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.CONCURRENT TwO-PHASE FLOW OF LIQUIDS AND GASES 

IN HORIZONTAL PIPING

CHAPTER I 

INTRODUCTION

The General F ie ld  of Two-Phase F l w . The mechanics o f  mo­

t io n  between two f lu id s  and the in t-erp l.^  o f  fo r c e s  at th e in te r fa c e  

between th ese  f lu id s  have been the su b ject of much th e o r e t ic a l and ex ­

perim ental e ffo rt, by engineers, m athem aticians, and p h y sic is tsn  The 

co m p lex ities  brought about by th e sim ple ad d ition  of a f lu id  property  

d isc o n tin u ity  (th e  in te r fa c e )  are m anifold; and thus th e  problem is  

in tr ig u in g  to  the th e o r is ts»  These same co m p lex itie s  are rather more 

d isco n certin g  than  in tr ig u in g  to  the design  engineer; fo r  he f in d s  th at  

the th e o r e t ic a l s tu d ie s , although in te r e s t in g ,  do not g iv e  him th e  ans­

wers he needs to design  h is  ecjjipment» For t h i s  reason , th ere  have 

also  been many purely  em pirical attem pts to  get the badly needed ans­

wers»

The motion o f two phases i s  a broad su b jec t. For in s ta n c e , 

th is  f ie ld  in c lu d es  the s tu d ie s  of wind on a su rface  of w ater such as  

reported by R u sse ll (65) in  1844, la t e r  by ^Jefferys (4 6 ) ,  and th o r­

oughly tr e a te d  by Lamb (51)° There has been much work on th e  tra n s­

p o rta tio n  of s o l id s  by f lu id iz a t io n ,  a f a i r l y  recen t notable exaiaple
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being Vogt and White (74}° An o ffsh o o t of t h is  problem is  in  th e  a ir  

d r i l l in g  of o i l  w e l l s ,  r e c e n tly  tr e a te d  by Scott (69),. Gray (.36) , and 

Angel (3)o Also the in te r e s t  has been h iÿ i on g a s - liq u id  and l iq u id -  

l iq u id  flow in  porous re se r v o ir  media_, th is  in t e r e s t  sparked la r g e ly  by 

the work of Buckley and L everett (2 ) .  But th e w idest in te r e s t ,  and the  

g r e a te st  problems, a r is e  with th e  sim idtaneous flow o i f lu id s  in p ip in g , 

Two-Phase Flow in  the Production of O il and Gas. Even when nar­

rowing t h i s  su b ject to the m ultiphase flow  of f lu id s  through pipes one 

f in d s  a wide area o f in t e r e s t .  In the production d iv is io n  of the o i l  in ­

dustry  for in sta n ce , th e  sim ultaneous flow  o f  o i l  and gas i s  th e  common­

p lace operation  ra th er than th e  ex cep tio n .

One common problem i s  in  production tubing where severa l thous­

and, f e e t  of v e r t i c a l  d is ta n c e  are u su a lly  in v o lv ed . Thus th e  pressure 

and sometimes the temperature are g r e a t ly  d if fe r e n t  from bottom to  top  

and th ere i s  an appreciab le change in  a l l  th e  f lu id  p rop erties  as the flow  

proceeds up the tu b in g . In a d d itio n , gas i s  o ften  in jec te d  at th e  bottom  

of th e  tubing s tr in g  to  help  in crea se  the o i l  flow  r a te . The b a s ic  prob­

lem here i s  e i th e r  to  g e t the maximum o i l  ra te  or to  g e t  a c e r ta in  pro­

d u ction  rate w ith  a minimum volume of g a s . Although th e  problem i s  easy  

to d e f in e , i t  i s  hard to  s o lv e , a s can be seen by studying the p ioneering  

work on t h is  problem by Uren e t ,  a l ,  (72) and G ilbert (3 5 ), and la t e r  e f ­

f o r t s  by Poettman and Carpenter ( 6 l ) ,  Baxendall (1 2 ) , and McAfee (5 7 ) ,

Once th e  o i l  and gas are on th e  su rface , th e  flow  i s  horizonta l 

rather than v e r t i c a l ,  but s t i l l  i t  i s  o ften  in  two phases. P a r tic u la r ly  

t h is  i s  becoming tru e in  automated ga th erin g , t e s t ,  and custody tr a n s fe r  

system s with th e ir  accompanying c e n tr a liz e d  b a t t e r ie s .  With the recent



tremendous expansion o f o ff-sh o r e  production , th e  two- phase flow  problem 

always a r i s e s .  Here th e probl an i s  one of balancing econom ics. A larger  

l i n e  c o s ts  more money to buy and la y j but to balance t h is  a larger p r e s ­

sure drop in c r e a se s  the subsequent compression c o s t s .  To perform an 

adequate economic balance,,, one must, be able to predict- the pressure drop 

a c c u r a te ly . There have been many attem pts to  make t h is  p r e d ic tio n , as 

w i l l  be noted in  th e  la t e r  chapters.

A ra th er  in te r e s t in g  o ff-sh o o t  of th e  h o r iz o n ta l twc—phase flow  

problem has r e c e n t ly  rece ived  a tte n t io n  in  Canada. I t  i s  found th a t ,  

when flo w in g  a h ig h ly  v isc o u s  crude o i l ,  th e  pressure drop may be reduced 

by th e  a d d it io n  of w ater in  th e  l i n e .  This r e s u lt  i s  contrary to  that, 

u su a lly  found by th e a d d itio n  o f a second phase; but i t  i s  h ig h ly  ad­

vantageous to  anyone faced  w ith  th e  p r a c t ic a l problem, o f transporting  

v isc o u s  crude in  a p ip e lin e . Some recen t experim ental and th e o r e t ic a l  

treatm ents o f  t h i s  important tw o-phase flow problem can be found in  th e  

work by C harles, e t .  a l .  (2 6 ,2 ? ) ,  and by R ussell and C harles (66)..

Flow Problems in  Plant P r o c e ss in g . In  th e  p rocessin g  indus­

t r i e s ,  two-phase flow i s  most commonly found in  a s so c ia t io n  w ith th e  

exchange o f  heat an d /or chan l e a l  r e a c tio n . Whenever th ere  i s  b o i l in g ,  

condensation  or evap oration  tw o-phase flow  i s  in vo lved  in  th e  equip­

ment. O ften th ere  are lim ita t io n s  as to th e  a llow ab le  pres,sure drop, 

so a good method o f p r e d ic tio n  i s  req u ired . T his phase o f the problem ■ 

was recogn ized  and in v e s t ig a te d  some 20 years ago . In  fact,, th e  fir s t-  

ser io u s study of tw o-phase pipe flow  was d ir e c te d  toward th e  combination  

with he.'jcb tr a n s fe r j  fo r  exam ple, the work by Benjamin and M iller  (1 5 ) ,  

D ittu s  Sind Hildebrand (31.,), and McAdams, e t .  a l .  (5 6 ) .
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I f  in  ad d ition  th ere  i s  a chem ical rea c tio n  involved  th e  volume 

of each f lu id  in  p lace  in  a two-phase system i s  a lso  of great im portance, 

for th e  residence time in  the rea c to r  i s  always an important v a r ia b le  

in  the o v e r -a ll rea c tio n  k in e t ic s .  A lttiou^ th ere has been a m ultitude  

of data  reported on the sh u t- in  (or in -p la c e j  r a t io s ,  the on ly  accepted  

gen era lized  c o r r e la t io n  i s  th a t  by Lockhart and M a rtin e lli (5 2 ).

A fu r th er  com plication  a r is e s  when th e  two-phase p ip e lin e  flow  

in c lu d es  appreciable h i l l s  and v a l le y s .  A report on the ex+.ra pressure  

drop to b e expected  due to  h i l l s  was published  by Brigham; H olstein ., and 

Huntington (21) based on th e ir  lab oratory  data: and by Baker (6 .7 )  and 

Flanigan (32) on f i e l d  d a ta . From th e se  papers one can see the pro ■ 

nounced e f f e c t s  th a t  h i l l s  may have on pressure drop in  two-phase pipe 

l in e s .

Scope o f Present I n v e s t ig a t io n . I t  i s  apparent from th e  above 

th a t th ere i s  a la r g e  array o f  tw o-phase flow problems which, at b est, 

are only p a r t ia l ly  so lv e d . The immediate q u estio n , th en , becomes one 

of narrowing down th e  scope of an in v e s t ig a t io n  to  on ly  a small fa c e t  of 

th e t o t a l  problem,.

In review ing th e  l i t e r a tu r e  on two-phase flew  and con sid ering  

th e  needs of in d u stry , i t  appears th at th e  g r e a te s t  occurrence of two- 

phase phenomena i s  in  the sim ultaneous h o r iz o n ta l pipe flow  of l iq u id  

and gaso Also t h is  fa c e t  of th e problem is  among th e  l e s s  w ell under­

stood a lth o u ^  i t  has rece iv ed  a la r g e  amount o f a tte n t io n  in  th e l i t e r - 

atur'e.

The in v e s t ig a to r s  o f  g a s - liq u id  pipe flow  can be d iv id ed  in to  

two c la s s e s .  A sm all group, has a ttack ed  th e  problem w ith  a th e o r e t ic a l
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approach» The la rg er  group^, by far» has attempted to c o r r e la te  th e ir  

data using em pirica l means vdth a minimum of th e o r e t ic a l reasons for  

th e ir  co rr e .la tio n s .

The r e s u lt s  of th ese  two typ es of in v e s t ig a t io n s  have not been 

e n t ir e ly  sa t is fa c to r y »  So fa r  th e  e m p ir ic is ts  seem to  have the edge over 

the th e o r is t s  ( la r g e ly  due to w eight of numbers). The th e o r e t ic a l  t r e a t ­

ments have in  no case lead  to a workable c o r r e la t io n  o f  two-phase f lo w ,  

phenomena. The e m p ir ic is ts  have produced a m ultitude of c o r r e la t io n s ,  

each one f i t t i n g  th e  data presented; however as i s  o ften  tru e  with em­

p ir ic a l  approaches, th ese  c o r r e la tio n s  lo s e  t h e ir  v a l id i ty  when th e  range 

of v a r ia b le s  i s  extended» Some of th ese  are being used today fo r  th e  

p red ic tion s the engineer must nake » but th e ir  accuracy lea v es  much to  be 

desired»

The purpose of t h is  in v e s t ig a t io n  o f two-phase flow i s  to  a t­

tempt to weld th e th e o r e t ic a l  and th e  em pirical methods. The approach 

used was to study th e  v isu a l flow  phenomena; and. from th ese  v is u a l  

stud ies»  to develop  a th e o r e t ic a l model which imtched the observed flow  

c h a r a c te r is t ic s»  With th is  approach i t  was p o ss ib le  to  p red ic t which 

v a r ia b le s  are important, in  two-phase f lo w , and to  a larg e  exten t the 

q u a n tita tiv e  importance of th e se  v a r ia b le s . The th eo ry  i s  extended as 

fa r  as p o ss ib le  toward th e  d es ired  c o r r e la t io n s , and then em piricism  i s  

introduced where necessary to  determ ine con stants of m u lt ip lic a t io n  or 

exponentiation  in  the c o r r e la t io n s . This approach i s  s u c c e s s fu l ly  used  

in  la t e r  c h a p te r s .to  predict, both th e  h o r izo n ta l two-phase pressure drop 

and th e  r a t io s  of f lu id s  i n  p la ce .



CHAPTER I I

PREVIOUS INVESTIGATIONS

C orrelations by M a r tin e lli and Coworkers 

In any t r e a t i s e  on simultaneous g a s - liq u id  pipe flo w , one i s  

drawn to  th e  p ioneering e f f o r t s  o f M a r t in e lli ,  e t ,  al« (53 )• The corre­

la t io n s  presented in  that paper and in  la t e r  papers by M a r tin e lli ,  Put­

nam and Lockhart (5 4 ) , by Lockhart and M a r tin e lli (5 2 ) , and by M artin e lli 

and N elson (55) have been the standard for  comparison o f  subsequent in ­

v e s t ig a to r s ,  Let us b r ie f ly  review t h is  work.

Although never s ta ted  d ir e c t ly  in  any of the above papers, 

th ere are two basic assumptions underlying the theory in  th ese  c o r r e la ­

t io n s ,  The f i r s t  assumption i s  that the f r ic t io n  fa c to r  equation i s  

v a lid  in  tw o-phase flew ; and th a t th e  fu n c tio n a l r e la t io n sh ip  between 

th e  f r i c t io n  fa c to r  and th e  Reynolds* Number remains th e  same in  two- 

phase flow  as in  s in g le -p h a se  flow .

The second assum ption i s  th at th e g a s  flo w s through a constant 

c ro ss  s e c t io n a l p ortion  of th e  pipe and th e  liq u id  through the remainder. 

This assumption e lim in a tes  th e  commonly found flow  p attern s of Plug and 

Slug Flew, wherein th e  liq u id  and gas a lte r n a te  th e ir  p o s it io n s  in  a 

p ortion  of th e  p ip e . In s p ite  of b ein g  e lim in ated  in  th e  th e o r e t ic a l  

a n a ly s is ,  however, th ese  typ es of flow  are in clud ed  in  the data corre­

la te d  by M a r t in e lli ,  e t ,  a l ,

6



The pressure drop in  two-phase flow  i s  grea ter  than in  s in g le -  

phase flowo The magnitude of t h i s  in crease  i s  covered in  the M a rtin e lli  

c o r r e la t io n s  by th e  use. o f th e  hydraulic r a d iu s a n d  by recogn izin g  the  

f a c t  th a t  the a v a ila b le  c r o s s - s e c t io n a l area to  flo w  of e ith e r  phase i s  

reduced by the presence of the o th er phase. These b a sic  te n e ts  lea d  to  

th e  fo llo w in g  equation,.

/W  ; _ At/ (a) WA\ A l '  ^

where (AP/AL)ijp i s  th e  a c tu a l tw o-phase pressure drop; (AP/Al)q is  the  

pressure drop one would expect i f  only gas were flow in g  through the pipe 

w ith no liq u id  pre sent ; and a i s  a d im en sion less hydraulic rad ius term 

which accounts fo r  the n o n -c ircu la r  (a c tu a lly  crescen t shaped) nature of 

th e  l iq u id  cross  s e c t io n . The other terras are d e n s ity , p, v is c o s i t y ,  p, 

and mass flew  r a te ,  W. N otice th at there i s  no gas hydraulic rad ius  

terra corresponding to  th e  l iq u id  terra, a .  M a r t in e ll i ,  e t .  a l . ,  from 

t h e ir  v isu a l d a ta , reasoned th a t  th e  a c tu a l c ro ss  s e c t io n  a v a ila b le  to 

gas flow  was c lo se  to  being c ir c u la r ,  and fu r th e r  f e l t  th a t any s l ig h t ly  

n o n -c ircu la r  nature of th e  gas cro ss  s e c t io n  would be accounted fo r  in  

the liq u id  term . By tr ia l-a n d -e r r o r  th ey  determ ined what v a r ia b le s  b est  

c o rr e la ted  cx aga in st the measured p ressure drop. The b est f i t  was 

found by c o r r e la t in g  oX ^  a g a in st i t s  m u lt ip lie r ,  ( pq)  ' x

In  one of th e ir  la t e r  papers, M a r t in e ll i ,  e t .  a l .  (4 2 ) ,  r e a liz e d  

th a t  the c o r r e la t in g  terra, (th e  terra con ta in in g  the p ' s ,  p 's ,  and W's) 

was a c tu a lly  th e  r a t io  of th e  p ressure drop i f  on ly  liq u id  were flo w in g .
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over th e  pressure drop i f  on ly  gas were flow in g . Thus the f in a l  c o rr e ­

la t io n s . could be g r e a tly  s im p lif ie d 'b y  r e la t in g  the in crease  in  pressure  

drop to  the a l l - l iq u id /a l l - g a s  pressure drop r a t io .

What o f  the th e o r e t ic a l  v a l id i t y  of th e  M a r tin e lli co rre la tio n s?  

There are two b a s ic  points in  th e  l o g i c  le a d in g  to  th e ir  c o r r e la t io n s  

th a t  are open to  con sid erab le  doubt. The f i r s t  i s  in  th e use of the 

hydraulic rad iu s. The hydraulic radius,, according to i t s  d e f in it io n  i s  

the c r o s s - s e c t io n a l area d iv id ed  by the w etted  perim eter, where th e  

w etted  perim eter i s  the plane along which the shear fo r c e s  act with a 

d ece lera tin g  fo r c e  on th e f lu id .  This r e s u lt s  in  a pressure drop in  th a t  

f lu id .  But in  two-phase flow , at the in te r fa c e  between th e  gas and l i q ­

u id , th ere  i s  an a c c e le r a t in g  fo rce  on the l iq u id  rath er than a d e c e l­

era tin g  fo rce ; so t h i s  in te r fa c e  cannot be properly  considered part of 

the w etted  perim eter. I t  i s  so considered  in  th e  c o r r e la t io n s .

The second, and probably the g r e a te r  flaw  i s  in  the assumption  

that can be co rr e la ted  properly aga in st i t s  m u lt ip lie r ,

( pl/ pq) ^  There i s  no th e o r e t ic a l  or

lo g ic a l  b a s is  f o r  t h is  assum ption. This i s  undoubtedly the reason fo r  

the banding of data around M a r t in e l l i 's  c o r r e la t io n , as was pointed  out 

by Gazley and B erge lin  (3 4 )o Gazley and B erge lin  (1?) a lso  mentioned 

th a t th e  c o r r e la t io n  i s  not as accurate as i t  f i r s t  appears, s in c e  th e  

data were p lo tte d  proportional to  the square root o f the pressure drop, 

rather than to  the f i r s t  power. Thus an apparent error of 25 per cent i s  

r e a l ly  an error o f 55 per cent on pressure drop.

In sp ite  o f th e se  f a u l t s ,  the M a r t in e lli  c o r r e la t io n s  have re­

mained the most commonly used o f th o se  a v a ila b le  in  the tw o-phase flow
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lite r a tu r e ,, and they have been coirmonly used as a b a s is  fo r  rev is io n  and 

ex ten sio n . In a d d itio n . l i a r t in e l l i ’ s i s  th e on ly  gen era lized  c o rr e la tio n  

a v a ila b le  fo r  th e p red ic tion  of sh u t-in  (or  in -p la c e )  g a s /liq u id  r a t io s .

R evisions and Extensions o f  the M a rtin e lli-C o r re la tio n s . Many 

people have taken M a r tin e lli 's  b asic  co rre la tio n s  and extended them to  

in c lu d e other ranges o f pressure, pipe diam eter, and flow r a te . For 

in s ta n c e , B egell and Hoopes (14) showed th at in  a b o ilin g  mixture the 

expected pressure drop should be higher than pred icted , due to  a c c e le ­

ra tio n  and g r a v ita t io n a l e f f e c t s .  They show how to  ca lcu la te  th ese  

extra  term s. Johnson and Abou-Sabe (48) found th a t th e  amount of liq u id  

in  p lace  in  the pipe was le s s  than pred icted  by M a r tin e lli .  Alves (2) 

reported that the flcw iqg m ixtures ex h ib ited  various types of flow  p at­

tern s (S lu g , P lug, S t r a t i f ie d ,  e t c . )  and found th a t the pressure drops 

and the v a l id i t y  of the M a rtin e lli co rre la tio n s  depended on the pactern  

o f  flow . This was a lso  expressed by B ergelin  and Gazley (1 6 ,1 7 ,3 4 ) ,  

d Hoogendorn (4 2 ) . Rogers (63) used the M a rtin e lli c o rr e la tio n  to
"  T ‘

ca lc u la te  pressure drops fo r  two-phase flow  o f hydrogen, but presented  

no data.

Baker in  sev era l a r t ic le s  (6 ,8 ,9 ,1 0 )  has made some major re­

v is io n s  of M a r t in e lli 's  b a sic  pressure drop c o r r e la tio n . These are 

based on a combination of f i e l d  and laboratory data. The c o r r e la t io n  

was em p ir ica lly  "fudged" using various parameters depending on th e flow  

p a ttern . He a lso  co rr e la ted  flow  patterns based on A lves' (2) d escr ip ­

t io n s .  Baker's a n p ir iea l c o r r e la tio n s  have been w id ely  used in  the  

p ip e lin e  branch of the petroleum  industry fo r  th e p red ic tion  of tw o- 

phase pressure drops, and have bean found to  be p a r tic u la r ly  u se fu l in
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the Slug Flov; reg ion  ( 5 ) ,  Another t e s t  of M a r t in e ll i 's  c o r r e la t io n  was 

made by van Wingen (73) on o i l  and gas gath erin g  ^ s te in s . He found at 

low gas ra te s  th a t the c o r r e la t io n  was too low; ana at high gas rates., 

to o  h igh . He presented  new curves which ca:ae c lo se r  to  matching h is data.

Another important ex ten sion  o f  th e M a r tin e lli form o f co rre la ­

t io n  was made by Ghenoweth and Martin (2 9 ) . Their co r r e la tio n  was based 

on th e r a t io  of the a ctu a l two-phase pressure drop to the pressure drop 

p red ic ted  i f  a l l  the flow in g  m ateria l were l iq u id .  They included  corre­

la t io n  parameters of liq u id  volume fr a c t io n  in  ad d ition  to  the M a rtin e lli  

r a t io  o f th e a l l - l iq u id  to  the a l l - g a s  pressure drops. However, in  th e ir  

pressure drop r a tio  they used the t o ta l  mass r a te ,  rather than the mass 

ra te  of each phase se p a r a te ly , as used by M a r tin e lli ,  e t .  a l .  Their corre­

la t io n  f i t s  data at g rea ter  ranges of pressure and p ipe diam eter than 

M a r t in e l l i 's .  Reid, e t .  a l .  (62) took data in  A-inch and 6 -in ch  piping  

and a lso  found th at the Ghenoweth and Martin c o r r e la t io n  was more accu­

ra te  than M a r t in e l l i ' s .  Also th ey  te s te d  th e ir  data aga in st Baker's 

c o r r e la t io n  (10) and found th a t  th ere  was very poor agreement.

Pseudo F r ic t io n  Factors

A number of in v e s t ig a to r s  have attem pted to  c o r r e la te  h orizonta l 

two-phase pressure drops using a m od ified  f r ic t io n  fa c to r  equation or a 

m odified  Reynolds Number c o r r e la t io n . For in s ta n c e , B ertu zz i, e t .  a l .  

(1 9 ) ,  ca lc u la te d  a f r i c t io n  fa c to r  u sin g  th e t o t a l  volum etric liq u id  and 

gas ra te  and th e  to ta l  mass r a te .  Their Reynolds Number was a combina­

t io n  o f the liq u id  and gas Reynolds Numbers to  various powers, depending 

on th e  r e la t iv e  amounts of liq u id  and gas f lo w in g . Tek (7 0 ,7 1 ) rec en tly
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has used th is  same c o r r e la t in g  techn ique on v e r t i c a l  flo w . In th e se  co- 

r e la t io n s ,  th e  exponents on the Reynolds Number were ad ju sted  so that 

when only one f lu id  i s  f lo w in g , th e  c o r r e la t in g  parameters reverted  to  

the proper s in g le -p h a se  Reynolds Number and f r i c t io n  fa c to r . The authors 

seemed to  f e e l  th a t  t h is  put the c o r r e la t io n  on a sound th e o r e t ic a l b asis .-  

They n eg lec ted  to  m ention, however, that th e  c o r r e la t io n  i t s e l f  does not 

rev er t to  the s in g le -p h a se  v a lu es— on ly  th e  parameters do. B r ie f ly  t-hen 

i t  i s  not d i f f i c u l t  to  see  th a t th is  approach i s  a lso  la r g e ly  e m p ir ica l- 

Schneider, W hite, and H'mtington (68) have a lso  used a pseudo­

f r ic t io n  fa c to r , t h i s  based on the gas flow r a te s .  I t  was co rre la ted  

again st th e  r a t io s  of the gas to  liq u id  mass r a te s  and th e  gas to  l iq u id  

v i s c o s i t i e s .  This c o r r e la t io n  has found some a p p lic a tio n  in  th e 'p e tr o l-  

eura p ip e lin e  in d u stry ,

Baxendall (1 2 ,1 3 ) in  two papers has shown a h orizon ta l two- 

phase c o r r e la t io n  of f r ic t io n  fa c to r  using  a m odified Reynolds Number 

in  which th e  v i s c o s i t y  i s  not in clu d ed . This c o r r e la t io n  i s  based on 

Poettmann and C arpenter's ( 6 l )  o r ig in a l work on v e r t i c a l  flow . I t  c lo s e ly  

p red ic ts  th e h o r iz o n ta l pressure drop fo r  B axen d a ll's  s p e c if ic  f i e l d  con­

d it io n s ,  However, i t  i s  somewhat l im ite d , s in c e  the flo w  r a te s  were high 

and th e  g a s - o i l  r a t io s  were q u ite  low , Hoogendorn (42) has presented  a 

v a r ie ty  of p se u d o -fr ic t io n  fa c to r  c o r r e la t io n s , each d if f e r in g  depend­

in g  on th e  flo w  p a ttern . His data  are a ls o  compared against th e  M arti­

n e l l i  c o r r e la t io n s , and w ere g e n e r a lly  not found to  agree w ith  them.

Em pirical C orrela tion s  

A ll the above-m entioned work, although em p irica l t o  a la rg e
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degree, was at le a s t  p a r t ia l ly  based on e s ta b lish e d  s in g le -p h a se  flow  re ­

la t io n s h ip s . However, in  ad d ition  to th e s e ,  th ere are a number of corre­

la t io n s  th a t are s t r i c t l y  em p irica l. The most noteworthy i s  th e one pre­

sented by White and Huntington (7 7 ) . T his c o r r e la t io n  c o n s is te n t ly  f i t s  

the low pressure lab oratory  data in  th e Wavy and (Semi) Annular flow p a t­

te r n s . For in s ta n c e , i t  has been te s te d  a g a in st  th e data of Schneider (6?) 

Green (37) M a r tin e lli  (53) and Jenkins (4 7 ) ,  and i t  i s  remarkably accu­

r a te .  However, i t  does not f i t  th e  pressure drop data at la r g er  diam eters 

or h igher p ressu res . T h is, o f course, i s  a common fa u lt  of a purely em­

p ir ic a l  c o r r e la t io n . I t  must n e c e s sa r ily  be viewed with d is tr u s t  fo r  

con d itio n s o u ts id e  the range of data on which i t  i s  based.

A recent c o r r e la tio n  has been presented  by Chavez (2 8 ) . A de­

sign  engineer should be sk e p tic a l about using t h is  c o r r e la t io n  which i s  

supported by on ly  a sm all amount of data. Berry and Moreau (18) have 

presen ted  a c o r r e la t io n  r e la t in g  th e  p ip e lin e  e f f ic ie n c y  of a gas con­

densate l in e  to the g a llo n s  per MM3CF of condensate ca rr ied  in  the l in e .

No data are p resen ted , so th ere  i s  no adequate t e s t  of i t s  v a l id i t y .  

Flanigan (32) has a lso  presented  a p ip e lin e  e f f ic ie n c y  c o r r e la tio n  fo r  

condensate l i n e s .  This i s  based on gas v e lo c ity  as w e ll  as th e  g a llo n s  

per MMSCF used by Moreau and Berry, The c o r r e la t io n  appears adequate 

for  the rather narrow range of data used . Baker (lO) has shown a "rule  

of thumb" method of approximating two-phase l in e  s i z e s .  He c a lc u la te s  

the diam eter needed to carry o n ly  the l iq u id ,  and the diam eter to  carry  

on ly  th e  g as. The diam eter of th e  l in e  needed to  carry than both i s  

m erely th e  sum o f th e se  tw o. Campbell (25) has a lso  mentioned a "rule  

o f thumb" fo r  condensate gathering l in e s  and g a so lin e  p lan ts wherein he
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c a lc u la te s  th e gas pressure drop and m u lt ip lie s  th is  by th ree  fo r  the 

two-phase pressure dropo He s ta te s  t h i s  method has been q u ite  su ccess­

fu l  fo r  t h is  lim ite d  a p p lica tio n .

Fundamental or T h eoretica l Work 

Gazley (33) has attempted a fundamental approach by in v e s t i ­

gating  the energy tr a n s fe r  and lo s s e s  at the g a s - liq u id  in te r fa c e , and 

a lso  measuring th e  regions of in t e r f a c ia l  s t a b i l i t y .  This work was 

l im ite d  to S tr a t if ie d  Flow, No g en era lized  or u n if ie d  theory has come 

of t h is  worico S im ilar data were taken by Hanratty and Enzen (40) in  a 

h o r iz o n ta l rectangular conduit flow ing water and a ir .  E x cellen t v e lo c ity  

p r o f i le  data were taken along with data on the ch aracter  of the water 

surface waves, but no gen era lized  "truths" concerning th e  mechanics o f 

the two-phase motion were apparent,

Govier and Omer (39) r e c e n tly  lave taken some ca re fu l sh u t-in , 

pressure drop and flow pattern data o f w a ter -a ir  pipe flow . Their data 

show the e x tr a  pressure drop expected due to  th e ad d ition  o f  th e  second 

phase and in  general agree w ith the data of Johnson and Abou-Sabe (4 8 ), 

and Schneider (68) « Aziz (4) attempted a th e o r e t ic a l treatm ent o f an­

nular flow of liq u id  and g as. This was based on th e  s in g le  phase th e o r ie s  

of von Karman (75)» He introduced  a r a t io ,  "K", which compares the ac­

tu a l two-phase pressure drop w ith  th a t p red icted  using von Karman's  

"universal v e lo c i t y  p r o f ile " . However, no gen era lized  r e la t io n s h ip  was 

found for th e  value o f  "K".

The e x c e lle n t  work by C alvert and W illiam s (23) should be 

m entioned. These authors in v e s t ig a te d  the annular v e r t ic a l  flow  of
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water and a ir i  however, th e ir  method of a n a ly s is  i s  quite b a s ic , and 

much of the th e o r e t ic a l  work is  eq u ally  v a lid  in  h orizonta l flow . Using 

an analogy to  s in g le -p h a se  f le w , they were able to  pred ict th e  pressure 

drops for  a l l  but the h igh est r a te s  wnere e n tr a inment i s  an important 

fa c to r . The on ly  attem pt to use t h is  same technique in  n orlzon ta l flow  

( s e e  Aziz above) has not been su c c e ss fu l. Abramson (1) in v e s tig a te d  

h o rizo n ta l annular flew  in  terms of in te r fa c ia l  turbu lence. He found 

th a t the p o in ts  of onset of in t e r fa c ia l  i n s t a b i l i t i e s  f i t  remarkably 

w e ll  w ith the accepted s in g le -p h a se  th e o r ie s  (11 ,75 ) of a laminar bound­

ary la y e r  and a turbulent core. However, he made no attempt to r e la te  

h is  fin d in g s  to a c o r r e la t io n  of pressure drops or sh u t- in  r a t io s .

Wicks and Dukler (78) have a lso  stu d ied  annular flow , d ir e c t in g  th e ir  

e f f o r t s  toward the amount of en trainmen t  as w e ll  as the pressure drop. 

Their work in d ic a te s  that th e  aotrance se c t io n  design and length  w i l l  

a f f e c t  th ese  flow  v a r ia b le s j  and triey point out the erroneous r e s u lts  

that may be reported  by th e use of too snort a s ta b i l iz in g  se c t io n  and 

t e s t  s e c t io n . The entrainm ent data were b est f i t  by a M a rtin e lli type 

c o r r e la t io n , I sb in , e t .  a l , , (44) were a lso  in te r e s te d  in  volumes in  

p la c e . They reported  data at wide ranges of temperature and pressure, 

but were not ab le to  arr ive  at a general c o r r e la t io n .

Summary

The u ltim ate  d esire  of any in v e s t ig a to r  of two-phase flow  is  

th e  understanding o f th e  flo w  mechanism such th a t he can p red ic t the  

pressure drop and th e in -p la c e  r a t io s  of f lu id s ,  and a lso  present a 

c le a r  p ic tu re  o f th e  flow  behavior w ith in  th e  p ip e . In reviewing the
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above in v e s t ig a t io n s  i t  becomes apparent th a t th e  most su c c e ss fu l pre­

d ic t io n  work has been done by those who have r e l ie a  on la r g e ly  em pirical 

means fo r  t h e ir  p red ic tio n  methods. These em pirica l methods, however/ 

are lim ite d  in  th e ir  a p p lic a b il ity  to  a rather narrow range of data. Fur­

th e r , th ey  add l i t t l e  t o  the b a sic  understanding of th e problem. The th e ­

o r e t ic a l  in v e s t ig a t io n s ,  on th e  other hand, have con trib u ted  to the under­

standing of th e  flo w  behavior 5 but in  no case  have they been su c c e ss fu l  

in  making the n ecessary  p red ic tio n s  in  h o r iz o n ta l flow . -The d e s ir e  of 

th is  w r iter  i s  to  use th e advantages of both approaches fo r  the problem,

I t  should be mentioned th a t the re fe r e n c e s  c i te d  in  t h is  chapter  

rep resen t on ly  a sm all fr a c t io n  of th e  t o t a l  a v a ila b le  l i t e r a tu r e  on the  

concurrent tw o-phase flow  of f lu i d s .  Only the a r t i c l e s  the w r iter  f e l t  

were most s ig n if ic a n t  were included  in  t h is  d is c u s s io n . P a rticu la r  s tr e s s  

was put on the more recent l i t e r a t u r e  except in  the c a ses  of o lder a r t i ­

c l e s  which have played a d ecid ed ly  important r o le .  For tne more in t e r ­

e s te d  reader, e x c e lle n t  b ib lio g r a p h ie s  of a l l  but th e  most recent l i t e r ­

ature can be found in  th e  w r itin g s  o f  I sb in , e t .  a l . ,  (i+3,45j Campbell 

( 2 4 ) and White ( 7 6 ) .



CHAPTER III  

EXPERIMENTAL EQUIPMENT AI\D PROCEDURE

In b r ie f ,  th e  equipment used was a double lo o p  o f c le a r  p la s ­

t i c  pipe through which a i r and various l iq u id s  could flow  sim ultaneously . 

The tub ing was f i t t e d  with pressure taps such th a t th e  pressure drop 

could be measured over portions of th e tubing as w e ll  as over the en tire  

t e s t  s e c t io n . In a d d itio n , other necessary  a u x ilia r y  equipn^nt such as  

o r i f i c e s ,  d is p i ace mart m eters, and thermometers were included  to  measure 

th e  flow  r a te s ,  tem peratures and the d i f f e r e n t ia l  and s t a t i c  pressures  

o f the flow in g  f lu id s .  Q u ick -c losin g  v a lv e s  were in s t a l le d  at the in ­

l e t  and o u t le t  to  help  measure the r a t io s  o f  the f lu id s  in  p la ce . A 

diagram of th e  t e s t  loop  i s  shown in  Figure I ,

T est S ection

I t  was f e l t  th a t good v is u a l  data on th e  flow in g  f lu id s  was a 

h ig h ly  important item  to  con sid er  in  t h i s  experim ental program. Clear 

p la s t i c  p iping seemed to  be made to order to f i t  t h i s  need,, A butyrate  

t e n i t e  p la s t i c  made by Tennessee-Eastman, so ld  under the trade name, 

K raloy, f i t  the requirem ents o f s tren g th , tran sparen cy , and ease of 

han d lin g . The tu b in g , nom inally 2 in ch es  in  d iam eter, was found to  nave 

an in te r n a l diam eter o f 1 ,975  in c h e s .

The tu b in g  was equi.pped w ith  t ig h t ly  f i t t i n g  b e l l  j o in t s .  By
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tr ia l-a n d -e r r o r  i t  was found th a t b e tte r  con n ection s for t l i is  purpose 

could be made by cu ttin g  o f f  the b e lle d  ends and butting th e  jo in t s .  This 

typ e  o f bond was more e a s i ly  repaired  in  case o f leak s and a lso  presented  

a smoother in tern a l su rface to  the flo w in g  f lu id s .  Cement fo r  jo in in g  

th e pipe se c tio n s  was made by d is so lv in g  chips o f th e  tubing in  ethylene  

d ic h lo r id e . Leaks could be d etected  by pressuring the p ip ing w ith a ir  

and spreading a soap  so lu tio n  on th e  jo in t s .

The t e s t  s e c t io n  was a double loop  so that an e f f e c t iv e ly  longer  

s e c t io n  could be contained in  th e space a v a ila b le , Attempts were made to 

heat and bend the tubing t o  make the th ree required "U" bends, but to no 

a v a i l .  E ventually  each "U" bend was fa b r ic a te d  from 9 short s tr a ig h t  

p iec es  of tu b in g  cut at a 9° angle at each end. This made acceptab ly  

smooth return lo o p s . The o v e r a ll t e s t  s e c t io n  was approxim ately 4 1 /2  

f e e t  wide and 27 f e e t  lo n g . This included  120 f e e t  of s tr a ig h t  tubing  

and 16 f e e t  in  th e  th ree  "U" bends.

At th e  in l e t  and o u t le t  ends, p la s t ic  s le e v e s  were cemented in  

th e p ip ing and in te r n a l ly  threaded fo r  1 1 /2  inch standard p ip e . The 

entrance mixing "tee" was made from a standard 1 1/2  inch pipe t e e  w ith  

a copper tubing in ser ted  in  th e  run o f  th e  t e e  to  in troduce the a ir  from  

a f l e x i b l e  hose in to  th e  t e s t  s e c t io n . The s id e  o u tle t  of th e  t e e ,  faced  

downward; was used fo r  th e l iq u id  entrance. On a l l  runs th ere  were 26 

in ch es of p la s t ic  p ip in g  f o r  a calming se c t io n  between th e  end o f  th e a ir  

entrance tubing and th e  f i r s t  pressure ta p , A c r o s s - s e c t io n  sketch of  

the entrance "tee" i s  shown in  Figure I I ,  Three b le e d -o f f  ta p s were in ­

s t a l le d  in  th e  t e s t  s e c t io n  to c o l le c t  l iq u id s  fo r  th e  sh u t- in  data.

Pressure ta p s  were p laced  a t s i x  lo c a t io n s  on th e  t e s t  s e c t io n .
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Their approximate lo c a t io n  i s  shown in  Figure I .  Taps No. 3 and No. L 

were a t  each end of a "U" return bend. Thus the pressure drop across  

th is  "U" bend could  be compared to  th e  t o t a l  pipe pressure drop to get 

the eq u iva len t length  of a bend. The pressure taps were 3/16 inch h o les  

d r i l le d  in  the top o f th e t e s t  p ip e , A short p iece  o f 1 /2  inch I ,D .

Kraloy tubing was cemented over the hole to  act as a l iq u id -g a s  separa­

tor to  keep liq u id  from carrying over in to  the pressure a in e s . For 

g rea ter  strength  a back-up p la t e ,  w ith  a h o le  cut fo r  th e  separator tub­

in g , was cemented to  th e  t e s t  pipe w a ll.  A brass adaptor was f i t t e d  in to  

th e top  o f the separator tub ing and fr%m th ere th e  l in e  went to  the appro­

p r ia te  m anom eter(s). A sketch o f t h is  pressure tap se t-u p  i s  shown in  

Figure I I I .

In some of th e  flow  p attern s the pressure f lu c tu a t io n s  were 

extrem ely h igh . In f a c t ,  in  Slug Flow sometimes th e  v a r ia t io n  in  the 

read ings was g rea te r  than the average reading.. A fter a few runs were 

made i t  became apparent th a t some method was needed to minimize the p res­

sure f lu c tu a t io n  in  the manometer l in e s .  The system f i n a l l y  s e le c te d  was 

a combination o f la r g e  b u ffer  cy lin d e r s  and a packing in s e r te d  in  brass  

f i t t i n g s .  The b u ffe r  cy lin d e rs  acted  as r e se r v o ir s  to  absorb th e pres­

sure f lu c tu a t io n s  and the packed f i t t i n g s  acted as a h ig h ly  r e s i s t iv e  

flow path. At th e  beginning th e brass f i t t i n g s  were packed with s t e e l  

w ool, but i t  was found th a t th ese  packings grad u ally  ru sted , c lo s in g  o f f  

th e  manometer l i n e s  com p lete ly . L ater , g la s s  w ool was used and i t  was 

found to  be e x c e l le n t .  I t  was necessary t o  t r y  variou s degrees of " t ig h t­

ness" in  th e  packing u n t i l  the f lu c tu a t io n s  were su ita b ly  damped out 

w ithout im pairing the rea d in g s . To help  ad ju st th e  p ack ing , a number
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of comparisons were made between readings w ith  and w ithout packing fo r  

th ose  ty p es  of flew  which had l i t t l e  pressure f lu c tu a t io n ,

A sketch of a ty p ic a l  manometer connection  i s  shown in  Figure 

IV. The reader w i l l  n o tice  th at t h is  com bination o f  b u ffer-p lu s-p a  eking 

i s  very  s im ila r  to  the common f i l t e r  c ir c u it  used in  radios^ t e le v is io n  

s e t s ,  and other e lec tro n ic  equipment to e lim in a te  th e  A. C. component of 

a D. C. v o lta g e  supply. There i s  a d ir e c t  analogy to  th e  re su lt  d esired  

in  th ese  experim ents, in  that i t  i s  d e s ir a b le  to  f i l t e r  out the "A. C." 

component of th e  p ressu re .

During some o f th e  runs, th e  manometers were a l l  connected to  

read s t a t ic  p ressu re , w ith  th e  exception  th a t  one manometer read th e  d i f ­

f e r  e n t a i l  from tap No. 3 to No, 4 across th e  return bend. With th is  s e t ­

up, any pressure d if f e r e n t ia l  reading across a given p ortion  of th e  t e s t  

s e c t io n  could be obtained by su btractin g  th e  two appropriate manometer 

rea d in g s. Later the l in e s  and manometers were changed so th a t a l l  mano­

m eters read d if f e r e n t ia l  read ings: th a t i s ,  from tap No. 1 to  No. 2,

tap No, 2 to  No. 3 , e t c .  In a d d itio n , a s t a t ic  reading was made at tap  

No. 3 to get the average pressure in  the t e s t  tu b in g . In th is  case any 

d esired  d i f f e r e n t ia l  reading over a la r g e r  p ortio n  o f  th e  pipe could be 

ca lcu la ted  by adding the expropriate manometer read in gs.

The manometer f lu id s  used were w ater mercury or tetrabrom oethane 

(Sp. Gr. 2 . 9 6 4 ) ,  depending on th e  s p e c i f i c  pressure range needed. Of 

course with e ith e r  manometer se t-u p , the pressure d i f f e r e n t ia ls  cou ld  be 

read over the en tir e  p ipe or on ly  a p ortion  of the pipe as d esired ; how­

e v er , i t  was found th a t even w ith  b u ffe r s  present in  th e  l i n e ,  th e  pres­

sure f lu c tu a tio n s  were too  great fo r  th e  in term ed ia te  pressures to  be
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meaningfulo For t h is  reason on ly  the o v e r a ll pressure drops are reported .

The o v e r a ll t e s t  s e c t io n  was mounted on a 1 -in ch  by 1 -in ch  angle  

iro n  frame with severa l angle iron  cro ss  bars to  support th e  tu b in g . The 

tubing sagged somewhat between th e  cro ss  b ars, but th e  d ev ia tio n  was 

judged to be no more tta n  1 /2  inch from the h o r iz o n ta l. In ad d itio n  th e  

frame was designed so th a t i t  could be ra ised  to  any d esired  angle fo r  

the in c lin e d  data reported  by Brigham (22) H o lste in  (41) and Coldiron (3 0 ). 

Since t h is  d is s e r ta t io n  i s  not d ir e c t ly  concerned with in c lin e d  data, the  

d e ta i l s  of th e  con stru ction  w i l l  be omitted» These d e t a i l s  may be found 

in  any of the above r e fe r e n c e s , in clud ing  p ic tu r e s  showing th e  e le v a tin g  

tees»

M etering and Auxillai^v Equipment

The t e s t  l iq u id s  were stored  in  a 5 5 -g a llo n  drum which acted  

both as  the r e se r v o ir  fo r  th e  liq u id  supply and as a separator for the 

o u t le t  stream of l iq u id  and a ir»  Four in ch es of w ire  mesh screen were 

placed in  the top of the drum» This e f f e c t iv e ly  e lim in ated  entrainment 

o f  the liq u id s  in  th e  e x it  a ir  stream . For some o f the data a c e n tr ifu g a l  

pump equipped with a by-pass l in e  was used fo r  l iq u id  c ir c u la t io n . Later 

th e  c e n tr ifu g a l pump was replaced by a p o s it iv e  displacem ent pump fo r  

g rea ter  s t a b i l i t y  aga in st pressure f lu c tu a t io n s  and fo r  a h igher output.

The l iq u id s  were metered in  a 1 -in ch  v e r t i c a l  meter run u sin g  0 .2 5 -in ch  

and 0»54-inch o r i f i c e  p la te s  and a mercury manometer. The o r i f i c e  p la te s  

were c a lib r a te d  d ir e c t ly  by weighing th e  output from a pump over a timed 

in te r v a l »

The a ir  supply was tapped from the U n iversity  o f Oklalioma
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compressed a ir  lin e s*  A fter about h a lf th e  runs had been made, the a ir  

supply arrangement was m odified because th e o n -o ff a c tio n  o f  the Univer­

s i t y  a ir  compressor caused a pressure f lu c tu a t io n  from about 120 p sig  to  

100 p s ig . A Kimray pressure regu la tin g  va lve  was in s t a l le d  in  th e  l in e  

which h eld  th e  down stream constant at 70 p s ig .

The a ir  was metered w ith  an Emco o r i f i c e  meter recorder to  read 

d if f e r e n t ia l  p ressu re. O r ific e s  o f 0 .672-inch  and 0 .872-in ch  diameter 

were used in  a 2 - inch h orizonta l meter run t o  g iv e  the d esired  range o f  

a ir  r a te s .  A 0-60  pound Reid gauge was mounted on the recorder and gave 

th e  flow ing pressure on the downstream s id e  of th e  o r i f i c e .  The gauge 

pressure could be read to  th e  nearest 0 .1  pound. The Emco meter was ad­

ju sted  by a rep re se n ta tiv e  of the P h il l ip s  Petroleum Company.

Two p o s it iv e  displacem ent m eters were used to c a lib r a te  the 

Emco m eter. Their naximum c a p a c it ie s  were 1800 and 2500 cubic f e e t  per 

hour. Even in  p a r a lle l  th is  was somewhat sh ort of the maximum range o f  

ra tes  used in  the experim ents, so the c a lib r a t io n  curves la t e r  had to  

be ex tra p o la ted . Separators were in s t a l le d  both upstream and downstream 

of the p o s it iv e  displacem ent m eters, thus no l iq u id  could carry over and 

ru in  the read ings. Also a by-pass l in e  was piped around th ese  meters 

so th a t ,  once th e  Emco meter was ca lib ra ted , no a ir  flow ed through them. 

For the data at very low a ir  r a te s , only the p o s it iv e  displacem ent meters 

were used for  flo w  measurements s in ce  th e  Emco meter was not accurate al­

low r a te s .

Tanperature measurements were na.de on incoming a ir ,  on th e  

l iq u id  reserv o ir  drum, and on the e f f lu e n t  as i t  came from th e t e s t  sec­

t io n .  These tem peratures could  a l l  be measured w ith in  1“F. G enerally ,
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once th e  flow  r a te s  had s ta b i l iz e d ,  th e  thermometer read ings did not d i f ­

f e r  from each other by more than 5®F, which showed th a t th e  f lu id  proper­

t i e s  were e f f e c t iv e ly  constant during a run.

Equipment C alib ration  

The liq u id  o r i f i c e  c a lib r a tio n s  were p lo tte d  on lo g - lo g  paper 

as flow  ra te  versu s manometer reading» As expected, th e  p lo t  was a 

s tra ig h t l in e  w ith  a slope very d o s e  to  0 .5 0 ,  in d ic a t in g  a n early  con- 

stand o r i f i c e  c o e f f ic ie n t  » A ty p ic a l  example o f  a l iq u id  o r i f i c e  c a l i ­

b ra tion  i s  shown fo r  g ly c o l in  Figure V»

The a ir  o r i f i c e s  were ca lib ra ted  again st the p o s it iv e  d isp la c e ­

ment m eters. The r e s u l t s  o f  th ese  c a lib r a tio n  runs can be seen in  Figure 

VI. In th is  graph th e Emco o r i f i c e  reading in  in ch es of w ater i s  p lo tte d  

aga in st a pseudo o r i f i c e  c o e f f i c i e n t ,  K, which i s  equ iva lent to  th e  a ir

ra te  in  pounds per minute d iv id ed  by th e term | / p (aP )/T . In t h i s  square 

root ex p ress io n , P i s  in  pounds per square in ch , T i s  in  degrees Rankine, 

and AP i s  in  inches of w ater. One can see th a t th is  pseudo c o e f f ic ie n t  

i s  based on th e  u sual o r i f i c e  equation ; except th a t ,  ra th er than being  

in  i t s  co rrec t d im en sion less form, a l l  th e  dim ensional conversion  fa c to r s  

have been in clud ed  in  th e  co n sta n t, K. This was done m erely fo r  conven­

ien ce  in  la t e r  runs when making d ir e c t  c a lc u la t io n s  o f  a ir  flow  r a te s  from 

th e  meter read in gs.

N otice a lso  th a t for  th e  0 .872 -in ch  o r i f i c e ,  th e r e  are no c a l i ­

b ra tion  p o in ts  reading above 30 in ch es o f w ater . No c a lib r a t io n  could be 

made a t  th is  high an a ir  r a te  due to  th e maximum lim ita t io n  on th e  p o s i­

t iv e  d isp lacem ent meters (1800 cu f t /m in  p lu s 2500 cu f t /m in ) . However,
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w ith in  th e  accuracy of the data, i t  appeared th at the c o e ff ic ie n t^  K, was 

constant at 6^50 at lower r a te s ;  sc th is  value was assumed at the higher 

r a te s , as im plied  by the ex trap o la ted  dashed l in e  in  Figure VI.

The t e s t  loop i t s e l f  was a lso  ca lib ra ted : that i s , pressure

drops were measured with a ir  flow  on ly  in  th e  loop  to determine i t s  equiv­

a len t length  and a lso  to  f in d  th e  b est f i t  o f Moody f r ic t io n  fa c to r  versu s  

Reynolds Number f o r  th is  type o f pipe m ateria l. For some o f  the ca lib ra ­

t io n  runs the a c tu a l length  of th e  t e s t  se c t io n  was 112 f e e t ,  w ith an 

equivalent len g th  of 125.5 f e e t  due to  the somewhat greater  pressure drop 

around the bends. L ater, the t e s t  loop was lengthened s l ig h t ly  with re­

v is io n s  in  the e x it  s e c t io n , and th e  equ iva lent length  was in creased  to  

128 .4  f e e t .  These eq u iva len t len g th s were ca lcu la ted  by comparing the 

pressure drop around a bend (from pressure taps No. 3 and No. 4) to  the 

t o ta l  pressure drop in  the t e s t  se c t io n  when flow in g  a ir  through the 

tu b in g .

The c a lib r a t io n  data r e la t in g  the experim ental f r ic t io n  facto r  

with th e  Reynolds Number for th e flow  of a ir  are shown in  Figure VII. A 

l e a s t  squares f i t  of the data gave the fo llo w in g  equation fo r  the f r i c ­

t io n  fa c to r .

/  -

This p la s t ic  tubing gave s l ig h t ly  low er f r ic t io n  fa c to r s  than Von Karmans- 

(75) equation  for smooth tubii% .

T est F lu ids

I t  was d es ira b le  t o  use l iq u id s  th a t  v a r ied  w id ely  in  p h y sica l
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p r o p e r tie s , biit- s t i l l  would be in exp en sive in  bulk q u a n t it ie s .  Water, 

of cou rse , was a n a tw a l ch o ice; and th e  other two Liquids were No. 10 

S.AoEo o i l  and commercial 95 psr cent d ie th y le n e  g ly c o l .  The p rop erties  

of l iq u id s  do not change g r e a tly  w ith tem perature, so i t  was s u f f i c ie n t ly  

accurate to use average v a lu es  of d en sity  and v i s c o s i t y  o f  each liq u id .

For some of the w ater runs the average tanperature was 72°F. The 

v is c o s i t y  and d o a s ity  of water at t h i s  tem perature were found in  Perry  

(6o) to  be 0 ,9 5 8  c e n t ip o ise  and 62,29 Ib /cu  f t .  Some la t e r  runs were at 

an average tem perature of 75®F° At th is  tem perature the v is c o s i t y  of 

w ater (from Perry) i s  0 .916  c e n t ip o ise  and d e n s ity  62 ,26 Ib /cu  f t .  The 

v i s c o s i t y  and d en sity  o f  the g ly c o l and o i l  were measured with an Ostwald 

viscom eter and a pycnometer. The g ly c o l had an average temperature of 

82°F a t which th e  v i s c o s i t y  was 1 9 .4  c e n t ip o ise  and d en s ity  was 69.3  

Ib /cu  f t .  The average o i l  temperature was 78“F and the measured proper­

t i e s  w ere: v i s c o s i t y ,  7 0 .4  c e n t ip o is e ,  and d e n s ity , 53 .8  Ib /cu  f t .

The a ir  p rop erties (excep tin g  tem perature and pressure) were not 

measured. The v i s c o s i t y  o f a ir ,  l i k e  tiia t o f  th e  l iq u id s ,  was assumed 

constant a t the average tem perature of a g iven  s e t  o f data; and i t  was 

read from th e  gas v is c o s i ty  chart in  Perry (6 0 ) , This showed on ly  a v a r i­

a tio n  from 0 .0180  to  0.0182 c e n t ip o ise  in  the tem perature range o f  the 

runs. The d en sity  of th e  a ir  was c a lc u la te d  u sin g  th e .a v e ra g e  pressure 

in  th e  pipe for each run and the average tem perature of each run. Id ea l 

gas law s were assumed to  hold  fo r  a ir .  This i s  quite a good assum ption. 

For in s ta n c e , a t room tem perature and 25 atm ospheres, the d e n s ity  of a ir  

i s  o n ly  about 2 per cent grea ter  than p red icted  by th e  id e a l  gas law s; and 

the error i s  correspondingly  sm aller at th e  low er pressure o f th e s e  runs.
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Procedure fo r  Taking Data 

Several t e s t  runs were- made to determine the b est method fo r  

tak in g  data  and the proper flow r a te s  to use to  cover the broadest range 

of data  p o ssib le  w ith in  the lim ita t io n s  of th e  equipment» Liquid r a te s  

ranged from 18.500 Ib /h r-sq  f t  to  345.000 lb /h r -sq  f t  o f open tu b in g , a ir  

r a te s  ranged from 73 Ib /h r -sq  f t  to  the maximum the U n iv ers ity  system  

could supply (about 45,000 Ib /h r -sq  f t ;»

Before each day's o b serv a tio n s, tne barom etric pressure and room 

temperature were recorded» The a ir  and t e s t  liq u id  were al.lowed to flow  

through the lin e  u n t i l  they had reached f a ir l y  constant tem peratures.

These tem peratures were recorded p e r io d ic a lly  during th e d ay 's  runs.

A run co n sisted  o f  se tt in g  th e  rate o f  a ir  and liq u id ;  a llow ing  

them to run u n t i l  stead y  sta te  con d ition s were reached; noting ttie pattern  

o f flo w ; and recording th e pressure, tem perature, o r i f i c e  and manometer 

read in gs. The pattern of flow was most im portant, a s  w i l l  be seen in  the 

next ch ap ter, the v is u a l  s tu d ie s  lea d  to a lo g ic a l  th e o r e t ic a l  approach 

to  p red ic tin g  the pressure drop and sh u t-in  r a t io s .  I t  was reco g iized  

th a t various v isu a l flow  phenomena may be in terp reted  d if f e r e n t ly  by a i f -  

feren t v iew ers, so movies (both normal and slow motion) were made of the  

flow ing f lu id s ,  and th ese  are a v a ila b le  through Dr. -A. L, Huntington of 

the Department of Chemical E ngineering.

Before the const a n t -pressure va lve was in s t a l le d  in  the a ir  sup­

p ly  l i n e ,  th ere  was a continuous pressure f lu c tu a tio n  during each run, due 

to  the o n -o ff  a ctio n  of the U n iversity  a ir  compressor. For these runs the 

f lu id s  were allowed to flow  for enough time to cover sev era l c y c le s  o f
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f lu c tu a t io n , and th e v a lu es  recorded were a t  th e  midpoint of a c y c le . To 

make the data e a s ie r  to an a lyze , th e  l iq u id  ra te s  were s e t  to  a predeter­

mined value and a s e r ie s  o f runs then covered many gas ra tes at a constant 

liq u id  rateo The a ir  ra te s  could not be s e t  ex a c tly  s in ce  i t  was not pos­

s ib le  to  know th e a ir  mass ra te  u n t i l  appropriate ca lcu la tio n s  had been  

made.

Shut-in  d ata  were taken a t p eriod ic  in te r v a ls  chosen to cover  

the range cf ra te s  stu d ied . They were not observed for a l l  poin ts s in ce  

they  were so time consuming» For the sh u t-in  runs, the procedure in  the 

above paragraphs was followed^ th e  quick c lo sin g  va lv es  were snapped shut) 

and then  the a ir  supply v a lv e , and the liq u id  pump and valve were qu ick ly  

c lo sed  to avoid b u ild in g  up pressure» The t e s t  loop was l i f t e d  so the 

trapped liq u id  could flow  toward the taps» I t  took 10 to 15 minutes for  

the l iq u id  to drain com pletely from the p ip ing.

Run nunbers, l iq u id  flew  r a te s ,  gas flow r a te s ,  average pres­

sures and tem peratures, recorded pressure drops, and pred icted  pressure  

drops are l i s t e d  in  Appendix C fo r  a l l  th ree  l iq u id s .  The data a t  an 

in c lin e  are a lso  reported  along w ith  th e  h orizon ta l data though the th eo ­

r e t i c a l  a n a ly s is  and c o r r e la t iv e  e f fo r t  of t h is  d is s e r ta t io n  i s  only d i ­

rected  toward h o r izo n ta l flow  behavior» The in c lin e d  data are included  

s in ce  i t  was found th a t Brigham and H o lste in  had m de a sm all error in  

t h e ir  o r ig in a l c a lib r a t io n  of gas flew  r a te s  (3 0 ) , and th ey  were in co r ­

r e c t ly  recorded. This w r iter  la t e r  found that C oldiron (30) a ls o  m de  

an error in  h is  gas r a te  ca lib ra tio n »  So i t  was f e l t  th a t the correct  

r a te s  o f  a l l  th ese  data should be on record . The w a ter -a ir  data are r e ­

corded in  Table I  o f  Appendix C, the o i l - a i r  data in  Table I I ,  and the
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g ly c o l-a ir  data in  Table I I I ,  Rather than recording th e  data in  the 

order i t  was taken , the constant l iq u id  r a te s  are grouped togeth er  fo r  

e a s ie r  in te r p r e ta t io n  by any subsequent in v e s t ig a to r . On many o f the 

in c lin e d  data , no p red icted  pressure drop i s  recorded, for  th ese  poin ts  

ex h ib ited  an in crease  in  pressure drop due to th e  in c l in e s ,  and no a t­

tempt was m de to p red ic t  th is  e f f e c t .

' In Appendix D th e sh u t-in  data are presented. The w a ter-a ir  

data are presented in  Table IV of Appendix D, the o i l - a i r  data in  Table 

V and the g ly c o l-a ir  data in  Table VI. The ta b le s  in clu d e th e  run num­

b ers , the a ir  and liq u id  m s s  v e l o c i t i e s ,  th e  K inetic  Liquid F raction s, 

the Reynolds Numbers, the a ctu a l fr a c t io n  sh u t-in  and th e sh u t-in  fr a c ­

t io n  pred icted  from th e  c o r r e la t io n  presented in  the la t e r  ch ap ters.



CHAPTER IV 

DEVELOPMENT OF CORRELATION PARAMETERS

In tro d u ctio n . This chapter con ta in s the a u th o r 's  exp lanations  

o f  th e  observed flow  phenomena combined w ith  con clu sion s about th e ,th e o ­

r e t i c a l l y  important v a r ia b le s  in  two-phase f lo w . I t  i s  a potpourri of 

experim ental v is u a l o b serv a tio n s , lo g i c a l  in fe r e n c e s  from t h is  observed  

flow  b eh avior, and data gleaned from the l i t e r a tu r e  re fe ren ces  to back 

up th e se  in fe r e n c e s . The purpose o f t h i s  chapter i s  t o  t r y  to  under­

stand th e  mechanism c f  two-phase flow  and th e v isu a l tw o-phase phenomena 

by r e la t in g  them back to  cur concepts o f s in g le -p h a se  flow ; and by t h is  

route to  have a sound b a sis  fo r  c o rr e la tin g  two-phase b eh avior.

The f i r s t  s tep  i s  an understanding of the flow p a ttern s. I t  i s  

shown that the two-phase flow behavior can be d iv id ed  lo g i c a l ly  in to  

th ree  r e g io n s . The f i r s t  i s  Plug Flow, which occurs when the l iq u id  i s  

the predominant f lu id  in  determ ining th e  flow mechanism. Second i s  In­

term ediate (or  Slug) Flow, which occurs when the l iq u id  and the gas are 

more or l e s s  eq u a lly  im portant. Third i s  Continuous (o r  Annular) Flow, 

which occurs vhen the gas i s  the predominant flow ing f lu id ,  with th e  

l iq u id  being of secondary im portance.

This d e sc r ip tio n  e lim in a te s  the S t r a t i f ie d  Flew p a ttern  commonly 

reported  in  lab oratory  work. I t  i s  shown th a t  S t r a t i f ie d  Flow i s  p r i ­

m arily  a lab oratory  phenomenon, caused by th e  short len g th s o f p ip ing

15
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u su a lly  used in  lab oratory  in v e s t ig a t io n s .  The remainder of the chapter  

develops the th e o r ie s  of two-phase flew  from th ese  b a sic  d e sc r ip tio n s .

In Continuous Flow the liq u id  i s  p r im arily  ca rr ied  as an annulus 

along the pipe w a ll by energy tr a n sfe r  from the tu rb u len t core o f g as.

An analogy with th e  s in g le -p h a se  th e o r ie s  of Prandtl and von Karman i s  

used to show th a t the pressure drop i s  r e la te d  to th e  flow ing k in e t ic  

en erg ie s  of the l iq u id  and g a s. The liq u id  can be changed to an equiva­

le n t  gas (or v ic e  versa.) by th e  use of a square root r e la t io n s iiip  between 

th e  d e n s it ie s  and v e l o c i t i e s .  These r e la t io n s h ip s  are used to determine 

the proper terms in  the two-phase f r ic t io n  fa c to r . The two-phase Reynolds 

Number should con ta in  both the l iq r id  and the gas v i s c o s i t i e s  w ith  th e  

l iq u id  v i s c o s i t y  predom inating. The Froude Number i s  a ls o  expected to  be 

of some importance in  Continuous Flow_„ w ith a h igher Froude Number caus­

ing  a g rea ter  pressure drop.

A s im p lif ie d  p ictu re  of Continuous Flow i s  used to p red ic t the 

in -p la c e  r a t io s  when the flow ing r a tio s  are known. I t  i s  shown that the 

in -p la c e  r a t io  should be a fu n ctio n  of the Reynolds Number and th e  r e la ­

t iv e  k in e t ic  en erg ies  of the flow ing f lu id s .  The inherent errors in  t h is  

s im p lif ie d  model are described,, and th e  d ir e c t io n  of th e  error i s  pre­

d ic te d .

In Plug Flow the l iq u id  i s  the predominant flo w in g  f lu id  and the  

gas i.- p rim arily  ca rr ied  by the a c tio n  o f the l iq u id .  Two s im p lif ie d  

models are presented  to p red ic t the pressure drop in  t h i s  flow regim e.

The f i r s t  model assumes th at th e  l iq u id  and gas flow as a homogeneous 

mixture^ the second assumes the flow  i s  in  a lte r n a te  p lugs o f  gas and 

l iq u id .  These two models are q u ite  c lo s e  in  th e ir  p r e d ic tio n s ; and th e
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a ctu a l flow  behavior should l i e  between the two extrem es,

No th e o r e t ic a l treatment i s  attempted fo r  In term ed iate-{or Slug I 

Flow. I t  i s  th e  t r a n s it io n  region  between Continuous Flow and Plug Flow,,

A sim ple in te r p o la t io n  between the Continuous and the Plug equations seems 

to  o f f e r  the most hope for p red ictin g  the pressure drop in  tn is  region .

Flow P atterns

When studying th e  flow p attern s described and p ictured  in  the  

l i t e r a t u r e ,  the f i r s t  point that becomes apparent i s  the bew ildering and 

(som etim es) c o n f l ic t in g  d escr ip tio n s used by various authors. For in ­

stance A lves (2 ) re ferred  to a flow type sequence o f  Bubble, Plug, S tr a t i­

f i e d ,  Wavy, S lug, Annular and Spray Flow as the r a t io  of gas to liq u id  

flow ing in crea sed , M a r t in e lli ,  e t .  a l .  (53) d id  not name the flow types  

but sketched them as they appeared at various g a s /liq u id  flow ing r a t io s .  

B ergelin  and Gazley (16) r e fe r  to S t r a t i f ie d ,  Wave, Slug and Annular Flow, 

White ( 7 6 ) u ses S t r a t i f ie d ,  R ipp le, SLjg, Wave, C resting and ( Semi) Annu­

la r  Flow a s  the g a s /l iq u id  flow ing r a t io  in c r e a se s . Further, he s ta te s  

th at the p attern  he c a l l s  Ripple Flow i s  th e  same as that referred  to  as 

Wave Flow by B ergelin  and G azley. Govier and Omer (39) use th e  term Film  

Flow rather than Annular Flow, but otherw ise they  g en era lly  agree with  

the term inology of A lves . Most other re fe ren ces  c lo se ly  fo llow  the nomen­

c la tu re  of one of th e  above authors.

An in te n s iv e  study was m de of the data presented by th ese  

authors and of the flow jB ttern s described . I t  became apparent th a t the 

data did not e x a c t ly  fo llo w  the above d e sc r ip tio n s . The described  flow  

p attern s a l l  e x is te d  a t one time or another in  th e ir  experim ental
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programs, but the p attern s d id  not n e c e s s a r ily  occur in  the order de- 

scribedo The w r ite r 's  own v is u a l data were a ls o  s tu d ied , and from th ese  

data and th e above r e fe ren ces  a sim pler p ictu re  of tw o-phase flew be­

h avior emerged.

M odified Flow D escr ip tio n . Let us consider a p ip e f i l l e d  with  

flow ing liq u id  and d escrib e what occurs as gas i s  in troduced . When there  

i s  on ly  a r e la t iv e ly  sm all amount of g a s , i t  flow s along w ith the l iq u id  

as separate p lu g s . A lso, the l iq u id  w i l l  have some gas bubbles entrained . 

The a ltern a te  plugs of gas w i l l  have approxim ately the same v e lo c ity  as 

the l iq u id .  In th is  type of flow  the l iq u id  i s  the predominant flow in g  

f lu id .  This w i l l  be c a l le d  Plug Flow. I t  i s  the same as Bubble, or 

Froth or Plug Flow described  v a r io u s ly  by other au thors. The only  d i f ­

feren ces  between th ese  d escr ip tio n s  are the s iz e  and shape of the gas 

p lu gs.

Now l e t  us look to the ot-her end of th e liq u id /g a s  flow  spectrum  

and con sid er vfliat happens when some l iq u id  i s  added to  a flow ing gas 

stream . We fin d  that the liq u id  i s  ca rr ied  along as a continuous stream  

at th e p ipe w a ll by energy tr a n s fe r  a t  the in te r fa c e  from th e rap id ly  

moving g a s . Much of the liq u id  i s  flow ing in  a continuous phase on th e  

bottom; but to  some e x te n t , depending on the v io le n c e  o f  t h is  energy ex­

change, the liq u id  flow s as a f i lm  along th e  w a lls  and a ls o  as entrained  

d ro p le ts  through the open c r o ss  s e c t io n . In  t h is  type o f flew  the gas 

i s  th e  predominant f lu id .  This w i l l  be c a l le d  Continuous ( or Annular)

Flow, for  th e  gas flow s as a continuous phase in  the in t e r io r  o f  the pipe 

and the liq u id  phase i s  continuous along the bottom and w a l l s . This flow  

reg ion  i s  th e  same as Wavy, (Semi) Annular, C restin g , Spray and Film  Flew
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described  by other authors. The various c r e s t s  and waves are m erely  

m an ifesta tion s of t h i s  in te r fa c ia l  energy exchange, and the f i lm  and 

spray are always present to  a g rea ter  or l e s s e r  e x te n t , depending on 

the v io len ce  of the energy exchange.

Between the two extrem es of Plug, Flow and Continuous Flow i s  a 

reg ion  th at w i l l  be c a l le d  In term ed iate ( or S lug) Flow. This reg ion  i s  

the same as the Slug Flow p attern s described  by a l l  au th ors. I t  i s  a lso  

referred  to as Interm ediate Flow here so as to  emphasize th e  fa c t  th a t  

the mechanism i s  in term ediate between the Plug and Continuous Flow reg io n s .  

In th is  type of flow  th ere are a lte r n a te  g a s - liq u id  s lu g s  along th e  top  of 

the p ip e , and in  that resp ec t th e flow  i s  s i  la ilar to Plug Flow. Hew ev er , 

th e se  slu gs move ap p reciab ly  f a s t e r  than the main body of the l iq u id .

Since the gas flo w s f a s t e r ,  there i s  co n sid erab le  energy tr a n s fe r  at the 

in te r fa c e  to the bottom liq u id  la y e r ; th u s, in  th is  re sp e c t, th e  flow  i s  

s im ila r  to  Continuous Flow, In Interm ediate Flow both f lu id s  are impor­

tant in  determ ining th e  flow  mechanism and some a sp ects  o f both Plug and 

Continuous Flow are always p resen t.

St r a t i f i e d  Flow, I t  i s  most important to r e a l iz e  that th e  s t r a t i ­

f ie d  flow  pattern  i s  not included  in  the above d e s c r ip t io n s . This was de­

l ib e r a t e ,  In  f a c t ,  understanding the nature of s t r a t i f ie d  flow  was the  

key to  s im p lify in g  the tw o-phase flow  to  th ree  major reg io n s.

In s t r a t i f i e d  f le w , th e  liq u id  i s  'flow ing  in  a q u iescen t la y e r  

on the bottom and the gas on the to p . In t h i s  s u p e r f ic ia l  resp ect the 

flow  behavior looks l ik e  Continuous Flow; but th ere  i s  an outstanding d i f ­

fe r e n c e , The l iq u id  i s  flow in g  p r im r i ly  because of th e  g r a v ita t io n a l  

fo r c e s ,  rath er than from the energy rece iv ed  from the g as. In  f a c t ,  even
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i f  no gas were flcw in gj the liq u id  would s t i l l  flow  along th e  bottom of 

th e  pipe in  a smooth s t r a t i f ie d  la y e r . This i s  open channel flew^ not 

pipe flow . The fa c t  th a t gas i s  a lso  present i s  in c id e n ta l to  the nature 

o f the p rocess.

T his d e sc r ip tio n  of s t r a t i f i e d  flow  i s  w e ll v a lid a te d  by th e  

d a ta . For in sta n ce  Gazley (33) r e fe r s  to  th e  in t e r f a c ia l  grad ient pres­

ent in  s t r a t i f i e d  f lo w . T h is, of cou rse , i s  caused by the a c tio n  of 

g r a v ity  on the l iq u id .  I t  i s  flow ing under th e in flu en ce  of i t s  own 

g r a v ity  head. The s t r a t i f ie d  pressure drop data o f 'wfhite (? 6 ) ,  dchneider 

( 6 7 ) and Govier and Omer (39) were a lso  in v e s t ig a te d . In no case did the  

pressure drop exceed the liq u id  head in  the p ip e . Thus the g r a v ity  head 

i s  th e  major fo r c e  causing f lu id  motion in  s t r a t i f ie d  flo w .

The len g th  of the tubing has a marked e f f e c t  on whether s t r a t i ­

f i e d  flow e x i s t s .  In short .laboratory tu b in g . where the g r a v ity  head 

o fte n  i s  la r g e  compared to  the t o t a l  pressure drop, s t r a t i f ie d  flow  may 

be o fte n  encountered. But- in  the lon g  tubing u su a lly  found in  in d u s tr ia l  

a p p lic a t io n s , such as flew  l in e s  or m ultipass exchangers, th e g r a v ity  

head i s  alm ost always sm all compared to the t o t a l  pressure drop, and s t r a t i ­

f ie d  flow seldom e x i s t s .  These are very sm all pressure drops. In the  

th ree-in ch  p ip e , f o r  in s ta n c e , th e  water head i s  on ly  equal to  0 .1 1  p s i .

Summary. To summarize, the two-phase flew  mechanism can be d i­

v ided  in to  th ree  major r e g io n s , viiich  (a s th e  g a s / l iq u id  flow in g  r a tio  

in cr ea se s)  are:

lo  Plug Flow -  This i s  th e  flow  reg io n  where t h e  l iq u id  i s  

the predominant flow ing f lu id .  The gas i s  carr ied  along near 

th e  top  of th e  pipe as a d iscontinuous phase in  p lugs and
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mixed with the l iq u id  in  bubbles.

2o Interm ediate ( or S lug) Flow -  This i s  the tr a n s it io n  be­

tween the f i r s t  and th ird  reg io n s. Part o f the liq u id  flow s  

in  s lu g s  a lte r n a tin g  w ith  the gas as in  ( i j  above and part flow s  

in  a continuous layer due to the energy tran sfer  at th e  in te r ­

fa ce  as in  (3) below.

3 . Continuous ( or Annular )  Flow -  This i s  th e  flow  region where 

th e  gas i s  the predominant flow ing f lu id .  The gas flow s as a 

continuous phase through the in t e r io r ,  and th e  liq u id  flow s as 

a continuous phase at the w alls  due to  the o iergy  i t  r e c e iv e s  

from th e  g a s . In a d d ition  some liq u id  i s  entrained as d ro p le ts .

A p ic to r ia l  sketch of th ese  th ree major flow  regions i s  shown in  Figure

V III . This tr ia d  of flow  regions i s  considerab ly  e a s ie r  to comprehend
1 ' "than the m u lt ip lic ity  of flow  p attern s g en era lly  used in  the l i t e r a tu r e  

on two-phase f lo w .

The next s tep  i s  to  develop flow  models which compare c lo s e ly  with  

th e  major flow  regions ou tlin ed  above, and then to develop equation forms 

which f i t  th e se  modes.

Flow Equation — Continuous Flow 

In th e  flow  region  la b e led  Continuous, th e  gas flow s as a continu­

ous phase prim arily  above the l iq u id  in  the c e n tr a l p ortion  o f  the p ip in g . 

The liq u id  a ls o  flow s as a continuous phase, p rim arily  along the bottom  

and w a lls .  Some of th e liq u id  flo w s as en trained  d ro p lets  in  the gas. The 

flow  i s  a lso  turbulent in  th e  c la s s ic a l  Reynolds sen se  in  both phases.

T his point of "turbulence" should be enlarged a b i t .  In  many of
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th e d a ta , th e l iq u id ,  i f  flo w in g  a lo n e , would have been in  laminar f lo w . 

However, th e  l iq u id  was not flow ing by i t s e l f ,  and i t s  average v e lo c it y  

was con sid erab ly  g rea ter  due to  th e  presence o f  th e  gas. In  no case  was 

the flow in  th e liq u id  found to  be along th e  c la s s i c a l  "sti'eam lin e s"  of 

l aminar flow  except very  near th e  pipe w a ll .  T his could be seen c le a r ly  

from the movement o f the t in y  entrained  a ir  bubbles in  th e  liq u id .

The b asic  th e o r ie s  of s in g le  phase tu rb u len t flo w  w i l l  be used 

as the foundation for developing the Continuous Flow equation , so i t  seems 

appropriate to  cover b r ie f ly  the s a l ie n t  fea tu res  o f the s in g le  phase 

th e o r ie s  o f  Prandtl and von Karmn. For most o f t h i s  d is c u s s io n , the 

w r iter  has borrowed f r e e ly  from the e x c e lle n t  book by Bahkmeteff ( 1 1 )«

S in g le  Phase Turbulent Flow. In  s in g le  phase tu rb u len t flow  

the ta n g e n tia l shear s t r e s s e s ,  which oppose the flow and g iv e  r is e  to the 

pressure drop, are caused by a continuous interchange of f lu id  " p a rtic le s"  

between neighboring flow  la y e r s .  The momentum of th e  f lu id  coming from 

the f a s t e r  la y e r  im parts an a cce lera tin g  fo r c e  to the slow er la y e r , and 

v ic e  v e r sa . The v e lo c ity  d iffe r e n c e  between any two la y e r s  w i l l  be 

la b e l le d  , u' j th e interchange v e lo c i t y  (or eddy v e lo c i t y ) ,  v ' ; and th e  

f lu id  d e n s ity , p. The shear s t r e s s ,  (73 , on each la y e r  i s  then:

- j O i r W '  (3)

Prandtl devised  the concept o f the "mixing len g th ,"  1 , and deduced th a t  

the v e l o c i t i e s  v ' and u' wculd both  be p rop ortion al to  th e  m ixing len gth  

and the lo c a l v e lo c ity  g ra d ien t. This r e s u lts  in  th e  Prandtl equation ,

(4)

I f  accurate data are taken on the v e lo c ity  p r o f ile  and the 

pressure drop, i t  is  p o s s ib le  to  c a lc u la te  tiie mixing len g th  by usin g
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Equation ( 4 ) and g ra p h ica lly  d if f e r e n t ia t in g  the v e lo c ity  p r o f i l e ,

Nikuradse ( 5 9 ) d id  th is  and found th a t , for  f u l l y  developed turbulent 

flo w , the r a t io  Il/ tq (m ixing length  over p ipe rad ius) i s  a unique func­

t io n  o f  th e  r e la t iv e  d ista n ce  from th e  pipe w a ll ,  y /r g . I t  does not de­

pend on the f lu id  p ro p er tie s , th e pipe m a ter ia l, the volume of flow  or the 

s iz e  of pipe « This renarkable r e s u lt  has been known f o r  sev era l years, 

but i t  should be kept in  mind fo r  la te r  reference to two-phase flow.-

Near the pipe w a ll the mixing length  approaches a constant s lo p e , 

k , so in  t h i s  reg ion  Equation ( 4 ) becomes,

(5)

where shear s t r e s s  at th e  w a ll ,
Xr = the constant s lop e of the mixing le n g th .

The shear s t r e s s  and d en sity  are o ften  combined in to  th e  term

c a lle d  th e f r i c t io n  v e lo c ity  u*. Using th is  term , Equation (5) becomes,

(6)

which i s  v a lid  near the w all» P randtl, however, made th e broad assump­

t io n  th a t Equation (6) i s  v a lid  over th e  e n tir e  p ip e . T his r e s u lt  upon 

in te g r a t io n  i s

(7)

where u  ̂ = "wall" v e lo c i t y ,  th e  v e lo c ity  at the p o in t where 
th e  laminar la y e r  ends and th e tu rb u len t core 
b eg in s.

y% = th ick n ess  of the laminar la y e r .

In  f u l l y  developed turbulent f lo w , the th ick n ess  of th e lam i­

nar la y e r ,  has been found to  be prop ortion al to  the w a ll  roughness 

h e ig h t , e .

^ <f (8)
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So w ith proper s u b s t itu t io n  and rearranging. Equation (?) becomes:,

Eqijation (9) i s  the accepted "universal" v e lo c ity  p r o f ile  equation for 

tu rb u len t s in g le -p h a se  flow in, rough p ip es. Nikuradse (59.' found that 

the terms uw/u* and ( l / k ) l n  m are co n sta n ts , so the equation can be sim ­

p l i f i e d  to ,

( 10)

Consider now a s p e c ia l  case of tu rb u len t s in g le-p h ase  flow  

through a p a rticu la r  given p ip e . In th is  case Equation (10) can be w r it ­

te n  as fo llo w s .

(1 1 )

and th e  terras A and B are con stan ts depending on th e  p rop erties  of the  

p a rticu la r  pipe used. Let us assume a f lu id  ( la b e l le d  1) i s  flow ing  

through t h is  pipe w ith  a given pressure drop (or  shear s t r e s s ,  ^  ) .

The equation i s

(12)

I f  la t e r  a d if fe r e n t  f lu id  ( la b e l le d  2) i s  flow in g  through the pipe in  

s in g le -p h a se  flow  with the same pressure drop (o r  To)  ̂ the equation i s

6/^  -  f  To^  ^ //^  ^  )  ( 13 )

N otice that the r ig h t hand s id e s  of Equations (12) and (13) are id e n t ic a l .  

So the l e f t  s id e s  can be equated.

/< / -  6 /^  (1^) 

Equation (14) i s  in te r e s t in g  to  co n sid er . I t  shows th a t i f  the  

two f lu id s  are flo w in g  a t the same pressure drop, th e  v e lo c i t ie s  a t every 

point in  the p ip e are in v e r se ly  proportional to  the square root o f th e ir
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d e n s i t ie s .  For example: Assume f lu id  1 has a d en sity  100 tim es as

great as f lu id  2« At d iffe r e n t tim es they are flow ing  through th e  same 

pipe with the same pressure drop. I f  th e  v e lo c ity  o f  f lu id  1 i s  3 ,0  

f t / s e c  a t a c e r ta in  p o in t in  th e  p ip e , th en , when f lu id  2 i s  flow ing

through the p ip e , i t s  v e lo c ity  must be 30 f t / s e c  (3.0^100 = 30) at that 

same p o in t . S ince the average or bulk v e lo c ity  i s  th e  normalized summa­

t io n  of the point v e l o c i t i e s ,  the same square root- r e la t io n sh ip  holds for  

the bulk v e lo c it y .

z/f = (15)

Equations (14) and (15) are the r e s u lt  found in  s in g le  phase flow  when 

f i r s t  one phase i s  f lo w in g , then another. The next step  i s  t o  extend  

t h is  concept to sim ultaneous two-phase f le w .

Two-Phase-Turbulent Flew, In the reg ion  c a l le d  Continuous 

Flow the gas and l iq u id  f lo w  adjacent to each other as continuous phases.

In  s in g le -p h a se  flow  the tu rb u len t pressure drop i s  p ostu la ted  to  be 

caused by th e  in terchange o f  f lu id  (ed d ies) between adjacent flow  la y e r s .  

Does i t  seem reasonab le to assume th a t t h is  in terchange a lso  occurs in  

tw o-phase flow ? Does i t  fu r th er  seem p o ss ib le  th at th ese  edd ies could  

c o n s is t  o f  d if fe r e n t  phases — th at i s ,  ed d ies of gas moving from a gas 

la y e r  toward the bulk of the l iq u id  and back again , and edd ies o f liq u id  

performing th e same maneuver in  the rev erse  d ire c tio n ?  This assumption  

seems q u ite  reason ab le . In f a c t ,  th e  c r e s t s ,  waves, and other surface d is ­

turbances d iscu ssed  in  the two-phase l i t e r a tu r e  foDJLow th is  d escr ip tio n  

e x a c t ly . So we have a two-phase analogy to  equations (3) and (4 ) ,

Can we assume the mixing length  i s  not a f fe c te d  by the presence  

o f  two f lu id s ?  R eferring to N ikuradse's work in  s in g le -p h a se  flo w , the
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mixing length  i s  independent of f lu id  p r o p e r tie s . This r e s u lt  would 

tend to  make Equations (5) through ( l l )  accep ta b le . I t  appears then, 

th at the "square root o f  d en sity"  r e la t io n  of equations (14) and ( 1 5 ) 

w i l l  a lso  be v a l id ; ' fo r  t h is  r e la t io n  i s  based on equation (1 1 ), The 

next s tep  then i s  to put equations (14) and ,(15) in to  a usable form for 

two-phase flow .

Twc->Phase F r ic t io n  Factor Equation. Liquid and gas are flow ­

ing through a tubing in  Continuous Flow. C a ll th e  volum etric liq u id  

ra te  Vl» This liq u id  i s  flow in g  through only a p a r tia l cross se c t io n  

o f the pipe Aio These are r e la te d  as fo llow S ;

(16)

I f  gas had been flow ing (a t the same shear s t r e s s )  through th e  are a con- 

ta in ip g  liqu id;, i t s  v e lo c i t y ,  from Equation (1 4 );  would have been grea ter  

by the r a t io  ^̂ Pl / pq» Let us rep la ce  the liq u id  w ith  an eq u iva len t amount 

of g a s , la b e lin g  t h is  eq u iva len t gas

• 4

The a c tu a l l iq u id  flow ing has now been changed to an equ ivalent volume 

of g as. The remainder of the pipe a c tu a lly  con ta in s flow in g  g a s , so the 

t o t a l  eq u iva len t gas (which w i l l  be la b e led  Vg^gq^) i s  merely the sum o f  

the two gas term s.

i f  ( 18)

Equation (1 8 ) ,  for convenience, can be changed to  th e  more common en­

g in eerin g  u n its  of bulk v e lo c ity  by d iv id in g  by th e  t o t a l  cross  se c ­

t io n a l  area .
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where U = the bulk v e lo c ity  of a phase based on the t o t a l  
cross s e c t io n a l area .

Thus in  Equation (19) the t o t a l  two-phase flow has been changed to  an

eq u iva len t volume of gas.

The Moody (58) f r ic t io n  factor  equation for  h orizon ta l s in g le

phase flow  a t  constant v e lo c it y  i s .

The on ly  terms in  t h i s  equation which r e la te  to  the flow in g  f lu id  are 

the v e lo c i t y ,  tj, and the d e n s ity , p. To use Equation (20) fo r  two-phase 

f lo w , the to ta l  equivalent gas v e lo c ity  (Equation (1 9 )) and the gas den­

s i t y  would be proper to  u se . The r e s u lt  i s ,

Equation (21) i s  the f r ic t io n  fa c to r  equation r e su lt in g  when the flow in g  

l iq u id  was changed to  an eq u iva len t amount of gas from Equation (l'7 )i 

and i t  should be v a lid  fo r  two-phase flow .

I t  ]_s q u ite  in te r e s t in g  to note th a t  th e  flow in g  gas could have

been changed to  an equ ivalent amount of liq u id  rather than th e converse.

In  so doing, an exp ression  analogous to Equation (17) would be the re ­

su lt  o By adding the two eq u iva len t term s, as in  Eqùation ( I 8 j ,  and in ­

s e r t in g  them in to  th e f r i c t i o n  fa c to r , the re s u it in g  exp ression  w i l l  be 

id e n t ic a l  w ith  Equation (2 1 ) , Thus i t  nakes no d if fe r e n c e  whether one 

c a lc u la te s  th e  to ta l  f lu id  as an equ ivalent gas or as an eq u iva len t l i q ­

u id  j the r e s u lt  i s  the same. In  f a c t ,  the t o t a l  k in e t ic  energy o f  th e  

flow in g  system  i s  th e  term  being c a lc u la te d . This i s  the same a s  in  

s in g le -p h a se  flow  ; fo r  the term U^p in  Equation (20) i s  equal to  the
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k in e t ic  energy o f the flow ing f l u i d .

O ften , because o f  the nature of the experim ental data, i t  i s  

more convenient to use the s u p e r f ic ia l nass v e lo c i t y ,  G, rather than the 

lin e a r  v e lo c i t y .  In th is  case  Equation (21) becomes,

/ •  ^  2 S / c I ^  / a 'P ]  ( 22 ,

fo r  the f r ic t io n  fa c to r  in  two-phase flow .

K inetic  Liquid F raction . As s ta te d  above, the k in e t ic  energy 

o f th e  flo w in g  f lu id s  i s  the term which determ ines e i th e r  the s in g le -  

,.ph,ase or the two-phase pressure drop. I t  seems lo g i c a l ,  when r e fe rr in g  to  

th e fr a c t io n  o f  l iq u id  flow ing or th e  l iq u id /g a s  flow in g  r a t io ,  to use 

the most important p ro p e r tie s  of these flow in g  f lu id s  — th e ir  r e la t iv e  

k in e t ic  e n e r g ie s . For th is  reason , when re ferr in g  to th e  fr a c t io n  o f  l i q ­

uid  f lo w in g , th e  term used w i l l  be the K in etic  L iquid F raction  (K .L .F ,),

I t  can be d efin ed  e ith e r  from Equation (21) or Equation (2 2 ) ,

I t  seems l i k e l y  that the K.L.F. w i l l  be u s e fu l in  p r e d ic tin g  which o f  

th e  th ree major flow  reg ion s can be expected in  a given flow  s itu a t io n .

With a KoLoF, near 1 .0 ,  the l iq u id  i s  the predominant f lu id  and Plug Flow 

should occur-; and w ith a K.L.F, near 0 .0 ,  the gas i s  th e  predominant 

f lu id  and Continuous Flow should be seen .

V a lid a tio n  of th e  Two-Phase E quations. In search ing th e  l i t e r a ­

tu r e ,  the w r iter  found experim ental ev idence th a t ten d s to  corroborate  

the above eq u ation s, Abramson ( I j  in  an e x c e lle n t  paper presented data  

on th e su rfa ce  waves of th e liq u id -g a s  in te r fa c e  in  annular two-phase flow .
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In  h is  experim ental work, liq u id  was introduced at th e  annulus w ith  gas 

in  th e  cen ter . He measured the flow  r a te s  at which surface waves were 

ju st  beginning to  be formed,

Abramson used von Karman's (75) u n iv ersa l v e lo c ity  p r o f i le  for  

smooth pipes

Laminar Layer u"*” = y"̂  For 0<y<^ 5 (24a)

T ra n sitio n  Zone u'*' = 3*05 + 5 In y^ For 5<y< 3 0  (24b)

Turbulent Core u"*” = 5»5 + 2 ,5  In y'*’ For 30<'y'  ̂ (24c)

where u'*' = u /u*
y+ = yu*p/p

and the same "square roo t o f  density"  r e la t io n  derived  in  Equations (14) 

and (1 5 ) ,  With th ese  equations he could c'alculate the th ick n ess  

(y  and j* )  of the annular layer of flow in g  l iq u id .  The v a lu es  o f y"̂  at 

which the l iq u id  f i r s t  became d isturbed  by su rface waves ranged from 

12c'y'V21o This i s  an e x c e lle n t  f i t  with Equation (24b ).

From th ese  data and c a lc u la t io n s  there are two p o ss ib le  con­

c lu s io n s , E ith er  the "square root o f density"  r e la t io n  i s  v a lid  and the 

u n iv e r sa l v e lo c it y  p r o f i le  h o ld s fo r  two-phase flow j or n e ith er  of th ese  

two assumptions i s  v a l id ,  and the apparent agreement o f y'̂  i s  m erely a 

fo r tu ito u s  s e t  of c ircu m stan ces. Note the word apparent, for  y* was not 

measured, but rather ca lcu la ted  using th ese  two assum ptions.

Hew ev er , we are almost forced  to  r u le  out the hypothesis o f  

fo r t u it y ,  Abramson used various l i g r id s ,  in c lu d in g  water at two d i f f e r ­

ent tem peratures ( to  change v i s c o s i t y ) ,  w ater w ith  varying amounts of 

w ettin g  agen ts (to  change su rface t e n s io n ) ,  and water w ith  varying amounts 

o f g ly c o l ( to  change d en s ity  and v i s c o s i t y ) .  There was no d iscern a b le
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e f f e c t  from th ese  changes in  v a r ia b le s , and the range of v a r ia b le s  seems 

too  broad fo r  the r e su lts  to  be considered  accid en t ale Thus th e  assump­

t io n s  appear v a l id ,  at le a s t  near the w a ll .

Two-Phase R<̂ ’-nolds Number. In d er iv in g  Equations (it,> and (15 j 

the equation fo r  f u l l y  developed tu rb u len t flow  in  rough p ip ing a... used. 

This equation assuræs that the f r i c t io n  factor i s  a constante Although 

th is  i s  a good f i r s t  a p p ro x im tio n , p a r t ic u la r ly  at high Reynolas lumbers, 

i t  i s , not exacte The f r ic t io n  fa cto r  i s  a fu n c tio n  of Reynolds Number; and 

thus i t  i s  n ecessary  to  decide on the proper ternis to  use for the Reynolds 

Number in  two-phase f lo w .

Here the two-phase v is u a l data  can be used. These data show 

th at the liq u id  w ets the p ipe w a lls  even i f  on ly  a sm all amount of l i q ­

uid i s  present in  the flow ing mixture . Thus one would tend to use th e  

l iq u id  jaroperties for the Reynolds Number, v iz .

( 2 5 ;

At lew r a te s  of flow  the v isu a l data show th a t the l iq u id  gas in te r fa c e  

along the upper w a ll  of the pipe i s  quite snooth.. Thus the laminar sub­

la y e r  -must extend in to  the gas phase; and th e  gas phase v is  c o s ity ^ o u ld  

be expected to have a minor e f f e c t s  At very high ra tes  of f lo w , the 

l iq u id /g a s  in te r fa c e  i s  d e f in i t e ly  d istu rb ed  throughout th e  pipe w a ll, 

and in  th is  case the laminar sub layer l i e s  w holly  w ith in  th e  l i q u i d .

I t  seems then  th a t a good em p ir ica l approadr i s  to  in c lu d e both 

v i s c o s i t i e s  in  th e Reynolds Number, th u s .

i ' "
(26)



52

At f a i r l y  low r a te s  of i l  aw i t  looks as i f  th e  gas v i s c o s i t y  vjou.ld have 

some e f f e c t ,  although the liq u id  v is c o s i t y  i s  s t i l l  predominant; and tine 

exponent, n, would l i k e ly  be somewhat le s s  than 1 .0  but somewhat more 

than 0 . 5 . At very high r a te s  o f flow  i t  appears that the l iq u id  laminar 

f i lm  i s  c o n tro llin g  and "n" should in crea se  to  1 .0 .  Thus the exponent, 

n, i s  very  l i k e ly  not a co n sta n t. However, i t  may be p o ssib le  t o  use a 

constant "n" and be s u f f i c ie n t ly  accurate for the to ta l  range o f  data; fo r  

at high Reynolds Numbers th e f r i c t io n  factor  becomes v ir tu a l ly  a con stan t, 

and i t  w i l l  make l i t t l e  d iffe r e n c e  what exponent i s  u sed . The b est "n" 

w i l l  have to  be found em p ir ic a lly  from the experim ental d a ta .

Froude Number in  Two-Phase Flow. In tu rb u len t flow , there i s  

a continuous in terchan ge of f lu id  between flow  la y e r s . This i s  th e eddy 

v e lo c i t y  which g iv e s  r i s e  to t  he tu rb u len t shear s t r e s s e s .  In two-phase 

tu rb u len t flow , the ed d ies  c o n s is t  of liq u id  moving into and out. of the

gas stream and v ic e  v ersa  with the g a s . However, due to th e  d en sity  d i f ­

ference between liq u id  and gas, th is  type of movement w i l l  be a f fe c te d  by 

th e g r a v ita t io n a l f o r c e s .  This i s  an ex tra  e f f e c t  which does nou e x is t  

in  the flow  of a s in g le  phase.

What would be th e expected  e f f e c t  o f the g r a v ita t io n a l forces?  

Under co n d itio n s  o f  low v e lo c i t y  they would tend to keep th e f lu id s  more

n ea r ly  separated  in to  d is t in c t  la y e r s  and thus "buck" to  some extent the

turbulent fo r c e s .  On the other hand, under con d itio n s of high v e lo c it y ,  

the k in e t ic  (or tu rb u len t) fo r c e s  would be expected  to  la r g e ly  override  

the g r a v ita t io n a l f o r c e s .

A dimensio n le ss  grouping comes im m ediately to mind which charac­

t e r i z e s  th e  k in e tic  and g r a v ita t io n a l fo r c e s  — th e Froude Number, I t  i s
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o fte n  used for ^ i p  models when worrying about dimensional 

a lso  i t  i s  the c r ite r io n  fo r  various modes o f flow  behavior in. open chan­

n e ls ,  c a n a ls , w e ir s , dam sp illw a y s and the l i k e .  For the length  term In

th is  system , the pipe diam eter i s  th e  lo g ic a l ch o ice , and the equivalent

gas v e lo c ity  of Equation (19) seems the proper choice for the v e lo c ity

term . Using th ese  terms th e  Froude N’lmber i s .

The Froude Number has been used on ly  once before (30b'', to the 

a u th or's  knowledge, in  the p red ic tion  of two-phase pressure drop, ana in  

t h i s  one referen ce  i t  was used in  v e r t ic a l  f lo w . But i t  should be possi 

b le  to  make some in te l l ig e n t  gu esses as to the e f f e c t s  o f the Froude Num­

b er. For .instance, the grav ity  fo r c e s  (ch aracter ized  by g) tend to nake 

the in te r fa c e  more q u iescen t and t h i s  w i l l  lower the pressure grad ient.

At high v e l o c i t i e s  th e  turbulent fo r c e s  would tend to  be stron ger , and. 

a ls o ,  a g rea te r  portion  of the l iq u id  would be carried  as a spray — i n ­

creasing  th e pressure drop. So, look ing at Equation (2 7 ) , th e pressure, 

gradient i s  expected to be higher with a h igher Froude Nunber.

This reason ing can be j u s t i f ie d  to some exten t by published  

d a ta . Chenoweth and Martin (29) presented data on equ ivalent length  of 

th ree  d if fe r e n t  pipe f i t t i n g s .  The data on a globe v a lv e  and an o r i f ic e  

shewed a g rea te r  equ ivalent length  of th ese  f i t t i n g s  under two-phase flow  

con d ition s than under s in g le -p h a se  f le w . This i s  p red icted  in  Equation 

( 2 7 ) for  the r e s t r ic t io n s  r e s u lt  in  higher v e l o c i t i e s  in  th ese  f i t t in g s .  

Around a 180® return bend, the eq u iv a len t length  in  two-phase flow  was 

l e s s  than, in  s in g le -p h a se  f lo w . Again th is  r e s u lt  i s  a n tic ip a te d
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Equation (2 7 ) . fo r  th e angular a cce lera tio n  around a bend has the sane e f ­

f e c t  as an in crease  in  the g r a v ita t io n a l a c c e le r a t io n , g.

Summary of Continuous Flow E quations. The equations for  p r e s ­

sure drop p red ic tion  in  Continuous Flow can be summarized as fo llo w s . The 

bulk flow  o f  th e  two phases can be reduced to an equ ivalent s in g le  phase 

for  th e f r i c t io n  fa c to r  equation by using Equation (2 2 ) .

/ ^___êSsÆ.-- /àE \ (221

The Reynolds Number should con ta in  both the l iq u id  and th e  gas v i s c o s i ­

t i e s  a s  fo llo w s:
| / - y 7

The Froude Number should a f f e c t  the pressure gra d ien t, and the Froude Nijm- 

ber can be expressed  as in  Equation (2 7 ) .

(27-

The r e la t iv e  importance of each phase to  th e  flow  mechanism is  r e la te d  to  

th e  k in e t ic  energy of each phase» To ch a ra cter ize  t h is  im portance, th e  

term K inetic Liquid F raction  (KoL.F.) i s  used , as d e fin ed  in  Equation (21)

The K.L.F. i s  a lso  expected  to be the c r i t e r io n  th a t determ ines which of  

th e  th ree  flow reg ion s i s  p resen t.

Shut-In R atio — Continuous Flow 

The s in g le -p h a se  flow  th e o r ie s  have been used to predict, th e  

probable c o r r e la tin g  parameters fo r  pressure drop in  Continuous Flow.

This same approach should a lso  be v a lid  fo r  p re d ic tio n  o f th e  l iq u id /g a s
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sh u t- in  r a t io s  for  Continuous Flew.

In tui'bulent flow  th e  v e lo c ity  o f  th e  flow ing f lu id  i s  not every­

where constant; i t  in crea ses  from zero at th e  w a ll to  a maximum at th e  c en - 

t e r .  For th is  reason a g rea ter  percentage o f  th e  t o t a l  flow  i s  comirg 

from the c e n ter  of th e  p ip e . 3o  ̂ i f  we are comparing the in t e r io r  portion  

o f th e pipe w ith  the portion  near the w a ll,  th e  flow ing volum etric r a t io  

i s  not the same as the sh u t- in  r a t io .

R efer to  the " un iversa l v e lo c ity  p r o file "  Equation (2 4 ) . I t  

can be seen th a t  the t r a n s it io n  zone i s  ra th er narrow^, so i t  i s  p erm issi­

b le  to  s im p lify  the equation  in to  two reg ion s — the lam inar la y e r  and the 

tu rb u len t co re . When so d o in g , th e  lam in ar-to -tu rb u len t t r a n s it io n  takes  

p la ce  a t a y'̂  of 1 1 ,6 2 .

Laminar Layer u+ = y+ y'̂ c 11.62 (28a)

Turbulent Core u"*" = 5 .5  + 2 ,5  In y"*" y t > l l ,6 2  (28b)

Equation (28) can be used to ca lc u la te  the v a r ia t io n  in  the v e lo c i t y  from 

th e w a ll to the c a r te r .

D eveloping S im p lified  E quations. R eferrin g  to  the flow  d escr ip ­

t io n  in  Continuous Flow, th e  l iq u id ,  being the w e ttir g  phase, f lo w s  p r i­

m arily  alorg th e  bottom and w a l ls .  The gas flow s prim arily  in  the cen tra l 

core; but some liq u id  i s  a lso  en tra in ed  as d ro p le ts  in  th e g a s . Let us 

s im p lify  t h is  d e sc r ip t io n , and s t a t e  as a f i r s t  approxim ation, th a t  the  

l iq u id  flow s on ly  in  a symmetrical annular r in g . The gas flow  i s  th a i in  

a c y l in d r ic a l  core centered on the a x is .  With t h i s  d e sc r ip t io n  th e  

g a s /l iq u id  in te r fa c e  can be d efin ed  as being at some ra d iu s , r̂ ,̂ and th e  

l iq u id  fr a c t io n  sh u t- in  ( F .S .I . )  i s .
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/ r j s . / :  ^  . (29)

where = in te r fa c e  ra d iu s , 
ro = pipe rad ius.

The volume o f gas flo w in g  in  the c e n tr a l  core i s ,

"= y  (30)
-^o

where r = rad iu s,
u = lo c a l v e lo c ity  o f the gas at rad ius r,'

Vg = volum etric flow  ra te  o f gas in  the cen tra l core .

To in te g r a te  Equation (3 0 ) ,  th e  lo c a l  v e lo c i t y ,  u , must be expressed  as 

a fu n c tio n  of ra d iu s . For t h i s .  Equation (28) i s  used . The eq u ation  i s  

th en  d ir e c t ly  in te g r a b le .

To determ ine the t o t a l  flo w , V<p, the equation must be in te ­

grated  over the t o t a l  pipe radius

(31)

Again the v e lo c i t y ,  u, i s  su b s t itu te d  from Equation 28 , N otice in  t h i s  

c a lc u la t io n  th a t  th e  sane v e lo c ity  i s  used fo r  the liq u id  portion  of the 

pipe as fo r  the gaseous p o r tio n . This i s  v a lid  because o f the b a sic  d e f i ­

n it io n  of th e  K .L .F ,, wherein th e  l iq u id  has been converted  to  an equiva­

le n t  volume of g a s . The "square root of density"  r e la t io n  of Equations 

(14 ) and (15) i s  the key  to  th is  conversion . This can also be seen in  

Equation (2 8 );  for the term  uy^ i s  contained  in  the d im en sio n less  v e ­

l o c i t y ,  u'*’.

In Appendix B the above su b s t itu t io n s  and in te g r a t io n s  are cov­

ered in  d e t a i l .  The r e su lts  of th e s e  in te g r a t io n s  are shown in  Figure IX 

where th e  K .L .F , i s  p lo tte d  against the th e o r e t ic a l  l iq u id  fr a c t io n  shut- 

in  ( F . S . I , ) ,  These were c a lc u la te d  at th ree  d if fe r e n t  v a lu es  cf
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Reynolds Number»

There are sev era l fea tu res  of Figure IX which are worthy of men ­

tion »  F ir s t ,  the F»S»I, i s  always grea ter  than the K.L.F» Second, i t  i=  

seen th at th e  g r e a te s t  d iffe r e n c e  between K.L.F. and F .S .I .  i s  when on ly  

a sm all p ortion  of the flow in g  f lu id  i s  l iq u id .  These r e s u lt s  are to be 

expected , for  the liq u id  i s  flo w in g  at th e w a lls  where th e  v e lo c ity  i s  

l e s s  "Wian average. Third, i s  the e f f e c t  of changing Reynolds Number.

At high Reynolds Numbers th e  F .S .I .  more nearly  equals th e K.L.F. This 

r e su lt  i s  due t o  th e  change in  the v e lo c i t y  p r o f ile  w ith Reynolds Number. 

At h igher Reynolds Numbers the v e lo c i t y  remains more n early  constant un­

t i l  near the w a l l ,  where i t  plunges rap id ly  toward zero; w h ile  at lower 

Reynolds Numbers the v e lo c i t y  changes more grad u a lly  throughout th e  p ip e .

E ffe c ts  of Errors in  the Assumptions. The curves of F igure IX 

are based on the s im p lify in g  assum ption that the l iq u id  f lo w s  in  a sym­

m etr ica l annulus between the in te r fa c e  at rj_ and the p ipe w a ll r^, and 

the gas flow s in  th e  cen tra l co re . This flow  p icture i s  sketched in F ig ­

ure X» N otice th a t the a c tu a l l iq u id  v e lo c ity  i s  l e s s  than the gas v e ­

lo c i t y  by th e "square root of d m s ity " r a t io .  With th is  assum ption, th ere  

i s  an abrupt "jump" in  v e lo c ity  at th e  liq u id /g a s  in te r fa c e .  This concept 

i s  somewhat id e a l iz e d ,  however, s in c e  there must be an interchange of mo­

mentum at the in te r fa c e  fo r  turbu len t flow to  e x i s t .  This means there  

must be a mixing zone wherein ed d ies of gas move in to  the liq u id  and ed ­

d ie s  o f  l iq u id  in to  the g a s  to  achieve t h i s  in terchan ge. The r e s u lt  of 

such a mixing zone i s  sketched in  Figure XI. There i s  no lon ger a sudden 

jump in  th e  v e lo c i t y  p r o f ile  »

How w i l l  the presence of such a mixing zone a f f e c t  the s h u t- in
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and flow ing fr a c t io n s?  I t  i s  apparent from Figure XI that some o f  the 

l iq u id  i s  flow in g  f a s t e r  than p red ic ted  by th e 'l iq u id  v e lo c ity  p r o f ile  

eq u ation . Therefore one would expect th a t ,  w ith  a given flow in g  fr a c ­

t io n ,  the ahub-in  liq u id  fr a c t io n  w i l l  be le s s  than p red icted  by th e  

curves of Figure IX.

There are some fu r th er  c h a r a c te r is t ic s  of th e  flo w  which w i l l  

cause th e  curves o f Figure IX to  be erroneous. F ir s t ,  we knovj th a t  some 

o f  the l iq u id  i s  conbinuously being carr ied  as d ro p le ts  w ith in  th e  cen­

t r a l  core o f g a s . Second, i t  can be seen th a t th e l iq u id  is  not a c tu a lly  

flow ing in  a concentric  annular r in g . A la r g e r  p erca itage i s  flowing  

along the bottom due to  the gra 'v ita tio n a l fo r c e s .  The e f f e c t  of th ese  

assum ption erro rs  i s  the same a s  b efo re . The actual s h u t- in  fr a c t io n  w i l l  

be sm a ller  than p red ic ted  by Figure IXj that i s ,  the actual liq u id  v e lo c ­

i t y  w i l l ,  on the average, be higher than p red ic ted  in  Equation (28) .  How­

e v e r , i t  seems reasonable t o  suggest the c o r r e la t in g  parameters o f Figure 

IX can be s u c c e s s fu l ly  used to  c o r r e la te  the a c tu a l l iq u id  F .S .I .  versus 

the K .L .F .

Flow Equation — Plug Flow

In  Plug Flow th e  liq u id  i s  th e  predominant flow ing f lu id .  The 

gas i s  being ca rr ied  along by the l iq u id ,  e i th e r  in  a ltern a te  plugs or as 

bubbles en trained  in  th e  bulk o f  th e  l iq u id .  From t h is  d esc r ip tio n  i t  i s  

p o ss ib le  to  make two d if f e r in g  assum ptions about th e  ch aracter  of th e  f lo w ,  

and th e se  w i l l  le a d  to  two d if fe r in g  equations fo r  p red ic tin g  the pressure  

drop. These a lte r n a te  assump'tions a re , ( I )  th e  liq u id  and gas flow as i f  

they are a com p lete ly  mixed homogeneous f lu id ,  and (2 ) the l iq u id  and gas
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a ct as com pletely separate e n t i t i e s  — that i s ,  p lugs of l iq u id  fo llow ed  

by p lugs of g a s , fo llow ed  ty liq u id  and so  on» Equations are derived to  

represent th ese  two assumptions»

Assumption (1 ) — Liquid and Gas Mixed» I f  the l iq u id  and g a? 

are com pletely  mixed, the proper mass v e lo c ity  to use in  the Reynolds 

Number i s  merely the to ta l  mass v e lo c it y ,  Gl p lus Gq , The v is u a l data  

shows the l iq u id  i s  d e f in i t e ly  the w etting  f lu id  in  th is  type of f lo w , sc 

the liq u id  v i s c o s i t y ,  pq,, should be used» The r e s u lt in g  Reynolds Number 

i s ,

( 3 2 ;

In the ex p ress io n  for  th e f r i c t io n  fa c to r  the mass v e lo c ity  also  

appears» T h is , to o , w i l l  be the sum, Gj_, plus Gq . The d en sity  w i l l  have 

to  be the average mass per unit volume, which i s  the sum of th e s u p e r f i­

c i a l  mass v e l o c i t i e s  (Gl plus Gg) d iv id ed  by the sum o f  the s u p e r f ic ia l  

bulk v e lo c i t i e s  (Ul p lu s Uq), And th e r e s u lt ir g  Moody (58) f r ic t io n  fa c ­

to r  i s .

^ (-3_,

I f  the assumption o f  com pletely  mixed flow  i s  c o r r e c t . Equations (32) and 

( 3 3 ) can now be used to  p red ic t the pressure drop» That i s ,  knowing the 

Reynolds Number from Equation (3 2 ) ,  th e  Karman or B laz iu s ( 6 4 ) equation , 

or o th er su ita b le  s in g le -p h a se  c o r r e la t io n  i s  used t o  ca lc u la te  th e  f r i c ­

t io n  fa c to r ;  then tiie pressure grad ien t i s  ca lcu la ted  from Equation (33)»  

Assumption (2 ) — Liquid and Gas in  Separate P lu g s. I f  the 

l iq u id  and gas are f lo w in g  a s  com pletely  separate e n t i t i e s  with plugs of 

l iq u id  a lte r n a tin g  w ith  plugs cf gas, the pressure g ra d ien ts  can be
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ca lcu la ted  sep a ra te ly  in  each phase then added to g eth er  to  g e t  the t o t a l  

pressure drop.

To c a lc u la te  the liq u id  Reynolds Number i t  must be remembered 

th a t the liq u id  i s  flovdng f a s t e r  than i t  would i f  no gas were presen t. 

The amount of th is  v e lo c ity  in cr ea se  can be expressed as a ra tio  of the 

s u p e r f ic ia l  v e l o c i t i e s  o f the phases flo w in g . Thus the l iq u id  Reynolds 

Nunfcer, (Re. NOo) l , becomes

Since the v e lo c ity  i s  squared in  th e  f r i c t io n  fa c to r  equation^ the v e lo c ­

i t y  r a t io  term , ((Ul + /U%,)̂  must a lso  be squared, and th e  f r ic t io n

fa c to r  is  as fo llo w s ,
,  /r;r

(35)
( it

Equation (35) g iv e s  the ex p ress io n  fo r  the pressure grad ient  

w ith in  a l iq u id  p lu g . I t  would be more convenient to  express th is  as an 

average pressure drop per lengt.h of p ip e . This i s  done sim ply by d iv id ­

ing by the volum etric flow in g  r a t io  of l iq u id  and gas; and the r e s u lt  i s .

For the gas plugs i t  i s .  p o ss ib le  to  g e t expressions analogous 

t o  Equations (34) and (36) for the f r ic t io n  fa c to r  and th e  Reynolds Num­

b er , The exp ression  fo r  the f r i c t io n  fa c to r  i s  sim ply,

/  = / ^ )  = ___Æ âç^/Æ l

The Reynolds Number must be m odified  somewhat fo r  the g a s  p lu gs. When 

a gas plug i s  f lo w in g , the w a lls  are com pletely  l iq u id  w et. T his means
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the Liquid v is c o s i t y  must be used in  th e  Reynolds Number. .q l s o t h e  gas  

flow  ra te  must be changed to an eq u iva len t l iq u id .  Here the ''square root 

of d en sity"  r e la t io n  of Equation (15) i s  in  order. Sc the resu lta n t gas 

Reynolds Number (Analogous to Equation (3 4 )) is ..

The t o t a l  pressure drop o f the system  i s  m erely the sum of the 

l iq u id  and gas components. So adding Equations (3b) - and (3 7 ), th e pre­

d ic ted  two-phase pressure drop per fo o t of pipe i s .

Comparison of the E quations. Two equations have been d erived . 

Equation (33) i s  based on the assumption th a t the f lu id s  are mixed; Equa­

t io n  .59) sssumes th e  f lu id s  are in  com pletely  separate p lu gs, The actu a l 

i' ow CO ri-j ons apiosar to l i e  somewhere between th ese  extrem es, so i t  

-.'rsm- apt jpos to compare th e two equ ation s.

F ir s t  con sid er Equation (3 9 ) , in  caLLculat'ing th e  Plug Flow  data, 

the w riter  found the gas term was always le s s .th a n  5 per cent of the liq u id  

term.. Thus we can n eg le c t the gas term; and Equation (3 6 ) , which i s  fo r  

)J qu.id onj.y. wiJ.l be us ed ra th er than equation (3 9 ) , Also the B laz iu s (64) 

.forrr :f the f r i c t io n  factor equati.on w i l l  be used rather than, „he more awk­

ward Karman Equaticn, The B laziu s Equation i s ,

y  ~  (40)

When su b s titu tin g  Equations (32) and (40) in to  Equation (33) and 

rearranging, the r e s u lt  i s ,

-  A / . ^ Â — 11.1)
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fo r  liq u id  and g a s  flow in g  mixed. S u b stitu tin g  in to  Equation (36) the 

r e s u lt  f o r  l iq u id  and g a s separated  in to  plugs i s ,

We wish to  make a comparison of th e  two equations^ so Equation 

(41) w i l l  be d iv id ed  by Equation (42) and th e  r e s u lt  la b e le d , R, to  s i g ­

n if y  a r a t io  of p red icted  pressure drops. Note in  d iv id in g  th a t  the term,, 

A(|i.L/D)® (Ul + ÜQ)/2gcD, i s  common to  both equations. So the r e s u lt  i s .

I t  was s ta te d  th a t th e gas p ortion  o f  Equation (39) was always l e s s  than.

5 per cent o f the l iq u id  p ortion  and so i t  was n eg le c ted . For th e  same

reason  we can se e  ürat Gq w i l l  be n e g lig ib le  compared to  0^, This w i l l

e lim in a te  th e  f i r s t  term in  Equation (43) le a v in g  on ly ,

j/77
(44.)

Now co n sid er  Equation (44) which p resen ts a p icture of the two 

th e o r e t ic a l  equations and t h e ir  d if fe r e n c e s . F ir s t ,  n o t ic e  th a t ,  as th e  

volume of gas becomes sm all compared to  th e  liq u id  volume, the r a t io  R 

approaches u n ity  — both equations p red ic t the same pressure drop. Actu­

a l l y ,  as can be seen from Equations (41) and (4 2 ) , both equations c o r r e c t ly  

p r e d ic t  the a l l - l iq u id  pressure drop at t h i s  co n d itio n . Second, i t  i s  

seen t h a t ,  w ith  an ap p reciab le gas r a te , the r a t io  R in  Equation (44) i s  

always g r e a te r  than u n ity . This, means th a t the assum ption of com pletely  

mixed f lo w  (Equation (3 3 ))  always p red ic ts  the g rea ter  pressure drop.

T hird, i t  can be seen th at th e r a t io  R i s  g r e a te s t  when the gas volume
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i s  g r e a te s t .  So the two equations d i f f e r  most w id ely  when the qystera 

pressure i s  low and the gas volume i s  h igh .

Maximum D ifferen ce  in  Equations. I t  should be p o ssib le  to c a l­

cu la te  approxim ately the maximum range o f th e  pressure drop r a t io .  R- 

From the v i s u a l  data the author found th a t in  Plug Flow the gas bulk v e lo ­

c i t y  never exceeds about s ix  tim es the l iq u id  bulk v e lo c ity .  The expo­

n en t, m, in  Equation {kU) i s  the Reynolds Number exponent in  the B laziu s  

E q ia tio n . I t  i s  somewhat v a r ia b le , but g en era lly  doesn ’t  exceed 0 .2 5 .  

Using th e se  numbers, the maximum value fo r  the pressure drop r a t io ,

Rmaxf becomes

- /  - ÿ r ; ; /  -- ^<<5^ ( 4 5 )

So i t  i s  seen th a t  Equations (33) and" (39) are never very far 

apart in  th e ir  p ressure drop p red ic tio n s , even at th e ir  maximum d i f f e r ­

ence. In c o r r e la t i ig  th e d a ta , the measured drop should l i e  between th ese  

tWD p r e d ic t io n s , s in ce  th e assum ptions le a d in g  to  th ese  equations cover 

th e  extrem es w ith in  which th e a c tu a l flow in g  system seems to  l i e .

Flow Equation — Interm ediate (or Slug) Flow 

As pointed  out e a r l ie r  in  th is  ch ap ter . Interm ediate (or  Slug) 

Flow i s  the t r a n s it io n  reg ion  between the Continuous and the Plug Flow 

r e g io n s . Part o f  th e  l iq u id  i s  f lo w in g  as a continuous phase along th e  

bottom and w a lls  of th e  tubing due to  energy tr a n s fe r  from the g a s , as 

in  Continuous Flow; and part o f  th e  l i q i id  i s  flow in g  along th e  to p  o f  

the pipe in  s lu gs  a lter n a tin g  w ith  the g a s , as in  Plug Flow. I t  seems 

reasonable to  expect th a t ,  a s  th e  g a s /l iq u id  flow ip g  r a tio  in c r e a se s , the 

pressure drop w i l l  gradua].!y change from th a t  p red ic ted  by th e Plug Flow
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equations to  that p red icted  by th e  Continuous Flow eq u ation s. I t  i s  ex­

trem ely  d if f ic u l ty  however, to  su ggest a th e o r e t ic a l  a n a ly s is  which i s  

deeper than th is  rather elem entary prem ise.

In the next chapter i t  i s  shown th a t a sim ple in te r p o la t io n  be­

tween th e  two b a sic  flow c o r r e la t io n s  (P lug and Continuous) i s  q u ite  ade­

quate for  p red ic tin g  th e  Slug Flew pressure drop.



CHAPTER V 

RESULTS AND CONCLUSIONS

The th e o r e t ic a l  prognoses o f the la s t  chapter are t e s te d  in  

t h i s  chapter» C orrelations are presented to  pred ict th e  pressure drop 

in  a l l  th ree  flow r e g io n s , and a lso  to  p red ic t th e  sh u t-in  r a t io s .  The 

co r r e la t io n s  are te s te d  fo r  accuracy using th e  au th o r 's  laboratory data  

as w e ll  as o th er  laboratory  and f i e l d  data. Before p resen tin g  th ese  r e ­

s u l t s ,  however, a comment should be m de on th e  data used fo r  c o r r e la t ­

in g .

At the tim e th is  study was begun, M essrs, Chenoweth and Martin 

( 2 9 ) of th e  Co F, Braun Co. presented a study of a ir -w a ter  flow in  1 1 /2 -  

inch  and 3 - inch p ip ing at atmospheric pressure and 100 p s ia . These data  

w e ll  complemented th e  w r ite r 's  program of study , so Chenoweüi and Martin 

were contacted  concerning the use of th e ir  d a ta . They g r a c io u s ly  agreed  

to  r e le a s e  i t .

Thus th e  fo llow in g  co rre la tio n s  are based on a la r g e  range of 

operating  co n d itio n s and f lu id  p r o p e r tie s . The Chenoweth and Martin data, 

s in ce  they were taken at w id ely  varying p ressu re , show th e  e f f e c t s  of gas 

d e n s ity  v a r ia t io n . When combined w ith  the w r ite r 's  data , th ey  were id e a l  

for  the study of the e f f e c t s  o f  d iam eter. The w r ite r 's  data were w e ll  

su ite d  to  cover a range o f l iq u id  d e n s it ie s  and v i s c o s i t i e s ;  a lso  t h is  

study in c lu d es  the s h u t- in  data , and presents th e v is u a l  ob servation s

67
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th a t were so n ecessa iy  b efo re  an adequate understanding o f th e  flow  b e­

h a v io r  was p o s s ib le .

Pressure Drop C orrela tion  — Continuous Flow 

In  the preceding ch ap ter , the th eo ry  le d  to  tne fo llo w in g  r e la ­

t io n sh ip s  for  Continuous Flow. F ir s t ,  th e f r ic t io n  fa c to r  for two-phase 

flow  should in c lu d e  th e  p ro p er tie s  o f  both f lu id s  according to  th e ir  re­

sp e c t iv e  k in e t ic  e n e r g ie s ,

__________ / à P ,r  _   ,
V73

Second, the two-phase Reynolds Number should be,

T hird , the Froude Number should be in cluded , whe:re th e  FroiMe Number i s  

d efin ed  as  f o l lo w s .

A/o. =  ■ (.27)

Fourth, a cfynamic r a t io ,  th e  K inetic  Liquid F raction  (K .L .F .) , was de­

f in e d . I t  i s  expected  to  be of importance in  d e fin in g  th e flow  reg io n s,  

and th e  sh u t- in  fr a c t io n .  With th e s e  c h a r a c te r is t ic s ,  i t  should a lso  be 

im portant in  determ ining th e  pressure drop. I t  i s  d efin ed  as fo llo w s ,

These parameters should be s u f f ic ie n t  to  p red ic t the two-phase  

pressure drop in  continuous f le w . The reader w i l l  n o tic e  th a t  th e se  pa­

ram eters are a l l  d im en sio n less , and th a t th ere  are f i v e  in  a l l  — f^pS 

^•^Ljeq/t^Ls Fr. No. and K.L.F. I t  i s  in te r e s t in g  th a t  a sim ple d i­

m ensional a n a ly s is  shows f iv e  dimen s io n le s s  parameters are required to
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ch a ra c te r ize  two-phase flow adequately . Although th ese  parameters were 

not chosen by use o f d im a is io n a l a n a ly s is ,  i t  i s  g r a t ify in g  to fin d  that 

th ey  do match th is  n ecessa iy  c r i te r io n .

The Exponent, n. on the V is c o s i t ie s . Using the water, o i l  and 

g ly c o l  d ata , i t  was p o ss ib le  to  determine em p ir ica lly  the va lu e o f th e  

exponent, n , on th e  l iq u id  and gas v i s c o s i t i e s .  The s in g le-p h ase  data  

on th e Kraloy tubing showed the fo llo w in g  r e la t io n  between the f r ic t io n  

fa c to r  and th e  Reynolds Number,

The tw o-phase data on w ater , o i l  and g ly c o l were compared w ith  each other 

u sin g  Equation (2 ) and variou s con stan ts of exp on en tia tion  on the v i s ­

c o s i t i e s  in  th e  Reynolds Number (Equation (2 6 ) ) .  When using an exponent, 

n , o f 1 .0  on the liq u id  v is c o s i t y  i t  was found th a t th e f r ic t io n  fa c to r s  

fo r  o i l - a i r  were h ig h e s t , ^ y c o l - a i r  in  th e m iddle, and w ater-a ir  low est .. 

When using an "n" equal to  0 .5 0  th e  order was reversed^ w ater was h igh ­

e s t  and o i l  low esto  By t r i a l  and err o r , th e  b est v a lu e  for  th e  exponent 

was found to be 0 .7 0 . Many two-phase o i l ,  g ly c o l,  and water runs were 

c a lc u la te d  and compared w ith  each o th erj and the value of 0 .7 0  fo r  "n" 

was found to  be v a l id  fo r  th e  e n t ir e  range of mass v e l o c i t i e s  stu d ied . 

Thus equation (26) becomes.

I t  should, be emphasized th a t no experim ental b a s is  can be 

claim ed f o r  assuming th a t th e proper exponent on the gas v i s c o s i t y  is  

0o30o The o n ly  gas used in  t h i s  co rr e la tio n  was a ir ,  which, over th e  

range o f d a ta , had e s s e n t ia l ly  a con stan t v i s c o s i t y .  The primary
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argument fo r  includ ing the gas v is c o s i t y  to the 0»30 power i s  f o r  dimen­

s io n a l consistency»  However, even i f  t h i s  i s  not co r r e c t , i t  w i l l  make 

l i t t l e  d iffere n c e  in  the usual c a s e , fo r  most gases have roughly the 

same v is c o s i t y .  I f  a gas i s  used whose v i s c o s i t y  d i f f e r s  from a ir  by a 

fa c to r  o f two, th e  r e s u lt in g  error would be only  four per cen t

( ( 2 . 0 ) “30 X .187 = 1 . 0 4 ) in  the pressure drop.

K inetic Liquid F raction  and Froude Number. Once th e  correct  

exponent was found on th e  v i s c o s i t y ,  the remaining problem was to  d e ter ­

mine th e  importance of the K inetic Liquid F raction  and the Froude Number. 

The Chenoweth and Martin data were included  along w ith  th e  w r ite r 's  data  

in  t h is  phase of the c o r r e la t io n  work, so i t  was necessary  to  c a lc u la te  

a le a s t  squares f i t  o f  the Chenoweth and Martin s in ^ e -p h a se  data. T heir  

1 1 /2 -in ch  pipe gave the fo llo w in g  equation  fo r  the f r i c t io n  fa c to r ,

and th e  equation  fo r  the 3-inch  pipe was

r  _  A / o s  ■ , ,

To c o r r e la te  th e two-phase data , th e  a c tu a l measured two-phase  

f r i c t io n  fa c to r s  ( from Equation (2 2 ))  were compared aga in st th e  

f r ic t io n  fa c to r s  from th e s in g le  phase equations {,-f from Equations ( 2 ) ,  

( 4 7 ) and ( 4 8 ) ) .  P lo ts  and c r o ss  p lo ts  were made o f th e  f r ic t io n  fa c to r  

r a t io s  k 'fj-p //)  as a fu n ctio n  o f  the K in etic  Liquid F raction  (K .L .F .) and 

the Froude Number. A good c o rr e la tio n  was ev id e n t. I t  was v a l id  over 

th e  e n t ir e  rapge o f Froude Nunbers and over a K.L.F. ranging from .001  

to  0 .5 0 0 . Above a K.L.F, of 0 .500  th is  type of c o r r e la t io n  did not f i t  

the data . There were no data below a K.L.F, o f 0 .0 0 1 .
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The c o r r e la tio n  curves are shown in  F igures XII and X III. In  

Figure XII the f r i c t io n  fa c to r  r a t io  is  p lo t te d  ag a in st th e

KoLoFo w ith  Froude Nunfcer param eters. In Figure XIII the c o r r e la t io n  

i s  cro ss  p lo tte d  to  b e t te r  show the e f f e c t  of a v a r ia t io n  in  Froude Num­

ber.

Some A spects o f  th e  C o rre la tio n . N otice th e  ord in ate of F ig­

ure XIIo The actu a l f r i c t io n  fa c to r  (or pressure drop) i s  always greater  

than th a t p red icted  using th e  s in g le -p h a se  equations (Equations (2 1 ) .

( 4 7 ) or (48 ))o  This r a t io  ranges from about 1 .2  to  7»9 depending on th e  

value of the Froude Number and th e K.L.F. A h igher Froude Number causes  

a h igh er f r i c t io n  fa c to r  r a t io .  T his was p red icted  in  the previous  

ch ap ter. Also a hig)i K.L.F. causes a higher f r ic t io n  fa c to r  r a t io .  The 

reason for t h is  i s  d iscu ssed  belcw.

The c o r r e la t io n  parameters which lead  to  th e curves o f  Figure  

XII are based on the assum ption of Continuous Flow. In th e  a n a ly s is  o f  

t h i s  flow  reg ion  i t  was assumed th at none of th e  l iq u id  i s  flow in g  in  

s lu g s . As the K in etic  Liquid F raction  in c r e a se s , t h is  assumption be­

comes erroneous ; and, due to  the h i ^  l iq u id  s lu g  v e lo c i t y ,  the pressure  

drop becomes h igh er . The change frcm one type o f flow  to  another i s  over 

a broad range of g a s /l iq u id  r a t io s  rather than a t one p o in tj b u t, as 

c lo se  as could be determined, th e  beginning of Slug Flow occurred at 

about a K.L.F. o f  0 .1 5 . N otice th a t th is  i s  a ls o  the same reg ion  in  

which the c o r r e la t io n  curves o f. Figure XII beg in  to  r i s e  raaiicedly.

Thus i t  i s  a sim p le  m atter to  determine the flow  regim e. At a 

K.L.F, below about 0 .15 the f lu id s  are in  Continuous Flow. Above 0 ,15  

th e  mechanism i s  In term ediate (o r  Slug) Flow,
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This c o r r e la tio n  on ly  extends to a /L l .F .  o f 0 .5 0 . when the  

l iq u id  fr a c t io n  was somewhat h igher than 0 .5 0 , th e  Interm ediate (or Slug j 

Flow mechanism was s t i l l  ev id en t, but the c o r r e la t io n  was no longer v a lid .  

Apparently between a K.L.F. o f 0.15 and 0 .5 0  the flow behai/ior i s  c lo se  

enough to  the Continuous Flow model th a t the v a l id i t y  of t h is  c o rr e la tin g  

approach i s  not s e r io u s ly  harmed by the presence of the s lu g s , i4 iile  above 

0c50 th is  i s  no longer tru e .

The Froude Number. For c lo se r  sccu zin y , one of che l in e s  of 

Figure XIII i s  rep lo tte d  a s  the s o l id  l in e  of Figure XIV. The f r ic t io n  

fa c to r  r a t io  i s  p lo tte d  aga in st the Froude N’omber at a K.L.F. o f

0 ,1 0 0 , In the c o r r e la t io n  i t  was assumed that th e f r ic t io n  fa c to r  r a t io  

remains constant a t a Froude Number above 100. This assumption appears 

::-easc>nable frcm. th e  curve o f  Figure XIV, for th e  curve becomes nori zo n ta l 

as th e Froude Nnjiüaer nears 100. The data also  v a lid a ted  rh is assum ption, 

fo r  at some of the h igh est flow r a te s  th e  Froude Number ranged above 200-

Ab the lower l e f t  end of th e curve th ere  i s  a slope d iscoritin u ity  

at a Froud.e Number of 1 0 .0 , Below 1 0 .0  3.t was assumed that the r a t io  

was independent of the Froude Number. This i s  im plied  by the h orizonta l 

so lid  .line extending to  the l e f t  a t iÿ -p /^  equal to  1 .88 , The data in d i­

cated  the true cuir/'e may be more n early  l ik e  th e  daslied lin e  in Figure XIV,; 

however, a t th ese  low flow ra te s  th e  data  were not acc^irate enou^  t.o a t ­

tempt a fu rth er  refinement o f  the c o r r e la t io n . The f r ic t io n  fa c to r  r a t io  

i s  probably a smooth continuous fu n ctio n  of th e  Froude Number, as im plied  

by the dashed lin e  ; but. the so l id  curves of F igure XIII were r ^ ite  ade­

quate in  co rre la tin g  the data .

Co r r e la t io n  in  Equation Form, The d esign  engineer often  has a
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computer a v a ila b le  when naking h is c a lc u la t io n s . Since i t  i s  much more 

d e s ir a b le  to have an equation rather than a s e t  of curves fo r  computer

in p u t, a power equation was assumed fo r  tne curves o f F igures XII and

X III , and a le a s t-sq u a r e s  f i t  of the data was nade using the fo llow ing

equation  form.

z = + C^x^

+ Bgxy + Cgx^y (48 j

+A^3t2 + B ^xy^ + C ^x2y2

where x = In  (F r.N o.)
y  = In (1000 X K .L.F .) 
z = In  i / r p / / )

The va lu es fo r  the con stan ts o f  Equation (48) were ca lcu la ted  on the Con­

t in e n ta l  O il Company IBM 650 computer u sin g  a reg ressio n  a n a lysis  program. 

The program determ ines the con sta n ts  by th e  u sual le a st-sq u a r e s  method 

and at the same time c a lc u la te s  the standard d ev ia tio n  of th e data from 

from th e  cu rves. The con sta n ts  were;

A]_ = - 0 . 8 5 3 7 7 6 5 0  B  ̂ = 0 . 5 5 0 2 6 6 0 5  =-0.048616989

A2  = -0 .16950800  B2  = 0 .11382944 Cg = -0,014042873

A3  = - 0 . 0 0 6 3 9 8 0 8 3 0  B3  = 0.013921857 C3  = -O.OOI4 I 8 2 3 6 8

I t  should be emphasized th a t no th e o r e t ic a l  s ig n if ic a n c e  can 

be a ttr ib u te d  to  e ith e r  th e  exponents or th e con stan ts in  Equation (4 8 ). 

The equation  i s  m erely a le a s t-sq u a r e s  f i t  of the data u sin g  the c o r r e la ­

t io n  parameters o f  F igures XII and X III. The con stants are ca rr ied  to  

more p la ce s  than the accuracy o f the data w arrantsj but th e  computer has 

an e ig h t-p la c e  output, so a l l  the d ig i t s  were in clu d ed .

The reg r ess io n  a n a ly s is  program a lso  runs an error a n a ly s is  on 

the d ata . I t  showed th a t th e  data f i t  th e  c o r r e la t in g  curves w ith  a
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standard d e v ia t io n  o f 115 per c e n t . This i s  equ ivalent to 132 per cent 

at th e 95 per cent confidence le v e l  (1 .9 6 a ) . A fu rth er  d iscu ss io n  o f th e  

accuracy of th e  c o r r e la tio n  w i l l  be presented  la t e r  in  th e  chapter^ but 

f i r s t  equations w i l l  be presented fo r  th e  other flow  reg io n s .

P red ic tio n  of Pressure Drop — Plug Flow 

In the preceding chapter, two equations were present ed fo r  pre­

d ic t io n  of the Plug Flow pressure drop. The f i r s t  was based on the a s ­

sumption th a t th e  liq u id  and gas flow  as i f  they are co n p le te ly  mixed.

The r e s u lt  i s ,

(32)

and

The second assum ption was th a t th e  l iq u id  and gas flow  in  separate p lu gs, 

and sep arate Reynolds Numbers and f r ic t io n  fa c to r s  must be c a lc u la te d  for 

each phase. The r e s u lt in g  equations fo r  t h i s  assumption were;

(3&)

(38)

' 2 9 P ]  _ / ^ P ]  , / d P \  _
<91L   —[ c / l J r P  2 g c D  ' (39)

An a n a ly s is  of the v is u a l d ata  along w ith  a c a lc u la t io n  of flow  

r a te s  showed th a t Plug Flow e x is te d  at K .L .F .'s  g rea ter  than about 0..85» 

Below th is  v a lu e . Interm ediate (or Slug) Flow was the mechanian. Again
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the change from one flow mechanism to  the other was rather gradual,, and 

th e d iv is io n  at a K.L.F. of 0.85 was somewhat a rb itra r y . The s e le c t io n  

was based on th e  poin t where the v e lo c i t y  of the liq u id  plugs became ap­

p reciab ly  h igher than bulk liq u id  v e lo c ity .  So once again  i t  proved to  

be a sim ple m atter to  determine the flo w  reg ion . Above a K.L.F. of 0.85  

th e mechanism i s  Plug Flow; between a K.L.F. of 0 .15  and 0.85 the mecha­

nism i s  Interm ediate (o r  Slug) Flow; and below 0 .15  the mechanism is  Con­

tinuous Flow.

In p rocessing  the data j, i t  soon became apparent th a t  th e  gas 

term in  Equation (39) was n e g l ig ib le .  In no ca se  did i t  exceed 5 per 

cent of the liq u id  term , and fo r  the d ata  at higher pressure i t  was even 

sm aller . So Equation (38) was e lim in a ted , and Equation (36j could be 

used rather than Equation (3 9 ) .

(^ L  ■

For c o r r e la t io n , the actu a l pressure drop data  were compared 

w ith th e  p red ic tio n s o f Equations (33) and (3 6 ) . The data f e l l  midway 

between the two eq u ation s, as p red ic ted  in  Chapter IV; and the b e s t  f i t  

was simply to  add th e  two pred icted  pressure drops and d iv id e  by two.

This f i t  was q u ite  s a t is fa c to r y .  The standard d ev ia tio n  was ±14 per cent 

which i s  equal to an error o f ±29 per cent at th e  95 per cen t confidence  

l e v e l .

C orrelation  o f Pressure Drop — Interm ediate Flow

The c o rr e la tio n s  developed above s u c c e s s fu l ly  p red icted  the  

pressure drop when operatirg  below a K.L.F. o f  0 .5 0 0  and above a K.L.F. 

o f 0 .8 5 . I t  on ly  ranained to bridge the in term ed ia te  gap between 0 ,50
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and Oo85« No th e o r e t ic a l  treatm ent was attem pted fo r  Interm ediate Flow. 

I t  appeared th a t th e flow  mechanian was so complex th at th e  most e f f e c ­

t iv e  method would be to sim ply in te r p o la te  between th e  Continuous th e  

Plug Flow c o r r e la t io n s .

At a KoLoF. o f 0 ,5 0  th e  Plug Flow equation i s  in  error . The 

magnitude o f  t h i s  error can be c a lc u la te d  by using th e  Continuous Flow 

c o r r e la t io n  as a r e fe r e n c e . At a K.L.F. o f 0 ,85  the Plug Flow equation  

i s  c o r r e c t . One sim ple in te r p o la t io n  scheme i s  to  assume th a t the amount 

of err o r  in  the Plug Flow equation i s  a l in e a r  logarith m ic fu n ctio n  o f  

the K .L.F.

An example o f t h i s  in te r p o la t io n  method is  shown in  Figure XV- 

To make th is  graph, th e  pressure drop i s  c a lcu la ted  a t a K.L.F. o f 0 .5 0  

u sin g  both th e Plug Flow and th e  Continuous Flow equations. For th is  

example, a t a l iq u id  fr a c t io n  of 0 .5 0  th e Plug Flow p red ic tio n  was found 

to  be double the correct Continuous Flow p r e d ic tio n . This point i s  

p lo tte d  a t  a K.L.F, of 0 ,5 0  in  Figure XV. At a K.L.F. of 0 .1 5  the Plug 

Flow equation  i s  c o r r e c t . This p o in t was a lso  p lo tte d  on the graph and 

a s tr a ig h t  l in e  was drawn between. As seen from Figure XV, i f  the actual 

flow  was at a liq u id  fr a c t io n  of 0 .6 7 , th e  Plug Flow equation would be 

in  error by a fa c to r  of 1 .5 8 . So i f  the K.L.F. i s  between 0 .5 0  and 0.85  

i t  i s  n ecessary  t o  make th ree  d if f e r e n t  pressure drop c a lc u la t io n s ;

( l )  at a K .L.F. o f 0 .5 0  using  th e  Plug Flow equation , (2)  at a liq u id  

f r a c t io n  o f  0 .5 0  u sin g  th e Continuous Flow equation , and (3) at th e  

a c tu a l flow in g  K.L.F. using the Plug Flew equation . Then, according to  

the errors found in  th e  f i r s t  two c a lc u la t io n s ,  an in te r p o la t io n  i s  made 

to  co rrect the th ir d  c a lc u la t io n .
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Using t h i s  in te r p o la t io n  scheme, th e  standard d ev ia tio n  was 

found t o  be ±16 per cent or an error of ±34 per cent a t the 95 per cen" 

confidence l e v e l „ This error i s  s l ig h t ly  g rea ter  than found in  th e other 

two flew  regions» But- th is  was not unexpected, fo r  in  th is  reg ion  the  

v io le n c e  of th e  s lu gs  caused great pressure f lu c tu a t io n s , and even d u p li­

ca te  p o in ts  sometimes d if fe r e d  by more than 34 per cent »

Accuracy of the Pressure Drop Predictions-

In F igures XVI and XVII th e  data are p lo tted  showing the actu al 

pressure drops compared t o  the p red icted  pressure drops. In Figure XVI 

are th e w r it e r ’s w a te r -a ir , o i l - a i r  and g ly c o l-a ir  data, and in  Figure  

XVII the Chenoweth and Martin w a ter-a ir  d a ta . Considering th e  inherent 

errors in  measuring two-phase pressure drops, th e  f i t  i s  e x c e lle n t .  The 

average ab so lu te  error i s  ±12 per cen t. With a normal Gaussian d i s t r i ­

b u tion , the average error can be r e la te d  to th e  standard d ev ia tio n  (30bj 

using the fa c to r  j f j / Z ’- So the standard d e v ia t io n  i s  ±15 per cen t. This 

g iv e s  an error of ±32 per cent a t th e  95 per cent- confidence le v e l  ( l .9 6 o h  

The 95 per cent confidence l im it  l in e s  are shown in  F igures XVI and XVII.

This c o r r e la t io n  covers a broad range of data. The l iq u id  mass 

v e l o c i t i e s  ranged from 1 ,942  Ib /h r -sq  f t  to  2 ,25 8 ,0 0 0  Ib /h r -sq  f t .  The 

gas mass v e l o c i t i e s  ranged from 73 Ib /h r -sq  f t  to  225,800 Ib /h r -sq  f t .

The K in etic  Liquid F raction  ranged from 0.0012 (alm ost 100 per cent gas 

flow ) to  0o994 (alm ost pure l iq u id ) » The pressure drops ranged from 

0.105  I b /s q  f t - f t  o f pipe to  83»4 Ib /s q  f t - f t  o f p ipe. There were 642 

p o in ts  used in  a l l  — 352 from the w r ite r 's  d ata  and 290 from Chenoweth 

and Mart.in.
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As a t e s t  of the c o r r e la t io n , the accuracy o f f i t  may be com 

pared to Chenoweth and M artin 's c o r r e la tio n  o f  th e ir  own data . Their 

c o r r e la t io n  had an average absolu te error of ±19 per c e n t , whdch i s  

eq u iva len t to  a standard d ev ia tio n  o f  ±24 per cent and a 95 per cent con 

f id en ce  le v e l  of ±53 per cento This i s  roughly h a lf again a? much error 

as in  F igures XVI and XVII. In a d d itio n , Chenoweth and Martin on ly  it i-  

cluded 2 6 4  o f  th e ir  data p o in ts . The o th ers  f e l l  co n sid erab ly  below th e ir  

c o rr e la tin g  l i n e s .

Comparison with Other Laboratory D ata. The c o r r e la t io n  was 

a lso  t e s te d  again st th e  data of Green (37) on the w a ter-a ir  and gas c i l -  

a ir  system s in  2 - inch p ip e , and the data of Reid, e t .  a l .  (62) on water 

and a ir  in  4 -in ch  and 6 -in ch  p ip e s . S ince G reen's data were taken in  

the same kind of tu b in g  as the w r i t e r 's ,  Equation (2) was used fo r  c a l­

c u la tin g  h is  s in g le -p h a se  f r ic t io n  fa c to r s .  The comparison w ith  th ese  

data i s  shown in  Figure XVIII. As can be seen , th e f i t  i s  ou tstan d in g ly  

good — even b e tte r  than th e  w r it e r 's  data  in  Figure XVI. This e x c e lle n t  

f i t  i s  p rim arily  due to b e tte r  co n tro l o f  flow  r a te s  in  Green's data .

The standard d e v ia tio n  was found to  be on ly  ±11 per c e n t , and th e  corres ­

ponding error a t  a 95 per cent con fid en ce le v e l  on ly  ±25 per c e n t .

Green (37) has t e s te d  h is  data a g a in st W hite's c o r r e la t io n . He 

found for  h is  Wave, C resting and Annular flow  d a ta , th a t the accuracy of 

W hite's f i t  was about the same as in  Figure XVIII. This i s  not su r p r is in g , 

s in ce  W hite's c o r r e la t io n  has always been found t o  f i t  the laboratory  data  

in  th ese  flow r e g io n s . However, none of G reen's Slug Flow data f i t  W hite's 

c o r r e la t io n . On the other hand, th e  slu g  data are in clud ed  in  Figure  

XVIII, and are found to f i t  ex ceed in g ly  w e l l .  G reen's data ranged from



85

FIGURF WÏTT 
T E S T  OF P R E S S U R E  DROP C ORR ELAT IO N 
A G A I N S T  THE  DATA OF GREEN 8  REID e t .ol. 

118 Doto  Points

8.0

6.0

4 . 0

3 . 0

2 .0

. 8 0

S O

3 0 -

. 0 8

. 0 6

G R E E N  -  W A T E R - A I R

G R E E N  -  G A S  O I L - A I R. 0 4

R E I D  e t .  a l . - W A T E R - A I R

. 0 3

.02

.01 .02 . 0 3  . 0 4 0 6  . 0 8  .10 .20 3 0  4 0 8 0  1 . 0. 6 0 2.0 3 . 0  4 . 0 6 . 0  8 0  10
M E A S U R E D  P R E S S U R E  D R O P ,  ( I b / f t Z - f t  OF P I P E )



8 6

a KoLoFo o f O0 OO7 O to  0o50ÿ thus he in c lu d es  both the Continuous ana 

the Intermediat-e Flow reg io n s.

Only a portion  of the data of Reid, e t .  al. . , are included  :r 

Figure XVIII» This i s  due to some ob^/ious errors in  th e ir  c r ig i nal da: a 

The reported  s in g le -p h a se  f r ic t io n  fa c to r s  are not in te r n a l ly  consister"  

fo r  th e ir  6-inch  pipe» The two-phase data on t h is  pipe were found to  

f i t  the p red ic tio n s c lo s e ly ;  bu t, due to  th e  cloud of doubt ra ised  by 

the s in g le -p h a se  data , t h i s  portion  of th e  two-phase d ata  was net in

eluded in  Figure XVIII» The 1 -in ch  pipe data are r e l ia b le ,  and the f i t

was e x c e lle n t  on th e s e , as seen in  Figure XVIII. The data ranged over ■ 

a liq u id  fr a c t io n  of Oo50 to  0 ,9 6 , so th e flew  was in  both th e I n te r ­

mediate and Plug reg io n s.

Comparison with F ie ld  Data, Whai th e major c o n stitu e n t in  a 

flow in g  two-phase system i s  l iq u id , the K.L.F, i s  high (>0.85.) and the 

flow  mechanism i s  Plug Flew, The most r e l ia b le  f i e l d  data in  t h i s  r e ­

g ion  i s  reported  by Baxendell (1 2 ,1 3 ) ,  He c o r r e la te d  h is  data w ith in  

± 1 5  per cent u sin g  a p se u d o -fr ic t io n  fa c to r  based on the average d en sity  

of th e flow ing f lu id s .  This p se u d o -fr ic t io n  fa c to r  equation i s  equi'-'a 

le n t  to Equation (33) presented  in  the p rev io u s chapter..

/ '  ,= ____________/ J ^ \  3̂3,

According to the c o r r e la t io n  r e su lts  found in  Plug Flow, Equation (33) 

would p red ic t s l ig h t ly  too high a pressure drop fo r  B axendell'S  data --  

o r , in  other words, th e  two-phase f r i c t io n  fa c to r s  c a lc u la te d  by Equation 

( 3 3 ) would be lower than"the s in g le -p h a se  f r i c t io n  fa c to r s .  At th e  con 

d it  ions o f B axen d ell's  flow  l in e s  t tâ  s error should be a fa cto r  of abou'*.



87

OoSO to O.9 O0 In Figure XIX B axen d ell's  c o r r e la t io n  o f h is data i s  com-- 

pared to  the s in g le -p h a se  Fanning f r ic t io n  1  actor- I t  can be seen that 

the two-phase data is  s l i ^ i t l y  below the s in g le -p h a se  equation,- and thus 

the Plug Flew c o r r e la t io n  in  th is  tex t i s  w e ll v a lid a te d  by the data.

When the most of the flow ing f lm d  is  gas, the K.L F. approaches 

zero . One might expect th e  c o r r e la t io n  to  p red ic t the s in g le -p h a se  gas 

pressure drop under t h is  con d ition ; but the actu al Continuous Flcv< c o i - 

r e la t io n  o f F igure XII shows (a t  a Fro'jde Number oelow 10 ,0  -■ th e  usual 

range in  p ip e lin e s )  the two-phase f r ic t io n  fa c to r  i s  roughly 20 per cent 

h igh er than the s in g le -p h a se  f r i c t io n  fa c to r - F ie ld  p ip e lin e  data ex ­

h ib i t  th e  same behavior, Baker (10) and F lanigan C32) both point cut 

th a t an almost in f in ite s im a l at ou nt o f liq u id  w i l l  cause roughly a 10 

per cent lo s s  in  p ip e lin e  e f f ic ie n c y ,  A ppajently i t  i s  on ly  necessary  

fo r  the pipe w a ll to ’ be dcunp w ith  liq u id  f c r  th io  lo s s  to occur- .-i -10 

per cent drop in  p ip e lin e  e f f ic ie n c y  i s  eq u iva len t to a 20 per cent- i n ­

crease  in  f r ic t io n  fa c to r , thus th e  c o r r e la t io n  appears v a lid  at very 

low v a lu es  o f  K doF,

Baker (8) and Van Winger (?3) have presented  f i e l d  data in  the  

4-in ch  to  10 -in ch  p ipes ranging in  K-.L-F- from 0:021 to  0 7.5- There are 

2 9  data "points between a K doF, o f 0 ,0 2 1  and 0 .3 5 ; 18 from Baker's data  

and 11 from Van Wingen's data. Using the Continuous Flow c o r r e la t io n  

o f Figure XII^ th e  data from 0 ,0 2 1  to  0:35 were p red ic ted  w ith  an aver­

age absolut.e error of z31 per c e n t . T his i s  c e r ta in ly  not an outstand­

ing match o f  the data,, but Baker's and Van 'Wingen's c o r r e la tio n s  of th ese  

same data gave an average absolu te error -of ±UU per c e n t, which i s  con­

s id e r a b ly  w orse. Also th e c o r r e la t io n  o f Figure XII i s  much e a s ie r  to
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u se , for  on ly  one c a lc u la t io n  method i s  needed, w hile four d iffe r e n t  

equations were used by Baker and Van w'ingen depending on the flow p a t­

tern  of tne data» I t  i s  not r e a l ly  reasonable to  expect much g rea ter  

accuracy of p red ic tio n  on th ese  dataj for some of tne Van Wangen data  

were undoubtedly a t u n stea d y -sta te  c o n d itio n s , and some of the Baker 

data showed pressure drops as low as 0 .5 0  and 1 .0  p s i .

The data o f Baker and Van kVingen at K.L.F. ”s ranging from

0.35  to 0 .75  were a ls o  checked against th e c o r r e la t io n s  in  t h is  chapter. 

In th is  range., the actu a l pressure drops were found to be two to four 

tim es higher than p red icted . This re su lt was somewhat puzzling , e s ­

p e c ia l ly  considering  the good natch found w ith a l l  other data. The prob­

able reason fo r  th e  poor correspondence is  the v io le n t  slugging that oc­

curs in  th is  range of l iq u id  fr a c t io n . The. slugging may cause an ex tra  

pressure drop in  f i e l d  p ip e lin e s  due to  the h i l l s  and v a l l e y s . Also the 

slugging may cause a greater  pressure grad ient in  long l in e s  due to  the  

very nature of the flow process i t s e l f .  This i s  exp la ined  below.

The laboratory  data d e f in i t e ly  show th a t th e  most v io len t  

s lu g s occur in  th e  region  between K .L .F .'s  o f  about 0 .35 to  0 -7 5 . I.n 

t h i s  reg ion  the pressure drop jumps to  a very high l e v e l  as a s lu g  goes 

by and then drops d r a s t ic a l ly .  The investJ-gator has to  f i l t e r  out th ese  

v a r ia t io n s  and tr y  to  read an "average" v a lu e . However, in  the shorter  

laboratory tu b in g , the s lu g s  are not always p resen t. That i s ,  they form, 

then  are swept ou t, then re-form  again . During th e  tim e a f te r  one 'slug 

has been swept out and b efo re  the form ation of another s lu g , the p res­

sure drop i s  much lower and thus the average i s  low ered. This happened 

in  the r e la t iv e ly  long laboratory tub ing used by t h is  w r ite r ,  so i t
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su re ly  must have occurred in  the sh o rter  tubing of the other laboratory  

in v e s t ig a to r  So On the other hand, in  long f i e l d  l in e s  the s lu g s  are a l ­

ways p resen t, and the average pressure gradient i s  l i k e ly  to  be higher 

than found in  sh orter  tu b in g .

The reason fo r  Baker’s and Van Wingen’s h igh er pressure drops 

cannot be s ta te d  fo r  su re . T his answer w i l l  have to come by tak in g  ca re ­

f u l  data in  long ex a c tly -h o r izo n ta l l i n e s .  In the meantime. hcwever, we 

must p red ic t the grad ien ts in  two-phase systems in  th e  region  of K .l.F , 

fran  about 0 .35  to  0„75. From the r e s u lt s  shown, i t  looks as i f  th e  

pressure drops in  short two-phase tubing (such as h eat-exch an gers, con­

d en sers, and tubular rea c to rs) w i l l  be c o r r e c t ly  p red ic ted  by the corre­

la t io n s  presented  here; w h ile  the pres sure __g-radients in  long f i e l d  l in e s  

w i l l  be g r e a te r  by a fa c to r  of two to fo u r . At h igher or lower K .L .F ,’ s 

th e  c o rr e la tio n s  w i l l  c o r r e c t ly  p red ic t the pressure drop in  a l l  h o r i­

zontal two-phase system s.

C orrela tion  of Shut-In  Ratio  

In  the preceding chapter, i t  was p red icted  that th e  l iq u id  fr a c ­

t io n  sh u t- in  ( F .3 .1 . )  would be a fu n ctio n  o f the K in e tic  Liquid Fraction  

(K .L .F .) and th e Reynolds Number. The Reynolds Number was d efin ed  in  

Equation ( 4 6 ) .

and the K.L.F. from Equation (23) i s .

Using th ese  parameters, th e  w r ite r 's  sh u t- in  d ata  on the
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w a te r -a ir , o i l - a i r  and g ly c o l-a ir  system s were co rre la ted  along with the 

w a ter -a ir  and g a s - o i l - a i r  data of Green (3 7 ) . The r e su lt in g  correla -  

■tion i s  presented  in  Figure XX. In  Figure XXI the c a lcu la ted  sh u t-in  

fr a c t io n  from the c o r r e la t io n  of Figure XX is  compared with the actu a l 

sh u t- in  fr a c t io n  to show th e accuracy of f i t .  The standard d ev ia tio n  as 

± 1 9  per c e n t , which i s  equ ivalent to  ±40 per cent at the 95 per cent con­

f id e n c e  l e v e l .  This i s  not as c lo se  as th e  pressure drop co rre la tio n s  , 

but i s  s t i l l  q u ite  good con sid ering  the s c a t te r  of the b a sic  data.

As seen  in  Figure XX, the c o r r e la t io n  q u a lita t iv e ly  fo llo w s  * he 

th e o r e t ic a l  curves in  Figure IX of Chapter IV. The sh u t-in  fr a c tio n  i n ­

cre a se s  w ith an in crea se  in  K in etic  Liquid F raction , and i t  decreases  

w ith an in c r e a se  in  Reynolds Number. A lso , tne c o r r e la tio n  curves are 

seen to  f a l l  below and to the r ig h t  of the th e o r e t ic a l  curves o f  Figure 

IX, as p red ic ted .

The errors in  th is  c o r r e la t io n  are mainly due to the inaccurate  

sh u t- in  d a ta . There are sev era l po in ts a t d u p lica te  flow  cond itions wnich 

d i f f e r  from each other by two standard d e v ia t io n s . I t  seems l ik e ly ,  as 

more accurate sh u t- in  data become a v a ila b le  in  p ip ing of various diam­

e te r s  and a t d if fe r e n t  p r essu r es , th a t the Froude Number w i l l  be n eces­

sary to  improve the c o r r e la t io n . The data a v a ila b le  a t the present tim e, 

however, are b a s ic a l ly  not accurate en ou ^  to  w air rant the ad d ition  of 

t h i s  term .

C onclusions

There are th ree  major flow  regions in  h orizon ta l two-phase 

g a s - liq u id  tu rb u len t flow ; Continuous Flow, Interm ediate (or Slug) Flow,



92

. 8 0

. 6 0

. 4 0  -

3 0

to  
^  .20

to

Q 10

0 8

---t
I -  0 6

0 4

0 3

.02

;02.01 . 0 3  . 0 4 .20
K I N E T I C  LIQUID F R A C TI O N  , ( K . L .  F . )

. 0 6 . 3 0  4 0 . 6 0
K I N E T I C

F I 6 . 3 X  C O R R E L A T I O N  OF S H U T - I N  F R A C T IO N
V E R S U S

K I N E T I C  LIQUID FRA CTI ON AND T W O - P H A S E  REYNOLDS NUMBER



93

8 0

.60

4 0

. 3 0

-  .20

-'cPtiTT.
o\o

.10 'o\o -

0 8
 f.

w  0 6t—u A*
1 2 7  DATA P O I N T S  -  

O I L - A I R  ( B R I G H A M )
Q . 0 4

G L Y C O L - A I R  ( B R I G H A M )

0 3 W A T E R - A I R  ( B R I G H A M )Tnr
G A S  O I L - A I R  ( G R E E N )

Am W A T E R -  A I R  ( G R E E N ).02

.01
.01 .02 . 0 6  . 0 8  .10 . 2 0  . 3 0  . 40

M E AS U RE D  S H U T - I N  F R A C T I ON  , ( F. S . I . )
. 0 3  . 0 4 6 0

FIG. JOŒ. C O M P A R I S O N  OF P R E D I C T E D  F R A C T I O N  S H U T - I N
V E R S U S  

ACTUAL S H U T - I N  FR A C T IO N



%

and Plug Flow» Continuous Flow occurs when the gas i s  predominant in  

determ inirg the How mechanism. Interm ediate (or dlugj Flow occurs when 

the l iq u id  and gas, are more or l e s s  eq u a lly  im portant. Plug Flow occurs 

when the l iq u id  i s  the predominant flow ing f l u i d , w ith  th e  gas being of 

secondary im portance.

A dynamic flow ing r a t io ,  the K in etic  Liquid F raction  (K .L ,F \). 

i s  d efin ed  which r e la te s  the r e la t iv e  k in e t ic  m e r g ie s  o f th e flow ing  

f lu id s  and Waich can be used to determine the flow  mechanism. When the  

KoF.L. l i e s  between 0 .0 0  and 0.15 the mechanism i s  Continuous Flow: 

from 0 . 1 5  to 0 . 8 5  the mechanism i s  Interm ediate (or Slug) Flow ; and

from 0 .85  to  1 .0  the mechanism is  Plug Flow.

The pressure drop in  the Continuous Flow region  was co rre la ted  

u sin g  f iv e  d im aasion less parameters;, the f r i c t io n  fa c to r , the Reynolds 

Nunber, the r a t io  of th e  gas and liq u id  v i s c o s i t i e s ,  the K inetic Liquid 

F raction  and the Froude Nunber. These parameters were chosen by analogy 

with th e  accepted  th e o r ie s  of s in g le -p h a se  tu rb u len t flow . The c o r r e ­

la t in g  technique i s  a p p lica b le  from a K.L.F. o f  0 .0 0  to  0 .5 0  and at a l l  

ranges o f the other param eters. Although th e flow  mechanism i s  I n te r ­

m ediate (or Slug) Flow in  the K.F.L. range o f 0 .15  to  0 .5 0 , th e  pressure  

drop i s  apparently caused predom inately by the Continuous Flow mechanism 

and th e  co rr e la tin g  technique i s  v a lid  in  t h i s  range.

For the Plug Flow reg io n , two th e o r e t ic a l  equations were de­

fin e d ;  one assuming th e  l iq u id  and gas flow  com p lete ly  mixed, and th e  

oth er  assuming they flow  a s  com pletely  sep arate p lu g s. The a c tu a l p res­

sure drop was found to l i e  midway between th e s e  two eq u ation s. The Plug

Flow equation  i s  v a lid  between K .L .F .'s  o f  0 ,85  and 1 .0 0 .
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The Interm ediate Flow region  (K.L.F. from 0 .5 0  to  0 .85 ) was 

s u c c e s s fu l ly  co rr e la ted  using a sim ple logarith m ic in te r p o la tio n  be­

tween the Continuous and the Plug Flow equations.

The laboratory pressure drop data presented herein  and the 

data  o f Ghenoweth and Martin (29) were c o rr e la ted  with a standard de\m. 

a tio n  o f ±15 psr c e n t . The laboratory  data of Green (37) and Reid, et. 

a l .  (62) were co rr e la ted  w ith  a standard d ev ia tio n  of .tl2 per cent.

Thus th e  pressure drop c o r r e la t io n s  appear to  be more accurate than any 

presented  h ere to fo re .

The pressure drop data in  long f ie ld  l in e s  were found to  be 

adequately  p red icted  by the above equations in  th e  K.L.F. ranges of 0.Ü0 

to  Oo35 and from 0 .75  to  1 ,0 0 , Howeverj a t K .L .F 's from 0 .35  to  0 .75  

th e  pressure drop was two to four tim es as high as p red ic ted . The rea­

son fo r  t h is  d iscrepancy may be due to  the h i l l s  and v a l le y s  in  long 

f i e l d  l i n e s  or m y  be due to  the b a sic  nature o f  th e  flow p rocess. This 

q u estion  probably can on ly  be c leared  up by taking accu rate  data in  ex­

a c t ly  h orizon ta l l i n e s  o f se v e r a l hundred f e e t  in  len g th .

The volume of liq u id  in -p la c e  ( fr a c t io n  sh u t-in ) in  the l in e  

was c o rr e la ted  as a fu n ctio n  of th e  K in etic  Liquid F raction  (K.L.F.J and 

the tw o-phase Reynolds Number, The c o r r e la t io n  standard d ev ia tio n  was 

±19 per c e n t . The Froude Number may a lso  be important in  determ ining  

the sh u t- in  con d ition s j but th e  data were not accurate enou^ . and the 

pipe diam eter and pressure ranges hot broad enough, to  warrant an a t­

tempt to fu r th e r  r e f in e  th e  c o r r e la t io n .



SUMMARY

Two-phase pipe flow o f liq u id  and gas i s  becoming a problem 

of considerab le in t e r e s t  to  engineers» In the producing of petroleum, 

for in stance»  the problem of p red ic tin g  tw o-phase pressure drops f r e ­

quently  a r ise so  Also in  the p rocessing  in d u str ie s  p red iction s are needed 

in  heat exchangers, b o i le r s  and reactors where both the pressure drop and 

the r a t io s  o f  f lu id s  in -p la c e  are im portant. C orrela tion s are a v a ila b le  

for  design  of th ese  system s, but tn e ir  accuracy le a v es  much to be desired.-

Flow data were run in 2-inch c lea r  p la s t ic  tubing on tne o i l -  

a ir ,  g ly c o l-a ir  and v /a ter -a ir  system s. These data represented a wide 

range of liq u id  p ro p er tie s  and g a s /liq u id  flow in g  r a t io s .  Data published  

by M essrs. Ghenoweth and Martin o f  the C. F. Braun Company were a lso  usea  

in  the c o r r e la t iv e  work to extend  the range of pipe diam eters and op era t­

in g  p ressu res .

V isual data were recorded on 16 mm film  and are a v a ila b le  

through Dr. R« L. Huntington of the Department of Chemical Engineering. 

These s tu d ie s  gave th e  clue to  th e  understanding of the two-phase flow  

mechanism so that th e  flow  could be d iv id ed  in to  th ree  major regions^

( l )  Continuous (or Annular) Flew, in  which t h e  gas i s  predominant in  

th e  flow mechanism; (2 ) Interm ediate (or  Slug) Flow, in  which th e  liq u id  

and gas are both im portant; and (3) Plug Flow, in  which th e  liq u id  is  

th e  predominant flow ing f lu id  and th e  gas i s  o f secondary im portance.
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These data a lso  showed th a t S tr a t if ie d  Flow^ which has been d iscu ssed  af 

length  in  the l i t e r a tu r e ,  i s  prim arily  a laboratory  phenomenon caused by 

the short len g th s  of tubing used. A flow ing r a t io ,  termed the K in etic  

Liquid F raction , i s  developed which determ ines th e  flow  reg ion .

An analogy w ith th e s in g le -p h a se  th e o r ie s  o f Prandtl and von 

Karman i s  used to develop  c o rr e la tin g  parameters for th e  pressure drops 

and sh u t- in  r a t io s  in  Continuous Flow. For th e  pressure drop p red ic tio n , 

f iv e  d im ension less parameters are im portant. They are: the f r ic t io n

fa c to r ,  the Reynolds Nunber, the g a s / l iq u id  v is c o s i ty  r a t io ,  th e Kinet.ir 

Liquid Fraction  and th e Froude Number. For the sh u t- in  r a t io ,  th e  Reynold; 

Nunber and th e  K inetic Liquid F raction  were found to .b e  adequate corre­

la t in g  terms ; although th e  Froude Number nay a lso  be found necessary  in  

system s at higher pressures and d if fe r e n t  d iam eters.

Two th e o r e t ic a l equations are developed fo r  th e Plug Flow 

reg io n . The pressure drop data in  t h i s  reg io n  was found to  f a l l  midway 

between th ese  equations with a good accuracy o f  f i t .

In  th e  Interm ediate Flow region  no th e o r e t ic a l  a n a ly s is  was a-".- 

tem pted. I t  was found th a t a sim ple logar ith m ic in te r p o la t io n  between 

the Continuous and the Plug Flow equations was q u ite  adequate fo r  corre­

la t in g  the se data.

The c o r r e la t io n s  were compared vdth published lab ora tory  and 

f i e ld  data and in  most ca ses  f i t  remarkably w e ll .  The lone exception  was 

in  Interm ediate (or  Slug) Flew in  long f ie ld  p ip e l in e s .  I t  appears that 

t h is  d iscrepancy can on ly  be reso lved  w ith  accurate data in  ex a c tly -  

h o rizo n ta l l in e s  o f sev era l hundred f e e t  in  le n g th .
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NOMENCLATURE

A  Multi pJic at ion  constant in  th e B lazius equation , dim ension-
le s s

Area, sq f t

A  C ro ss-sec tio n a l area o f pipe through which liq u id  i s  flow ­
in g , sq f t

A / '  Constant found by Nikuradse in  the "universal v e lo c ity  pro­
f i l e "  equation , d im ension less

Pipe diam eter, f t

Pressure grad ien t, Ib/'sq f t - f t  of pipe

Term used by M a r t in e lli ,  the pressure grad ient i f  only the 
gas were flow ing in . the p ip e, Ib /sq  f t - f t  o f pipe

Average pressure drop per len g th  of pipe due to uhe gas plugs 
in Plug Flow, Ib /sq  f t - f t  o f pipe

Average pressure drop per length of pipe due : o oiie liq u id  
olugs in  .Plug Flow, Ib /sq  f t - f t  o f pipe

Actual two-phase pressure g ra d ie n t, Ib /sq  f t - f t  of p:pe

V e lo c ity  gradient across p ip e, 1 /se c

ô" Wall roughness h e ig h t, f t

F raction  of l i q i id  dnut-in  in  th e  p ip e. The fr a c t io n  o f  
th e pipe f i l l e d  w ith l iq u id ,  d im ension less

/v t / ' ' /b  Froude N'uirber, defin ed  by Equation (271, d im ension less

/■ Moody f r ic t io n  fa c to r ,  d im en sion less

Fanning f r ic t io n  fa c to r , y^/A, d im ension less

Moody f r ic t io n  fa c to r  for th e  g a s  p lu g s , d im ension less

n l  Moody f r ic t io n  fa c to r  for th e  liq u id  p lugs, dimension .less

A ;rp Two-phase Moody f r ic t io n  fa c to r , d efin ed  by Equation (22),
d im ension less
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/T  Mass v e lo c ity ,  Ib /h r -sq  f t

S u p e r fic ia l gas mass v e lo c it y ,  based on the t o t a l  pipe
cross s e c t io n a l area, Ib /h r-sq  f t

d// S u p e r fic ia l liq u id  mass v e lo c ity ,  based on the t o t a l  pipe
cross s e c t io n a l area, Ib /h r-sq  f t

^  T otal eq u iva len t l iq u id  mass v e lo c it y ,  + Gg/ pl/P g •'
Ib /h r -sq  f t

O  G rav ita tion a l a c c e le r a t io n , f t / s e c ^

CJc Conversion fa c to r  in  Newton's law s o f  motion, f t - l b  m ass/
lb  fo r c e - s e c2

K inetic Liquid F raction , The fr a c tio n  of th e  k in e tic
energy of the system  which i s  a ttr ib u ta b le  to th e  liqu .id ,
d efin ed  in  Equation (2 3 ) , d im ension less

/c  Constant in  the Prandtl " un iversal p ro file"  equation ,
d im ension less

Z. Pipe le n g th , f t

/  Prandtl mixing len g th , f t

.//? Constant of exp on en tia tion  on the Reynolds Number in  th e
B laz iu s equation , d im ension less

/?  Constant o f exp on en tia tion  o n ,th e  l iq u ia /g a s  v i s c o s i t y
r a t io ,  equal to  0 .3 0 , d im en sion less

P ressu re, Ib /sq  f t

Ratio of the pressure drops p red ic ted  by the two Plug Flow 
eq u ation s, dimai s io n le s s

/?iS.A/o. Reynolds Nunber, d im en sion less

Radius, f t

/■/■ Radius at the g a s - liq u id  in te r fa c e , f t

/Z  Pipe ra d iu s , f t

Average or bulk v e lo c i t y ,  f t / s e c

Gas bulk v e lo c i t y ,  based on th e  t o t a l  c r o s s - s e c t io n a l area  
of p ip e, f t / s e c
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Total eq u iva len t gas bulk v e lo c i t y ,  Uq + q, f t / s e c

Liquid bulk v e lo c i t y ,  based on th e  t o t a l  c r o s s - s e c t io n a l  
area of p ip e , f t / s e c

Gas eq u iva len t of the liq u id  bulk v e lo c i t y ,  Ul/ pl/ pq , 
f t / s e c

/ /  Local or poin t v e lo c i t y ,  f t / s e c

^  Liquid point v e lo c it y ,  f t / s e c

V e lo c ity  a t the w a ll where the laminar layer  ends and the 
turbulent la y e r  b e g in s , f t / s e c

V e lo c ity  d if fe r e n c e  between neighboring la y ers  in  turbulent 
f le w , f t / s e c

F r ic t io n  v e l o c i t y ,^ 7 o j> f t / s e c

u/u"*-, d im en sion less

^  Volumetric flow rate in  th e  cen ter core o f  th e  p ipe,
cu f t / s e c

^  Volumetric gas flow  r a te , cu f t / s e c

T ota l eq u iva len t volum etric gas flow  r a te , Vq + Vjj>g, 
cu f t / s e c

' Volumetric l iq u id  flow  r a te ,  cu f t / s e c

Gas equ iva len t of th e  liq u id  volum etric flow r a te ,
’̂u'/Pl /P g”  ̂ cu f t / s e c

J/Ç- T o ta l volum etric flow  ra te  in  th e p ip e , cu f t / s e c

P ra n d tl' s in terchange or eddy v e lo c i t y ,  f t / s e c

Gas mass flow  r a te , lb /h r

Liquid mass flow  r a te ,  lb /h r

^  Radial d is ta n ce  from pipe w all toward th e  cen ter , f t

T hickness o f the laminar la y e r , f t

d im en sion less
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Greek L etters

a M a r tin e lli liq u id  hydraulic radius term^ accounts fo r  the
n o n -c ircu la r  c r o s s - s e c t io n  of th e  flow , d im ension less

H . V is c o s ity ,  I b /f t - h r

HQ Gas v is c q s i t y ,  I b /f t -h r

HL Liquid v i s c o s i t y ,  I b /f t -h r

p D en sity , Ib /cu  f t

PQ Gas d e n s ity , Ib /cu  f t

Pĵ  Liquid d e n s ity , Ib /cu  f t

0  Standard d e v ia t io n , d im ension less

Shear s tr e s s  I b /sq  f t

^  Shear s tr e s s  a t the pipe w a ll ,  Ib /sq  f t
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DERIVATION OF FRACTION SHUT-IN VERSUS KINETIC LIQUID FRACTION

The Karman equation fo r  the v e lo c i t y  p r o f i le  may be s im p lil ie d

to  two p arts; the laminar la y e r

= y'*' y ‘*'< 11.62 ( 1)

and th e  turbu len t core

u  ̂ = 5o5 + 2.5 In y"" y+> 11.62 (2)

where u'*’ = u/u*
y"̂  = yu*p/p

The value of 11 .62  for y"*” at the lam inar-turbulent boundary was found 

by e lim in a tin g  u'*' from th e  two equations and so lv in g  fo r  y'*'. When the  

d e f in it io n s  for  u'*’ and y"*" are in ser ted  in to  Equation ( 2 ) ,  the r e s u lt  i s  

u = 5.5u* + 2.5u* ln (yu*p /p ) (3)

The f r ic t io n  v e lo c ity ,  u* nay be r e la ted  to  the bulk v e lo c ity j . U; and 

th e f r i c t io n  factor^  f .

u* = U / f / 8  (A)

So, s u b s t itu t in g  in  Equation ( 3 ) ,  th e  r e s u lt  i s

u = 5.5 U'/fTe + 2 .5  U /f /8  In (yU^fTS p/p) 15)

N otice th a t  the term , y p U /p , in  the logarithm  i s  in  th e  form

of a Reynolds N'umber. This can be expressed  in  terms of the usual pipe

Reynolds Number (DUp/p) by m u ltip ly in g  and d iv id in g  by double the pipe  

radius (2 r o ) . The r e s u lt  i s ,

u = 5 .5  U/fTe + 2 .5  u /fT s in  (R e|/f/32 y / r j  (6)

I f  a f lu id  i s  flow ing a t a given v e lo c i t y ,  the Reynolds Number and th e

f r ic t io n  fa c to r  are c o n sta n ts , so th ese  may be separated o u t, le a v in g  

on ly  th e  d im ension less v a lu a b le , y /r ^ .



i l l

u = 5o5 u / f /8  + 2 ,5  U /f/8  In (Re^/f/32) + 2 .5  Uÿf/B In fy /r^ j '7'

In d er iv in g  th e Continuous Flow sh u t-in  equation , th e  l iq u id  

i s  assumed to  be flow ing only in  the concentric, annular ring and the gae 

on ly  in  the symmetrical c y l in d r ic a l core . Tne radius at the in te r fa c e  

between the two w i l l  be c a l le d  r s . We are in te r e s te d  in  tne fra c tio n  -of 

the flow  coming from th e cu ter  ri.ng (the liq u id  f r a c t io n ) ,  however., -̂ h'. ? 

i s  most con ven ien tly  ca lc u la te d  in d ir e c t ly ,  by c a lc u la t in g  tne flow  in  

th e  in n er cy lin d e r  and su b tra ctin g  frora th e  t o t a l  flow . The flow ] n tne 

in n er c y lin d e r . Vg, i s ,

Vq = ! 2nrudr (8)

S u b stitu tin g  fo r  "u" from Equation ( 7 ) ,  tne r e s u lt  i s .

The f i r s t  two in te g r a ls  are e a s i ly  eva luated  on s ig n t .  To evaluate tne  

th ird  in te g r a l i t  i s  necessary  to remember th a t  "y" i s  equal to ( r ^ -r / .

To make th e  equation  e a s ie r  to in te g r a te , the v a r ia b le  y/r^  can be changed 

to  y ’ o The th ir d  in te g r a l in  Equation (9) then becomes,

/  r In (y /r o )  dr = /  ( y ' - l )  In y ' dy' flO,>

w hich, when eva luated  at the l im it s ,  i s

( i i ;



Thus Equation (9) when in teg ra te d ,  becomes
;,7

v-./': / %  - / f y  /7V

12'
"J

I t  i s  a lso  n ecessary  to c a lr u ia te  tne t o t a l  flow vcjurae Vy 

This in c lu d es  the flow in  th e lami-nar layer as w e ll as the turbulent 

co re , so the volume in te g r a l w i l l  have to be d iv iaed  in to  -wo parrs.

The radius a t th e boundary between the laminar and turbulent regions  

w i l l  be c a l le d  r^, and the to ta l  flow , V'p, i s

a//-" (ZtT- ( 1 3 '

where = Laminer la y e r  v e lo c it y ,  Equation (1.),
Up = Turbulent ^ore v e l o c i t y ,  Equation (2) , .

The f i r s t  in te g r a l  in  th is  equation i s  evaluated  in  tne same manner as

Equations (8 ) and ( 9 ) .  am i t  becomes

( Ik)

For the second in te g r a l in  Equation (13) th e  laminar layer v e lo c ity  

(Equation (1 ) )  must be used . However, u"* and y'*' can be re la ted  to  the 

f r i c t io n  fa c to r  and th e Reynolds Number, so Equation (1 ) may be rew ritten ,

_  _ -  (15)

Thus the second in te g r a l of Equation (13) i s .
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The t o t a l  volume, Vrp̂  i s  th e  sura o f Equations (14J and ( lo ,) .

:.v'

The r e su lt  d esired  from these computations i s  the K inetic  

Liquid F raction  (KoL„Fo) which i s  defined  as followSo

Vm -  Vp
K o L o F o “ ---- — —

Equation (17) -  Equation (12; 
Equation (I'/j ( 1 8 )

I t  can be seen that tne terra, n (u /f7 8 ) ,  i s  common to  both Equations (12.) 

and ( 1 7 ) so t n is  term can be ca n ce lled  to s im p lify  the exp ression  of 

Equation (18)» The equation i s  s t i l l  long and unwieldy to  writ e. so for 

convenience, th e  numerator and'denoiidnator w i l l  be l i s t e d  sep a ra te ly

Numerator

\  (19)

Denominator = / / 7

 ̂ - / ^ y  (20)

For any given Reynolds Nuntier and f r ic t io n  fa c to r , the th ic k ­

n ess of the lam inar la y e r , y y , can be c a lcu la ted  from Equations (l.) and
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( 2 ) j  thus th e radius to  the bcurïiary, r^, i s  known. Then th e  denomi­

nator (Equation (20)) can be eva luated  as a con stan t; and i t  m erely r e ­

mains to  ev a lu a te  th e numerator at various g a s - liq u id  in te r fa c e  r a d i i .  

rj_. The K in etic  Liquid Fraction  i s ,

 ̂ _ Vt -  Vq _ Numerator (Equation (19))
iC  0 X j » F '  0 “  7* \  ^  —  }

’’T Denominator (Equation (20,))

and the fr a c t io n  sh u t-in  (FoS . I . )  i s  equal t o ,

F . S . I ,  = -----—2----- (22)
"o

Equa.tions (21) and (22) have been evaluated  at various Reynolds Numbers 

and in te r fa c e  r a d ii  and th e r e s u lt s  p lo tted  in  Figure IX.
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TABLE I

RUN NC o -  =

PRESSURE DROP DATA - WATER AMD AIR 

RUN NUMBER
G LIQUID........ = MASS VELOCITY OF THE LIQUID,  LB/HR SQ.FT. OF PIPE
G GAS "" — — = MASS VELOCITY OF THE GAS, LB/HR' S Q. FT.  OF PIPE
I  - FLOWING TEMPERATURE, DEGREES RANKINE
PRESS
K . L . F .

AVE - = AVERAGE PRESSURE, INCHES 
KINETIC LIQUID FRACTION

OF MERCURY

DP/DL ACTUAL= ACTUAL PRESSURE GRADIENT, LB/ SQ. F T . - F T ,  OF PIPE
DP/DL PRED PREDICTED PRESSURE GRADIENT, LB/ S Q. FT FT. OF PIPE

RUN
NO.

G
LIQUID

G
GAS

T PRESS
AVE

K . L . F . DP/DL
ACTUAL

DP/DL
PRED

148 2 6 , 6 0 0 5 ,  6 6 0 5 3 8 2 9 . 4 5 o 1 3 8 4 . 154 , 165
1 2 6 , 6 0 0 6 ,  100 5 4 3 2 9 . 8 0 .. 1298 <. 168 . 191
5 2 6 , 6 0 0 7 , 8 1 0 5 3 9 3 0 .  15 . 1 0 5 2 , 2 2 4 . 3 0 5

2 9 8 2 6 , 6 0 0 9 , 7 2 0 5 5 3 29 .  81 . 0 8 4 9 . 3 7 9 ,491
153 2 6 , 6 0 0 9 ,  8 1 0 5 3 8 3 0 . 0 0 . 0 8 5 6 . 4 2 1 . 4 7 8

2 2 6 , 6 0 0 1 0 , 1 0 0 5 4 2 3 1 . 0 5 . 0 8 4 3 . 5 0 5 . 4 8 9
127 2 6 , 6 0 0 1 0 , 9 2 0 5 4 0 2 9 . 6 9 . 0 7 7 0 . 4 7 7 . 5 9 8

4 2 6 , 6 0 0 1 3 , 5 3 0 5 4 0 3 2 .  55 . 0 6 5 9 . 813 , 8 0 5
24 2 6 , 6 0 0 1 4 , 6 0 0 ^ 4 2 3 2 .  50 . 0 6 1 2 , 870 . 9  37

1 3 2 2 6 , 6 0 0 1 5 , 2 2 0 540 3 0 . 8 4 . 0 5 7 5 . 9 5 4 1 . 0 7
3 2 6 , 6 0 0 1 6 , 8 1 0 541 3 3 . 7 5 . 0 5 4 6 1 . 2  3 1 . 1 6

25 2 6 , 6 0 0 2 3 , 2 0 0 5 3 8 3 6 . 2 0 . 0 4  16 1 . 7 4 1 . 9 4
133 2 6 , 6 0 0 2 8 , 2 0 0 5 4 0 3 5 . 1 4 , 0 3 4 0 2 . 7 5 2 . 8 5

2 6 2 6 , 6 0 0 4 0 , 3 0 0 5 3 4 4 6 . 4 0 , 0 2 7 6 3 . 9 8 4 . 0 0  .
138 2 6 , 6 0 0 4 0 , 5 0 0 5 4 0 4 0 . 5 4 , 0 2 5 6 4 . 8 8 4 . 6 7

10 3 7 , 1 0 0 8 , 2 7 0 5 3 6 3 0 . 5 0 , 1 351 . 3 0 9 .  395
7 3 7 , 1 0 0 1 0 , 2 5 0 5 3 7 3 1 . 3 5 . 1 1 3 2 , 5 6 1 , 5 7 1
9 3 7 , 1 0 0 1 3 , 3 0 0 5 3 6 3 2 . 6 0 , 0 9 1 3 . 9 5 4 . 8 8 4
8 3 7 , 1 0 0 1 6 , 5 3 0 5 3 7 3 4 . 0 5 . 0 7 6 2 1 . 2 3 1 . 2 5

149 4 5 , 3 0 0 5 , 6 8 0 5 3 8 2 9 . 5 5 . 2 1 5 . 1 9 6 . 2  31
152 4 5 , 3 0 0 9 , 7 8 0 5 3 8 3 0 . 2 5 . 1 3 8 3 . 5 3 3 . 6 0 8
128 4 5 , 3 0 0 i 1 , 0 8 0 5 4 0 3 0 .  19 . 1 2 3 8 . 6 7 3 . 767

27 4 5 , 3 0 0 1 5 , 2 4 0 5 3 0 3 3 , 6 5 . 0 9 8 6 1 . 0 7 1 . 1 8
131 4 5 , 3 0 0 1 5 , 3 3 0 5 4 0 3 1 . 5 9 . 0 9 4 5 1 . 2 1 1 , 3 1

30 4 5 , 3 0 0 1 5 , 9 6 0 5 2 3 3 5 . 2 5 . 0 9 7 2 1 . 3 5 1 . 2 0
2 8 4 5 , 3 0 0 2 2 , 9 0 0 5 2 7 3 7 . 4 0 . 0 7 1 6 2 . 0 2 2 . 1 6

134 4 5 , 3 0 0 2 6 , 3 0 0 5 4 0 3 6 . 7 4 . 0 5 7 6 3 . 2 0 3 . 2 8
29 4 5 , 3 0 0 4 0 , 5 0 0 5 2 5 4 8 . 7 5 . 0 4 7 4 4 . 7 1 4 . 4 6

1 3 7 4 5 , 3 0 0 4 0 , 6 0 0 5 4 0 4 3 . 2 4 . 0 4 4 1 5 . 7 8 5 .  19
15 5 2 , 5 0 0 7 ,  8 3 0 5 4 4 3 0 . 5 0 . 1 8 8 2 . 4 4 9 . 4 4 8
12 5 2 , 5 0 0 1 0 , 1 3 0 5 3 6 3 1 . 5 5 , 1 5 5 1 . 5 6 1 . 6 6 7
14 5 2 , 5 0 0 1 3 , 1 5 0 5 4 6 3 2 . 9 5 . 125 3 . 8 7 0 1 . 0 3
13 5 2 , 5 0 0 1 7 , 2 1 0 5 4 8 3 5 . 2 0 . 1 0 1 5 1 . 5 4 1 . 5 5
17 6 4 , 1 0 0 1 0 , 3 2 0 5 4 3 3 2 c  10 . 1 8 0 7 . 7 2 9 . 7 7 8
19 6 4 , 1 0 0 1 3 , 4 0 0 541 3 3 . 4 0 . 1 4 7 9 . 9 5 4 1 . 1 6
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TABLE 1

RUN G G T PRESS K . L . F . DP/DL ÜP/DL
NO. LIQUID GAS AVE ACTUAL PkED

146 2 2 3 , 0 0 0 1 1 , 0 2 0 5 3 8 3 5 . 3 5 . 4 3 1 2 . 8 6 2 , 4 2
143 2 2 3 , 0 0 0 2 4 , 1 0 0 5 4 0 4 4 . 4 9 . 2 7 9 5 , 5 8 5 . 2 9

38 2 2 3 , 0 0 0 3 0 , 7 0 0 5 2 8 4 9 .  11 . 2 4 5 7 . 0 1 6 , 6 0
155 2 2 3 , 0 0 0 3 1 , 8 0 0 5 3 8 5 0 . 7 5 . 2 3 9 7 . 1 8 6 , 8  7

39 2 2 3 , 0 0 0 3 2 , 2 0 0 5 2 8 5 0 . 6 1 . 2 3 9 7 . 2 9 6 , 8 8
5 0 5 2 4 5 , 0 0 0 75 5 3 6 3 0 . 2 5 . 9 9 1 1 7 . 3 8 6 . 3  70
5 0 4 2 4 5 , 0 0 0 108 5 3 6 3 0 . 2 5 . 9 8 7 4 4 . 2 0 4 , 2 0 0
501 2 4 5 , 0 0 0 125 5 3 6 3 0 . 2 5 . 9 8 5 4 4 , 2 3 1 , 20 7
5 0 3 2 4 5 , 0 0 0 192 5 3 6 3 0 . 3 5 , 9 7 7 9 . 2 3 1 , 2 3 7
502 2 4 5 , 0 0 0 2 9 2 5 3 6 3 0 . 4 5 - 9 6 6 6 . 2 3 1 . 2 7 8
5 0 7 2 8 0 , 0 0 0 7 3 5 3 6 2 9 . 7 3 . 9 9 2 3 8 . 3 0 6 , 2 3 0
5 0 8 2 8 0 , 0 0 0 105 5 3 6 2 9 . 7 6 . 9 8 9 1 3 . 3 0 6 . 2 4 6
5 0 9 2 8 0 , 0 0 0 182 5 3 6 2 9 . 8 1 . 9 8 1 4 2 , 3 3 5 , 2 6 5
510 2 8 0 , 0 0 0 2 8 2 5 3 6 2 9 . 8 3 . 9 7 1 5 . 3 6 3 . 3 3 6
5 11 2 8 0 , 0 0 0 4 2 5 53 6 2 9 - 9 3 , 9 5 7 8 , 4 3 5 . 4 0 6
5 2 6 2 8 0 , 0 0 0 6 0 6 542 2 9 , 8 5 . 9 4 0 5 . 4 7 1 . 4 9 6
5 2 7 2 8 0 , 0 0 0 8 1 7 5 4 2 2 9 . 9 5 . 9 2 1 5 , 5 8 0 ,  598
5 2 8 2 8 0 , 0 0 0 1 , 1 1 2 5 4 2 3 0 , 2 5 , 8 6 6 6 . 6 9 8 . 7  35
5 2 9 2 8 0 , 0 0 0 1 , 3 7 0 542 3 0 . 4 5 ,  8 7 6 0 . 8 2 0 , 8 5 2
5 3 0 2 8 0 , 0 0 0 1 , 4 3 7 542 3 0 . 5 5 . 8 7 1 0 . 9 3 3 . 8 7 9
531 2 8 0 , 0 0 0 2 , 1 2 0 5 4 2 3 1 . 1 5 . 8 2 2 1 1 . 1 1 1 , 1 2
532 2 8 0 , 0 0 0 2 , 4 1 0 5 4 2 3 1 . 2 5 , 6 0 3 0 1 ,  14 1 . 2 0
5 3 3 2 8 0 , 0 0 0 2 , 7 5 0 542 3 1 . 5 5 - 7 8 2 1 . 2 9 1 , 2 8
5 3 4 2 8 0 , 0 0 0 3 , 4 3 0 5 4 0 3 1 . 9 5 .  743 1 , 5 0 1 . 4 5
5 3 5 2 8 0 , 0 0 0 4 , 0 3 0 5 3 9 3 2 . 3 5 . 7 1 3 1 . 6 8 1 , 6 0
5 1 4 3 4 5 , 0 0 0 3 8 5 5 3 4 3 0 . 5 6 , 9 6 9 0 . 5 1 7 . 5 0 7
5 1 2 3 4 5 , 0 0 0 4 7 1 531 3 0 . 6 6 , 9 6 2 5 . 5 8 7 , 5 5 4
5 1 5 3 4 5 , 0 0 0 5 2 4 5 3 5 3 0 . 6 6 . 9 5 8 4 , 6 0 4 . 5 8 7
5 1 3 3 4 5 , 0 0 0 581 5 3 4 3 0 , 6 6 . 9 5 4 1 . 6 1 7 . 6  19
5 1 6 3 4 5 , 0 0 0 6 9 4 5 3 6 3 0 , 8 6 . 9 4 5 8 . 6 9 4 . 6 8 1
5 1 7 3 4 5 , 0 0 0 8 0 8 5 3 7 3 0 . 9 6 . 9 3 7 5 , 7 8 1 ,  74 3
5 1 8 3 4 5 , 0 0 0 9 7 5 5 3 7 3 1 . 1 1 . 9 2 5 7 , 8 5 8 , 8 3 3
5 1 9 3 4 5 , 0 0 0 1 , 1 3 4 5 3 8 3 1 . 2 6 , 9 1 4 7 . 9 3 8 , 9  17
5 2 0 3 4 5 , 0 0 0 1 , 3 0 6 5 3 7 3 1 , 5 1 , 9 0 3 4 1 . 0 3 1 . 0  I
5 21 3 4 5 , 0 0 0 1 , 5 5 6 5 3 7 3 1 , 6 6 . 8 8 7 3 1 .  14 1 . 1 3
5 2 2 3 4 5 , 0 0 0 1 , 7 0 1 5 3 7 3 1 , 9 1 ,  8 7 8 5 1 . 3 0 1 , 2 0
5 2 3 3 4 5 , 0 0 0 1 , 9 8 8 5 3 7 3 2 , 1 1 , 8 6 1 3 1 . 4 2 1 . 3 5
5 2 4 3 4 5 , 0 0 0 2 , 5 5 0 5 3 7 3 2 . 5 1 . 8 2 9 8 1 . 6 4 1 , 5 8
5 2 5 3 4 5 , 0 0 0 2 , 7 3 0 5 3 6 3 2 . 7 1 .  8 2 0 3 1 , 8 1 1 . 6 4

5 o 5  DEGREE INCLIME
85 2 6 , 6 0 0 5 , 5 0 0 5 3 8 2 9 .  80 ,  1 427 , 5 8 9

2 9 9 2 6 , 6 0 0 5 , 6 4 0 5 5 2 2 9 . 5 6 ,  1 3 7 5 . 6 1 7
82 2 6 , 6 0 0 9 , 8 0 0 5 3 6 3 0 , 1 2 . 0 8 5 9 . 7 0 1
7 3 2 6 , 6 0 0 1 0 , 4 5 0 5 3 6 3 0 , 1 2 . 0 8 1 0 , 6 4 5 , 5 3 6
56 2 6 , 6 0 0 1 1 , 4 5 0 5 2 8 3 0 . 3 1 . 0 7 5 2 , 6 1 7 . 6 2 1
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TABLE I

RUN G G T PRESS K . L . F . DP/DL CF/DL
NOc LIQUID GAS AVE ACTUAL PREU

5 7 2 6 , 6 0 0 1 5 , 9 1 0 5 29 3 1 . 4 1 . 0 5 6 2 1 . 0 4 1 . 1 1
58 2 6 , 6 0 0 2 1 , 9 0 0 5 3 0 3 3 . 2 1 . 0 4 2 6 1 . 6 8  . 1 . 8 8
59 2 6 , 6 0 0 2 9 , 3 0 0 5 3 1 3 5 . 4 1 . 0 3 3 1 2 . 6 9 2 . 9  7
74 2 6 , 6 0 0 2 9 , 3 0 0 5 3 6 3 5 . 5 2 . 0 3 3 0 2 . 6 6 . 2 . 9 8
6 0 2 6 , 6 0 0 3 7 , 4 0 0 531 3 8 . 9 1 . 0 2  74 .  10 4 . 1 7
61 2 6 , 6 0 0 4 4 , 1 0 0 5 2 8 4 1 . 8 7 . 0 2 4 2 5 . 3 9 5 . 1 3
62 4 1 , 6 0 0 3 9 , 4 0 0 5 2 8 4 1 .  87 . 0 4  16 5 . 3 3 4 . 3 3

3 0 0 4 5 , 3 0 0 5 , 7 7 0 5 5 2 2 9 . 76 . 2 1 0 . 7 4 3
86 4 5 , 3 0 0 5 , 8 8 0 5 3 8 2 9 . 9 5 . 2 1 0 . 7 2 9
83 4 5 , 3 0 0 9 , 8 5 0 5 3 6 3 0 . 3 7 .  1 3 7 8 . 8 1 3

3 0 3 4 5 , 3 0 0 9 ,  8 8 0 5 5 1 3 0 . 3 1 . 13 5 8 . 8 1 3
67 4 5 , 3 0 0 1 0 , 5 3 0 5 2 8 3 0 . 2 7 o 1 3 0 8 . 8 9 8
66 4 5 , 3 0 0 1 5 , 2 6 0 5 2 8 3 1 . 5 7 . 0 9 5 9 1 . 2 9 1 . 2 7
65 4 5 , 3 0 0 2 1 , 1 0 0 5 2 8 3 3.  37 . 0 7 3 2 2 . 0 2 2 . 1 1
75 4 5 , 3 0 0 2 9 , 3 0 0 5 3 6 3 7 , 4 2 , 0 5 6  3 3 . 3 9 3.  3d
64 4 5 , 3 0 0 3 0 , 8 0 0 5 2 8 3 8 . 0 7 . 0 5 4 5 3 . 8 1 3 . 5 8
63 4 5 , 3 0 0 3 9 , 4 0 0 5 2 8 4 2 . 0 7 . 0 4 5 2 5 . 3 9 4 . 9 7

3 0 1 7 8 , 1 0 0 5 , 5 8 0 5 5 2 3 0 . 0 6 . 3 2 3 . 9 2 5
87 7 8 , 1 0 0 6 , 0 6 0 5 3 8 3 0 . 4 0 . 3 0 9 . 9 8 1

30 2 7 8 , 1 0 0 9 ,  9 6 0 551 3 1 . 0 6 . 2 1 4 1 . 1 8
68 7 8 , 1 0 0 1 0 , 0 8 0 5 2 8 3 1 . 1 7 . 2 1 6 1 . 2 4
84 7 8 , 1 0 0 1 0 , 3 9 0 5 3 6 3 1 . 3 2 . 2 1 0 1 . 1 2 . 9  13
7 6 7 8 , 1 0 0 1 1 , 3 6 0 5 3 6 3 1 , 2 7 . 1 9 5 2 1 . 2 3 1 . 0 6
69 7 8 , 1 0 0 1 5 , 1 9 0 5 2 8 3 3 . 0 7 . 1 5 8 2 1 . 5 7 1 . 5 9
77 7 8 , 1 0 0 1 5 , 9 8 0 5 3 6 3 2 . 9 7 . 1 5 0 3 1 , 7 1 1 . 7 7
78 7 8 , 1 0 0 2 2 , 4 0 0 5 3 6 3 6 . 1 2 . 1 1 7 0 2 . 7 5 2 . 8 2
70 7 8 , 1 0 0 2 2 , 5 0 0 5 2 8 3 6 . 5 7 . 1 1 7 8 2 . 6 9 2 . 7 6
79 7 8 , 1 0 0 3 0 , 1 0 0 5 3 6 3 9 . 8 7 . 0 9 3 8 4 . 3 5 4 .  1 7
71 7 8 , 1 0 0 3 0 , 4 0 0 5 2 8 4 0 , 5 7 . 0 9 4 1 4 . 2 6 4 . 1  I
80 7 8 , 1 0 0 3 8 , 2 0 0 5 3 6 4 4 . 8 7 . 0 7 9 5 5 . 9 2 5 . 5 3
72 7 8 , 1 0 0 3 9 , 8 0 0 5 2 8 4 5 . 3 7 . 0 7 7 5 5 . 8 3 5 . 7 6
81 ■ 7 8 , 1 0 0 4 3 , 1 0 0 5 3 6 4 7 . 5 2 . 0 7 3 1 7 , 0 1 6 . 3  7

3 0 4 1 2 7 , 0 0 0 5 , 7 9 0 5 5 1 3 0 . 7 1 . 4 3 1 1 . 2 3
88 1 2 7 , 0 0 0 5 , 9 1 0 5 3 8 3 1 . 0 5 . 4 3 0 1 . 2 9
90 1 2 7 , 0 0 0 1 0 , 2 5 0 5 3 8 3 2 . 6 5 . 3 0 8 1 . 6 3 1 . 2 9
4 9 1 2 7 , 0 0 0 1 1 , 0 5 0 5 3 5 3 1 . 9 9 . 2 9 1 2 .  13
50 1 2 7 , 0 0 0 1 6 , 0 2 0 5 3 3 3 4 . 7 9 . 2 2 8 2 . 2 4 2 . 3 2
51 1 2 7 , 0 0 0 1 8 , 4 8 0 5 3 2 3 8 . 9 9 . 2 1 4 3 . 3 7 2 . 5 7
52 1 2 7 , 0 0 0 3 0 , 9 0 0 5 3 1 4 3 . 1 9 . 1461 4 . 8 2 5 . 1 4
53 1 2 7 , 0 0 0 3 9 , 3 0 0 5 3 0 4 9 . 4 9 . 1 2 6 0 6 . 9 6 6 . 6 0
54 1 9 8 , 0 0 0 4 0 , 9 0 0 5 3 0 5 2 . 4 9 . 1 8 2 1 8 . 4 2 8 . 6 5
69 2 2 3 , 0 0 0 6 , 0 9 0 5 3 8 3 2 . 5 5 . 5 6 8 2 . 1 3
91 2 2 3 , 0 0 0 1 1 , 1 5 0 5 3 8 3 5 , 5 5 . 4 2 9 3 . 2 0 2 . 4 4
55 2 2 3 , 0 0 0 3 3 , 9 0 0 5 2 7 4 8 , 7 1 . 2 2 6 0 7 . 8 5 7 . 6 4
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TABLE I 

1 2 . 4  DEGREE INCLINE

RUN G G I PRESS K . L . F . DP/DL D P / 01
NO. LIQUID GAS AVE ACTUAL PR t o

3 0 8 2 6 , 6 0 0 5 , 4 1 0 551 3 0 . 1 6 . 1 4 3 9 1 . 2 9
96 2 6 , 6 0 0 6 ,  0 0 0 5 33 3 0 . 8 3 . 13 3 9 1 . 2  1

101 2 6 , 6 0 0 9 , 9 3 0 53 3 3 0 . 5 8 , 0 8 5 7 1 . 1 5
313 2 6 , 6 0 0 1 0 , 0 9 0 5 5 1 3 0 . 4 1 . 0 8 3 0 1 . 2 3
102 2 6 , 6 0 0 1 0 , 6 6 0 533 3 0 . 7 3 . 0 8 0 5 1 . 0 9
107 2 6 , 6 0 0 1 5 , 3 0 0 53 7 3 1 . 2 5 . 0 5 7 7 1 , 2  1 1 o 0 6
106 2 6 , 6 0 0 2 1 , 3 0 0 537 3 2 . 9 5 . 0 4 3 2 1 .  74 1 . 8 4
113 2 6 , 6 0 0 3 0 , 0 0 0 5 3 7 3 5 . 9 5 . 0 3 2 5 2 . 9 2 3 . 0 9
114 2 6 , 6 0 0 3 6 , 9 0 0 5 3 4 3 8 . 8 7 . 0 2 7 6 4 . 0 4 4 . 0 9
117 2 6 , 6 0 0 4 3 , 5 0 0 5 3 4 4 2 . 5 7 . 0 2 4 6 5 . 3 9 4 . 9 9
3 0 9 4 5 , 3 0 0 5 ,  160 551 3 0 , 4 6 . 2 3 2 1 . 4 6

97 4 5 , 3 0 0 5 , 5 1 0 5 3 3 3 0 . 5 8 . 2 2 3 1 . 4 3
100 4 5 , 3 0 0 1 0 , 2 6 0 5 33 3 1 . 0 8 . 1 3 4 8 1 . 3 7
3 1 2 4 5 , 3 0 0 1 0 , 4 9 0 551 3 0 . 9 6 .  1301 1 . 4  3
103 4 5 , 3 0 0 1 0 , 7 5 0 5 3 3 3 0 . 9 3 . 1 2 9 1 1 . 4 0
108 4 5 , 3 0 0 1 5 , 6 1 0 5 3 7 3 1 . 9 5 , 0 9 3 7 1 . 6 3 1 . 3 3
109 4 5 , 3 0 0 2 1 , 9 0 0 5 3 7 3 4 . 1 0 . 0 7 0 9 2 . 2 4 2 . 2 4
112 4 5 , 3 0 0 3 0 ,  0 0 0 5 3 7 3 7 . 3 5 , 0 5 5 0 3 . 4 8 3 . 5 4
115 4 5 , 3 0 0 3 6 , 6 0 0 5 3 4 4 1 . 1 7 . 0 4 7 8 4 , 2 9 4 . 5 0
118 4 5 , 3 0 0 4 2 , 8 0 0 5 3 4 4 4 . 8 7 . 0 4 2 9 6 . 4 0 5 . 4 2
310 7 8 , 1 0 0 4 , 9 4 0 5 51 3 0 . 9 6 . 3 5 4 1 . 7 7

98 7 8 , 1 0 0 6 ,  0 0 0 533 3 1 . 0 8 . 3 1 5 1 . 6 b
99 7 8 , 1 0 0 1 0 , 1 7 0 533 3 1 . 7 8 . 2 1 5 1 . 6 8

311 7 8 , 1 0 0 . 1 0 , 2 5 0 5 5 1 3 1 . 8 6 , 2 1 1 2 1 .  88
104 7 8 , 1 0 0 1 1 , 5 2 0 53 3 3 2 . 1 8 . 1 9 5 8 1 . 7 9
105 7 8 , 1 0 0 1 5 , 3 4 0 533 3 3 . 2 3 . 1 5 6 6 1 . 9 1 1 . 6  3
110 7 8 , 1 0 0 2 2 , 6 0 0 5 3 7 3 6 . 3 0 . 1 1 5 8 3 . 0 0 2 . 8 6
111 7 8 , 1 0 0 3 0 , 2 0 0 5 3 7 4 0 . 2 5 . 0 9 3 8 4 . 2 6 4 . 1 6
116 7 8 , 1 0 0 3 9 , 2 0 0 5 3 4 4 5 . 7 2 . 0 7 8 5 6 . 2 0 5 . 6 3
119 7 8 , 1 0 0 4 2 , 4 0 0 5 3 4 4 7 . 9 2 . 0 7 4 6 7 . 1 2 6 . 1 3
3 0 5 1 2 7 , 0 0 0 5 , 9 2 0 551 3 1 . 5 1 . 4 2 8 2 . 0 5

92 1 2 7 , 0 0 0 6 , 0 9 0 5 4 4 3 1 . 3 3 , 4 2 2 2 . 2 0
3 0 7 1 2 7 , 0 0 0 1 0 , 3 9 0 551 3 3 . 3 1 . 3 0 5 2 . 3 8

94 1 2 7 , 0 0 0 1 0 , 8 2 0 541 3 3 . 0 3 . 2 9 8 2 . 5 2
122 1 2 7 , 0 0 0 1 1 , 8 6 0 5 3 4 3 3 . 5 2 . 2 8 2 2 . 2 4
121 1 2 7 , 0 0 0 1 6 , 4 1 0 5 3 4 3 5 . 5 2 . 2 2 6 2 . 5 8 2 . 3 b
120 1 2 7 , 0 0 0 2 2 , 7 0 0 5 3 4 3 8 . 7 7 . 1 8 0 5 3 . 6 7 3 . 5 5
123 1 2 7 , 0 0 0 3 1 , 4 0 0 5 3 4 4 4 . 3 2 o 1 4 5 6 5 . 4 1 5 . 1 6
1 2 4 1 2 7 , 0 0 0 4 0 , 8 0 0 5 3 4 5 0 . 4 2 ,  1 2 2 6 7 . 2 6 6 . 9 1
3 0 6 2 2 3 , 0 0 0 5 , 8 7 0 5 5 1 3 3 . 1 6 , 5 7 7 2 . 8 0

9 3 2 2 3 , 0 0 0 5 , 9 0 0 542 3 2 . 6 3 . 5 7 5 2 . 8 0
95 2 2 3 , 0 0 0 1 0 , 7 4 0 5 4 0 3 5 . 8 3 , 4 3 9 3 . 7 0

126 2 2 3 , 0 0 0 2 3 , 9 0 0 5 3 4 4 3 . 9 2 , 2 8 1 5 . 9 5 5 . 2 4
125 2 2 3 , 0 0 0 3 1 , 9 0 0 5 3 4 5 1 . 0 2 . 2 4 0 7 .  74 6 . 8 1



12.1 

TABLE I I

PRESSURE DROP DATA ~ NO. 10 S . A . E .  OIL AND AIR

RUN NO. -  -  = 
G LIQUID-  -  =

RUN NUMBER 
MASS VELOCITY OF THE LIQUID,  l b /HR- S Q . F T . OF PIPE

G GAS — — — = MASS VELOCITY OF THE GAS , l b / hr- SQ . F T .  OF PIPE
T ------ — = FLOWING TEMPERATURE, DEGREES RANKINE
PRESS AVE -  = AVERAGE PRESSURE ,  INCHES OF MERCURY
K . L . F .
DP/DL ACTUAL=

KINETIC LIQUID FRACTION 
ACTUAL PRESSURE GRADIENT , LB / S Q. FT . - F T .  OF PIPE

DP/DL PRED = PREDICTED PRESSURE GRADIENT, LB/SQ . F T - F T . OF PIPE

RUN G G T PRESS K . L . F . DP/DL DP/DL
NO. LIQUID GAS AVE a ct ual PREL

157 1 8 , 5 0 0 9 , 7 0 0 5 3 9 3 0 . 3 8 , 0 6 6 4 .  729 o 7 34
166 1 8 , 5 0 0 1 0 , 4 7 0 5 3 7 3 0 . 2 2 . 0 6 1 8 . 8 9 8 . 8 5 4
173 1 8 , 5 0 0 1 5 , 4 9 0 5 3 8 3 1 . 1 2 . 0 4 3 2 1 . 3 5 1 . 7 6
181 1 8 , 5 0 0 2 1 ,  100 53 8 3 3 . 2 7 . 0 3 3 1 2 . 5 2 2 . 9 0
182 1 8 , 5 0 0 3 0 , 2 0 0 5 3 8 3 7 . 8 7 . 0 2 4 9 5 . 0 8 4 . 8 6
189 1 8 , 5 0 0 3 6 , 4 0 0 5 3 5 4 0 . 8 4 . 0 2 1 6 6 . 7 6 6 . 2 4
190 1 8 , 5 0 0 4 0 , 6 0 0 5 3 4 4 2 . 4 9 . 0 1 9 8 1 7 . 7 4 7 . 2  8
158  - 2 6 , 5 0 0 9 , 7 4 0 5 3 8 3 0 . 5 3 . 0 9 2 4 . 8 4 2 . 8 4 6
167 2 6 , 5 0 0 1 0 , 5 3 0 5 3 7 3 0 .  52 . 0 8 6 2 . 9 8 2 . 9 7 8
1 74 2 6 , 5 0 0 1 5 , 3 6 0 5 3 8 3 1 . 4 7 . 0 6 1 5 1 . 5 1 1 . 9 2
1 80 2 6 , 5 0 0 2 2 , 0 0 0 5 3 8 3 4 . 5 7 . 0 4 5 8 3 . 2 5 3 . 3 6  .
183 2 6 , 5 0 0 3 0 , 2 0 0 53 8 3 8 . 5 2 . 0 3 5 5 5 . 4 7 5 . 3 1
188 2 6 , 5 0 0 3 9 , 1 0 0 5 3 6 4 4 . 0 4 . 0 2 9 7 8 . 0 5 7 . 2 7
191 2 6 , 5 0 0 4 0 , 4 0 0 5 3 3 4 4 .  64 . 0 2 9 0 8 . 4 7 7 . 5 7
2 1 0 4 2 , 0 0 0 1 8 , 4 1 0 5 4 0 3 4 . 6 8 . 0 8 3 3 2 . 8 6 2 . 9 0
1 5 9 4 6 , 7 0 0 1 0 , 1 3 0 5 3 8 3 1 . 0 8 . 1 4 8 3 1.  18 1 . 1 8
168 4 6 , 7 0 0 1 0 , 5 9 0 5 3 7 3 1 . 8 2 . 1 4 4 4 1 . 1 8 1 . 2 4
175 4 6 , 7 0 0 1 5 , 3 0 0 5 3 8 3 2 .  17 .  1 0 5 0 1 . 9 6 2 . 3  7
179 4 6 , 7 0 0 2 2 , 3 0 0 5 3 8 3 5 , 7 2 . 0 7 8 1 3 . 7 6 4 . 1 2
1 8 4 4 6 , 7 0 0 3 0 , 2 0 0 5 3 8 4 0 . 4 7 . 0 6 2 4 6 . 0 0 6 . 1 3
1 87 4 6 , 7 0 0 4 0 , 0 0 0 5 3 8 4 5 . 6 4 . 0 5 0 7 9 , 0 6 8 . 8 0
192 4 6 , 7 0 0 4 0 , 6 0 0 5 3 3 4 6 . 8 4 . 0 5 0 9 9 . 3 1 8 . 7 0
160 7 0 , 5 0 0 1 0 , 1 5 0 5 3 8 3 2 . 5 3 . 2 1 2 1 . 8 0 1 . 4 8
169 7 0 , 5 0 0 1 0 , 2 7 0 5 3 7 3 2 . 5 2 . 2 1 0 1 . 9 6 1 . 4  9
1 76 7 0 , 5 0 0 1 6 , 1 7 0 5 3 8 3 3 . 4 2 . 1 4 5 9 2 , 5 5 3 . 1 1
1 7 7 7 0 , 5 0 0 2 2 , 4 0 0 5 3 8 3 6 . 8 7 . 1 1 4 7 4 . 1 8 4 . 8 5
1 85 7 0 , 5 0 0 3 0 , 4 0 0 5 3 8 4 2 . 3 7 . 0 9 2 8 6 . 7 0 7 . 0 3
186 7 0 , 5 0 0 3 8 , 7 0 0 5 4 0 4 7 , 5 4 . 0 7 8 3 8 . 8 1 9 . 4 2
193 7 0 , 5 0 0 4 1 , 8 0 0 5 3 2 4 8 . 8 0 « 0 7 4 3 1 0 , 1 1 0 . 3
170 9 5 , 0 0 0 1 1 , 1 9 0 5 3 7 3 3 . 5 2 . 2 5 0 2 . 8 3 2 . 0 9
171 9 5 , 0 0 0 1 6 , 4 0 0 5 3 7 3 5 . 7 2 .  1 9 0 2 3 . 5 9 3 . 5 k
2 0 9 9 5 , 0 0 0 1 8 , 3 4 0 5 4 0 3 7 . 6 8 . 1 7 7 0 3 . 8 1 4 . 0 8 /
178 9 5 , 0 0 0 2 2 , 2 0 0 5 3 8 3 8 . 8 7 . 1 5 3 0 4 . 7 1 5 . 3 5



TABLE II

5 . 5  DEGREE INCLINE

RUN G G I PRESS K . L . F . DP/DL DP/DL
NO. LIQUID GAS AVE ACTUAL PRED

2 2 4 6 , 5 0 0 5 , 4 2 0 5 4 0 2 9 . 3 6 . 0 4 2 1 . 4 2 1
2 0 6 1 8 , 5 0 0 5 , 2 0 0 5 4 0 2 9 . 5 8 . 1 1 5 7 . 8 4 1
2 4 5 1 8 , 5 0 0 5 , 7 5 0 541 3 0 . 0 8 . 106 5 . 8 1 3
2 5 0 1 8 , 5 0 0 9 , 7 5 0 541 3 0 . 6 3 . 0 6 6 3 1 . 0 9
194 1 8 , 5 0 0 1 0 , 7 5 0 538 3 0 . 3 5 . 0 6 0 4 1 . 0 4 . 9 0 1
2 2 0 1 8 , 5 0 0 1 3 , 6 4 0 5 4 0 3 1 . 1 6 . 0 4 8 7 1 . 2 9 1,  38
2 2 5 1 8 , 5 0 0 1 5 , 0 6 0 5 3 7 3 1 . 8 0 . 0 4 4 9 1 . 6 3 1.  62
2 3 0 1 8 , 5 0 0 2 2 , 3 0 0 5 3 7 3 4 . 9 0 . 0 3 2 1 3 . 2 3 3 . 0 6
2 3 5 1 8 , 5 0 0 2 9 , 3 0 0 5 3 7 3 8 . 6 0 . 0 2 5 9 5 . 1 3 4 . 4 9
2 3 9 1 8 , 5 0 0 3 8 , 8 0 0 5 3 7 4 4 . 3 5 . 0 2 1 1 7 . 8 5 6 . 4 6
2 0 4 1 8 , 5 0 0 3 9 , 1 0 0 540 4 4 . 7 3 . 0 2 0 9 8 . 0 5 6 .  55
2 4 6 2 6 , 5 0 0 5 , 5 0 0 541 3 0 . 0 8 . 1 5 1 6 . 8 9 7
2 1 1 2 6 , 5 0 0 7 , 3 3 0 540 3 0 , 2 8 . 1 1 8 6 . 8 9 7
2 5 1 2 6 , 5 0 0 9 , 7 2 0 5 4 1 3 0 . 7 3 . 0 9 2 6 1 . 2 1
195 2 6 , 5 0 0 1 0 , 5 8 0 5 3 8 3 0 . 8 5 . 0 8 6 1 1 . 2 6
199 2 6 , 5 0 0 1 1 , 2 5 0 5 4 2 3 0 . 0 6 . 0 8 0 2 1 , 2  3 1.  14
2 1 9 2 6 , 5 0 0 1 3 , 5 4 0 540 3 1 . 5 6 c 0 6 9 2 1 .  37 1 . 5 2
2 2 6 2 6 , 5 0 0 1 5 , 8 9 0 5 3 7 3 2 . 5 0 . 0 6 0 6 2 . 0 5 1 . 9 8
21 3 2 6 , 5 0 0 1 7 , 5 3 0 5 4 0 3 3 . 0 8 . 0 5 5 5 2 .  13 2 . 3  3
231 2 6 , 5 0 0 2 2 , 4 0 0 5 3 7 3 5 . 9 0 . 0 4 5 9 3 , 3 4 3 , 3 2
23 6 2 6 , 5 0 0 2 9 , 2 0 0 53 7 3 9 . 3 5 . 0 3 7 2 5 . 5 5 4 , 8 6
2 4 2 2 6 , 5 0 0 3 8 , 5 0 0 5 3 7 4 5 . 6 5 . 0 3 0 6 8 . 3 3 6 , 8  6
2 4 3 2 6 , 5 0 0 4 1 , 5 0 0 5 3 7 4 7 . 7 5 , 0 2 9 1 9 . 2 8 7 . 4  7
2 1 5 3 7 , 5 0 0 5 , 2 0 0 5 4 0 2 9 . 6 8 . 2 1 0 .  729
2 0 7 3 7 , 5 0 0 5 , 2 7 0 5 4 0 3 0 . 0 8 . 2 0 9 1 , 1 5
2 0 3 3 7 , 5 0 0 3 1 , 7 0 0 5 4 2 4 1 . 2 1 , 0 4 8 7 6 .  17 6 . 0 9
22 3 4 2 , 0 0 0 1 5 , 4 5 0 5 4 0 3 3 . 1 6 . 0 9 5 8 2 . 0 8 2 . 2  3
2 4 7 4 6 , 7 0 0 5 , 4 2 0 541 3 0 . 3 3 . 2 4 2 7 1 . 2 3
2 5 2 4 6 , 7 0 0 9 , 6 5 0 541 3 1 . 2 8 . 1 5 4 6 1 . 5 1
196 4 6 , 7 0 0 1 0 , 7 3 0 5 3 8 3 1 . 5 0 .  1 4 2 0 1 .  74
2 1 4 4 6 , 7 0 0 1 1 , 8 6 0 5 4 0 3 1 . 6 8 . 1 3 0 4 1 . 6 3 1 .  54
2 1 8 4 6 , 7 0 0 1 3 , 5 3 0 5 4 0 3 2 . 2 6 . 1 1 7 1 1 . 8 5 1 . 9  1
22 7 4 6 , 7 0 0 1 5 , 9 0 0 5 3 7 3 3 . 5 0 . 1 0 3 4 2 . 5 2 2 , 4 2
232 4 6 , 7 0 0 2 1 , 9 0 0 5 3 7 3 7 . 1 0 . 0 8 0 8 4 . 1 8 3 . 8  3
2 3 7 4 6 , 7 0 0 3 0 , 0 0 0 5 3 7 4 1 . 9 5 . 0 6 3 9 6 .  06 5 .  83
2 41 4 6 , 7 0 0 3 9 , 7 0 0 5 3 7 4 9 .  15 . 0 5 3 0 9 .  37 8 . 0 6
2 4 4 4 6 , 7 0 0 4 1 , 7 0 0 5 3 7 5 0 . 8 5 . 0 5 1 4 1 0 . 1 5 8 . 4 6
2 2 2 6 0 , 5 0 0 1 2 , 8 8 0 5 4 0 3 2 . 3 6 . 1 5 3 0 2 . 1 3 2 . 0 1
2 4 8 7 0 , 5 0 0 5 , 8 9 0 541 3 0 . 8 8 . 3 1 0 1 1 . 6 5
2 5 3 7 0 , 5 0 0 1 0 , 2 0 0 541 3 2 . 4 8 . 2 1 0 2 . 2 4
197 7 0 , 5 0 0 1 0 , 5 7 0 5 3 8 3 2 . 0 0 . 2 0 4 2 . 2 4
20 0 7 0 , 5 0 0 1 1 , 8 3 0 5 4 2 3 1 . 9 1 . 1 8 5 2 2 . 4 7 1 . 9 6
2 1 7 7 0 , 5 0 0 1 4 , 2 6 0 5 4 0 3 3 . 5 6 .  1 6 2 3 2 . 6 4 2 . 5  3
2 2 8 7 0 , 5 0 0 1 6 , 6 5 0 5 3 7 3 5 . 5 0 « 146 1 3 . 5 6 3 . 3 7
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TABLE II

RUN G G T PRESS K . L . F . DP/DL DP/LL
NOo LIQUID GAS AVE ACTUAL PRÉC

2 7 5 7 0 , 5 0 0 3 1 , 7 0 0 5 3 6 4 5 . 9 0 . 0 9 2 8 7 . 8 5 6 . 9 3
2 8 2 7 0 , 5 0 0 3 9 , 3 0 0 534 5 1 . 3 0 . 0 8 0 4 9 . 8 7 8 . 8 8
2 5 9 9 5 , 0 0 0 6 , 2 0 0 5 4 4 3 2 . 4 1 . 3 7 0 2 . 6 6
29 0 9 5 , 0 0 0 1 0 , 5 9 0 537 3 4 . 0 8 . 2 6 2 3 . 4 8
2 6 4 9 5 , 0 0 0 1 1 , 4 2 0 5 3 7 3 4 . 4 8 . 2 4 9 3 . 5 9
265 9 5 , 0 0 0 1 6 , 5 2 0 5 3 7 3 6 . 9 8 . 1 9 1 7 4 . 5 4
2 7 4 9 5 , 0 0 0 2 3 , 0 0 0 536 4 0 . 9 0 . 1522 5 . 9 5  — 5 . 3 6
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TABLE III

PRESSURE DROP DATA -  DIETHYLENE GLYCOL AND AIR

RUN NO. -  -  = RUN NUMBER
G LIQUID----- = MASS VELOCITY OF THE LIQUID,  LB/HR - S Q . F T . OF PIPE
G GAS MASS VELOCITY OF THE GAS, LB/HR-SQ - F T ,  OF PIPE
I  - - FLOWING TEMPERATURE, DEGREES RANKINE
PRESS AVE -  = AVERAGE PRESSURE , INCHES OF MERCURY
K.L « F «— — " = KINETIC LIQUID FRACTION
DP/DL ACTUAL= ACTUAL PRESSURE GRADIENT, LB/ SQ. FT . - F T ,  OF PIPE
DP/DL PRED = PREDICTED PRESSURE GRADIENT, LB/SQ . F T - F T . OF PIPE

RUN G G T PRESS K . L . F . DP/DL DP/CL
NO. LIQUID GAS AVE ACTUAL PRED

569 2 6 , 5 0 0 4 ,  180 5 4 0 2 9 . 0 4 . 1693 .  164 . 1 4 8
5 7 0 2 6 , 5 0 0 5 , 4 6 0 540 2 9 . 1 9 . 1 3 5 1 .  260 - 2 2 2
571 2 6 , 5 0 0 7 , 2 8 0 540 2 9 , 4 4 . 1 0 5 3 . 4 7 9 . 3 9 2
6 7 6 2 6 , 5 0 0 8 , 1 1 0 546 2 9 .  73 . 0 9 5 6 . 4 9 2 - 4 8 5
572 2 6 , 5 0 0 9 , 3 4 0 5 3 9 2 9 .  84 . 0 8 4 7 . 5 9 3 . 6 2 7
573 2 6 , 5 0 0 1 1 , 4 9 0 5 3 9 3 0 , 3 4 . 0 7 0 5 . 7 9 7 - 9 1 7
6 7 7 2 6 , 5 0 0 1 2 , 4 2 0 5 46 3 0 . 7 3 . 0 6 5 5 . 8 6 4 1 . 0 6
5 7 4 2 6 , 5 0 0 1 4 , 6 9 0 53 8 3 1 - 1 4 - 0 5 6 7 1 . 1 2 1 . 4 2
6 78 2 6 , 5 0 0 1 6 , 5 8 0 5 4 6 3 1 . 8 3 . 0 5 0 7 1 . 3 1 1 . 7 6
575 2 6 , 5 0 0 1 7 , 9 5 0 5 3 6 3 1 . 9 4 , 0 4 7 5 1 . 5 0 1 . 9 8
5 9 0 2 6 , 5 0 0 2 5 , 6 0 0 5 2 6 3 4 , 0 5 . 0 3 5 2 2 . 5 3 3 . 4 7
591 2 6 , 5 0 0 3 4 , 6 0 0 525 3 7 , 9 5 . 0 2 7 8 4 . 5 6 5 . 2 9
592 2 6 , 5 0 0 4 0 , 7 0 0 52 7 4 0 . 9 5 . 0 2 4 5 6 . 2 1 6 . 5 8
593 2 6 , 5 0 0 4 8 , 4 0 0 5 2 8 4 5 . 2 5 . 0 2 1 7 8 . 3 2 8 ,  10
567 4 6 , 5 0 0 5 , 4 2 0 535 2 9 . 5 3 . 2 1 8 . 360 . 3 0 4
56 6 4 6 , 5 0 0 6 , 9 4 0 5 3 5 2 9 , 9 3 . 1 8 0 0 . 5 2 1 . 4 6 9
56 5 4 6 , 5 0 0 9 , 0 3 0 5 3 4 3 0 , 3 3 . 1 4 5 3 . 7 1 6 . 7 4 8
564 4 6 , 5 0 0 1 1 , 6 2 0 5 34 3 1 . 0 3 . 1 1 7 9 . 9 3 7 1 . 1 6
563 4 6 , 5 0 0 1 4 , 8 0 0 5 3 4 3 1 . 9 3 . 0 9 6 2 1 . 3 4 1 . 7 3
5 6 2 4 6 , 5 0 0 1 8 , 8 2 0 5 3 5 3 3 . 5 3 . 0 7 8 9 2 . 0 7 2 - 5 3
594 4 6 , 5 0 0 1 9 , 4 0 0 5 3 2 3 3 . 8 5 . 0 7 7 3 2 . 0 7 2 . 6 3
595 4 6 , 5 0 0 2 7 , 2 0 0 5 2 8 3 7 . 5 5 . 0 5 9 5 3 . 8 0 4 . 2 2
596 4 6 , 5 0 0 3 8 , 5 0 0 5 2 8 4 4 . 8 5 . 0 4 6 5 6 . 9 4 6 . 4 8
5 9 7 4 6 , 5 0 0 4 4 , 7 0 0 5 2 8 4 8 - 3 5 . 0 4 1 8 8 . 6 9 7 - 8 0
598 4 6 , 5 0 0 5 0 , 1 0 0 5 2 8 5 1 . 7 5 . 0 3 8 7 1 0 . 1 8 . 9 0
6 8 0 7 8 , 0 0 0 8 ,  190 546 3 1 . 3 3 . 2 4 0 1 .  18 . 8 8 9
5 5 8 7 8 , 0 0 0 9 , 3 4 0 5 3 4 3 1 . 5 3 . 2 1 9 1 . 3 4 1 . 0 6
55 9 7 8 , 0 0 0 1 2 , 1 3 0 5 3 4 3 2 . 6 3 . 1 8 0 4 1 . 6 6 1 - 5 9
681 7 8 , 0 0 0 1 2 , 6 4 0 5 4 6 3 2 - 5 3 .  1725 1 . 7 0 ' 1 . 7 5
560 7 8 , 0 0 0 1 5 , 0 9 0 5 3 7 3 3 . 7 3 . 1 5 2 1 2 . 1 1 2 . 2 2
682 7 8 , 0 0 0 1 6 , 8 5 0 5 4 6 3 4 . 5 3 . 1 3 8 8 2 . 4 6 2 . 6 6
561 7 8 , 0 0 0 1 8 , 7 7 0 5 3 6 3 5 . 4 3 . 1 2 8 9 2 . 8 5 3 . 0 5
5 9 9 7 8 , 0 0 0 2 0 , 3 0 0 5 2 8 3 5 - 5 5 . 121 5 2 . 9 5 3 , 4 0
6 0 0 7 8 , 0 0 0 2 8 , 5 0 0 5 2 8 4 0 .  15 - 0 9 4 6 4 . 7 1 5 . 3 3
601 7 8 , 0 0 0 3 7 , 1 0 0 52 8 4 5 . 9 5 . 0 7 9 1 7 . 0 2 7 . 3 6
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TABLE III

RUN G G T PRESS K . L . F . DP/DL DP/CL
NO. LIQUID GAS AVE ACTUAL PREC

6 0 2 7 8 , 0 0 0 4 3 , 7 0 0 5 2 8 5 0 . 3 5 . 0 7 0 9 8 . 8 8 8 .  72
6 0 3 7 8 , 0 0 0 4 9 , 9 0 0 5 2 8 5 4 . 2 5 . 0 6 4 9 1 0 . 2 1 0 .  I
5 8 0 1 3 5 , 0 0 0 1 3 , 9 3 0 532 3 6 .  10 . 2 5 9 3 .  18 2 . 6 7
6 7 4 1 3 5 , 0 0 0 1 6 , 0 6 0 5 4 6 3 6 . 8 0 . 2 3 2 3 . 6 2 3 . 3 2
581 1 3 5 , 0 0 0 1 7 , 7 7 0 5 3 2 3 8 . 1 0 . 2 2 0 4 . 0 7 3 . 6 5
5 8 5 1 3 5 , 0 0 0 2 0 , 4 0 0 5 2 9 3 7 . 9 3 .  1 9 6 9 4 . 0 8 4 . 4 9
5 8 2 1 3 5 , 0 0 0 2 0 , 7 0 0 5 3 0 4 0 . 2 0 . 1 9 8 9 4 . 5 7 4 . 3 7
6 0 4 1 3 5 , 0 0 0 2 2 , 8 0 0 5 4 0 4 0 . 6 5 - 1 8 3 9 4 . 7 4 5 . 0 9
5 8 6 1 3 5 , 0 0 0 2 2 , 0 0 0 5 2 7 4 2 . 0 3 . 1 5 8 9 5 . 3 9 6 . 6 1
6 0 5 1 3 5 , 0 0 0 2 9 , 0 0 0 5 3 8 4 5 . 8 5 . 1 5 8 3 6 . 2 1 6 . 5 7
6 0 6 1 3 5 , 0 0 0 3 6 , 2 0 0 5 3 7 5 1 . 6 5 . 1 3 8 1 7 . 9 3 8 . 2 8
5 8 7 1 3 5 , 0 0 0 3 8 , 0 0 0 5 2 3 4 9 . 1 3 . 1 3 1 0 7 . 5 3 7 .  1 3
6 0 7 1 3 5 , 0 0 0 4 4 , 2 0 0 5 3 7 5 6 . 8 5 .  1 20 9 9 . 7 4 1 0 . 4
5 8 8 1 3 5 , 0 0 0 4 4 , 7 0 0 5 2 4 5 4 . 3 3 . 1 1 8 8 9 . 1 9 1 0 . 7
6 0 8 1 3 5 , 0 0 0 4 6 , 5 0 0 5 3 7 5 8 . 7 5 . 1 1 7 3 1 0 . 3 1 0 . 9
5 8 4 2 1 0 , 0 0 0 1 7 , 4 4 0 5 3 0 4 2 . 8 0 . 3 2 1 5 . 9 2 4 . 6 2
5 8 3 2 1 0 , 0 0 0 2 0 , 4 0 0 5 3 0 4 5 . 3 0 . 2 9 4 6 . 5 8 5 . 4 2
6 0 9 2 1 0 , 0 0 0 2 9 , 7 0 0 5 3 7 5 2 . 5 5 . 2 3 4 8 . 1 7 8 . 1 0
6 1 0 2 1 0 , 0 0 0 3 4 , 1 0 0 5 3 7 5 6 . 3 5 . 2 1 7 8 . 8 7 9 . 2  7
6 1 1 2 1 0 , 0 0 0 3 8 , 9 0 0 5 3 7 5 9 . 3 5 - 1 9 9 1 9 . 9 1 1 0 .  7

1 . 5  DEGREE INCL INE
6 1 2 2 6 , 5 0 0 3 , 4 7 0 5 4 6 2 9 . 2 5 .  1 9 6 5 . 3 5 6
6 1 3 2 6 , 5 0 0 6 ,  190 5 4 6 2 9 . 2 5 . 1 2 0 7 . 4 4 1
6 1 4 2 6 , 5 0 0 9 , 3 3 0 5 4 6 2 9 . 9 5 . 0 8 4 4 . 6 0 5 . 6 3 3
6 1 5 2 6 , 5 0 0 1 2 , 2 1 0 5 4 6 3 0 . 6 5 . 0 6 6 5 . 8 3 6 1 . 0 3
6 1 6 2 6 , 5 0 0 1 6 , 8 3 0 5 4 6 3 1 . 6 5 . 0 4 9 9 1 . 3 7 1 . 8 3
6 3 0 2 6 , 5 0 0 2 0 , 4 0 0 5 4 4 3 3 . 0 5 . 0 4 2  5 1 . 9 7 2 . 4 6
6 3 1 2 6 , 5 0 0 2 7 , 2 0 0 5 4 4 3 5 . 5 5 . 0 3 3 3 3 . 2 2 3 . 8 3
6 3 2 2 6 , 5 0 0 3 4 , 4 0 0 5 4 4 3 9 . 9 5 . 0 2 8 1 5 . 2 2 5 . 1 7
6 3 3 2 6 , 5 0 0 4 2 , 2 0 0 5 4 4 4 3 . 6 5 , 0 2 4 1 7 . 0 7 6 .  78
6 1 7 7 8 , 0 0 0 4 , 9 5 0 5 4 6 3 0 . 1 5 . 3 3 9 . 6 7 7
6 1 8 7 8 , 0 0 0 7 , 5 7 0 5 4 6 ' 3 0 . 8 5 . 2 5 3 1 . 1 9
6 1 9 7 8 , 0 0 0 1 0 , 4 0 0 5 4 6 3 1 . 8 5 . 2 0 1 1 . 4 4 1 . 2  9
6 2 0 7 8 , 0 0 0 1 4 , 0 4 0 5 4 6 3 2 . 9 5 . 1 5 9 0 1 . 9 8 2 . 0 6
6 2 1 7 8 , 0 0 0 1 7 , 8 6 0 5 4 6 3 5 . 0 5 . 1 3 2 9 2 . 7 0 2 . 2 7
6 3 4 7 8 , 0 0 0 1 9 , 0 3 0 5 4 4 3 5 . 3 5 . 1 2 6 4 2 . 8 4 3 .  13
6 3 5 7 8 , 0 0 0 2 7 , 5 0 0 5 4 4 4 0 . 4 5 . 0 9 6 7 4 . 6 4 5 .  15
6 3 6 7 8 , 0 0 0 3 3 , 8 0 0 5 4 4 4 5 . 0 5 . 0 8 4 2 6 . 3 0 6 . 5 1
6 3 7 7 8 , 0 0 0 4 1 , 0 0 0 5 4 4 5 0 . 1 5 . 0 7 4 1 8 . 0 9 8 . 0 9
6 2 2 1 3 5 , 0 0 0 4 , 0 4 0 5 4 6 3 0 . 8 5 . 5 2 4 1 . 1 5
6 2 3 1 3 5 , 0 0 0 8 , 5 0 0 5 4 6 3 2 . 8 5 . 3 5 0 2 . 1 8
6 2 4 1 3 5 , 0 0 0 1 2 , 0 9 0 5 4 6 3 4 . 5 5 . 2 8 0 2 . 7 6 2 . 3 2
6 2 5 1 3 5 , 0 0 0 1 5 , 6 5 0 5 4 8 3 6 . 6 5 . 2 3 6 3 . 4 7 3 . 2 2
6 2 6 1 3 5 , 0 0 0 1 8 , 7 5 0 5 4 8 3 8 . 8 5 . 2 1 0 3 . 9 8 4 . 0 0
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TABLE III

RUN G G T PRESS K . L . F . DP/UL CP/Uc
NO. LIQUID GAS AVE - ACTUAL PRc^

6 2 7 1 3 5 , 0 0 0 2 0 , 3 0 0 5 4 4 3 9 . 5 5 . 1 9 9 2 4 . 0 4 4 . 3 9
6 2 8 1 3 5 , 0 0 0 2 6 , 4 0 0 5 4 4 4 3 . 9 5 . 1 6 7 3 5 . 5 7 5 . 9 9
6 2 9 1 3 5 , 0 0 0 3 3 , 0 0 0 5 4 4 4 9 . 6 5 . 1461 7 . 1 9 7 . 5 3

12 . 4  DEGREE INCLINE
6 4 8 2 6 , 5 0 0 4 ,  7 3 0 5 4 5 3 0 . 4 5 . 1 5 4 9 1 . 5 7
6 4 9 2 6 , 5 0 0 8 , 2 0 0 5 4 5 3 0 . 6 5 . 0 9 5 9 1 . 5 1
6 5 0 2 6 , 5 0 0 1 1 , 2 2 0 5 4 5 3 1 . 0 5 . 0 7 2 4 1 . 5 1
6 5 1 2 6 , 5 0 0 1 4 , 0 9 0 5 4 7 3 1 . 6 5 . 0 5 9 0 1 . 8 0
6 5 2 2 6 , 5 0 0 1 7 , 0 3 0 5 4 7 3 2 . 3 5 . 0 4 9 8 2 . 0 0 1 . 3 2
6 3 8 2 6 , 5 0 0 2 0 , 1 0 0 5 4 6 3 3 . 3 5 . 0 4 3 2 2 . 4 1 2 . 3 7
6 3 9 2 6 , 5 0 0 2 6 , 7 0 0 5 4 6 3 5 . 5 5 . 0 3 3 9 3 . 3  1 3 . 7 1
6 4 0 2 6 , 5 0 0 3 3 , 8 0 0 5 4 6 3 9 . 3 5 . 0 2 8 4 5 . 1 2 5 - 0 ;
641 2 6 , 5 0 0 4 0 , 7 0 0 5 4 6 4 3 . 2 5 . 0 2 4 7 6 . 8 8 6 . 4  5
6 5 3 7 8 , 0 0 0 5 , 1 5 0 5 4 7 3 1 . 4 5 , 3 3 4 2 . 2 5
6 5 4 7 8 , 0 0 0 8 , 3 9 0 5 4 7 3 1 . 9 5 . 2 3 7 2 . 4 0
6 5 5 7 8 , 0 0 0 1 1 , 3 5 0 5 4 7 3 2 . 8 5 .  1 8 9 2 2 . 5 2
6 5 6 7 8 , 0 0 0 1 4 , 5 0 0 5 4 7 3 3 . 6 5 . 1 5 6 0 2 . 8 0
6 5 7 7 8 , 0 0 0 1 8 , 3 2 0 5 4 7 3 5 . 4 5 .  1 3 0 5 3 . 3 6 2 .  9 • i
642 7 8 , 0 0 0 1 9 , 2 7 0 5 4 6 3 6 . 1 5 . 1 261 3 . 5 6 3 .  l b
6 4 3 7 8 , 0 0 0 2 7 , 6 0 0 5 4 6 4 0 . 8 5 . 0 9 6 8 4 . 9 4 5 . 1 2
6 4 4 7 8 , 0 0 0 3 6 , 5 0 0 5 4 6 4 7 . 0 5 . 0 8 0 0 7 . 0 4 7 . 1 C
6 5 8 1 3 5 , 0 0 0 5 , 3 8 0 5 5 0 3 2 . 4 5 . 4 5 8 2 . 8 6
6 5 9 1 3 5 , 0 0 0 9 , 2 8 0 5 5 0 3 3 . 5 5 . 3 3 2 3 . 2 0
6 6 0 1 3 5 , 0 0 0 1 2 , 5 8 0 5 5 0 3 5 . 0 5 . 2 7 3 3 . 5 2
6 6 1 1 3 5 , 0 0 0 1 5 , 4 9 0 5 5 0 3 6 . 8 5 . 2 3 8 3 . 9 7 3 . 1 6
6 6 2 1 3 5 , 0 0 0 1 9 , 1 0 0 5 5 0 3 9 . 2 5 . 2 0 7 4 . 4 7 4 - 0 9
6 4 5 1 3 5 , 0 0 0 2 0 , 7 0 0 5 4 6 3 9 .  85 . 1 9 6 5 4 . 6 1 4 . 5 0
6 4 6 1 3 5 , 0 0 0 2 7 , 6 0 0 5 4 6 4 4 . 8 5 .  1 6 2 4 6 . 1 7 6 . 3 1
6 4 7 1 3 5 , 0 0 0 3 5 , 3 0 0 5 4 6 5 1 . 2 5 . 1 3 9 7 8 . 0 6 6 . 1 3
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1 2 9

' \

S H U T - I N  L A T A

RUN NfJ. -  -  -  
G LIQUID — — 
G GAS — — — 
K . L . F »  -  .......

RUN NUMBER
MASS VELOCITY OF LIQUID,  L B / H R - S Q . F 
MASS VELOCITY OF GAS, L R / H k - S Q . F T .  
KINETIC LIQUID FRACTION

O F
CF
P I P E

RE. NO. T . P .  = TWC-PHASE REYNOLDS NUMBER
F s S . I .  ACTUAL= ACTUAL FRACTION LIQUID SHÜ1 -  I N
F . S . I . PREU. = PREDICTED FRACTION LIQUID SHUT-IN

RUN G G K o L c F . R F. NC. c . S . I . F . S . l
NO. LIQUID GAS T . P . AO 1 UAL P 3, C D .

8S 2 6 , 6 0 0 5 , 5 0 0 . 1 4 2 7 4 3 , 4 0 0 . 1 0  3 . 1 0  2
90 2 6 , 6 0 0 6 , 0 0 0 . 1 3 3 9 4 6 , 2 0 0 . 0  942 . 0 9 6
24 2 6 , 6 0 0 1 4 , 6 0 0 . 0 6 1 2 1 0 1 , 0 0 0 . L -: " 1

107 2 6 , 6 0 0 1 5 , 3 0 0 . 0 5 7 7 1 0 7 , c o o . 0 5 1 4 . ( ’ Vnb
57 2 6 , 6 0 0 1 5 , 9 1 0 . 0 5 6 2 1 1 0 , 0 0 0 . 0 3  78 . 0 3 7 6

114 2 6 , 6 0 0 3 6 , 9 0 0 . 0 2 7 6 2 2 0 , 0 0 0 . 0 2  76 . 0 2 0 6
6 C 2 6 , 6 0 0 3 7 , 4 0 0 . 0 2 7 4 2 2 2 , 0 0 0 . 0 2 2 4 . 0 2 0 4
26 2 6 , 6 0 0 4 0 , 3 0 0 . 0 2 7 6 2 2 0 , 0 0 0 . 0 2 9  9 . 0 2 C 5
3 0 4 5 , 3 0 0 1 5 , 9 6 0 . 0 9 7 2 1 0 8 , ODD .O'-4 0 . C ? 9 5
b / r à , i o o 6 , 0 6 0 . 309 5 b , 8G0 . 1 4 2 . 160
69 7 8 , 1 0 0 1 5 , 1 9 0 . 1582 1 1 5 , 0 0 0 . 0 8 8 4 . 0 b 5

105 7 8 , 1 0 0 1 5 , 3 4 0 . 1566 1 1 6 , 0 0 0 . 0 8 1 9 . 0 8 8 0
80 7 8 , 1 0 0 3 8 , 2 0 0 . 0 7 9 5 2 2 5 , 0 0 0 . 0  506 . 0 5 1 0

116 7 8 , 1 0 0 3 9 , 2 0 0 . 0 7 8 5 2 2 7 , 0 0 0 . 0 4 9 8 . 0 5 0 5
2 I 8 2 , 3 0 0 6 ,  150 . 3 2 6 5 9 , 0 0 0 . 166 . 166
32 8 2 , 3 0 0 3 8 , 9 0 0 . 0 8 8 1 2 1 4 , 0 0 0 . 0 5 8 4 . 0 5 5 5
54 1 9 8 , 0 0 0 4 0 , 9 0 0 . 1 8 2 1 2 5 0 , 0 0 0 . 0 8 6 5 . 0 9 9 5
4 0 2 0 3 , 0 0 0 3 9 , 1 0 0 . 1 9 8 8 2 3 3 , 0 0 0 . 0 9 9 3 . 107
9 3 2 2 3 , 0 0 0 5 , 9 0 0 . 5 7 5 9 0 , 5 0 0 . 1 8 3 . 2 2 2
89 2 2 3 , 0 0 0 6 , 0 9 0 . 5 6 8 9 1 , 5 0 0 . 2 0 0 . 2 7 1

125 2 2 3 , 0 0 0 3 1 , 9 0 0 . 2 4 0 2 1 4  , 0  00 . 1 1 9 . 1 24
55 2 2 3 , 0 0 0 3 3 , 9 0 0 . 2 2 6 22 7 , 0 0 0 . 0 9 3 8 . 1 1 7
4 7 3 4 9 , 0 0 0 6 , 1 1 0 . 7 1 7 1 1 4 , OOC . 2 3 7 . 2 4 0



TABLE V

SHUT- IN DATA •-  NO. 10 S . A . E .  OIL AND AIR

RUN NO RUN NUMBER
G LIQUID -  -  = MASS VELOCITY UF LIQUID,  L B / H R - S Q , F I . f,F PI
G GAS MASS VELOCITY OF GAS, LB/HR - S Q . F T .  OF PIPE
K . L . F. KINETIC LIQUID FRACTION
RE. NO .  T . P .  = TWO-PHASE REYNOLDS NUMBER
F.  S . I . ACrUAL= ACTUAL FRACTION LIQUID SHUT - IN
F . S . I . PRED. = PREDICTED FRACTION LIQUID SHUT-IN

RUN G G K . L . F . RE. NO. F . S . I . F . S . l
NO. LIQUID GAS T . P . ACTUAL PRED,

2 5 5 1 8 , 5 0 0 5 , 6 0 0 . 1 0 9 7 1 , 9 5 0 . 136 . 1 5 3
2 4 5 1 8 , 5 0 0 5 , 7 5 0 . 1 06 5 2 , 0 1 0 . 156 . 150
2 2 5 1 8 , 5 0 0 1 5 , 0 6 0 . 0 4 4 9 4 , 7 4 0 , 0 9 6 4 . 0 8 6 5
2 6 9 1 8 , 5 0 0 1 6 , 1 7 0 . 0 4 2 5 4 , 9 9 0 . 0 8 7 1 . 0 8 3 0
2 7 9 1 8 , 5 0 0 3 8 , 2 0 0 . 0 2 1 4 9 , 7 5 0 . 0 4 6 4 , 0 4 5 0
2 3 9 1 8 , 5 0 0 3 8 , 8 0 0 . 0 2 1 1 9 , 9 0 0 . 0 5 1 8 . 0 4 4 0
2 4 7 4 6 , 7 0 0 5 , 4 2 0 . 2 4 3 2 , 2 2 0 , 197 . 2 1 1
2 5 7 4 6 , 7 0 0 5 ,  6 8 0 . 2 3 7 2 , 2 8 0 . 1 6 6 . 2 0 9
2 6 7 4 6 , 7 0 0 1 5 , 8 6 0 . 1 0 4 7 5 , 1 3 0 . 1 3 2 . 1 3 0
227 4 6 , 7 0 0 1 5 , 9 0 0 . 1 0 3 4 5 , 1 7 0 . 1 5 2 . 1 3 0
281 4 6 , 7 0 0 3 9 , 6 0 0 . 0 5 3 1 9 , 9 5 0 . 0 6 8 9 . 0 7 9 5
241 4 6 , 7 0 0 3 9 , 7 0 0 . 0 5 3 0 9 , 9 8 0 . 0  764 . 0 7 9 0
2 4 9 9 5 , 0 0 0 5 , 9 6 0 . 3 7 7 2 , 9 1 0 . 2 2 2 . 2 4 3
2 5 9 9 5 , 0 0 0 6 , 2 0 0 . 3 7 0 2 , 9 7 0 . 196 . 2 4 5
2 0 2 9 5 , 0 0 0 1 6 , 0 7 0 . 1908 5 , 7 2 0 . 164 . 171
2 6 5 9 5 , 0 0 0 1 6 , 5 2 0 . 191 7 5 , 6 9 0 « 1 66 . 174
2 2 9 9 5 , 0 0 0 1 6 , 6 8 0 . 1 8 8 0 5 , 7 9 0 . 1 7 7 . 1 7 1



T A B L E  V I

SHUT-IN DATA ■ DIETHYLENE GLYCOL AND AIR

RUN NO1 o ““ ■" = RUN NUMBER
G LIQUID •" -  = MASS VELOCITY OF LIQUID,  L B / H R - S Q . F T . OE PI P E
G GAS MASS VELOCITY OF GAS, LB/HR- SQ. FT.  OF PI PE
K . L . F. = KINETIC LIQUID FRACTION .
RE. NO» T o  P o — TWO-PHASE REYNOLDS NUMBER
F . S . I . ACTUAL= ACTUAL FRACTION LIQUID SHUT- IN
F . S . I . PRED. = PREDICTED FRACTION LIQUID SHUT-IN

RUN G G K . L . F  . RE, NO. F . S . l . F . S . I  «
NO. LIQUID GAS T . P . ACTUAL PRED.

6 12 2 6 , 5 0 0 3 , 4 7 0 .  1 9 6 5 3 , 8 2 0 . 1 8 4 .  186
6 7 5 2 6 , 5 0 0 4 ,  180 . 1 6 9 0 4 , 4 7 0 . 2 4 0 « 166
6 4 8 2 6 , 5 0 0 4 , 7 3 0 . 1 5 4 9 4 ,  8 7 0 . 133 . 1 5 9
6 7 6 2 6 , 5 0 0 8 , 1 1 0 . 0 9 5 6 7 , 9 2 0 . 1 3 8 . 1 1 4
6 1 4 2 6 , 5 0 0 9 ,  3 3 0 . 0 8 4 4 8 , 9 5 0 . 1 2 7 .  105
6 5 0 2 6 , 5 0 0 1 1 , 2 2 0 . 0 7 2 4 1 0 , 4 0 0 . 1 0 2 . 0 9 4 0
6 7 7 2 6 , 5 0 0 1 2 , 4 2 0 . 0 6 5 5 1 1 , 5 0 0 . 0 8 0 0 . 0 8 7 0
6 7 8 2 6 , 5 0 0 1 6 , 5 8 0 . 0 5 0 7 1 4 , 9 0 0 .,0 7 50 . 0 6 8 5
6 1 6 2 6 , 5 0 0 1 6 , 8 3 0 . 0 4 9 9 1 5 ,  100 . 0 6 8 9 . 0 6 8 0
6 5 2 2 6 , 5 0 0 1 7 , 0 3 0 . 0 4 9 8 1 5 , 2 0 0 . 0 8 1 0 . 0 6 8 0
6 3 8 2 6 , 5 0 0 2 0 , 1 0 0 . 0 4 3 2 1 7 , 3 0 0 . 0 7 4 1 . 0 6 0 0
6 3 0 2 6 , 5 0 0 2 0 , 4 0 0 . 0 4 2 5 1 7 , 5 0 0 . 0 7 8 3 . 0 5 9 0
6 4 0 2 6 , 5 0 0 3 3 , 8 0 0 . 0 2 8 4 2 6 , 2 0 0 . 0 5 4 1 . 0 4 0 3
6 3 2 2 6 , 5 0 0 3 4 , 4 0 0 . 0 2 8 1 2 6 , 4 0 0 . 0 4 7 2 . 0 3 9 8
6 1 7 7 8 , 0 0 0 4 , 9  50 . 3 3 9 6 , 5 5 0 . 2 1 9 . 2 1 7
6 7 9 7 8 , 0 0 0 4 , 9 5 0 . 3 4 0 6 , 5 3 0 . 2 9  3 . 2 1 7
6 5 3 7 8 , 0 0 0 5 ,  1 5 0 . 3 3 4 6 , 6 7 0 - 1 6 3 . 2 1 7
6 8 0 7 8 , 0 0 0 8 ,  190 . 2 4 0 9 , 2 6 0 c  184 . 1 7 8
6 1 9 7 8 , 0 0 0 1 0 , 4 0 0 . 2 0 0 5 1 1 , 1 0 0 - 152 .  160
6 5 5 7 8 , 0 0 0 1 1 , 3 5 0 .  1 8 9 2 1 1 , 7 0 0 . 1 3 6 .  153
6 81 7 8 , 0 0 0 1 2 , 6 4 0 . 1 7 2 5 1 2 , 9 0 0 . 1 3 5 . 143
6 8 2 7 8 , 0 0 0 1 6 , 8 5 0 .  1 3 8 8 1 6 , 0 0 0 . 1 0 0 . 1 2 3
6 2 1 7 8 , 0 0 0 1 7 , 8 6 0 .  1 3 2 9 1 6 , 7 0 0 . 1 1 3 . 1 1 7
6 5 7 7 8 , 0 0 0 1 8 , 3 2 0 . 1 3 0 5 1 7 , 1 0 0 . 1 1 4 . 116
6 3 4 7 8 , 0 0 0 1 9 , 0 3 0 .  1 2 6 4 1 7 , 4 0 0 . 1 1 6 - 114
6 4 2 7 8 , 0 0 0 1 9 , 2 7 0 . 1 2 6 1 1 7 , 5 0 0 . 1 1 9 . 1 1 4
6 3 5 7 8 , 0 0 0 2 7 , 5 0 0 . 0 9 6 7 2 2 , 6 0 0 . 0 9 7 7 . 0 9 2 5
6 7 1 1 3 5 , 0 0 0 3 , 9 8 0 . 5  29 7 , 2 7 0 . 2 8 4 . 2 5 5
6 2 2 1 3 5 , 0 0 0 4 ,  0 4 0 - .524 7 , 3 5 0 . 2 5 3 . 2  53
6 5 8 1 3 5 , 0 0 0 5 , 3 8 0 . 4 5 8 8 , 4 0 0 . 1 9 1 . 2 3 9
6 7 2 1 3 5 , 0 0 0 7 , 3 7 0 . 3 8 3 1 0 , 0 0 0 . 2 7 0 . 2 1 7
6 7 3 1 3 5 , 0 0 0 1 0 , 2 6 0 . 3 1 3 , 1 2 , 3 0 0 .  187 .  194
6 2 4 1 3 5 , 0 0 0 1 2 , 0 9 0 . 2 8 0 0 1 3 , 7 0 0 . 1 5 9 .  183
6 6 0 1 3 5 , 0 0 0 1 2 , 5 8 0 . 2 7 3 1 4 , 1 0 0 . 1 5 5 , 1 7 7
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TABLE VI

RUN G G K . L . F . RE.  NO. F « S o I . F . S . l
NO. LIQUID GAS T . P . ACTUAL PRED.

6 7 4 1 3 5 , 0 0 0 1 6 , 0 6 0 . 2 3 2 1 6 » 6 0 0 . 1 4 3 c 161
6 2 6 1 3 5 , 0 0 0 1 8 , 7 5 0 . 2 1 0 0 1 8 , 3 0 0 . 1 2 8 .  149
6 6 2 1 3 5 , 0 0 0 1 9 , 1 0 0 . 2 0 7 1 8 , 6 0 0 . 1 3 5 o 147
6 4 5 1 3 5 , 0 0 0 2 0 , 7 0 0 . 196 5 1 9 , 4 0 0 . 1 3 7 . 1 4 3
6 2 8 1 3 5 , 0 0 0 2 6 , 4 0 0 . 1 6 7 3 2 2 , 8 0 0 . 1 2 3 . 127


