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PREFACE 

This study was conducted to learn more about ring 

resonators and problems associated with actually building 

one in the laboratory. The single-beam model constructed 

revealed many sources of error, some of which became evident 

only after observing the behavior of the ring. A study of 

the erratic output indicated that certain precautions were 

necessary in order to build a sensitive resonator. The 

major application of ring resonators is in the field of ring 

laser gyroscopes which can be made into very sensitive 

rotation measuring devices. 

My interest in this field was initiated by my committee 

chairman, Dr. Bilger, who has always been more than ready to 

provide valuable assistance, and has done the majority of 

the work in proofreading this manuscript. I would like to 

individually thank each of my committee members; Dr. Basore, 

Dr. Cummins, Dr. Ramakumar, and Dr. Swamy, for their time 

and effort in reading the rough draft of this thesis and 

providing me with valuable suggestions for further improve

ment. In addition, I would like to thank Dr. Cummins for 

the loan of his personal computer which made much of my data 

acquisition and analysis possible. 
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The department chairman, Dr Baker, has been extremely 

kind in providing me with some of the equipment I needed for 

the construction of the ring, and has always been more than 

willing to help. 

Much knowledge has been gleaned from my working on a 

project like this; there are many possibilities in this kind 

of undertaking, and I would like to welcome any future 

student willing to explore more in this field. 
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CHAPTER I 

INTRODUCTION 

Background 

Optical ring cavities have been in use since Oliver 

Lodge constructed one in 1897 (Heer, 1984) to measure the 

"drag of ether". Since then, the main use of these cavities 

has been to study rotational effects or to measure the drag 

of light in the presence of a medium (Stowell, 1974). 

According to current literature, the first resonant ring 

cavity was proposed by Rosenthal (1962) in which two 

counter-propagating laser beams were generated by use of an 

active medium contained in the resonator. Since then the 

active ring laser gyroscope has matured into a sophisticated 

device used nowadays by aircraft for navigation. 

The first passive ring laser resonator was proposed by 

Ezekiel (1977) in which an external laser was used to inject 

the two beams. The passive ring laser resonator has. some 

advantages as well as disadvantages over the active type of 

device, and has been a constant source of study since its 

invention. Of particular interest are the errors introduced 

by misinjection of the source (Sayeh, 1985), and by internal 

mirror tilts and shifts (Stedman, 1986). 
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Ezekiel (1978) observed the existence of higher-order 

modes due to misalignment (both internal & external). 

2 

A passive ring ·resonator can support a large number of 

different modes unlike an active resonator which only 

resonates in modes having sufficient loop-gain. Alignment 

is therefore an important factor in the construction~f 

passive resonant cavities. It is possible to predict 

alignment errors of a passive ring laser gyroscope (PRLG) by 

studying errors associated with a cavity which has only one 

resonant beam instead of two counter-propagating beams, 

since errors would affect both beams in the same way. 

Objectives and Order of Presentation 

The main purpose behind this study is to quantitatively 

assess certain parameters related to the building of a 

successful passive ring resonator. Figure 1 shows the asso

ciated errors in block diagram form. 

A complete study of the source laser needs to be done, 

and chapter two is devoted to this. Length, position, and 

tilt of the optical axis must be measured, and eigenmodes of 

the ring need to be calculated. Resonator finesse 

(definition, see Appendix A) needs to be calculated after a 

study of mirror reflectivities. 

The source must be aligned and matched with the ring to 

achieve proper resonance. The effect of residual errors may 

then be investigated. Misalignment has been observed to 

produce Hermite-Gaussian modes in the output of the 
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resonator, and these are the most commonly observed higher

order modes in a laser resonator. 

Due to a lack of a formal theory at present, computer 

simulation will be used to determine the effect of mirror 

movements • 

The final setup to be achieved is shown in Figure 2. 



Sources of Error 

External Internal 

Mismatch 

Misinjection 

Misalignment 

Offset Tilt 

Mirror 
Perturbations 

Change of 
Optical Plane 

Change in 
Path-Length 

Figure 1. Types of destabilizing errors expected in a passive ring 
resonator. 
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CHAPTER II 

PARAMETERS OF THE INJECTION LASER 

Introduction 

The source used was a frequency-stabilized single 

frequency HeNe laser. The laser head has connected to it a 

power supply cord and a cable for feedback/control which 

keeps the output of the laser to a single longitudinal mode 

of constant frequency (see specifications, next page) by 

thermally controlling the laser cavity length. The error 

signal for the heater control is provided by the intensity 

difference between two different internal longitudinal modes 

on the gain curve (see Figure 3). The voltage supply to the 

heater in the laser-head is controlled so as to keep this 

difference as small as possible and this has the effect of 

fixing the two modes in the frequency domain since their 

spacing is constant and equal to the free spectral range, 

c/2L (Lis the length of the laser cavity). 

Only one of the modes is allowed to escape and forms 

the output of the laser. 

The parameters of the Coherent Model 200 laser as 

described in the operators manual are given on the next 

page. 
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Power Output, Po : 0.86mW < Po < 0.96mW 

Mode extinction for 2nd and 3rd order modes : < 0.1 % 

Short-term frequency stability < ~ 1 MHz drift in 15 min 

Long-term frequency stability - 25 MHz 

Free Spectral Range 565 MHZ 

Beam 'contour' diameter (l/e2 point) 0.6 rnrn ? 

Full-angle beam divergence : 1.3 mrad 

Amplitude noise (10 Hz - 107 Hz) < 0.2 % RMS 

c. 
E 
<( 

A' 

Figure 3. 

I 

Error S1snal = A'- B' 

A B' B 

Frequency 

How error signals are produced by 
change in mode position; as the modes 
drift form A and B to A' and B', an 
error signal is produced, and is used 
to provide feedback for the laser. 
(Reproduced from the Coherent laser 
operator's manual). 
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Output Power Variation 

A check on power fluctuations of the laser-beam was 

performed by placing a det~ctor directly in the path of the 

beam, hooked up to a voltmeter and digitizer. 

The detector output was monitored for over an hour and 

the results are displayed in the graph below. After 

stabilization, the RMS of the variation was estimated to be 

< 0.5 % 

us 
1." 

1.3 

1.2 
" ~ 1.1 s ...., 1.0 
~ 0.9 .. ... • 0.8 1: 
e .. 0.7 
1: ... 

0.8 .. 
~ 
llo 

0.~ .. 
0." ~ 

0 
0.3 

0.2 

0.1 

0.0 
0.0 

Figure 4. 

Laser power output 
Coherent tnodel 200 

20.0 

tninutea 

Power output of source vs 
is switched on (0 min). 
feedback-control system 
20 min after power-on. 

.a.o 

time after power 
Note that the 

starts operating 

80.0 
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Beam Intensity Profile 

Photographs of the laser output indicate a roughly 

Gaussian shape with a lot of extraneous radiation, some of 

which may be due to the frequency-stabilization optics 

inside the laser head. The photographs are displayed in 

Figure 6. Two tests were done to verify the Gaussian 

profile along a cross-section of the beam, and to determine 

if the beam was astigmatic. 

For reference and consistency, a right-handed xyz 

coordinate system will be employed with the z-axis 

representing the forward direction of travel of the laser 

beam. 

DIRECTION OF TRAVEL 
OF LASER BEAM 

y 

X 

Figure 5. The ~eference coordinate system. 
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Figure 6 . Photographs of the source laser; note the 
stray radiation around the main beam. 
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Gaussian Intensity Profile 

The spot size and the Gaussian profile of a spatially 

filtered version of the beam were determined using knife-

edge scanning techniques developed earlier in the laboratory 

[Bilger & Habib, 13]. 

The variation of power density along, say the x-aiis on 

a cross-section of a Gaussian beam is given by: 

= 2 ~ exp[-2(K-K ·> 2 I .,.,2 Jj expr-2(y-y ) 2 I \•1 2 ] 
ll \•1 X .,.,y - 0 K l - 0 Y ( l) 

2 Po 
where Po is the total power in the beami n w w is the 

:H y 

power density in the center, and x is the x-coordinate of 
0 

the center of the beam. 

The power spilling over a straight-edge intersecting 

the beam can be found by integrating S(x,y) over dx and dy, 

to give us the complementary error function. A plot of this 

function vs blade position is given by the solid curve in 

Figure 7. 

A least-~quares program on the ECEN VAX computer (a 

Bilger-Habib effort) can be used to fit the measured power 

ratios vs blade position using an approximation for the 

complementary error function to determine the spot size w . 

Measurements of power spilling over the edge vs blade 

position performed along a cross-section of the beam at a 

distance of 45 ern from the front end of the laser-head are 

represented by points on the curve in Figure 7 . Note that 
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the data fit very closely on a theoretical curve signifying 

a very nearly Gaussian beam. 

The least-squares program gave the spot size as 444 + 

4 urn, at a distance 47.5 em from the laser waist. 

0 
0.. 

.......... ,_..... 
(/) 
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X 

0.. 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

Plot of Q-function Through Data Points 

I 
I 
I 
I 
I 
I 
I 
I. 

I 
I 

--------------1----- ---

0.1 

0 
8.5 8.7 

Figure 7. 

I 
1• Sp~t Size 
I 

8.9 9.1 9.3 9.5 9.7 9.9 10.1 10.3 10.5 

x(s) (mm) 

Result of a knife-edge scan of the source 
beam at an arbitrary angle, 45 em fro~ the 
laser. The spot size obtained is· 444-4 urn. 
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Verification of astigmatism 

Gaussian beams can be astigmatic i.e. have different 

spot sizes along the x and they axes. Reverting again to 

the knife-edge scanning process, we determined a way to find 

the characteristics of an astigmatic Gaussian beam. This 

can be done by scanning along various angles in the xy-plane 

to find the spot size as a function of scanning angle. 

A least-squares fit provides us with the values of the 

major axis w , the eccentricity e and the angle of tilt a a 

of the major axis with the x-axis. A plot of measured 

values on an circle of radius 452 urn shows a close fit. 

The calculated values of the parameters are: 

+ w = 452 - 2 urn a 
+ e = 0.17 - 0.1 

a = 90 ± 42 ° 

The output beam was found to be almost circular. 



goo 

1500 300 

1aoo1 I l I. L~ ~L .. ~ l l $ l l lao 

SCANNING ANGLE 

Figure 8. Ellipticity of source beam; note how closely the 
measured points fit on a drawn circle of 452 urn 
radius. 
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Waist size and location 

The laser waist size and location can be determined by 

measuring the spot sizes at various distances from the laser 

and fitting spot size vs distance into the relationship: 

= ( 2} 

< nw2 I >.. > 
0 

where w0 the waist size (the minimum spot size, and where 

the phase-front is almost planar} and z the waist location, 
w 

are the parameters to be determined. w(z} is the spot size 

at location z. 

Measurements were made along the x-axis only, as the 

beam was considered to be roughly circular in shape. Spot 

sizes were measured at five different locations, and the 

resulting least-squares fit gave the size of the waist as 

+ 330 - 2 urn and the location as 26 : 5 rnrn behind the front 

end of the housing and inside the laser cavity. 

Frequency characteristics 

The output frequency spectrum of the laser was analyzed 

'USing a Coherent 240-2-B laser frequency analyzer. The 

analyzer consists of two mirrors contained at the ends of a 

cavity in a confocal arrangement. One of the mirrors is 

connected to a piezo-electric transducer to which a sawtooth 

waveform voltage from an oscilloscope time-base is applied. 

Application of this voltage causes the mirror to move and 

the length of the cavity consequently changes. Since, to 
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resonate, the cavity length has to be an integer number of 

wavelengths of the input frequency of the light, this causes 

the resonance frequency of the cavity to change. 

If light enters the scanner at a resonance frequency, 

maximum transmission through the cavity will occur, and the 

output can be measured by a detector placed at the other end 

of the frequency analyzer. The detector can be connected to 

an oscilloscope to'visually show the frequency spectrum. A 

frequency scan through a range of frequencies can be made 

continuously by application of the sawtooth voltage. 

From the specifications, the resolution of the scanner 

(ratio of optical frequency to instrument bandwidth) is 

given as 8x10 6 , and the free spectral range is 1500 MHz; the 

finesse (see appendix A) is given as 200. 

A frequency scan of the laser beam (Figure 9) shows it 

indeed to be a single frequency TEMoo mode. This can be 

inferred from the fact that there is a single peak within 

the free-spectral range, and that the output of the laser is 

a single dot. The finesse, (free spectral range) / (full

width at half maximum), of the laser is determined from the 

curve to be 120 (see Appendix A), which is most probably 

imposed by the scanner . 

The laser is suitable for use as a source for 

injection. Any excitation of Hermite-Gaussians in the ring 

resonator would have to be caused by a single-frequency 

fundamental Gaussian, since the source apparently has no 

visible Hermite-Gaussians in its spectrum. 
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CHAPTER III 

SETUP OF THE RING RESONATOR 

Construction of the Ring 

The ring resonator was constructed from four mirrors of 

5 m radius of curvature mounted on mirror holders having 

and angle adjustments as shown in Figure 10. The 

assembly was done on a 3 ton granite block measuring 9 feet 

by 6 feet by 8 in. and having a smooth top, with an RMS 

height variation of less than 1 mm. 

First a square of the required length was marked out on 

the block, then mirrors mounted on the mirror holders were 

placed with centers approximately on the corners of the 

square so that the normals to the mirror surfaces would 

0 subtend an angle of 45 to a side. Adhesive was then 

applied to fix the holders to the table surface. One side 

of the square was drawn out and extended to provide a 

reference for source injection. This arrangement proved to 

be satisfactory to get the ring aligned. 

Output from the ring was taken from the mirror 

diagonally opposite the injection mirror; The height of the 

ring was about 6.3 em above the table surface, and an 

arrangement of mirrors had to be used to feed the resonator 

output to the frequency scanner. 

18 
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Basically, two rings were constructed, one which was 

1 rn on a side and another 15.4 ern on a side, using the same 

mirrors. The larger ring appeared to be more unstable so 

most observations were made on the smaller ring. 

R a 

The mirror radii as measured in the lab were: 

+ + + = 5.01-.01 rn, ~ = 4.95-.03 rn, Rc = 5.12-.02 rn, 

+ = 4.95-.03 rn ; all values were reasonably close to 5 rn , 

so for ease of calculation, all four mirror radii were 

assumed to be 5 rn. 

Various analyses were performed before construction, 

among which were the focusing stability, the eigenrnodes and 

waist size and location, and the finesse of the cavity. 



<DAngle Adjustment 

Figure 10. Mirror holder used at one of 
the four corners of the ring; 
knobs providing angular 
adjustments are indicated. 
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Mirror reflectivity 

In order to be able to predict the finesse of the ring, 

mirror reflectivities had to be measured for all four 

mirrors. This was done in a separate experiment by feeding 

a beam from a laser onto a mirror surface and measuring the 

amount of power Pt that passes-through the mirror. Since 

the laser power output P is known and is constant over 
0 

time, the transmittivity T of the mirrors is given by T = 

Since the mirrors are of a multilayer dielectric 

configuration, it is assumed that the power absorbed is very 

small. It is also assumed that light scattered from the 

mirrors is negligible. Reflectivity R is then given by 

R = 1 - T 

The mirrors were designed for maximum reflectance at 0° 

incidence (the angle which the normal of the mirror subtends 

with the input beam), so the reflectivity had to be measured 

in a range of incidence angles around 45°, which is the 

angle at which the beams would actually hit the mirrors 

inside the resonator. Reflectance at 0° was found to be ~ 

99.9% . 

Unfortunately, it was found that the reflectivity 

decreased as the incident angle increased; at 45° incidence 

the reflectivity was between 99.8 and 99.7 % for all four 

mirrors. Mirror reflectivities for all calculations were 

then taken from the curves in Figures 11 and 12. 
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Geometry of the Optical Axis 

The actual length of the resonator, which is the length 

of the round trip optical axis, had to be determined after 

injecting a source beam and getting the ring to resonate. 

Once resonance was achieved, the length of a side could be 

measured by laying a scale inside the ring and parallel to a 

side and moving a vertical straight edge on the scale till 

it intersected a beam. Assuming the ring is an approximate 

square, the difference on the scale between the two points 

when a beam is encountere-d give-s the length of a side. 

Obviously, the ring will not resonate once a beam in 

one of its legs is blocked, but it is assumed that in a well 

aligned system, the non-resonating and the resonating beam-

path are the same. Measurements with an error of about a 

quarter millimeter could be made by using this method. 

To calculate angles, the diagonals were measured 

directly by placing a scale on top of the mirror holders and 

reading off the distances between marks on top of the 

holders indicating the surface of the mirrors. It was 

assumed that there was an error of measurement in diagonal 

AC by e 1 and in diagonal BD by e 2 (see Figure 13). A set of 

the smallest values for these errors were then calculated to 

0 make the sum of the angles at the corners equal 360 . The 

values chosen for the errors were e 1 = e 2 .= 0.028 em, well 

within the errors expected in the measurement of the 

diagonals. 



The tilt of the optical axis to the table surface was 

determined by measuring the beam height at various points. 

The difference in height between the highest and lowest 

points was found to be less than 1 mm . Strictly speaking, 

it cannot be assumed that the optical axes lie in a single 

plane. 

The following data were determined for the ring: 

Length of side AB = 15.50 em 

Length of side BC = 15.70 em 

Length of side CD = 15.35 em 

Length of side DA = 15.20 em 

Length of diagonal AC = (22.1 + 0.028) = 22.13 em 

Length of diagonal BD = (21.5 + 0.028) = 21.53 em 

Angle at A = 88.1° 

Angle at B = 90.3° 

Angle at c = 87.8° 

Angle at D = 92.8° 

Sum of angles = 360.0° 

25 
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Calculation of finesse 

A transmission analysis for the quadrilateral resonator 

is presented based on a similar analysis in (Haus, 1984) for 

a linear Fabry-Perot etalon (interferometer). 

In the analysis, 8 is the incident angle, S is the 

distance between mirrors, wis the frequency of the wave, r a 

represents the reflectivity of mirror A; t is the transmita 

tivity of mirror A; dAB represents the phase delay of the 

wave passing through the length AB. 

A beam injected with amplitude a. is transmitted 
1 

through mirror A with amplitude jt a.. The wave then a 1 

arrives at mirror B phase-shifted by an amount wn (cos 8 S) / c 

=dAB. 

given by 

The portion of the wave reflected from mirror B is 

This reflected portion 

arrives at mirror C phase-shifted by an amount 

wn(cos 8S)/c = dBC' and a part of this is transmitted 

through c. The expression for the amplitude of the wave 

transmitted through C for the first pass through the loop is 

given by : 

-rB(jtA)(jtc) e-j(da+db) = rB(tA)(tc) e-j(da+db) 

The reflected wave from C goes round the loop and 

returns at C, and the same process is repeated over. The 

final expression for the total amplitude output af from C is 

given by an infinite geometric series 



af = r 8 tAtCe 
-jd 

[1 + {(r8 )(rc)(rD)(rA)} 

P = perimeter of the ring. 

Using the relation for an infinite geometric series 

where d represents the phase delay around the entire 

perimeter of the ring (one round trip). 

The total power transmitted (in watts) is given by: 

I = 
0 

= 

= 

(1 -

For this particular ring, 

rA = .998, r 8 = .998, rc = .998, rD 

tA = 1-rA = 0.002, tc = 1-rc = 0.002 

= 1.594xl0-7 

-5 2 7.179xl0 + 3.976sin (d/2) 

where I. = l.n 
2 Ia. I 

1. 

.9975 

I. l.n 
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( 3) 

( 4) 

At resonance, the sin2 term equals zero and the maximum 

output power is given by: 

= 1.594xl0-7 

7.179xl0- 5 + 3.976 

I. l.n = 2.22x10-7 I. 
l.n 
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The finesse can be calculated from (Appendix A).: 

F = 4R1 / 2/(l-R) = 470 

The Free Spectral Range (FSR) is given by c/P where P 

is the perimeter of the ring. 

FSR = 3xl08 / .6175 = 486 MHz 

Since the FSR of the available spectrum analyzer is given as 

1500 MHz, it should be possible to measure the finesse 

quantitatively, if resonance can be established. 

-

-

-

-

-

-

-

I I 

Figure 15. 

Transmission through -resonator 

' 

I I I I I I I I I I I I 

frequency 

Result expected from a frequency scan of 
the resonator; the scan was generated 
using calculated power ratios. 
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Eigenmodes of the ring 

To obtain the fields everywhere inside an open optical 

resonator, we use Huygens Principle with certain 

approximations to give the following integral (Siegman, 

1971) We use an xyz coordinate system with wave propagation 

alonq the z-axis. 

l.l(x,y,z> = 

u<x,y,z> 

u(x o'yo } 

s 

K yo 0 

. -jkz 
Je 

JJ 
2 2 

( } -j(k/2z)[(x-x ) +(y-y ) ] 
u x ,y e o o 

zA. 
0 0 0 

s 

= complex wave amplitude 
resonator 

= complex wave amplitude 

= coordinate on surface 

= input plane 

anywhere 

at input 

of input 

"' dx dy (5) 
0 0 

inside 

plane 

plane 

where z replaces L , the length of the resonator , assuming 

z0 = 0 at the input plane. 

In resonators which exhibit higher-order modes, 

Hermite-Gaussians are most commonly found to be present. One 

of many different solutions, the Hermite-Gaussian solution 

to this integral is given by: (Haus, 1984) 

c 

~m[ l ~n [ l u <x,y,z) mn 
.J2x .J 2y ( 6) = mn /[1 - z2/:zo2] vl 'Ill 

X y 

exp [ 
-jk 2 2 l exp I j (m+n+ll; l <x +y > 

2R 



where 

c 
nul 

= 

= 

I 2 

w 2 n 2m+n 
0 

m!n! 

all other parameters are as defined before. 

Assuming the Hermite-Gaussian solution above, we can 

define a q parameter which can completely represent a mode 

of any order . The q of a Gaussian beam is a complex 

parameter which describes the variation in intensity on a 

plane normal to the optical axis, as well as the curvature 

of the wavefront, and is given by : 
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q = 1/q = = 1/R - jA/nw2 ( 7 ) 

where R is the radius of curvature of the wavefront, and w 

is the spot size. Lambda is the wavelength. 

The q parameter can be used to describe transformations 

of Hermite-Gaussian modes through free-space, lenses and 

mirrors. The result of these optical components are 

completely described in (Haus, 1984, page 129). Each of the 

above mentioned optical components can be represented by 

ABCD matrices (Haus, 1984, page 131). The matrices des-

cribed below are used in the ring analysis which follows. 



[: : J 
Free space of distance S 

Mirror of radius R 
0 

A good check on q-transformations by matrices is that 

det. [: : J = 1 where 

[: :] 
represents the cascade matrix for a series of elements. 

The q parameter is transformed into q' where 

q I = Aq + B 
Cq + D 

Propagation of the q 

A complete analysis of the ring is presented; ABCD 
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matrices are used throughout. To clear up nomenclature, the 

radius of curvature of a beam or mirror is called positive 

if it is concave in the direction of the beam. 

> 
R>0 R<0 

Since beams are obliquely incident on mirrors, the 

resonator is astigmatic (i.e. the q will propagate 



differently in the x-plane (that of the ring) and the y-

plane (normal to that of the ring). Call these q's 

q 0 

y 
For a q to resonate in the cavity, it must repeat 

after one round trip. 
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and 

The effective focal length of a mirror for a sheath of 

rays in the x-plane is (R/2)cos9 , and in the y-plane is 

(R/2)/cos9 where R is the radius of curvature of the mirror 

(Bilger, 1985b) 

( 8 ) 

where the subscript A stands for mirror A. 

We form a matrix for one leg of the resonator consis-

ting of a length S, and then a mirror. This matrix is given 

by 

= 

Length Mirror Leg 

The ABCD matrix for the ring is then obtained by multiplying 

these four matrices starting from mirror A and travelling 

anticlockwise. All four mirror radii were taken to be 5 m 

as mentioned before. 

Assuming = l/2(angle at A); for the plane of the 

ring (x-plane): 



[: :] = 

A+ 

~- 561 
.155] 
.913 [567 

ol5J 
.911 [555 .l5J ~ 

.915 -.580 

el95 .480J = 

1.794 .2300 

As a check, the determinant should be 1 

The q is then given by 

q = Aq + B or 

Cq + D 

q = AD + 

2C 

1 

c2 

35 

.l5J 

.912 

( 9) 

substituting the values of A B C D from the cascade matrix, 

we get: 

For a plane normal to'that of the ring: 

= [
5195 

-!. 794 

= -0.0773 + j0.7344 

.480~ 

.230~ 



Since the ring has 4 equ~lly curved mirrors and is 

approximately symmetric, there will be 4 x-waists and 

4 y-waists. A waist can be obtained by adding a straight 

section to the q at any mirror so the the real part 

disappears. 

qx(A+) + 0.0807 

qy(A+) + 0.0773 

= 

= 

j0.5167 

j0.7344 

= 323 urn 

woy = 385 urn 
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where w and w are the waist sizes in the x and y planes. ox oy 

Details of the ring along with the waists are shown in 

Figure 16 on the next page. 

The stability of the ring is given by 

should be between 0 and 1 for a unique q. 

(Focusing) Stability = 0.88 
X 

(Focusing) Stability = 0.56 
y 

2 1-(A+D) /4 and 



8.07 em •I 
7.73 em .. , 

------.... _ 
SOURCE ., 

15.50 em 

Figure 16. Location of waists in the resonatorr 
there are 4 x-waists and 4 y-waists 
in each of the legs, but only the 
two waists in leg AB are indicated. 
w0 x = 323um~ w0 y = 385um. 
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Mode matching with input laser 

To assure proper resonance , the spot-size and the 

radius of curvature of the source beam (qL) have to be 

matched with the same of the resonators eigenrnode. This can 

usually be accomplished by a lens placed between the laser 

and the input mirror, and-fs known as 'mode-matching', 

although it should more appropriately be termed 'q-rnatching' 

Due to astigmatism, the q and q of the resonator's 
X y 

eigenrnode are different while the source beam is usually 

non-astigmatic, so cylindrical lenses should in principle be 

used for precise mode-matching (Bilger, 1985b). However, it 

was calculated that w0 x and w0 y were close in value, and it 

has been determined that an error of 10% in mode-matching 

would result in a loss of power of only 1% into the 

resonators fundamental mode (Bilger, 1985b, page 107). Thus 

the same size (350 urn) was assumed for both waists and an 

easily available spherical lens was used to mode-match in 

both the x and the y coordinates of the ring with less than 

11 % error in matching. 

The setup is indicated in Figure 17. The distance L 

between the laser waist and the matching lens is given by 

the solution to the quadratic equation; (Bilger, 1985b) 

2 2 2 
(woL -waR )L 

2 2 2 2 2 2 
- 2xwoL L + [x woL +(n/A)(woLwoR) (woR -woL )] 

(10) 
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where w0L the laser waist size is 330 urn (see Chapter 2). 

w0 R the ring waist size is taken to be 350 urn . 

x is the distance between the two waists 

The waist site is taken to be 0.077 rn inside the resonator 

from mirror A. The solution for the equation for x = 

0.5 m gives us L = 0.281 m (see Figure 17) 

The focal length f of the lens is given by 

f (x-L)w0 L 
2 - Lw 

2 ( ll) = oR 
2 2 

WOL - w oR 

f = 0.78 rn for the above values. 

A computer program for mode-matching was used to select 

practical L-f combinations; the above was found to be most 

suitable. 
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Figure 17. Mode matching of the source with the resonator's q1 for this 
particular construction, L = 28.lcm, X = 50cm. 
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CHAPTER IV 

INJECTION OF SOURCE LASER INTO RING 

Injection ThrougL the Beam Aligner 

The laser used for injection was mounted inside two 

optics-holders fixed onto the table surface. A precision 

beam aligner was then attached at the front end of the 

laser: this aligner allows for translations and angular 

tilts of the beam in the horizontal and vertical planes (see 

Figure 18). The instrument has four adjustment knobs, one 

for each of the above types of operations, and had to be 

calibrated for the amount of translation per knob rotation: 

the angular adjustments were found to be too coarse to use 

for any kind of fine adjustment. 

Calibration of translation was done by use of a 

straight edge mounted on a vernier and a detector. The edge 

was fixed to allow about half the beam power to spill over, 

then one of the translation knobs were rotated a few times 

to offset the beam. The difference between the old edge 

position and the new position to again let the same amount 

of power spill over gave directly the arnount of beam 

translation; this was done in both the x and y directions. 

The setup is shown in Figure 18: the results are: 
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Beam trenslation per 1 rotation of 

horizontal adjustment knob 

Beam translation per 1 rotation of 

vertical adjustment knob 

+ 0.59-.01 mm 

+ 0.58-.01 mm 

42 

A vernier on the adjustment knob would allow translations as 

small as 10 urn. 

Use of the aligner is necessary to precisely inject the 

source beam along the optical axis of the resonator. It can 

also be used to investigate the resonator output due to 

deliberate introduction of offsets and tilts. 

To cut off any extraneous radiation around the source's 

Gaussian (see photographs, Figure 6), an adjustable iris was 

mounted in the beam path in between the aligner and the 

mode-matching lens. The iris was adjusted so that power 

loss was less than 1% . 

The complete setup is shown in Figure 19. 

'---------'~-4~~~~~r--------n---------
LASER 

Figure 18. 

BEAM 
ALIGNER 

STRAIGHT 
EDGE DETECTOR 

Calibration of the aligner; the straight edge 
was used to split the beam approximately in 
half. 
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ADJUSTABLE 
IRIS 

MATCHING 
LENS 

'::.- < > E----------?1 
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• 

RING RESONATOR 

Figure 19. Final setup~ note extra distance introduced due to internal 
reflections off aligner's mirrors. 
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Adjustment of the Ring 

All four adjustments on the beam aligner were used to 

set the beam path so that it was injected into the optical 

axis of the resonator. The center of the input mirror was 

used as reference, and the aligner was adjusted so that 

after the beam passed through the input mirror (mirror A) it 

would also hit the approximate center of the next mirror 

(mirror B). Refer to Figure 19. 

Mirrors B, C, and D were then adjusted in turn to keep 

the beam in the center of the next mirror. Adjustments to 

the mirrors were strictly in terms of tilts, and were 

accomplished by using the theta and phi angle adjustment 

knobs on the mirror holders (see Figure 10). 

After the beam would go through one complete round trip 

and returns to the approximate center of mirror A, two 

separate spots were visible on mirror B; Mirror A was then 

adjusted to overlay the two spots on one another. Due to low 

scattering of the mirrors, the spots are not usually 

visible, but could be observed by breathing on the mirrors; 

the condensed vapor which would reveal the beam would 

evaporate in a few seconds. 

After about three rounds of adjustments to overlay the 

multiple-spots and keep them in the approximate mirror 

centers, the output intensity of the ring would increase and 

resonance would begin. Fine-tuning for maximum resonance 

could be accomplished by delicate adjustments to each of the 

four mirror holders. 
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The resonance however, was not found to be very stable; 

there was an observed fluctuation in power and output 

pattern. Adjustments to the mirror-holders or to the beam

aligner could not remedy this problem. 

Investigation of the Resonator Output 

It was not possible to get the output from the ring to 

stabilize to a single resonance pattern. Two main effects 

were visible. 

1) Variation in power intensity of resonance pattern: 

It was observed that the ring would sometimes resonate in a 

single pattern (for example a visually apparent TEM01 mode) 

with increasing intensity till it reached a peak, and then 

it would decay till perhaps no output at all was visible. 

This whole event sometimes occurred in the course of a 

second; the description could possibly be explained by a 

change in optical path length through the resonance 

frequency of that particular mode as in a linear Fabry-Perot 

resonator (Born, 1983). 

2) Variation in output pattern: 

At times the output pattern would change from, say a 0,0 

mode to a 0,1 mode to a 2,2 mode, these modes defined by 

visually observing the output and comparing it to known 

Hermite-Gaussian lateral intensity distributions. Photo

graphs taken in the lab of these patterns are displayed in 

Figure 20. 
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Over the course of a few seconds, a number of different 

patterns could be observed, some of which were apparently a 

mixture of different modes as shown in Figure 20c. An 

explanation proposed for this phenomena is outlined in 

Chapter 6, and it is suggested that it may be possible for a 

fundamental Gaussian to excite mainly a higher-order 

Hermite-Gaussian due to optical path-length changes caused 

by mirror perturbations. Excitation of higher-order modes by 

misadjustment of source has also been investigated. 

Two sources of error have been proposed: 

1) Misadjustment of source with the resonators eigen

mode due to spatial movements of the injection laser. 

2) Internal changes of the optical axis due to mirror 

perturbations caused by thermal changes and vibrations 

carried through to the setup on the granite block. 

A frequency scan of the output could not be 

satisfactorily accomplished due to output fluctuations; the 

theoretically calculated finesse of the ring thus could not 

be verified. 

It had been proposed that if the output had been more 

stable, the frequency content could be studied to reveal the 

presence of higher-order modes, and changes in their 

amplitude due to source misadjustment; in other words, an 

experimental verification of the theoretically proposed 

scheme (Sayeh, 1985) • 
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To get an idea of the causes for resonator instability, 

an extensive literature search was done: it was noted that 

'mirror noise' was attributed to be the major factor for 

instability of optical ring-resonators (Fredricks, 1978), 

(Yamauchi, 1974), (Al'tshuler, 1977). 

Studies were then done on the effects of external 
~ 

(source) and internal (mirror) instabilities and their 

effects on the resonator output. 



Figure 20 . 

a 

b 

c 

Photographs of resonator output; a) 1,0 mode 
b) 1 , 2 mode c) mixture of a 2 , 1 mode , and a 
higher-order mode . 
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CHAPTER V 

EXTERNAL STABILITY 

Theory 

Fluctuations in the ring resonator output prompted a 

study into possible causes. Previous investigations (Sayeh, 

1985) indicate that it may be possible to excite higher-

order modes in a passive resonator by injecting with a 

misadjusted source beam. Some theory from the above-

mentioned paper is presented here. 

We refer to the Hermite-Gaussian solution for the 

Fresnel diffraction integral with approximations 

(Equation 7). 

U <x,y,z) mn = 
c mn 

- jk 2 2 lj (x +y ) 
2R 

-l2x j 
'111 

X J 

exp I j ( m+n+ 1 l ~ ] 

This function can be separated into a product of two 

functions each of m and n. 

Umn(x,y) = U (x,y)U (x,y) m n ( 12) 

where 
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2 /2x l r2 ~m~ l u = /n 2m ' 
w (13a) 

ill \•1 m. K 
K 

exp l -jk 2 
+ j(m+'J•l"• l K 

2q 
X 

l 2 r2 ~n~ 
/2y l 

(13b) 

u = /n 2n t w n w n. y y 

exp I 1 
-jk 2 + ·j<n+ 1 l2>? l y 

2q y 
y 

The electric field of a wave of order mn with 

polarization only along the x-axis is given in (Haus, 1984, 

page 126) after simplifications and normalization for power 

E (x,y,z,t> 
mnq 

./ 2qP 
mn 

A 
- ;T. ~, j6Jt 

U e 11 """" e x 
mn (14) 

where Pmn is the total power in a longitudinal mode passing 

through a plane perpendicular to the direction of wave 

travel. 

The functions U form an orthogonal and complete set, mn 

and therefore so do the functions E Thus we can expand mnq 

the x-component of the electric field of the ·source beam in 

terms of this set: 

= .A E ( 15) 
mn mnq 
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where the expansion coefficients A represent the relative mn 

amplitudes of different m,n,q modes. 

The expansion coefficients are normalized so that 

~ ~ IAmn 1
2 = ~ 1Aml 2 = ~ I An 1

2 = 1 

AJJ is given by: 

A = J-oo U <u>UL<u> du 
Jl +oo p 

(16) 

( where JJ = m or n ; V= x or y ) 

In the analysis it is assumed that a zero-order 

stigmatic Gaussian beam is used for injection into the 

resonator. 

We define three types of misadjustment: 

1) Lateral displacement of the incoming beam with the 

resonator eigenmodes by Ex and &y in the x and y directions. 

2) Angular d~splacement of the injected beam by ax 

and ay against the resonator z-axis which is also the 

optical axis. 

3) Different waist sizes as well as locations. 

&x and &Y are measured in units of spot size; ax and ay in 

units of beam divergence. Figure 22 shows pictorially the 

types of error. 

The following figure shows how misadjustment can be 

segmented: 



Misadjustment 

Misalignment 1 I Mismatch 

Offset I I Tilt 
--

Figure 21. Types of misadjustment. 
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Figure 22. Pictorial representation of mismatch and mis
alignment along a single axis. W represents 
laser waist size, w0 represents r~ng waist size. Ul 
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For ease of analysis we define two parameters~ a 

misalignment parameter which indicates the amount of lateral 

as well as angul~r displacement, and a mismatch parameter 

which gives the waist size and site errors. 

These parameters are given by: 

Misalignment parameter: 

= 
~ 

~u/w 
ru + a 

u 

Mismatch parameter: 

J 
* qu + qL 

D = u * qu - qL 

where 

w = ru waist size in ring 

qu = q of ring at (ring's) waist 

qL -- q of laser at (laser's) waist 

The coordinate system of the resonator is used as a 

(17) 

(18) 

reference and it is assumed that the coordinate system of 

the laser is tilted and offset. The resonator's coordinate 

system, xyz, comprises of: 

The x-coordinate, which is in the plane of the ring~ the y-

coordinate, which is perpendicular to the plane of the ring, 

and the z-axis which is identical to the optical axis or 

beam center. 
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The coordinate system of the laser is given by x'y'z' 

with similar definitions. 

After lengthy calculations using coordinate 

transformations with certain approximations, we can express 

the electric field of the laser in terms of the unprimed 

coordinates as: 

Emnq<x,y,z,t) -~· .v (19) 

where EL is given by Equation 15, 

PL is the total power in the laser, 

UL{x,y) is expressed in terms of the misadjustment para-

meters 

Using these definitions, we can express the amplitudes 

in the form: 

fl = I-00 U.U(u)UL(u) du 
fi +oo 

where 

w = [t - D~] l ~--q 
'I} 

also 

- 'I} 

M .uv 

= exp I -qu/q 

= 

A = W W : : M M mn x y K y nx my 

where .M0 v = 1 

= w - M 
'I} 'I} J..fU (20) 

1 

( 
E'l 

{l+D 2 )t 2 ) l u/w2 -
Lu u u u/2 
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As a check, we see that A0 = 1 and A~= 0 for perfect 

match and alignment. 

Power Transfer into the Resonator's 
Eigenmodes 

To find the power transferred into a certain mode, we 

can use the ratio of the amplitude for that mode to the 

amplitude of a zero-order mode. The square of the absolute 

value of this ratio then gives the relative power trans-

ferred into that mode, and can be confirmed by measuring the 

ratio of the peaks directly from the frequency spectrum. 

The amplitude ratios are given by: 

= M 
j.IU 

We have two special cases: 

1) Perfect match (Du = 0> 
II 

2) Perfect alignment <~u = 0) 

= 

a 2p+1/A0 = 0 

(21) 

(22) 

(23) 

where approximations have been used to obtain the results. 

Notice that mismatch only will produce purely even-indexed 

H-G (Hermite-Gaussian) modes. 



Location of Hermite-Gaussian Modes 
in the Frequency Spectrum 

The frequency of a TEM mode is given by (Bilger, rn,n,q 

198Sb) ·: f = mnq 
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(24) 

where L is the resonator round-trip length, and R is the 

mirror radius of curvature (assumed the same for all four 

mirrors). 

To identify the order of a particular mode, we can use 

the difference f 0 0 1 - f 0 0 = c/L to give us the 
I I q+ I lq 

frequency difference between two successive longitudinal 

modes. The ratio (f - f ) / (f - f ) rn,n,q 0,0,q 0,0,q+l 0,0,q 

then gives the location of the rn,n,-order mode in terms of 

this unit. 

Thus,to identify a mode from the frequency spectrum, we 

measure its distance from the 0,0,q mode and divide this 

distance by the distance between the 0,0,q+l and the 0,0,q 

modes. The result should be equal to the frequency ratio 

for a certain rn and n. 

We proceed to locate some of the more prominent high-

order modes for the ring resonator: 

The total length of the ring, L = 15.35 + 15.20 + 15.7 

+ 15.50 = 61.75 ern; there are four mirrors with diagonals 

approximately 45° to side of ring. The radius of curvature, 
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R is taken to be 5 m for all mirrors (see Chapter 3). The 

free spectral range (FSR) is given by: 

FSR = c/L = 486 MHz 

The frequency difference between a m,n,q mode and a 0,0,q 

mode is given from Equation 24 by: f - f = c/L m,n,q 0,0,q 

(0.189m + 0.133n) 

TABLE I 

LOCATION IN FREQUENCY OF SOME OF THE 
HIGHER-ORDER MODES 

Mode 

00 
01 
10 
11 
20 
02 
21 
12 
22 

Freq. diff. (MHz) 

00.0 
64.6 
91.8 

156 
184 
129 
248 
221 
313 

Freq. ratio 

0.000 
0.133 
0.189 
0.322 
0.378 
0.266 
0.511 
0.455 
0.644 

All higher-order modes until and including m=3, n=3 are 

contained within 0,0,q and 0,0,q+l . 

Source Spatial Variation 

Matching of the source beam with the resonator's 

eigenmode was satisfactorily done for a compromise ring 

waist size between the x and the y waists. The error in 
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matching was calculated to be < 11% implying a loss of only 

1% of power into modes other than the fundamental Gaussian. 

Since misalignment is a much more serious matter, and 

is prone to cause greater losses, a study was done to 

determine if there was excessive movement of the source beam 

both in tilt and offset due to say, changes in mirror 

positions inside the laser cavity. A large amount of 

movement could excite the ring resonator to oscillate in 

higher-order modes. 

The lab setup for measurement of tilt and for 

measurement of offset were much the same (see Figure 18). 

Offset was determined by measuring the power spilling over 

a straight edge held close to the laser (3.5 ern from the 

front end). The edge was adjusted to block about 1/2 the 

power emitted by the laser. Any offset of the source beam 

would cause less or more power to spill over the edge. 

Since the spot size of the beam at the edge is known, the 

power measured can be expressed in terms of offset using 

formulae explained in the knife-edge scanning paper 

(Bilger and Habib, 1984). Any tilt of the beam would also 

result in a movement of the spot at the edge, but to a 

smaller degree than a pure offset of the same order since 

the edge is held close to the laser. 

Spot size at detector (6 ern from laser waist) = 332 urn 

The spilled-over power is determined by the 

complementary error function (Q-function, Abramowitz, 1965), 

for which we use the following approximation: 
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Q(x) = 1/(l + exp[f(x)]) ~ 3 f(x) = l.5957x + .07295x (25) 

The power detected is given by : 

P(x) = P Q[2(x-x )/322 urn] = P Q[2x/322 urn] 
0 0 0 

assuming x = 0 for P(x) = l/2 Po as our reference point. 
0 

A movement of the beam relative to the straight edge 

can be considered as the edge moving relative to a statio-

nary beam. 

The beam offset which would cause changes in power 

around P(x) = l/2 Po is calculated for two cases: 

P(x) = 0.49Po 

P(x) = 0.50Po 

P(x) = 0.51Po 

x = -4.2 urn 

x = 0.0 urn 

x = +4.2 urn 

Since the curve for the a-function is linear around 

P(x) = l/2 Po it is safe to extrapolate on a linear scale 

from P(x) = 0.55Po to P(x) = 0.45Po . 
As can be seen from Figure 23, the beam offset is much 

less than 5 urn~ it is of the order of l/2 urn. This apparent 

offset fluctuation could easily be caused by variation of 

laser beam power which is of the same order: 

Laser power variation = 0. 7 uVl RMS 

Power variation at straight edge = l uW RMS 

It is interesting to calculate a tilt that would cause 

the same effect: 

a = -1 -6 -2 tan (0.5xl0 /6xl0 ) = 8.33xl0-6 rad (-l-7 arcsec) 
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Variation in tilt was measured by placing the straight 

edge 116 em away from the waist of the laser, and performing 

the same set of measurements. Calculations are as follows: 

Spot size 116 em from waist = 786 urn 

P(x) = Po Q[2x/786um] 

P(x) = 0.49Po 

P(x) = 0.50Po 

P(x) = 0.51Po 

x = -9.8 urn 

x = 0.0 urn 

x = +9.8 urn 

A 9.8 urn spot movement would indicate an angular wobble of 

= 8.5xl-6 rad (-1-7 arcsec) 

Angular wobbles to a maximum of 1.5 arcsec were 

measured as is shown in Figure 24. 

Both horizontal and vertical tilts were measured; 

horizontal offset was found to be quite the same as for 

vertical offset variations. 

Since offsets or power variations would not account for 

more than 0.5 urn of spot movement, and spot movements of 

about 8 urn were observed during tilt measurement, it is 

assumed that there is an angular beam wobble from the source 

laser. It is observed in (Fredricks, 1978, page 50) that 

-5 typical HeNe lasers have ~ beam wobble (tilt) of 3Xl0 rad 

(-6.2 arcsec). 
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Generation of Higher-Order Modes 
in the Resonator 

To get an idea of how the beam wobble would affect 
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excitation of the ring, a comparison was made of the maximum 

angular tilt vs beam divergence, which are the units of 

measurement for the misalignment parameter. Beam divergence 

is given by: 

w( z) Az i w( z) = tancp ... cp 
nw z 

0 

A -9 -4 ... 120 arcsec = = 633xl0 6 = 5.8xl0 rad 
nw 350xl0 

0 

This angle is of a much higher value than the beam 

wobble, which means that a beam tilt < 2 arcsec could be 

considered as a very minor error and would not cause any 

appreciable loss of power into the fundamental Gaussian. 

A calculation is presented for the amplitude of a 1,0 

-6 mode caused by an angular movement of 8.5xl0 rad in the 

xz-plane (we assume no offset error and no mismatch error). 

The mismatch parameter is given by: 

= 
<e- - q a } x rx x 

w rx 

= 0 + jnwrx B.5x10 2 = 
).w 

rx 

For alignment, and proper match, the power 

ratio is given by: 

1:~1 2 
= 

It 1 , .. 

I H I Ji! = ltxl2 = 0.000196 

0.014 
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Therefore the most prominent Hermite-Gaussian mode i.e. the 

1,0 mode will have only 0.02% of the amount of power present 

in the fundamental Gaussian, for this kind of beam tilt into 

the ring resonator. 

The conclusion is therefore that the source is 

spatially stable enough to be used for excitation of the 

ring resonator. 



CHAPTER VI 

INTERNAL STABILITY 

Analysis of Changes to the Optical Axis 
due to Mirror Rearrangements 

A study of the internal geometric stability of the 

resonator was done to determine the new location of the 

optical axis due to mirror perturbations. 

By definition, the eigenmodes of the ring resonator 

follow the path of the optical axis (eigenpath). However, 

the eigenmodes, which are a manifestation of the 

distribution of electric and magnetic fields inside the 

resonator, need not be considered to determine the change in 

the optical axis due to changes in mirror positions and 

tilts. Simple ray-tracing (Siegmann, 1971) provides a much 

simpler way to locate the new optical axis, and the 

eigenmodes will then be centered around the eigenpath. 

That a new optical axis (relative to the old one, and 

consequently relative to the injecting source) can cause 

changes in the ring's output may be viewed in two cases. 

1) Changes in tilt and offset of the injecting beam. 

With reference to the new optical axis, the injecting 

source, which we assume was formerly perfectly aligned, may 
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now be injecting with a finite offset and tilt (see Figures 

27 and 28); this may excite higher-order modes as explained 

in Chapter s. 

2) Changes in internal path length. 

It is assumed that the ring was formerly 'tuned' with 

the injecting source i.e. the length of the optical axis is 

an integer times the wavelength of the injecting source 

(this may be done in ways outlined in Chapter 7). A change 

in the optical axis would cause a change in its total path 

length, relative to the old one. The source laser may now 

not be injecting into the frequency of the ring's funda

mental Gaussian, but at the frequency of a higher-order mode 

(i.e. new length = integer x wavelength of higher-order 

mode). Along with the error in offset and tilt, that this 

could generate a purely higher-order mode is not very clear, 

however it would cause the ring's fundamental to be detuned 

with respect to the source. Note that it was observed when 

studying the ring output, that sometimes a fundamental mode 

would appear, and it intensity would slowly decrease. 

It is assumed, of course in the above two cases that the 

beam is still contained within the confines of the 

resonator, and does not stray off the mirrors. 

We undertake a brief study to examine how much power 

can be transferred into the higher-order modes in cases of 

extreme misalignment: 
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The power transfer into the resonator's Gaussian is given by 

(Sayeh, 1985) 

= 

for perfect match ( D = 0) , where 
u 

P00 is the power present in the 0,0 mode, 

PL is the power in the source beam. 

(26) 

We examine misalignment along the x-axis only, so we 

can assume ty < < tx 

Then, = (27) 

Note that for large values of .t (the misalignment parameter) 
K 

very little power is transferred in the fundamental mode. 

The rest of the power injected into the resonator has to 

distribute itself amongst the higher-order modes. 

To find the power present in any of the higher-order 

modes, we use the results from chapter five where the 

amplitude ratio of a higher-order mode to the fundamental 

Gaussian is given by: 

= for a perfect match. 

The power ratio of any higher-order to the zero order mode 

. ta 12 1s 1 p/A.o • • For the 1, 0 mode or the 0,1 mode, 

~~U~ 2 
:If 

lap/Ao 12 = ~utu (U = K or y) 
= 

2 12 2 wl 
II 

E '1111 E n:z a 2 
(28) u . n a u ..... ....... 

u I + u P 10 /Poo = -- - J- = ;;--:z }:;"2 w-2 w >.. w 
ru ru ru ru 



The power ratio can be made as large as possible by 

increasing s (offset) or a: (tilt). 
u u 

To get an idea of the power transferred for this ring, 

we do a brief calculation in the x-plane for no offset 

E = 0), and a finite tilt. 
X 

= = = a: 2 
H 

If the power in the 1,0 mode is to be 0.9 times as large as 

-4 the power pr~sent in the 0,0 mode, ax= 5.76xl0 rad 

(-120 arcsec). With this same type of error, the power 

ratio of the 2,0 mode to the 0,0 mode is: 

w 8 
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= 
n" L a " 

2X"" w" x 
rx 

= = 0.4050 = 

The total power transferred into the fundamental mode 

by the source is from Equation 27: 

= = = 0.4066 

A table on the next page shows the percent power from 

the source injected into each of the orthogonal Hermite-

Gaussian modes for the above example. 

Since there is no mismatch and no misalignment in the 

y-plane, the m,0 modes are the only ones present, and the 

first 5 higher-order modes plus the fundamental mode contain 

almost all the power injected into the system. 
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TABLE II 

PERCENT POWER PRESENT IN HIGHER-ORDER 
MODES DUE TO MISALIGNMENT 

IN THE X-PLANE 

Mode % Power Present 

0,0 40.66 

1,0 36.59 

2,0 16.47 

3,0 4.94 

4,0 1.11 

5,0 0.20 

Sum 99.97% 

For our ring mirror-error analysis, five types of 

mirror movements are possible. 

x - translation in the plane of the ring, perpendicular 

to the optical axis. 

y - translation in a plane perpendicular to that of the 

ring and perpendicular to the optical 

axis. 

z - translation in the plane of the ring and parallel to 

the optical axis. 

theta - tilt in a plane perpendicular to that of the 

optical axis. 
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phi - tilt in a plane parallel to that of the 

optical axis. 

To simplify matters, only one translation and one tilt, both 

in the plane of the ~ing will be investigated. It is 

assumed that all other mirror perturbations will have 

similar effects. 

It is not evident how the new optical path could be 

determined analytically, although some recent research shows 

this is possible (Stedman, 1986). Computer simulation of 

the ring was done using ray matrices; help was gained from a 

previously done report (Habib, 1984). A short description 

of ray-matrices follows: 

If a beam is injected with an input vector: offset a 

and tilt 6 , the new offset a' and tilt 6' can be found both 

for traversal through a distance S, and a mirror with effec-

tive focal length f; 

= 

output vector distance S input vector 

= 

output vector mirror f input vector 

The system matrices are similar to those for 

transformation of q (Chapter 2). 
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The mirror perturbations cannot be expressed in matrix 

form in the same way, but have to be effected by an 

operation on the offset or tilt directly; following is the 

way they were implemented; both these perturbations were 

done on the mirror diagonally opposite the input mirror. 

1) z - translation 

I 
I 
I 
I 
I 

t 
I 
~~a 

Figure 25. Effect on incoming ray if mirror translates 
by an amountAz. Note that we are not 
assuming a closed-path here. 
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A translation of the mirror by an amount az directly 

offsets the beam by the same amount: this is of course a 

paraxial approximation assuming the beam still strikes the 

center of the mirror. The change in the ray vector is thus: 

= 

This change takes place after the ray hits the mirror. 

2) phi - tilt 

Figure 26. Effect on incoming ray if mirror tilts by an 
amount act> • Note that we are not assuming 
a closed-path here. 
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A tilt of the mirror by an amount ~~ changes the output 

angle by twice that amount; Offset is not changed. The 

change in the ray vector is given by: 

I :: l = 

This change is again effected after the beam strikes 

the mirror. 

The computer algorithm to find the new optical axis 

worked in the following way: 

1} Inject a ray vector into the system (four mirrors, 

a distance S apart, with a mirror perturbation} along the 

old optical axis; b= 0, a= 0 , and find the new output ray 

vector. 

2} Inject a ray into the system with a offset halfway 

between the old and the new offset, and a tilt halfway 

between the old and the new tilt; find the new output ray 

vector and repeat the procedure till the injected and output 

ray vectors are the same. This would imply that the ray 

always followed the same (closed} eigenpath. 

For the above types of mirror perturbations, it was found 

that convergence could be reached by using this method in 

all cases except when the mirrors were flat. 

For mirrors with a large radius of curvature, the number of 

iterations for convergence was found to be very large; about 

100 iterations were required for a result good to 3 digits 



for 5 rn mirrors. Results are presented below for a square 

ring .16 rn in length, with four 5 rn mirrors. 

z-translation; -- lxl0-6 rn (1 urn). Aft 

delta = 1.34xl0-6 rn 

alpha = -1.67xl0-5 rad 

er convergence, 

-6 New path length = old path length + 3.9xl0 rn 

(see Figure 27) 
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phi-tilt; -6 = lxl0 rad (0.2 arcsec). After convergence 

delta = 9.43xl0-6 rn 

alpha = -2.68xl0-6 rad 

-6 New path length = old path length + 9.5xl0 rn 

(see Figure 28) 

where delta and alpha represent the offsets and tilts that 

would repeat in one round trip i.e. define a closed path. 

Figures 27 and 28 show the effects of the two types of 

mirror perturbations on the optical axis; the movements are 

grossly exaggerated for clarity. 

It was noted that changes in path length, and tilts and 

offsets were of the same order as the perturbations 

themselves. The way these changes would affect the rings 

output is presented next. 



Figure 27 New closed-path resulting from a shift of Az 
on mirror C: the tilt and offset of the 
new path relative to the old one is of 
the same order as the mirror perturbation. 
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8" 
j_ __ _ 

Figure 28 
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------------------

New closed-path resulting from a tilt ofa~ 
on mirror C: the tilt and offset of the 
new path relative to the old one is of 
the same order as the mirror perturbation. 
Note however that the path-iength change 
is appreciable compared to the wavelength 
of the source. 



Excitation of Higher-Order Modes due to 
new Tilt and Offset 

A change in the tilt and offset of the ring's optical 
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axis relative to the source can be viewed as the ring's axis 

being stationary and the source now injecting with a new 

tilt and offset. 

The value of the mismatch parameter from the new input 

vector due to the z-translation is derived below: 

E = 6 = 1.34xl0-6 
K 

ax = a= -1.67xl0-S 

= 4.09xl0-3 + j2.72xl0-2 

Assuming no mismatch, this is also the power ratio of the 

1,0 mode to that of the 'fundamental Gaussian. 

For phi-tilt of the mirror; 

= 2.88xl0-2 + j4.36xl0-3 

Both of the above values for the misalignment parameter are 

too small to cause by themselves the output to change as 

drastically as was experimentally observed. 



Change in Eigenfrequencies due to 
Path Length Variation 

Resonance frequencies for the various modes for this 

particular ring is given in Chapter 5, Equation 24: 

f = c/0.6175 ( q + 0.189m + 0.133n + 0.161 ) mnq 

where q is an integer representing the longitudinal mode. 

We have: 

freq. of the 1,0 mode = freq. of 0,0 mode + 91.8 MHz 

A frequency shift of 91.8 MHz could be caused by a ring 

length change calculated below: 

Frequency of a fundamental mode is given by: 

f 1 = (q+0.161)c/L 0,0,q 

frequency of a 1,0 mode after a length change is given by: 

f = (q+0.133+0.16)c/(L+dL) 1,0,q 
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Since the injecting frequency remains the same, the increase 

in length of dL shifts the eigenfrequencies of the ring 

relative to the source so that f I = f 0,0,q 1,0,q 

(q+0.161)c/L = (q+0.133+0.161)c/(L+dL) 

After substituting q = L/A we get: 

dL = 0.133L/(L/A+0.161) - 0.133 = 0.08 urn 

Which means that a length change of 0.1 urn in the eigenpath 

would cause a shift in the resonance frequency of -92 MHz. 
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If the source laser was injecting at a fixed frequency of 

the fundamental Gaussian of the ring, this increase in 

optical path length would mean it was now injecting at a 

frequency of one of the 1,0 modes. The previous results show 

that a eigenpath length change of 0.1 urn is well within the 

changes resulting for mirror perturbations of Az = l urn or 

A<P= 0.2 arcsec. 

Path length changes of this order may also be caused by 

changes in refractive index of the medium enclosing the beam 

path. An expression for variation in refractive index of 

air vs temperature change is given by (Kaye, 1973, page 86): 

n -1 tp = -10 ,( ns -1) p[ l+p ( 61. 3-t) 10 ] 
96095.4(1+0.00366lt) 

(29) 

where ntp = refractive index at temperature t and pressure p 

n s = refractive index at l5°C and 101325 Pa 

t is given in °C, and p in Pa (N/m2 ) 

The difference between the refractive index at l5°C and that 

0 -7 at 15.1 C is of the order of lxl0 , and this would directly 

correspond to a path length change of the same order (.1 urn) 

It therefore stands to reason that the beam-path should 

be contained in vacuum, or in a medium with a lesser 

refractive index than that of air (helium for example). 



Comparison with Practical Effects 

The question now is if mirror rearrangements of the 

order investigated are likely to take place in the ring 

resonator constructed. 
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The coefficient of thermal expansion of granite is 

given as ~8xl0-6 K-l (Creswell, 1966) which means that a 

change in the temperature of the table surface by l/10 °c 

could cause a mirror to shift (translate) by 1 urn. A change 

of 1/100 °c would then be able to cause a frequency shift 

into one of the higher modes, for this particular ring 

constructed on a granite base. 

A mirror tilt of 0.2 arcsec sounds like a very possible 

effect. The holders or mirrors themselves might tilt due to 

thermal changes or vibrations. In fact, it was found that 

the output of the ring could be greatly disturbed by 

thumping on the floor some distance from the setup; 

vibration frequencies caused by the thumping could be 

detected in the output of the ring. 

Changes in refractive index of the surrounding medium 

could also cause appreciable path length changes although 

this would be a relatively slow effect compared to the 

previously mentioned factors, if it had to occur over the 

entire path length. 



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

Summary and Conclusions 

A reasonably square ring resonator with length 0.154 m 

on a side was constructed in the laboratory from 5 m radii 

mirrors. A source was matched and aligned with the optical 

axis of the resonator, and after adjustments, a continuous 

series of short-lived resonances was observed. A visual 

study of the output showed the apparent presence of higher

order modes as well as the fundamental Gaussian; these modes 

were found to be unstable and would decay in intensity or 

change into other modes. 

Analysis from the last two chapters suggest that the 

source is not responsible for the instability of the ring 

output. The relatively slow decay in the intensity of the 

modes may be due to thermally-induced length changes in the 

ring; the rapid change from one mode to another could be 

caused by 'mirror noise' - the holders or mirrors tilting 

due to low-frequency vibrations carried through to the table 

and causing abrupt length changes. 

Tilt of offset of the source beam against the 

resonator's optical axis is a relatively minor source of 

error compared to effects caused by changes in internal 
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geometry of the ring, or changes in refractive index of the 

medium surrounding the beam-path. 

Recommendations 

The following suggestions are given to anyone intending 

to build a passive ring-resonator in the laboratory. 

1) The ring should be mounted on a surface with a 

very low coefficient of thermal-expansion, for example, 

Zeroduer, or even invar; then temperature fluctuations of 

the environment in tenths of degrees can be tolerated. 

2) Mirror-holders should be rigid and have locks on 

the adjustments (i.e. screws which would rigidly fix the 

mirrors once positioning was obtained). 

3) Mirrors should be used which have a high reflec

tivity at incident angles that would be encountered in the 

resonator. 

4) Mounting for the ring should be vibrationally 

isolated from the rest of the lab environment. 

5) Fine-tuning of the resonator for maximum 

transmission of a mode could be accomplished by slightly 

tilting the mirrors (Bilger, 1986); as previously shown, the 

misadjustment caused by this would be far less than the 

change in path-length which accomplishes the fine-tuning. 
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Once maximum transmission is obtained, the mirrors should be 

locked into position. 

6) It would be wise to enclose the beam path with a 

set of quartz tubes, or to evacuate the path entirely. This 

would eliminate drag-effects caused by moving masses of air, 

or variation in path length caused by changes in refractive 

index of the surrounding medium. 

7) A stabilized source (in frequency, space and 

intensity) is very necessary. 

The practical application to this study is of course, 

not just to build a ring resonator, but to construct a 

Passive Ring Laser Gyro (PRLG), which has two counter

propagating beams following the same eigenpath. The gyro 

has several applications including the measurement of very 

small rotational rates. 
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APPENDIX A 

EXPRESSIONS FOR THE FINESSE OF A RESONATOR 

AND ITS RELATION TO THE 

QUALITY FACTOR 
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The finesse of a resonator is defined from its 

resonance curve (Born, 1984, page 328) as the full width at 

half-maximum divided by the free spectral range, i.e. the 

ratio of the "width between the points in either side of a 

maximum where the intensity has fallen to half its maximum 

value" to the "separation of adjacent fringes". This may be 

directly measured from a resonance curve obtained by a 

frequency analyzer. 

The finesse can also be calculated from the trans-

mission intensity relationship for a four-mirror resonator. 

Equation 4 in Chapter three gives us the following: 

= 

where k 

= 
1 

k I. 1n 

k I I. 
1n 

and 

The maximum output power is given by: 

for Y = 4R/(l - R) 2 

r = k' r .. max 1n 

At a point where the intensity is half its maximum value, 

1 1 
= 

1 + Ysin 2 (d/2) 2 

at d 2m + E/2 for small values of r, sinE = = 

1 1 
= 

1 + y 2;42 2 
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and we have. E = 4/(Y)l/ 2 

In terms of frequency spacing from the resonance curve, the 

finesse is given by: 

2n n(Y)l/2 
finesse = = 

2(Ej2) 2 

substituting back the value for Y, we finally have: 

finesse = 
n(R)l/2 

(1 - R) 

The quality factor, Q of a cavity is given by the absolute 

frequency of resonance divided by the full-width at half 

maximum: 

The finesse 

(f 
F = 

but c = Af 
0 

A£0 
F = 

L Af 

Q = f jA£ 
0 

can be written as 

+ c/L) - ( f ) 
0 0 

A£ 

A 
= Q 

L 

Therefore, the quality factor 

0 
0 

c 
= 

LA£ 

is given by: Q = L/J.. F 
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Knife-edge scanning of an astigmatic Gaussian beam 

Hans R. Bilger and Taufiq Habib 

The relations for position, spot size, and inclination of the major axis of an elliptical Gaussian ~am to kmfe
edge scanning data are derived. A knife-edge whose scanning direction is adjustable to any angle has bt-en 
employed to scan across a beam in at least three directions. Nonlinear least-squares fit program• ha,·e been 
developed to check whether a beam is Gaussian, and to evaluate the parameters, w1th errors. of •uch an ellip
tic spot. The evolution of an astigmatic beam in the tangential and sagittal plane is mea•ured 

I. lnlroducllon 

Scanning of a Gaussian beam with circular cross 
section has been dealt with in several papers.l How
Pver, bPams with different cross sections or power 
density distributions appear often in laser systems ei
ther as aberrations, e.g., through admixture of Her
mite-Gaussian beams, or as an essential feature, as is the 
case in ring lasers. The extension reported here has 
several benefits in the laboratory: 

(1) Quantitative determination of' the degree to 
which a given spot deviates from a circular cross sec
tion. 

(2) Determination of the parameters of an elliptical 
spot. 

(3) Analytical (least-squares) evaluation of the spot, 
including an estimate of the errors of the evaluated 
parameters. 

II. Scanning of a Gaussian Beam with Elliptical 
Cross Section 

The spot size w shall be defined by the following 
distribution of the electric field amplitude E: 

E(x,y) ~Eo exp(-(x2 + y2)fw2) (1) 

for a circular beam spot centered at x = y = 0; the beam 
propagates in the direction of the positive z axis. 

Extending this to an elliptical cross section with ar
bitrary orientation (see Fig. 1) and using power density 
S (proportional to intensity/), we have 

(2) 

The author. are with Oklahoma State University, School ofElec· 
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where Wa,Wb are the spot sizes along the major and 
minor axes, respectively, P0 is the total power in the 
beam, 2(Po/11'WaWb) is the power density in the heam 
center, and 

a ,% - %0 - :t' cosao - y' sinao. 

Y -Yo • :t' sinao + y' cosao. !3) 

Equations (3) include rotation by a tilt angle a0 (mea
sured from the positive x axis in the direction of the 
positive y axis) and translation of the beam center to 
Xo.Yo- A centered circular Gaussian beam (Eq. {1)) is 
included as a special case with xo =Yo= 0 and w. = Wb 
=w. 

When a straightedge is placed at x = x, parall€'1 to the 
y axis, obscuring the half-plane x :!0; x., the power 
transmitted past the edge2 is given by 

Pcx,> ~ s.:::· [.c::· s(x,y)dyJ dx (4) 

This double integral can be expressed as a comple
mentary error function of x,'J namely, 

P(:t,),. (Po/2) erfc(u), u • (y'2)(x, - :X,)/w(nol. (5) 

with erfc(u) = (2/y''IT)J: exp(-t2)dt, or as4 

P(:t,)/Po ~ Q(v), 

with 

v = (2/uo(ao))(x,- :X,)= c, '~lu, 

and 

Q(v) a (l/y'(2.-)] s..· exp(- t2/2)dt, 

w2(ao) == w~ cos2cro + wl sin2ao. 

i'.(ao) e .Xo COf'ao +Yo Slntro + x • ., 

(x,0 is the offset of the translator micrometer). 

161 

(7) 

The function P(x,)/Po is drawn in Fig. 2 v~ scanner 
position x, for two widths, w 1 and w2; the center of the 
beam is assumed to be at x, = 0. Equation (7) contains 
the three parameters of intere~t Wn, Wb, and ao. The 
apparent width w(a0 ) is plottE'd in 11 polnr plnt in F'ig 
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Fi~. I. Elliptical beam spot centered at x0,y0 with axes w. and W& 

tilted a~:ain•t the positive x axis (horizontal) by a"' The beam goes 
into the paper plane (positive z axis). The scanning edge is placed 

atz •. 

10 

0 841 
OA 

0~ 

~10 ,!a. 
a. 

04 

02 
0 159 

0 q_4 4 
x. 

Fig. 2. Relative power P(x,)/Po vs scanner position x, for two spot 
""'" w, ( = u; unit.• on the abscissa) and w2 ( = 3 units on the abscissa). 
The shapes of these curves are identical, except for a difference in w, 
for <eannmg of an arbitrarily placed elliptical beam. The beam 

centers are assumed to be at x, = 0. 

3 for three different ratios w.lwb, together with the 
actual spot shape (ellipse, dashed line) for w.lwb = 2. 
The measured widths w(a0) agree with the widths of the 
ellipse at a= ao and a= a 0 ± 180° where w(a0) = w0 , 

and at a = ao ± 90° where w(a0) = wb. 
If the scanner is now rotated around the z axis by an 

angle a against the positive x axis, the equation for the 
resulting width is slightly generalized to 

w2(a) : w! cos2(ao- a)+ w& sin2(ao- a), 

Y, (a) = xo co<(ao- a) +Yo sin(ao - a) + x,O. 
(8) 

For a circular beam with w0 = Wb = w, the result is again 
w(a) ~ con•t = w, as it should be. 

Fig. 3. Polar plot of widths vs scanning angle a for three different 
elliptical beam spots (solid curves). The spot for u•,lw& = 2 "drnwn 

as a dashed ellipse. 

Three methods have been devised to evaluate 
w(a): 

(a) Fractional power method: Noting that Q(v+ = 
1) = 0.841 = P(x;}/P0, and Q(u_ = -1) = 0.159 = 
P(:r.;)/Po (see Fig. 2), we set the edge such that. the 
relative power equals these fractions. The positions x; 
and :r.; yield the width w(a) through 

V+- V- • 2 e (2/w(a)j(x:- %,) - (2/w(a)j(x;- %,), 

or 

w(a) =- x:- x; (9) 

In principle, any pair u+V- can be chosen to evaluate w, 
but with a given absolute error in P(v ), it can be shown 
that the pair v: = ±1 produces the width with mini
mum relative error. The center of the beam, x,, can be 
obtained by setting the scanner such that the trans
mitted power is halved, see Fig. 2. 

(b) Graphical method: This method consists of 
plotting the relative power P(x,)/P0 vs x, on error 
function paper.5 A straight line on this paper indicates 
an error function, i.e., that the beam is indeed Gaussian. 
The points x; and x;- can then be used as above to find 
w. The center of the beam is again given by P(x,)/?0 

"' 1/2. This method has the advantage over method (nl 
in that it makes use of all the measured scanning posi
tions, that the latter do not have to be specifically cho
sen, and that the graph allows a check whether the beam 
is Gaussian. It also provides some estimate of mea
surement errors. 

(c) Least·squares method: This third method con
sists of fitting the Q-function into the measurPd power 
vs :r.. (see Fig. 2), by adjusting the three parameters Po. 
w, and x.. This method does not require the data to be 
normalized with the power Po before analysis. It can 
furthermore accommodate a fluctuating total power and 
it reduces errors introduced by fluctuating power. The 
accuracy of the computer program is not limited to the 
usual-1% of graphical methods. Any obserwr b~:1s is 
eliminated. Finally the program also providPs ann lytic 
estimates of the errors of the parameters h~· calcttlnt ing 
the variance-covariance matrix.'' 
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30. • •• 
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Fi~. 4. Test of a spot at z • 90 em off the laser without intervening 
opucs at 5 an!"IPS, o•, 45•, 90°, 135°, and tao•. The fit w(a) • conat 
rr•ult.• m 111 = (653 :!: 4) }lm. The sensitivity of the method to detect 
rlliptocoty os demonstrated by the dashed curve where tentatively 

U'blw. = 0.9 has been set. 

Given the measured points P(x,), usually between 
fh·e and twenty points covering the range from 0.9 Po 
to 0.1 Po, the program fits the function 

(Sa) 

into the points where a1 = P0, a2 = w(a), aa =:X,. An 
approximation for Q is chosen4 which has a maximum 
error of ±1 X w-5 over all arguments v: 

Q(t•)"" lf2 + sgn(v)l[l/y'(2r)] 
X (a + bt + ct 2)t exp( -o2/2) - 1/21, 

t = 1/(1 + pfvi), 

s~n(o < 0) = -1, sgn(o,. 0) "'0, sgn(o > 0) • +1, 

p = 0.33267, a • 0.4361836, 

b .. -0.1201676, c - 0.9372980. 

The program is iterative. It makes use of initial esti
mates for a 11 a2, a a and refines these estimates until the 
sum of the residuals squared is satisfactorily close to the 
minimum. For a set of twenty points, the program 
takes -800-msec CPU time on the VAX un5o for four 
iterations, which usually leads to convergence.7 

Ill. Parameters of a Gaussian Beam with Elliptical 
Cross Section 

One scan at an angle a gives w(a) = a2. We need at 
least three scans to calculate W0 , Wb, and ao. In prac
tice, scans at more than three angles are made. A sep
arate least-squares fit program then determines the 
three parameters above through Eq. (8) or through 

u•(a) • w0 y'(l - r2 sin2(ao- a)j, (8a) 

with c =numerical eccentricity= .J(l- wl/wn. 
IV. Establishment of an astigmatic Gaussian beam 

A He-Ne laser (Oriel model 6697} was used to pro
duce a well-behaved circular Gaussian beam. Its cir
cularity was checked by scanning at several angles, see 
Fig. 4. A silicon detector (Optics Technology model 
610} with a narrowband optical interference filter was 
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Fig. 5. Goniometer to adjust the obliquity an~le of the lens The 
reference position is given by retroreflection wh1ch originally aligns 

the principal axis of the lens with the benm axos = optocal axos 

used for detection with background light. The beam 
evolution was measured within the first 1.5 m off the 
laser front end. The spot size vs z was fitted by the 
equation 

(11) 

with Wo =waist size, located at z = z,., and z0 =Ray
leigh length = 1rwYA. The waist location z., was found 
near the output mirror of the laser. The waist size was 
wo = (316 ± 5) ~m. , 

A plano-convex lens with focal length fo = 20 em was 
then placed on a rudimentary goniometer (Fig. 5), which 
enabled us to rotate the lens around a vertical axis by 
an-angle Ah and also around a horizontal a"{i~ by an 
angle A0 • The angle of obliquity8 tf> between the beam 
and the principal axis of the lens then become~ 

,P • arccos(cos")'h cos")'.). (12) 

This angle lies in the tangential plane whose tilt against 
the horizontal plane (x-z plane} is given by 

ao = arcsin(sin")'0 /sind>). (13) 

The tangential plane therefore contains one of the axes 
of the ellipse. 

The lens was placed at 2{0 = 40 em from the beam 
waist, with the two angles 'Yh = 'Yu .. 30°' which results 
in the two focal lengths9: ftan~entiol = 9.4 em and 
/oa,lttal = 16.8 em. The beam, after traversing the ll'ns, 
is expected to have a shape as givl'n in Fig. 6, with the 
circle of least confusion8•9 at z "' 15.5 em; before and 
after this point, the ellipse rotates by -90° (a0 = 136.5° 
to ao = 46.5°}. Since the input to the lens is a circular 
Gaussian beam, there will be a tangential waist and a 
sagittal waist placed approximately symmetrical to zz,,. 
There are no focal lines in this case. 

The propagation of the beam in the tangential plane 
is independent of that in the sagittal plane. Both are 
governed by Eq. (11}, with two different sets of pa
rameters: Wo1, Zwt• Zot, and wa,, zw., za,. 

V. Experimental Evaluation of the Astigmatic Beam 

The beam was probed at distances 12-60 em after the 
lens. This range contains the interesting features (see 
Fig. 6}: primary focus= waist in the tangPntiRI plRne, 
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100 :200 
ZCIIIIftJ 

Fig 6. Evolution of beam along the z axis. The circular Gau99ian 
beam enters the lens at z • 0. The spots are shown as they appear 
in the z.y plnne enlnrgPd by XlOO relative to the z scale. Immediately 
to the left and r1~ht of the circle of least confusion, the tangential and 

i 
! .. 
K 

1 2 

09 

a: 0 6 

sagittnl waists are shown, rt'Spectively. 

X0 (mm) 

Fig 7. Scan ofasti~m~ntic beam atz ~ 60cmfrom the lens at a • 45". 
The Ieost-•quares fitted parameters are: total power Po • (1.498 :1: 
0 00~) mW, center at.r, = (6 309:1: 0.002) mm, spotsizew(45°) "(783 

:1:6)/lm. 

circle of least confusion, and secondary focus = waist 
in the sagittal plane. 

Figure 7 shows a typical measurement of P(x) at a 
distance z = 60 em from the lens, at a scanning angle a 
= 45" with respect to the positive x axis. The least
squares fit of Eq. (6a) to the fourteen measured points 
gives Po= (1.498 ± 0.005) mW, w(45") = (783 ± 6) }-!m, 
:X, = (6.309 ± 0.002) mm. None of the individual re
siduals exceeded 8 }-!W; a translator with 10-}-!m reso
lution (smallest division) was used. 

After at least four widths are evaluated for each spot, 
Eq. (8al is fitted into the data w(a). Figure 8 shows a 
typical fit at z = 35 em with the result w. = (801 ± 3) 
}-!m, t = 0.920 ± 0.003, a0 = (46.4 ± 0.4) 0 , which estab
lishes the tilt and size of the ellipse at 35 em together 
with the errors. The maximum deviation is 7.5 }-!m; the 
average deviation is 4 }-!m. 

Finally. thP evolution of the tangential spot sizes 
u•1 (z) and tht> o:udttal spot sizes w,(z) is obtained (see 

Fig. 8. Polar plot of spotsizes w(a), taken at z = 35 em. The fit ~1ves 
w. • (801 :1: 3) I'M, • = 0.920 :1: 0.003, a0 = (46.4 :1: 0 4)". The rms 
deviation of the widths in this plot from the best-fitted sohd c11n·e 
is 4.5 jtm. The resulting elliptical spot si•e is drawn •• A dn•h•d 

1500 

l1oo 
"i 

curve. 

500 600 

Fig. 9. Evolution of astigmatic beam vs z (see also Fig. 6). The wmst 
sizes are wo. " (58.0 :1: 0.2) I'M and wo. = (102.0 :1: 1.2) I'M- They can 

be located with an accuracy of about :!:2 mm. 

Fig. 9) by least-square fitting Eq. (11) into the previ
ously obtained results. The best-fitted parameters 
are 

tangential waist w01 = (58.0 ± 0.2) }-!m at Zw1 = (118.5 
:1::0.9) mm, 

sagittal waist wo. = (102.0 :1:: 1.2) }-!m at zw, = (201.3 
:1:: 2.5) mm. 

The maximum deviation of any point was 8.5 ,urn for 
the tangential spot sizes and 14.6 }-!m for the sagittal 
spot sizes. 

VI. Discussion of Results 

The methods used here to scan an elliptical Gaus•ian 
beam with a straightedge (razor blade) are based on the 
result that the power spilling over the blade has the 
same dependence on the position of the blade as is the 
case in a circular Gaussian beam, except that thE' eval
uated width is a simple function of position and size of 
the ellipse. At least three scans need to be done <meach 
spot, with different angles a. If the position of the 
tangential plane (a0) is known, two measurPmPnts 
would suffice, preferably taken nt a = an anrl <Y ~ c>n ± 
goo. 
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Two methods were mainly used to obtain a width, 
name!~·. the fractional power method and the least
squares method. The latter established that the beam 
is indeed Gaussian, within the errors. However, sub
s!"quent mf>asurements were usually done with the 
fractional power method, which is faster. Both meth
ods yield typical errors of the order of one small division 
on the scanner ( = 10 !LID) or less. The data suggest 
indf>f>d that translators with a resolution of 1 !LID would 
prorlure yet smiilfer'random errors. 

To test the sensitivity of the methods to detect de
viations from Gaussian profiles, a Hermite-Gaussian 
1-0 mode of the same spot size10 was evaluated. The 
ralculated result of scanning along the x axis is 

IPCx,)/Pol-rnM, 10 z (1/2) erfc(u) + (u/,j1r) exp(-u2), 

u: (,j2)(x- x,)/w. 
(14) 

The major deviation from the error function occurs at 
UM = ±11,/2 with an amount of v(27re)"" 24%. This 
suggests that the detection of admixtures of such ei
genmodes with a power of less than, say, 10% of the 
fundamental Gaussian has to make use of other meth
ods, e.g., of Fabry-Perot scanning in the frequency do
main. 

It may be noted that by using the least-squares pro
gram above, an iteration of the type given in Ref.ll can 
be avoided: The program finds directly one waist to 
satisfy both the asymptotic slope 1/z0 = A!1rwij as well 
as the minimum Woof the function W(z) = WoV[l + (z 
- Zu• ) 2/zf,] with the criterion of minimizing random er-
rors. 

This paper is an outcome of research done under 
AFOSR gmnt 84-0058. 
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Optical resonator with an external source: excitation 
of the Hermite-Gaussian modes 

M. R. Sayoo, H. R. Bilger, and T. Habib 

The amplitudes oC excited Hermite·GaUMian modes in an utigmatic resonator due to an injected astil(lllatic 
GaiiiAian mode are calculated. V ariou. types oC miaadjuatment are considered: offset •; tilt a; mismatch o. 
For amall miaadjuatmenta the ampUtudn are Cut-converging aeries in the mismatch paremeter o 11nd in the 
miaaJi«nment parameter f. For miamatch, only even-indu@Ci Hermite-Gau88ians appear. The theory is 
appUed to an uperimental reoult lnvolvi111 a 3.15-m llqi.W't! ril!l intf!rferometf!r. Formula• Cor power 
matching are derived, and controlloopo to eliminate all hut the GaWUiian mode are propo~~ed. 

I. Introduction 

The ideal situation of a perfectly coupled sy~~tem of • 
source with a pMSive resonator via a matching and 
aligning circuit is given in Fig. 1. The adjustment box 
has two purpo!les: 

(a) It aligns the optical uis of the injecting laeer 
beam with the optical uis of the resonator modes. 

(b) It matches the spatial distribution of the injected 
beam mode with the distribution of the corresponding 
resonator mode. (Frequency matching [tuning] is not 
disC1l811&1 in this paper.) 

Figure 1 depicts a ring resonator as a case of an 
astigmatic resonator. However, we will limit the dia
CU88ion to resonators where two orthogonal symmetry 
ues exist, one in the plane of the ring (x uis) and 
another J>i!rpendicular to this plane (y uis). 

Unlike a self-aligning optical O!!Cillator (laeer), such 
a resonator has its own eigenmodes independent of the 
injected beam so that imperfect spatial coupling neces
sarily excites unwanted modes for any degree ofmisad
justment, be it misalignment or mismatch: unlike the 
self-excited laser, there is no threshold either for high· 
er-order modes. 

The purpose of adjustment is thus to effect a perfect 
spatial overlay mode by mode of a laser beam with the 
corresponding resonator modes. 

This analysis attempts to quantify the effects of 
misadjustment. Of the many types of mode realiz. 
able, only Hermite-Gausaiana are used because they 
are the most commonly occurring; they can be natural-

The outbo"' are with Oltlahoma State Univenity, School oCEiec· 
tncal & Computf!r En,ine<oring, Still.,.oter, Oltlahome 74078. 

Receivod 17 June 1985. 
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(1 1985 Optical Society of America. 
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ly extended to systems with two orthogonal planes of 
symmetry, as is the case in ring resonators; misadjust
ment can be eeparately discusaed in each plane; con
venely, the simpler case of a linear resonator can be 
obtained in a straightforward manner.1 

The formalism of astigmatic Hermite-Gaussian 
mode~~ (HGs) is developed in Sec. ll. The expansion of 
a beam in the resonator's eigenmodes is formalized in 
Sec. ill. We inject a misadjusted Gaussian beam (Sec. 
IV) and expand it in the resonator's modes (Sec. V). 
The resulting general equation is then used to predict 
power matching, i.e., the degree to which power is 
tradrerred from the beam to the Gausaian of the reso
nator (Sec. VI). Formulas for the HGs are then devel-

- oped and specialized to misalignment and mismatch in 
Sec. Vll. Finally, the analysis is applied to empirical 
data obtained on a square ring where misndjustment 
parameters are quantitatively assessed from a mea
sured spectrum of HGs (a scan) (Sec. VIII). A summa
ry of the results and consequences is drawn in Sec. IX. 

I. Astlgrnatk: Hennlle-Gaus!llan Modft 
HGs eolve the Fresnel-Kirchhoff diffraction integral 

as well as the paraxial wave equation.2 For purposes 
of this analysis we will discuss the electric field of a H G 
polarized in the i direction (i is a dimensionless unit 
vector), propagating in the positive z dirE>ction (the 
optical uis), in vacuum: 

~(%,Y,%,t) • y(2, ->U-(z,y) exp(-jltz + jwt)%, (1) 

where 'I • vacuum impedance • (~'{)/ <o) I/2, P mn • beam 
power, k • wave number,"' • angular frequency, with 

U..,(J:.y) • U.,(%)U.(yl •liv'21(y' .. 2"'m!w,>JI"H~(·/2xn•·,l 

X exp{-j(lt/2q,)%2 + J(m + 1/2)~,]1 
X l(y'2/(yr2"n!w_.)J'"H.(y2vk·,l 

X expi-J(k/2q,)y' + J(n + 1/2lot>_.JI. (2) 
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Fig. 1. La.oer oource coupled into a reoonator via "" adjwotment 
drcuit. The function of the latter is to align and match the IIOilfCI! to 

the (a•tigmatic) reoonator. 

This is the astigmatic formulation of the lateral field 
distribution, where w., W:y are the spot sizes in the :c and 
y directions, respectively (the spots are generally ellip
tical), H., andH" are Hermite polynomials of degree m 
and n, respectively, Qr and q1 are the complex curva
ture parameters, and t/Jr and t/J:r are phases. 

The Hermite-Gaussian function Urnn(:c,y) is thus 
completely separated into a product of two functions, 
each depending only on one lateral variable. Since all 
operations below preserve this independence, we will 
treat one variable only: JJ. • morn, ,. • :c ory. We 
have thenH.(v), withHo(ll) • l,Ht(P) • 211,H2(") • 4r2 
-2, etc, and 

q, ·I - R,-l- j2!1tw,2 (R, • curvature radiUA). (3) 

The fields E.,nq are normalized so that 

1/2 c c (E"~_t,)thdy•P..,., (4) 

i.e., P," is the power of the mnq mode. The HG 
functions are normalized so that 

r:, u.<·H 2d· _ 1. 

Useful approximations for phase t/J" spot size w" and 
curvature radius R,; 

All modes have the BBJDe dependence of z. For the 
phase, 

(5) 

where the argument of tan-! is the distance from the 
waist site zo. in terms of the Rayleigh range ZJt.. In a 
system which is not far from adjustment, we can as
sume that all waists are well within the Rayleigh ranges 
of each other, and we may approximate <1>."" 0. For 
the curvature radii, we have 

R,(z) • (z- zo.J(l + zfb2/(z- •o.l!J. (6) 

Again we may occasionally put R, - "' close to the 
waist sites, in which case q,(z) becomes purely imagi
nary, q,- jkwg./2. Finally the spot sizes are 

w!(z) • wa.2{1 + (. - zo.l'lzfb 2] (7) 

and may be approximated by their respective waist 
AizPS Wo,... 
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LASER.--.... 

=-~-- z· aflJ 

RESONATOR 

Fig. 2. Miaaligned oyotem: The laser's optical UU. z' is offoet by • 
and tilted by a against the reoonator'o optical UU. z. In thio figure 
the wail to of laoer and reoonator are at the oame z and equal in oize. 

m. Expansion ot an InJected Beam Into the Resonator's 
E)gelmodes 

The functions U rnn form an orthogonal and complete 
set.3 We, therefore, expand the :c component of the 
field EL of an injected beam in terms of this set, i.e., 

EL • I I A...,E...,. (EL • :r component of injected field) (8) 
... -o .. -o 

with dimensionless but generally complex expansion 
coefficients A,.,.. The fields Emnq are given by Eq. (1), 
where Pl'lll\ • PL (power of the injecting beam). We 
have 

(9) 

(10) 

where u~ *(p) is the conjugate-complex of the Jtth ei
genmode, and UL(II) is the HG function of the injected 
E field. 

IV. Injection wfth ~ed Gaussian Beam 
In the following we use an injected astigmatic Gauss

ian beam (m • n • 0) with spot sizes WLz and WL.- Its 
optical a.x.i.a shall be parallel-shifted against the reson
ator's z axis by t, and fy in the % and y directions, 
respectively. It shall also be tilted by angles a, and a,. 
off the resonator's z axis (see Fig. 2). Finally we allow 
the waiAt sites of injected beam and resonator modes to 
be different as well as the waist sizes (see Fig. 3). 

The integrals (Eq. (10)) are evaluated in the coordi
nate system of the resonator: :c • in-plane coordinate 
of resonator; y • perpendicular to plane; z "' optical 
a.x.i.a of ring, forming a right-handed coordinate ~y~tem, 
origin at waist location. 

In the tilted and offset coordinate S)'Rtem :r'y'z' of 
the injected beam, the field distribution is 

EL(z' .:y' .z'.t) • y(2.,P0)(2/rw..,wL,J1" 

x exp(-j(k/2)(x'2/q.., + y'2/qo,>l 
X exp(-jkz' + jwt)i'. (11) 

This results from Eqs. (1) and (2) with Jt ., 0, d>, "' 0. 
Expressing the primed coordinates in thE' urmrimed 

coordinates of the resonator system, we have 
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cw z- aw~- '•• 
y' • (z - •,1 oina, oina7 + (y- t 71 eoea7 -• ~. 1ina7 ""y- ">'- •r 1121 

-i' • (z - •,I oina, c:ma7 + (y- t71 aina7 + z coea, eoea7 "' z + a,.z + "il• 

retaining only terms of first order in the misalignment 
parameters t., t,., a., a:r 

The pivot point is usumed to be at z • 0. For small 
deviations from z • 0, the errors are of second order in 
the parameters. 

Furthermore, i' • i cosa. - z sina, ot i is set. The z 
component is eliminated because it is orthogonal to i. 

The field of the injected beam is, therefore, approxi
mately EL(.x,y,z,t) • (2'1Pt)112Ut(.x,y) exp(-jkz + 
jwt)i, with 

UL(I•I • (v'2/(y',.w,_,l) 112 

X ospl-j(lr/2q,_,)[,.l- 2(t,- qL,a,)'ll- •,'JI 

V. Expansion of Injected Field In the RMOMtor 
Elget liTIOdes 

(13) 

Equations (2), (10), and (13) are used in a physical 
situation where the waiat sites in the two planes are 
well within the resp@Ctive Rayleigh ranges of each oth
er, so that we can put </J., • </Jy 1:!1< 0 and a1Bojkw,2/2 oo q, 
"""'q:. EqUlltion (13) yields 

A, • c U, "I•IULI•Id•. 

It is convenient to introduce a misalignment parame
ter ~ and a mismatch parameter o, namely, 

~. - (•.- q,_,a.:fw.. o, - [(q,. + q,)/(q." - q,))112, (141 

whe~ ~e of!set is meuured in units of the spot size, 
the tilt m un1t11 of beam divergence, and the mismatch 
in terms of the ratio of the complex curvatures. Note 
that for perfect adjustment,~. • o, • 0. For coinciding 
waiat sites, the mismatch parameter o can be written u 
o, • [(w,2/wt,2 - 1)/(w,2/wt,2 + 1))112, Le., in terms of 
the waist sizes directly. The amplitudes are then 
evaluated from the integral (10)4• The result can be 
written in the form 

with 

A, •W,X:E,XM.,. 

W, • ((w,/w,)2q,...!(q,_, + q,l]lll • (1- o:ll/4, 

:!, • e-..p{-q,•,2/q,_,w,2 + ~.21q,/q,)q,/(q, + q,)) 

• e7.pl-(q,/q,...J(•."/w,2 - (1 + o,')~,2/2)1, 
M., • (2'~<!l'111o:H,[~.Il + o,')/y'a.,). 

(15) 

This rather cumbersome equation gives the response 
of ~he resonator to a misadjusted GaUB!Iian input beam. 
It ts not easily exploited. The factor M~<•• which gov
erns the convergence of the series, does not generally 
converge monotonically (see Sec. VIII). It is however 
no~alized in the sen"e that Mo. • 1. Aho the re~ 
qu';l'ement that Ao • 1, A. • 0 for perfect adjustment is 
satisfied. 
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RESONATOR 

Fig. 3. Mismatch~ oywtem: Luer and r .. onator have diff•ront 
wlliot oizeo !OCIIted at different z va!u... The oywt..m io sli!rn•d. 

however, i.e., z • z' 

(oro 

Fie. 4. Power tnmlfer from the GaUIIIIim l&oer beam to the G•WI•· 
ian of the rMOMtor in a mioadjWited oywtem: a, power trmef•r ratio 
ill e mi.Mligned oywtem, where~ • Q~,j2 + ~~~2)112 i.o oet.. For~- 0, 
PrxJP£ - 1, uymptoti...Uy; b, power tnmlfer in a miomAtch~ 
sywtem, where o • o. • o7 il seL Again thPre U. uymptnt1c conver-

gence for o - 0. 

VI. Power Transfer Into the Resonator's ~ 

This problem is of obvious interest for the design of 
such a system. 

For the resonator Gaussian, Aoo .. W, WyZ.Z,.. For 
perfect adjustment,~. • 0, q, • qL. (for both v • .x and v 
• y), o, • 0, Aoo • 1, and the power transfer is Poo/Pt = 
~~2•1. 

In the special cue of proper alignment (hut mis
match), Eq. (15) produces with z. • 1 the simple result 

P..,!PL •)W,)2 )W7 )2 •Ill- o,'lll- o,'IJ112!•, • a, • o. o.,.. 01: 
(16) 

The upper curve in Fig. 4 shows the power transfer vs o, 
where a. • o,. • o. As Eq. (16) suggests the transfer is 
not very sensitive to small mismatch. For e:uunple if 
the spot sizes of resonator and luer are 10% differe~t 
we obtain Poo!Pt • 0.991, i.e., <1% of the power ill put 
into HGs. In the special cue of proper mat<:h (but 
misalignment), we have, with q, = QL .. W, = 1: 

P..,!PL •1:!,1 2 1:!7 )2 • .-..p(-1•,2/w,• + k2w,'a,'122ll 
X esp(-!t)/w) + k2u·.'a,2/22)), 

• e-..p(-QEJ 2 + IEJ 2l) (o • o. E. ,.. 01 (17J 

displayed as the lower curve in Fig. 4, wherP e .. , ~.1 + 
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I~Y~ is set. Equation (17) shows again that offset and 
tilt are in quadrature. In a svstem with 10% misalign
ment ((2 • 0.12 • 0.01), -1%-ofthe power is lost. 

vn. Size of 1M Hermit~,. In a Mlsadjusted 
Sywf11n1 

To find the amplitudes of HGs (m ;>! 0, n ;>! 0), it is 
convenient to avoid facton which do not depend on m 
orn. Weform 

A.fA, • M., • (o:f2ol2..j~!JH.f~.{l + o,2)/..j2o,], (18) 

with the two special cases 

A.fA0 • ~:1-./~!- (2 .. ~J-11•c~~.2/~Jol2(111<1tch, o,- 0), (19) 

A,jA0 • [(-i/2)•y'(2~J!I~!Jo,2•- (-o.2)•/( .. ~J'"· (20) 

A,_.,!A0 • 0 (alignment.~.- 0). 

Equations (19) are obtained using H.(•- ..,) - (2v)• 
and Stirling's approximation for the factoriaJ,Eqs. (20) 
by using H.(v- o) oo ( -1)ol2,u!f(~t/2)! for even p. and 
H.(v- o) oo 0 for odd ,u. 

The asymptotic forms are given to demonstrate the 
fast convergence of the mode amplitudes, once near 
adjustment with 1~.1 « 1, and lo.l « 1 is achieved. 
They are, by the way, within 4% of the explicit forms 
for ,u 2:: 2. Equations (20) also show that pure mis
match produces even-indexed HGs only, as oppoeed to 
pure misalignment. That odd-indexed HGs vanish in 
an aligned s)'l!tem follows directly from a consideration 
of the symmetry of an aligned beam with respect to 
both the .1: and y direction. Figure 5 show the iso
photes of an offset beam which is also mismatched in 
the y direction but matched in the .1: direction. If the 
offset is removed, the lower part of the figure has the 
odd-indexed modes absent. Figure 6 gives a plot of 
the field vs x of an injected beam with the sizable offset 
~. "' 1, i.e., f, "' w,. Note that the amplitude A& has 
already drastically decayed (Ad Ao e.o 0.09); the power 
in the 5-0 mode is <1% of the power of the GaUSBian 
mode. 

AB far as the phases are concerned, we note that, o, 
being either real or purely imaginary for a nearly 
matched s)'l!tem, the HGs for the aligned &)'l!tem (Eq. 
(20)] have either the same phase (wL > w) or alternat
ing signatures (wL < w); for a misaligned S)'l!tem (Eq. 
(19) ], the phases depend on the relative contribution of 
tilt and offset. 

vm. Appl1catlon to Mlsad)usted Resonate~' System 

In a ring interferometer the beam path encloses a 
rmite area, and the modes are astigmatic. The inject
ing laser, therefore, needs to be matched in the .1: andy 
planes besides having to be aligned in both coordi
nates. 

The identification of the modes in such an astigmat
ic cavity is done by evaluating the eigenfrequencies of 
the resonator. From Ref. 5 it follows that 

{_, • (c/LJ((m + 1/2)6/2 .. + (n + 1/2)6/2 .. ) + (c/L)q, (21) 

where the angles /3, and /3y depend on geometry and 
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OFFSET • Y-MISMATCH 

. Y-MISMATCH 

.+·$-. t ·t 
Fig. 5. J.ophotes of !Mer beam and r••onator mod"" with proper 
adjUStment in the% direction (a) Off~et f, and nll!'mBtf"h O, prP
duce all E.,.,. modes in the resonator. (b) Mismatch alone produces 
only ewn-indoxed Hennite-Ga....,ian modes. Since the •r•tem is 
pPrlectly sdju.oted in the :r: direction, all excited Hennit»·G•u .. i•n• 

OS 
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02 

0.1 
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-o 1 
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have m • 0. 

INJECTED BEAM 

(" •ex/Wlx ., 

3 

EIGEN MODES 
Wo •WL;~~ 

o~----~~~~~~~------4 

-o 1 

0~----~~~~~~~----~ 
O.O>I----....,--,_-...;,;,_ __ -1 

"01~-~4r-·*3--~2--~,~~~~-~~~ 
X/W0 

Fig. 6. Field distribution vw normalized :r: uia du• to an off.et beam 
with misalignment parameter (, • 1 + jO (oure o{{..,t. '• • Wf.,). 

Shown ia the incoming beam and the lint live excited •i~•nmod ... 
All vertical scales ....., oqual. 

mirror curVature radii R. We analyzed a square ring6 
of perimeter L • 3.15 m. with two diagonally placed 
spherical mirrors of equal curvature radius R"' 6.00 m. 
The other two mirron are flat. The beam is injected at 
one of the flat mirrors. The frequency differenc~s are 

!,. .. -f.,. • (c/rL)[m co." 1(1- Llv'2Rl + n "'"'-'(!- Ll~, 2RJ) 

(22) 
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Fig. 7. F•bry-Perot 8CJUI ofa mi&odjuot.ed oywtem. The two Gauu· 
ian modeo O.O,q and O,O,q + 1 an prominent beea~ the injected 
G•uooian beam is not for from adju•tment. The identification of the 
pe.Uo in the free •pectral nnge of the reoonator is 

1 O,U,q-2 7 O,S,q-1 overlapping ore 1 2.3.q-1 (?) 
2 O.S,q-1 8 0,3,q the followin~ 4 2,4,q-1 
3 O.l.q 9 0,9,q-l mod.s: 7 2.0.q 
4 0,12,q-2 10 0,4,q 9 2.1.q (?) 
5 0,7,q-l II O,IO,q-1 11 2,2,q. 
6 0.2,q 12 0,5,q; 

The oywtem hM the two mismatch porameten o. • 0.53-j0.66, 0,. • 
0.40-jO. 76, ond the two miu.lilftlment pMameten f. • • 0 + jO and f7 

• 0.255-}0.153; the latter corresponds to an offaet of 180 ,.m and a 
t.ilt ongle of 49 aec of ore. The lower aequence ore leMt-aquarea 
fitted amplitudeo. Tbe fit of the 0-n aequence hall reoiduala of 2.4~ 

anrqe. 

as shown in Fig. 7. In the free spectral range between 
the Gaussian O,O,q and O,O,q + 1 modes (q is unknown), 
seventeen modes are identified including O,n,q, modes 
(ll • 0-12) and 2,n,q modes (n • 0-4). 

The analysis proceeds as folloW!!: The absence of 
the 1,n,q modes suggests alignment in the plane of 
the ring (Eq. (20)], t. • a. • 0. The relatively large 
ratio of the O,O,q modes to others suggests a near
adjusted situation, i.e., t1 and a, are small. The 
mismatch is known from the optical circuit: o, • 
0.53-j0.66 Oy • 0.40-j0.76. Thus we expect 
even-indexed modes to appear in both planes, i.e., m • 
2,4,6, ... , as well as n • 2,4,6 .... 

The general Eq. (18) has to be applied for the y 
direction, whereas Eq;. (20) is applicable to the HGs in 
the :r; direction. The unknown parameter is ~,.. 

In a le88t-squares fit, the nine largest measured ra
tios of the 0-n peaks to the 0-0 peak were fitted with 
the squared absolute value lA,./ Ad 2 from Eq. (18) using 
the adjustable parameter ty· The fit produced rms 
residuals of 2.4% (with respect to the 0-0 peak) with 
I tv I "' 0.30, and fy • 180 11m, ay • 49 arc-sec. These are 
piausible values, considering that even nuances of the 
spectrum were verified 88, for example, the rank of 
almost every 0-n peak. although the series was not 
monotonic. 

Of the five 2-n peaks, only the 2-0 peak is promi
nent. Nevertheless, Eq. (20) predicts these five peaks 
to within a factor of 2 assuming that the nearly coincid
ing 0-n lines have negligible powers. Figure 8 depicts 
the same svstem but with an improvement in the 
matching ci;cuitry: A spherical lens had been put in a 
compromise position to effect a better match with 
the result Or = 0 + j0.328, Oy = 0.303 + jO, (I Oy I 
"" lo, p. 
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These values for mismatch are already quite low, 
although an effort has not yet been made in this experi
ment to inject an astigmatic beam. The calculated 
power transfer into theO-O mode is (Eq. (16)] PooiPL • 
0.990; i.e., only 1% of the power is lost. 

Concunently, a much better alignment has been 
achieved. The emergence of the 1-0 mode as well as 
the 0-1 mode signifies, however, that there is now 
misalignment in both planes. The estimates from 
these two small peaks are I~J -0.16 and I~J 0< 0.19. 
The paucity of the data does no~ allow dete~in~tion 
of a real and imaginary part of c. I.e., oft and am F1g. 8. 
Further experiments to relate the Hermite-Gaussian 
mode structure to misadjustment are quite welcome. 

IX. Discussion and Conclusion 

The calculations presented in this paper allow a 
quantitative estimate of power matching 88 well 88 the 
prediction of the HG structure in a resonator excited 
by a misadjustment beam. The two complex parame
ters ~ (misalignment) and o (mismatch) have been 
introduced to account for offset, tilt, and mismatch. 
In an astigmatic system, a separate set of parameters is 
necessary for each of the two orthogonal planes. 

The analysis of data obtained on the example, a 
square ring with a perimeter of 3.15 m available in the 
literature, demonstrates that quite detail~ informa
tion can be obtained about the degree of adjustment of 
a system through this theory. 

Such .knowledge may be put to good use in the engi
neering of a precision instrument as, e.g., a large ring 
interferometer. The necessary precision of adjust
ment can be calculated through a consideration of the 
effects of misadjustment on the desired data. 

The 101!8 of power in the desired 0-0 mode is an 
obvious effect. It is itself GaU88ian in the two parame
ters offset and tilt, whereby these parameters, which 
are in quadrature, are naturally measured with respect 
to spot size and beam divergence. For a mismatched 
beam the IOflll is proportional to o4 , meaning that power 

o.o. 

Fig. 8. F•bry-Perotoc•n ofa betteradju.t..! B}'lltem (compare with 
Fig. 7). Both mismatch ond mioalignment ore improvod, the former 
by in .. rting a (•pherical) lens in • compromioe po!!ition Identifica
tion of peaks: 1. 0,1,q; 2, I,O,q; 3, 0,2,q; 4, 2,0,q. There io now 
mioalignment ond mi•matcb in both dinoctio"•· Ill though roduced. 
The pM1Ulleten "-"' (compan with Fig. 7) o, • 0 + JO 33, o, • 0 30 + 
JO;IEJ ""0.16.IE~ ""0.19. Tbeneoroymmetryofo,And o.oigntfi .. 
th•t q,)q,- q,/qL; i.e .. the miom•tch htll! befon pro["'rlv rli•tnhutM 

to th .. two dirflctton-.. 



loss becomes relatively harmless once I~ « 1 and I ol « 
1. near adjustment, is achieved. 

Another effect to be considered is frequency pulling. 
If we defme it as the difference of between the frequen
cy fo of a Gauasian with amplitude .4() and the frequen
cy of the composite peak due to the presence of a HG 
with frequency ft and amplitude At. we get for this 
kind of pulling of/fo • (At/.4())(1/2Q)4/(ftffo - 1)3, 
where Q • fol AI is the quality factor of the resonator. 
On the basis that of ought to be less than a given value, 
A tl Ao can be estimated and the degree of necessary 
adjustment predicted. 

The ambiguity of the ring's output due to the pres
ence of several modes is to be considered as a sort of 
noise and again can be suppressed with proper adjust
ment techniques. 

Finally we propose a control scheme for adjustment 
of the system injection resonator. It makes use of the 
orthogonality and symmetry of the modes with respect 
to specific misadjustments: 

( 1) Pick up the 0-1 mode from a scanner and control 
with it vertical alignment. Since offset and tilt are in 
quadrature, each type of misalignment can be adjusted 
separately. 

(2) Use the 1-0 mode to control the horizontal align
ment in a similar way. 

Note that in particular any mismatch does not affect 
the amplitude of these two modes. 

(3) Once these modes disappear, any residual 0-2 
and 2-0 modes are then due to mismatch. Although 
we do not believe that a once-matched system goes into 
significant mismatch due to ambient effects, there is 
nevertheless the possibility of using these latter modes 
to control the match by using zoom systems with cylin
drical lenses in the respective planes. 

This work has been done under Air Force grant 
AFOSR 84-0058. 
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APPENDIX D 

LIST OF EQUIPMENT USED IN EXPERIMENTS 
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DESCRIPTION 

Laser 

Beam Aligner 

Spectrum Analyzer 

Mirror-holders 

Granite Block 

Mirrors 

Matching lens 

Iris 

Laser mounts 

Output detector 

Voltmeter 

Oscilloscope 

Computer 

A/D conv. I.c. 

104 

MANUFACTURER MODEL AND TYPE 

Coherent 

Oriel 

Coherent 

200; Freq.-Stabilized 

6550; Angle & Trnsltns. 

240-2-B 

Collins 

- ; angle adjustments 

MicroFlat; 9'x6'x8" 

1 em spot diameter 

f = 0.78 em 

1 mm - 1 em aperture 

Oriel Adjustable lens mounts 

UDT 555-D (hybrid) 

Keathly 610 Electrometer 

Tektronix 547 

Texas Instrmts. TIPC 

National Semic. ADC 0804 
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