WATER QUALITY IMPACTS ON TEXTILE

.

DYE HOUSE OPERATIONS

Bу

BRENT COWAN H Bachelor of Science in Civil Engineering Villanova University

Villanova, Pennsylvania

1979

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1986 Thesis 1986 C 37400 Cop.2

...

.

WATER QUALITY IMPACTS ON TEXTILE

DYE HOUSE OPERATIONS

Thesis Approved:

Enoz J. J. Thesis Adv

m Var

maria H. Bato

Norman 1 Dean of the

Graduate College

ACKNOWLEDGEMENTS

I would like to extend my sincere appreciation to Dr. Enos L. Stover, my major adviser, for his guidance, encouragement, long friendship, and assistance during the completion of this study.

I would also like to thank Dr. Marcia Bates and Dr. John Veenstra for their instruction and participation.

A special thanks goes to my wonderful wife and children, Linda, Stephanie, and Christopher, for their love, encouragement, and understanding during the periods of my study, with a deep appreciation and thanks to my mother and father, Billie and Lynn, who helped make all of my education possible through their love, encouragement, support, and sacrifice.

TABLE OF CONTENTS

>

Page

I.	
II.	LITERATURE REVIEW
	Problem Identification
III.	MATERIALS AND METHODS 10
	Textile Water Use10Sampling Procedures12Analytical Procedures12
IV.	ANALYTICAL RESULTS AND DISCUSSIONS
	Dye House A
۷.	SUMMARY AND CONCLUSIONS
-	Dye House A
SELEC	TED BIBLIOGRAPHY 32
APPEN	DIXES
	APPENDIX A
	APPENDIX B

Chapter

-

LIST OF TABLES

Table		Page
I.	Anthraquinone Dyes that Chelate with Metals	5
II.	Chelants and Sequestrants	9
III.	Metals Summary from Dye House A Process Water Supplies	16
IV.	Dye House A Water Quality Data Summary City Water Supply	17
۷.	Dye House A Water Quality Data Summary Well Water Supply	18
VI.	Dye House A Water Quality Data Summary Creek Water Supply	19
VII.	Dye House B Kier Iron and pH Concentration Summary	•• 24
VIII.	Dye House B pH Values Summary	27
IX.	Dye House B Iron Concentrations Summary	28
х.	Dye House B City Water Quality Summary	29

.

LIST OF FIGURES

Figu	re	Page
1.	Anthraquinone Dye Chelant Ring Structure	6
2.	Metal Chelation By EDTA	8
3.	Textile Water Use Areas	11
4.	Area of Study - Dye House A	15
5.	Dye House B Hot Water Reclamation Flow Schematic	23
6.	Dye House B Iron Levels - Bleach Kier Water System	25

CHAPTER I

INTRODUCTION

Water quality, as it relates to textile dye and finishing operations, has traditionally been accepted as it is, and/or not fully understood. Seasonal influences such as runoff, humic materials, and algae contribute a considerable variation to the quality of the surface or reservoir water being used in textile processing. Processing problems that can be directly attributed to the seasonal water quality variations are generally:

- Staining of whites and light shades
- Off-shade dyeing due to solids deposition in the cloth
- . Dye complexation or chelation

Sometimes an "induced" water quality problem can arise from the installation and/or repair of existing water lines or the installation of new auxiliary processing equipment. Waste heat recovery systems generally fall into this "induced" category. With the introduction of hot water into old cold water lines, a considerable thermal disturbance is generally experienced. Old corrosion by-products are removed and subsequently react with dyes (chelation) or directly stain white cloth in the bleach kiers. Some heat recovery systems inadvertently produce acidic hot water which will intensify the problems.

Although the cause may be identifiable, the effect is generally a loss in quality goods and an increase in rework. The complexities of dye house operations are increasing dramatically with machine computerization, environmental constraints and, subsequently, new and alternative sensitive dye stuffs.

Quite often, dye house operators, through experience and/or technical assistance from chemical suppliers, will add an "auxiliary" to overcome the unseen problems. As a result, expensive "formulations" are habitually added to take care of the unknown and eminent problems.

Over the years, the number of auxiliaries have dramatically increased along with their cost. It is not uncommon to find eight to nine auxiliaries purchased from six to seven different supply companies in a single dye bath with little or no understanding of the function of half of them. Auxiliary addition is a common practice that continues in fear of the effects, if withdrawn.

Water quality at two different textile dye houses was evaluated to define and identify processing problems. Both facilities are geographically within twenty-three (23) miles of one another but each has a significantly different source and quality of water. Manufacturing problems at one facility were suspected to be from the water sources alone, while the other facility experienced dyeing and finishing problems after the installation of a nonconventional waste heat recovery system for hot water generation.

CHAPTER II

LITERATURE REVIEW

Problem Identification

The common denominator in every textile dyeing facility is water, and unfortunately very little, if any, work has been conducted, either internally or externally, to identify the source and/or the degree of metal ion contamination at various textile facilities. Baseline data is virtually nonexistent and until recently was not even contemplated as a viable investigative tool. Many textile facilities, in particular those that utilize surface water supplies, often experience transient operational problems that are directly attributable to seasonal water quality variations. Historically, the problems were accepted as transient or, in most cases, blamed on individual workers. Coincidentally, as the workers were ultimately let go for performance reasons, the seasonal time frame was such that the problems also went away. By deduction, it was apparent to management that the operator was at fault and the proper decision had been made.

Today's textile industry supports a more highly educated staff that are generally more open to the analytical approach and investigative reasoning needed to approach and define a problem or a group of problems. Since the number of processing steps that are performed on any one piece of fabric can be large (i.e., 4-8 steps), the matrix of cause and effect can be complicated; especially when it is only at the final inspection station that a problem is identified. Although some problems are obvious, many others are not.

Metal Ion Impacts

Soluble metal ion species that are of concern in the complexing and competitive reactions with various dyestuffs and bleaching operations are primarily iron, manganese, and copper. Copper and/or iron often has a dulling effect on various dye colors although the effect varies from dye to dye (1). For example, anthraquinone dyes are particularly metal sensitive. Copper residuals will produce a dull pink shade instead of the normal bright pinkish red when Disperse Red 60 (an anthraquinone dye) is used. Iron will also produce a dulling effect with Disperse Red 60. Table I presents a list of anthraquinone dyes that exhibit varying degrees of interaction when complexed by metal ions (2). Generally, the complexing reaction is one of chelation as described by Figure 1 (2). Manganese produces a brown to black staining of white or dyed cloth. The characteristic color for any one individual dye is a function of the electron distribution in the dye molecule. When this distribution is changed (i.e., chelated), the dye color is subsequently changed (2).

Particulate (insoluble) metal species are a concern to the different types of dyes because of the varying pH values they are applied at. For example, reactive dyes are applied to cotton and other cellulosic fibers under mild alkaline conditions. Particulate metals would not possess the ability to readily chelate with the dyestuff as the soluble species would. Acid dyes are a water soluble anionic class generally applied to nitrogenous fibers such as wool and silk. The metal problem here is compounded by the acid medium required for dye application and the resultant partial or total resolubilization of the particulate metal species.

Soluble and particulate metals in the application of bleaching and scouring is very detrimental. This process basically involves the alkaline boil of

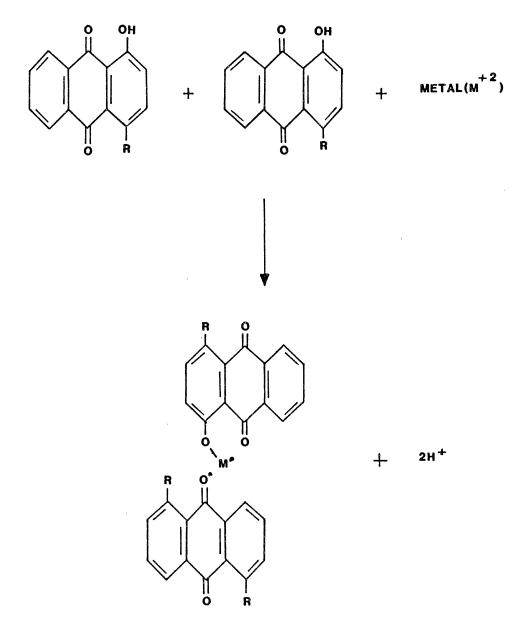

cotton/ poly-cotton with hydrogen peroxide. The alkaline environment precipitates the soluble fraction as a ferric hydroxide, while the particulate iron simultaneously reacts with the hydrogen peroxide to rapidly diminish the peroxide concentration and burn holes in the fabric. The precipitated ferric hydroxide yellows the fabric and renders it unsuitable for further processing. Generally, the spoiled goods are reworked with oxalic acid to remove the iron (ferric hydroxide) stain and rebleached.

TABLE I

ANTHRAQUINONE DYES THAT CHELATE WITH METALS

C.I. Name	
Disperse Red 4	
Disperse Red 55	
Disperse Red 60	
Disperse Red 91	
Disperse Red 96	
Disperse Red 116	
Disperse Red 263	
Disperse Blue 27	
Disperse Blue 56	
Disperse Blue 73	
Disperse Blue 118	
Conceally, wellows are inconsistive to metals	

Generally, yellows are insensitive to metals

CHELATED RING STRUCTURE

Figure 1. Anthraquinone Dye Chelant Ring Structure

•

The source of the soluble and particulate metal concentrations is generally the plant influent water source and, with older dye houses, a considerable quantity can be contributed from corrosion by-products within the iron piping systems. Periodically, water finishing unit processes within a particular facility (i.e., sand filters, zeolite softeners) will contribute slug type quantities because of their ability to concentrate the contaminants. Carryover from the boiler with live steam injection can be a significant but potentially transient condition. Other sources of metal contamination (2) could be the textile fabric (greige) goods and auxiliary chemicals which are added to the processing bath.

Studies conducted by Kowalski (3, 4, 5), Somers and Clark et al. (6) evaluated numerous dye bath and bleaching conditions and the effects of various chelants and sequesterants to control hardness, iron, copper, and manganese. Copper and iron values as low as 0.1 ppm (7) have been found to cause staining in alkaline beam dyeing and jet operations. Bleaching applications were significantly affected by iron values as low as 0.5-1.0 ppm (8).

Metal Ion Control

Metal ion sequestration and/or chelation in the dye bath and bleaching operations is controlled by inactivation of the metal ion by chemical reaction with an organic or inorganic complexing agent to form a ring structure. The most commonly used aminocarboxylate chelant is ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid (NTA). EDTA typically complexes (9) metals similar to the ring structure shown in Figure 2 (9). Other hydroxycarboxylic acid chelants such as citric acid and gluconic acid are commonly used.

Organophosphonates are sequestering agents used primarily in metal cleaning activities but when properly applied will sequester metal ions in a

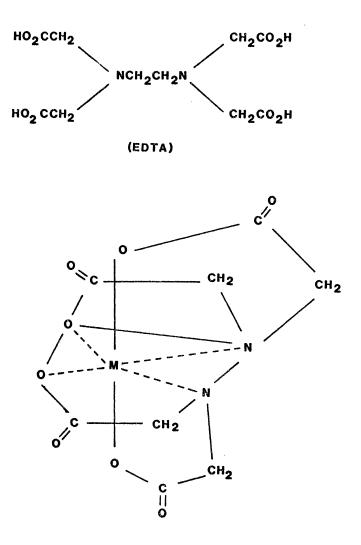


Figure 2. Metal Chelation by EDTA

process water supply leaving them in a soluble and non-reactive state. An additional physical contribution made by the organophosphonates is that it has the unique ability to protect metal surfaces (i.e.) pipe internals from additional oxidation and corrosion by-product migration) even in the presence of precipitating agents. Chelants and organophosphonates commonly used are listed in Table II.

TABLE II

CHELANTS AND SEQUESTRANTS

Chelants

Hydroxycarboxylic Acid

Gluconic Acid

Citric Acid

Glucoheptonic Acid

Amino Carboxylates

Nitrilotriacetic Acid (NTA)

Ethylenedieminetetraacetic Acid (EDTA)

Diethylenetriaminepentacetic Acid (DTPA)

Organophosphonate Sequestrants

Amino tri (methylene phosphonic acid) - ATMP

1-Hydroxyethylidene - 1, 1-diphosphonic acid - HEDP

Ethylenediamine tetra (methylene phosphonic acid - EDTMP

Hexamethylenediaminetetra (methylenephosphonic acid) - DTPMP

CHAPTER III

MATERIALS AND METHODS

Textile Water Use

Depending upon the size of a particular dye house, the type of equipment being used and the complexity of the dye procedures, a comprehensive water use rate of 8-15 gallons of water per pound of fabric will generally be required. Jet machine non-contact cooling water, unless recovered and reused, can account for a considerable volume of water. When reused, although originally a non-contact cooling water, the potential for corrosion by-product pick-up and oxygen pitting corrosion activity is increased as it travels through the intended cooling process and returns for future use. Typical process areas that require water are shown in Figure 3.

When dealing with the actual dye tub operation, the amount of water required is generally dealt with on a weight ratio of liquid to fabric. Common dyeing liquor ratios are in the neighborhood of 1:100 fabric to water with rinse volumes generally 200-500% greater than the water volume required for dyeing. Liquor ratios of 15 to 20:1 are used when dyeing cottons and cotton blends in open (atmospheric) dye becks.

Piping materials are generally carbon steel but there are several facilities with virtually all copper and stainless steel lines. The corrosion resistant (with the exception of copper) lines that are present in some newer dye houses have been installed to prevent formation of corrosion by-products.

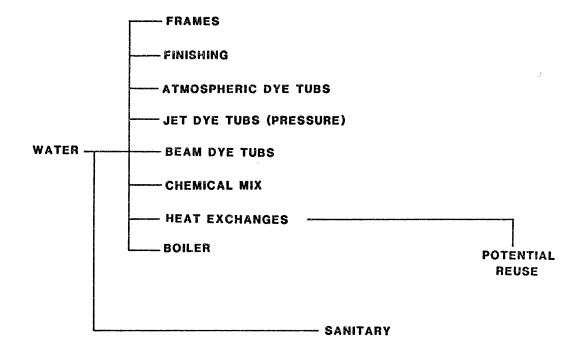


Figure 3. Textile Water Use Area

Unfortunately, the source(s) of the metallic contaminants were not fully evaluated prior to the expense of installation. The problem can be reduced but, in a case where the contaminant is in the water supply, the problem cannot be eliminated unless the water supply is treated for metal ion removal or sequestration.

Sampling Procedures

Grab samples were collected at various sites in triplicate. One sample was retained and analyzed for conventional parameters such as alkalinity, chlorides, and hardness. One sample was acidified for total metals analysis by addition of 10 drops of concentrated nitric acid. The third sample was filtered through a 0.45 micron Millipore filter and immediately acidified for analysis of soluble metals.

Analytical Procedures

<u>Metals</u>

Metals were determined colorimetrically utilizing a HACH DR II spectrophotometer and procedures outlined in HACH's analytical procedures entitled Water Analysis Handbook (10).

<u>pH</u>

The pH determinations were done by using an Orion Research Model 601A digital ion analyzer pH meter with an Orion combination pH 91-05 electrode.

Conventional Parameters

Conventional parameters analyzed were grouped to include:

Methyl Orange Alkalinity

Chloride

Total Hardness

Calcium Hardness

Magnesium Hardness

Silica

Sulfate

Orthophosphate

Analysis of the conventional parameters were determined following the procedures outlined in <u>Standard Methods for the Examination of Water and</u> <u>Wastewater</u> (11).

Specific Conductance

Conductivity was determined using a Cambridge Scientific combination conductivity/pH/temperature meter. Standardization was performed using a 1000 micromho conductivity standard.

CHAPTER IV

ANALYTICAL RESULTS AND DISCUSSIONS

Dye House A

Dye House A is a commissioned facility that dyes and finishes textile products for clothing manufacturers that are commonly referred to as cut and sew operations. A broad spectrum of dye colors and dye types are utilized that necessitates a large amount of water.

Plant A draws a total of 1.8-2.0 mgd process water from three separate sources; city water supply, an on-site deep well, and the nearby Swatara Creek. The city water supply is a blended source that is flow-proportioned from Black Creek and Adams Run Reservoirs by the city in an attempt to achieve acceptable iron and manganese values for potable consumption and use. Blending by the city is often required due to the acid mine drainage in the vicinity of the Black Creek Reservoir and the subsequent contamination that results. Figure 4 shows the area where the two city water sources are drawn from. The manganese content of the city water was often zero but never found to exceed 0.3 mg/L. The iron concentration of the city water was relatively low and generally found to range from 0.2-0.4 mg/L. The iron concentration that was detected was determined to be primarily in the soluble state. Dye House A water requirements from the city water supply are restricted to 600,000-650,000 gallons per day resulting in a mandatory water usage of approximately 1.4 mgd from the other two plentiful, but inferior, supply sources.

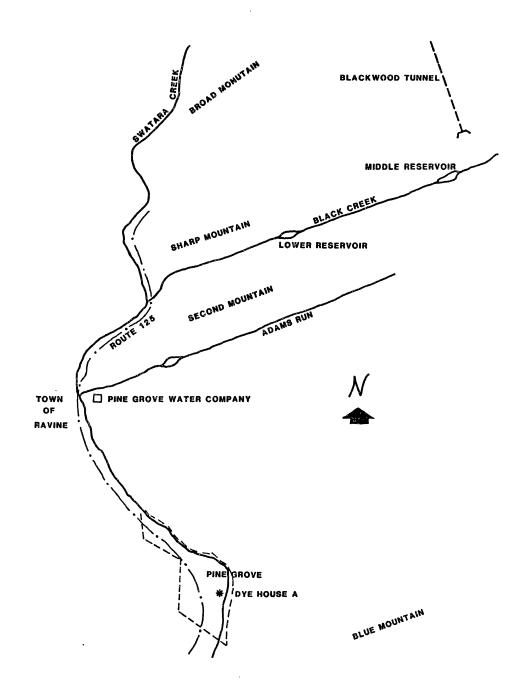


Figure 4. Area of Study - Dyehouse A

The well water analysis shows a poor water supply. Filtration through a 0.45 micron filter showed extremely high levels of filterable solids with an iron content ranging from 0.7-1.2 mg/L. The manganese concentrations ranged from 0.7-1.3 mg/L. Both the iron and manganese contents were found to be primarily in the soluble form. Plant usage requirements of the well water averaged 300,000-350,000 gpd.

The creek water iron and manganese concentrations were highly transient, exhibiting values of 0.13-1.1 mg/L iron and 0.4-2.5 mg/L of manganese. The iron content was found to be primarily particulate (insoluble) in form and could be removed by 8-10 micron filtration.

Table III presents a summary range of the iron and manganese concentrations found in the three water supplies used by Dye House A. Tables IV, V, and VI present the summary data for the conventional water quality criteria of the city, well, and creek water supplies, respectively. Appendix A presents the individual data collected from selected sources and samples.

TABLE III

METALS SUMMARY FROM DYE HOUSE A PROCESS WATER SUPPLIES

	Iron (ppm)	Manganese	e (ppm)
Source	Total	Soluble	Total	Soluble
City Water	0.2-0.4	0.2-0.4	0.0-0.3	0.0-0.3
Plant Blended	0.3-0.9	0.15-0.7	0.1-0.5	0.1-0.5
Well Water	0.7-2.5	0.5-2.0	0.7-1.3	0.7-1.3
Creek Water	0.13-1.1	0.05-0.15	0.4-2.5	0.4-2.5

TABLE IV

Determination	Minimum Value	Maximum Value	Average Value	Number of Samples Analyzed
рН	5.34	7.5	5.9	18
Specific Conductance, micromhos 25C	23	44	32	18
Methyl Orange Alkalinity as CaCO ₃ , ppm	14	26	20	18
Chloride as Cl, ppm	6	10	9	18
Total Hardness as CaCO ₃ , ppm	8	40	25	18
Calcium as CaCO ₃ , ppm	6	14	9	18
Magnesium as CaCO ₃ , ppm	28	2	16	18
Silica as SiO ₂ , ppm	3.0	4.2	3.7	18
Sulfate as SO ₄ , ppm	3	7	5.8	18
Ortho Phosphate as PO ₄ , ppm	0	1.9	1.2	18
Total Copper as Cu, ppm	0	0.11	0.06	8
Total Iron as Fe, ppm	0.19	0.35	0.30	18
Soluble Iron as Fe, ppm	0.09	0.25	0.17	18
Total Manganese as Mn, ppm	0	0.3	0.1	18
Soluble Manganese as Mn, ppm	0	0.3	0.1	18

DYEHOUSE A WATER QUALITY DATA SUMMARY CITY WATER SUPPLY

٠.

TABLE V

Determination	Minimum Value	Maximum Value	Average Value	Number of Samples Analyzed
рН	6.36	7.3	6.8	18
Specific Conductance, micromhos 25C	360	480	460	18
Methyl Orange Alkalinity as CaCO ₃ , ppm	150	165	162	18
Chloride as Cl, ppm	20	28	24	18
Total Hardness as CaCO ₃ , ppm	148	150	149	18
Calcium as CaCO ₃ , ppm	105	120	110	18
Magnesium as CaCO ₃ , ppm	28	45	39	18
Silica as SiO ₂ , ppm	12	15	11.7	18
Sulfate as SO ₄ , ppm	45	64	52	18
Ortho Phosphate as PO ₄ , ppm	1.75	2.6	2.2	18
Total Copper as Cu , ppm	0	0.9	0.2	8
Total Iron as Fe, ppm	0.72	2.5	1.75	18
Soluble Iron as Fe, ppm	0.60	2.2	1.55	18
Total Manganese as Mn, ppm	0.5	1.2	1.1	18
Soluble Manganese as Mn, ppm	0.5	1.2	1.1	18

DYEHOUSE A WATER QUALITY DATA SUMMARY WELL WATER SUPPLY

TABLE VI

Determination	Minimum Value	Maximum Value	Average Value	Number of Samples Analyzed
рН	6.01	7.12	7.05	18
Specific Conductance, micromhos 25C	185	190	188	18
Methyl Orange Alkalinity as CaCO3, ppm	16	24	20	18
Chloride as Cl, ppm	14	18	16	18
Total Hardness as CaCO ₃ . ppm	82	92	86	18
Calcium as CaCO ₃	32	36	34	18
Magnesium as CaCO ₃	50	56	52	18
Silica as SiO ₂ , ppm	4.0	5.5	5.0	18
Sulfate as SO ₄ , ppm	4.0	5.5	4.6	18
Ortho Phosphate as PO ₄ , ppm	0.9	2.3	1.75	18
Total Copper as Cu, ppm	0	0	0	8
Total Iron as Fe, ppm	0.4	2.72	1.8	18
Soluble Iron as Fe , ppm	0.05	0.9	0.66	18
Total Manganese as Mn, ppm	0.7	1.2	1.0	18
Soluble Manganese as Mn, ppm	0.3	0.9	0.5	18

DYEHOUSE A WATER QUALITY DATA SUMMARY CREEK WATER SUPPLY

Table III also presents a fourth water source which is a supply blended internally by the plant on a flow proportioned basis. During periods of drought and/or forced conservation by the city, a proportioning ratio of 2:1 well to city is often used. With normal periods of precipitation and an abundant supply, a greater use of the city water is allowed, resulting in well water to city water ratios of 1:1 to 1:2. Analysis of the iron and manganese data shown in Table III clearly shows the need to conduct a blending of the well water. The city water is obviously the best water supply available but can be an unreliable source due to previous water use restrictions. City water iron and manganese values are relatively low although the Swatara Creek is a common source for both the city and Dye House A. The city water is chlorinated and with a suitable contact time in the distribution system the iron and manganese are oxidized and subsequently reduced in concentration. Periods of high demand have caused problems in the past due to the increased water velocity and the subsequent scouring effect. Iron and manganese sludges are periodically swept into the plant requiring extensive line flushes and rework of stained goods. Water lines with relatively low flows and/or only periodic usage experience post precipitation of the iron and manganese in the water lines. A sludge was often seen deposited on white goods and has been analytically confirmed to be predominately iron and manganese.

Data shown in Table III were collected and analyzed during a period of time that Dye House A exhibited a finished fabric rejection rate in excess of 23%. Rejects are expected and considered to be normal when held at a 2%-5% fabric weight value for any particular textile manufacturing day. A five percent value is generally the upper limit and is not acceptable if a rejection rate at this level is maintained for a period of five or more days. Sludge and slough-off from piping internals were obvious problems but dyeing problems continued with, what appeared to be, good water. Operating personnel were being implicated and several chemical manufacturing firms stood to lose a considerable amount of business, since the dye assist and auxiliaries were being questioned as to their involvement. Preliminary suspicions were brought to light when a plant water supply sample was filtered through a 0.45 micron millipore filter and a considerable amount of suspended, but not visually apparent, material was retained. Metals analysis confirmed that a majority of the dyeing problems were a result of high concentrations of iron and manganese.

Dye House B

Dye House B is a smaller commissioned dye house similar to Dye House A, previously described, in that its operation consists of bleaching, dyeing, and finishing. The dissimilar facts are that Dye House B is older by approximately forty years, consumes only 700,000 gallons of water per day, has a schedule 80 carbon steel piping distribution system with an incoming line pressure of 150 psig and has installed a heat recovery system and revenue sharing concept marketed by Time Energy Systems of Houston, Texas.

The heat recovery process consists of a 4-pass shell and tube heat exchanger, followed by a counter flow direct contact stainless steel KEMCO stack gas economizer, for recovery of waste heat from the boiler exhaust gases. The boiler was a 700 horsepower Cleaver Brooks fire tube unit burning natural gas. Operationally, the combustion gases enter the bottom of the KEMCO unit while water that had been preheated in the shell and tube bundle entered the top of the economizer. Stainless steel packing provided the necessary gas to water surface area for maximum heat transfer. From the storage section of the economizer, the hot water was pumped to a 30,000 gallon insulated storage tank for future distribution and use by the dye house. Figure 5 schematically traces the heat recovery system.

With the exception of the stainless steel economizer and fill, all of the piping throughout the dye house was carbon steel. New sections of carbon steel lines were installed to distribute cold water to the dye house but the design of the heat reclamation system called for the hot water to be introduced into and conveyed by the old cold water lines. Pneumatic mixing valves supplied the necessary cold, hot, or tempered water at each dye machine.

Start-up of the system commenced with a standard water flush of the new equipment for approximately one hour, at which time the hot water from the economizer was then sent to storage for dye house use. Almost immediately, the dye house experienced rust-laden water to the degree that the water was virtually orange. In addition to the chelation of dye stuffs in the dye house, the kier bleaching operation was seriously affected due to the iron deposition that took place on the bleached or white cloth being processed. Several thousand pounds of fabric were burned by particulate iron that loosened from the old cold water pipes and reacted with the bleaching hydrogen peroxide solution. The alkaline condition that the bleach process takes place in also precipitated soluble iron as ferric hydroxide. When the kier solution was circulated, the top layers of the cloth filtered the hydroxide sludge out, subsequently staining the cloth. Basket filters with one (1) micron bag filters were installed to help eliminate the problem. Although somewhat successful for particulate iron, the filters did nothing to reduce the soluble iron staining problem of the white cloth.

Examination of the iron and pH data shown in Table VII and Figure 6 shows a significant increase in both the total and soluble iron concentrations in the hot water supply. Corresponding pH values in the hot water dropped a full

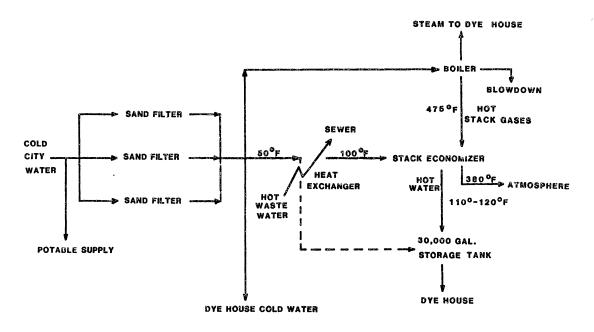


Figure 5. Dye House B Hot Water Reclamation Flow Schematic

•

TABLE VII

.

	March 23, 19	285	
		PPM IRON	pН
City Water	(T) (S)	0.20 0.13	6.39
Filtered City Water	(T) (S)	0.25 0.8	6.44
Kier Filter	(T) (S)	0.11 0.10	6.45
Kier H.W. Supply	(T) (S)	1.20 1.15	5.54
#3 Kier C . W. (F)	(T) (S)	0.21 0.12	6.49
#3 Kier H.W. (F)	(T) (S)	1.18 1.05	5.62
#3 Kier H.W. (UF)	(T) (S)	1.30 0.80	5.67
#7 Kier C.W. (UF)	(T) (S)	0.22 0.18	6 . 41
#7 Kier H.W. (UF)	(T) (S)	1.15 0.38	5,58
#8 Kier C.W. (F)	(T) (S)	0.21 0.10	6.44
#8 Kier H.W. (F)	(T) (S)	1.15 1.05	5.61
#8 Kier H.W. (UF)	(T) (S)	1.20 0.75	5,56
Kier "Still" ⁽¹⁾ H.W.	(T) (S)	0.80 0.18	5.84

DYE HOUSE B KIER IRON AND pH CONCENTRATION SUMMARY

LEGEND: (S) = Soluble; (T) = Total; (F) = 1.0 micron filter at Kier; (UF) = unfiltered at Kier; ⁽¹⁾ "Still" = Hot water that was allowed to cool on standing in pipe.

 I_{η}

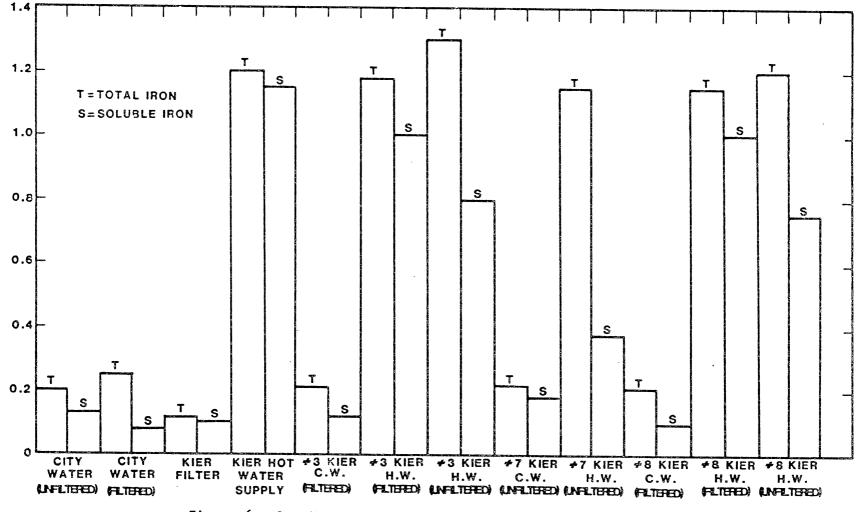


Figure 6. Dye House B. Iron Levels - Bleach Kier Water System

pH unit or more after passing through the stack gas economizer resulting in a hot, acidic water supply. Table VIII shows a summary of the pH values at ten separate dye house water supply stations over a six-day period that the stack gas economizer was being operated. Table IX presents the total and soluble iron data collected at the ten water stations over the same six-day period, whereas Table X presents the conventional water quality summary of the city water supply. Total iron values were observed to range from 0.2 ppm in the cold water supply to 1.3 ppm in the kier hot water supply. Corresponding low pH values coincided with elevated iron values throughout the facility. Comprehensive water quality data on selected sources and samples can be found in Appendix B.

An explanation for the drop in pH and increase in iron concentration lies in the operational principle of the gas economizer. In any other application, the gas economizer would be called a gas scrubber. With the direct contact relationship of the boiler flue gas and the intended hot water, it became apparent that the low alkaline water scrubbed the carbon dioxide out of the flue gas forming carbonic acids. Sulfur was a suspect in forming sulfuric acid, but the sulfur content of the natural gas was considered to be too low to be a major contributor.

In order to test the hypothesis that the economizer was the source of the low pH water, the economizer was by-passed and non-contact hot water was sampled. Iron and pH values of the non-contact water were unchanged before and after heat reclamation.

TABLE VIII

Sample Location	1/28/85	2/9/85	2/10/85	2/11/85	2/26/85	3/19/85
City Water	6.21	5.95	6.22	6.50	6.01	6.31
Filtered City Water	6.00	6.00	6.22	6.45	6.00	6.26
Stack Gas Econ.	4.22	3.98	3.64	4.07	4.21	5.14
Hot Water Storage Tk.	4.03	5.44	4.50	4.42/4.43	4.25	5.35
Beck Hot Water	4.00	4.67	4.40	3.80/4.60	4.29	5.44
Bleach Mix C.W.	6.25	6.10	6.13	6.40	6.10	6.25
Wet Floor Mix H.W.	3.99	4.50	4.89	4.14	4.85	5.39
Jet H.W. Supply	4.00	4.20	4.26	4.25	4.31	5.41
Bucket Station C.W.	6.15	6.10	6.38	6.31	6.05	6.77
Heat Exchanger Inlet	6.10	6.00	6.20	6.40	5.37	6.69

DYE HOUSE B PH VALUES SUMMARY

LEGEND: C.W. = Cold Water; H.W. = Hot Water; (F) = Filtered at Kier; (UF) = Unfiltered at Kier; "Still" = Hot water that was allowed to cool on standing in pipe

TABLE IX

Sample Location		1/28/85	2/9/85	2/10/85	2/11/85	2/26/85	3/19/85
Cold City Water	(T)	0.19	0.16	0.10	0.15	0.18	0.16
	(S)	0.06	0.18	0.05	0.03	0.05	0.04
Cold Filtered	(T)	0.22	0.19	0.08	0.11	0.11	0.11
City Water	(S)	0.03	0.02	0.01	0.02	0.08	0.05
Stack Gas Econ.	(T)	1.4	0.29/1.0	1.0	0.33	0.75	0.18
H.W.	(S)	1.1	0.19/0.80	0.80	0.21	0.59	0.09
H.W. Storage Tk	(T)	0.70	0.48/0.22	0.95	0.39	0.42	0.38
	(S)	0.42	0.36/0.18	0.60	0.21	0.31	0.22
Jet Mix Tank H.W.	(T)	0.24	0.65	0.78	0.55	0.69	0.49
	(S)	0.19	0.48	0.55	0.30	0.49	0.28
Floor Mix H.W.	(T)	0.48	0.90	0.80	0.36	0.66	0.82
	(S)	0.36	0.80	0.40	0.11	0.24	0.20
Beck H.W.	(T)	0.18	0 . 50/0.52	1.2	0.42	0.95	0.41
	(S)	0.09	0.45/0.30	0.90	0.24	0.52	0.30
Kier C.W.	(T)	0.13	0.16	0.14	0.15	0.32	0.20
	(S)	0.05	0.06	0.04	0.04	0.11	0.11
Bleach Mix C.W.	(T)	0.48	0.14	0.49	0.18	0.09	0.16
	(S)	0.10	0.04	0.10	0.09	0.03	0.06
C.W. Bucket	(T)	0.19	0.16	0.21	0.11	0.11	0.18
Station	(S)	0.06	0.08	0.08	0.06	0.06	0.09
Heat Exchanger Inlet	(T)	0.20	0.22	0.20	0.18	0.14	0.12
Cold Water	(S)	0.10	0.18	0.10	0.05	0.06	0.07
LEGEND: (T) = Total;	(S) = Soluble	e; H.W. = Hot V	Vater; C.W. = C	old Water			

DYE HOUSE B IRON CONCENTRATIONS SUMMARY B (PPM)

TABLE X

Determination	Minimum Value	Maximum Value	Average Value	Number of Samples Analyzed
pН	6.3	6.9	6.6	25
Specific Conductance, micromhos 25C	23	35	28	25
Methyl Orange Alkalinity as CaCO ₃ , ppm	18	26	23	25
Chloride as Cl, ppm	6	8	7	25
Total Hardness as CaCO3, ppm	8	12	9	25
Calcium as CaCO ₃ , ppm	6	8	7	25
Magnesium as CaCO ₃ , ppm	2	4	2	25
Silica as SiO ₂ , ppm	1.4	1.8	1.5	25
Sulfate as SO ₄ , ppm	6	8	6.4	25
Ortho Phosphate as PO ₄ , ppm	0.2	0.5	0.3	25
Total Copper as Cu, ppm	0	0	0	10
Total Iron as Fe, ppm	0.05	0.14	0.09	25
Soluble Iron as Fe, ppm	0.03	0.11	0.07	25
Total Manganese as Mn, ppm	0	0	0	10
Soluble Manganese as Mn, ppm	0	0	0	10

ŧ

DYEHOUSE B WATER QUALITY DATA SUMMARY CITY WATER SUPPLY

.

CHAPTER V

SUMMARY AND CONCLUSIONS

Dye House A

Commencing February 12, 1985, Dye House A began to experience a considerable number of product rejects. Up until this date, the production rework record was stable and had hit a monthly low of two percent.

With the exception of particulate contamination (sludge) observed on the fabric, an initial in-house investigation was unsuccessful in identifying the source of the problem(s). Subsequent metals analysis revealed a transient and unusually high level of iron and manganese in the Swatara Creek and well water. Speculation of why the increase was so abrupt was attributed to the low quantity of precipitation and a subsequent fall in the surface and groundwater water tables. This, theoretically, induced a concentrating factor of the contaminants normally found in the water supplies. Although the concentration activity was progressive, the overall impact on the production activities was rather abrupt.

Recommendations for an interim and long-term solution would include the following:

- Addition of a chelant to the dye bath for sequestration of the iron and manganese before the dye chemicals are added.
- Injection of a sequestrant to the water supply at each of the plant sources.

i.

30

- 3. Installation of an iron and manganese removal system.
- 4. Investigate areas of water conservation and reuse.

Dye House B

High iron concentrations in the dye house hot water supply were identified as a direct result of the start-up of the stack gas economizer. Gas scrubbing of the carbon dioxide and carbonic acid formation was apparently responsible for the low pH values. Since pH and iron values of the non-contact hot water remained at levels equal to the incoming city water, the induced problem was obviously the economizer.

Recommendations that should be considered for a remedial and longterm solution would include the following:

- 1. Abandon the stack gas economizer.
- Install a pH control system to adjust the final pH of the economizer produced hot water supply.
- Inject a sequestrant to the water supply to inhibit the removal of iron corrosion by-products and chelate the iron present.
- 4. Use excess in-bath sequestrants and dispersants.
- 5. Redesign the water distribution system so that the new piping network distributes hot water instead of the hot water being in the old cold water lines.

SELECTED BIBLIOGRAPHY

- 1. Leuck, J. F., American Dyestuff Reporter, 68, p. 49 (November 1979).
- Somers, H. W., Jr., Clark, G. T., and Weaver, M. A., "Maximizing Polyester Shade Reproducibility," <u>Textile Chemist and Colorist</u> <u>13</u>, p. 238 (October, 1981).
- 3. Kowalski, X., "Sequestering Agents in Bleaching and Scouring," <u>Textile</u> Chemist and Colorist, 10, p. 161 (August, 1978).
- 4. Kowalski, X., "The DeQuest Phosphonates -- Applications in Dissolving of Copper and Iron Oxides, Calcium Carbonate and Calcium Oxalate," Monsanto Industrial Chemicals Co. (September, 1980).
- 5. Kowalski, X., "Textile Service Company Report on Selected DeQuest Phosphonates for Special Problems in Scouring and Bleaching of Textiles," Special Report No. 8295 (October, 1975).
- Somers, H. W. Jr., Clark, G. T., and Weaver, M. A., "Maximizing Polyester Shade Reproducibility," <u>Textile Chemist and Colorist</u>, 13, p. 238 (October, 1981).
- 7. Cowan, B. W., Personal Communication (1985).
- 8. Cowan, B. W., Personal Communication (1985).
- 9. Kowalski, X., "Sequestering Agents in Bleaching and Scouring," <u>Textile</u> <u>Chemist and Colorist</u>, 10, p. 162 (August, 1978).
- 10. Water Analysis Handbook, HACH Co. (1982).
- 11. <u>Standard Methods for the Examination of Water and Wastewater</u>, American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 15th Edition.

:

y.

APPENDIXES

APPENDIX A

		1985 San	nple Data	
Determination	5-28	5-29	6-10	6-11
рН	6.11	7.3	7.5	5.34
Specific Conductance, micromhos 25C	28	42	44	28
Methyl Orange Alkalinity as CaCO ₃ , ppm	22	20	18	14
Chloride as Cl, ppm	6	6	8	8
Total Hardness as CaCO ₃ , ppm	40	8	14	22
Calcium as CaCO ₃ , ppm	12	6	6	8
Magnesium as CaCO3, ppm	28	2	8	14
Silica as Si0 ₂ , ppm	3.5	3.5	3.0	3.4
Sulfate as SO ₄ , ppm	7	7	6	6
Ortho Phosphate as PO ₄ , ppm	1.7	1.8	1.9	1.6
Total Copper as Cu, ppm	0	0	0.1	0
Total Iron as Fe, ppm	0.33	0.26	0.35	0.30
Soluble Iron as Fe, ppm	0.21	0.15	0.25	0.23
Total Manganese as Mn, ppm	0	0.1	0	0
Soluble Manganese as Mn, ppm	0	0.1	0	0

DYEHOUSE A WATER QUALITY DATA CITY WATER SUPPLY

		1985 San	nple Data	
Determination	6-22	6-25	6-26	6-28
рН	5.43	5.68	6.23	6.10
Specific Conductance, micromhos 25C	23	29	30	26
Methyl Orange Alkalinity as CaCO ₃ , ppm	26	20	24	26
Chloride as Cl, ppm	10	8	12	10
Total Hardness as CaCO ₃ , ppm	38	26	32	30
Calcium as CaCO ₃ , ppm	10	14	15	15
Magnesium as CaCO ₃ , ppm	28	12	17	15
Silica as Si0 ₂ , ppm	3.4	4.2	3.6	2.9
Sulfate as SO ₄ , ppm	3	3	2.5	3
Ortho Phosphate as PO ₄ , ppm	0	0.6	0.5	0.6
Total Copper as Cu, ppm	0.11	0	0	0
Total Iron as Fe, ppm	0.19	0.3	0.26	0.17
Soluble Iron as Fe, ppm	0.09	0.2	0.16	0.08
Total Manganese as Mn, ppm	0.3	0	0.08	0.
Soluble Manganese as Mn, ppm	0.3	0	0.08	0

I.

DYEHOUSE A WATER QUALITY DATA CITY WATER SUPPLY

Determination		1985 Sam	ple Data	
Determination	5-28	5-29	6-10	6-11
рН	6.01	5.23	7.01	7.10
Specific Conductance, micromhos 25C	190	185	191	195
Methyl Orange Alkalinity as CaCO ₃ , ppm	18	16	20	20
Chloride as Cl, ppm	18	14	14	16
Total Hardness as CaCO ₃ , ppm	92	86	84	82
Calcium as CaCO ₃ , ppm	36	36	34	34
Magnesium as CaCO ₃ , ppm	56	50	50	48
Silica as SiO ₂ , ppm	5.2	5.5	5.0	4.5
Sulfate as SO ₄ , ppm	75	78	80	75
Ortho Phosphate as PO ₄ , ppm	1.2	0.9	1.0	1.4
Total Copper as Cu, ppm	0	0	0	0
Total Iron as Fe, ppm	2.4	2.72	1.0	1.0
Soluble Iron as Fe, ppm	0.6	0.82	0.4	0.1
Total Manganese as Mn, ppm	1.2	1.2	0.8	0.8
Soluble Manganese as Mn, ppm	0.8	0.9	0.4	0.6

DYEHOUSE A WATER QUALITY DATA CREEK WATER SUPPLY

pH7.104.987.517.72Specific Conductance, micromhos 25C180197207209Methyl Orange Alkalinity as CaCO3, ppm36223030Chloride as Cl, ppm12121214Total Hardness as CaCO3, ppm80768074Calcium as CaCO3, ppm52464846Magnesium as CaCO3, ppm28303228Silica as Si02, ppm4.45.24.04.0Sulfate as SO4, ppm61687071Ortho Phosphate as PO4, ppm0.71.41.21.0Total Copper as Cu, ppm0.090.100Total Iron as Fe, ppm0.132.01.01.1			1985 Sar	nple Data	
Specific Conductance, micromhos 25C 180 197 207 209 Methyl Orange Alkalinity as CaCO3, ppm 36 22 30 30 Chloride as Cl, ppm 12 12 12 14 Total Hardness as CaCO3, ppm 80 76 80 74 Calcium as CaCO3, ppm 52 46 48 46 Magnesium as CaCO3, ppm 28 30 32 28 Silica as Si02, ppm 4.4 5.2 4.0 4.0 Sulfate as SO4, ppm 61 68 70 71 Ortho Phosphate as PO4, ppm 0.7 1.4 1.2 1.0 Total Copper as Cu, ppm 0.09 0.1 0 0 Total Iron as Fe, ppm 0.13 2.0 1.0 1.1 Soluble Iron as Fe, ppm 0.05 1.0 0.09 0.0 Total Manganese as 0.4 0.9 0.6 1.0 Soluble Iron as Fe, appm 0.4 0.9 0.6 1.0	Determination	6-22	6-25	6-26	6-28
micromhos 25C 180 197 207 209 Methyl Orange Alkalinity as CaCO ₃ , ppm 36 22 30 30 Chloride as Cl, ppm 12 12 12 14 Total Hardness as CaCO ₃ , ppm 80 76 80 74 Calcium as CaCO ₃ , ppm 52 46 48 46 Magnesium as CaCO ₃ , ppm 28 30 32 28 Silica as SiO ₂ , ppm 4.4 5.2 4.0 4.0 Sulfate as SO ₄ , ppm 61 68 70 71 Ortho Phosphate as PO ₄ , ppm 0.7 1.4 1.2 1.0 Total Copper as Cu, ppm 0.09 0.1 0 0 Total Iron as Fe, ppm 0.13 2.0 1.0 1.1 Soluble Iron as Fe, ppm 0.05 1.0 0.07 0.07 Total Manganese as 0.4 0.9 0.6 1.0 Soluble Manganese as 0.4 0.9 0.6 1.0	рH	7.10	4.98	7.51	7.71
as CaCO ₃ , ppm 36 22 30 30 Chloride as Cl, ppm 12 12 12 14 Total Hardness as CaCO ₃ , ppm 80 76 80 74 Calcium as CaCO ₃ , ppm 80 76 48 46 Magnesium as CaCO ₃ , ppm 52 46 48 46 Magnesium as CaCO ₃ , ppm 28 30 32 28 Silica as Si0 ₂ , ppm 4.4 5.2 4.0 4.0 Sulfate as SO ₄ , ppm 61 68 70 71 Ortho Phosphate as PO ₄ , ppm 0.7 1.4 1.2 1.0 Total Copper as Cu, ppm 0.09 0.1 0 0 Total Iron as Fe, ppm 0.13 2.0 1.0 1.1 Soluble Iron as Fe, ppm 0.05 1.0 0.09 0.0 Total Manganese as Mn, ppm 0.4 0.9 0.6 1.0		180	197	207	209
Total Hardness as CaCO3, ppm80768074Calcium as CaCO3, ppm52464846Magnesium as CaCO3, ppm28303228Silica as SiO2, ppm4.45.24.04.0Sulfate as SO4, ppm61687071Ortho Phosphate as PO4, ppm0.71.41.21.0Total Copper as Cu, ppm0.090.100Total Iron as Fe, ppm0.132.01.01.1Soluble Iron as Fe, ppm0.051.00.090.0Total Manganese as Mn, ppm0.40.90.61.0		36	22	30	30
CaCO ₃ , ppm 80 76 80 74 Calcium as CaCO ₃ , ppm 52 46 48 46 Magnesium as CaCO ₃ , ppm 28 30 32 28 Silica as SiO ₂ , ppm 4.4 5.2 4.0 4.0 Sulfate as SO ₄ , ppm 61 68 70 71 Ortho Phosphate as PO ₄ , ppm 0.7 1.4 1.2 1.0 Total Copper as Cu, ppm 0.09 0.1 0 0 Total Iron as Fe, ppm 0.13 2.0 1.0 1.1 Soluble Iron as Fe, ppm 0.05 1.0 0.09 0.0 Total Manganese as Mn, ppm 0.4 0.9 0.6 1.0 Soluble Manganese as 0.4 0.9 0.6 1.0	Chloride as Cl, ppm	12	12	12	14
ppm 52 46 48 46 Magnesium as CaCO3, 28 30 32 28 Silica as SiO2, ppm 4.4 5.2 4.0 4.0 Sulfate as SO4, 61 68 70 71 Ortho Phosphate as PO4, ppm 0.7 1.4 1.2 1.0 Total Copper as Cu, ppm 0.09 0.1 0 0 Total Iron as Fe, ppm 0.13 2.0 1.0 1.1 Soluble Iron as Fe, ppm 0.05 1.0 0.09 0.0 Total Manganese as Mn, ppm 0.4 0.9 0.6 1.0 Soluble Manganese as 0.4 0.9 0.6 1.0		80	76	80	74
ppm 28 30 32 28 Silica as Si02, ppm 4.4 5.2 4.0 4.0 Sulfate as SO4, ppm 61 68 70 71 Ortho Phosphate as PO4, ppm 0.7 1.4 1.2 1.0 Total Copper as Cu, ppm 0.09 0.1 0 0 Total Iron as Fe, ppm 0.13 2.0 1.0 1.1 Soluble Iron as Fe, ppm 0.05 1.0 0.09 0.0 Total Manganese as Mn, ppm 0.4 0.9 0.6 1.0		52	46	48	46
Sulfate as SO ₄ , 61 68 70 71 Ortho Phosphate as 0.7 1.4 1.2 1.0 Ortal Copper as Cu, 0.09 0.1 0 0 Total Copper as Cu, 0.09 0.1 0 0 Total Iron as Fe, ppm 0.13 2.0 1.0 1.1 Soluble Iron as Fe, ppm 0.05 1.0 0.09 0.0 Total Manganese as 0.4 0.9 0.6 1.0 Soluble Manganese as 0.4 0.9 0.6 1.0		28	30	32	28
ppm 61 68 70 71 Ortho Phosphate as PO ₄ , ppm 0.7 1.4 1.2 1.0 Total Copper as Cu, ppm 0.09 0.1 0 0 Total Iron as Fe, ppm 0.13 2.0 1.0 1.1 Soluble Iron as Fe, ppm 0.05 1.0 0.09 0.0 Total Manganese as Mn, ppm 0.4 0.9 0.6 1.0	Silica as SiO ₂ , ppm	4.4	5.2	4.0	4.0
PO ₄ , ppm 0.7 1.4 1.2 1.0 Total Copper as Cu, 0.09 0.1 0 0 Total Iron as Fe, ppm 0.13 2.0 1.0 1.1 Soluble Iron as Fe, ppm 0.05 1.0 0.09 0.0 Total Manganese as 0.4 0.9 0.6 1.0 Soluble Manganese as 0.4 0.9 0.6 1.0		61	68	70	71
ppm0.090.100Total Iron as Fe, ppm0.132.01.01.1Soluble Iron as Fe, ppm0.051.00.090.0Total Manganese as Mn, ppm0.40.90.61.0Soluble Manganese as0.40.90.61.0		0.7	1.4	1.2	1.0
Soluble Iron as Fe, ppm0.051.00.090.0Total Manganese as Mn, ppm0.40.90.61.0Soluble Manganese as		0.09	0.1	0	0
Total Manganese as Mn, ppm0.40.90.61.0Soluble Manganese as	Total Iron as Fe, ppm	0.13	2.0	1.0	1.15
Mn, ppm 0.4 0.9 0.6 1.0 Soluble Manganese as	Soluble Iron as Fe, ppm	0.05	1.0	0.09	0.09
		0.4	0.9	0.6	1.0
		0.4	0.8	0.4	1.0

DYEHOUSE A WATER QUALITY DATA CREEK WATER SUPPLY

. .

		1985 Sar	nple Data	
Determination	7-10	7-11	7-15	7- 16
рН	7.51	7.71	7.6	7.34
Specific Conductance, micromhos 25C	207	207	204	28
Methyl Orange Alkalinity as CaCO ₃ , ppm	30	30	32	24
Chloride as Cl, ppm	12	14	12	12
Total Hardness as CaCO ₃ , ppm	80	74	102	92
Calcium as CaCO ₃ , ppm	48	46	· 50	44
Magnesium as CaCO ₃ , ppm	32	28	52	48
Silica as SiO ₂ , ppm	4	4	4	4
Sulfate as SO ₄ , ppm	78	71	68	70
Ortho Phosphate as PO ₄ , ppm	1.2	1.0	1.8	1.2
Total Copper as Cu, ppm	0	0	0	0
Total Iron as Fe, ppm	1.0	1.15	0.78	0.53
Soluble Iron as Fe, ppm	0.09	0.15	0.09	0.07
Total Manganese as Mn, ppm	0.6	1.0	0.6	0.6
Soluble Manganese as Mn, ppm	0.4	1.0	0.6	0.6

DYEHOUSE A WATER QUALITY DATA CREEK WATER SUPPLY

с.

		1985 Sa	mple Data	
Determination	5-28	5-29	6-10	6-11
рН	6.36	7.1	7.3	6.5
Specific Conductance, micromhos 25C	360	443	480	450
Methyl Orange Alkalinity as CaCO ₃ , ppm	150	165	162	155
Chloride as Cl, ppm	24	. 20	20	24
Total Hardness as CaCO ₃ , ppm	150	149	150	148
Calcium as CaCO ₃ , ppm	110	110	105	110
Magnesium as CaCO 3, ppm	40	39	45	38
Silica as SiO ₂ , ppm	11	15	12	11.6
Sulfate as SO ₄ , ppm	64	50	45	55
Ortho Phosphate as PO ₄ , ppm	2.5	1.9	2.0	1.75
Total Copper as Cu, ppm	0.09	0	0	0.05
Total Iron as Fe, ppm	0.72	2.5	1.5	1.9
Soluble Iron as Fe, ppm	0.60	2.2	0.9	1.0
Total Manganese as Mn, ppm	0.7	1.2	0.5	1.1
Soluble Manganese as Mn, ppm	0.7	1.2	0.5	1.1

DYEHOUSE A WATER QUALITY DATA WELL WATER SUPPLY

		1985 Sa	mple Data	
Determination	6-22	6-25	6-26	6-28
pH	6.8	6.9	6.75	6.85
Specific Conductance, micromhos 25C	464	395	443	451
Methyl Orange Alkalinity as CaCO ₃ , ppm	145	155	149	156
Chloride as Cl, ppm	22	28	26	22
Total Hardness as CaCO ₃ , ppm	149	148	149	150
Calcium as CaCO ₃ , ppm	109	120	120	121
Magnesium as CaCO ₃ , ppm	40	28	29	29
Silica as Si0 ₂ , ppm	14	15	15	15
Sulfate as SO ₄ , ppm	60	61	60	61
Ortho Phosphate as PO ₄ , ppm	2.6	2.0	2.4	2.2
Total Copper as Cu, ppm	0.05	0	0	0
Total Iron as Fe, ppm	0.9	1.2	1.2	1.0
Soluble Iron as Fe, ppm	0.8	0.5	0.8	0.9
Total Manganese as Mn, ppm	0.9	1.2	1.1	1.0
Soluble Manganese as Mn, ppm	0.8	1.1	1.1	1.0

.

DYEHOUSE A WATER QUALITY DATA WELL WATER SUPPLY

		1985 Sar	mple Data	
Determination	5-28	5-29	6-10	6-11
рН	6.41	6.25	6.50	6.80
Specific Conductance, micromhos 25C	120	125	122	136
Methyl Orange Alkalinity as CaCO ₃ , ppm	52	48	50	51
Chloride as Cl, ppm	14	14	12	14
Total Hardness as CaCO ₃ , ppm	48	56	60	44
Calcium as CaCO ₃ , ppm	44	40	45	40
Magnesium as CaCO ₃ , ppm	4	16	15	4
Silica as Si0 ₂ , ppm	5	4.8	5	4.9
Sulfate as SO ₄ , ppm	18	16	18	20
Ortho Phosphate as PO ₄ , ppm	2	2.1	1.9	1.0
Total Copper as Cu, ppm	0	0.1	0	0.4
Total Iron as Fe, ppm	0.39	0.23	0.32	0.39
Soluble Iron as Fe, ppm	0.26	0.18	0.28	0.30
Total Manganese as Mn, ppm	0.1	0.1	0.5	0.3
Soluble Manganese as Mn, ppm	0.1	0.1	0.5	0.3

DYEHOUSE A WATER QUALITY DATA BLENDED WATER SUPPLY

.

Ŧ

		1985 Sar	nple Data	
Determination	6-22	6-25	6-26	6-28
рН	6.21	6.40	6.36	6.42
Specific Conductance, micromhos 25C	120	122	128	126
Methyl Orange Alkalinity as CaCO ₃ , ppm	51	48	46	50
Chloride as Cl, ppm	12	16	14	15
Total Hardness as CaCO ₃ , ppm	50	48	51	50
Calcium as CaCO ₃ , ppm	41	40	41	42
Magnesium as CaCO ₃ , ppm	9	8	10	8
Silica as Si0 ₂ , ppm	4.9	5.0	5.0	4.8
Sulfate as SO ₄ , ppm	16	18	16	17
Ortho Phosphate as PO ₄ , ppm	1.5	2.1	1.3	1 .7
Total Copper as Cu, ppm	0	1.2	0	0
Total Iron as Fe, ppm	0.5	0.44	0.36	0.39
Soluble Iron as Fe, ppm	0.3	0.15	0.14	0.09
Total Manganese as Mn, ppm	0.1	0.1	0.2	0.1
Soluble Manganese as Mn, ppm	0.1	0	0	0.1

DYEHOUSE A WATER QUALITY DATA BLENDED WATER SUPPLY

APPENDIX B

DYEHOUSE B WATER QUALITY DATA

1

Date: <u>January</u> 1, 1985			Samn	le Point	
Determination	City Water	Plant Filtered City Water	Stack Gas Tank	Hot Water Tank	#17 Mix Tank
рН	6.21	6.00	4.22	4.03	10 ES
Specific Conductance, micromhos 25C	26	24	28	28	
Methyl Orange Alkalinity as CaCO ₃ , ppm	12	20	18	16	
Chloride as Cl, ppm	4	8	8	14	
Total Hardness as CaCO ₃ ppm	20	36	28	26	
Calcium as CaCO ₃ , ppm	12	10	22	12	
Magnesium as CaCO ₃ , ppm	8	26	6	14	
Silica as SiO ₂ ,ppm	1.3	1.9	1.8	1.8	
Sulfate as SO ₄ , ppm	2	4	3	2	
Ortho Phosphate as PO ₄ pm	0.5	0.8	0.7	0.5	
Total Copper as Cu, ppm	0.02	0		0	0.5
Total Iron as Fe, ppm	0.19	0.22	1.4	0.70	0.24
Soluble Iron as Fe, ppm	0.06	0.03	1.1	0.42	0.19
Total Manganese as Mn, ppm	0	0		0	0
Total Aluminum as Al, ppm	0.08	0.03		0	0
Soluble Copper as Cu,ppm	0.02	0	0	0	
Soluble Manganese as Mn,ppm	0	0	0.1	0	cip sate
Soluble Aluminum as Al,ppm	0	0	0	0	-

Date: February 9, 1985	99999999999999999999999999999999999999			Samala	Doint	
Determination	City Water	Stack Econ.	Stack Econ. Filter Outlet 1140 Hours	Sample Stack Econ. Filter Outlet 1420 Hours	Hot Water Tank 1420 Hours	Hot Water Storage Before DH
pН	5.95	3.98	4.38	4.45	5.20	5.44
Specific Conductance, micromhos 25C	25	30	31		nga dat	26
Methyl Orange Alkalinity as CaCO ₃ , ppm	24	30	26		90 m i	20
Chloride as Cl, ppm	8	8	6			8
Total Hardness as CaCO ₃ , ppm	10	10	14			12
Calcium as CaCO 3, ppm	6	4	8			8
Magnesium as CaCO ₃ ppm	4	6	6			4
Silica as SiO ₂ , ppm	1.4	1.6	1.9		848 8 50	1.2
Sulfate as SO ₄ , ppm	0	1	3			0
Ortho Phosphate as PO ₄ , ppm	0	1.0	1.3	1.5	0.5	0
Total Copper as Cu , ppm	0	0	0	0	0	0
Total Iron as Fe, ppm	0.16	0.29	0.48	1.0	0.48	0.22
Soluble Iron as Fe, ppm	0.08	0.29	0.22	0.80	0.36	0.18
Manganese as Mn, ppm	0	0	0	0	0	0
Aluminum as Al, ppm	0.01	0.02		0.04	0	0

Date: <u>January 28, 1985</u>		Sample Poin	<u>t</u>
Determination	Floor Mix Tank	#6 Beck Hot Water	Kier Fill Cold Water Line
pН	3.99	4.0	5.5
Specific Conductance, micromhos 25C	28	28	24
Methyl Orange Alkalinity as CaCO3, ppm	19	19	20
Chloride as Cl, ppm	5	5	4
Total Hardness as CaCO ₃ , ppm	18	18	. 18
Calcium as CaCO ₃ , ppm	12	12	12
Magnesium as CaCO ₃ , ppm	6	6	6
Silica as SiO ₂ , ppm	1.6	1.6	1.7
Sulfate as SO ₄ , ppm	3	3	3
Ortho Phosphate as PO ₄ , ppm	0.55	0.50	0.6
Total Copper as Cu, ppm	0.85	0	0.80
Total Iron as Fe, ppm	0.48	0.18	0.13
Soluble Iron as Fe, ppm	0.36	0.09	0.10
Total Manganese as Mn, ppm	0	0	0.1
Total Aluminum as Al, ppm	0	0	0

Date: February 9, 1985/Feb	ruary 10-	-85		Comple	Daint	
Determination	#7 Beck 1330 Hours	# 7 Hot Water 1515 Hours	City Water 0900 Hours	Sample Cold Water Bleach Mix Rooms	Hot Water Wet Floor	Econ. Outlet 0930 Hours
pН	4.40	4.67	6.22	6.13	4.89	3.64
Specific Conductance, micromhos 25C		31	25	40	27	33
Methyl Orange Alkalinity as CaCO ₃ , ppm		22	28	24	24	18
Chloride as Cl, ppm		8	10	10	8	8
Total Hardness as CaCO ₃ , ppm		12	12	0	28	26
Calcium as CaCO ₃ , ppm		10	12	0	12	14
Magnesium as CaCO ₃ , ppm		2	0	0	16	12
Silica as SiO ₂ , ppm		1.5	1.5	1.8	1.6	1.2
Sulfate as SO ₄ , ppm		2	2	3	0	0
Ortho Phosphate as PO ₄ , ppm		1.0	0	4.7	0	0.9
Total Copper as Cu, ppm	0	0	0	0	0	0.8
Total Iron as Fe, ppm	0.50	0.52	0.10	0.49	0.8	1.0
Soluble Iron as Fe, ppm	0.45	0.30	0 . 05	0.10	0.4	0.80

Date: February 9, 1985/Fe	bruary 10-85			
Determination	Hot Jet Hot Water Line	Sample Poir #7 Beck Water at Bucket Station	t Stack Hot Water 0830 Hours	Econ. Outlet 0930 Hours
рН	4.26	5.38	3.80	4.07
Specific Conductance, micromhos 25C	42	41	31	35
Methyl Orange Alkalinity as CaCO ₃ , ppm	22	24	26	18
Chloride as Cl, ppm	8	10	6	6
Total Hardness as CaCO ₃ , ppm	14	34	20	20
Calcium as CaCO ₃ , pm	14	12	10	10
Magnesium as CaCO ₃ , ppm	0	22	10	10
Silica as SiO ₂ , ppm	2.0	1.5	1.6	1.3
Sulfate as SO ₄ , ppm	1	0	0	0
Ortho Phosphate as PO ₄ , ppm	0.8	3.8	0.9	1.2
Total Copper as Cu , ppm	0	0	0	0
Total Iron as Fe, ppm	0.78	0.21	0.42	0.33
Soluble Iron as Fe, ppm	0.55	0.08	0.24	0.21

Date: February 11, 1985	n ga mang sang sa da sang sa sa sa sa ga sa ga sa	98 - 18 11 B - 18 - 18 - 18 - 18 - 18 - 1	~ .	~~···
Determination	Hot Water Tank 0930 Hours	Hot Water Tank 12 : 45	<u>Sample</u> #5 Beck Hot Water	Point #6 Beck Bucket Station Cold Water
рН	4.42	4.43	4.60	5.31
Specific Conductance, micromhos 25C	35	34	35	30
Methyl Orange Alkalinity as CaCO ₃ , ppm	26	24	22	22
Chloride as Cl, ppm	10	8	8	10
Total Hardness as CaCO ₃ , ppm	34	10	22	0
Calcium as CaCO ₃ , ppm	10	10	12	0
Magnesium as CaCO ₃ , ppm	24	0	10	0
Silica as SiO ₂ , ppm	1.7	1.3	1.2	1.6
Sulfate as SO ₄ , ppm	0	· 1	1	1
Ortho Phosphate as PO ₄ , ppm	1.6	1.0	1.9	1.6
Total Copper as Cu, ppm	0	0	0	0
Total Iron as Fe, ppm	0.39	0.34	0.42	0.22
Soluble Iron as Fe, ppm	0.21	0.28	0.24	0.16

Date: <u>February 26, 1985</u>				Sample	Point
Determination	Heat Exchanger Outlet	Hot Water Storage Outlet	Plant Filter Outlet	#1 Filter Outlet	Jet Mix Tank Hot Water
рН	6.37	4.25	6.01	6.00	4.31
Specific Conductance, micromhos 25C	28	29	22	30	31
Methyl Orange Alkalinity as CaCO ₃ , ppm	, 10	20	18	18	22
Chloride as Cl, ppm	4	6	8	8	12
Total Hardness as CaCO ₃ , ppm	6	32	10	18	52
Calcium as CaCO ₃ , ppm	6	12	10	10	12
Magnesium as CaCO ₃ , ppm	0	20	0	8	40
Silica as SiO ₂ , ppm	1.6	1.7	1.7	1.9	2.0
Sulfate as SO ₄ , ppm	0	0	0	0	0
Ortho Phosphate as PO ₄ , ppm	1.2	1.6	0.4	0	2.4
Total Copper as Cu, ppm	0	0.01			
Total Iron as Fe, ppm	0.14	0.42	0.18	0.11	0.69
Soluble Iron as Fe, ppm	0.06	0.31	0.05	0.08	0.49

Date: February 26 1985			
Determination	Stack Econ. Outlet	<u>Sample Poi</u> ∦7 Beck Hot Water	int Floor Mix Area Hot Water
рН	4.21	4.29	4.85
Specific Conductance, micromhos 25C	29	25	22
Methyl Orange Alkalinity as CaCO ₃ , ppm	18	18	22
Chloride as Cl, ppm	6	8	8
Total Hardness as CaCO ₃ , ppm	34	32	10
Calcium as CaCO ₃ , ppm	16	10	8
Magnesium as CaCO ₃ , ppm	18	22	2
Silica as SiO ₂ , ppm	1.8	1.3	1.8
Sulfate as SO ₄ , ppm	0	0	0
Ortho Phosphate as PO ₄ , ppm	2.2	1.6	0.7
Total Iron as Fe, ppm	0.75	0.95	0.66
Soluble Iron as Fe, ppm	0.59	0.52	0.24

•

Date: <u>March 19, 1985</u>	<u>.</u>		<u>Sample P</u>	oint		
Determination	Unfil- tered City Water	Fil- tered City Water	Heat Ex- changer Inlet	Stack Econ. Outlet	Hot Water Storage Tank	Cold Water Beck Bucket Station
рН	6.31	6.26	6.69	5.14	5.35	6.77
Specific Conductance micromhos 25C	2 3	24	29	32	31	29
Methyl Orange Alkali as CaCO3,ppm	nity 22	18	22	20	24	28
Chloride as Cl, ppm	8	6	8	6	8	6
Total Hardness as CaCO ₃ ,ppm	10	12	8	10	12	10
Calcium as CaCO 3, ppm	8	8	6	8	10	8
Magnesium as CaCO ₃ , ppm	2	4	2	2	2	2
Silica as SiO ₂ , ppm	1.8	1.7	1.4	1.8	1.5	1.8
Sulfate as SO ₄ , ppm	5	2	0	0	0	0
Ortho Phosphate as PO ₄ ,ppm	0.5	0.2	1.9	1.9	1.9	1.9
Total Copper as Cu, ppm	0	0	0	0	0	0
Total Iron as Fe, ppm	0.16	0.11	0.12	0.18	0.38	0.18
Soluble Iron as Fe, ppm	0.04	0.05	0.07	0.09	0.22	0.09

..

DYEHOUSE B WATER QUALITY DATA

Hot Water Beck Fill	<u>Sample Poin</u> Jet Mix Tub Hot Water	<u>t</u> Hot Water Wet Floor
5.44	5.41	5.39
31	34	24
18	16	26
8	10	8
22	16	42
18	14	32
4	2	10
1.6	2.0	1.9
1	2	2
1.9	1.8	1.8
0	0	0
0.41	0.49	0.82
0.30	0.28	0.20
	Beck Fill 5.44 31 18 8 22 18 4 1.6 1 1.9 0 0 0.41	Beck FillTub Hot Water5.445.413134181681022161814421.62.0121.91.8000.410.49

,

Date: <u>March 23, 1985</u>		Fil- tered	Samp	<u>le Point</u> Kier Hot	#3 Čold	# 3 Hot
Determination	City Water	City Water	Kier Filter	Water Filter RM.	Water Fil- tered	Water Fil- tered
рН	6.39	6.44	6.45	5.54	6.49	5.62
Specific Conductance, micromhos 25C	24	26	26	37	27	38
Methyl Orange Alkalini as CaCO3, ppm	ty 16	20	16	20	22	22
Chloride as Cl, ppm	8	6	6	8	8	6
Total Hardness as CaCO ₃ , ppm	22	10	8	22	6	مە بىر
Calcium as CaCO ₃ , ppm	8	6				ào 100
Magnesium as CaCO ₃ , ppm	14	4				400 MB
Silica as SiO ₂ , ppm	1.8	1.8	1.5	1.8	1.8	1.9
Sulfate as SO ₄ , ppm	6	3	2	2	2	5
Ortho Phosphate as PO ₄ , ppm	0.2	0.5	0.4	2.5	0.5	2.6
Total Copper as Cu, ppm	0	0	0	0.22	0	0
Total Iron as Fe, ppm	0.20	0.25	0.11	1.20	0.21	1.18
Soluble Iron as Fe ppm	0.13	0.08	0.10	1.15	0.12	1.05

.

Date: <u>March 23, 1985</u>			Samr	le Point	
Determination	#3 Kier Hot Water Unfil- tered	∦ 7 Kier Cold Water Unfil- tered	#7 Kier Hot Water Unfil- tered	#8 Kier Cold Water Fil- tered	∦8 Kier Hot Water Fil- tered
рН	5.76	6.41	5.58	6.44	5.61
Specific Conductance, micromhos 25C	35	25	34	25	38
Methyl Orange Alkalinity as CaCO3, ppm	24	20	22	22	30
Chloride as Cl, ppm	8	8	6	6	8
Total Hardness as CaCO ₃ , ppm		8		10	8 0 80
Calcium as CaCO ₃ , ppm		6		4	138 449
Magnesium as CaCO ₃ , ppm		2		4	
Silica as SiO ₂ , ppm	2.2	1.6	1.9	1.6	2.2
Sulfate as SO ₄ , ppm	5	3	2	0	3
Ortho Phosphate as PO ₄ , ppm	2.6	0.4	2.5	0.6	2.6
Total Copper as Cu, ppm	0.04	0	0.02	0	0.01
Total Iron as Fe, ppm	1.30	0.22	1.15	0.21	1.15
Soluble Iron as Fe, ppm	0.80	0.18	0.38	0.10	1.05

¥

i i

Date: March 23, 1985						
	<u>Sample Poi</u> #3	nt				
Determination	<i>r J</i> Kier	Kier				
	Hot Water	"Cold"				
	Unfiltered	Hot Water				
рН	5.56	5.84				
Specific Conductance, micromhos 25C	29	200				
Phenolphthalein Alkalinity as CaCO3, ppm	0	0				
Methyl Orange Alkalinity as CaCO3, ppm	22	20				
Chloride as Cl, ppm	10	8				
Total Hardness as CaCO ₃ , ppm	18	14				
Calcium as CaCO ₃ , ppm	18	14				
Magnesium as CaCO ₃ , ppm	0	0				
Silica as SiO ₂ , ppm	2.2	1.7				
Sulfate as SO ₄ , ppm	7	2				
Ortho Phosphate as PO ₄ , ppm	2.4	0				
Total Copper as Fe, ppm	0.03	0				
Total Iron as Fe, ppm	1.20	0.80				
Soluble Iron as Fe, ppm	0.75	0.18				

$\mathsf{VITA}^{\setminus}$

Brent Wayne Cowan

Candidate for the Degree of

Master of Science

Thesis: WATER QUALITY IMPACTS ON TEXTILE DYE HOUSE OPERATIONS

Major Field: Environmental Engineering

Biographical:

- Personal Data: Born in Brush, Colorado, January 19, 1949, the son of Mr. and Mrs. I. L. Cowan
- Education: Graduated from Fort Morgan High School, Fort Morgan, Colorado, in May, 1967; received Bachelor of Science degree in Civil Engineering from Villanova University in 1979; enrolled in Masters Program at Villanova University, 1979-1981; completed requirements for the Master of Science Degree at Oklahoma State University in July, 1986.
- Professional Experience: Project Scientist and Engineering Assistant, Roy F. Weston, 1970-1979; Project Engineer, Betz Converse Murdoch, 1979-1981; Project Coordinator, International Coal Refining Company, 1981-1982; Technical and Environmental Superintendent, Franklin Chemicals, 1982-1983; Project Manager, Environmental Engineering Consultants, 1983-1984; Graduate Student Assistant, Oklahoma State University, School of Bioenvironmental Engineering, 1983-1984; District Manager, Scholler Inc., 1984-Present.