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PREFACE 

Tests were desi~ned bv the use of dimensional analysis 

to determine the effect that velocity has on tractive 

effort. A mathematical model was then developed to predict 

~ractive effort as a function of wheel slip, soil strength 

indicator. tire parameters and velocity. The model appears 

to be adequate for many design problems in the agricultural 

and industrial equipment industries. 
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CHAPTER I 

INTRODUCTION 

To accurately simulate vehicle performance. all 

elements pertinent to the vehicle system must be 

mathematically defined. One of these elements is tractive 

force. For agricultural tractors, tractive force is 

developed at the soil-tire interface. Forces developed 

at this interface can not be defined explicitly, primarily 

due to the complex dynamic stress-strain relationship of 

the soil. Another approach to predict tractive force'is to 

develop a empirical model from actual field test data of 

tires on soils with several hardnesses. 

As pointed out by Yang et al. (1984>, tractive force 

is a function of both cohesive soil reactions, which are 

strain rate dependent. and frictional soil reactions. 

For strain rate to be a factor, the soil is presumed to 

have plastic strain characteristics. Since the strain rate 

of the soil-tire interface is a function of both tire slip 

and tire peripheral velocity, a function of velocity should 

be included in the traction prediction equation. 

Ob.1ecti ves 

The overall objective of this research was to determine 

1 



the effect of velocity on pull developed by a lugged, 

agricultural tire in field conditions. This was 

accomplished by completing the following specific 

objectives: 

1. Determine parameters affecting tractive 
performance of a lugged tractor tire in field 
conditions by use of dimensional analysis techniques. 

2 

2. Develop a tractive fo~ce prediction equation for 
lugged tractor tires in field conditions. 



CHAPTER II 

LITERATURE REVIEW 

Wismer and Luth < ·1974), developed the following 

equation using dimensional analysis techniques to predict 

pull of off-road vehicles: 

t = .75(l-e-0.3CnS) - (~~2 + 0.04) 

where: 
p 

w 
Cn 

s 

Pull to weight ratio 
. Cibd Wheel numer1c = --W--

CI Cone index value 
b = Tire section width 
d Tire diameter 
W Dynamic load on tire 

= Wheel slip 

(l) 

Tires tested were a variety of small <diameters less than 

150 rom), smooth tires <with the exception ot one lugged 

tire) at speeds lower than typical field speeds <less than 

2.25 km/h). Since these tests were performed in a soil 

bin, field speeds were unattainable. In this study, it was 

assumed that velocity has little effect on tractive 

performance. 

Dwyer et al. <1976> published a handbook for 

agr·icul tural tire performance. This handbook lists the 

tractive coefficients for different tractor tires for a 

variety of surface conditions and two wheel slips. Bloome 

3 



4 

et al. (1983J compared data from this handbook to the 

Wismer and Luth prediction equation. This comparison 

illustrated that the Wismer and Luth equation failed to 

predict the data from Dwyer et al. (1976) satisfactorily. 

This confirms that the prediction equation is not adequate 

for agricultural tires operating in field conditions. 

One variable needed in tractive force calculations is 

the soil strength or soil cone index. Clark (1985) 

examined the sensitivity of predicted tractive force using 

cone index values averaged over different depths. His 

results indicated that for bare soils, the cone index value 

should be averaged over a depth range of 0 to 15 em. 

Another important factor in tractive performance is 

wheel slip. Brixius and Wismer <1978) studied the role of 

slip in traction. The ratio of pull to dynamic load 

increased with slip to approximately 30%, then became 

asymptotic as slip continued to increase. 

To calculate wheel slip, the angular velocity and 

effective rolling radius along with translational velocity 

are needed. The effective rolling radius of a tire is a 

measure of the number of revolutions made by the tire as it 

travels a given distance. Charles and Schuring <1984) 

developed an empirical equation to predict effective 

rolling radius. This equation calculates rolling radius as 

a function of the unloaded tire radius. loaded tire radius, 

and a dimensionless factor. This equation will predict 

rolling radius of the tire on varying sur~ace conditions. 
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Burt and Lyne (1983) studied the effect of velocity on 

tractive performance. Within the velocity range .of 0.1 m/s 

to 0.6 m/s, there was no effect of forward velocity on net 

traction for constant slip and dynamic load. The upper end 

of this range is about one-fourth of the operating .speeds 

of today's agricultural equipment. 

Gee-Clough et al. (1977) studied the effect of 

velocity on tractive performance with tractors in the field 

conditions. These tests showed increased pull with 

increased velocity. Since these tests were performed over 

two years, environmental effects caused wide deviations in 

the data. 

Bekker <1969) stated the effect of strain rate on 

soil shear strength can be considered non-existent in the 

range of strain rates typical for off-road traction 

devices. This appears contradictory with information from 

Gee-Clough et al. <1977) and Yong et al. (1984). 

McAllister et al. (1976) studied the effect of aspect 

ratio on tractive performance of agricultural tires. The 

results indicate the only advantage of using a tire with a 

low aspect ratio is the ability to carry a given load at a 

lower tire pressure. 

keed et al. (1964) studied the effect of tire diameter 

on performance. They found that a larger diameter tire can 

be loaded and operated so as to give a significant increase 

in pull over a smaller diameter tire, however, the 

differences come from several factors and not diameter 



alone. The most important factor affecting pull of a tire 

is the soil condition. 



CHAPTER III 

PROCEDURE 

Dimensional Analysis Approach 

Through the use of dimensional analysis, an equation 

can be developed for traction prediction accounting for 

velocity. This first requires a list of the pertinent 

quantities. The pertinent quantities considered in 

this research are listed in Table I. 

TABLE I 

PERTINENT QUANTITIES AND SYMBOLS 

Symbol 

p 

w 
CI 
b 
d 
v 
s 
g 

Parameter 

Pull 
Vertical dynamic load 
Cone index 
Tire width 
Tire diameter 
Velocity* 
Wheel slip 
Gravitational constant 

Dimensions 

F 
F 
FL-2 
L 
L 
LT-1 

LT-2 

*Velocity could either be actual <translational) 
velocity or theoretical (peripheral) 
velocity. 

7 
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According to Murphy <1950>, Buckingham"s TI theorem 

states: 

" . the number of dimensionless and independent 
quantities required to express a relationship amvng the 
variables in any phenomenon is equal to the number of 
quantities involved, minus the number of dimensions in 
which those quantities may be measured." 

The dimension matrix used to determine the number of 

dimensionless TI terms required is listed in Table II. 

" 

F 
L 
T 

TABLE II 

DIMENSION MATRIX 

p w CI b d v s g 
1 1 1 0 0 0 0 0 
0 0 -2 1 1 1 0 
0 0 0 0 0 -1 0 -1 

Rank of matrix = 3 
Number of parameters = 8 
Number of terms needed (8-3) = 5 
This indicates that 5 terms from the 

pertinent quantities can be developed. 

To determine the TI terms, Murphy (1950) states: 

. the only restrictions placed upon TI terms is 
that they be dimensionless and independent." 

By referring to work reported in literature, a set of TI 

terms that appears to describe all the pertinent quantities 

was then selected. The TI terms selected for this research 
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are given in Table III. Note the four options for the 

velocity factor. 

The way to check the TI terms for independence is to 

compare the number of TI terms to the rank of the TI term 

matrix as illustrated in Table IV. Since the rank of the TI 

term matrix <Table IV) was equal to the number of TI terms, 

the terms are all independent. 

TABLE III 

TI TERMS 

TI term Description 

p 
Til w Tractive coefficient 

'IT2 
Cibd 

w Wheel numeric 

'TT3 s Wheel slip 
v2 

Tilfb gb Velocity* coefficient 

v2 
'!Tlfd gd Velocity coefficient 

b 
'IT = 

5 d Aspect ratio 

*Velocity could either be actual <translational) 
velocity or theoretical (peripheral) 
velocity. 

The prediction equation will have the form of; 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 



1 0 

p f(Clbd S, 
vz E.) 

w w ' gb' d (8) 

or 

p f (Clbd S, 
vz E.) 

w w ' gd' d (9) 

TABLE IV 

'IT TERM MATRIX 

p w CI b d v s g 
'IT 1 1 -1 0 0 0 0 0 0 
'IT2 0 -1 1 1 0 0 0 
'IT3 0 0 0 0 0 0 1 0 
'IT.,. 0 0 0 -I 0 2 0 -1 
'IT5 0 0 0 1 -1 0 0 0 

By inspection, it can be seen that each 'IT term can be 

varied by altering one variable in the 'IT term at a time. 

The procedure for doing this was: 

a) 'IT ., was the dependent variable. 
b) 'IT2 was varied by: 

I ) changing soil cone index. 
2) changing tire section width. 
3) changing tire diameter. 
4) changing vertical load on tire. 

c ) 'IT3 was varied by changing wheel slip. 
d) 'IT4 was varied by changing the theoretical wheel 

velocity. 
e> 'IT5 was varied by changing tires sizes. 



Plot Layout 

To determine the et'fects the 'IT terms have on tractive 

pertormance of tractor tires, test procedures require 

varying the five 'IT terms individually. A strip plot 

design was chosen to get three cone index levels on all 

I I 

tests. The other variables used were five tire sizes, four 

velocities, four wheel slips and four vertical wheel loads. 

This gave an experimental plot design with 14 

treatments per replication as shown in Table 5. 

This design was replicated four times for the pull test 

and one test measuring rolling resistance. This required a 

field 72 m wide and 210m long. The field used had a 

sandy-loam type soil and was located at the South Central 

Research Station in Chickasha, OK. 

A four character code was used to identify individual 

test runs. The f ir·st digit ranged from 1 to 3 and indicated 

cone index level. The second digit ranged from 1 to 5 with 

1 to 4 indicating pull test replication and 5 indicating 

rolling resistance test. The last two letters were the 

test configuration code illustrated in Table 5. 

Field Preparation 

To achieve the correct soil texture for compacting the 

plots, the field was tilled with a chisel plow and tandem 

disc. The field was then flagged to form a grid pattern to 

the dimensions shown in Figure 1 . 

To achieve the three cone index ranges, a 26.7 kN sheep 



TABLE V 

CONFIGURATION IDENTIFICATION 

EXPERIMENT DESIGN 
Config. bd w CI s v 

AA 1 1 1. 2. 3 1 1 
BA 2 1 II 1 1 
GA 3 1 II 1 1 
DA 4 1 II 1 1 
EA 5 1 II 1 1 -
FA 1 2 II 1 1 
GA 1 3 II ·1 1 
HA 1 4 II 1 1 
AB · 1 1 II 2 1 
AC 1 1 II 3 1 
AD 1 1 II 4 1 
AE 1 1 II 1 2 
AF 1 1 II 1 3 
AG 1 1 II 1 4 ---1 

N 
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-------

31AG 21AG 11AG 
31BA 21BA 11 BA 
31AE 21AE 11 AE 
31EA 21EA 11 EA 
31AD 21AO 11 AD 
31AB 21AB 11 AB 
31.1\A 21AA 11 AA 
31GA 21GA 11GA 
31AF 21AF 11 AF 
31FA 21FA 11 FA 
31AC 21AC 11 AC 
310A 210A 11 OA 
31CA 21CA 11CA 
31HA 21HA 11 HA 
32DA 220A 120A 
32EA 22EA 12EA 
32CA 22CA 12CA 
32BA 22BA 12BA 
32AG 22AG 12AG 
32HA 2211A 12HA 
32GA 22GA 12GA 
32AA 22AA 12AA 
32AB 22AB 12AB 
32AC 22AC 12AC 
32AF 22AF 12AF 
32AE 22AE 12AE 
32FA 22FA 12FA 
32AO 22AO 12AO 
33AA 23AA 13AA 
33GA 23GA 13GA 
33EA 23EA 13EA 
33FA 23FA 13FA 
33AB 23AB 13AB 
33AG 23AG 13AG 
330A 230A 130A Direc 33AF 23AF 13AF 

tion 
33CA 23CA 13CA of 
33AC 23AC 13AC Tes 33AO 23AO 13AD t 
33BA 23BA 13BA 
33AE 23AE 13AE .. ... 
33HA 23HA 13HA 
34EA 24EA 14EA 
34AE 24AE 14AE 
34AG 24AG 14AG 
34DA 240A 140A 
34AB 24AB 14AB 
34FA 24FA 14FA 
34CA 24CA 14CA 
34HA 24HA 14HA 
34AF 24AF 14AF 
34AO 24AO 14AO 
34AC 24AC 14AC 
34GA 24GA 14GA 
34BA 24BA 14BA 
34AA 24AA 14AA 
350A 250A 15DA 
35AG 25AG 15AG 3 m 
35AO 25AO 15AD 

__t 35AA 25AA 15AA 
35BA 25BA 15BA ,. 35GA 25GA 15GA 
35AF 25AF 15AF 
35AE 25AE 15AE 
35FA 25FA 15FA 
35AB 25AB 15AB 
35AE 25AE 15AE 
35AC 25AC 16AC 
36HA 26HA 16HA 
36CA 26CA 16CA 

L 24 m ---.JH~-- 24 m ---illl'lll'tl..__ 24 

Fil:!:ure 1. Field Lavout 
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foot roller and a 97.9 kN Gallion pneumatic tire roller 

were used. The first cone index level was left in the 

tilled condition to give an average cone index level of 370 

kPa. The second cone index strip was rolled 3 times with 

both rollers, giving an average cone index value of 508 

kPa. The third strip was rolled until cone penetrometer 

readings reached a maximum indicating the soil stopped 

compacting. This level had an average cone index level of 

about 607 kPa. 

Cone Penetrometer. Before each tire test was 

performed, cone penetrometer readings were taken. The cone 

index value was obtained from an average of six probings 

taken through the length of the plot. The value obtained 

from each individual probing was an average of the top 15 

em of soil. The penetrometer used was developed by 

Riethmuller, et al. (1982> shown in Figure 2 and equiped 

with an upgraded AIM 65 microcomputer based data logger 

(Summers et al., 1'-186) shown in Figure 3. The data logger 

measured the output voltage of the force transducer, which 

sensed the force on the probe. The output data was an 

average cone index value for the top 15 em of soil. 

Tire Testing Apparatus. A single-tire test apparatus 

was designed and built using a R6510 Ditch Witch machine as 

the power source. The digger bar was replaced by a frame 

to hold the test tire as shown in Figure 4. Three load 

cells were placed between the frame and digger drive <shown 

in Figure 5). These load cells measured pull and change in 



Figure 2. Cone Penetrometer 

Figure .3 . Microcomputer used As Data 
Logger 

15 



Figure 4. Tire Test Machine 

Figure 5. Load Cells <top view > Used to 
Indicate Pull and Change in 
Vertical Load on Test Tire 

1 6 



vertical load that the test frame exerted on the R6510 

during testing. Dynamic load was then calculated from 

static load and change in vertical load measured by the 

load cells. 

Power to the test tire was provided by a hydrostatic 

transmission driven by the digger drive <Fig. 6>. Power 

was then conveyed through a series of chain drives 

17 

<Fig. 7>. The chain drives were used for a positive speed 

reduction of 28.125. A hall effect switch <Fig. 8) was 

used to determine the axle speed. A fifth wheel mounted on 

the R6510 was used to measure the actual velocity <Fig. 

9). Wheel slip was calculated from these two variables. 

Static load was added to the test tire by adding lead 

bars to both sides of the rack suspended by bearings from 

the test tire axle <Fig. 10). This ensured all of the load 

added was carried by the test tire. Transducers were 

monitored with the data logger. Data was collected using 

the programs listed in Appendices A and B and stored in 

memory locations listed in Appendix C. Three sets of data 

were collected on command from the operator, then 

displayed, printed to paper and stored on cassette tape. 

All reduction of raw data was done on-board and only data 

in engineering units were stored. 

Restraining load for the test tire to develop various 

levels of pull was provided by the R6510 drive train. A 

hydraulic motor <Fig. 11) was connected to the drive shaft 

between the two differentials. As more restraining load 



Figure 6. Hydrostatic Transmision Used to 
Power Test Tire 

Figure 7 . Side View of Chain Drive 

'18 
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Figure 8 . Axle Speed Hall Effect Switch 

Figure 9. Fifth Wheel 



Figure 10. Ballast Rack with Lead Bars 

Figure 1 1 . Hydraulic Motor to Develop Re­
straining Force Against Test 
Tire 

2 0 
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was desired, the hydraulic motor was slowed causing the 

test tire to pull against the R6510. 

Test Tires. Five R-1 traction tires were chosen to be 

used in this test. These tires, shown in Figure 12, are 

from left to right, 8.3-24, 11.2-38, 15.5-38, 16.9- 30 and 

18 .4R38. The second and third tires were chosen to get a 

comparison of section width. The other tires were chosen to 

vary the diameter. 

Rolling Radius. The rolling radius for each of the 

five tires with the four specified loads was needed for 

computations during data acquisition. This was measered by 

mounting each of the tires in the tire test machine and 

Figure 12. Selection of Tires Used 
in Test 
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measuring the distance required to roll the tire either 15 

or 20 revolutions <depending on the tire diameter) on a 

firm, flat surface. This data is listed in Appendix D and a 

graph of rolling radius versus wheel load is given in 

Figure 13. 

Tire Testing Procedure. After determining the cone 

index for a plot, the tire test machine was oriented in 

such a way that the test tire would pull the machine in a 

reverse direction (from right to left in Fig. 14). The 

machine required two operators. The first operator 

controlled the speed and slip of the test tire while the 

other operator steered the machine and operated the 

computer. Since the strip plot design was used, the 

machine was not stopped until all three cone index levels 

were tested. This made it faster and easier to replicate 

the velocity and slip level used on that particular test. 

The rolling resistance test was performed in the same 

manner except the drive chains to the axle was removed to 

allow the test tire to roll freely. 
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Figure 14. Tire Test Machine in Operation 



CHAPTER IV 

RESULTS AND DISCUSSION 

Tire test data collected during field tests were input 

into the IBM-PC with programs listed in Appendices E and F 

and is listed in Appendix G~ The program listed in 

Appendix H was then implemented to transform the data into 

the terms shown in Appendix I. The soil was a McClain 

silt loam with the taxonomic description of Fine, Mixed, 

Thermic Pachic Argiustoll. moisture content of 15.6 % 

<d.b.) was measured from thirteen randomly selected soil 

samples taken in the test f.ield. Moisture content, 

however. was not treated as a pertihant quantity. 

Rolling Resistance 

The rolling resistance data <fifth replication) was 

separated from the data to be analyzed first. For this 

replication, ~ represents the towed force-to-dynamic load 

ratio. Since wheel slip is not a factor and velocity has 

little affect on rolling resistance (Steiner and Sohne, 

1979), the only 7T terms that affect rolling resistance are 

1T2 and 7Ts given in Equations ( 3) and < 7) respect! vely. 

The expression for rolling resistance was obtained by 

first plotting 1T1, <TF/W>, against 1T2 with 7Ts held at a 

25 



26 

constant value to find an expression for ~2. The form of 

the expression was: 

(10) 

This form is the same form used by Wismer and Luth <1974>. 

Then ~1 was plotted against~~ with ~2 held constant. The 

best fit of these points was a simple linear regression 

having the form: 

1T 1 =a +a1T 2 3 5 
(11) 

A similitude approach was used to combine the two 

expressions. Since the two expressions plot linearly on 

arithmetic paper, they can be combined by addition 

resulting in: 

TF = a w 0 

a 
+ _l.+a 1T 

1T2 2 5 
(12) 

A,multiple regression software package was then used 

to determine the equation that best fit the rolling· 

resistance data. The constants found were: 

ao=0.229 
a1=0.234 
a2=-0.704 

with a coefficient of determination (R2) of 0.719. 

A plot of the predicted rolling resistance against the 

measured rolling resistance is shown in Figure 15. 
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Gross Pull 

Since the coefficient of determination is not valid for 

nonlinear regression analysis (Draper and Smith, 1966), 

another means of comparing the quality of fit is needed. 

One method is to plot predicted data against measured data. 

Linear regression can be used to determine the best fit 

line through the data. An ideal fit would be: 

1 • R2 = 1 • 

2. The slope of the regressed line be one. 

3. The intercept of regressed line be zero. 

An analysis of variance was performed on the pull data 

using TI4b and TI4d to determine the interaction of 

variables. Tables VI and VII show the analysis of variance 

tables using TI4b and TI ... d respectively. From Table 

V, the significant variables are TI2, TI3, TI 4b and Ties. 

The interaction of TI2, TI3 and TI4b is marginally 

significant. This means that the TI terms are not 

independent of one another and a similitude approach would 

be impossible. From Table VI, it can be seen that none of 

the TI terms have any interaction. This means the product 

or quotient of any two TI terms w i 11 have a negligible 

effect on the model. During testing, the operators could 

not operate at particular variable values such as the 

prescribed velocity and wheel slip. Due to this, the 

similitude approach used in the rolling resistance analysis 

was not as effective. For this reason, the nonlinear 
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TABLE VI 

ANALYSIS OF VARIANCE WITH n4b 

Source df Sum of Squares F Value PR > F 

'IT2 5 0.07688928 8.00 0.0001 
'IT.3 16 0.09980424 3.24 0.0024 
'IT2X n3 4 0.00640443 0.83 0.5147 
n .. b 8 0.06903995 4.49 0. 0011 
n2X n .. b 3 0.00127436 0.22 0.8811 
n.3X n .. b 6 0.00703282 0.61 0.7207 
n2X 'IT3Xn .. b 'I 0.00419991 2.18 0.1495 
n5 'I 0.00650142 3.38 0.0755 
n2X ns 0 o.o 
n3X 'lf:s 0 o.o 
'IT4bX 'If'S' 0 0.0 

TABLE VII 

ANALYSIS OF VARIANCE WITH 'IT4d 

Source df Sum of Squares F Value PR > F 

n2 5 0.05534596 5.92 0.0006 
n3 16 0.10115447 3.38 0.0016 
n2x 'ITa 9 0.01075874 0.64 0.7554 
'IT4d 8 0.07002641 4.68 0.0007 
n 2X 'IT .. d 4 0.00253660 0.34 0.8496 
n .3X 'IT4d 7 0.01312686 1 • 00 0.4478 
n 2X 'IT.3X'IT 4d 0 0.00000000 
'IT5 3 0.02103724 3.75 0.0205 
n 2X 716 0 0.0 
'IT .3X 715 0 0.0 
'IT4dXn5 0 0.0 
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regression <NLIN) in the Statistical Analysis System <SAS, 

1982> was used. 

A ser~es of models were developed and tested with NLIN. 

The models were based on the assumptions that slip ('IT 2 > 

and wheel numeric < 'IT3) affect 'IT1 asymptotically. Zero 

wheel slip is referenced to the towed tire. 'IT4b or 'IT4d 

and 'IT5 were included in these models additively or multi-

plicatively in several mathematical forms. Equations (13) 

through ( 17) list the different forms used. 

Linear 'IT = a + a1 'IT (13) 
1 0 X 

X&Y + 
a1 

(14) Inverse Tfl= a 
0 a2 +rr 

X 

Tfl= 
a1 

(15) Inverse X a +-
0 'IT X 

Inverse Y Tfl= + 1 (16) a 
+ a2 rrx 0 a1 

a rr 
Exponential rr = a + a e 2 x (17) 

1 0 1 

where X indicates any 'IT term or combination of 'IT terms. 

Thirty five different models were tried using combinations 

of the five forms given in Equations <13) through <17>. 

This was performed by starting with a base model believed 

to be close to the prediction equation according to the 

results of the analysis of variance. The best model was 

found by trying the Tf terms in the different forms and 

noting the change in the R2 of the predicted data regressed 

to the measured data. When the effect of one 'IT term on the 

model was defined, another 'IT term was altered. This 

· process was repeated until no more improvement was obtained 
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by altering the form of the ~terms. This technique was 

used on several base models. 

The best model found was: 

C -FW -HW 
w 1 (gross) = A + B 5 + D + w4 - Ee 2 - Ge 3 (18) 

where 

with a R2 of 0.505. 

A=1.11 
B=-2.'24 
C=0.00798 
0=0.0124 
E=0.328 
F=0.220 
G=0.338 
H=6.20 

Even though the above model has the highest R2 of those 

used, this does not fit the boundary conditions required 

by a tractive effort model. One of the boundary conditions 

is that the gross pull should approach zero when the slip 

approaches zero. This fact alone indicates that this model 

fails to meet boundary conditions. The next best model had 

an R2 of 0.260, which was too low for a complete model. 

Another approach was then used to analyze the data. 

Data for only the 16.9-30 tire was regressed with NLIN to 

tit a form: 

w1 (gross) 
-KW W 

A(l-e 2 3) (19) 

with a R2 of 0.471. This low R2 was due to not taking into 

account all defined pertinent quantities of the system. 

The coefficients obtained are: 

A=0.481 
K=1. 35 
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The next variable to be incorporated in the equation 

was the velocity~ term <~4d). To achieve this, four 

plots were made to compare the coefficient K shown above to 

velocity where: 

K = (20) 

·and A was assumed to be 0.6 since the maximum gross 

pull-to-dynamic load ratio was slightly less than 0.6. 

This was assumed to prevent the argument of the natural log 

term from becoming undefined. Since only the 16.9-30 tire 

was used at this point, K was plotted against velocity and 

not ~4d· These plots are shown with their best fit 

regressions in Figures 16 through 19. The best velocity 
, I 

term was then found to be theoretical velocity squared. 

This allowed a new K value to be predicted for any square 

of theoretical velocity. After adjusting· the constants so 

~4 could be used instead of theoretical velocity squared,. 

a prediction equation for predicting gross tractive effort 

for the 16.9-30 tire was: 

-0. 00236 7T2 7T3) 

- e 7T 4 
(21) 

When predicted TI1 was regressed on measured gross TI1 

the result is: 

7T 1 (pred) = • 0300 + . 886 rr1 (meas) (22) 

with an R2 of 0.402. 
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Since the intercept of the regressed equation is nearly 

zero, and the slope of the line is not quite one, this 

indicates that 0.6 was not the best estimate for A in 

Equation ( 20). Slight adjustment-s can be made to the 

asympotic value A to make the slope of Equation < 22) almost. 

unity. This is done by dividing the prediction equation by 

the slope of the regressed line, giving a new prediction 

equat.iun of: 

7T (gross) 
1 

where: A=0.677 
K=0.00236 

with the same R2 as obtained in Equation C22). This 

equatjon is plotted with the data in Figure 20. 

The next step was to determine if the prediction 

(23) 

equation was adequate to predict traction on all the tires 

tested. This was done by plotting predicted gross TI1, 

Equation < 23), against measured gross TI1 • This plot is 

shown in Figure 21 . It can be seen from this graph that 

the tire parameters in 7T 2, 7T .3 and w ... are not enough to 

describe the performance of the tires. Another 7T term that 

describes the tire must be added to the gross pull 

prediction equation. The 7T term that best describes the 

tire is 7T !5, the aspect. ratio. To determine how m5 

interacts with the prediction equation, K was plotted 

against 7T 6 (Fig. 22) where: 
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(24) 

and A=0.677. No distinct trends are shown in Figure 22 

thus illustrating that K is independent of ~e. 

The term A was then plotted against ~e where: 

A= (25) 

and K=0.00236. This plot <Fig. 23) has a good inverse 

shape except for some strayed points that correspond to the 

15.5-38 tire. Gee-Clough, et al. <1976> states that lug 

height has little affect on tractive performance unless the 

tire is almost smooth. Since lugs on this tire were worn 

down to 10 mm in the middle of the tread, it was presumed 

that this was the contributing factor as to why the data 

was underpredicted. Linear regression was then performed on 

A against the inverse of ~e with the 15.5-38 tire removed 

from the data set. The resulting equation was: 

A= -.710 + 0.409 
~5 

(26) 

with an R2 of 0.210. This equation was then substituted 

for A in Equation <23>. Again predicted data were plotted 

against measured data to check the quality of fit <Fig. 

24>. Linear regression yielded the equation: 
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'TTl (pred) = .0504 + .882TI1 (meas) (27) 

with an R2 of 0.4398. Since the slope of the line is not 

unity but the intercept approaches zero, this indicates 

that A is not correct. This can be corrected by dividing 

Equation <26) by the slope in Equation <27> and 

substituting this new form of A into Equation <23>. The 

prediction equation then becomes: 

where A1=-0.805 
A2=0.464 
k =0.00236 

The final equation has a slope of 1.00 with a zero 

(28) 

intercept and an R2 of 0.450. This plot is shown in Figure 

25. 

An attempt was made to improve this R2 by use of NLIN. 

This was done by solving for the constants in the 

prediction equation listed above by use of the NLIN 

procedure. When this was done, the R2 was 

increased to 0.456 but the slope of the actual versus. 

predicted gross pull linear regression decreased to 0.43 

and the intercept is 0.266. Since the intercept is not 

equal to zero, the slope cannot be adjusted to one. 

When this model was evaluated to see how well it met 

the boundary conditions, it was found that the velocity 

term was not behaving as it should at low theoretical 



LOr---.-----.----.-~-.----.----.----.---~--~~---

0.8 

..... 
';:: 

V\ 

~ 0.6 
0::: 
L!} 

Cl w 
1-
u -Cl . 
w 0.4 
0::: 
n... 

0.2 

0.0 
0.0 

[] [] 

[] '0 
0+ 

D 

D 

+ t + 
+ + + 

)( + 
+ + 

+ + 
D ++ .. :4x.. 

A 
A 

++ .....,._,+ + 0 0 
+ .pt-"\ A 

-lt +fl' A 
+ .. X+D CT 

+ +1/ :t .. 0 0 

+ + t+ 0 
+ ++++ 

+ ++++ + 
+ ++"fJO 0 

~+ 
+ + 

+ + 
)( 0 0 

+ 

0 

/ J 

A 

~--~----~----~--~-----L·----~----~--~-----~ 
0.2 0.4 0.6 0.8 1.0 

MEASURED GROSS~1 
Figure 24. Predicted Gross TI1 versus Measured Gross TI1 

LEGEND 
+ 16.9-30 
)( 18.4R38 
D 8.3-24 
0 15.5-38 
A 11.2-38 

-+=-
-+=-



-
~ 

U"\ 
U"\ 
0 
0:: 
l!J 

Cl w 
1-
u -Cl w 
0:: 
0... 

l.O 
A 

A 

0.8 ~ + /- l + ... + 
+ + + 

+ + + )( 

++ + 
D ++ ... ;')+ D 

0.6 + +t.,; 
+ ~ + A 

IJ +ott of* ++P J 
D + + X + D 

'D + +!t ... 0 0 IJ + + + + 
IJ+ + ~ 0 

... ++++ 
0.4 ++++ + + 

++ 0 0 + -t> 

+ / 
... + 

IJ + + 
+ + + 

o.2 r- / )( 0 0 

+ 

0.0 ~--~----~----~--~----~----~--~----~----J---~ 
0.0 0.2 0.4 0.6 0.8 1.0 

MEASURED GROSSffl 

Figure 25. Predicted Gross ~1 versus Measured Gross ~1 
with Slope Corrected 

+ 
)( 

D 

0 

6 

LEGEND 

16.9-30 
18.4R38 
8. 3-24 
15.5-38 
11.2-38 

+:=> 
U1 



46 

velocities. The inverse term used to describe velocity 

effect was causing the exponential term to approach zero 

resulting in the net pull to be the asymptotic value times 

the dynamic load minus the rolling resistance. This would 

mean that soil strength and wheel slip would have no effect 

on tractive effort at low velocities. For this reason, 

this model fails to satisfy the boundary conditions. 

Another way to describe tractive effort is to include 

the rolling resistance into the model by subtracting a zero 

pull slip value from the actual wheel slip and using the 

conventional equation form. This is shown in the following 

form: 

When this form is set equal to the form; 

-K'TT 'TT 
'TT = A (1 - e 2 3) 

1 1 
TF 
w 

and solved for So with the assumptions: 

1. A A _ TF 
1 w 

2. K is approximately equal to K1 . 

3. TF = .2292 + .2;_37- .7038'TT5. 
w 2 

then the solution for So is: 

s 

-Ln ( A 1'£). 
A+ W 

0 

(29) 

(30) 

(12) 

( 31) 

This can then be substituted into Equation <29) and used to 

solve for tractive effort. When this form was entered into 
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the NLIN procedure, using the data sets with a theoretical 

velocity of 5.6 to 6.4 km/h on the 16.9-30 tire only, a fit 

was obtained with: 

A=.467 
K=.305 

and an R2 of 0.382. The model developed by NLIN was then 

used to produce a new K value for each theoretical velocity 

by the equation: 

-Ln( 1-~) 
TI2 ( TI3 - So) 

(32) K 

and was plotted against ~4 to see if and how theoretical 

velocity affected the model. This plot is shown in Figure 

28. The data formed a curve that had the same form as the 

curve found in Figure 21. Although an inverse function fit 

the data, due to the fact that low velocities have no 

affect on ~1 <Burt and Lyne, 1983>, the inverse form would 

not work. The type of equation found to fit the data b~st 

is a modified form of the Witch of Agnesi <Beyer, 1978> 

which has the form of: 

B s 
2 

K = B1 + TI 2 + B 2 
4 3 

The constants were determined by picking 3 points in the 

(33) 

data set that the curve would be likely to pass through and 

solving 3 equations simultaneously. These points are given 

in Table VII. For ~4 values between 0 and 0.116, a 

constant K was selected by a~eraging the data points in 
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this range. This agrees with trends indicated by Burt and 

Lyne (1983>. The next point was selected by finding the 

average of the TI4 values and K values that lie within a TI4 

range of 0.9 and 1.1. The last point was selected by 

averaging the high TI4 values shown in Figure 28. The 

constants found were: 

b1=.1069 
b2=.3403 
ba= .1857 

A plot of the line formed by this curve is shown with the 

data in Figure 26. 

TABLE VIII 

Points Used To Fit Modified 
Witch of Agnesi Curve 

TI4b <Theoretical) 

O<TI 4< 0. 1 1 6 
1 . 06 
3.17 

K 

1 .25 
0.142 
0. 112 

The next step was to determine the effect that TI5 has 

on the prediction equation. It was shown in Figure 22 that 

TI5 had no affect on K but seemed to have an affect on A. A 
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was plotted against TI5 where: 

1Tl 
A 

A y r- Lnl -K1T 1T3 + TF : 2 11 - e +-: 
1- Wj 

(34) 

Since A appears in both sides of Equation (34), an 

iterative procedure was used to obtain A. This was done by 

solving for a new A, setting the old A equal to the new A, 

then using this new A to solve for another new A. This 

iterative procedure was repeated until the old A and the 

new A were within 0.0001 of each other. After plotting 

(Fig 27), it was found that an inverse relationship fit 

the data best. Therefore: 

(35) 

where: C1 
C2 
R2 

= 
= 
= 

0.0823 
0. 162 
0. 151 

was substituted into the general prediction Equation <29). 

After substituting in all of the terms into the general 

prediction equation, the model becomes: 

I A )1) 
\A+- j w 

Ln( TF 1. 

(36) 

where A is described by Equation <35), K is described by 

Equation (33) and TF/W is described by Equation (12>. 

This form satisfies all boundary conditions used to develop 

the prediction equation. 

To check the validity of Equation (36), predicted TI1 
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was plotted against measured ~ (Fig. 28>. Three of the 

five tires formed a line with a slope of 0.994 and a 

intercept of -0.04 with a R2 of 0.49. The other two tires 

we~e under predicted believed due to factors not taken into 

account such as the tire lug height and lug angle. 

To check the model for fit of other tires, data for a 

Firestone 16.5L-16.1, I-3 traction implement tire was used 

<Appendix J>. These data were collected under similar 

field conditions. The velocities for this tire were less 

than 1 km/h. A plot was made of predicted 1T1 against 

measured 1T1 for this data. This plot <Fig. 29> shows 

scatter, but the results of the regression are an interc~pt 

of 0.06 and a slope of 0.841 with an R2 of 0.588. This 

indicates that the prediction equation works for other. 

tires at different velocities. 

Figures 30 through 33 shows the effect the four indep­

endent 1T terms have on the dependent 1T term. Figure 30 

shows 1T1 plotted against 1T2 with the ~held at 0.15, 

1T4 held at 0.142 and 1Te held at 0.289. This plot shows 

that 1T1 increases as 1T2 increases to approximately 25, then 

becomes asymptotic as 1T2 continues to increase. 

Figure 31 shows 1T1 plotted against 1Ts with the 1T2 held 

at 25, 1T4 held at 0.142 and 15 held at 0.289. This plot 

shows that 1T1 increases as ~ increases to approximately 

Figure 32 shows 1T1 plotted against theoretical velocity, 

which is the major variable in 1T4, with tire section width 

held at .43 m, 1T2 held at 25, 1Ts held at 0.15 
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0.20, then becomes asymptotic as Tis continues to increase. 

and TI4 held at 0.142. This plot shows that TI1 remains 

constant as theoretical velocity increases to about 2 km/h, 

then decreases as theoretical velocity increases to 

approximately 7 km/h and becomes asymptotic as theoretical 

velocity continues to increase. 

Figure 33 shows TI1 plotted against TI5 with ~ held 

at 25, Tis held at 0.15 and TI-4 held at 0.142. This plot 

shows that TI 1 remains approximately constant as TI5 

increases to approximatly 0.3 then decreases as TI5 

continues to increase. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

An experimental plan was devised to determine if 

velocity had an affect on the tractive effort of lugged, 

agricultural type drive tires. The test was performed at 

the South Central Research Station, in Chickasha, OK. The 

machine used was the mobile off-road single tire test 

apparatus developed at Oklahoma State University. The tire 

test apparatus measured forward velocity, angular velocity 

of tested tire, weight transfer and pull developed by the 

tire. An on-board computer collected the data, stored it 

on a mini-cassette tape and printed it on paper. Five 

different tires were tested. Similitude techniques 

indicated that four TI terms were needed to describe the 

system. When velocity was introduced as a per~ti nent 

variable, one more TI term was added. An equation was 

developed to predict tractive force of the agricultural 

type drive tire. 

Prior to testing a tire, a cone penetrometer was used 

on the test site to get an indication of the soil strength. 

This was done by measuring cone index values at eight 

places throughout the length of the plot using an average 

of the eight measurements over a depth of 15 em. 
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A predictable error was found in the data at 

higher velocities due to a magnetic pickup which measured 

rotational speed. The data were adjusted for this prior to 

the analysis. Other sources of error were: 

1 . Not being able to operate at the prescribed actual 

and theoretical velocities, thus making it hard to test the 

desired wheel slips. 

2. Not having five tires of equal lug design and wear. 

3. Not being able to hold ideal field conditions 

throughout the field. 

The sources of error identified in the data collection 

process appeared to have minimal affect on the overall 

research project. The overall prediction equation 

developed was: 

p 

w 

r -KCn [s + 

AJl-e 
Ln TF 'j' ( A \l~ 

A+-} w 
\... 

Where: 
A= 0.823 + 0.162d 

b 

K 

TF 

~I 

Cn 

0.107 + 0.0394 

[(::r + 0.034~ 
.2292 + .2337 

Cn 

h 
.7038 d 

Clbd 
w 

Conclusipns derived from this research are: 

1. Tractive .force decreased as velocity increased 

in the velocity range of approximately 2 to 7 km/h, but 

became asymptotic for velocities outside this range. 



aspect ratio increased to about 0.3 then decreased as 

aspect ratio continued to rise. 
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3. Tractive force increased with wheel slip to 

approximately 0.20 then became asymptotic as slip continued 

to rise. 

4. Tractive force increased with wheel numeric to 

approximately 25 then became asymptotic as wheel numeric 

continued to rise. 

5. The final prediction equation was determined to be 

valid by predicting the pull-to-dynamic load ratio for a 

tire other than those used in this research. 



CHAPTER VI 

SUGGESTIONS FOR FURTHER RESEARCH 

Further research should be conducted in three areas: 

1. Different field conditions. 

2. Different selection of tires. 

3. Classification of different tires. 

The relationship between tractive forces and ground 

cover," moisture content and soil type should be examined 

more closely. This will allow a better fitting model. It 

will also contribute to helping understand the 

stress-strain behavior of soil. 

A different selection of tires with different aspect 

ratios should also be used at to check the fit of the 

prediction equation. This will also allow a check to see 

if the aspect ratio is properly modeled in the prediction 

equation. 

Studies should be conducted to characterize lugged 

tractor tires. This should involve looking at the lug 

pattern, distance between lugs, lug height, lug angle, tire 

section width and tire diameter. Currently, the only 

factor differentiating lugged tractor tires is the aspect 

ratio. This assumes that all lug patterns and lug heights 

react the same. This will greatly help in tire design and 
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prescribing a design of tire for a specific type of work 

and surface condition. 
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A1$<1)-A6$(6) 
81 - 86 
A1 - A6 
BT & CT 
AA$ 
ZL & XZ 
A$ 
T1$ & TS$ 
I1$ & IP 
S2$ & SL 
R1$ & RR 
RT$ 
CL 
zv 
IR & IL 
R< 1 > - R< 7) 
MT 
P1 - P3 
V1 - V3 
MV 
MR 
MP 
NA 
VA 
ws 
PW 
TE 
AT$ 

•J 0 
20 
30 
40 

POKE 4,176 
POKE 5,222 
A 1 $( 1 )='' 
A1$(2)=" 

APPENDIX A 

BASIC PROGRAM FOR TIRE 

TEST MACHINE 

Variable Description 

= computer display variable names 
= load transducer regression slopes 
= load transducer regression intercepts 
= regression coef. for torque transducer 
= dummy variable name for display 
=display line number <0-3> 
= tape file name 
= tire size 
= tire inflation pressure 
= static load 
= rolling radius 
= rep. and treatment no. 
=cone index level loop no. <1-3) 
= dummy variable 
= memory location indexing variable 
= transducer readings 
= mean torque 
= pull load on transducers 1-3 
= vertical load on transducers 1-3 
= mean vertical load 
= dynamic load 
= mean pull 
= axle speed 
= actual vehicle speed 
= wheel slip 
= pull to weight ratio 
= tractive efficiency 
= repeat or discontinue program variable 

Computer Program 

THIS IS THE TIRE TEST DATA PROGRAM 
START OF DATA ACQUISTION 
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50 
80 
90 
100 
11 0 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
330 
333 
335 
337 
340 
345 
350 
380 
390 
400 
410 
420 
430 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
800 
900 
910 
915 
'-320 
930 
940 
994 
·~95 

A1$<3>=~ ENTER TAPE FILE NAME AS ## " 

A1$<6>=" ENTER TIRE SIZE AS XX.X-XX OR XX.XRXX " 
A1$(7)=" ENTER TIRE INFLATION PREASURE " 
A1$C8>=" ENTER STATIC LOAD IN POUNDS " 
A1$<9>=" ENTER ROLLING RADIUS IN INCHES " 
A2$( 1 >="" " 
A2$C2>=" ENTER REP AND TRT AS XXXX " 
A2$<3>=" PRESS 'S' TO START DATA COLLECTION " 
A2$C4>=" DO YOU WANT TO MAKE ANOTHER TEST? CY/N)" 
A3$C1 >="SPEED " 
A3$(2)="PULL " 
A3$(3>="ROTATION " 
A3$C4>="TE " 
A4$(1 >="MPH SLIP " 
A4$<2>=" LBS TORQUE " 
A4$C3>=" RPM P/W " 
A4$C4>=" % PLOT " 
A5$C1 >=" % " 
A5$<2>=" L8-IN" 
A5$<3>="" " 
A5$<4>=" 
CT=65535 

" 

81=-4.141149 :A1=16515 
8T=2.340883772 
82=-4.076057 :A2=14434.93 
83=-5.88198 :A3=17788.24 
84=-.6734546 :A4=2140.45 
85=-.7332961 :A5=2697.42 
86=1.693858 :A6=-1998.408 
AA$=A1$(1 > 
ZL=3 
GOSUB 2410 
AA$=A2$(1) 
ZL=1 
GOSU8 2410 
AA$=A1$(3) 
ZL=1 
GOSU8 2410 
INPUT A$ 
POKE 42030,ASC<LEFT$CA$,1 )) 
POKE 42031,ASC<LEFT$CA$,2,1 >> 
POKE 4201 0, 0 . 
POKE 42011,64 
POKE 42012,120 
POKE 42013,64 
SN=l 
AA$=A1$(6) 
ZL=1 
GOSUB 24'1 0 
INPUT T1$ 
IF T1S=" " THEN 994 
TS$=T1$ 
AA$=A1$(7) 
ZL=·l 
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996 
997 
998 
·r ooo 
1 01 0 
1020 
1030 
1040 

GOSUB 2410 
INPUT I1$ 
IF I 1 $='' " THEN 
IP=VAL<I1$) 
AA$=A1$(8) 
ZL=1 
GOSUB 2410 
INPUT S2$ 

1010 

1050 IF S2$=" " THEN 1070 
·t 060 SL=VAL< S2$) 
1070 AA$=A1$(9) 
1080 ZL=1 
1090 GOSUB 2410 
1100 INPUT R1$ 
1110 IF R1$=" " THEN 1130 
1120 RR=VAL< R1 $) 
1130 AA$=A2$( 2) 
1140 ZL=1 
1150 GOSUB 241 0 
1160 INPUT RT$ 
1250 ZL=1 
1251 AA$=A2$<2> 
1252 GOSUB 2410 
1255 FOR CL=<VAL01ID$<RT$,1 ,1 ))) TO 3 
1260 AA$=A2$(3) 
1261 ZL=O 
1262 GOSUB 2410 
1263 GET A$: IF A$=<>"S" THEN 1263 
·1 264 AA$=A 1 $( 2) 
1265 ZL=O 
1266 GOSUB 2410 
1267 ZL=1 
1 268 AA$=A2$< 1 > 
1269 GOSUB 2410 
1270 ZL=2 
1271 GOSUB 2410 
1275 POKE 4,0 
1280 POKE 5,124 
·t290 ZV=USR< WD > 
1300 POKE 4,0 
1310 POKE 5,222 
1311 AA$=A2$( 1 ) 
·1312 ZL=O 
1313 GOSUB 2410 
1314 PRINT "DONE" 
1320 POKE 4,0 
1330 POKE 5,127 
1335 ZV=USR<WD> 
1350 POKE 4,176 
1351 POKE 5,222 
·1352 I=O 
1353 FOR X=29844 TO 29870 
1 354 POKE 28416 + I + < CL-1 >*31 , PEEK< X) 
1355 I=I+1 
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1356 NEXT X 
1357 FOR X=27392 TO 27395 
1358 POKE 28416 + I + <CL-1 >*31 ,PEEK<X> 
1359 1=1+1 
1350 NEXT X 
1351 NEXT CL 
1370 FOR CL=<VAL<MID$<RT$,1,1 >>>TO 3 
1374 CL$=STR$<CL> 
1375 RT$=MID$<CL$,2,1 >+MID$<RT$,2,3> 
1380 IR=<CL-1 >*31 
1385 FOR X = 1 TO 7 
1387 R<X> = PEEK<28416+IR>*65536+PEEK<28423+IR>*256 

+PEEK<28430+IR> 
1390 IR=IR+2 
1392 NEXT X 
1395 MT=<-2039+BT*R<1 )/768>/SR<SN> 
1397 P1=R<2>*B1/768+A1 
1400 P2=R<3>*B2/768+A2 
1402 P3=R<4>*B3/768+A3 
1405 V1=R<5>*B4/768+A4 
1407 V2=R<6>*B5/768+A5 
1410 V3=R<7>*B6/768+A6 
1415 MV=<V1+V2>/2 
1416 MR=SL-MV 
1417 MP=P1+P2-P3 
1 41 8 I R= < C L- 1 > * 31 
1420 NA=<CT-PEEK<28445+IR>*256-PEEK<28446+IR>>*SR<SN> 

*.434520242 
1425 IF NA<.001 THEN NA=1 
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1430 VA=<CT-PEEK<28443+IR>*256-PEEK<28444+IR>>*0.034842575 
1435 IF VA<.01 THEN VA=1 
1440 WS=<1-VA*168.06776/CNA*RR>>*100 
1450 PW=MP/MR 
1460 TE=MP*VA*168.06776/<MT*NA> 
1470 NA$=STR$<INT<NA*100+.5)/100> 
1480 FOR X=LEN<NA$> TO 5 
I 490 NA$='" ''+NA$ 
1500 NEXT X 
1520 VA$=STR$<INT<VA*1000+.5)/1000> 
1530 FOR X=LEN<VA$> TO 5 
1540 VA$='" ''+VA$ 
1550 NEXT X 
1560 WS$=STR$<INT<WS/1000+.5)*1000> 
1570 FOR X=LEN<WS$) TO 5 
1580 WS$='" '"+WS$ 
1590 NEXT X 
1600 PW$=STR$(INT<PW*10000+.5)/10000> 
1610 FOR X=LEN<PW$) TO 5 
1610 PW$='" '"+PW$ 
1620 NEXT 
1630 TE$=STR$<INT<TE*10000+.05)/10000) 
1640 FOR X=LEN<TE$) TO 5 
1650 TE$='" '"+TE$ 
1660 MT$=STR$<INT<MT+.5>> 



1670 FOR LEN<MT$) TO 5 
1680 MT$=" "+MT$ 
1690 NEXT 
1730 MP$=STR$<INT<MP+.5)) 
1740 FOR LEN<MP$> TO 5 
1750 MP$=•• "+MP$ 
'1760 NEXT 
1810 IP$=RIGHT$CSTR$CIP>,2> 
1820 SL$=STR$CINT<SL+.5)) 
1830 FOR X=LEN<SL$) TO 5 
1840 SL$= .. ••+SL$ 
'1885 GOSUB 2500 
1890 RR$=STR$CINT<RR*1000+.5)/1000> 
1900 FOR X=LEN<RR$) TO 5 
1910 RR$=" "+RR$ 
1920 NEXT 
1921 MV$=STR$<INT<MV+.5>> 
1922 FOR X=LEN<MV$) TO 5 
1923 MV$=" ••+MV$ 
1925 NEXT X 
1927 MR$=STR$CINT<MR+.5)) 
1928 FOR X=LEN<MR$) TO 5 
1929 MR$= .... +MR$ 
1930 NEXT 
1933 MM$=STR$CINT<MM+.5)) 
1934 FOR X=LEN<MM$) TO 5 
1935 MM$= .... +MM$ 
1936 NEXT 
1939 FOR IL=1 TO 4 
1940 POKE 16383+IL,ASC<MID$CRT$,IL,1 )) 
1950 NEXT 
1960 FOR IL= I TO 7 
1970 POKE 16387+IL,ASC<MID$CTS$,IL,1 >> 
1980 NEXT 
1990 FOR IL=1 TO 2 
2000 POKE 16394 +IL,ASC<MID$CTS$,IL,1 )) 
2010 NEXT 
2020 FOR IL=1 TO 6 
2030 POKE 16396+IL,ASC<MID$CSL$,IL,1 >> 
2040 POKE 16402+IL,ASC<MID$CRR$,IL,1 )) 
2050 POKE 16408+IL,ASC<MID$CNA$, IL,1)) 
2060 POKE 16414+IL,ASC<MID$<VA$,IL,1 >> 
2070 POKE 16420+IL,ASC<MID$CMP$,IL,1 )) 
2080 POKE 16426+IL,ASC<MID$<MT$,IL,1 >> 
2090 POKE 16432+IL,ASC<MID$CWS$,IL,1 )) 
2100 POKE ~6438+IL,ASCCMID$CPW$,IL,1 >> 
21 1 0 POKE 1 6444+ I L, ASC < MID$< TE$ , I L, 1 ) ) 
2111 POKE 16450+IL,ASC<MID$CMV$,IL,1 )) 
2112 POKE 16456+IL,ASCCMID$CMR$,IL,1 >> 
21 1 3 POKE 1 6462+ I L, ASC <MID$< MM$, I L, 1 > > 
2114 POKE 16468+IL,ASC<MID$CP1$,IL,1 )} 
2115 POKE 16474+IL,ASC<MID$CP2$,IL,1)) 
2116 POKE 16480+IL,ASCCMID$CP3$,IL,1)) 
2117 POKE 16486+IL,ASC<MID$CV1$,IL,1 )) 
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2118 
2119 
2120 
2130 
2140 
2150 
2160 
2161 
2162 
2163 
2165 
2167 
2170 
2180 
2190 
2200 
2210 
2220 
2230 
2240 
2250 
2260 
2270 
2280 
2290 
2300 
2310 
2320 
2324 
2325 
2330 
2340 
2350 
2360 
2370 
2380 
2390 
2391 
2392 
2393 
2394 
2395 
2396 
2397 
2398 
2399 
2400 
2410 
2420 
2430 
2440 
2450 
2455 
2500 

POKE 16492+IL,ASC<MID$<V2$,IL,1 >> 
POKE 16498+IL,ASC<MID$<V3$,IL,1)) 
NEXT 
A6$( 0 >=A3$( 1 }+VA$+A4$( 1 }+WS$+A5$( 1 > 
A6$( 1 >=A3$( 2 )+MP$+A4$( 2 )+MT$+A5$( 2 > 
A6$<2>=A3$<3>+NA$+A4$(3)+PW$+A5$(3) 
A6$<3>=A3$<4>+TE$+A4$(4)+RT$+A5$(4) 
A6$<4>="MOMENT "+MM$+" INLB DLOAD 
A6$(5)="SLOAD "+SL$+" LBS VLOAD 
A6$(6)="INFPRESS "+IP$+" PSI 
IF NA<>1 THEN 2170 
PRINT"' DRIVE CHAINS OFF" 
FOR ZL=O TO 3 
AA$=A6$<ZL> 
GOSUB 2410 
NEXT 
POKE 4,0 
POKE 5,221 
XZ=USR<YZ> 
FOR ZL=O TO 7 
PRINT A6$(2L> 
NEXT 
POKE 4,176 
POKE 5,222 
AA$=A2$( 1 ) 
FOR ZL=O TO 3 
GOSUB 2410 
NEXT 
PRINT"-------------------" 
NEXT CL 
AA$=A2$(4) 
ZL=1 
GOSUB 2410 
INPUT AT$ 
IF AT$="Y" THEN 2391 
IF AT$="N" THEN 2400 
GOTO 2330 
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"'+MR$+" LBS " 
"+MV$+" LBS "' 
TIRE ••+TS$+.. •• 

AA$="FOR UNCHANGED INPUTS HIT SPACE-RETURN " 
ZL=1 
GOSUB 2410 
AA$=A2$( 1 > 
ZL=O 
GOSUB 2410 
FOR I = 1 TO 100 
NEXT 
GOTO 620 
END 
FOR ZR=O TO 39 
ZZ$=MID$<AA$,ZR+1 ,1 > 
ZX=USR<<128+ASC<ZZ$))*256+ZL*64+ZR> 
NEXT 
RETURN 
END 
P1$=STR$<INT<P1+.5>> 
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2505 P2$=STR$<INT<P2+.5>> 
'2510 P3$=STR$<INT<P3+.5>> 
2515 V1$=STR$<INT<V1+.5>> 
2520 V2$=STR$<INT<V2+.5>> 
2525 V3$=STR$(1NT<V3+.5>> 
2530 FOR X=LEN<P1$) TO 5 
2535 P1 $='" '"+P1 $ 
2540 NEXT X 
2545 FOR X=LEN<P2$) TO 5 
2550 P2$="' ""+P2$ 
2555 NEXT X 
2560 FOR X=LEN<P3$) TO 5 
2565 ?3$="" ""+?3$ 
2570 NEXT X 
2575 FOR X=LEN<V1$> TO 5 
2580 V1 $="" "'+V1 $ 

2585 NEXT X 
2590 FOR X=LEN<V2$> TO 5 
2595 V2$="" ""+V2$ 
2600 NEXT X 
2605 FOR X=LEN<V3$) TO 5 
2610 V3$="' ""+V3$ 
2620 NEXT X 
2630 RETURN 



APPENDIX B 

MACHINE LANGUAGE SUBROUTINE 

FOR DATA COLLECTION 

Data Storage Locations 

Force Data Starts at 
Ends at 

4100 <Hex) 
6AFF <Hex) 

16640 (Decimal) 
27391 <Decimal) 

ie. 
$4100 Transducer #1 ' Pull <Low Byte) 
$4101 Tr•ansducer #1 ' Pull <High Byte) 
$4102 Transducer #2, Pull <Low Byte) 
$4103 Transducer #2, Pull <High Byte) 
$4104 Transducer #3, Pull (Low Byte> 
$4105 Transducer #3, Pull <High Byte> 
$4106 Transducer #1 ' Vertical <Low Byte> 
$4107 Transducer #1 ' Vertical <High Byte> 
$4108 Transducer #2, Vertical <Low Byte> 
$4109 Transducer #2, Vertical (High Byte) 
$410A Transducer #3, Vertical <Low Byte) 
$410B Transducer #3, Vertical <High Byte> 
Etc., Repeating this block 767 

High actual speed count at 
Low actual speed count at 
High axle speed count at 
Low axle speed count at 
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6BOO (Hex) 
6B01 <Hex) 
6B02 (Hex) 
6B03 <Hex> 

times 

27392 <Decimal) 
27393 <Decimal) 
27394 <Decimal) 
27395 <Decimal> 
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Force Reading Subroutine 

(J 
!ll Ql 1:1 •r-1 1:1 !ll 
0'.1 1:1 c c c .!:11: 
Ql 0 ~ ..... 0 Ql "' s.. u s.. Ql m "' IU 

1:1 Ql .Q Ql m 1:1 ~ 0. ~ c ~ 
< 0 0 ,.J J: 0 " 

?COO A9 7F LDA #$7F 
7C02 8D 3E90 STA $903E DISABLE VIA TIMER 

INTERUPTS 
7C05 A9 00 LDA #$00 INPUT CONFIGURATION 
7C07 8D 3290 STA $9032 PORT B 
7COA A9 20 LDA #$20 SET BIT 5 FOR PULSE 

COUNTING 
7COC 8D 3B90 STA $903B ACR FOR VIA TIMER 2 
7COF A9 FF LDA #$FF LOW BYTE FOR VIA 

COUNTER 2 
7C11 8D 3890 STA #$9038 ADDRESS FOR LOW BYTE 
7C14 A9 FF LDA #$FF HIGH BYTE FOR VIA 

COUNTER 2 
7C16 8D 3990 STA $9039 HIGH BYTE ADDRESS, STARTS 

DEC. 
7C19 A9 7F LDA #$7F DISABLE VIA TIMER 

INTERRUPTS 
7C1B 8D 2E90 STA $902E 
7C1E A9 00 LDA #$00 INPUT CONFIGURATION 
7C20 8D 2290 STA $9022 PORT B 
7C23 A9 20 LDA #$20 SET BIT 5 FOR PULSE 

COUNTING 
7C25 8D 2B90 STA $9028 ACR FOR VIA TIMER 2 

<COUNTS NEG. PULSES) 
7C28 A9 FF LDA #$FF LOW BYTE FOR TIMER 2 
7C2A 8D 2890 STA $9028 ADDRESS FOR LOW BYTE 
7C2D A9 FF LDA #$FF HIGH BYTE FOR TIMER 2 
7C2F 8D 2990 STA $9029 HIGH BYTE ADDRESS. 

STARTS DEC. RPM COUNT 
7C32 A9 00 LDA #$00 BAL FOR DATA ADDRESSING 
7C34 85 EO STA $EO ADDRESS FOR BAL 
7C36 A9 41 LDA #$41 BAH FOR DATA ADDRESSING 
7C38 85 E1 STA $E1 ADDRESS FOR BAH 
7C3A A9 03 LDA #$03 SET INDEX FOR 3 DATA SETS 

PER PLOT 
7C3C 85 E6 STA $E6 STORE INDEX AT $00E6 
7C3E A9 01 D LDA #$01 "'DATA" COUNT <BLOCKS OF 

256,DECIMAL) 
7C40 85 E2 STA $E2 ADDRESS FOR "DATA•• INDEX 
7C42 AO 00 LDY #$00 ZERO Y REGISTAR FOR DATA 

ADDRESS INDEXING 
7C44 A2 00 A LDX #$00 SET DATA INDEX TO 100 
7C46 A9 00 B LDA #$00 SET MUX TO FIRST CHANNEL 
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7C48 20 007D JSR FR GO TO FORCE POLLING SUB. 
7C4B A9 01 LOA #$01 SET MUX TO SECOND CHANNEL 
7C4D 20 007D JSR FR GO TO FORCE POLLING SUB. 
7C50 A9 02 LOA #$02 SET MUX TO THIRD CHANNEL 
7C52 20 007D JSR FR GO TO FORCE POLLING SUB. 
7C55 A9 03 LOA #$03 SET MUX TO FORTH CHANNEL 
1C57 20 007D JSR FR GO TO FORCE POLLING SUB. 
7C5A A9 04 LDA #$04 SET MUX TO FIFTH CHANNEL 
7C5C 20 007D JSR FR GO TO FORCE POLLING SUB. 
7C5F A9 05 LOA #$05 SET MUX TO SIXTH CHANNEL 
7C61 20 007D JSR FR GO TO FORCE POLLING SUB. 
7C64 A9 06 LDA #$06 SET MUX TO SEVENTH 

CHANNEL 
7C66 20 007D JSR FR GO TO FORCE POLLING SUB. 
7C69 CA DEX 
7C6A DO DA BNE B GO TO 'B' IF $100 FORCE 

SETS NOT TAKEN 
7C6C C6 E2 DEC #E2 
7C6E DO 04 BNE A GO TO A IF NOT ENOUGH 

DATA BLOCKS TAKEN 
7C70 A9 02 LOA #$02 DELAY PARAMETERS 
7C72 85 E9 STA $E9 
7C74 A9 00 M LOA #$00 
7C76 85 E7 STA $E7 
7C78 A9 00 L LOA #$00 
7C7A 85 E8 STA $E8 
7C7C C6 E8 K DEC $E8 
7C7E DO FC BNE K 
7C80 C6 E7 DEC $E7 
7C82 DO F4 BNE L 
7C84 C6 E9 DEC $E9 END OF DELAY 
7C86 DO EC BNE M 
7C88 C6 E6 DEC $E6 
7C8A DO B2 BNE D 
7C8C AD 3990 LDA $9039 READ SPEED COUNTER HIGH 

ORDER BYTE 
7C8F 91 EO STA [$EOJ,Y STORE DATA 
7C91 20 907D JSR AI DATA ADORES INCREASING 

SUB. 
7C94 AD 3890 LOA $9038 READ SPEED COUNTER LOW 

ORDER BYTE 
7C97 91 EO STA [$EOJ,Y STORE DATA 
7C99 20 9070 JSR AI DATA ADDRESS INCREASING 

SUB. 
7C9C AD 2990 LDA $9029 READ AXLE SPEED COUNTER 

HIGH ORDER BYTE 
7C9F 91 EO STA [$EOJ,Y STORE DATA 
7CA1 20 907D JSR AI DATA ADDRESS INCREASING 

SUB. 
7CA4 AD 2890 LDA $9028 READ AXLE SPEEDE COUNTER 

LOW ORDER BYTE 
7CA7 91 EO STA [$EOJ,Y STORE DATA 
7CA9 60 RTS 
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7DOO 8D FA9F FR STA $9FFA SET MUX CHANNEL 
7D03 A9 00 LDA #$00 
7D05 8D OBAO STA $AOOB ACR SET TIME PULSE ON 

TIMER 2 
7D08 A9 26 LDA #$26 LOW ORDER BYTE OF TIME 

<CLOCK CYCLES) 
7DOA 8D 08AO STA $A008 LOW ORDER BYTE ADDRESS 
7DOD A9 00 LDA #$00 HIGH ORDER BYTE OF TIME 
7DOF 8D 09AO STA $A009 HIGH ORDER BYTE ADDRESS, 

START TIMER 2 
7D12 A9 20 LDA #$20 SET BIT 5 OF ACCUMULATOR 
7D14 2C ODAO E BIT $AOOD TEST TIME OUT SIGNAL 
7D17 FO FB BEQ E TEST AGAIN IF NOT SET YET 
7D19 AD 08AO LDA $A008 CLEAR TIMER 2 TIME OUT 

SIGNAL 
7D1C 8D FB9F STA $9FFB START A/D CONVERSION 
7D1F A9 02 LDA #$02 START OF 26E-6 SECOND 

DELAY 
7021 85 E4 STA $E4 
7D23 C6 E4 F DEC $E4 
7025 DO FC BNE F END OF DELAY LOOP 
7027 EA NOP 
7028 EA NOP 
7029 EA NOP END OF DELAY 
7D2A AD FE9F LOA $9FFE READ DATA 
7020 91 EO STA C$EOJ,Y STORE DATA 
7D2F 20 907D JSR AI DATA ADDRESS INCREASING 
7032 AD FD9F LOA $9FFD 
7035 91 EO STA C$EOJ,Y 
7037 20 9070 JSR AI 
7D3A 60 RTS 

7090 18 AI CLC CLEAR CARRY 
7091 A5 EO LDA $EO ADL OF DATA ADDRESS 
7093 69 01 ADC #$01 INCREMENT DATA ADDRESS 
7095 85 EO STA $EO STORE DATA ADL 
7D97 A5 E1 LDA $E1 ADH OF DATA ADDRESS 
7099 69 00 ADC #$00 INCREMENT ADL IF 

NECESSARY 
7D9B 85 E1 STA $E1 STORE DATA ADH 
7090 60 RTS 
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Summed Data Locations 

$7494 - #1 , High $749D - #2,Medium $74A6 - #3,Low 
$7495 - 00 $749E - #6,High $74A7 - #?,Medium 
$7496 - #2,High $749F - #3,Medium $74A8 - #4,Low 
$7497 - 00 $74AO - #?,High $74A9 - 00 
$7498 - #3,High $74A1 - #4,Medium $74AA - #5,Low 
$7499 - 00 $74A2 - #1 ,Low $74A8 - 00 
$749A - #4,High $74A3 - #5,Medium $74AC - #6,Low 
$7498 - #1 .Medium $74A4 - #2,Low $74AD - 00 
$749C - #5,High $74A5 - #6,Medium $74AE - #?,Low 

Speed counts remain in same memory 
locations ($6800 to $6803) 

Summation Routine 

() 

Ol Ql '0 •.-t '0 Ol 
Ol '0 t: t: s:: .!:11: 
(I) 0 Q:l ..-! 0 Q:l ~ 
~ u ~ (I) 

ID 
~ Q:l 

'0 (I) .a Ql i '0 s:l s:l Q:l c ll. 
< 0 0 ...J I: 0 0:: 

7FOO 98 TVA 
7F01 48 PHA 
7F02 8A TXA 
7F03 48 PHA 
7F04 A9 00 LDA #$00 STORE VALUE 00 IN 
7F06 85 EA STA $EA LOCATION $EA 
7F08 A9 41 LDA #$41 STORE VALUE 41 IN 
7FOA 85 EB STA $EB LOCATION $EB 
7FOC 18 CLC CLEAR CARRY 
7FOD D8 CLD CLEAR DECIMAL 

7FOE AO 06 LDY #$06 
7F10 A9 00 LDA #$00 
7F12 99 9374 STA $7493,Y 
7F15 99 9A74 STA $749A,Y ZERO MEMORY LOCATIONS 
7F18 99 A174 STA $74A1 ,Y $7493 TO $74AE 
7F1B 99 A874 STA $74A8,Y 
7F1E 88 DEY 
7F1F 1 0 F4 BPL F4 

7F21 A9 03 LDA #$03 SET INDEX FOR 3 DATA SETS 
7F23 A9 AF74 STA $74AF PER PLOT 

7F26 A2 00 LDX #$00 ZERO X REGISTAR 
7F28 AO 00 LDY #$00 ZERO Y REGISTAR 
7F2A 18 CLC CLEAR CARRY 
7F2B 81 EA LDA CEA J, Y LOAD ACCUM. WITH CEAJ+Y 
7F2D 79 A274 ADC $74A2,Y ADD $74A2+Y TO ACCUM. 

WITH CARRY 
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7F30 99 A274 STA $74A2,Y STORE ACCUM. AT $74A2+Y 
7F33 C8 INY INCREMENT Y 
7F34 81 EA LDA [EAJ, Y LOAD ACCUM. WITH [EAJ+Y 
7F36 88 DEY DECREMENT Y 
7F37 79 9874 ADC $7498,Y ADD $749B+Y TO ACCUM. 

WITH CARRY 
7F3A 99 9874 STA $749B,Y STORE ACCUM. AT $7498+Y 
7F3D A9 00 LDA #$00 ZERO ACCUM. 
7F3F 79 9474 ADC $7494,Y ADD $7494+Y TO ACCUM. 
7F42 99 9474 STA $7494,Y STORE ACCUM. AT $7494+Y 
7F45 C8 INY INCREMENT Y· 
7F46 C8 INY INCREMENT Y 
7F47 co OE CPY #$0E COMPARE Y TO 14 
7F49 30 DF BMI DF BRANCH TO $7F2A IF Y<14 
7F4B 18 CLC CLEAR CARRY 
7F4C AO 00 LDY #$0E LOAD Y REGISTAR WITH 14 
7F4E A5 EA LDA $EA LOAD ACCUM. WITH $EA 
7F50 69 OE ADC #$0E ADD TO 14 TO ACCUM. WITH 

CARRY 
7F52 85 EA STA $EA STORE ACCUM. AT $EA 
7F54 A9 00 LDA #$00 ZERO ACCUMULATOR 
7F56 65 E8 ADC $EB ADD $EB TO ACCUM. 
7F58 85 EB STA $EB STORE ACCUM. AT $EB 
7F5A CA DEX DECREMENT X 
7F58 DO CD BNE CD BRANCH TO $7F2A IF x~o 
7F5D CE AF74 DEC $74AF DECREMENT VALUE IN $74AF 
7F60 DO C8 BNE C8 BRANCH TO $7F2A IF VALUE 

IN $74AF ~ 0 
7F62 68 PLA PULL ACCUM. FROM STACK 
7F63 AA TAX TRANSFER ACCUM. TO X 

REG I STAR 
7F64 68 PLA PULL ACCUM. FROM STACK 
7F65 A8 TAY TRANSFER ACCUM. TO Y 

REG I STAR 
7F66 60 RTS RETURN FROM SUBROUTINE 



$0000 - $3FFF 

$4000 - $4078 

$4100- $6AFF 

$6800 - $6803 

$6FOO - $6F1E 

$6F1F - $6F3D 

$6F3E - $6F5C 

$7493 - $74AE 

$7COO - $7D9E 

$7FOO - $7F66 

APPENDIX C 

COMPUTER MEMORY MAP FOR 

TIRE TEST MACHINE 

Reserved for basic program. 

Memory to be printed to cassette tape. 

Transducer values from data colection 
subroutine. 

Velocity counts from data collection 
subroutine. 

First cone index level data. 

Second cone index level data. 

Third cone index level data. 

Summed data from sub .. $7FOO - 7F66. 

Data collection subroutine. 

Summing subroutine. 
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APPENDIX D 

ROLLING RADIUS DATA 

Tire Size Load Number of Distance Rolling 
lnfl. Pres. Revolutions Traveled Radius 

< kPa) <kN) <m) < m) 

'16. 9-30 8.36 15 65.78 0.698 
(124) 'I 0. 81 15 65.24 0.692 

'15 .52 15 64.01 0.679 
17.97 15 63.56 0.674 
'19. 09 15 63.37 0.672 

18.4R38 11 • 45 15 79.75 0.846 
( 138) 13.90 15 79.60 0.846 

18.61 15 79.07 0.839 
21 .06 15 78.94 0.838 
25.78 15 78.64 0.834 

8.3-24 4.693 20 59.16 0.471 
( 152) 5.427 20 58.55 0.466 

6.338 20 58.09 0.462 

15.5-38 9.10 15 70.67 0.750 
( 138) 11 . 54 15 70.28 0.746 

16.26 15 69.32 0.736 
18.70 15 68.91 0.731 
19.82 15 68.75 0.729 

11 • 2;..38 5.32 20 87.08 0.693 
( 124) 6.44 20 86.71 0.690 

8.30 20 85.75 0.682 
9.42 20 85.30 0.679 

10.74 20 84.79 0 .675' 
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APPENDIX E 

PROGRAM TO INPUT TIRE TEST 

10 CLS 
20 PRINT 
30 PRINT 

DATA TO IBM-PC 

40 PRINT •• 
50 PRINT 

TIRE TEST DATA .. 

60 PRINT •• 
70 PRINT •• 
75 PRINT .. 
76 PRINT '' 
80 PRINT .. 
90 A$=INKEY$:IF A$= .... THEN 90 
100 IF A$=nAn THEN 135 
110 IF A$=npn THEN 340 
120 IF A$= .. E .. THEN END 
125 IF A$=nsn THEN 600 
130 GOTO 80 

?" 

135 OPEN .. B:TT.DAT" FOR APPEND AS #1 
140 INPUT .. PLOT NUMBER .. ;P$ 
150 IF 'P$= .. " THEN CLOSE #1:GOTO 10 

A-----ADD TO FILE .. 
P-----PRINT FILE .. 
E-----END PROGRAM" 
S-----SPECIAL 

160 INPUT .. WEIGHT <RETURN IF UNCHANGED> .. ;W$ 
170 IF W$= .... THEN 181 
180 WE=VALCW$) 
181 FOR A=1 TO 3 
182 P$=MIDCSTR$<A>,2>+MID$(P$,2,3> 
183 PRINT 
184 PRINT.. PLOT---"P$ 
190 INPUT .. SP~ED";SP 
195 IF MID$CP$,2,1 >=n5n THEN 210 
200 INPUT .. SLIP .. ;SL 
210 INPUT "PULL";P 
215 IF MID$CP$,2,1 >="5" THEN 230 
220 INPUT .. TORQUE";T 
230 INPUT "VLOAD";VL 
250 P=P+123 :REM 
260 VL=VL+926 :REM 
270 T=T-38592! :REM 
275 IF MID$CP$,2,1 >="5 .. THEN 
280 PW=P/CWE-VL> 

PULL CORRECTION FACTOR 
VERT. LOAD CORRECTION FACTOR 
TORQUE CORRECTION FACTOR 

T=O 

285 BEEP:INPUT "THESE VALUES CORRECT";A$ 
286 IF A$= .. N" THEN 184 
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290 PRINT #1,USING" ' ' #### #.### ##.### #### ##### 
#### ####";P$,WE,SP,SL,P,T,VL,PW 
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300 PRINT US1NG " ' ' #### #.### ##.### #### ##### #### 
.####";P$,WE,SP,SL,P,T,VL,PW 

320 NEXT 
330 GOTO 140 
335 CLOSE 1 
340 LPRINT " PLOT WGHT SPD SLP PULL 

TRQU YLOAD P/W" 
350 LPRINT"-----------------------------------------------

-------------------------" 
360 OPEN "B:TT.DAT" FOR INPUT AS 1 
370 IF EOF<1 >THEN GOTO 500 
380 INPUT #1,P$,WE,SP,SL,P,T,VL,PW 
390 LPRINT USING " ' ' #### #~### ##.### #### 

##### #### .####";P$,WE,SP,SL,P,T,YL,PW 
400 LPRINT 
410 GOTO 370 
500 LPRINT CHR$<12> 
510 CLOSE #1 
520 GOTO 10 
600 REM THIS ROUTINE SAVES SLIP vs.P/W FOR PLOTRAX 
601 REM FILE NAME IS ON LINE 610 
602 REM PLOT NUMBER ON LINE ·630 
609 OPEN "TT1 .OAT" FOR INPUT AS 1 
610 OPEN "B:CI3" FOR APPEND AS 2 
620 INPUT #1,P$,WE,SP,SL2,P,T,YL,PW2 
621 IF EOF ( 1 > THEN 630 
622 INPUT #1,P$,WE,SP,SL3,P,T,VL,PW3 
623 IF EOF <1) THEN 630 
624 INPUT #1,P1$,WE,SP,SL1,P,T,VL,PW1 
630 WRITE#2,SL3,PW3 
635 PRINT SL3,PW3 
640 IF EOF <1) THEN 660 
650 GOTO 620 
660 CLOSE #1 
670 CLOSE #2 
680 GOTO 10 



APPENDIX F 

PROGRAM TO INPUT CONE INDEX 

DATA TO IBM-PC 

10 CLS 
20 PRINT 
30 PRINT 
40 PRINT " CONE INDEX INPUT AND REVIEW PROGRAM" 
50 PRINT 
60 PRINT 
70 PRINT " TASK TO BE PERFORMED:" 
80 PRINT 
90 PRINT " A----ADD DATA TO EXISTING DATA FILE" 
100 PRINT " R----REVIEW EXISTING DATA FILE" 
110 PRINT" E----END PROGRAM" 
120 PRINT " ?" 
130 B$=INKEY$:IF B$="" THEN 130 
140 IF B$="A" THEN 180 
150 IF B$="R" THEN 380 
160 IF B$="E" THEN END 
170 PRINT " PLEASE USE MENU CODE!":BEEP:GOTO 120 
180 OPEN "B:CI.DAT" FOR APPEND AS 1 
190 CLS 
200 INPUT " PLOT NUMBER AS XXXX <RETURN TO END>";P$ 
210 IF P$=" .. THEN CLOSE #1:GOT010 
220 IF LENCP$><>4 THEN PRINT"INCORRECT NUMBER LENTHI!":BEEP 

:BEEP:GOTO 200 
230 IF VAL<MID$(P$,1,1 >>=3 THEN 290 
240 FOR A=1 TO 3 
250 P$=MID$(STR$(A),2)+MID$CP$,2,3) 
260 GOSUB 340 
270 NEXT 
280 GOTO 190 
290 FOR A=3 TO 1 STEP -1 
300 P$=MID$<STR$(A),2)+MID$CP$,2,3> 
310 GOSUB 340 
320 NEXT 
330 GOTO 190 
340 INPUT" CONE INDEX VALUE";AV 
350 PRINT 
360 PRINT #1 ,USING "' ,,####";P$,AV 
370 RETURN 
380 OPEN ''B:CI .OAT" FOR INPUT AS 1 
390 LPRINT" PLOT NUMBER CONE INDEX CkPa)" 
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400 IF EOF<1 >THEN GOTO 450 
410 INPUT #1,P$,AV 
420 PRINT" PLOT NUMBER--"P$" AVERAGE CONE INDEX 

<kPa)="AV" 
430 LPRINT" "P$" "AV 
440 GOTO 400 
450 LPRINT CHR$<12> 
460 FOR X=1 TO 100:NEXT :CLOSE #1 
470 GOTO 10 
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APPENDIX G 

TIRE TEST AND CONE 

INDEX DATA 

Plot Static Act. Wheel Net Axle Cone Aspect 
No. Load Speed Slip Pull Torque Index Ratio 

<kN> ( km/h) (%) <kN) ( kN-m > < kPa > 

11 AA 14.46 3.93 59.60 7.170 6. 11 345 0.289 
21AA 14.28 4.09 55.93 7.708 6.18 563 0.289 
31AA 14.44 3.81 58.38 8.064 6.49 809 0.289 
12AA 15.19 4.49 47.40 6.761 5.66 300 0.289 
22AA 14.97 4.54 42.30 6.886 5.58 544 0.289 
32AA 14.76 4.65 45.48 7.019 5.59 721 0.289 
'13AA 14.96 4.54 48.65 5.524 5.18 409 0.289 
23AA 14.52 4.83 40.71 6.797 5.55 477 0.289 
33AA 14.56 4.42 43.79 6.672 5.57 582 0.289 
14AA 15. 17 3.97 59.39 6.174 5.65 495 0.289 
24AA 14.53 7.02 27.62 6.930 5.98 658 0.289 
34AA '14. 77 4. 31 53.87 6.957 5.84 647 0.289 
15AA 17.66 5.55 o.oo 0.925 0.00 482 0.289 
25AA 17.85 5.66 o.oo 0.467 0.00 647 0.289 
35AA 17.67 5.60 0.00 0.729 0.00 609 0.289 
11 BA 1 7. 41 5.44 15.00 5.040 5.38 500 0.266 
21BA 16.80 5.44 22.25 6.427 6.30 606 0.266 
31BA 16.95 5.55 18.71 6.192 5.96 835 0.266 
12BA 17.58 5.33 12.76 4.172 4.50 293 0.266 
22BA 16.81 5.39 19.68 5.778 5.93 371 0.266 
32BA 16.35 4.83 17.87 7.046 6.70 673 0.266 
13BA 15.52 4.49 14.50 5.720 6.09 374 0.266 
23BA 14.83 4.99 31 .53 6.632 7.10 442 0.266 
33BA 14.91 4.88 25.25 6.298 6.50 628 0.266 
14BA 15.89 4.83 36.56 7.135 7.57 474 0.266 
24BA 16.28 4.88 32.88 6.988 7.22 682 0.266 
34BA 16. 1 3 5.05 27.25 7.619 7.37 624 0.266 
15BA 19.82 5.28· o.oo 1 . 401 0.00 427 0.266 
25BA 19.66 5.39 0.00 1. 477 0.00 462 0.266 
35BA 19.73 5.39 0.00 1 • 1 21 0.00 399 0.266 
11 CA 4.37 4.09 46.59 2.055 1 .42 337 0.212 
21CA 4.87 4. 04 47.76 2.411 1 . 43 462 0.212 
31CA 5.28 4.94 34.36 1 . 094 0.58 719 0.212 
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APPENDIX G <continued> 

Plot Static Act. Wheel Net Axle Cone Aspect 
No. Load Speed Slip Pull Torque Index Ratio 

<kN> ( km/h > (%) <kN> < kN-m) < kPa) 

12CA 4.90 4.76 35.66 1 . 139 0.85 296 0.212 
22CA 5.16 5. 21 32.71 0.285 0.26 352 0.212 
32CA 4.75 4.83 37.95 1 .139 0.78 583 0.212 
13CA 4.79 4.65 39.99 1 .188 0.88 444 0.212 
23CA 4.92 4.99 36.01 0.876 0.65 512 0.212 
33CA 4.65 4. 71 38.41 1. 539 1 • 00 646 0.212 
14CA 4.82 4.60 34.43 1 • 201 0.78 382 0.212 
24CA 4.68 4.42 36.24 1 . 148 0.82 440 0.212 
34CA 4.82 4.60 33.40 0.547 0. 51 517 0.212 
15CA 5.33 5.28 0.00 0.605 0.00 376 0.212 
25CA 5.1 0 5.21 0.00 0.427 0.00 360 0.212 
35CA 5.30 5.21 0.00 0.503 0.00 372 0.212 
11 DA 12.87 4.76 36.48 7.241 5.99 222 0.251 
21DA 12.45 4.88 35.94 7.806 6.62 507 0.251 
31DA 12.72 4.88 28.72 7.072' 5.14 607 0.251 
12DA 12.78 4.83 21 .59 6.112 5.32 285 0.251 
22DA 12.39 4.88 29.34 7. 112 6.08 498 0.251 
32DA 12.73 4.83 26.12 6.850 5.75 590 0.251 
13DA 13.67 4.76 23.14 5.387 5.03 392 0.251 
23DA 12.94 5.05 28.59 6.966 5.84 604 0.251 
33DA 13.34 5. 05 21 .65 5.849 4.94 733 0.251 
14DA 13.03 4.65 30.16 6.009 5.72 288 0.251 
24DA 13.07 4.71 25.99 5.943 5.22 401 0.251 
34DA 12.50 4.65 34.54 7.321 6.34 486 0.251 
15DA 16.09 5.50 0.00 1 . 21 0 0.00 426 0.251 
25DA 15.88 5.55 0.00 1 . 1 52 0.00 673 0.251 
35DA 15.98 5.44 0.00 0.756 0.00 809 0.251 
11 EA 5.88 5.28 13.45 2.019 1 .53 382 0.195 
21EA 6. 1 0 5.39 13. 18 2.371 1. 64 583 0.195 
31EA 6. 14 5.55 16. 1 0 2.482 1. 62 782 0.195 
12EA 6.61 4.88 4.79 2.482 1 . 72 312 0.195 
22EA 7.16 5.28 7.36 1 .686 1 • 00 479 0.195 
32EA 7.28 5. 21 6.54 1 .348 0.77 640 0.195 
13EA 6.18. 4.42 34.53 4.315 3.30 341 0.195 
23EA 6.04 4. 71 26.64 3.799 2.95 442 0.195 
33EA 6.46 4.49 30.13 3.785 2.89 623 0.195 
14EA 5.92 4.71 20.40 3.545 2.55 357 0.195 
24EA 6. 15 5.05 26.61 3.216 2.40 477 0.195 
34EA 6. 07 4.71 32.88 3.830 2.87 524 0.195 
15EA 7.59 5.33 0.00 0.676 0.00 417 0.195 
25EA 7.59 5.50 o.oo 0.814 0.00 468 0.195 
35EA 7.45 5.39 0.00 0.685 o.oo 447 0.195 
11 FA 9.30 5. 1 0 34.42 3.856 3.29 289 0.289 
21FA 9.49 4.88 35.48 3.759 3.19 358 0.289 
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APPENDIX G <continued> 

Plot Static Act. Wheel Net Axle Cone Aspect 
No. Load Speed Slip Pull Torque Index Ratio 

<kN> ( km/h) on <kN> < kN-m) < kPa) 

31FA 9.33 4. 31 47.78 4.457 3.56 630 0.289 
12FA 8.90 4.54 47.30 3.932 3.38 349 0.289 
22FA 8.78 4.20 51 .20 3.981 3.57 452 0.289 
32FA 8.90 4.76 42.08 3.870 3.30 515 0.289 
13FA 9.25 4.54 41.93 3.585 3. 11 376 0.289 
23FA 9.25 4.88 42.75 3.803 3.17 486 0.289 
33FA 9.20 4.42 47.86 4.106 3.51 540 0.289 
14FA 8.89 4.60 47.69 3.732 3.26 285 0.289 
24FA 8.70 4.71 46.46 3.852 3.30 459 0.289 
34FA 8.88 4.76 45.16 3.990 3.29 456 0.289 
15FA 10.84 5.33 0.00 0.423 0.00 446 0.289 
25FA 10.85 5.50 0.00 0.342 o.oo 482 0.289 
35FA 10.90 5.44 0.00 0.467 0.00 383 0.289 
11GA 11 . 97 4.31 44.42 4.884 4o21 254 0.289 
21GA 11 . 62 4.54 42.43 5.311 4.42 541 0.289 
31GA 11 . 79 4.49 43.72 5.475 4.54 606 0.289 
12GA 11 . 80 4.76 45.46 5.000 4.30 300 0.289 
22GA 11 • 64 4.65 47.28 5.346 4.58 439 0.289 
32GA 11 • 57 4. 71 47.47 5.742 4.65 590 0.289 
13GA 12.07 4.83 42.81 4.194 3.67 317 0.289 
23GA 11 0 76 4. 71 44.03 50 151 4o31 502 0.289 
33GA 11 0 33 4o49 46.39 5o453 4.65 558 0.289 
14GA 12 0 16 4.26 58 o14 4o875 4o36 452 Oo289 
24GA 12. 17 4.88 43o87 4.888 4 o18 599 0.289 
34GA 11 • 78 4.49 51 .92 5.449 4o65 613 0.289 
15GA 14o50 5.66 0.00 0.623 0.00 471 0.289 
25GA 14o67 5.66 0.00 Oo538 o.oo 494 0.289 
35GA 14.58 5.66 0.00 0.872 0.00 488 0.289 
11 HA 17.73 4.65 45.83 7.722 6o50 329 0.289 
21HA 17.47 4.76 41 .55 8.407 6.49 501 0.289 
31HA 18.21 4.83 35.23 7.517 5.86 800 0.289 
12HA 17.68 4o65 47.17 7.032 6.33 255 0.289 
22HA 17 0 71 4.94 42.25 7.815 6o40 471 0.289 
32HA 17.79 4.88 43.37 7.602 6.33 628 0.289 
13HA 18.23 5.28 43.24 6.908 6.19 303 0.289 
23HA 17.73 4.71 46.20 8 o1 00 6.65 432 0.289 
33HA 1 7. 81 5o05 43.32 7.686 6o22 620 0.289 
14HA 18.08 4.76 47.70 7.926 6.45 393 0.289 
24HA 1 7. 81 5.82 32.06 8.545 6.80 489 0.289 
34HA 17.82 4. 71 46.82 8.625 6.76 503 0.289 
15HA 21.42 5.71 o.oo 1. 245 0.00 434 0.289 
25HA 21.47 5.71 0.00 Oo930 0.00 429 0.289 
35HA 21 .38 5. 71 0.00 1. 624 0.00 343 0.289 
11 AB 14.70 4.49 32.10 5.765 5. 13 434 0.289 
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APPENDIX G <continued) 

Plot Static Act. Wheel Net Axle Cone Aspect 
No. Load Speed Slip Pull Torque Index Ratio 

<kN> < km/h > (%) <kN> < kN-m > <kPa> 

21AB 14.94 4. 71 25. 11 5.898 4.74 575 0.289 
31AB 14.50 4.38 30.64 6.761 5.42 785 0.289 
22AB 15.35 5.05 36.82 4.866 4.16 493 0.289 
32AB 15.26 4.88 30.64 5.418 4.48 760 0.289 
23AB 15.68 5.21 34.97 4.190 3.56 481 0.289 
33AB 15.63 5.05 31 .56 3.825 3.44 635 0.289 
14AB 16.43 5.50 42.69 3.501 3.59 270 0.289 
24AB 16.87 5.21 30.91 2.611 2.54 413 0.289 
15AB 17.97 5.60 0.00 0.725 0.00 320 0.289 
25AB 17.86 5. 71 0.00 0.547 0.00 515 0.289 
35AB 17.95 5.60 0.00 0.863 0.00 424 0.289 
11 AC 14.69 4.42 52.43 6.169 5.53 296 0.289 
21AC 14.40 9.03 -4.68 7.099 5.67 464 0.289 
31AC 14.29 4.63 46.94 7.241 5.81 709 0.289 
12AC 14.63 9.70 -0.50 6.249 5.45 415 0.289 
22AC 14.38 4.83 49.59 6.356 5.39 465 0.289 
32AC 14.31 4.99 47.35 6.948 5.71 616 0.289 
13AC 14.47 4. 71 56.48 6.049 5.44 437 0.289 
23AC 14.65 5. 05 44.00 5.978 4.95 537 0.289 
33AC 14.42 7.51 16. 18 6.530 5.43 606 0.289 
14AC 15.47 5.39 41 .97 3.799 3.47 346 0.289 
24AC 14.86 5.21 45.53 5.796 4.83 485 0.289 
34AC 14.50 4.83 39.89 5.533 4.83 579 0.289 
15AC 17.58 5.60 0.00 0.947 o.oo 290 0.289 
25AC 17 .• 58 5.71 o.oo 0.747 0.00 385 0.289 
35AC 17.35 5.55 0.00 1 • 1 03 0.00 312 0.289 
11 AD 14.51 4.20 45.82 6.779 5.66 370 0.289 
21AD 14.34 4.42 40.25 7. 001 5.64 638 0.289 
31AD 14.59 5.39 13.88 6.663 5.23 850 0.289 
12AD 14.55 4. 31 53.08 6.347 5.58 375 0.289 
22AD 14.60 4.38 48.53 7.299 5.83 446 0.289 
13AD 14.60 4.20 50.37 5.947 5.42 416 0.289 
23AD 14.29 4.42 48.54 6.770 5.74 485 0.289 
33AD 14.24 4.54 44.69 7.010 5.72 522 0.289 
14AD 14.71 3.97 57.79 6.138 5.80 371 0.289 
24AD 14.52 4.26 54.39 7.166 6.08 632 0.289 
34AD 14.34 4.71 47.82 7.126 5.94 650 0.289 
15AD 17.57 5.50 0.00 0.965 0.00 405 0.289 
25AD 17.68 5.60 o.oo 0.801 0.00 554 0.289 
35AD 17.78 5.44 0.00 0.712 0.00 584 0.289 
11 AE 14.27 2.57 19. 1 0 6.890 5.60 464 0.289 
21AE 14.22 2.57 17.25 6.903 5.57 665 0.289 
31AE 14.49 2.64 8.97 6.663 5. 31 833 0.289 
12AE 14.38 2.19 21 .48 0.449 5.50 323 0.289 
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APPENDIX G (continued) 

Plot Static Act. Wheel Net Axle Cone Aspect 
No. Load Speed Slip Pull Torque Index Ratio 

<kN> ( km/h) 00 < kN > < kN-m > < kPa > 

22AE 14. 13 2.12 16. 1 0 7.135 5.85 458 0.289 
32AE 13.81 1. 96 23.20 6.961 6.04 516 0.289 
13AE 15.71 2.12 2.77 4.719 4.22 368 0.289 
23AE 15.89 1. 96 -2.05 4.479 3.89 517 0.289 
33AE 15.84 1 .96 -2.08 4.742 4.00 627 0.289 
14AE 15.59 1. 96 2.34 5.395 4.90 379 0.289 
15AE 17.54 2.19 0.00 1. 303 o.oo 345 0.289 
25AE 17.61 2.30 0.00 0.801 0.00 307 0.289 
35AE 17.51 2.12 0.00 1. 423 0.00 322 0.289 
11 AF 14.38 3.20 28.25 6.418 5.40 366 0.289 
21AF 1 4. 11 2.75 41 .14 7.633 6.15 504 0.289 
31AF 14.06 2.91 27.60 7.664 6.26 786 0.289 
32AF 14.02 3. 14 37.20 7.210 6. 03 774 0.289 
13AF 15.00 3.25 38.00 6.316 5.57 321 0.289 
33AF 14.63 3.31 31.90 6.961 5.95 594 0.289 
14AF 15.33 3. 31 25.33 5.991 5.28 327 0.289 
24AF 15.19 3.36 22.12 6.152 5.08 603 0.289 
15AF 17.86 3.93 o.oo 0.560 0.00 387 0.289 
25AF 17.83 3.97 o.oo 0.636 0.00 521 0.289 
35AF 17.83 4.04 0.00 0.681 0.00 474 0.289 
11 AG 14.28 6.73 60.37 6.854 5.58 622 0.289 
21AG 14.52 6.90 59.79 6.730 5.53 704 0.289 
22AG 14.63 5. 71 65.33 7.255 6. 11 661 0.289 
13AG 14.86 6.34 61 .83 6.063 5.32 388 0.289 
14AG 15.44 7.13 55.73 5.133 4.65 286 0.289 
34AG 14.72 7.29 54.86 5.725 5.00 574 0.289 
15AG 17.68 7.85 0.00 1.036 0.00 451 0.289 
25AG 17.81 8.01 0.00 0.445 0.00 599 0.289 
35AG 18.05 7.85 0.00 0.738 0.00 625 0.289 



APPENDIX H 

TI TERM GENERATION PROGRAM 

10 DIM P$<210>,W<210>,SP<210),SL(210>,P<210),T(210>, 
VL<210>,CIC210>,PR<2 10>,B<210>,D<210) 

20 OPEN "B:TTCI.DAT" FOR INPUT AS #1 
30 FOR X=1 TO 194 
40 INPUT #1 ,P$<X>,W<X>,SP<X>,SL<X>,P<X>,T<X>,VL<X>, 

C I< X), RR< X), B< X), D< X> 
41 PRINT P$( X> 
45 IF EOF<1 > THEN 60 
50 NEXT X 
60 CLOSE #1 
70 OPEN "B:PITERM.DAT" FOR OUTPUT AS #1 
80 FOR X=1 TO 194 
90 PI1=P<X)/(W<X>-VL<X>> :REM PULL TO LOAD 

RATIO 
100 PI2=CI<X>*.145*B<X>*D<X>/<W<X>-VL<X>> 

:REM WHEEL NUMERIC 
110 PI3=SL<X> :REM WHEEL SLIP 
120 PI4B=<SP<X>*<5280/3600))A2/C32.2*B<X>/12) 

:REM VELOCITY 
COEFFICIENT 

125 PI4D=<SP<X>*<5280/3600))A2/(32.2*D<X)/12> 
:REM VELOCITY 

COEFFICIENT 
130 PI5=B<X>/D(X) :REM ASPECT RATIO 
140 PRINT USING "' ,, #.##### ####.##### ##.##### 

##.####AAAA ##.##AAAA .######";P$(X),PI1 ,PI2,PI3, 
PI4B,PI4D,PI5 

145 LPRINT USING "' ,, #.##### ####.##### ##.##### 
##.####AAAA ##.####AAAA .######";P$tX),P!1 ,P!2,PJ3, 
PI4B,PI4D,PI9 

150 PRINT #1 ,USING "' ,, #.##### ####.##### ##.##### 
##.####AAAA ##.####AAAA .######";P$(X),PJ1,PI2,PI3, 
PI4B ,PI4D,PI5 

160 NEXT 
170 CLOSE #1 
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APPENDIX I 

TERM DATA 

Plot 7T1 7T2 'IT.s 'IT ... 'ITt:s 

·11 AA 0.496 15.21 0.498 1 .120E+OO 0.2889 
21AA 0.540 25.13 0.453 1 .024E+OO 0.2889 
31AA 0.558 35.72 0.483 9.962E-01 0.2889 
12AA 0.445 12.60 0.347 8.634E-01 0.2889 
22AA 0.460 23.18 0.283 7.353E-01 0.2889 
32AA 0.475 31 .14 0.323 8.649E-01 0.2889 
13AA 0.369 17.43 0.362 9.288E-01 0.2889 
23AA 0.468 20.94 0.263 7.849E-01 0.2889 
33AA 0.458 25.48 0.302 7.372E-01 0.2889 
14AA 0.407 20.81 0.495 1.140E+OO 0.2889 
24AA 0.477 28.87 0. 1 01 1 . 113E+OO 0.2889 
34AA 0. 471 27.94 0.427 1.039E+OO 0.2889 
11 BA 0.290 23.56 -.056 4.464E-01 0.2663 
21BA 0.383 29.58 0.034 5.332E-01 0.2663 
31BA 0.365 40.39 . -.010 5.085E-01 0.2663 
12BA 0.237 13.66 -.084 4.064E-01 0.2663 
22BA 0.344 18. 1 0 0.002 4.898E-01 0.2663 
32BA 0.431 33.76 -.020 3.758E-01 0.2663 
13BA 0.368 19.76 -.062 2.999E-01 0.2663 
23BA 0.447 24.45 0.149 5.790E-01 0.2663 
33BA 0.423 34.55 0.071 4.643E-01 0.2663 
14BA 0.449 24.46 0.212 6.298E-01 0.2663 
24BA 0.429 34.36 0.203 6.298E-01 0.2663 
34BA 0.472 31.73 0.175 6.298E-01 0.2663 
'11 CA 0.470 16. 13 0.336 1 .419E+OO 0.2123 
21CA 0.495 19.87 0.351 1.443E+OO 0.2123 
31CA 0.207 28.48 0.185 1 .366E+OO 0.2123 
12CA 0.232 12.64 0.201 1 . 326E+OO 0.2123 
22CA 0.055 14.28 0.164 1 . 451 E+OO 0.2123 
32CA 0.239 25.66 0.229 1.460E+OO 0.2123 
13CA 0.248 19.38 0.255 1.454E+OO 0.2123 
23CA 0.178 21.76 0.205 1 . 470E+OO 0.2123 
33CA 0.331 29.09 0.235 1 .413E+OO 0 .2'123 
14CA 0.249 16.58 0.185 1 • '188E+OO 0.2123 
24CA 0.245 19.68 0.208 1 .166E+OO 0.2123 
34CA 0. 11 4 22.46 0.173 1 • 152E+OO 0.2123 
11 DA 0.563 10.65 0.211 7.287E-01 0.2508 
21DA 0.627 25.16 0.204 7.504E-01 0.2508 
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APPENDIX I <continued> 

Plot 'IT1 'IT2 'IT3 'IT .. 'IT!!S 

31DA 0.556 29.49 0. 115 6.062E-01 0.2508 
12DA 0.478 13.77 0.026 4.897E-01 0.2508 
22DA 0.574 24.83 0.122 6.166E-01 0.2508 
32DA 0.538 28.63 0.083 5.515E-01 0.2508 
13DA 0.394 1 7. 71 0.045 4.976E-01 0.2508 
23DA 0.538 28.84 0. 113 6.461E-01 0.2508 
33DA 0.438 33.95 0.027 5.371E-01 0.2508 
14DA 0.461 13.66 0.132 5.747E-01 0.2508 
24DA 0.455 18.96 0.081 5.242E-01 0.2508 
34DA 0.586 24.02 0.187 6.543E-01 0.2508 
11 EA 0.344 26.96 -.075 6.644E-01 0. 1951 
21EA 0.389 39.64 -.079 6.885E-01 0.1951 
31EA 0.404 52.82 -.042 7.843E-01 0.1951 
12EA 0.375 19.56 -.182 4.703E-01 0. 1 951 
22EA 0.236 27.75 ... 151 5.797E-01 0. 1951 
32EA 0.185 36.44 -. 161 5.576E-01 0. 1951 
13EA 0.698 22.87 0.186 8.196E-01 0. 1951 
23EA 0.629 30.34 0.088 7.380E-01 0. 1951 
33EA 0.586 40.00 0.132 7.380E-01 0. 1951 
14EA 0.598 24.98 0. 011 6.273E-01 0. 1951 
24EA 0.523 32.17 0.088 8.470E-01 0 .1951 
34EA 0.631 35.81 0.166 8.818E-01 0. 1951 
11 FA 0.415 12.88 0.185 1.084E+OO 0. 1951 
21FA 0.396 15.64 0.199 1.024E+OO 0. 1951 
31FA 0.478 28.01 0.351 1 .224E+OO 0. 1951 
12FA 0.442 16.25 0.345 1 .330E+OO 0. 1 951 
22FA 0.453 21 .34 0.394 1 .330E+OO 0. 1951 
32FA 0.435 23.99 0.280 1.213E+OO 0. 1951 
13FA 0.388 16.85 0.279 1 .096E+OO 0. 1951 
23FA 0. 411 21.78 0.289 1 • 300E+OO 0. 1951 
33FA 0.446 24.33 0.352 1.293E+OO 0. 1951 
14FA 0.420 13.29 0.350 1 . 383E+OO 0. 1951 
24FA 0.443 21 .87 0.335 1.386E+OO 0. 1951 
34FA 0.449 21 .29 0.319 1.353E+OO 0. 1951 
11GA 0.408 8.80 0.309 1 .081E+OO 0. 1951 
21GA 0.457 19.31 0.308 1 .190E+OO 0. 1951 
31GA 0.465 21 .32 0.301 1 .138E+OO 0. 1951 
12GA 0.424 10.54 0.322 1. 368E+OO 0. 1951 
22GA 0.459 15.64 0.345 1 • 396E+OO 0. 1951 
32GA 0.496 21 • 1 4 0.347 1 . 440E+OO 0. 1951 
13GA 0.348 10.89 0.290 1.274E+OO 0. 1951 
23GA 0.438 17.69 0.305 1 .269E+OO 0. 1951 
33GA 0. 481 20.41 0.334 1 . 254E+OO 0. 1951 
14GA 0. 401 15.42 0.480 1.856E+OO 0. 1951 
24GA 0.402 20.42 0.303 1 .353E+OO 0. 1951 
34GA 0.462 21 .57 0.403 1 . 559E+OO 0. 1951 
11 HA 0.435 7.69 0.327 1 .322E+OO 0. 1951 
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APPENDIX I <continued) 

Plot 7T1 7T2 'ITa 7T4 

21HA 0.481 11 • 89 0.274 1.191E+OO 0.1951 
31HA 0.413 18.22 0.196 9.929E-01 0. 1951 
12HA 0.398 5.98 0.344 1 . 390E+OO 0. 1951 
22HA 0.441 11 • 03 0.283 1 . 308E+OO 0. 1951 
32HA 0.427 14.64 0.297 1 .329E+OO 0. 1951 
13HA 0.379 6.89 0.295 1 .544E+OO 0. 1951 
23HA 0.457 1 0. 1 0 0.332 1 . 373E+OO 0. 1951 
33HA 0.432 14.43 0.296 1 .420E+OO 0. 1951 
14HA 0.438 9.01 0.350 1.487E+OO 0. 1951 
24HA 0.480 11 • 38 0.156 1 • 320E+ 00 0. 1951 
34HA 0.484 11 • 70 0.339 1 .405E+OO 0. 1951 
11 AB 0.392 12.24 0.157 7.815E-01 0.1951 
21AB 0.395 15.96 0.069 7.082E-01 0. 1951 
31AB 0.466 22.45 0.138 7. 123E-01 0. 1951 
22AB 0.317 13.31 0.214 1 • 139E+OO 0. 1951 
32AB 0.355 20.65 0.139 8.860E-01 0. 1951 
23AB 0.267 12.72 0.193 1.152E+OO 0. 1951 
33AB 0.245 16.84 0.150 9.739E-01 0. 1951 
14AB 0.213 6.81 0.288 1.647E+OO 0. 1 951 
24AB 0.155 1 0. 15 0.142 1 .020E+OO 0. 1951 
11 AC 0.420 8.36 0.409 1 .553E+OO 0 .1951 
31AC 0.507 20.58 0.327 1 .312E+OO 0. 1951 
22AC 0.442 13.40 0.374 1 .639E+OO 0. 1951 
32AC 0.485 17.84 0.346 1 .609E+OO 0 .1951 
13AC 0.418 12.52 0.459 2.098E+OO 0. 1951 
23AC 0.408 15.20 0.304 1.454E+OO 0. 1951 
33AC 0.453 17.43 -.041 1 .439E+OO 0. 1951 
14AC 0.246 9.28 0.273 1 • 517E+oo 0. 1951 
24AC 0.390 13.53 0.323 1 .641E+OO 0. 1951 
34AC 0.381 16.55 0.253 1.152E+OO 0. 1951 
11 AD 0.467 10.57 0.327 1 .079E+OO 0. 1951 
21AD 0.488 18.44 0.258 9.840E-01 0.1951 
31AD 0.457 24.16 -.070 6.996E-01 0. 1951 
12AD 0.436 10.68 0.417 1 .517E+OO 0. 1951 
22AD 0.500 12.67 0.361 1 • 293E+OO 0. 1951 
13AD 0.407 11 .82 0.383 1 .286E+OO 0. 1951 
23AD 0.474 14.07 0.361 1 . 327E+OO 0. 1951 
33AD 0.492 15.20 0.313 1 • 208E+OO 0. 1951 
14AD 0.417 10.46 0.476 1 .593E+OO 0. 1951 
24AD 0.494 18.05 0.433 1 . 563E+OO 0. 1951 
34AD 0.497 18.80 0.352 1 . 460E+OO 0. 1951 
11 AE 0.483 13.48 0. 191 2.810E-01 0. 1 951 
21AE 0.486 19.40 0.173 2.686E-01 0. 1951 
31AE 0.460 23.83 0.090 2.318E-01 0. 1951 
12AE 0.031 9.31 0.215 2 .144E-01 0. 1951 
22AE 0.505 13.44 0.161 1 • 782E-01 0. 1951 
32AE 0.504 15.50 0.232 1 .803E-01 0. 1951 
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APPENDIX I <continued> 

Plot 1T1 1T2 1T3 1T .... 1Te; 

13AE 0.300 9.71 0.028 1 .327E-01 0. 1951 
14AE 0.346 10.08 0.023 1.115E-01 0. 1951 
11 AF 0.446 10.55 0.109 3.555E-01 0. 1951 
21AF 0.541 1 4. 81 0.269 3.902E-01 0. 1951 
31AF 0.545 23.19 0.276 4.483E-01 0. 1951 
32AF 0.514 22.89 0.220 4.478E-01 0. 1951 
13AF 0.421 8.87 0.230 4.929E-01 0. 1951 
33AF 0.476 16.84 0.154 4.225E-01 0. 1951 
14AF 0.391 8.85 0.072 3.514E-01 0. 1951 
24AF 0.405 16.45 0.221 5 .159E-01 0. 1951 
11 AG 0.480 18.06 0.508 5. 163E+OO 0. 1951 
21AG 0.464 20.11 0.500 5.269E+OO 0.1951 
22AG 0.496 18.74 0.569 4.873E+OO 0. 1951 
13AG 0.408 10.83 0.526 4.935E+OO 0. 1951 
14AG 0.332 7.68 0.450 4.634E+OO 0. 1951 
34AG 0.389 16. 17 0.439 4.670E+OO 0 .1951 



APPENDIX J 

DATA FOR VALIDATION OF 

PREDICTION EQUATION 

7T1 'ITa 7T3 7T ... 7T5 

0.290 34.555 0.3336 1.017E-02 0.4125 
0.437 28.589 0.6672 1 .324E-02 0.4125 
0.319 16.657 0.3161 1 .377E-02 0.4125 
0.506 33.109 0.5426 1. 295E-02 0.4125 
0.470 10.850 0.5036 4.582E-03 0.4125 
0.261 10.822 0.2662 6.204E-03 0.4125 
0.340 17.631 0.3494 7.379E-03 0.4125 
0.504 8.495 0.4342 6.204E-03 0.4125 
0.412 10.477 0.3575 7.379E-03 0.4125 
0.266 14.909 0.2451 1. 734E-02 0.4125 
0.520 7.727 0.3862 1. 557E-02 0.4125 
0.363 8.122 0.3765 9.121E-03 0.4125 
0.419 23.419 0.3585 1 .355E-02 0.4125 
0.307 6.725 0.3331 1 .374E-02 0.4125 
0.338 12. 178 0.2781 1 .471E-02 0.4125 
0.436 13.677 0.3368 1. 764E-02 0.4125 
0.262 5.597 0.2293 1 • 385E-02 0.4125 
0.186 6.741 0.2621 1 .425E-02 0.4125 
0.091 9.876 0.2245 1. 311 E-02 0.4125 
0.281 5.625 0.2539 1.501E-02 0.4125 
0.274 9.853 0.2545 1 .747E-02 0.4125 
0.338 10.658 0. 2891 1. 888E-02 0.4125 
0.202 4.645 0.2679 1.408E-02 0.4125 
0.227 7.894 0.3236 1 • 324E-02 0.4125 
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