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CHAPTER I 

INTRODUCTION 

Water quality, as it relates to textile dye and finishing operations, has 

traditionally been accepted as it is, and/or not fully understood. Seasonal 

influences such as runoff, humic materials, and algae contribute a considerable 

variation to the quality of the surface or reservoir water being used in textile 

processing. Processing problems that can be directly attributed to the seasonal 

water quality variations are generally: 

Staining of whites and light shades 

Off-shade dyeing due to solids deposition in the cloth 

Dye complexation or chelation 

Sometimes an "induced" water quality problem can arise from the instal

lation and/or repair of existing water lines or the installation of new auxiliary 

processing equipment. Waste heat recovery systems generally fall into this 

"induced" category. With the introduction of hot water into old cold water 

lines, a considerable thermal disturbance is generally experienced. Old 

corrosion by-products are removed and subsequently react with dyes (chelation) 

or directly stain white cloth in the bleach kiers. Some heat recovery systems 

inadvertently produce acidic hot water which will intensify the problems. 

Although the cause may be identifiable, the effect is generally a loss in 

quality goods and an increase in rework. The complexities of dye house opera

tions are increasing dramatically with machine computerization, environmental 

constraints and, subsequently, new and alternative sensitive dye stuffs. 
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Quite often, dye house operators, through experience and/or technical 

assistance from chemical suppliers, will add an "auxiliary" to overcome the 

unseen problems. As a result, expensive "formulations" are habitually added to 

take care of the unknown and eminent problems. 

Over the years, the number of auxiliaries have dramatically increased 

along with their cost. It is not uncommon to find eight to nine auxiliaries 

purchased from six to seven different supply companies in a single dye bath 

with little or no understanding of the function of half of them. Auxiliary 

addition is a common practice that continues in fear of the effects, if 

withdrawn. 

Water quality at two different textile dye houses was evaluated to 

define and identify processing problems. Both facilities are geographically 

within twenty-three (23) miles of one another but each has a significantly 

different source and quality of water. Manufacturing problems at one facility 

were suspected to be from the water sources alone, while the other facility 

experienced dyeing and finishing problems after the installation of a non

conventional waste heat recovery system for hot water generation. 



CHAPTER II 

LITERATURE REVIEW 

Problem Identification 

The common denominator in every textile dyeing facility is water, and 

unfortunately very little, if any, work has been conducted, either internally or 

externally, to identify the source and/or the degree of metal ion contamination 

at various textile facilities. Baseline data is virtually nonexistent and until 

recently was not even contemplated as a viable investigative tool. Many textile 

facilities, in particular those that utilize surface water supplies, often exper

ience transient operational problems that are directly attributable to seasonal 

water quality variations. Historically, the problems were accepted as transient 

or, in most cases, blamed on individual workers. Coincidentally, as the workers 

were ultimately let go for performance reasons, the seasonal time frame was 

such that the problems also went away. By deduction, it was apparent to man

agement that the operator was at fault and the proper decision had been made. 

T oday's textile industry supports a more highly educated staff that are 

generally more open to the analytical approach and investigative reasoning 

needed to approach and define a problem or a group of problems. Since the 

number of processing steps that are performed on any one piece of fabric can be 

large (i.e., 4-8 steps), the matrix of cause and effect can be complicated; 

especially when it is only at the final inspection station that a problem is 

identified. Although some problems are obvious, many others are not. 

3 
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Metal Ion Impacts 

Soluble metal ion species that are of concern in the complexing and 

competitive reactions with various dyestuffs and bleaching operations are 

primarily iron, manganese, and copper. Copper and/or iron often has a dulling 

effect on various dye colors although the effect varies from dye to dye (I). For 

example, anthraquinone dyes are particularly metal sensitive. Copper residuals 

will produce a dull pink shade instead of the normal bright pinkish red when 

Disperse Red 60 (an anthraquinone dye) is used. Iron will also produce a dulling 

effect with Disperse Red 60. Table I presents a list of anthraquinone dyes that 

exhibit varying degrees of interaction when complexed by metal ions (2). 

Generally, the complexing reaction is one of chelation as described by Figure 1 

(2). Manganese produces a brown to black staining of white or dyed cloth. The 

characteristic color for any one individual dye is a function of the electron 

distribution in the dye molecule. When this distribution is changed (i.e., 

chelated), the dye color is subsequently changed (2). 

Particulate (insoluble) metal species are a concern to the different types 

of dyes because of the varying pH values they are applied at. For example, 

reactive dyes are applied to cotton and other cellulosic fibers under mild 

alkaline conditions. Particulate metals would not possess the ability to readily 

chelate with the dyestuff as the soluble species would. Acid dyes are a water 

soluble anionic class generally applied to nitrogenous fibers such as wool and 

silk. The metal problem here is compounded by the acid medium required for 

dye application and the resultant partial or total resolubilization of the 

particulate metal species. 

Soluble and particulate metals in the application of bleaching and 

scouring is very detrimental. This process basically involves the alkaline boil of 
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cotton/ poly-cotton with hydrogen peroxide. The alkaline environment precipi

tates the soluble fraction as a ferric hydroxide, while the particulate iron 

simultaneously reacts with the hydrogen peroxide to rapidly diminish the 

peroxide concentration and burn holes in the fabric. The precipitated ferric 

hydroxide yellows the fabric and renders it unsuitable for further processing. 

Generally, the spoiled goods are reworked with oxalic acid to remove the iron 

(ferric hydroxide) stain and rebleached. 

TABLE I 

ANTHRAQUINONE DYES THAT CHELATE WITH METALS 

C.I. Name 

Disperse Red 4 

Disperse Red 55 

Disperse Red 60 

Disperse Red 91 

Disperse Red 96 

Disperse Red 116 

Disperse Red 263 

Disperse Blue 27 

Disperse Blue 56 

Disperse Blue 73 

Disperse Blue 118 

Generally, yellows are insensitive to metals 
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The source of the soluble and particulate metal concentrations is 

generally the plant influent water source and, with older dye houses, a 

considerable quantity can be contributed from corrosion by-products within the 

iron piping systems. Periodically, water finishing unit processes within a 

particular facility (i.e., sand filters, zeolite softeners) will contribute slug type 

quantities because of their ability to concentrate the contaminants. Carryover 

from the boiler with live steam injection can be a significant but potentially 

transient condition. Other sources of metal contamination (2) could be the 

textile fabric (greige) goods and auxiliary chemicals which are added to the 

processing bath. 

Studies conducted by Kowalski (3, 4, 5), Somers and Clark et al. (6) 

evaluated numerous dye bath and bleaching conditions and the effects of 

various chelants and sequesterants to control hardness, iron, copper, and 

manganese. Copper and iron values as low as 0.1 ppm (7) have been found to 

cause staining in alkaline beam dyeing and jet operations. Bleaching appli

cations were significantly affected by iron values as low as 0.5-1.0 ppm (8). 

Metal Ion Control 

Metal ion sequestration and/or chelation in the dye bath and bleaching 

operations is controlled by inactivation of the metal ion by chemical reaction 

with an organic or inorganic complexing agent to form a ring structure. The 

most commonly used aminocarboxylate chelant is ethylenediaminetetraacetic 

acid (EDT A) or nitrilotriacetic acid (NTA). EDTA typically complexes (9) 

metals similar to the ring structure shown in Figure 2 (9). Other hydroxycar

boxylic acid chelants such as citric acid and gluconic acid are commonly used. 

Organophosphonates are sequestering agents used primarily in metal 

cleaning activities but when properly applied will sequester metal ions in a 
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H02CCH2 CH2co2H 
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NCH 2CH 2N 

/ ~ H02 CCH2 CH2co2H 

(EDTA) 

Figure 2. Metal Chelation by EDTA 
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process water supply leaving them in a soluble and non-reactive state. An 

additional physical contribution made by the organophosphonates is that it has 

the unique ability to protect metal surfaces (i.e.) pipe internals from additional 

oxidation and corrosion by-product migration) even in the presence of precipi

tating agents. Chelants and organophosphonates commonly used are listed in 

Table II. 

TABLE II 

CHELANTS AND SEQUESTRANTS 

Chelants 

Hydroxycarboxylic Acid 

Amino Carboxylates 

Gluconic Acid 

Citric Acid 

Glucoheptonic Acid 

Nitrilotriacetic Acid (NTA) 

Ethylenedieminetetraacetic Acid (EDT A) 

Diethylenetriaminepentacetic Acid (DTPA) 

Organophosphonate Seguestrants 

Amino tri (methylene phosphonic acid ) - A TMP 

1-Hydroxyethylidene - 1, 1-diphosphonic acid- HEDP 

Ethylenediamine tetra (methylene phosphonic acid - EDTMP 

Hexamethylenediaminetetra (methylenephosphonic acid) - DTPMP 



CHAPTER III 

MATERIALS AND METHODS 

Textile Water Use 

Depending upon the size of a particular dye house, the type of equipment 

being used and the complexity of the dye procedures, a comprehensive water 

use rate of 8-15 gallons of water per pound of fabric will generally be 

required. Jet machine non-contact cooling water, unless recovered and reused, 

can account for a considerable volume of water. When reused, although 

originally a non-contact cooling water, the potential for corrosion by-product 

pick-up and oxygen pitting corrosion activity is increased as it travels through 

the intended cooling process and returns for future use. Typical process areas 

that require water are shown in Figure 3. 

When dealing with the actual dye tub operation, the amount of water 

required is generally dealt with on a weight ratio of liquid to fabric. Common 

dyeing liquor ratios are in the neighborhood of 1:100 fabric to water with rinse 

volumes generally 200-500% greater than the water volume required for dyeing. 

Liquor ratios of 15 to 20:1 are used when dyeing cottons and cotton blends in 

open (atmospheric) dye becks. 

Piping materials are generally carbon steel but there are several facil

ities with virtually all copper and stainless steel lines. The corrosion resistant 

(with the exception of copper) lines that are present in some newer dye houses 

have been installed to prevent formation of corrosion by-products. 

10 
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Unfortunately, the source(s) of the metallic contaminants were not fully 

evaluated prior to the expense of installation. The problem can be reduced but, 

in a case where the contaminant is in the water supply, the problem cannot be 

eliminated unless the water supply is treated for metal ion removal or 

sequestration. 

Sampling Procedures 

Grab samples were collected at various sites in triplicate. One sample 

was retained and analyzed for conventional parameters such as alkalinity, 

chlorides, and hardness. One sample was acidified for total metals analysis by 

addition of 10 drops of concentrated nitric acid. The third sample was filtered 

through a 0.45 micron Millipore filter and immediately acidified for analysis of 

soluble metals. 

Analytical Procedures 

Metals 

Metals were determined calorimetrically utilizing a HACH DR II 

spectrophotometer and procedures outlined in HACH's analytical procedures 

entitled Water Analysis Handbook (l 0). 

The pH determinations were done by using an Orion Research Model 

601 A digital ion analyzer pH meter with an Orion combination pH 91-05 

electrode. 



Conventional Parameters 

Conventional parameters analyzed were grouped to include: 

Methyl Orange Alkalinity 

Chloride 

Total Hardness 

Calcium Hardness 

Magnesium Hardness 

Silica 

Sulfate 

Orthophosphate 
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Analysis of the conventional parameters were determined following the 

procedures outlined in Standard Methods for the Examination of Water and 

Wastewater (11). 

Speci fie Conductance 

Conductivity was determined using a Cambridge Scientific combination 

conductivity/pH/temperature meter. Standardization was performed using a 

1000 micromho conductivity standard. 



CHAPTER IV 

ANALYTICAL RESULTS AND DISCUSSIONS 

Dye House A 

Dye House A is a commissioned facility that dyes and finishes textile 

products for clothing manufacturers that are commonly referred to as cut and 

sew operations. A broad spectrum of dye colors and dye types are utilized that 

necessitates a large amount of water. 

Plant A draws a total of 1.8-2.0 mgd process water from three separate 

sources; city water supply, an on-site deep well, and the nearby Swatara Creek. 

The city water supply is a blended source that is flow-proportioned from Black 

Creek and Adams Run Reservoirs by the city in an attempt to achieve accep

table iron and manganese values for potable consumption and use. Blending by 

the city is often required due to the acid mine drainage in the vicinity of the 

Black Creek Reservoir and the subsequent contamination that results. Figure 4 

shows the area where the two city water sources are drawn from. The mang

anese content of the city water was often zero but never found to exceed 0.3 

mg/L. The iron concentration of the city water was relatively low and generally 

found to range from 0.2-0.4 mg/L. The iron concentration that was detected was 

determined to be primarily in the soluble state. Dye House A water 

requirements from the city water supply are restricted to 600,000-650,000 

gallons per day resulting in a mandatory water usage of approximately 1.4 mgd 

from the other two plentiful, but inferior, supply sources. 

14 
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The well water analysis shows a poor water supply. Filtration through a 

0.45 micron filter showed extremely high levels of filterable solids with an iron 

content ranging from 0.7-1.2 mg/L. The manganese concentrations ranged 

from 0.7-1.3 mg/L. Both the iron and manganese contents were found to be 

primarily in the soluble form. Plant usage requirements of the well water 

averaged 300,000-350,000 gpd. 

The creek water iron and manganese concentrations were highly tran-

sient, exhibiting values of 0.13-1.1 mg/L iron and 0.4-2.5 mg/L of manganese. 

The iron content was found to be primarily particulate (insoluble) in form and 

could be removed by 8-10 micron filtration. 

Table III presents a summary range of the iron and manganese concen-

trations found in the three water supplies used by Dye House A. Tables IV, V, 

and VI present the summary data for the conventional water quality criteria of 

the city, well, and creek water supplies, respectively. Appendix A presents the 

individual data collected from selected sources and samples. 

TABLE III 

METALS SUMMARY FROM DYE HOUSE A PROCESS WATER SUPPLIES 

Iron (ppm) Manganese (ppm) 
Source Total Soluble Total Soluble 

City Water 0.2-0.4 0.2-0.4 0.0-0.3 0.0-0.3 

Plant Blended 0.3-0.9 0.15-0.7 0.1-0.5 O.l-0.5 

Well Water 0. 7-2.5 0.5-2.0 0.7-1.3 0.7-1.3 

Creek Water 0.13-1.1 0.05-0.15 0.4-2.5 0.4-2.5 



TABLE IV 

DYEHOUSE A WATER QUALITY DATA SUMMARY 
CITY WATER SUPPLY 

Minimum Maximum Average 
Determination Value Value Value 

pH 5.34 7.5 5.9 

Speci fie Conductance, 
micromhos 25C 23 44 32 

Methyl Orange Alkalinity 
as CaC03, ppm 14 26 20 

Chloride as Cl, ppm 6 10 9 

Total Hardness as 
CaC03, ppm 8 40 25 

Calcium as CaC03, ppm 6 14 9 

Magnesium as CaC03, 
ppm 28 2 16 

Silica as Si02, ppm 3.0 4.2 3.7 

Sulfate as so4, ppm 3 7 5.8 

Ortho Phosphate as 
P04, ppm 0 1.9 1.2 

Total Copper as Cu, ppm 0 0.11 0.06 

Total Iron as Fe, ppm 0.19 0.35 0.30 

Soluble Iron as Fe, ppm 0.09 0.25 0.17 

Total Manganese as Mn, 
ppm 0 0.3 0.1 

Soluble Manganese as 
Mn, ppm 0 0.3 0.1 
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Number 
of 

Samples 
Analyzed 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

8 

18 

18 

18 

18 



TABLE V 

DYEHOUSE A WATER QUALITY DATA SUMMARY 
WELL WATER SUPPLY 

Minimum Maximum Average 
Determination Value Value Value 

pH 6.36 7.3 6.8 

Specific Conductance, 
micromhos 25C 360 480 460 

Methyl Orange Alkalinity 
as CaC03, ppm 150 165 162 

Chloride as Cl, ppm 20 28 24 

Total Hardness as CaC03, 
ppm 148 150 149 

Calcium as Caco3, ppm 105 120 110 

Magnesium as CaC03, 
45 ppm 28 39 

Silica as Si02, ppm 12 15 11.7 

Sulfate as so4, ppm 45 64 52 

Ortho Phosphate as 1.75 2.6 2.2 
Po4, ppm 

Total Copper as Cu, 0 0.9 0.2 
ppm 

Total Iron as Fe, ppm 0.72 2.5 1.75 

Soluble Iron as Fe, 0.60 2.2 1.55 
ppm 

Total Manganese as 
Mn, ppm 0.5 1.2 1.1 

Soluble Manganese as 
Mn, ppm 0.5 1.2 1.1 
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Number 
of 

Samples 
Analyzed 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

8 

18 

18 

18 

18 



TABLE VI 

DYEHOUSE A WATER QUALITY DATA SUMMARY 
CREEK WATER SUPPLY 

Minimum Maximum Average 
Determination Value Value Value 

pH 6.01 7.12 7.05 

Specific Conductance, 
micromhos 25C 185 190 188 

Methyl Orange Alkalinity 
as Caco3, ppm 16 24 20 

Chloride as Cl, ppm 14 18 16 

Total Hardness as 
Caco3• ppm 82 92 86 

Calcium as CaC03 32 36 34 

Magnesium as CaC03 50 56 52 

Silica as Si02, ppm 4.0 5.5 5.0 

Sulfate as so4, ppm 4.0 5.5 4.6 

Ortho Phosphate as 
P04, ppm 0.9 2.3 1.75 

Total Copper as Cu, 0 0 0 
ppm 

Total Iron as Fe, ppm 0.4 2.72 1.8 

Soluble Iron as Fe, 0.05 0.9 0.66 
ppm 

Total Manganese as Mn, 
ppm 0.7 1.2 1.0 

Soluble Manganese as 
Mn, ppm 0.3 0.9 0.5 
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Number 
of 

Samples 
Analyzed 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

8 

18 

18 

18 

18 
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Table III also presents a fourth water source which is a supply blended 

internally by the plant on a flow proportioned basis. During periods of drought 

and/or forced conservation by the city, a proportioning ratio of 2:1 well to city 

is often used. With normal periods of precipitation and an abundant supply, a 

greater use of the city water is allowed, resulting in well water to city water 

ratios of 1:1 to 1:2. Analysis of the iron and manganese data shown in Table III 

clearly shows the need to conduct a blending of the well water. The city water 

is obviously the best water supply available but can be an unreliable source due 

to previous water use restrictions. City water iron and manganese values are 

relatively low although the Swatara Creek is a common source for both the city 

and Dye House A. The city water is chlorinated and with a suitable contact 

time in the distribution system the iron and manganese are oxidized and subse

quently reduced in concentration. Periods of high demand have caused prob

lems in the past due to the increased water velocity and the subsequent 

scouring effect. Iron and manganese sludges are periodically swept into the 

plant requiring extensive line flushes and rework of stained goods. Water lines 

with relatively low flows and/or only periodic usage experience post precipi

tation of the iron and manganese in the water lines. A sludge was often seen 

deposited on white goods and has been analytically confirmed to be predomin

ately iron and manganese. 

Data shown in Table III were collected and analyzed during a period of 

time that Dye House A exhibited a finished fabric rejection rate in excess of 

23%. Rejects are expected and considered to be normal when held at a 2%-5% 

fabric weight value for any particular textile manufacturing day. A five 

percent value is generally the upper limit and is not acceptable if a rejection 

rate at this level is maintained for a period of five or more days. Sludge and 

slough-off from piping internals were obvious problems but dyeing problems 
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continued with, what appeared to be, good water. Operating personnel were 

being implicated and several chemical manufacturing firms stood to lose a 

considerable amount of business, since the dye assist and auxiliaries were being 

questioned as to their involvement. Preliminary suspicions were brought to 

light when a plant water supply sample was filtered through a 0.45 micron 

millipore filter and a considerable amount of suspended, but not visually 

apparent, material was retained. Metals analysis confirmed that a majority of 

the dyeing problems were a result of high concentrations of iron and 

manganese. 

Dye House B 

Dye House B is a smaller commissioned dye house similar to Dye House 

A, previously described, in that its operation consists of bleaching, dyeing, and 

finishing. The dissimilar facts are that Dye House B is older by approximately 

forty years, consumes only 700,000 gallons of water per day, has a schedule 80 

carbon steel piping distribution system with an incoming line pressure- of 150 

psig and has installed a heat recovery system and revenue sharing concept 

marketed by Time Energy Systems of Houston, Texas. 

The heat recovery process consists of a 4-pass shell and tube heat 

exchanger, followed by a counter flow direct contact stainless steel KEMCO 

stack gas economizer, for recovery of waste heat from the boiler exhaust 

gases. The boiler was a 700 horsepower Cleaver Brooks fire tube unit burning 

natural gas. Operationally, the combustion gases enter the bottom of the 

KEMCO unit while water that had been preheated in the shell and tube bundle 

entered the top of the economizer. Stainless steel packing provided the 

necessary gas to water surface area for maximum heat transfer. From the 

storage section of the economizer, the hot water was pumped to a 30,000 gallon 
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insulated storage tank for future distribution and use by the dye house. Figure 

5 schematically traces the heat recovery system. 

With the exception of the stainless steel economizer and fill, all of the 

piping throughout the dye house was carbon steel. New sections of carbon steel 

lines were installed to distribute cold water to the dye house but the design of 

the heat reclamation system called for the hot water to be introduced into and 

conveyed by the old cold water lines. Pneumatic mixing valves supplied the 

necessary cold, hot, or tempered water at each dye machine. 

Start-up of the system commenced with a standard water flush of the 

new equipment for approximately one hour, at which time the hot water from 

the economizer was then sent to storage for dye house use. Almost immedi

ately, the dye house experienced rust-laden water to the degree that the water 

was virtually orange. In addition to the chelation of dye stuffs in the dye 

house, the kier bleaching operation was seriously affected due to the iron 

deposition that took place on the bleached or white cloth being processed. 

Several thousand pounds of fabric were burned by particulate iron that loosened 

from the old cold water pipes and reacted with the bleaching hydrogen peroxide 

solution. The alkaline condition that the bleach process takes place in also 

precipitated soluble iron as ferric hydroxide. When the kier solution was 

circulated, the top layers of the cloth filtered the hydroxide sludge out, 

subsequently staining the cloth. Basket filters with one (l) micron bag filters 

were installed to help eliminate the problem. Although somewhat successful 

for particulate iron, the filters did nothing to reduce the soluble iron staining 

problem of the white cloth. 

Examination of the iron and pH data shown in Table VII and Figure 6 

shows a significant increase in both the total and soluble iron concentrations in 

the hot water supply. Corresponding pH values in the hot water dropped a full 
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TABLE VII 

DYE HOUSE B KIER IRON AND pH CONCENTRATION SUMMARY 

March 23 2 1985 

PPM IRON pH 

City Water (T) 0.20 6.39 
(S) 0.13 

Filtered City Water (T) 0.25 6.44 
(S) 0.8 

Kier Filter (T) 0.11 6.45 
(S) 0.10 

Kier H.W. Supply (T) 1.20 5.54 
(S) 1.15 

/13 Kier C.W. (F) (T) 0.21 6.49 
(S) 0.12 

/13 Kier H.W. (F) (T) 1.18 5.62 
(S) 1.05 

/13 Kier H. W. (UF) (T) 1.30 5.67 
(S) 0.80 

117 Kier C. W. (UF) (T) 0.22 6.41 
(S) 0.18 

117 Kier H. W. (UF) (T) 1.15 5.58 
(S) 0.38 

/18 Kier C. W. (F) (T) 0.21 6.44 
(S) 0.10 

/18 Kier H. W. (F) (T) 1.15 5.61 
(S) 1.05 

/18 Kier H. W. (UF) (T) 1.20 5.56 
(S) 0.75 

Kier "Still"( l) H. W. (T) 0.80 5.84 
(5) 0.18 

LEGEND: (S) = Soluble; (T) = Total; (F) = 1.0 micron filter at Kier; (UF) = 
unfiltered at Kier; (l) "Still" = Hot water that was allowed to cool on 
standing in pipe. 
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pH unit or more after passing through the stack gas economizer resulting in a 

hot, acidic water supply. Table VIII shows a summary of the pH values at ten 

separate dye house water supply stations over a six-day period that the stack 

gas economizer was being operated. Table IX presents the total and soluble 

iron data collected at the ten water stations over the same six-day period, 

whereas Table X presents the conventional water quality summary of the city 

water supply. Total iron values were observed to range from 0.2 ppm in the 

cold water supply to 1.3 ppm in the kier hot water supply. Corresponding low 

pH values coincided with elevated iron values throughout the facility. 

Comprehensive water quality data on selected sources and samples can be 

found in Appendix B. 

An explanation for the drop in pH and increase in iron concentration lies 

in the operational principle of the gas economizer. In any other application, 

the gas economizer would be called a gas scrubber. With the direct contact 

relationship of the boiler flue gas and the intended hot water, it became 

apparent that the low alkaline water scrubbed the carbon dioxide out of the 

flue gas forming carbonic acids. Sulfur was a suspect in forming sulfuric acid, 

but the sulfur content of the natural gas was considered to be too low to be a 

major contributor. 

In order to test the hypothesis that the economizer was the source of the 

low pH water, the economizer was by-passed and non-contact hot water was 

sampled. Iron and pH values of the non-contact water were unchanged before 

and after heat reclamation. 



TABLE VIII 

DYE HOUSE B PH VALUES SUMMARY 

Sample Location 1/28/85 2/9/85 2/10/85 

City Water 6.21 5.95 6.22 

Filtered City Water 6.00 6.00 6.22 

Stack Gas Econ. 4.22 3.98 3.64 

Hot Water Storage Tk. 4.03 5.44 4.50 

Beck Hot Water 4.00 4.67 4.40 

Bleach Mix C. W. 6.25 6.10 6.13 

Wet Floor Mix H.W. 3.99 4.50 4.89 

Jet H. W. Supply 4.00 4.20 4.26 

Bucket Station C. W. 6.15 6.10 6.38 

Heat Exchanger Inlet 6.10 6.00 6.20 

LEGEND: C.W. =Cold Water; H.W. =Hot Water; (F)= Filtered at Kier; 
(UF) = Unfiltered at Kier; 
"Still" = Hot water that was allowed to cool on standing in pipe 

2/11/85 

6.50 

6.45 

4.07 

4.42/4.43 

3.80/4.60 

6.40 

4.14 

4.25 

6.31 

6.40 

2/26/85 

6.01 

6.00 

4.21 

4.25 

4.29 

6.10 

4.85 

4.31 

6.05 

5.37 

3/19/85 

6.31 

6.26 

5.14 

5.35 

5.44 

6.25 

5.39 

5.41 

6.77 

6.69 

N 
-...J 



TABLE IX 

DYE HOUSE B IRON CONCENTRATIONS SUMMARY B (PPM) 

Sample Location 1/28/85 2/9/85 2/10/85 2/11/85 2/26/85 3/19/85 

Cold City Water (T) 0.19 0.16 0.10 0.15 0.18 0.16 
(S) 0.06 0.18 0.05 0.03 0.05 0.04 

Cold Filtered (T) 0.22 0.19 0.08 0.11 0.11 0.11 
City Water (S) 0.03 0.02 0.01 0.02 0.08 0.05 

Stack Gas Econ. (T) 1.4 0.29/1.0 1.0 0.33 0.75 0.18 
H.W. (S) 1.1 0.19/0.80 0.80 0.21 0.59 0.09 

H. W. Storage Tk (T) 0.70 0.48/0.22 0.95 0.39 0.42 0.38 
(S) 0.42 0.36/0.18 0.60 0.21 0.31 0.22 

Jet Mix Tank H.W. (T) 0.24 0.65 0.78 0.55 0.69 0.49 
(S) 0.19 0.48 0.55 0.30 0.49 0.28 

Floor Mix H. W. (T) 0.48 0.90 0.80 0.36 0.66 0.82 
(S) 0.36 0.80 0.40 0.11 0.24 0.20 

Beck H.W. (T) 0.18 0.50/0.52 1.2 0.42 0.95 0.41 
(S) 0.09 0.45/0.30 0.90 0.24 0.52 0.30 

Kier C.W. (T) 0.13 0.16 0.14 0.15 0.32 0.20 
(S) 0.05 0.06 0.04 0.04 0.11 0.11 

Bleach Mix C. W. (T) 0.48 0.14 0.49 0.18 0.09 0.16 
(S) 0.10 0.04 0.10 0.09 0.03 0.06 

C.W. Bucket (T) 0.19 0.16 0.21 0.11 0.1 i 0.18 
Station (S) 0.06 0.08 0.08 0.06 0.06 0.09 

Heat Exchanger Inlet (T) 0.20 0.22 0.20 0.18 0.14 0.12 
Cold Water (S) 0.10 0.18 0.10 0.05 0.06 0.07 

LEGEND: (T) =Total; (S) =Soluble; H.W. =Hot Water; C.W. =Cold Water N 
00 



. TABLE X 

DYEHOUSE B WATER QUALITY DATA SUMMARY 
CITY WATER SUPPLY 

Minimum Maximum Average 
Determination Value Value Value 

pH 6.3 6.9 6.6 

Specific Conductance1 

micromhos 25C 23 35 28 

Methyl Orange Alkalinity 
as CaC03, ppm 18 26 23 

Chloride as Cl, ppm 6 8 7 

Total Hardness as 
,CaC039 ppm 8 12 9 

Calcium as CaC03~ ppm 6 8 7 

Magnesium as CaC03, 
ppm 2 4 2 

Silica as Si02, ppm 1.4 1.8 1.5 

Sulfate as so4, ppm 6 B 6.l~ 

Ortho Phosphate as 
Po4, ppm 0.2 0.5 0.3 

Total Copper as Cu, 
ppm 0 0 0 

Total Iron as Fe, ppm 0.05 0.14 0.09 

Soluble Iron as Fe, ppm 0.03 0.11 0.07 

Total Manganese as Mn, 
ppm 0 0 0 

Soluble Manganese as 
Mn, ppm 0 0 0 

29 

Number 
of 

Samples 
Analyzed 

25 

25 

25 

25 

25 

25 

25 

25 

25 

25 

10 

25 

25 

10 

10 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Dye House A 

Commencing February 12, 1985, Dye House A began to experience a 

considerable number of product rejects. Up until this date, the production 

rework record was stable and had hit a monthly low of two percent. 

With the exception of particulate contamination (sludge) observed on the 

fabric, an initial in-house investigation was unsuccessful in identifying the 

source of the problem(s). Subsequent metals analysis revealed a transient and 

unusually high level of iron and manganese in the Swatara Creek and well 

water. Speculation of why the increase was soabrupt was attributed to the low 

quantity of precipitation and a subsequent fall in the surface and groundwater 

water tables. This, theoretically, induced a concentrating factor of the 

contaminants normally found in the water supplies. Although the concentration 

activity was progressive, the overall impact on the production activities was 

rather abrupt. 

Recommendations for an interim and long-term solution would include 

the following: 

1. Addition of a chelant to the dye bath for sequestration of the iron 

and manganese before the dye chemicals are added. 

2. Injection of a sequestrant to the water supply at each of the plant 

sources. 

30 



3. Installation of an iron and manganese removal system. 

4. Investigate areas of water conservation and reuse. 

Dye House B 

High iron concentrations in the dye house hot water supply were identi

fied as a direct result of the start-up of the stack gas economizer. Gas 

scrubbing of the carbon dioxide and carbonic acid formation was apparently 

responsible for the low pH values. Since pH and iron values of the non-contact 

hot water remained at levels equal to the incoming city water, the induced 

problem was obviously the economizer. 

Recommendations that should be considered for a remedial and long

term solution would include the following: 

1. Abandon the stack gas economizer. 

2. Install a pH control system to adjust the final pH of the economizer 

produced hot water supply. 

3. Inject a sequestrant to the water supply to inhibit the removal of 

iron corrosion by-products and chelate the iron present. 

4. Use excess in-bath sequestrants and dispersants. 

5. Redesign the water distribution system so that the new piping 

network distributes hot water instead of the hot water being in the 

old cold water lines. 
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APPENDIX A 

DYE HOUSE A WATER QUALITY DATA 



DYEHOUSE A WATER QUALITY DATA 
CITY WATER SUPPLY 

1985 Sample Data 
Determination 

5-28 5-29 6-10 

pH 6.11 7.3 7.5 

Specific Conductance, 
micromhos 25C 28 42 44 

Methyl Orange Alkalinity 
as CaC03, ppm 22 20 18 

Chloride as Cl, ppm 6 6 8 

Total Hardness as 
Caco3, ppm 40 8 14 

Calcium as Caco3, 
ppm 12 6 6 

Magnesium as Caco3, 
ppm 28 2 8 

Silica as Si02, ppm 3.5 3.5 3.0 

Sulfate as so4, 
7 7 6 ppm 

Ortho Phosphate as 
P04, ppm 1.7 1.8 1.9 

Total Copper as Cu, 
ppm 0 0 0.1 

Total Iron as Fe, ppm 0.33 0.26 0.35 

Soluble Iron as Fe, ppm 0.21 0.15 0.25 

Total Manganese as 
Mn, ppm 0 0.1 0 

Soluble Manganese as 
Mn, ppm 0 0.1 0 

35 

6-11 

5.34 

28 

14 

8 

22 

8 

14 

3.4 

6 

1.6 

0 

0.30 

0.23 

0 

0 



DYEHOUSE A WATER QUALITY DATA 
CITY WATER SUPPLY 

1985 Sample Data 
Determination 

6-22 6-25 6-26 

pH 5.43 5.68 6.23 

Specific Conductance, 
micromhos 25C 23 2? 30 

Methyl Orange Alkalinity 
as Caco3, ppm 26 20 24 

Chloride as Cl, ppm 10 8 12 

Total Hardness as 
CaC03, ppm 38 26 32 

Calcium as Caco3, 
ppm 10 14 15 

Magnesium as CaC03, 
ppm 28 12 17 

Silica as Si02, ppm 3.4 4.2 3.6 

Sulfate as S04, 
3 ppm 3 2.5 

Ortho Phosphate as 
P04, ppm 0 0.6 0.5 

Total Copper as Cu, 
ppm 0.11 0 0 

Total Iron as Fe, ppm 0.19 0.3 0.26 

Soluble Iron as Fe, ppm 0.09 0.2 0.16 

Total Manganese as 
Mn, ppm 0.3 0 0.08 

Soluble Manganese as 
Mn, ppm 0.3 0 0.08 

36 

6-28 

6.10 

26 

26 

10 

30 

15 

15 

2.9 

3 

0.6 

0 

0.17 

0.08 

o. 

0 



DYEHOUSE A WATER QUALITY DATA 
CREEK WATER SUPPLY 

1985 Sample Data 
Determination 

5-28 5-29 6-10 

pH 6.01 5.23 7.01 

Specific Conductance, 
micromhos 25C 190 185 191 

Methyl Orange Alkalinity 
as Caco3, ppm 18 16 20 

Chloride as Cl, ppm 18 14 14 

Total Hardness as 
CaC03, ppm 92 86 84 

Calcium as CaC03, 
ppm 36 36 34 

Magnesium as CaC03, 
56 ppm 50 50 

Silica as Si02, ppm 5.2 5.5 5.0 

Sulfate as S04, 
ppm 75 78 80 

OrthoPhosphate as 
P04, ppm 1.2 0.9 1.0 

Total Copper as Cu, 
ppm 0 0 0 

Total Iron as Fe, ppm 2.4 2.72 1.0 

Soluble Iron as Fe, ppm 0.6 0.82 0.4 

Total Manganese as 
Mn, ppm 1.2 1.2 0.8 

Soluble Manganese as 
Mn, ppm 0.8 0.9 0.4 

37 

6-11 

7.10 

195 

20 

16 

82 

34 

48 

4.5 

75 

1.4 

0 

1.0 

0.1 

0.8 

0.6 



DYEHOUSE A WATER QUALITY DATA 
CREEK WATER SUPPLY 

1985 Sample Data 
Determination 

6-22 6-25 6-26 

pH 7.10 4.98 7.51 

Specific Conductance, 
micromhos 25C 180 197 207 

Methyl Orange Alkalinity 
as Caco3, ppm 36 22 30 

Chloride as Cl, ppm 12 12 12 

Total Hardness as 
Caco3, ppm 80 76 80 

Calcium as CaC03, 
ppm 52 46 48 

Magnesium as Caco3, 
28 30 32 ppm 

Silica as Si02, ppm 4.4 5.2 4.0 

Sulfate as S04, 
ppm 61 68 70 

Ortho Phosphate as 
P04, ppm 0.7 1.4 1.2 

Total Copper as Cu, 
ppm 0.09 0.1 0 

Total Iron as Fe, ppm 0.13 2.0 1.0 

Soluble Iron as Fe, ppm 0.05 1.0 0.09 

T a tal Manganese as 
Mn, ppm 0.4 0.9 0.6 

Soluble Manganese as 
Mn, ppm 0.4 0.8 0.4 

38 

6-28 

7.71 

209 

30 

14 

74 

46 

28 

4.0 

71 

1.0 

0 

1.15 

0.09 

1.0 

1.0 



DVEHOUSE A WATER QUALITY DATA 
CREEK WATER SUPPL V 

1985 Sample Data 
Determination 

7-10 7-11 7-15 

pH 7.51 7.71 7.6 

Specific Conductance, 
micromhos 25C 207 207 204 

Methyl Orange Alkalinity 
as Caco3, ppm 30 30 32 

Chloride as Cl, ppm 12 14 12 

Total Hardness as 
Caco3, ppm 80 74 102 

Calcium as Caco3, 
48 ppm 46 50 

Magnesium as CaC03, 
ppm 32 28 52 

Silica as Si02, ppm 4 4 4 

Sulfate as so4, 
78 ppm 71 68 

Ortho Phosphate as 
P04, ppm 1.2 1.0 1.8 

Total Copper as Cu, 
ppm 0 0 0 

Total Iron as Fe, ppm 1.0 1.15 0.78 

Soluble Iron as Fe, ppm 0.09 0.15 0.09 

Total Manganese as 
Mn, ppm 0.6 1.0 0.6 

Soluble Manganese as 
Mn, ppm 0.4 1.0 0.6 

39 

7-16 

7.34 

28 

24 

12 

92 

44 

48 

4 

70 

1.2 

0 

0.53 

0.07 

0.6 

0.6 



DYEHOUSE A WATER QUALITY DATA 
WELL WATER SUPPLY 

1985 Sample Data 
Determination 

5-28 5-29 6-10 

pH 6.36 7.1 7.3 

Specific Conductance, 
micromhos 25C 360 443 480 

Methyl Orange Alkalinity 
as Caco3, ppm 150 165 162 

Chloride as Cl, ppm 24 20 20 

Total Hardness as 
CaC03, ppm 150 149 150 

Calcium as CaC03, 
110 110 105 ppm 

Magnesium as Caco3, 
40 ppm 39 45 

Silica as sm2, ppm 11 15 12 

Sulfate as so4, ppm 64 50 45 

Ortho Phosphate as 
P04, ppm 2.5 1.9 2.0 

Total Copper as Cu, 
ppm 0.09 0 0 

Total Iron as Fe, ppm 0.72 2.5 1.5 

Soluble Iron as Fe, ppm 0.60 2.2 0.9 

Total Manganese as 
Mn, ppm 0.7 1.2 0.5 

Soluble Manganese as 
Mn, ppm 0.7 1.2 0.5 

40 

6-11 

6.5 

450 

155 

24 

148 

110 

38 

11.6 

55 

1.75 

0.05 

1.9 

1.0 

1.1 

1.1 



DYEHOUSE A WATER QUALITY DATA 
WELL WATER SUPPLY 

1985 Sample Data 
Determination 

6-22 6-25 6-26 

pH 6.8 6.9 6.75 

Specific Conductance, 
micromhos 25C 464 395 443 

Methyl Orange Alkalinity 
as CaC03, ppm 145 155 149 

Chloride as Cl, ppm 22 28 26 

Total Hardness as 
Caco3, ppm 149 148 149 

Calcium as Caco3, 
109 120 120 ppm 

Magnesium as CaC03, 
40 28 29 ppm 

Silica as Si02, ppm 14 15 15 

Sulfate as S04, 
60 61 60 ppm 

Ortho Phosphate as 
P04, ppm 2.6 2.0 2.4 

Total Copper as Cu, 
ppm 0.05 0 0 

Total Iron as Fe, ppm 0.9 1.2 1.2 

Soluble Iron as Fe, ppm 0.8 0.5 0.8 

Total Manganese as 
Mn, ppm 0.9 1.2 1.1 

Soluble Manganese as 
Mn, ppm 0.8 1.1 1.1 

41 

6-28 

6.85 

451 

156 

22 

150 

121 

29 

15 

61 

2.2 

0 

1.0 

0.9 

1.0 

1.0 



DYE HOUSE A WATER QUALITY DATA 
BLENDED WATER SUPPLY 

1985 Sample Data 
Determination 

5-28 5-29 6-10 

pH 6.41 6.25 6.50 

Specific Conductance, 
micromhos 25C 120 125 122 

Methyl Orange Alkalinity 
as Caco3, ppm 52 48 50 

Chloride as Cl, ppm 14 14 12 

Total Hardness as 
Caco3, ppm 48 56 60 

Calcium as CaC03, 
44 40 45 ppm 

Magnesium as CaC03, 
ppm 4 16 15 

Silica as Sio2, ppm 5 4.8 5 

Sulfate as so4, 
18 16 18 ppm 

Ortho Phosphate as 
P04, ppm 2 2.1 1.9 

Total Copper as Cu, 
ppm 0 0.1 0 

Total Iron as Fe, ppm 0.39 0.23 0.32 

Soluble Iron as Fe, ppm 0.26 0.18 0.28 

Total Manganese as 
Mn, ppm 0.1 0.1 0.5 

Soluble Manganese as 
Mn, ppm 0.1 0.1 0.5 

42 

6-11 

6.80 

136 

51 

14 

44 

1+0 

4 

4.9 

20 

1.0 

0.4 

0.39 

0.30 

0.3 

0.3 



DYEHOUSE A WATER QUALITY DATA 
BLENDED WATER SUPPLY 

1985 Sample Data 
Determination 

6-22 6-25 6-26 

pH 6.21 6.40 6.36 

Specific Conductance, 
micromhos 25C 120 122 128 

Me thy 1 Orange Alkalinity 
as Caco3, ppm 51 48 46 

Chloride as Cl, ppm 12 16 14 

Total Hardness as 
CaC03, ppm 50 48 51 

Calcium as Caco3, 
ppm 41 40 41 

Magnesium as CaC03, 
ppm 9 8 10 

Silica as Si02, ppm 4.9 5.0 5.0 

Sulfate as so4, 
16 18 16 ppm 

Ortho Phosphate as 
P04, ppm 1.5 2.1 1.3 

Total Copper as Cu, 
ppm 0 1.2 0 

Total Iron as Fe, ppm 0.5 0.44 0.36 

Soluble Iron as Fe, ppm 0.3 0.15 0.14 

Total Manganese as 
Mn, ppm 0.1 0.1 0.2 

Soluble Manganese as 
Mn, ppm 0.1 0 0 

43 

6-28 

6.42 

126 

50 

15 

50 

42 

8 

4.8 

17 

1.7 

0 

0.39 

0.09 

0.1 

0.1 



APPENDIX B 

DYEHOUSE B WATER QUALITY DATA 
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DYEHOUSE B WATER QUALITY DATA 

Date: January 1, 1985 
Sam~le Point 

Plant 
Determination Filtered Stack Hot 1117 

City City Gas Water Mix 
Water Water Tank Tank Tank 

pH 6.21 6.00 4.22 4.03 

Specific Conductance, · 
micromhos 25C 26 24 28 28 

Methyl Orange Alkalinity 
as Caco3, ppm 12 20 18 16 

Chloride as Cl, ppm 4 8 8 14 

Total Hardness as CaC03 
20 36 28 26 ppm 

Calcium as Caco3, ppm 12 10 22 12 

Magnesium as Caco3, ppm 8 26 6 14 

Silica as Si02,ppm 1.3 1.9 1.8 1.8 

Sulfate as so4, ppm 2 4 3 2 

Ortho Phosphate as P04 
0.5 0.8 0.7 0.5 pm 

Total Copper as Cu, ppm 0.02 0 0 0.5 

Total Iron as Fe, ppm 0.19 0.22 1.4 0.70 0.24 

Soluble Iron as Fe, ppm 0.06 0.03 1.1 0.42 0.19 

Total Manganese as Mn, ppm 0 0 0 0 

Total Aluminum as Al, ppm 0.08 0.03 0 0 

Soluble Copper as Cu,ppm 0.02 0 0 0 

Soluble Manganese as Mn,ppm 0 0 0.1 0 

Soluble Aluminum as Al,ppm 0 0 0 0 
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DYEHOUSE B WATER QUALITY DATA 

Date: Februar~ 92 1985 
Samele Point 

Stack Stack 
Econ. Econ. Hot Hot 

Determination City Stack Filter Filter Water Water 
Water Econ. Outlet Outlet Tank Storage 

1140 1420 1420 Before 
Hours Hours Hours DH 

pH 5.95 3.98 4.38 4.45 5.20 5.44 

Specific Conductance, 
micromhos 25C 25 30 31 26 

Methyl Orange Alkalinity 
as CaC03, ppm 24 30 26 20 

Chloride as Cl, ppm 8 8 6 8 

Total Hardness as 
Caco3, ppm 10 10 14 12 

Calcium as Caco3, 
ppm 6 4 8 8 

Magnesium as CaCO 3 
4 ppm 6 6 4 

Silica as Si02, ppm 1.4 1.6 1.9 1.2 

Sulfate as so4, ppm 0 1 3 0 

Ortho Phosphate as 
P04, ppm 0 1.0 1.3 1.5 0.5 0 

Total Copper as Cu, 
ppm 0 0 0 0 0 0 

Total Iron as Fe, 
ppm 0.16 0.29 0.48 1.0 0.48 0.22 

Soluble Iron as Fe, 
ppm 0.08 0.29 0.22 0.80 0.36 0.18 

Manganese as Mn, ppm 0 0 0 0 0 0 

Aluminum as Al, ppm 0.01 0.02 0.04 0 0 
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DYEHOUSE B WATER QUALITY DATA 

Date: January 28, 1985 Sample Point 

Floor 116 Beck Kier Fill 
Determination Mix Hot Cold Water 

Tank Water Line 

pH 3.99 4.0 5.5 

Specific Conductance, 
micromhos 25C 28 28 24 

Methyl Orange Alkalinity 
as CaC03, ppm 19 19 20 

Chloride as Cl, ppm 5 5 4 

Total Hardness as 
Caco3, ppm 18 18 .18 

Calcium as CaC03, ppm 12 12 12 

Magnesium as Caco3, ppm 6 6 6 

Silica as Si02, ppm 1.6 1.6 1.7 

Sulfate as so4, ppm 3 3 3 

OrthoPhosphate as 
P04, ppm 0.55 0.50 0.6 

Total Copper as Cu, ppm 0.85 0 0.80 

Total Iron as Fe, ppm 0.48 0.18 0.13 

Soluble Iron as Fe, ppm 0.36 0.09 0.10 

Total Manganese as Mn, 
ppm 0 0 0.1 

Total Aluminum as AI, 
ppm 0 0 0 
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DYEHOUSE B WATER QUALITY DATA 

Date: February 92 1985/February 10-85 
Samele Point 

117 Cold 
117 Hot City Water Hot Econ. 

Determination Beck Water Water Bleach Water Outlet 
1330 1515 0900 Mix Wet 0930 
Hours Hours Hours Rooms Floor Hours 

pH 4.40 4.67 6.22 6.13 4.89 3.64 

Specific Conductance, 
micromhos 25C 31 25 40 27 33 

Methyl Orange Alkalinity 
as Caco3, ppm 22 28 24 24 18 

Chloride as Cl, ppm 8 10 10 8 8 

Total Hardness as 
Caco3, ppm 12 12 0 28 26 

Calcium as CaC03, 
ppm 10 12 0 12 14 

Magnesium as Caco3, 
ppm 2 0 0 16 12 

Silica as Si02, ppm 1.5 1.5 1.8 1.6 1.2 

Sulfate as so4, 
ppm 2 2 3 0 0 

Ortho Phosphate as 
Po4, ppm 1.0 0 4.7 0 0.9 

Total Copper as Cu, 
ppm 0 0 0 0 0 0.8 

Total Iron as Fe, 
ppm 0.50 0.52 0.10 0.49 0.8 1.0 

Soluble Iron as Fe, 
ppm 0.45 0.30 0.05 0.10 0.4 0.80 
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DYE HOUSE B WATER QUALITY DATA 

Date: Februar:r 92 1985/Februar~ 10-85 
Sam~le Point 

Hot 117 Beck Stack 
Jet Water Hot Econ. 

Determine tion Hot at Water Outlet 
Water Bucket 0830 0930 
Line Station Hours Hours 

pH 4.26 5.38 3.80 4.07 

Specific Conductance, 
micromhos 25C 42 41 31 35 

Methyl Orange Alkalinity 
as Caco3, ppm 22 24 26 18 

Chloride as Cl, ppm 8 10 6 6 

Total Hardness as 
CaC03, ppm 14 34 20 20 

Calcium as Caco3, 
14 pm 12 10 10 

Magnesium as CaC03, 
ppm 0 22 10 10 

Silica as Si02, ppm 2.0 1.5 1.6 1.3 

Sulfate as so4, ppm 1 0 0 0 

Ortho Phosphate as 
P04, ppm 0.8 3.8 0.9 1.2 

Total Copper as Cu, 
ppm 0 0 0 0 

Total Iron as Fe, 
ppm 0.78 0.21 0.42 0.33 

Soluble Iron as Fe, 
ppm 0.55 0.08 0.24 0.21 
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DYEHOUSE B WATER QUALITY DATA 

Date: Februarlllz 1985 
SamJ:!le Point 

116 
Hot Beck 
Water Hot 115 Bucket 

Determination Tank Water Beck Station 
0930 Tank Hot Cold 
Hours 12:45 Water Water 

pH 4.42 4.43 4.60 5.31 

Specific Conductance, 
micromhos 25C 35 34 35 30 

Methyl Orange Alkalinity 
as CaC03, ppm 26 24 22 22 

Chloride as Cl, ppm 10 8 8 10 

Total Hardness as 
Caco3, ppm 34 10 22 0 

Calcium as Caco3, 
10 ppm 10 12 0 

Magnesium as CaC03, 
24 ppm 0 10 0 

Silica as Si02, ppm 1.7 1.3 1.2 1.6 

Sulfate as so4, ppm 0 1 1 1 

Ortho Phosphate as 
P04, ppm 1.6 1.0 1.9 1.6 

Total Copper as Cu, 
ppm 0 0 0 0 

Total Iron as Fe, 
ppm 0.39 0.34 0.42 0.22 

Soluble Iron as Fe, 
ppm 0.21 0.28 0.24 0.16 
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DYEHOUSE B WATER QUALITY DATA 

Date: Februar}:: 262 1985 
Sam~le Point 

Jet 
Hot Mix 

Determination Heat Water Plant Ill Tank 
Exchanger Storage Filter Filter Hot 
Outlet Outlet Outlet Outlet Water 

pH 6.37 4.25 6.01 6.00 4.31 

Specific Conductance, 
micromhos 25C 28 29 22 30 31 

Methyl Orange Alkalinity 
as Caco3, ppm 10 20 18 18 22 

Chloride as Cl, ppm 4 6 8 8 12 

Total Hardness as 
Caco3, ppm 6 32 10 18 52 

Calcium as Caco3, 
6 12 ppm 10 10 12 

Magnesium as CaC03, 
ppm 0 20 0 8 40 

Silica as Si02, 
1.6 1.7 1.7 1.9 2.0 ppm 

Sulfate as S04, 
0 0 0 0 0 ppm 

Ortho Phosphate as 
P04, ppm 1.2 1.6 0.4 0 2.4 

Total Copper as Cu, 
ppm 0 0.01 

Total Iron as Fe, 
ppm 0.14 0.42 0.18 0.11 0.69 

Soluble Iron as Fe, 
ppm 0.06 0.31 0.05 0.08 0.49 
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DYEHOUSE B WATER QUALITY DATA 

Date: Februar~ 26 198.5 
. Sam~le Point 

Stack 117 Beck Floor Mix 
Determination Econ. Hot Area 

Outlet Water Hot Water 

pH 4.21 4.29 4.85 

Specific Conductance, 
micromhos 25C 29 25 22 

Methyl Orange Alkalinity 
as Caco3, ppm 18 18 22 

Chloride as Cl, ppm 6 8 8 

Total Hardness as 
Caco3, ppm 34 32 10 

Calcium as Ca.co3, ppm 16 10 8 

Magnesium as CaCO 3' 
ppm 18 22 2 

Silica as Sio2, ppm 1.8 1.3 1.8 

Sulfate as S04, ppm 0 0 0 

Ortho Phosphate as 
Po4, ppm 2.2 1.6 0.7 

Total Iron as Fe, 
ppm 0.75 0.95 0.66 

Soluble Iron as F e 1 

ppm 0.59 0.52 0.24 

-----



53 

DYEHOUSE B WATER QUALITY DATA 

Date: March 192 1985 
SamQle Point 

Cold 
Unfil- Fi!- Heat Hot Water 

Determination tered tered Ex- Stack Water Beck 
City City changer Econ. Storage Bucket 
Water Water Inlet Outlet Tank Station 

pH 6.31 6.26 6.69 5.14 5.35 6.77 

Specific Conductance, 
micromhos 25C 23 24 29 32 31 29 

Methyl Orange Alkalinity 
as Caco3,ppm 22 18 22 20 24 28 

Chloride as Cl, 
ppm 8 6 8 6 8 6 

Total Hardness 
as CaC03,ppm 10 12 8 10 12 10 

Calcium as Caco3, 
8 8 6 8 10 8 ppm 

Magnesium as 
CaC03, ppm 2 4 2 2 2 2 

Silica as Si02, 
ppm 1.8 1.7 1.4 1.8 1.5 1.8 

Sulfate as S04, 
5 2 0 0 0 0 ppm 

Ortho Phosphate 
as P04,ppm 0.5 0.2 1.9 1.9 1.9 1.9 

Total Copper 
as Cu, ppm 0 0 0 0 0 0 

Total Iron as 
Fe, ppm 0.16 0.11 0.12 0.18 0.38 0.18 

Soluble Iron as 
Fe, ppm 0.04 0.05 0.07 0.09 0.22 0.09 
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DYEHOUSE 8 WATER QUALITY DATA 

Date: Februar:t 92 1985 
Samele Point 

Hot Water Jet Mix Hot Water 
Determination Beck Tub Wet 

Fill Hot Water Floor 

pH 5.44 5.41 5.39 

Specific Conductance, 
micromhos 25C 31 34 24 

Methyl Orange Alkalinity 
as Caco3, ppm 18 16 26 

Chloride as Cl, ppm 8 10 8 

Total Hardness as 
Caco3, ppm 22 16 42 

Calcium as CaC03,ppm 18 14 32 

Magnesium as Caco3, 
4 2 10 ppm 

Silica as Si02, ppm 1.6 2.0 1.9 

Sulfate as so4, ppm 1 2 2 

Ortho Phosphate as 
P04, ppm 1.9 1.8 1.8 

Total Copper as Cu, 
ppm 0 0 0 

Total Iron as Fe, 
ppm 0.41 0.49 0.82 

Soluble Iron as Fe, 
ppm 0.30 0.28 0.20 
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DYEHOUSE B WATER QUALITY DATA 

Date: March 23 2 1985 
Sam~le Point 

Fil- Kier 113 113 
tered Hot Cold Hot 

.Determination City City Kier Water Water Water 
Water Water Filter Filter Fil- Fil-

RM. tered tered 

pH 6.39 6.44 6.45 5.54 6.49 5.62 

Speci fie Conductance, 
micromhos 25C 24 26 26 37 27 38 

Methyl Orange Alkalinity 
as Caco3, ppm 16 20 16 20 22 22 

Chloride as 
Cl, ppm 8 6 6 8 8 6 

Total Hardness as 
Caco3, ppm 22 10 8 22 6 

Calcium as 
Caco3, ppm 8 6 .__ 

Magnesium as 
taC03; ppm 14 4 -'-

Silica as Si02, 
1.8 1.8 ppm 1.5 1.8 1.8 1.9 

Sulfate as S04, 
ppm 6 3 2 2 2 5 

Ortho Phosphate 
as P04, ppm 0.2 0.5 0.4 2.5 0.5 2.6 

T a tal Copper as 
Cu, ppm 0 0 0 0.22 0 0 

Total Iron as 
Fe, ppm 0.20 0.25 0.11 1.20 0.21 1.18 

Soluble Iron as 
Fe ppm 0.13 0.08 0.10 1.15 0.12 1.05 
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DYEHOUSE B WATER QUALITY DATA 

Date: March 23 2 1985 
SamEle Point 

1/3 117 117 118 118 
Kier Kier Kier Kier Kier 
Hot Cold Hot Cold Hot 

Determination Water Water Water Water Water 
Unfil- Unfil- Unfil- Fil- Fil-
tered tered tered tered tered 

pH 5.76 6.41 5.58 6.44 5.61 

Specific Conductance, 
micromhos 25C 35 25 34 25 38 

Methyl Orange Alkalinity 
as CaC03, ppm 24 20 22 22 30 

Chloride as Cl, ppm 8 8 6 6 8 

Total Hardness as 
Caco3, ppm 8 10 

Calcium as 
Caco3, ppm 6 4 

Magnesium as 
Caco3, ppm 2 4 

Silica as Si02, 
ppm 2.2 1.6 1.9 1.6 2.2 

Sulfate as S04, 
5 3 2 0 3 ppm 

OrthoPhosphate 
as P04, ppm 2.6 0.4 2.5 0.6 2.6 

Total Copper as 
Cu, ppm 0.04 0 0.02 0 0.01 

Total Iron as 
Fe, ppm 1.30 0.22 1.15 0.21 1.15 

Soluble Iron as 
Fe, ppm 0.80 0.18 0.38 0.10 1.05 
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DYEHOUSE B WATER QUALITY DATA 

Date: March 231 1985 
Sample Point 

113 
Determination Kier Kier 

Hot Water "Cold" 
Unfiltered Hot Water 

pH 5.56 5.84 

Specific Conductance, 
micromhos 25C 29 200 

Phenolphthalein Alkalinity 
as CaC03, ppm 0 0 

Methyl Orange Alkalinity 
as Caco3, ppm 22 20 

Chloride as Cl, ppm 10 8 

Total Hardness as 
CaC03, ppm 18 14 

Calcium as CaC03, ppm 18 14 

Magnesium as CaC03, ppm 0 0 

Silica as Si02, ppm 2.2 1.7 

Sulfate as so4, ppm 7 2 

Ortho Phosphate as 
P04, ppm 2.4 0 

Total Copper as 
Fe, ppm 0.03 0 

Total Iron as 
Fe, ppm 1.20 0.80 

Soluble Iron as Fe, 
ppm 0.75 0.18 
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