application program continues to execute uninterrupted.

29

Minimum GKS Subset

In order to demonstrate the workstation design

mentioned in section 4.1 adequately, a minimum subset of GKS

is implemented under UNIX. The language used is C. The GKS

data types and abstract functions are bound to C. The

subset developed resides at level m (Minimal Output) of ANSI

GKS [28]. The following capabilities reside in the minimum

subset developed:

i) subset of control

ii) polyline output

iii) subset of attributes

iv) no bundled attributes

v) no color representation modification

vi) multiple workstations with output capabilities.

vii) normalization transformation 0 by default. Only

one current normalization transformation is allowed.

The minimum subset deviates from level m of GKS • As

required by GKS, the implementation allows the system to be

easily upgraded from a given level to a higher level and

vice versa. The principal deviation is the inclusion of

multiple active workstations at the minimum level. This is

justified since the workstation design allows an easy

implementation of multiple active workstations. The GKS

restriction of a single workstation at a time, under level

m, needs to be relaxed for systems such as UNIX.

A set of GKS functions that reside at level m of ANSI

GKS were implemented under UNIX on the Perkin Elmer mini

30

computer. Appendix B, which is a user's guide for the

current implementation of level m GKS lists the above set of

functions. Explanations as to their use is also provided.

Refer Appendix A and Appendix C for further details

regarding the set of GKS functions under discussion. The

language used for coding was C.

Merits of the Design

This design was the result of experiments and

simulations conducted at the Computing and Information

Sciences Department at OSU, Stillwater, OK during the course

of implementing GKS.

- The concept of treating each device driver as a

process and the output device as a file under that process

is unique to this design of workstation.

- Each type of device driver needs only one device

driver process that can serve any number of devices of that

type under it.

- The design also allows any number of device drivers

for the same type of device. However the system

administrator should recognize them as separate GKS

workstation types.

- Since the device driver process is accessed through

its full path name in the UNIX tree of directories, a device

driver may reside even on a remote UNIX network node with

its associated devices. However, the workstation identifier

that specifies the tele-type terminal (tty) number of the

31

display device needs to be mapped to the local device number

in a network situation.

- The GKS output functions and attribute functions need

to consider only a single VWS. This allows for easy growth

of GKS levels.

Applications

The design suggested is applicable in a heterogeneous

or homogeneous graphic device environment. It suggests

itself for multiple simultaneous display. Where the addition

of new devices are frequent, the device drivers can be

written without interrupting the GKS system. The design is

suitable for workstations located in remote network nodes.

This design allows a single user to subscribe to multiple

GKS applications, since the·device drivers enjoy total

independence (the device drivers are spawned processes for

GKS).

CHAPTER V

RESULTS, CONCLUSIONS AND FUTURE WORK

Results

A minimum GKS was implemented comprising a subset of

control functions, a subset of output attributes and a

polyline output facility. The implementation is capable of

serving multiple parallel output workstations. Workstation

transformations have been included. The implementation is

at level m of ANSI GKS with deviations in workstation

handling. GKS level m allows for a single open workstation

at a time. The implementation under discussion is capable

of multiple open workstations and multiple active

workstations. The implementation supports regis graphics

and HP 7470a flatbed plotter (hardcopy). The implementation

unaer UNIX on a Perkin- Elmer mini computer was carried out

at the Computing and Information Sciences Laboratories of

OSU, Stillwater, OK. The entire implementation was coded in

c.

Discussion

UNIX is a highly suitable environment for the

implementation of GKS. The UNIX mechanisms of pipe and fork

were used to effect a simulation of parallel workstations.

32

The UNIX command called execlp was used to spawn a device

driver process. This allows the device drivers to be

totally independent of GKS kernel or the core.

33

The workstation design method adopted is applicable

even at level m of GKS. GKS [28] stipulates that at most one

workstation may be open at a given time when it is run at

level m. In view of the workstation design adopted in this

implementation, this restriction is unnecessary. It is

suggested that future specification of GKS remove this

restriction.

The parallel display of all active devices that are

effected under this design is not strictly parallel. In

reality, the spawned processes and the GKS application

execute on a time sharing basis(UNIX). The spawned

processes (child processes) have a lower priority than the

parent process. The GKS application is the parent process

and the device drivers are the child processes. Refer to

fig (6) for priorities of the processes during the execution

of a demonstration application. It was observed that when

the parent had a priority of 30, the child had a priority of

26. However, all child processes had the same priority of

26. Lower the value higher is the priority of the process.

Hence, the snapshot of fig (6) indicates that the child

enjoys a higher priority than the parent. This is possible

if at the instance a snapshot of the systems process state

is taken, the parent is in a ready or wait state, while the

child is running. In general if both the parent and the

34

F s OID PID PPID CPO PRI NICE ADDR sz WCHAN TTY TIME CMD
3 s 0 0 0 112 0 20 F2 1 16C98 ? 1316:55 swapper
1 s 0 1 0 0 30 20 18C 1 291FO ? 1:30 /etc/init
1 s 553 16166 1 0 30 20 2F8 3 29214 20 0:07 -esh
1 s 553 16468 1 0 28 20 352 3 17988 24 0:06 -esh
1 s 0 37 1 0 40 20 101 1 FFOOOO ? 8:50 /etc/update
1 s 0 39 1 0 40 20 F4 2 FFOOOO ? 3:12 /ete/cron
0 s 183 43 1 0 40 20 4lE 9 FFOOOO con 2:53 deliver -b

-clist,1oca1,uucp
1 s 183 44 1 0 40 20 399 9 FFOOOO con 3:30 deliver -b

-cxokscc1,xoksee1,x
1 s 0 16490 1 0 28 20 185 1 17250 2 0:00 - z
0 s 0 12410 1 0 28 20 596 1 1773C ? 0:00 /etc/init
0 5 0 52 1 0 28 20 402 1 172F8 ? 0:00 /etc/init
1 5 0 16488 1 0 28 20 13D 1 172A4 ? 0:00 /ete/init
1 5 0 16180 1 0 28 20 llA 1 173AO ? 0:00 /etc/init
1 s 595 13344 1 0 30 20 2C4 3 293AO 7 0:07 -esh
0 s 579 16499 1 0 30 20 64A 7 293C4 18 0:21 -vish
0 s 0 57 1 0 28 20 726 1 174FO ? 0:00 /ete/init
0 s 0 58 1 0 28 20 742 1 17544 ? 0:00 /etc/init
0 s 0 13413 1 0 28 20 60E 1 17598 ? 0:00 /etc/init
0 s 0 9025 1 0 26 20 5F2 1 175EC ? 0:00 /etc/init
1 s 553 16465 1 0 28 20 220 3 17694 15 0:06 -csh
1 s 538 16088 1 0 30 20 23D 3 2949C 16 0:09 -csh .o s 0 12497 1 0 28 20 796 1 177E4 ? 0:00 /etc/init
1 s 0 16226 1 0 28 20 152 1 1734C ? 0:00 /etc/init
1 R 0 16251 16187 33 52 20 1A4 7 9 2:47 /usr/lib/

uucp/g.uucico -r1 -su
1 s 1 16307 13344 88 29 20 174 3 1740C 7 3:42 robots
0 s 0 67 1 0 28 20 36A 1 1788C ? 0:00 /etc/init
0 s 0 68 1 0 28 20 386 1 178EO ? 0:00 /etc/init
0 s 0 69 1 0 28 20 62E 1 17934 ? 0:00 /etc/init
0 s 0 10091 1 0 28 20 DB2 1 17448 ? 0:00 /etc/init
1 s 0 14793 1 0 28 20 137 1 17lA8 con 0:00 - 6
1 s 0 16187 16186 0 30 20 168 2 29604 ? 0:28 sh /usr/

1ib/cron/cron-hour1y
0 s 579 16532 16499 0 30 20 912 9 29628 18 0:02 send vasoll
1 s 0 16184 1 0 30 20 12A 2 2964C ? 0:00 sh -c sh I

usr/lib/cron/cron-ho
1 s 0 16186 16184 0 30 20 15D 2 29670 ? 0:00 sh /usr/1ib

/cron/cron-hourly
1 s 553 16589 16562 0 26 20 291 3 10842 20 0:01 regp1
0 s 579 16534 16532 0 26 20 782 ll 1E38A 18 0:02 submit
1 s 553 16562 16166 2 30 20 3DB 5 296DC 20 0:04 prog
1 s 553 16590 16562 3 26 20 lDC 3 1EB42 20 0:00 hpp1
1 s 579 16543 16532 12 28 20 31B 5 17790 18 0:07 vi /u/gregg

/drft.016532
1 s 538 16384 16088 6 28 20 lFC 5 176E8 16 0:31 vi insert.c
1 s 553 16591 16562 4 30 20 310 2 2976C 20 0:00 sh -c ps

-a1x > prif ile
1 R 553 16592 16591 124 57 20 108 3 20 0:03 ps -alx

PRI - Process Priority
CMD - Command or Process

hppl - HP Device Driver Process
regpl - Regis Device Driver Process
prog - GKS Application Process

Figure 6. Snapshot of Process Priorities

35

child are running, the parent will run with a higher

priority. In the current environment the application

programmer has no privilege to increase the priority of the

child process. It is suggested that a stand alone system

with root as the user be used while utilizing this design.

A privileged user may also use this design by equalizing the

priorities of the parent and child processes.

The UNIX tool of pipe imposes a restriction under this

design. When sending the GKS output and attribute code

through the pipe to the device drivers, a buffer in excess

of 4K tends to introduce the "broken pipe" error. Should

more than 4096 bytes be necessary in any pipe among

communicating processes, deadlock will occur indicated by

"broken pipe". Handshaking protocols maybe used to avoid

this. The current implementation transfers GKS output code

when the buffer is in excess of 2K bytes.

Scope for Further Work

The current implementation needs additional functions

to provide diagnostics and error messages. Error recovery

needs attention. The implementation has the necessary data

structures and data types to build additional levels.

Each device driver maintains the set of active devices

corresponding to the set of active output workstations for a

given type. The current implementation executes the display

on these devices sequentially. Note that once a device is

activated, the device driver corresponding to that device

36

maintains the device list. The fork mechanism can be used

to execute the display on all devices under a given driver,

in parallel.

Since the number of workstations anticipated at the

installation is less than five, the implementation used

simple linear arrays and linked lists for the majority of

the operations. Sequential searching was employed where

searching was necessary. However, when the number of

workstations increase hashing, binary search and stack

operations may be necessary. The abstract data types to

support these models need to be constructed.

It is possible to have a network of GKS output

workstations subscribing to a single GKS application. For

example, a design office may want to display the design on

various sites needing the graphical information. This will

not allow the receiver to interact with the application

programmer directly. Hence a layer consisting of user level

interaction during the course of a GKS transaction maybe

necessary. The necessary protocols and network layer

development are seen as useful extensions to this project.

SELECTED BIBLIOGRAPHY

1. Thomas Wright, "An Update on GKS: The Final Changes," ACM
Computer Graphics, vol •. 19, no. 1, January 1985.

2. "Minutes from the 6/16/84 SIGGRAPH Executive Committee
Meeting," ACM Computer Graphics, vol. 19, no. 1,
January 1985.

3. Deborah U. Cahn, Albert C. Yen,"A Device Independent
Graphics System," ACM SIGGRAPH, vol. 17, no. 3, July
1983, pp 167-173.

4. Randall W. Simmons, "Minimal GKS," ACM SIGGRAPH, vol. 17,
no. 3, July 1983, pp 183-189.

5. John J. Joseph, "Letter on Core System Standardization,"
ACM Computer Graphics, vol. 18, no. 2, May 1984.

6. "Graphical Input Interaction Technique Workshop Summary,"
ACM Computer Graphics, vol. 17, no. 1, January 1983,
pp 5-30.

7. Lansing Hatfield, "GKS and the Alphabet Soup of Graphics
Standards," ACM SIGGRAPH, vol. 16, no. 2, June 1982,
pp 161-162.

8. Fredrick P. Stulk, Brian F. Saunders, Paul M. Slayton and
Norman I. Badler, "Overview of the Univ. of Penn.
Core System Standard Graphics Package Implementa
tion," ACM Computer Graphics, vol. 16, no. 2, June
1982, pp 177- 186.

9. Nicol, C.J., and Kilgour, A.C., "A pascal Implementation
of the GSPC Core Graphics Package," vol. 15, no. 4,
December 1981, pp 327-335.

10. James D. Foley, and Patricia A. Wenner, "The George
Washington University Core System Implementation,"
ACM SIGGRAPH, vol. 15, no.3, August 1981.

11. Mark Green, "A methodology for the Specification of
Graphical User Interface," ACM SIGGRAPH, vol. 15,
no. 3, August 1981.

37

38

12. Alan Freiden, "A two Dimensional Level 2 Core System for
the Apple II," ACM Computer Graphics, vol. 14, no.
4, March 1981.

13. Deborah U. Cahn, Nancy E. Johnston, and William E.
Johnston, "A Response to the 1977 Core Graphics
System," ACM SIGGRAPH, vol. 13, no. 2, August 1979.

14. "Status Report of the Graphics Standard Planning Commit
tee," Computer Graphics, vol. 11, no. 3, Fall 1977.

15. Theodore N. Reed, "A Metafile for Efficient Sequential
and Random Display of Graphics", Computer Graphics,
vol. 16, no. 4, July 1982.

16. James R. Warner, Margaret A. Polisher, and Robert N. Ko
polow, "DIGGRAF - A FORTRAN Implementation of the
Proposed GSPC Standard," ACM SIGGRAPH, vol. 12, no.
3, August 1978.

17. William M. Newman, and Andries van Dam, "Recent Efforts
Towards Graphics Standardization," Computing Sur
veys, vol. 10, no. 4, December 1978.

18. James C. Michner, and Andries van Dam, "Functional Over
view of the Core System with Glossary," Computing
Surveys, vol. 10, no. 4, December 1978.

19. Daniel R. Bergeron, Peter R. Bono, and James D. Foley,
"Graphics Programming Using the Core System," Com
puting Surveys, vol. 10, no. 4, December 1978.

20. James C. Michener, and James D. Foley, "Some Major Is
sues in the Design of the Core Graphics System,"
Computing Surveys, vol. 10, no. 4, December 1978.

21. "Status Report of the Graphics Standard Planning Commit-
tee," ACM Computer Graphics, vol. 13, no. 3, 1979.

22. "Graphical Kernel System (GKS) Version 6.6," Interna
tional Standards Organization, ISO/TC97/SC5/WG2,
May 1981.

23. Rosenthal, D.S.H., et. al., "The Detailed Semantics of
Graphics Input Devices," Computer Graphics, vol.
16, no. 3, 1982, pp 33-38.

24. Introduction to The Graphical Kernel System GKS. Hop
good, F.R.A., Duce, D.A, Gallop, J.R, and
Sutcliffe, D.C., Academic Press 1982.

39

25. "ISO/DIS 7942 Information Processing - Graphical Kernel
System (GKS). Functional Description : GKS Version
7.2," ISO/TC97/SC5/WG2/Nl63, 1982.

26. Bono P.R., et. al., "GKS- The First Graphics Standard,"
IEEE Computer Graphics and Applications, vol. 2,
no. 5, 1982, pp 9-23.

27. Foley, et. al., "Some Raster Graphics Extensions to the
Core System," ACM SIGGRAPH, vol. 13, no. 2, August
1979.

28. "Draft Proposed ANSI Graphical Kernel System," ANSI
X3H3, July 1, 1984.

29. Guttmann, Hand Weiss, J., "Device Independent and de
centralized Graphics System," ACM SIGGRAPH, vol.
13, no. 4, February 1980, pp 288-302.

30. Keith A. Lantz, and William I. Nowicki, "Structured
Graphics for Distributed Systems," ACM Transactions
on Graphics, vol. 3, no. 1, January 1984, pp 23-
51.

31. James H. Clark, and Tom Davis, "Work Station unites
Real-time Graphics with UNIX, ETHERNET," Electron
ics, October 20, 1983.

32. Sutherland, I.E., "SKETCHPAD : A Man-Machine Graphical
Communication System," SJCC 1963, Spartan Books,
Baltimore, MD, USA.

33. "Status Report of the Graphics Standards Planning Com
mittee," Computer Graphics, vol. 13, no. 3, August
1979.

APPENDIX A

GKS - LEVEL m IMP.LEMENTATION

The minimum subset of GKS function at level m of ANSI

draft proposed GKS [28] is being presented. The list

contains the set of function names and their purpose. Where

appropriate, the module to which the function belongs is

identified.

A function may fall into one of the following GKS

functional classifications:

i) Control

ii) Attributes

iii) Output

iv) Utility

v) Workstation Transformation

vi) Virtual Device Interface (not a GKS classification)

vii) Transformation

ix) Data (data structures, data types etc.,)

x) Other

40

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

defs

data

N/A

N/A

N/A

41

Values for named constants. Some of

these specify the upper limit fer

allowable aspects of certain GKS arrays,

lists etc.,.

atdecl.h

data

N/A

N/A

N/A

The attributes specify attribute names

and values associated with them. The

attributes concern GKS state lists,

workstation state lists and segment

state lists.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER·

RETURNED VALUE

BRIEF DESCRIPTION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARA~..ETER

RETURNED VALUE

BRIEF DESCRIPTION

atexdecl.h

data

N/A

N/A

N/A

These are external definitions of the

attributes declared in atdecl.h.

Attribute are declared global.

decl.h

data

N/A

N/A

N/A

42

The data types necessary for operating

states, GKS statelist, workstation

statelist and global utility arrays are

declared as C type definitions. In

addition, global flags necessary for

debugging utility, virtual workstation

buffer, display file and virtual

workstation's data types are declared.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIP~ION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

extdecl.h

data

N/A

N/A

N/A

Contains the external declarations for

variables and arrays needed for GKS

operating state, GKS description table

and GKS state list.

incfiles.h

other

as C include statement

N/A

N/A

43

The set of GKS declarations and external

definitions needed are grouped into a

set of c include statements in order to

ease compilation using the UNIX make

facility.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

types.h

other

as C include statement

N/A

N/A

44

These are GKS data types that need to be

declared with each GKS function that

need type definitions. All data types

are hence clustered. All GKS functions

that use any of these data types need to

include this file. Also, any new type

definition included in the declaration

file needs an entry in the types file.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

GOPKS

control

GOPRS(ERRFIL)

ERRFIL - a pointer to an error file.

none

45

This function is the first call to GKS.

It checks for any errors and if none,

initializes GKS and opens it for GRS

application. The initialization

includes setting the proper level. IT

initializes the GRS description table

and sets the default current attributes.

Performs initialization of utility

arrays, lists etc.,.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

OPEN WKSTN

control

OPEN WKSTN

(wkst_id,id_connect,typ_wkstn)

46

wkst id - int : workstation identifier.

For output workstation it is the tty

number of the device.

id connect - int : channel for this

workstation. This implementation uses

the value 1 uniformly.

typ_wkstn - int : workstation type.

Refer GKS system manual of the

installation for appropriate mapping.

return as exit where necessary. Value

none.

To initialize a workstation identified

by the workstation identifier. To make

an entry in the list of open

workstations. If the specified type

does not have an entry in the

workstation statelist, then, an entry is

made and also initialized.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

INIT WKSTN

control

INIT WKSTN (i)

i - int workstation identifier.

47

return at points where necessary. value

none.

This function is called by OPEN WKSTN if

the workstation type has no entry in the

workstation state list. The data

required to initialize the given type of

workstation will be maintained in an

external file.

FILL PTR

control

FILL_PTR(prev,fd)

prev - SET : an allocated record of

type SET

fd - FILE *
file.

none

a pointer to an external

This function reads data from a file

whose pointer is fd and records the data

into the record prev. It inserts the

record into the list to which prev

belongs. The list mentioned is a member

of the workstation state list.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

WKSTLIST INIT

control

WKSTLIST_INIT(i)

i - int : workstation identifier.

48

index of workstation pointer in an array

of pointers.

To insert a new workstation state list

if one does not already exist for the

workstation specified.

WK ST ALL WKSTN

control

WK ST ALL_WKSTN()

none

newptr - PT MAS WKSTLIST a pointer to

record of workstation state list.

Allocates the data structures necessary

for a workstation statelist and links

them appropriately.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

itoa

other

itoa(n)

n - int

char pointer

Converts an integer to an equivalent

character string.

ermsg

utility

ermsg (i)

i - int

none

error number

Prints the error message corresponding

to the number.

49

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

act wkstn

control

act_wkstn(i)

i - int : workstation identifier.

none

50

If the specified wor~station is already

open, this function activates the

workstation for graphical I/0. If the

device driver process corresponding to

the type of this workstation is not

already activated, necessary steps to

activate the device driver is also done.

The activation is written to the global

data interface (gdi) and executed on the

vws.

IN WKST

control

IN_WKST(j)

j - int

none

workstation identifier.

To make an entry of the workstation into

the set of active workstations. If the

device driver does not exist for the

type to which this workstation belongs,

then an appropriate routine is called.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

ins_pr

control

ins_pr(k)

k - int

none

51

workstation type

For the given workstation type a pipe is

opened for I/O to and from a device

driver process. The routine uses fork

and execlp to ~pawn the device driver

process.

k = 1 regis

k = 2 hp 7470a

FN WKTYP

control

FN WKTYP (k)

k - int : workstation identifier

int - workstation type for workstation

k. -1 if error.

BRIEF DESCRIPTION : Given the

workstation identifier, return the

workstation type.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

FR WKST

control

FR WKST ()

none

52

FALSE if list is not empty. NEGATIVE if

empty.

Returns 0 if set of active workstations

is non empty. returns -1 if empty.

NE WKST

control

NE_WKST(i)

i - int index of the location of an

active workstation in the array of

active workstations.

int - index of next active workstation

in the list.

Next operation on the list of active

workstations.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

sel ntran num

transformation

sel_ntran_num (ntrans)

ntrans - int : normalization

transformation number

none

Sets the global current normalization

transformation number to the value

ntrans.

set_viewport

workstation transformation

set viewport

(num,xvp_min,xvp_max,yvp_min,yvp_max)

num - normalization transformation

number

53

xvp_min - float x minimum of viewport

xvp_max - float x maximum of viewport

yvp min - float y minimum of viewport

yvp_max - float y maximum of viewport

none

Enters the viewport coordinates in the

appropriate location of the list of

normalization transformations.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

xw min - float

RETURNED VALUE

BRIEF DESCRIPTION

set window

workstation transformation

set window

(num,xw min,xw_max,yw_min,yw_max)

num - int : normalization

transformation number.

x minimum of the window

xw max - float : x maximum of the

window

yw min - float y minimum of the

window

yw_max - float y maximum of the

window

none

54

Allocates space for the normalization

transformation in the list of

normalization transformations and enters

the values for the window dimensions.

Also sets the default viewport of unity.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

polyline

output

polyline (n,x_array,y_array)

n - int : number of points

x_array - float : array of x

coordinates

y_array - float

coordinates

none

array of y

55

To display the line comprising n points

whose coordinates are in x_array and

y_array. The outline is as follows :

1. perform clipping if clipping is on.

2. perform window to viewport

transformation.

3. store the normalized coordinate

values in the display file.

4. write the gdi corresponding to the

action, move cursor, to the first point

in the.array.

5. specify color setting action to the

gdi

6. specify polyline action to the gdi

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

CLIP

output

CLIP (xfirst,yfirst,xsecond,ysecond)

xfirst - float x of first point

yfirst - float y of first point

xsecond - float x of second point

ysecond - float y of second point

int - 1 2 or 3

Clips the line such that the visible

portion lies within the window of the

current normalization transformation.

returns 1 if line is entirely within

window

returns 2 if line is entirely outside

window

returns 4 if clipped

56

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

clip_mat

output

clip mat (x,y,mat)

57

x , y - float : x and y coordinates of

point.

mat - int array of size 3x3

none

Based on the location of the point with

respect the window, a value of true is

set for an appropriate element of the

array mat. The rest of the values are

zero or false.

clip_AND

output

clip AND (mat_first,mat_second)

mat_first, mat second - int : 3x3

matrices

int 1 2 or 3

The two matrices are anded to determine

the position of the line with respect

to the window.

returns 1 if line is entirely in the
window

returns 2 if line is entirely outside
the window

returns 3 if the line is partially
within the window

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

run_plot

VDI

run_plot()

none

none

58

BRIEF DESCRIPTION: This is the device driver for the virtual

workstation. Each output primitive,

it's associated parameters and

attributes are pseudo coded and

buffered. Each active workstation

receives a copy of this buffer

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

pr_to_proc

VDI

pr_to_proc ()

none

none

BRIEF DESCRIPTION: Each active workstation resides under a

device driver process. This routine

selects the proper pipe to direct the

copy of the output buffer from the VWS

such that all active workstations are

serviced.

59

Each device driver for a real device needs to receive a

copy of the output buffer from the VWS. The device driver

interprets this buffer to the devices under it. An

execution routine placed right above the device routines is

responsible for calling the appropriate device calls. All

devices under the device driver display the image or

picture. A brief description of the device driver and the

routines to support them are described below.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

main

device driver

through execlp call in GKS ins_pr call.

Full path name of the executable file is

necessary.

display output buffer through standard

input. The input pipe is duplicated as

standard input.

none

BRIEF DESCRIPTION: Interprets each pseudo code received from

the input pipe. The opening of the

device and closing of the device is

handled. Output primitives and

attributes are transformed from

character to appropriate types and

buffered. All active devices under the

device driver receive a copy of the

buffer.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

run dev

device driver

run_dev()

none

none

Sends a copy of the buffer to each

active device under it.

exec_plot

device driver

exec plot(i)

i - int : index of the location of the

device pointer in the array of active

devices.

none

60

Interprets the output buffer from the

device driver interface. Displays the

image on the device whose file pointer

is in the i th location in the array of

active devices.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

get_doptr

device driver

get doptr(i)

i - int : workstation identifier.

fa - FILE pointer : a pointer to the

device whose tty number is i.

61

Returns the file pointer to the device,

given the tty number of the device.

space

device

space (devfl,xO,yO,x2,y2)

devfl - FILE Pointer : device pointer

xO,yO,xl,yl - float : viewport dimensions.

RETURNED VALUE none

BRIEF DESCRIPTION NDC to device coordinates

transformation. Scaling established.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

move

device

move (devfl,x,y)

x , y - float : x, y coordinates of a

point.

none

Scales and moves from current location

to the specified point.

cent

device

cont(devfl,x,y)

x,y - float : x, y coordinates of a

point.

none

62

Scales x,y and connects current position

to the specified point by drawing a

line.

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

FUNCTION NAME

MODULE TYPE

USAGE

INPUT PARAMETER

RETURNED VALUE

BRIEF DESCRIPTION

color

device

color(devfl,i)

i - int : color index

none

63

Maps the index to a color type _and sets

it as the current color.

label

device

label(devfl,s)

s - char pointer

none

prints a graphic character string at the

current cursor location. s points to

the required character string.

APPENDIX B

USERS GUIDE

The current set of GKS functions that have been implemented

is being outlined.

GOPKS (ERRFIL)

The application should have a file named erfil

open prior to a call to GOPKS. This call should

precede any other GKS call.

OPEN_WKSTN (wkst_id,id __ connect,typ_wkstn)

to open a workstation of type output. Currently

supports output type workstations only. No input

or metafile. Initialization is done. Supports

upto 20 simultaneous open workstations (can be

easily changed to include more).

act_wkstn(i)

To activate a given output workstation. This

function is necessary if the output needs to be

displayed on a device identified by the tty number

i .

deact-wkstn(i) To deactivate an already active workstation.

This will block the image from being displayed on

64

65

the device identified by the tty number i.

set_viewport (num,xvp_min,xvp_max,yvp_min,yvp_max)

-Defines the rectangular viewport on the normalized

device, for the normalization transformation

specified, using the dimensions passed as

parameters.

set_window (num,xmin,ymin,xmax,ymax)

Defines the window in world coordinates. The GKS

output will display all portions of the world that

is projected on the window. A default viewport of

unity is set for the normalization transformation

number specified. A subsequent set_viewport call

may modify the viewport dimension.

sel ntran num (ntrans)

Sets the current normalization transformation

number as the one specified. GKS expects that the

said normalization transformation number is

predefined using set window and set viewport. A - -
minimum of set window for the said normalization

transformation number is necessary.

set_colo_type(i)

Sets the current color index to the value

specified.

number

1

regis

dark

hp 7470a

dark

2 blue blue

3 red red

4 green magenta

5 green

6 cyan

7 -yellow

8 white

** regis under vtl25 takes the mod 4 to compute

index

set ltype(i)

66

Sets the current line type to be the one specified

by i. The line types based on the value of i are

as follows: number

1

2

3

4

solid

dash

dot

dash dot

linetype

Currently solid alone available (by default)

polyline(n,x_array,y_array) To draw lines through n

consequetive points whose coordinates are in the

x_array and the y-array. The default attributes

are as follows:

linetype

clipping

fill area

- solid

- clip

- hollow

Clipping is done in the world coordinates using

the current window based on the current

normalization transformation.

67

APPENDIX C

GKS SYSTEM PROGRAMMER'S GUIDE

Introduction

This section is intended to serve the GKS system

programmer to

1) Follow the current implementation

2) Aid in future extensions

3) debugging

The current implementation lies at level m of the ANSI GKS

[28]. It has the following capabilities.

Polyline Output

Selection of color attribute

Workstation transformation

Multiple simultaneous workstations

Multiple active workstations (capable of parallel execution)

Two types of output workstations

Independently residing device drivers

The implementation conforms to the specifications of,ANSI

GKS Draft Proposed Standard [28].

The routines and data structures comprising this

implementation is divided into modules that fit their GKS

functional classification. The salient functions and

68

69

procedures under each module is further outlined using flow

charts. The functions and procedures supporting the salient

functions are described where necessary. Further detailed

documentation is provided in Supplement A.

Modules

Each module has a listing of filenames, procedures

under the file, description of the procedure and a

descriptive flow chart where necessary.

GKS Module Listing

Data Module

File names

defs

atdecl.h

atexdecl.h

decl.h

extdecl.h

types.h

Procedures

defs : contains symbolic constants and the values associated

with them.

atdecl.h : declaration of attribute variables and their

default values.

atexdecl.h : external declaration of attributes.

decl.h : declaration of GKS global variables & data types.

extdecl.h : external declaration of GKS variables.

types.h : declaration of GKS data types. This is necessary

when using the UNIX make facility.

Control Module

File name

gopks.c

open_wkstn.c

gks fun.c

GOPKS

initialize GKS.

OPEN WKSTN

Procedure

GOPKS

OPEN WKSTN

act wkstn

deact wkstn

Support Routine

INIT WKSTN

FILL PTR

WKSTLIST !NIT

WK ST ALL WKSTN

FIND TBLWK

SET CREATE

FR WKST

NE WKST

IN WKST

ispr_open

ins pr

run_plot

FN WKTYP

run_plot

To open GKS for the application and to

Opens an output type workstation.

Allocates a workstation state list and inserts it into the

set of workstation state lists.

INIT WKSTN

given workstation

FIND TBLWK

Allocates space for and initializes a

returns a pointer to the entry in the

70

"71

workstation description table corresponding to the type of

workstation. NULL if entry does not exist.

SET CREATE allocates a structure of type SETNODE

and returns a pointer to it.

FILL PTR Reads data to fill and initialize a

record of type SETNODE. Inserts the record into the

appropriate list.

WK ST ALL WKSTN Allocates all sub-structures for the - -
workstation state list

act wkstn To insert the workstation in the set of

active devices. Open the pipes for I/0 to the device driver

process (if necessary}.

FR WKST Obtain the first of the active

workstation index.

NE WKST Obtain the next active workstation

index.

IN WKST To insert the workstation into the

active list.

ispr_open Returns true (1} if device driver for

the workstation has already been spawned.

ins pr Open the pipe for I/0. Spawns a new

process and duplicates the appropriate ends of the pipes to

act as standard input and standard output to the device

driver process.

deact wkstn Deletes the workstation from the active

list. If it is the last of it's type then closes the

appropriate pipes to the device driver process corresponding

to that type.

FN WRTYP returns the workstation type number.

72

73

GKS Application

I
GOPKS

I
OPEN WKSTN

T
INIT WKSTN WKSTLIST INIT FIND TBLWK SET CREATE

T 1-
WK ST ALL WKSTN

SET CREATE FILL PTR

(A) GKS open and Workstation open

act wkstn
-I

FR WKST NE WKST IN WKST
-I

run_plot

FN WKTYP ispr_OPEN ins_pr

(B) Activate Workstation

deact wkstn
T

FN WKTYP run_plot

(C) Deactivate Workstation

Figure 7. Structured Representation of Control Module

Attribute Module

File name

select.c

sel ntran num

Procedure

sel ntran num

set_ltype

set_col_type

Sets the current normalization

transformation number.

set_ltype Sets the current linetype index

(individual attribute)

set_col_type Sets the current color index

(individual attribute)

Workstation Transformation

74

As described in APPENDIX A. Please refer Supplement A

for further details. The GKS functions of set window and

set_viewport belong in this module.

Output Module

File name

Polyline.c

Polyline

Procedure

Polyline

Support Functions

CLIP

clip mat

clip_AND

To draw a line connecting n points whose

coordinates are in x array and y array.

linetype = solid

clipping = clip

fill area = hollow

color = red by default. (not applicable for

monochrome devices)

CLIP Clips the line using the current

normalization transformation. Sutherland's algorithm is

used.

75

clip_mat The position of the given end of a line

with respect to the clipping rectangle is specified by a

true value in a 3 X 3 matrix.

clip_AND The relative location of the two ends of

a line with respect to the clipping rectangle is specified

by ANDing the clip matrices for the two ends.

Virtual Workstation Module

File Name

devdriv.c

Procedure

run _plot

run_plot This routine reads the global data

interface. It executes the GKS output on the VWS by

buffering the command and it's parameters in a formatted

fashion. When the buffer is in excess of 2K, each device

driver process receives the data in the buffer through the

appropriate pipes.

Device Driver Module

File name Procedure Support Functions

reggrfl.c main exec_plot

del dev

76

main Scans the standard input for GKS output

data. The opening and closing of devices is handled by this

routine. GKS output data is converted from char to

appropriate types and buffered. Devices receive the buffer ·

to execute the image on the screen.

exec plot Interprets the display buffer and

displays it on the screen.

,del dev Deletes the output device from the set

of open graphics devices. If it is the last device, it

closes the device driver process.

polyline

I
CLIP run_plot

I

clip mat clip AND

Figure 8. Structure of Polyline Output Function

I
run dev

T
exec plot

T

del dev
T

TOP

main

I
(GKS process pipe
duplicated as
standard I/O)

I
get_doptr

dev1ce
routines

Figure 9. Structure of Device Driver Interface

77

APPENDIX D

LIST OF SOME COMPUTER GRAPHICS TERMINOLOGIES

Attribute:

A particular property that applies to a display

element {output primitive) or a segment. Examples:

line color, line type.

Bundled Attributes:

A method of specifying all the attributes that qualify

a display element in one area. This bundle is

represented by a bundle index.

Clipping:

Removing parts of display elements that lie outside a

given boundary, usually a window or a viewport { This

implementation clips against a window).

Device Co-ordinates{DC):

·A coordinate system that is device dependent.

Device Driver:

The device dependent part of a GKS implementation

intended to support a graphics device. The device

driver generates device dependent output and handles

device dependent interaction.

78

79

Display Element:

A basic graphic element that can be used to construct

a display image.

Display Image; Picture:

A collection of display elements or segments that are

represented together at any _one time on a display

surface.

Display Surface; View Surface:

In a display device, that medium on which display

images may appear.

Event Mode:

In this mode both the GKS application program and the

input process are active. The dominant process is the

input process. The input process provides data and

the application program acts on the data immediately

(interrupt).

GKS level:

Two values from the set (m,l,2,2) and (a,b,c) which

together define the minimal functional capabilities

provided by a specific GKS implementation.

GKS metafile:

A sequential file that can be written or read by GKS;

used for long term storage, transmittal and

transferral of graphical information.

Highlighting:

A device independent way of emphasizing a segment by

modifying its visual attributes.

80

Locator Devices:

A GKS logical input device providing a position in

world co-ordinates and a normalization transformation

number.

Normalization Transformation; Viewing Transformation;

Window-to-Viewport Transformation:

A transformation that maps the boundary and interior

of a window to the boundary and interior of a

viewport. The viewport definition in GKS assumes

normalized device co-ordinates.

Normalized Device Co-ordinates:

A co-ordinate specified in a device independent

intermediate co-ordinate system, normalized to a range

which is typically 0 to 1.

Orthogonal Functions:

In computer graphics an orthogonal function or an

orthogonal module means that a module is independent

of other modules or that the dependency is defined and

well structured.

Output Primitive; Graphic Primitive:

A display element. GKS output primitives are

polyline, polymarker,text,fill area,cell array and

generalized drawing primitive.

Pick Device:

A GKS logical input device providing the pick

identifier attached to an output primitive and the

associated segment name.

81

Pixel; Picture Element:

The smallest element of a display surface that can be

independently assigned a color or intensity.

Polyline:

A GKS output primitive consisting of a set of

connected lines.

Raster Graphics:

Computer graphics in which a display image is composed

of an array of pixels arranged in rows and columns.

Rotation:

Turning all or part of a display image about an axis.

Sampling Mode:

In this mode a GKS application program and input

process are both active. The application program is

dominant. The input device buffers the required input

data. The application program uses the data in the

buffer as and when they are needed.

Scaling; Zooming:

Enlarging or reducing all or part of a display image

by multiplying the co-ordinates of display elements by

a constant value.

Segment:

A collection of display elements that can be

manipulated as a unit.

State list:

GKS data structure or data-types that provides a

convenient way to maintain information regarding

workstations, segments and the state of GKS.

String Device:

A GKS logical input device providing a character

string as its result.

Translation; Shift:

The application of a constant displacement to the

position of all or part of a display image.

Valuator Device:

A GKS logical input device providing a real number.

Viewport:

An application program specified part of normalized

device co-ordinate space.

Window:

A predefined part of a virtual space.

Workstation:

GKS is based on the concept of abstract graphical

workstations, which provide the logical interface

through which the application program controls

physical devices.

Workstation Transformation:

82

A transformation that maps the boundary and interior

of a workstation window into the boundary and interior

of a workstation viewport(part of display space) ,

preserving aspect ratio.

Workstation Viewport:

A portion of display space currently selected for

output of graphics.

83

Workstation Window:

A rectangular region within the normalized device co

ordinate system which is represented on a display

space.

World Co-ordinate(WC}:

A device ~ndependent Cartesian co-ordinate system used

by the GKS application program.

~
~

VITA

MUKUND JAGANNATHAN

Candidate for the Degree of
Master of Science

Thesis: MULTIPLE PARALLEL GKS WORKSTATIONS
UNDER UNIX

Major Field: Computing and Information
Sciences

Biographical:
Personal Data: Born in Coimbatore,

India, April 2, 1956 to D.
Jagannathan and Lakshmi
Jagannathan

Academic: Completed Requirements
towards a Master's in Computing
and Information Sciences at osu,
OK: Masters in Mechanical
Engineering from Kansas State
University, Manhattan, Kansas,
Spring, 1981; Bachelor of
Engineering from University
College of Engineering, Bangalore
University, Bangalore, India,
Spring 1978.

Professional Experience: Graduate
Research Assistant, Department of
Interior Design, Oklahoma State
University, Stillwater, OK, March
1984-May 1985.

Graduate Research Assistant,
Department of Mechanical
Engineering, Kansas State
University, Manhattan, Kansas,
August 1979-July 1981
Junior· Engineer, Bharat Heavy
Electricals, Ltd., New Delhi,
India, September 1978-August 1979~

