A STUDY OF THE EPSILON ALGORITHM AND APPLICATIONS

By
HUI-WEN CHIANG
Bachelor of Law
Fu Jen University
Taipei, Taiwan
Republic of China

1978

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of
the requirements
for the Degree of MASTER OF SCIENCE

December, 1986

$$
\begin{aligned}
& \text { Thenes } \\
& \text { C8b } \\
& \text { copat }
\end{aligned}
$$

 AND APPLICATIONS

Thesis Approved:

1263939

PREFACE

This thesis describe Wynn and Shanks' epsilon algorithm and its implementations. The main objective of this study is to observe the characteristics of the epsilon algorithm and to formulate an update form of the epsilon algorithm to speed up iterative processes by reducing duplicated steps. The update epsilon algorithm has been tested on several sets of numerical problems and the results have been satisfactory.

The author wishes to express her sincere appreciation to her major adviser, Dr. John P. Chandler, for his lasting patience, constant guidance, and expertise throughout this study. Appreciation is also expressed to the other committee members, Dr. Donald W. Grace and Dr. Sharilyn A. Thoreson, for their cooperation and assistance. Gratitude is also extended to Sharon Steele for her outstanding clerical assistance.

Finally, special thanks is expressed to my parents and to my husband for their continued emotional support, moral encouragement and understanding throughout this study.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION. 1
II. THE EPSILON ALGORITHM 5
Introduction and Historical Overview 5
Motivation of Shanks' Transforms 6
Wynn's Epsilon Algorithm 9
Implementation of Epsilon Algorithm 12
Stability of Epsilon Algorithm 17
III. UPDATE FORM OF THE EPSILON ALGORITHM. 19
Motivations 19
Update Epsilon Algorithm 22
Numerical Test Problems. 23
Fourier Series. 23
The Confluent Hypergeometric Function 25
IV. SINGULAR RULES FOR THE $\mathbb{E P S I L O N}$ ALGORITHM. 28
Introduction 28
Singular Rules 29
Applying the Singular Rule to the Epsilon Program. 33
Test Results 35
V. ERROR EXPANSION SERIES AND TEST RESULTS 36
VI. CONCLUSION AND RECOMMENDATIONS 40
A SELECTED BIBLIOGRAPHY 42
APPENDIX A - PROGRAM LISTING OF "SLAB" WITH UPDATE EPSILON ALGORITHM 45
APPENDIX B - PROGRAM LISTING OF EPSILON ALGORITHM WITH THE UPDATE FORM AND SINGULAR RULE 53
APPENDIX C - PROGRAM LISTING OF ERROR EXPANSION SERIES 62

LIST OF TABLES

Table Page
I. The Epsilon Table for Leibnitz Series, Sum=3.14159... 13
II. The Epsilon Table of Shanks' Double GeometricSeries at $X=10$. Sum=2.77777778D-1. 15
III. Failure of Aitken's Method on Shanks' Double Geometric Series at $\mathrm{X}=10$. Sum=.277777D-1 15
IV. Failure of Aitken's Method on Lubkin's Series, Sum=1.1314... 16
V. The Epsilon Table for Lubkin's Series,
Sum=1.131 17
VI. The Values of Twenty Diffusions at Time=0.666111170477D1 25
VII. The Epsilon Table in Confluent HypergeometricFunction . 27

```
LIST OF FIGURES
```

Figure Page

1. Graphs of the Numerical Sequences 6
2. Configuration for the e_{i} transforms 9
3. Epsilon Algorithm Lozenge Diagram 11
4. Programming Lozenge Algorithm 19
5. Motivation of the Update Epsilon Algorithm. 22
6. Numerical Example of the Singular Rule Case 28
7. Epsilon Scheme of the Singular Case 29
8. Singular Case in the Large Lozenge Diagram 30
9. Programming Lozenge Diagram of Singular Rule. 34

CHAPTER I

INTRODUCTION

a
Techniques for accelerating the convergence of iterative processes have been developed almost a century. (1) $D($ One of the main strategies of such techniques is to use some kind of transformation on the partial sums of a slowly convergent series to produce a transformed series which converges to the same limit as the original sequence, but faster.

Assume that we want to compute the sum of the series,

$$
\begin{align*}
\pi / 4 & =1-1 / 3+1 / 5-1 / 7+\ldots \\
& =\sum_{j=0}^{\infty}(-1) /(2 j+1) \tag{1.1}
\end{align*}
$$

The series converges very slowly. Even after 500 terms there still occur changes in the third decimal. If we do not know that the limit is $\sqrt{9} / 4$, it is very difficult to find the limit to the required tolerance, unless we can do something besides simply adding up partial sums. This is what the acceleration methods are designed for.
(v) (There are several acceleration techniques available for speeding up the convergence of an iterative solution. These well-known techniques include Richardson integration,

Romberg integration, Euler's method, power series methods, the Q-D algorithm, Aitken's method, the epsilon algorithm, etc. Most of these techniques work well in most of the problems and then fail miserably in some specific cases. However, the epsilon algorithm is considered a relatively simple but powerful technique for accelerating the convergence of slowly convergent sequences and inducing convergence in divergent sequencesty The epsilon algorithm may also be used (i) to obtain useful results from divergent series and iterations, (ii) to obtain the limits of iterated vector and matrix sequences, (iii) to aid in the solution of differential and integral equations, (iv) to carry out numerical integration in a new way, (v) to extrapolate, (vi) to fit a curve to a polynomial or to a constant plus a sum of exponentials. 1
\Rightarrow (It is the purpose of this thesis to study the properties of the epsilon algorithm and, based on its recursive nature, to modify the epsilon algorithm for speeding up the iterative process in order to reduce some possible duplicate steps by saving previous results for further computation (see Chapter III). Furthermore, the discussion of the singular rule which was suggested by Wynn to overcome the instability of the epsilon algorithm is also included in this paper.)

Since the transformations take a very important role in the epsilon algorithm, a brief historical overview, as well as Shanks' motivations of the transforms, and Wynn's epsilon
table will be presented at the beginning of Chapter II. Following this will be the descriptions of the implementations and stability of the epsilon algorithm.

The motivation to update the epsilon algorithm will be presented in Chapter III. Meanwhile, the logic to update the epsilon algorithm will be described step by step. (The description of several numerical problems which have been tested both on the "original" and the "update" epsilon algorithm are then illustrated.) (The four sets of the numerical test problems are Fourier series, confluent hypergeometric function, Gauss-Seidel relaxation scheme, and Jacobi relaxation scheme. The comparison of the test results between the "original" epsilon algorithm and the "update" epsilon algorithm with respect to the storage requirements and the time requirements are made with respect to each of the four test problems.

However, when using the formula of the epsilon algorithm it may sometimes occur that an entity is numerically ill-determined and causes all entities lying in a certain sector to become ill-determined too. P. Wynn's singular rule to overcome these misfortunes is studied and tested in Chapter IV.

In Chapter V, the epsilon algorithm is applied repeatedly in order to obtain a new series expansion in negative powers of n of the magnitude of the error in the partial sums of an infinite series.

The final conclusion of this thesis and the suggestion

```
for further study are given in Chapter VI. Finally, all
program listings are collected in the Appendices.
```


CHAPTER II

THE EPSILON ALGORITHM

Introduction and Historical Overview

The epsilon algorithm is a method of generating non-linear transforms for increasing the rate and expanding the domain of convergence of sequences. The family of non-linear epsilon transforms includes $e_{k}, e_{k}^{(m)}, \widetilde{e}_{k}$, and e_{d} The el transform has been developed by several well-known authors including Delauncy (1926) , Samuelson (1945), Shanks and Walton (1948), Hartree (1949), and Isakson (1949). However, more general discussions of the epsilon transforms and their applications were given by Shanks. But, because of the vast amount of time consumed and labor needed in evaluating the determinant of the entries, the use of these transformations was limited. In 1956, Wynn discovered an easier way to determine the entries of the epsilon table without any determinant calculations. Since then, the epsilon algorithm has become popular. In the next section a summary of Shanks' approach to obtain the transformations will be given.
(Let us define a typical numerical sequence A by

$$
\begin{equation*}
A=\left(A_{r}\right), r=0,1,2,3, \ldots, \tag{2.1}
\end{equation*}
$$

and draw a smooth curve through the discrete points which are plotted by A versus r. Figure 1 shows the graphs of some sequences that are defined as convergent, divergent, monotonic, and oscillatory sequences. By comparing common points in the sequences of the graph,

Figure 1: Graphs of the numerical sequences

Shanks devised a function of r in the form of

$$
\begin{equation*}
A_{r}=B+\sum_{i=1}^{k} X_{i} Q_{i}^{r} \quad\left(Q_{i} \neq 1,0\right) \tag{2.2}
\end{equation*}
$$

to represent those sequences, where X_{i} is the spectrum of amplitudes, Q_{i} is the spectrum of ratios, and B as the "base". Here the prime concern is computing the base B. For if (A_{r}) is a mathematical transient i.e. if it satisfies (2.1) and if each ratio satisfies $\left|Q_{i}\right|<1$ then clearly

$$
B=\lim _{r \rightarrow \infty} A
$$

If (A_{r}) is a transient and one or more $\left|Q_{i}\right|>=1, A_{r}$ does not converge; Shanks said that "Ar diverges from B" and calls B the "anti-limit" of (A_{r}).

Many sequences which arise naturally in analysis are indeed mathematical transients of some finite order k. Other sequences that are of infinite order ($k=$) we can in many cases say that ($A_{\boldsymbol{r}}$) is nearly of Kth order for some K -- at least for r greater than some fixed N. Then by analogy with (2.1) Shanks determines a local Kth order base $B_{k, n}$ by solving the $2 \mathrm{k}+1$ equations

$$
\left.A_{r}=B k, n+\sum_{i=1}^{k} X_{i, n} \quad Q_{i, n}, \quad n-k<=r<=n+k, n\right\rangle=k,
$$

or the $2 k+1$ quantities $B_{k, n}, X_{i, n}, Q_{i, n},(i=1,2, \ldots, k)$. Algebraically the formula for $\mathrm{B} k, \mathrm{n}$ is obtain by

where $\Delta A=A_{n+1}-A_{n}$, and this is Shanks' "K'th order transform of (A_{r})".

The transforms may also be written in operator form:

$$
\begin{equation*}
B_{k, n}=e_{k}(A)_{n} . \tag{2.4}
\end{equation*}
$$

where e_{k} is the nonlinear operator defined by the right hand side of the equation (2.3).

Followed by the first iteration transform e_{k}, the higher order iteration transforms can be gained by

$$
\begin{align*}
& C_{k, n}=e_{k}\left(B_{k, n}\right)=e_{k}^{2}\left(A_{n}\right), \\
& D_{k, n}=e_{k}\left(C_{k, n}\right)=e_{k}^{2}\left(B_{k, n}\right)=e_{k}^{3}(A), \quad(n>=3 k) \tag{2.5}
\end{align*}
$$

From the above iteration the operator e_{k} was transformed. The "Kth order iterated transformation", is defined by:
and the operator e_{d}, the "diagonal transformation", is defined by:
$e_{d}\left(A_{n}\right)=B_{n, n}$.
(From Shanks' definition of the epsilon transforms, we
may indicate the dependencies on the A_{i} as in Figure 2 where
each transform depends on the A 's directly.

A_{0}			
A_{1}	$e_{1}\left(A_{0}\right)$		
A_{2}	$e_{1}\left(A_{1}\right)$	$e_{2}\left(A_{0}\right)$	
A_{3}	$e_{1}\left(A_{2}\right)$	$e_{2}\left(A_{1}\right)$	$e_{3}\left(A_{0}\right)$
A_{4}	$e_{1}\left(A_{3}\right)$	$e_{2}\left(A_{2}\right)$	
A_{5}	$e_{1}\left(A_{4}\right)$		
A_{6}			

Figure 2: Configuration for the e_{i} transforms
......Wynn!s Epsilon Algorithm.

Note that the computation for any particular entry of A proceeds quite independently with an effort similar to anv other transformation entry. So with the use of Shanks' transforms in its present form as a sequence to sequence
transformation in which entries of the transformed sequence are of the form $e_{m}\left(S_{n}\right)(n=n, n+1, \ldots, m=1,2, \ldots)$, transform entries may be examined for approaching a limit faster. Therefore, the next transform may save a vast amount of labor.

In 1955, Wynn successfully proved the epsilon theorem which carried out the transformation more efficiently. He calculated the entries from the previous column by saving some auxiliary numbers along the calculations.

Following is the epsilon theorem developed by Wynn. Epsilon Theoren:

If
and

$$
\begin{aligned}
& E_{2 m}\left(S_{n}\right)=e_{m}\left(S_{n}\right) \\
& E_{2 m+1}\left(S_{n}\right)=\frac{1}{e_{m}\left(\Delta S_{n}\right)}
\end{aligned}
$$

then

$$
\begin{array}{r}
E_{S+1}\left(S_{n}\right)=E_{S-1}\left(S_{n+1}\right)+E_{S}\left(S_{n+1}\right)-E_{S}\left(S_{n}\right) \\
(n, s=0,1, \ldots) . \tag{2.7}
\end{array}
$$

provided that the initial conditions of $E(-1)=0$, $m=1,2, \ldots, E_{(0)}=S_{(m)}, m=0,1, \ldots ;$ and none of the quantities $\mathrm{E}_{2 \mathrm{k}}\left(\mathrm{A}_{\mathrm{a}}\right)$ becomes infinite.

The quantities Es may be placed in a two-dimensional array in which the suffix s indicates a column number and the superscript m a diagonal (see Figure 3).

Figure 3: Epsilon algorithm lozenge diagram

The even-numbered columns $E_{2 k}\left(A_{n}\right)$ display the transformed sequences $e_{k}\left(A_{n}\right)$, and generally the transformed sequences converge to the limit of the A_{n} more rapidly than the original sequence A_{n}. The odd-numbered columns $E_{2 k+1}\left(A_{n}\right)$ are intermediate and diverge to $+\infty$; so there is no need for the printing of $E_{2 k+1}\left(A_{n}\right)$.

According to equation 2.7 the four quantities can be arrange in a lozenge, as shown below.

The right side entry can be computed by adding the left side entry to the inverse of the difference of the two in the middle. So the quantities Es are constructed by means of the relationship of

$$
\left.E_{s+1}^{(m)}=E_{s-1}^{(m+1)}+\underset{s}{\left(E^{(m+1)}\right.}-E_{s}^{(m)}\right)^{-1} \quad(m, s=0,1, \ldots) .
$$

This is called the fundamental relationship of the epsilon algorithm.

Implementation of the Epsilon Algorithm

In this section we will look at some examples which apply the epsilon algorithm with great success. First, we illustrate the transforms on Leibnitz series:

$$
\begin{equation*}
\pi=4-4 / 3+4 / 5-4 / 7+\ldots \tag{2.8}
\end{equation*}
$$

This a very slowly convergent series but the epsilon algorithm speeds it up considerably. The transformation table is shown in Table I.

The tenth partial sum, A9, is correct to only one figure; it takes about 40,000,000 terms to get eight figures. However, e4 is already corrected to eight figure.

TABLE I
THE EPSILON TABLE FOR LEIBNITZ SERIES, SUM=3.14159...
$\left.\begin{array}{lccccc}\hline & & & & \text { e2 } & \text { e3 }\end{array}\right]$ e4

Aitken " Δ " method is considered one of the powerful acceleration techniques and it had been a great success at the geometric series problems. The motivation for the method is to use the ratio of consecutive errors in the partial sums sequence to transform the original sequence to a faster converging sequence. Aitken's method can be written in the forms as below:

$$
r=\frac{A_{n+1} A}{A_{n}-A}=\frac{A_{n+2}-A}{A_{n+1}-A}
$$

or

$$
2
$$

$$
\begin{align*}
A & =\frac{A_{n} A_{n+2}-A_{n+2}}{\left(A_{n+2}-A_{n+1}\right)-\left(A_{n+1}-A_{n}\right)} \tag{2.10}\\
& =A_{n}-\cdots \frac{\left(\Delta A_{n}\right)}{\left(\Delta A_{n}\right)} \tag{2.11}
\end{align*}
$$

$$
\begin{equation*}
=A_{n+2}-\frac{\left(\Delta A{ }_{n+1}\right)^{2}}{\left(\Delta A_{n}\right)} \tag{2.12}
\end{equation*}
$$

where r is a constant and $A(n)$ is a numerical sequence.
Aitken's method would seem to have a good chance of success when the ratio of consecutive errors approaches any constant between $r=0$ and $r=1$. As it can be shown that the denominators in (2.10), (2.11), and (2.12) go to zero if $r=1$ and this would lead to the method not working well. Overall, Aitken's method is the "perfect" linear convergent accelerator for the geometric series.

The next example illustrates the weakness of Aitken's method in Shanks' "double" geometric series. The sequence of partial sums of $A(n)$ is originally defined as

$$
A(n)=f(z)=1+3 z / 2+7 z^{2} / 4+15 z^{3} / 8+31 z^{4} / 14+\ldots
$$

and the right side could be written as

$$
\begin{aligned}
f(z) & =2 /(1-z)(2-z) \\
& =2 /\left(1+z+z^{2}+\ldots\right)-1 /\left(1+z / 2+z^{2} / 4+\underset{(2.13)}{ }\right)
\end{aligned}
$$

The e_{2} transform of the epsilon algorithm transforms the sum perfectly on any given five consecutive partial sums. It is not so fortunate with the Aitken's method in this case, especially when $z=10$. See Table II for the Epsilon table of Shanks' double geometric series and Table II for Aitken's transforms.

TABLE II

THE EPSILON TABLE OF SHANKS' DOUBLE GEOMETRIC SERIES AT $\mathrm{X}=10 . \mathrm{SUM}=2.7777778 \mathrm{D}-1$

n	$\mathrm{L}(\mathrm{n})$	e 2	e 4
0	.100000000 D 1		
1	.160000000 D 2		
2	.191000000 D 3	-.4062500 DO	
3	.206600000 D 4	-.2014706 D 1	
4	.214410000 D 5	-.9892857 D 1	$.2777778 \mathrm{D}-1$
5	.218316000 D 6	-.4887675 D 2	$.2777778 \mathrm{D}-1$
6	$.220269100 \mathrm{D7}$	-.2427850 D 3	$.2777778 \mathrm{D}-1$
7	.221245660 D 8	-.1209806 D 4	$.2777778 \mathrm{D}-1$
8	.221733941 D 9	-.6038617 D 4	$.2777778 \mathrm{D}-1$

TABLE III
FAILURE OF AITKEN'S METHOD ON SHANKS' DOUBLE GEOMETRIC SERIES AT X=10. SUM=. $277777 \mathrm{D}-1$.

		$L(n)$			
n					
0	0				
1	.10000 D 1				
2	.16000 D 2	$-.71 \mathrm{D}-1$			
3	.19100 D 3	-41 DO			
4	.20660 D 4	-.20 D 1	$.17 \mathrm{D}-1$		
5	.21441 D 5	-.98 D 1	$.64 \mathrm{D}-2$		
6	.21831 D 6	-.48 D 2	$-.19 \mathrm{D}-1$	$.23 \mathrm{D}-1$	
7	.22026 D 7	-.24 D 3	$-.83 \mathrm{D}-1$	$.24 \mathrm{D}-1$	
8	.22124 D 8	-.12 D 4	-.24 D 0	$.24 \mathrm{D}-1$	$.24 \mathrm{D}-1$
9	.22173 D 9	-.60 D 4	-.64 D 0	$.23 \mathrm{D}-1$	$.24 \mathrm{D}-1$

Our last example shows another disadvantage of Aitken's
method but another success with the epsilon algorithm. In Lubkin's series:

$$
\begin{aligned}
& 1.13197175 \ldots=\pi / 4+\ln (2) / 2 \\
&=1+1 / 2-1 / 3-1 / 4+1 / 5+1 / 6-\ldots \\
&(2.14)
\end{aligned}
$$

the repeated Aitken's method is completely confused by the ratio of consecutive errors which keeps switching signs and therefore will not find the convergent answer (as shown in Table IV). However, in Table V, we find that the epsilon method soon approaches the correct limit in the later columns.

TABLE IV

FAILURE OF AITKEN'S METHOD ON LUBKIN'S SERIES, SUM $=1.1314 .$.
$L(n)$
0
1.00
1.50
1.1667
0.9167
1.1167
1.2833
1.1405
1.0155
2.00
1.0155
1.30
0.1667
1.0278
2.1167
1.2064
0.1405
3.1308
.6560
-3.0888
7.9530
1.6209 -1.0027
$7.4390-23.098$

TABLE V
THE EPSILON TABLE FOR LUBKIN'S SERIES SUM $=1.131 .$.

$L(n)$	e1	e2	e3	$e 4$
0				
1.00	2.00			
1.50	1.30			
1.17	0.167	1.0755		
0.917	1.03	1.1248		
1.12	2.12	1.1420	1.1504	
1.28	1.21	1.1333	1.1359	
1.14	0.140	1.1285	1.1226	1.1300
1.02	1.07	1.1315	1.1304	1.1317
1.13				

Stability of the Epsilon Algorithm

From the nature of the epsilon algorithm we may say that it is a recursive process involving repeated subtractions and divisions. And as such one would expect it to be numerically unstable because of the possibility of loss of digits due to cancellations which occur during the transformation. However, we found that in certain circumstances it is quite remarkably stable.

After studying the behavior of some sequences Wynn found that in certain circumstances the epsilon algorithm is a regular (i.e., convergence preserving) transformation: certain types of slowly convergent monotonic sequences are transformed into slowly convergent sequences of single-signed terms and certain type of slowly convergent oscillating
sequences are transformed into rapidly convergent oscillating sequences.

Wynn concluded that transformations of monotonic sequences require the repeated subtraction of approximately equal quantities, and that in turn induces instability in which the rounding errors jump up and take complete charge of the computations after a few steps. On the other hand, the transformations of oscillating sequences showed the consistent subtraction of quantities having opposite signs with no loss of digits due to cancellation and the computation appeared to be completely stable.

CHAPTER III

UPDATE FORM OF THE EPSILON ALGORITHM

Motivations

As mentioned in Chapter II the epsilon algorithm uses the lozenge algorithm relationship. The four quantities below form a lozenge of the epsilon-array.

	$E^{(m)}$	
$E^{(m+1)}$	s	
$s-1$	$E^{(m+1)}$	$E^{(m)}$
	$s+1$	

The computation of the lozenge algorithm requires storing a vector of quantities, not a two-dimensional array; and the auxiliary variables aux0, auxl, and aux2 are implemented in the processes, as shown in Figure 4.

Figure 4: Programming lozenge algorithms

The vector l contains the quantities from Eo to Em, which lie along the thick line in Figure 9. The contents of $\mathrm{l}(\mathrm{s}-\mathrm{l})$, l(s), aux0, and aux1 form a lozenge in the E-array. The processing starts with the computation of the aux0 quantity from those of $l(s-1), l(s)$, and auxl; then the contents of l(s-1) is replaced by aux2, aux2 by aux1, and auxl by aux0 accordingly. The value of s is increased by one, and the process is moved to the next step to form a new lozenge; and the above processes are repeated until all of the entries in the new diagonal are computed.

An ALGOL epsilon algorithm procedure which is given by Henry C. Thacher, Jr. in the COMM. A.C.M. Vol. 6, 1963 follows. This algorithm is a revision of the original epsilon algorithm constructed by P. Wynn and is the one used in this thesis.

01
02

15

16

17

18

```
    Procedure Shanks(nmin,nmax,kmax,S);
    value nmin, nmax, kmax;
    integer nmin, nmax, kmax;
    array S;
    begin integer j,k,limj,limk,two kmax;
        real T0,T1;
        two kmax := kmax + kmax;
        limj := nmax;
    for j := nmin step 1 until limj do
        begin TO := 0;
        limk := j - nmin;
        if limk > two kmax then limk := two kmax; limk := limk - 1;
    for k := 0 step 1 until limk do
        begin Tl := S(j-k) - S(j-k-1);
            if T1 = 0 then T1 := T0 + 1/T1 else
            if S(j-k) = largest number then T1 := T0 else
                        T1 := largest number;
            T0 := S(j-k-1)
            S(j-k-1) := T1
        end for k
```

21 end for j
22 end Shanks

This procedure replaces the elements S (nmin) through $S(n \max -2 * k m a x)$ of the array S by the $e(k \max)$ transform of the sequence S. The elements $S(n \max -2 * k m a x+1)$ through $S(n m a x-1)$ are destroyed. Note that the array S is the same as vector l in the preceding description.

If, in a slowly convergent sequence, one can transform a certain E from the transformed sequence by applying the epsilon algorithm and we decide that a value of E_{i} may be a better approsimation to the true value, then it is certainly wasteful to start the process from the original sequence. It seems more appropriate to start the process with the transformed sequence as the initial value. We may name this situation the horizontal extended process of the epsilon algorithm.

Or if the $m+n$ elements of the basic sequence are considered after a transformed sequence has been obtained from m elements then it seems more reasonable to continue the process from the $m+1$ th element to reach a transformed position rather than from the first element. This shall be called the vertical extended process of the epsilon algorithm.

Figure 5 shows the examples of two basic situations. The computing processes to obtain the first converted value X 1 are included in the dashed zone. However, the steps needed to obtain the second converted value X 2 are shown in the thick
line zone. It is obvious that a lot of processes in the overlapped area are repeated and wasted. This leads to the following algorithm.

To extend vertically

To extend horizontally

Figure 5: Motivations of the update epsilon algorithm

Update Epsilon Algorithm

Procedure 3.1: Updated epsilon algorithm procedure
01 Procedure Shanks(nmin,nmax,kmax, S,H);
02 value nmin, nmax, kmax;
03 integer nmin, nmax, kmax;
04 array S,H;
05 begin integer j,k,limj,limk,two kmax;
06 real T0,T1;
07 two kmax := kmax + kmax;
08 limj := nmax;
09 -.for $j:=$ nmin step 1 until limj do
10 begin T0 $:=H(j)$;
11 limk :=j-nmin;
12 if limk > two kmax then limk := two kmax; limk := limk - 1;
13 -for $\mathrm{k}:=0$ step 1 until limk do

```
14 begin \(T 1:=S(j-k)-S(j-k-1)\);
```

15

```
    if \(T 1=0\) then \(T 1:=T 0+1 / T 1\) else
    if \(S(j-k)=\) largest number then \(T 1:=T 0\) else
                        T1 := largest number;
            \(T 0:=S(j-k-1)\)
            \(S(j-k-1):=T 1\)
        end for \(k\)
        \(\mathrm{H}(\mathrm{j}):=\mathrm{TO}\)
end for \(j\)
    end Shanks
```

The variables of nmin and nmax indicate the subscript of the beginning and ending terms of array, S. When nmin is not equal to 1 , the vertical extended process is applied and more elements are included in the process. The array H, holding the values of the previous Ei column, is defined for the purpose of the horizontal extended process. Kmax indicates the order of the epsilon transform. When the horizontal extending process is applied, the order of the epsilon transform is numbered from the transformed sequence and not from the original sequence.

When both horizontal and vertical extended processes are to be applied to the transformed sequence, it is recommended that one apply the horizontal extended process first, then apply the vertical extended process.

Numerical Test Problems

1. Fourier Series:

A Fourier series may be defined as an expansion of a function or representation of a function in a series of sines and cosines such as

$$
\begin{equation*}
C^{\prime \prime} f(x)=a_{0} / 2+\sum_{n=1}^{\infty} a(n) \cos (n x)+\sum_{n=1}^{\infty} b(n) \sin (n x) \tag{3.1}
\end{equation*}
$$

where $a(0), \ldots, a(n)$ and $b(1), \ldots, b(n)$ are real or complex constants. The conditions imposed on $f(x)$ to make this equation valid are that $f(x)$ has only a finite number of infinite discontinuities and only a finite number of extreme values, maxima and minima.

One of the advantages of a Fourier representation over some other representation, such as a Taylor series, is that it may represent a discontinuous function or a periodic function conveniently.

The first example is to model diffusion in an infinite slab which has plane parallel sides. The boundary conditions at the face of the slab are piecewise constant in time. The method of Fourier series is used to compute one function value and an error estimate. To accelerate the convergence of the series, the epsilon algorithm is applied. The program, called SLAB, is provided by Dr. Chandler. The update epsilon algorithm is tested by replacing the original epsilon algorithm in the SLAB program. The table VI shows the test results of the SLAB program when time is equal to 0.666111170477 D 01.

In this case, only the situation of horizontal extension is tested. The above results in Table VI are the same as the results when the original epsilon algorithm is applied twice in the SLAB program.

TABLE VI
THE VATUES OF TWENTY DIFFUSIONS AT TIME $=0.666111170477 \mathrm{D} 1$

$0.1600000 \mathrm{D}-01$	$0.9708385 \mathrm{D}-02$	$0.6143988 \mathrm{D}-02$
$0.4832352 \mathrm{D}-02$	$0.4309322 \mathrm{D}-02$	$0.3953008 \mathrm{D}-02$
$0.3657657 \mathrm{D}-02$	$0.3420466 \mathrm{D}-02$	$0.3246789 \mathrm{D}-02$
$0.3140859 \mathrm{D}-02$	$0.3105259 \mathrm{D}-02$	$0.3140859 \mathrm{D}-02$
$0.3246789 \mathrm{D}-02$	$0.3420466 \mathrm{D}-02$	$0.3657646 \mathrm{D}-02$
$0.3952481 \mathrm{D}-02$	$0.4296738 \mathrm{D}-02$	$0.4670510 \mathrm{D}-02$
$0.5001130 \mathrm{D}-02$	$0.5130765 \mathrm{D}-02$	$0.5000000 \mathrm{D}-02$

2. The Confluent Hypergeometric Function

The confluent hypergeometric equation

$$
\begin{equation*}
z y^{\prime \prime}(z)+(c-z) y^{\prime}(z)-a y(z)=0 \tag{3.2}
\end{equation*}
$$

is simplified from the hypergeometric equation by merging two of its singularities. (One solution of the confluent hypergeometric equation is

$$
\begin{align*}
y(z) & ={ }_{2} F_{1}(a, c ; z)=M(a, c: z) \\
& =1+-\frac{a}{C} \cdot-\frac{X}{1!}+-\frac{a}{C}\left(\frac{a+1)}{c}+1\right) \\
& c=0,-1,-2, \ldots \tag{3.3}
\end{align*}
$$

The solution is convergent for all finite z. In terms of the Pochhammer symbols,
$(a)_{n}=a(a+1)(a+2) \ldots(a+n-1)=(a+n-1)!/(a-1)!$,
(a) $0=1$,
the confluent hypergeometric function becomes

$$
\begin{align*}
M(a, c: z) & =F_{1}(a, c: z) \tag{3.5}\\
& =\sum_{n=1}^{\infty}-\frac{(A) n}{(\bar{C}) n^{n}}-\cdots \frac{x^{n}}{n}
\end{align*}
$$

The leading subscript 1 indicates that one Pochhammer symbol appears in the numerator and the final subscript 1 indicates one Pochhammer symbol in the denominator. If the parameter a is zero or a negative integer, M(a,c;z) becomes a polynomial.

Both the "original" epsilon algorithm and the "update" epsilon algorithm are applied to the confluent hypergeometric series with the initialization of $a=1, c=1$, and $z=(0,1.5707963267949)$.

L The test results are shown in Table VII.
The quantities of the confluent hypergeometric series are first included to reach the column of ei. When processing to ι_{4}
column e4, the method to extend horizontally in the updated epsilon algorithm is applied. Furthermore, five more quantities of the confluent hypergeometric series are added into the process to test the vertical extension function. The dashed zones in Table VII indicate the different processing steps. The test results shown in Table VII are similar to the original epsilon algorithm.

TABL」E VII

'THE EPSIIJON TABI, IN CONFLUENTI HYPERGEOMETRIC FUNCTION

```
(.10000000D01,.000000000D0)
(.10000000D01,.15707963D1)
(-.23370055D00,.15707963D1)
(-.23370055D00,.92483222D0)
(.19968957D--1,.92483222D0)
( .19968957D-1,.10045248D1)
(-.89452299D--3,.10045248D1)
(-.89452299D-3,.99984310D0)
(.24737276D-4,.99984310D0)
(.24737276D-4,.10000035D1)
```

```
(.23697291D00,.97151625D0)
(.31750537D-1,.10638220D0)
(-.13923435D-1,.10111385D1)
(-.28182153D-2,.99736605D0)
(.44371597D-3,.99941315D0)
(.10569411D-3,.10000675D0)
(-.93874791D-5,.10000168D1)
(-.24372107D-5,.99999879D0)
```

$(.21234162 \mathrm{D}-3, .99999997 \mathrm{D} 0)$
$(.48431629 \mathrm{D}-5, .10000237 \mathrm{D} 1)$
$(-.25077908 \mathrm{D}-5, .10000009 \mathrm{D} 1)$
$(-.13028108 \mathrm{D}-6, .99999974 \mathrm{D} 0)$
$(.11374722 \mathrm{D}-1, .99993530 \mathrm{DO})$
$(.50818081 \mathrm{D}-3, .10017917 \mathrm{D} 1)$
$(-.25577479 \mathrm{D}-3, .10001280 \mathrm{D} 1)$
$(-.23167201 \mathrm{D}-4, .99996636 \mathrm{D})$
$(.41047145 \mathrm{D}-5, .99999646 \mathrm{D})$
$(.47744989 \mathrm{D}-6, .10000004 \mathrm{D} 1)$

```
(.21315865D-5,.99999999D0)
(.29803821D-7,.10000001D1)
```


SINGULAR RULES FOR EPSILON ALGORITHM

Introduction

Regardless of precision, when using the formula os the epsilon algorithm it may sometimes occur that a quantity is numerically ill-determined. As a result of this and because of the way in which the algorithmic formulae are used, this misfortune is propagated throughout a whole sector. Wynn (1963), Cordellier (1977), and Brezinski (1978) have suggested ways to deal with them. We beqin the discussion with a simple example.

According to the partial sums of the power series for e^{x}, its initial members are as follows:

Figure 6: Jumerical example of the singular rule case

When $x=2$ we construct the above array under the epsilon scheme as shown below:

Figure 7: Epsilon scheme of the singular case

In this example when one follows the above formulae we find that two entries in the ε_{i} column have attained the same value (1/2 and 1/2). However, by using the epsilon algorithm we can hardly obtain the value 5, instead infinity in that entry is obtained. This is one of the typical singular cases. (When we repeatedly apply the epsilon algorithm, we may forecast that the misfortune is propagated throughout the whole sector. Therefore, the singular rule was introduced by Wynn in 1963 to overcome this difficulty.)

Singular Rules

Now suppose that the example in figure 6 has been put into the large lozenge diagram as below,

Figure 8: Singular case in the large lozenge diagram
and two entries in the $\varepsilon_{\text {s-f }}^{i}$ Folumn are both equal to the same value - say x. It is immediately noticeable that becomes finite, ε_{s+1}^{m} and ε_{s-1}^{m+1} are equal to x, and ε_{s+2}^{m} is indeterminate. Further quantities in a sector whose vertex is at ε_{s+2}^{m} remain undetermined. However, if we try to avoid using the entry of ε_{s}^{m+1} to calculate the value of ε_{s+2}^{m}, the indeterminate situation will be eliminated. One can substitute the appropriate values that were originally used to derive the particular entry that progressed to infinity as opposed to using the ill-determined infinity term. This should alleviate indeterminate quantities. This multiple appeal to the epsilon algorithm relationship appears as follows:

From the above illustration we find that ε_{s+2}^{m} becomes large and ill-determined when ε_{s-1}^{m+1} and ε_{s-1}^{m+2} are almost equal. But when ε_{s+1}^{m} and ε_{s+1}^{m+1} are derived from the regular epsilon algorithm and ε_{s+2}^{m} derived from the singular rule (2.7), they are all quite well
determined.
However, when values of ε_{s-1}^{m+1} and ε_{s-1}^{m+2} are exactly equal, the singular rule for the epsilon algorithm becomes quite simple --

$$
\begin{equation*}
\varepsilon_{s+2}^{m}=\varepsilon_{s}^{m+2}+\varepsilon_{s}^{m}-\varepsilon_{s-2}^{m+2} \tag{4.2}
\end{equation*}
$$

As in Figure 6, we may obtain the value 5 by applying the singular rule ($5=9+(-1)+3)$.

Since, the more common case is that ε_{s+2}^{m} is highly susceptible to the loss of significant digits via subtraction when ε_{s-1}^{m+1} and ε_{s-1}^{m+2} are almost equal. Thus it is very important to know when the cancellation occurred. Wynn asserts that when a loss of "f" decimal figures takes place at the subtraction of ε_{s-1}^{m+1} and ε_{s-1}^{m+2}, it is the time to apply the singular rule. The general rule to estimate the loss of "f" decimal figures is obtained by

$$
\mathrm{f}=\log _{10}\left(\frac{\varepsilon_{\mathrm{s}-2}^{\mathrm{m}+1}}{\varepsilon_{\mathrm{s}-2}^{\mathrm{m}+2}}-\frac{\varepsilon_{\mathrm{s}-2}^{\mathrm{m}+1}}{-\cdots)}\right.
$$

E.g., when ε_{s-2}^{m+1} is about ten times as large as the difference between ε_{s-2}^{m+2} and ε_{s+2}^{m+1}, one significant digit is lost.
" (In the singular epsilon algorithm procedure a real parameter called - CANCEL, equal in magnitude to 10 ** f, is provided to detect when the singular rule needs to be implemented.)

Applying The Singular Rule To The Epsilon Program

To apply the singular rules to the normal epsilon procedures, the formula of the singular rule in (4.1) may be reformed in several steps.

If

$$
\begin{align*}
& A=\varepsilon_{s-2}^{m+2}\left(1-\varepsilon_{s-2}^{m+2}\left(\varepsilon_{s}^{m+1}\right)^{-1}\right)^{-1} \tag{4.4}\\
& B=\varepsilon_{s}^{m}\left(1-\varepsilon_{s-1}^{m}\left(\varepsilon_{s}^{m+1}\right)^{-1}\right)^{-1} \tag{4.5}\\
& D=\varepsilon_{s}^{m+2}\left(1-\varepsilon_{s}^{m+2}\left(\varepsilon_{s}^{m+1}\right)^{-1}\right)^{-1} \tag{4.6}
\end{align*}
$$

and

$$
\begin{equation*}
a=D+B-A \tag{4.7}
\end{equation*}
$$

then $\quad \varepsilon_{s+\overline{2}}^{\mathrm{m}} \mathrm{C}=a\left(1+a *\left(\varepsilon_{s}^{m+1}\right)^{-1}\right)^{-1}$.

Suppose that cancellation occurs in the formation of $\varepsilon_{s-1}^{m+2}-$ ε_{s-1}^{m+1} during the process of computing quantities lying on the diagonal through $\varepsilon_{s-1}^{m+2}, \varepsilon_{s}^{m+1}$ and ε_{s+1}^{m}. Immediately, we know that we areabout to compute A from (4.4), and store it. The value of S that points to the current position in the E-array needs to be saved too. Next, after the entry of $\varepsilon_{s+1}^{\mathrm{m}}$ is computed, the value of B can be obtained before the next process. After reaching the end of the E-array, the E-array process is repeated at the other end. When the current value of s is equal to the previous stored value s
plus 1 then we do know that we are about to compute D. Then we reach the point to compute $\varepsilon{ }_{\mathrm{s}+2}^{\mathrm{m}}$ by applying the singular rule (4.8) instead of the normal epsilon algorithm and thereby nullify the ill effects of cancellation.

Figure 9: Programming lozenge diagram of singular rule

The entries with an asterisk in figure 9 represent the computing processes necessary to apply the singular rules when the cancellation between the quantities of ε_{s-1}^{m+1} and ε_{s-1}^{m+2} occur. Ercepl cons loy

However, so far a the single point of instability is concerned. We should apply the above procedure in the case in which there are a number of points in the E-array at which cancellation takes place. Basically the ways to handle the multiple points of instability are the same as the above procedures, but the array S is created to store ! \because
the multiple instability positions instead of point S. Moreover, the same situation happens at the points A, B, and D.

Wynn's singular rules are appropriate to isolated points of cancellation when two or more instability points occur in the same column. Otherwise, Wynn's singular rules are not appropriate. If the vector case is concerned, the special rules of Cordellier (1977) are suggested for implementation.

TEST RESULTS

The ALGOL procedure that Wynn suggested to apply the multiple singular rule has been rewritten in FORTRAN and the power series for e^{x} with $x=2$ has been tested and the value 5 has been obtained. See Appendix B.

CHAPTER V

ERROR EXPANSION SERIES AND TEST RESULTS

Series expansions are a very important aid in numerical calculations, especially for quick estimates made in hand calculation - e.g., in evaluating functions, integrals, or derivatives. Solutions to differential equations can often be expressed in terms of series expansions. In practice, one is seldom seriously concerned about a strict error bound when the computed terms reach acceptable accuracy. To use the first neglected term as an estimate of the remainder is very common and easy. However, in numerical analysis sometimes it is not accurate enough. The Euler-Maclaurin summation formula can be used to get the value of the remainder with higher accuracy, but it leads to very complicated calculation.

However, we intend to use a new approach to compute the magnitude of the error in the partial sums of an infinite series, by assuming that there exists a series expansion in negative powers of n. And we apply the epsilon algorithm repeatedly to compute the values of the numerators in the error expansion series. In order to facilitate the discussion, the example below is given.

To get the value of $\ln 2$ we apply the following series expansion

$$
\begin{equation*}
S(n)=\ln 2=1-1 / 2+1 / 3-1 / 4+\ldots . \tag{5.1}
\end{equation*}
$$

or in summation formula
$\sum_{i=1}^{n}(-1)^{i+1}$ /i.

Suppose there exists an error expansion series which is of the following form:

$$
\begin{gather*}
|e(n)|=\frac{c 1}{n}+\frac{c 2}{n * * 2}+\frac{c 3}{n * * 3}+\frac{c 4}{n * * 4}+\ldots \cdot \\
n=1,2, \ldots N . \tag{5.3}
\end{gather*}
$$

To compute constant Cl the following steps can be followed.
Compute $\mathrm{S}(\mathrm{n}), \mathrm{n}=1,2,3, \ldots, \mathrm{~N}$.
Compute $e(n)=|\ln 2-S(n)|$.
Then, apply equation $C 1=n *|e(n)|$ to get the constant C1, by applying a repeated Aitken, Epsilon, or Romberg algorithm to estimate C1 as $n \cdots>\infty$.

To compute C 2 .
Use the true value of Cl , if it can be seen to converge to a fraction.

Repeat the above process by using equation

$$
c 2=(|e(n)|-c 1 / n) *(n * * 2)
$$

Finally, the error expansion series for $\ln 2$ is gained, as follows:

$$
\begin{align*}
|e(n)|= & \frac{(1 / 2)}{n}+\frac{(-1 / 4)}{n * * 2}+\frac{0}{n * * 3}+\frac{(1 / 8)}{n * * 4}+\frac{0}{n * * 5}+ \\
& \frac{(-1 / 4)}{n * * 6}+\ldots \tag{5.4}
\end{align*}
$$

Notice that the values in each constant C are in fractional form. However, the above expansion series is invalid when $\mathrm{n}=0$.

If the original series is modified as below

$$
\begin{equation*}
|e(n)|=\frac{c 1}{n+a 1}+\frac{c 2}{(n+a 2) * * 2}+\frac{c 3}{(n+a 3) * * 3}+\ldots \tag{5.5}
\end{equation*}
$$

where a1, a2, a3, ... are constant and then apply the original processes with the modified series, we obtain a new series:

$$
\begin{align*}
|e(n)|= & \frac{(1 / 2)}{n+1 / 2}+0+\frac{(-1 / 8)}{(n+1 / 2)^{3}}+0+\frac{(5 / 32)}{(n+1 / 2)^{5}}+0+ \\
& \frac{(-61 / 128)}{(n+1 / 2)^{7}}+0+\frac{(1385 / 512)}{(n+1 / 2)^{9}}+\ldots \tag{5.6}
\end{align*}
$$

which is valid even when $\mathrm{n}=0$. And in this case the value of "a" is a fixed constant, 1/2. Furthermore, the numerators of the constants C are just Euler numbers \widetilde{B} and the denominators are 2 to the power of n.

Note that due to the cancellation that occurs in the computer process, it runs out of accuracy in the computation
of the sixth term of the Euler number \widetilde{B}, even using double precision arithmetic (64 bits).

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The flexibility to extend the epsilon algorithm process vertically or horizontally has been tested on several numerical examples. The numerical results as shown in Chapter III are satisfied. The array H , as mentioned in Chapter III, used in the update epsilon algorithm, is the only additional storage space added into the original epsilon algorithm.
> 3) L

> Practically speaking, with the application of the update epsilon algorithm, time is saved by erasing duplication of the entire process in order to reach the final state that is desired. It becomes even more obvious when the epsilon algorithm must be applied to a large numerical sequence. Thus, the update epsilon algorithm is a very useful tool indeed.

Since the epsilon algorithm is formed under the lozenge diagram algorithm, it is possible to apply the same principle to other algorithms which are also formed under the lozenge algorithm. Therefore, it is logical to apply this process to the e algorithm, Q-D algorithm, etc.]

In Chapter V, an alternate method to estimate the error bound in the partial sum series has been developed. The error expansion series of the series $\ln (2)$ has been obtained. The
author believes that this is a much easier and less complicated method than the Euler-Maclaurin summation formula to estimate the error. Therefore, this method is highly recommended for other partial sum series.

A SELECTED BIBLIOGRAPHY

Aitken, A. C. "On Bernoulli's Numerical Solution of Algebraic Equations." Proceedings of the Royal Society of Edinburgh, 46 (1926), 289-305.

Brezinski, C. "A General Extrapolation Algorithm." Numerische Mathematik No35 (1980), pp. 1980.

Brezinski, C. "Convergence Acceleration Methods: The Past Decade." J. Computational and Applied Meath. Vol. 12 (May 1985), 19-36.

Brezinski, C. "Numerical Stability of a Quadratic Method for Solving Systems of Non Linear Equations." Computing, Vol. 14 (1975), 205-211.

Brezinski, C. "Some Results in the Theory of the Vector E-Algorithm." Linear Algebra and Its Applications, Vol. 8 (1974), 77-86.....

Chandler, J. P. FORTRAN Program "SLAB". Computer Science Department, Oklahoma State University. 1981.

Conte Samuel D./Carl de Boor, Elementary Numerical Analysis: an Algorithmic Approach. 2nd Edition. New Work: McGrawHill Book Company, 1972.

Cordellier, F. "Particular Rules for the Vector E-algorithm." Numerische Mathematik, Vol. 27 (1977), 203-207.

Dahlquist Germund and Björck Ake Numerical Methods, Prentice-Hall Series in Automatic Computation, 1974.

Fröberg, Carl-Erik Introduction to Numerical Analysis, Addison-Wesley Publishing Company, 1965.

Hartree, D. R. "Note on Iterative Process" Cam. Phil. Soc., Vol. 45 part 2 (April 1949), 230-236.

Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw Hill, 1956.

Isakson, Gabriel "A Method for Accelerating the Convergence of an Iteration Procedure" Jour. Aero. Soc. Vol. 16, No. 7 (July 1949), 443.

Jennings, A. "Accelerating the Convergence of Matrix Iterative Processes." Journal of Institute Mathematic Application, Vol. 8 (1971), 99-110.

Lubkin, S. "A Method of Summing Infinite Series." Journal of Research, National Bureau of Standards, Vol. $\overline{\mathrm{B} 48}$ (1952), 228-254.

MacDonald, J. "Accelerated Convergence, Divergence, Iteration, Extrapolation and Curve Fitting." Journal of Applied Physics, Vol. 35, No. 10 (Oct. 1964), 3034-3041.

McLeod, J. B. "A Note on the E-Algorithm." Computing, Vol. 7 (1971), 17-24.

Richardson, L. F. "The Deferred Approach to the Limit." Royal Society of London Philosophical Transactions, Vol. A226 (1927), 299-349.

Samuelson, P. A. "A Convergent Iterative Process" Jour. of Math. and Phys. Vot. 24 (1945), 131-134.

Sandberg, Dan "0.8660254 = 3/2: An Algorithm that Converts Decimals to Fractions." BYTE, May 1985, 429-464.
Schmidt, R. J. "On the Numerical Solution of Linear Simultaneous Equations by an Iterative Method." The Philosophical Magazine and Journal of Science, 7th Series, Vol. 32 (1941), 369-383.

Shanks, D. "Non-Linear Transformations of Divergent and Slowly Convergent Sequences." Journal of Mathematics and Physics, Vol. 34 (April 1955), 1-42.

Shanks, D. and Walton, T. S. The Use of Rational Functions as Approximate Solutions of Certain Trajectory Problems Naval Ordnance Laboratory Memorandum 9524 (1948) White Oak, Md. P2; P13, equation (23).

Smith, D., and W. Ford. "Numerical Comparisons of Nonlinear Convergence." SIAM Journal on Numerical Analysis, Vol. 16 (1979), 481-499.

Thacher, H. C. "Algorithm 215: Shanks." Comm. ACM, Vol. 6 (November 1963), 662.

Traub, J. F. Iterative Methods for the Solution of Equations. New York: Prentice-Hall Inc., 1964.

Wynn, P. "A Comparision Technique for the Numerical Transformation of Slowly Convergent Series Based on the Use of Rational Functions." Numer. Math.,

Vol. 4 (1962), 8-14.
Wynn, P. "A Note on Programming Repeated Application of the Epsilon Algorithm." Revue Francaise de Traitement de 1'Information. Chiffres, 8 (1965), 23-62.

Wynn, P. "Acceleration Techniques for Iterated Vector and Matrix Problems." Math. Comp., Vol. 16 (July 1962), 301-322.

Wynn, P. "Acceleration Techniques in Numerical Analysis, with Particular Reference to Problems in One Independent Variable." Information Processing, 1962.

Wynn, P. "An Arsenal of Algol Procedures for Complex Arithmetic" BIT, 2 (1962), 232-255.

Wynn, P. "General Purpose Vector Epsilon Algorithm: Algol Procedures." Numer. Math., Vol. 6 (1964), 22-36.
fixyn, P. "On a Device for Computing the em(sn) Transformation." Mathematical Tables and Other Aids to Computation, Vol. 10 (1956), 91-96.

Wynn, P. "On the Convergence and Stability of the Epsilon Algorithm." SIAM Journal on Numerical Analysis, Vol. 3 (1966), 91-122.

Wynn, P. "Singular Rules for Certain Non-linear Algorithms." BIT, 3 (1963), 175-195.

Wynn, P. "The Epsilon Algorithm and Operational Formulas of Numerical Analysis" Math. of Comp., Vol. 15 (1960), 151-158.

APPENDIX A

PROGRAM LISTING OF "SLAB" WITH UPDATE EPSILON ALGORITHM

```
$JOB
C THIS PROGRAM MODELS DIFFUSION IN AN INFINITE SLAB HAVING PLANE
C PARALLEL SIDES. THE DIFFUSIVITY, D, MUST BE GIVEN AND FIXED.
C THE BOUNDARY CONDITIONS AT THE FACES OF THE SLAB MUST BE GIVEN AND
C BE PIECEWISE CONSTANT IN TIME.
C C AUTHOR: J. P. CHANDLER, COMPUTER SCIENCE DEPT.,
                                    OKLAHOMA STATE UNIVERSÍTY.
    THE DIMENSIONS OF THE ARRAYS MUST BE BV(NTPMX,2), TFIN(NTPMX),
                B(2,NTRMX), C(NTPMX-1,NTRMX), U(NDXMX+1) •
            IMPLICIT REAL*8 (A-H,O-Z)
            DIMENSION U(51)
            COMMON /SLAB/ BV (10,2),TFIN (10),B(2,100),C(9,100),
            X EL,D,T,X,ARGMN,FX,ABERF,NTIMP ,NTRMS',KW,NTACT'
                                    KR AND KW ARE THE LOGICAL UNIT NUMBERS OF
                                    THE CARD READER AND THE LINE PRINTER.
    KR=5
    KW=6
    NTPMX=10
C
    NTRMX=100
    NDXMX=50
C
    ARGMN=-60.
    RZERO=0
C
    READ (KR ,10) NTIMP ,NTRMS ,EL ,D
    10 FORMAT (2I5,2D10.5)
    WRITE (KW, 20) NTIMP ,NTRMS ,EL ,D
    20 FORMAT(/////42H DIFFUSION IN A SLAB, USING FOURIER SERIES///
    * 8X,26H NUMBER OF TIME PERIODS = ,I5//
    * 8X,34H NUMBER OF TERMS IN EACH SERIES = I5/// = ,015.7)
    IF (NTIMP.LT.2) GO TO 26
    IF (NTIMP.GT.NTPMX) GO TO 26
    IF(NTRMS.GT.NTRMX) GO TO 26
C
    READ (KR,30) (BV (J,1) , BV (J,2),TFIN (J),J=1,NTIMP)
    30 FORMAT(3D10.5)
    WRITE (KW, 40)
    40 FORMAT (//////6H TIME,12X,16H BOUNDARY VALUES,14X,
    * 12H TIME AT END/7H PERIOD,12X,14H DURING PERIOD,16X,
    * 10H OF PERIOD//1H )
            NTMU=NTIMP-1
            DO 50 J=1,NTMU
    50 WRITE (KW,60) J,BV (J,1),BV (J, 2),TFIN (J)
    60 FORMAT(1X,I4,D20.7,D16.7,D20.7)
    WRITE (KW, 60) NTIMP , BV (NTIMP ,1) ,BV (NTIMP ,2)
    IF(NTIMP.EQ.2) GO TO }6
    DO }65\textrm{J}=2\mathrm{ ,NTMU
    IF(TFIN(J).LE.TFIN(J-1)) GO TO 26
    6 5 \text { CONTINUE}
C
    6 9 \text { CALL CALCC}
    DO 70 JB=1,2
    70 WRITE (KW,80) JB, (B (JB,J) ,J=1,NTRMS)
    80 FORMAT(///3H B (,I1,6H,J).../(10X,7E15.7))
    DO 90 KT=2,NTIMP
    90 WRITE (KW,100)KT, (C (KT-1,J),J=1,NTRMS)
    100 FORMAT(///45H FOURIER COEFFICIENTS FOR TIME PERIOD NUMBER ,I2,
        * 3H...//(8X,7E15.7))
C
    110 READ (KR,10) NDX,NDT,TMIN,TMAX
C
```

```
C
    IF(NDX.LT.0) STOP
    130 WRITE (KW, 140) NDX,NDT,TMIN,TMAX
    140 FORMAT (////8X,29H NUMBER OF INCREMENTS IN X = ,I5//
        * 8X,29H NUMBER OF INCREMENTS IN T = ,I5//
        * 8X,16H INITIAL TIME = ,E15.7//
        * 8X,16H FINAL TIME = ,E15.7///1H)
            IF (NDX.GT.NDXMX) GO TO 26
            DX=RZERO
            IF(NDX.EQ.0) GO TO }14
    141 ENDX=NDX
    DK=EL/ENDX
    142 DT=RZERO
    IF(NDT.LE.0) GO TO 144
    143 ENDT=NDT
    DT=(TMAX-TMIN )}/END
    144 NDXPU=NDX+1
    NDTPU=NDT+1
C
    DO 230 KT=1,NDTPU
        AKTMU=KT-1
        T=TMIN+AKTMU*DT
        IF(KT.EQ.NDTPU) T=TMAX
    160 ERMAX=RZERO
        NTMAX=0
C
        DO 220 JX=1,NDXPU
                AJXMU=JX-1
                X=AJXMU*DX
    IF(JX.EQ.NDXPU) X=EI
    180
                CALL CALCF
            IF(NTACT.GT.NTMAX) NTMAX=NTACT
            IF (ABERF.GT.ERMAX) ERMAX=ABERF
                CONTINUE
    230 WRITE (KW,240)T,ERMAX,NTMAX, (U (JX),JX=1,NDXPU)
    240 FORMAT(/8H TIME = ,D14.7,9X,24H MAX. ESTIMATED ERROR = ,D14.7,
        * 8X,23H MAX. NO. TERMS USED = ,I3//(1X,7D15.7))
C
            GO TO 110
                                    GO BACK FOR MORE VALUES OF NDX, ETC.
            26 WRITE (KW,987)
    987 FORMAT(///42H THERE IS A FATAL ERROR IN THE DATA ABOVE./1H )
            STOP
            END
            SUBROUTINE CALCC
C COMPUTES THE FOURIER COEFFICIENTS FOR THE SLAB PROGRAM.
            IMPLICIT REAL*8 (A-H,O-Z)
            COMMON /SLAB/ BV (10,2),TFIN (10) ,B(2,100),C(9,100),
            X EL,D,T,X,ARGMN,FX,ABERF,NTIMP,NTRMS,KW,NTACT
C
C QEXP (ARG)=DEXP (ARG)
        PI=3.141592653589793D0
        RZERO=0
        UNITY=1
        RTWO=2
        RFOUR=4
C
C FOR F(X)=1.0, ZERO .LT. X .LT. L.
C B(2,J) IS THE COEFFICIENT IN THE SINE SERIES FOR F(X)=X.
    SGN=UNITY
    DO 1000 J=1,NTRMS
        B (1,J)=RZERO
        AJ=J
        B (2,J) =SGN*RTWO*EL/(PI*AJ)
    1000 SGN=-SGN
```


EXTRP=CZERO
EXTSV=CZERO
C
ABERF=RZERO
IF (X.LE.RZERO) GO TO 2150
IF (X.GE.EL) GO TO 2150
IF (KT.LE.1) GO TO 2150
KTMU=KT-1
DTDIF=D* (T-TFIN (KTMU))
SUM=CZERO
S (1) =CZERO
SAVE (1) =CZERO
HOLD (1) =CZERO
INITIALIZE FOR THE RECURRENCE RELATIONS.
$T F A C T=Q E X P(-(P I / E L) * * 2 * D T D I F)$
RBSQ $=$ TFACT ** 2
RTFAC $=$ RBSQ*TFACT
CXFAC=QCEXP (QCMPL (RZERO ,PI*X/EL))
XFACT=CXFAC
C
LOOP OVER THE TERMS IN THE FOURIER SERIES.
DO 2090 J=1,NTRMS
CTERM=QCMPL ($\mathrm{C}(\mathrm{KTMU}, \mathrm{J}) * T F A C T, R Z E R O) * X F A C T$
ABERF=ABERF+EPS *OCABS (CTERM)
SUMSV=SUM
SUM=SUM + CTERM
IF (QCABS (SUM-SUMSV) . NE. RZERO) GO TO 2080
IF (QABS (C (KTMU ,J)) .NE.RZERO) GO TO 2070
S $(J+1)=$ SUM
SAVE ($J+1$) =SUM
HOLD ($\mathrm{J}+1$) =CZERO
NTUSE=J+1
C
C
$A J P L=J+1$
ARG $=-($ AJPL $* P I / E L) * * 2 * D T D I F$
IF (ARG.GE.ARGMN) GO TO 2050
EXTRP=SUM
GO TO 2150
2050 IF (J.EQ.NTRMS) GO TO 2090
TFACT=TFACT*RTFAC
RTFAC $=$ RTFAC $*$ RBSQ

JMIN $=2-($ NTUSE $-($ NTUSE $/ 2) * 2)$
DO $2110 \mathrm{~J}=\mathrm{JMIN}, \mathrm{NTUSE}, 2$
NKR=NKR+1
$S(N K R)=S(J)$
2110 SAVE (NKR) = SAVE (J)
C
$2120 \mathrm{KTOP}=(\mathrm{NKR}-1) / 2$
DO 2130 JJ=1,NKR
DSAVE (JJ) =QIMAG (SAVE (JJ))
DHOLD (JJ) =QIMAG (HOLD (JJ))
2130 DHOLD (JJ) = QIMAG
DEXTRP=QIMAG (EXTRP)
WRITE (KW, 9) (DSAVE (J) , J=1, NKR)
WRITE (KW, 19) (DHOLD (J), J=1,NKR)
CALL SHANK (DSAVE, 1 ,NKR, KTOP-1,DEXTSV,DHOLD,1)
NKR=NKR-2* (KTOP-1)
WRITE (KW, 9) (DSAVE (J) , J=1,NKR)
WRITE (KW, 19) (DHOLD (J), J=1,NKR)
CALL SHANK (DSAVE, 1,NKR,1,DEXTRP, DHOLD,1)
WRITE (KW, 9) (DSAVE (J), J=1,NKR)
WRITE (KW,19) (DHOLD (J), J=1,NKR)

```
    9 FORMAT (//1X,'SAVE=',6D18.10/(6X,6D18.10))
    19 FORMAT (//1X,'HOLD=',6D18.10/(6X,6D18.10))
        EXTRP=QCMPL (RZERO,DEXTRP)
        PRINT,'EXTRP=',EXTRP
        ABERF=QABS (DEXTRP-DEXTSV)
        PRINT,'DABERF=',ABERF
C C EXTRACT THE IMAGINARY PART OF THE EXTRAPOLATED VALUE, AND ADD
C THE LINEAR PART OF THE SOLUTION.
C
    2150 FX=QIMAG (EXTRP) +BV (KT,1) +(BV (KT,2) -BV (KT,1))* (X/EL)
        NTACT=NTUSE-1
        RETURN
        END
```

SUBROUTINE SHANK (S,NMIN,NMAX,KMAX,EXTRP,H,NPMIN)

UPDATE EPSILON ALGORITHM
FOR ACCELERATING THE CONVERGENCE OF A SEQUENCE.
AUTHOR: HUI WEN CHIANG, COMPUTER SCIENCE DEPT.,
OKLAHOMA STATE UNIVERSİTY.
THIS PROCEDURE IS MODIFIED FROM THE ALOGORITHM 215, COMM.A.C.M. 6
(1963) P. 662 (AUTHOR: H. C. THACHER, JR.) TO ALLOW NOT ONLY ACCELERATING THE CONVERGENCE OF A SEQUENCE BUT ALSO ACCELERATING THE CONVERGENCE BY EXTENDING THE ORIGINAL SEQUENCE VERTICALLY (ADD MORE ENTRIES) OR HORIZONTALLY (COMPUTE THE FURTHER ORDER OF EXTRAPOLATED VALUE) BY USING THE PREVIOUS COMPUTED VALUES WITHOUT REPEATING THE ORIGINAL PROCESSES. 09-15-84 THE ARRAY H HOLDS THE VALUES IN PREVIOUS E(i) COLUMN FOR EXTENDED PROCESSING PURPOSE.

HINTS TO EXTEND THE SEQUENCE VERTICALLY:

1) ADD THE ELEMENTS TO THE BOTTOM OF SEQUENCE
2) SPECIFY THE INDEX NO OF THE FIRST CURRENT ADDED ENTRY N TO VARIABLE NMIN
3) SPECIFY THE INDEX NO OF THE LAST CURRENT ADDED ENTRY TO VARIABLE NMAX
HINTS TO EXTEND THE SEQUENCE HORIZONTALLY:
4) SPECIFY THE FURTHER ORDER OF EXTRAPOLATED VALUE NEEDED TO VARIABLE KMAX.
5) COMPUTE THE TOTAL ELEMENTS OF THE CURRENT LIST AND MOVE THE FIRST AND LAST ENTRIES TO NMIN, NMAX RESPECTIVELY.
HINTS TO EXTEND THE SEQUENCE VERTICALLY AND HORIZONTALLY:
6) EXTEND VERTICALLY FIRST THEN HORIZONTIALL IS SUGGESTED.

THIS PROCEDURE REPLACES THE ELEMENTS S (NMIN) THROUGH S (NMAX-2*KMAX) OF THE ARRAY S BY THE E (KMAX) TRANSFORM OF THE SEQUENCE S. THE ELEMENTS S (NMAX-2*KMAX+1) THROUGH S (NMAX-1) ARE DESTROYED. THE HIGHEST ORDER ELEMENT OF THE TRANSFORM IS RETURNED IN EXTRP.

THE MAXIMUM PERMISSIBLE VALUE OF KMAX IS (NMAX-NMIN)/2.
THEREFORE, TO FIND THE HIGHEST ORDER EXTRAPOLATED VALUE OF THE SEQUENCE S (NMIN), ... S (NMAX), PROCEED THUS....

CALL SHANK (S, NMIN,NMAX, (NMAX-NMIN) / 2 ,EXTRP)
AND THE EXTRAPOLATED VALUE IS RETURNED IN EXTRP.
REFERENCES
D. SHANKS, J. MATH. AND PHYSICS 34 (1955) 1-42
D. C. JOYCE, S.I.A.M. REVIEW 13 (1971) 435-490
W. B. GRAGG, S.I.A.M. REVIEW 14 (1972) 1-62
J. P. CHANDLER, COMPUTER SCIENCE DEPT., OKLAHOMA STATE UNIVERSITY
H. C. THACHER, JR., ALGORITHM 215, COMM.A.C.M. 6 (1963) P. 662

THIS PROCEDURE REPLACES THE ELEMENTS S (NMIN) THROUGH S (NMAX-2*KMAX)
OF THE ARRAY S BY THE E (KMAX) TRANSFORM OF THE SEQUENCE S.
THE ELEMENTS S (NMAX-2*KMAX+1) THROUGH S (NMAX-1) ARE DESTROYED.
THE HIGHEST ORDER ELEMENT OF THE TRANSFORM IS RETURNED IN EXTRP.
THE MAXIMUM PERMISSIBLE VALUE OF KMAX IS (NMAX-NMIN) / 2 .
THEREFORE, TO FIND THE HIGHEST ORDER EXTRAPOLATED VALUE OF THE
SEQUENCE S (NMIN) , ..., S (NMAX), PROCEED THUS....
CALL SHANK (S,NMIN,NMAX, (NMAX-NMIN) / , EXTRP)
AND THE EXTRAPOLATED VALUE IS RETURNED IN EXTRP.
REFERENCES
D. SHANKS, J. MATH. AND PHYSICS 34 (1955) 1-42
D. C. JOYCE, S.I.A.M. REVIEW 13 (1971) 435-490
W. B. GRAGG, S.I.A.M. REVIEW 14 (1972) 1-62

TO CONVERT THIS ROUTINE FROM COMPLEX TO DOUBLE PRECISION, REPLACE SIX STATEMENTS BELOW BY THE FOLLOWING FIVE...

APPENDIX B

PROGRAM LISTING OF THE EPSILON ALGORITHM WITH THE UPDATE FORM AND SINGULAR RULE

SUBROUTINE SHANK (S,NMIN,NMAX,KMAX,EXTRP,NPMIN,H)
THIS PROCEDURE IS MODIFIED FROM THE ALOGORITHM 215, COMM.A.C.M. 6
(1963) P. 662 (AUTHOR: H. C. THACHER, JR.) TO ALLOW NOT ONLY
ACCELERATING THE CONVERGENCE OF A SEQUENCE BUT ALSO ACCELERATING
THE CONVERGENCE BY EXTENDING THE ORIGINAL SEQUENCE VERTICALLY
(ADD MORE ENTRIES) OR HORIZONTIALLY (COMPUTE THE FURTHER ORDER
OF EXTRAPOLATED VALUE) BY USING THE PREVIOUS COMPUTED VALUES
WITHOUT REPEATING THE ORIGINAL PROCESSES. 09-15-84
HINTS TO EXTEND THE SEQUENCE VERTICALLY:
1) ADD THE ENTRIES TO THE BOTTOM OF SEQUENCE
2) SPECIFY THE INDEX OF THE FIRST CURRENT ADDED ENTRY
TO VARIABLE NMIN
3) SPECIFY THE INDEX OF THE LAST CURRENT ADDED ENTRY
TO VARIABLE NMAX
HINTS TO EXTEND THE SEQUENCE HORIZONTIALLY:
1) SPECIFY THE FURTHER ORDER OF EXTRAPOLATED VALUE
NEEDED TO VARIABLE KMAX.
I.E. KMAX = THE FURTHER ORDER - THE CURRENT ORDER
2) COMPUTE THE TOTAL ELEMENTS OF THE CURRENT LIST AND MOVE
THE FIRST \& LAST ELEMENT \# TO NMIN, NMAX RESPECTIVELY.
HINTS TO EXTEND THE SEQUENCE VERTICALLY AND HORIZONTIALLY:
1) EXTEND VERTICALLY FIRST THEN HORIZONTIALL IS SUGGESTED.
THIS PROCEDURE REPLACES THE ELEMENTS S (NMIN) THROUGH S (NMAX-2*KMAX)
OF THE ARRAY S BY THE E (KMAX) TRANSFORM OF THE SEQUENCE S.
THE ELEMENTS S (NMAX-2*KMAX+1) THROUGH S (NMAX-1) ARE DESTROYED.
THE HIGHEST ORDER ELEMENT OF THE TRANSFORM IS RETURNED IN EXTRP.
THE MAXIMUM PERMISSIBLE VALUE OF KMAX IS (NMAX-NMIN)/2.
THEREFORE, TO FIND THE HIGHEST ORDER EXTRAPOLATED VALUE OF THE
SEQUENCE S (NMIN) ,..., S (NMAX), PROCEED THUS....
CALL SHANK (S,NMIN,NMAX, (NMAX-NMIN)/2,EXTRP)
AND THE EXTRAPOLATED VALUE IS RETURNED IN EXTRP.
REFERENCES
D. SHANKS, J. MATH. AND PHYSICS 34 (1955) 1-42
D. C. JOYCE, S.I.A.M. REVIEW 13 (1971) 435-490
W. B. GRAGG, S.I.A.M. REVIEW 14 (1972) 1-62
DOUBLE PRECISION QTEST,DABS,S,H,EXTRP,HUGE,ZERO,UNITY,TZ,TU,ARG
DIMENSION S(1),H(1)
C QTEST (ARG) =ABS (ARG)
QTEST (ARG) = DABS (ARG)
SINGUL=0
HUGE=1.0E35
ZERO=0.0EO
UNITY=1.0E0
C
IF (NMIN.GT.NMAX) GO TO 130
EXTRP=S (NMAX)
KT $=2$ *KMAX
DO $120 \mathrm{~J}=$ NMIN, NMAX
TZ=H (J)
LIMKK $=\mathrm{J}-$ NPMIN
IF (LIMKK.GT.KT) LIMKK=KT
IF (IIMKK.LE.O) GO TO 120
DO 110 KK=1,LIMKK
JMKK=J-KK
IF (QTEST (S (JMKK)).EQ.HUGE) GO TO 80
IF (QTEST (S (JMKK+1)).EQ.HUGE) GO TO 80
TU=S (JMKK+1)-S (JMKK)
IF (QTEST (TU).EQ.ZERO) GO TO 90
TU=TZ+UNITY/TU
GO TO 100
$\mathrm{TU}=\mathrm{TZ}$

SUBROUTINE SINGULR (S,NMIN,NMAX,KMAX,EXTRP)

```
C THIS PROCEDURE APPLIES THE SINGULAR RULE TO THE EPSILON ALGORITHM.
\(C\) THE PROCEDURE IS MODIFIED FROM P. WYNN "SINGULAR RULES FOR CERTAIN
C NON-IINEAR ALGORITHMS " IN BIT 3 i 1963 , P 175-195.
    THE SINGULAR RULE AVOIDS THE INSTABILE ENTRY IN THE EPSIION
C TABLE BY APPLYING THE SPECIAL RULE BUT THE REGULAR EPSILON
C ALGORITHM.
    DOUBLE PRECISION QTEST,DABS,S,EXTRP,HUGE,ZERO,UNITY,TZ,TU,ARG
    DIMENSION S(1)
    INTEGER SINGUL
    DOUBLE PRECISION A (15) , B (15) ,SA, D, CANCEL
    INTEGER AP, BP, CP ,NIS,LOCINS,BOL, EOL , NPINS, S1 (15)
    COMMON /SING/A,B,SA,D,CANCEL,AP,BP,CP,NIS,
    X LOCINS,BOL ,EOL ,NPINS, SI
    QTEST (ARG) =ABS (ARG)
    QTEST (ARG) \(=\) DABS (ARG)
    S INGUL=0
    HUGE=1.0E35
    ZERO=0.0EO
    UNITY=1. OEO
C
    IF (NMIN.GT.NMAX) GO TO 130
    EXTRP=S (NMAX)
    \(\mathrm{KT}=2\) *KMAX
    DO \(120 \mathrm{~J}=\) NMIN, NMAX
        \(\mathrm{TZ}=0\)
        LIMKK=J-NMIN
        IF (LIMKK.GT.KT) LIMKK=KT
        IF (LIMKK.LE.O) GO TO 120
        DO \(110 \mathrm{KK}=1\),LIMKK
        JMKK=J-KK
        IF (SINGUL.EQ.1) GOTO 190
    \(190 \quad \mathrm{TU}=\mathrm{S}(\mathrm{JMKK}+1)-\mathrm{S}\) (JMKK)
        IF (KK+PRVCOL.GE.J) GOTO 200
        IF (CP.NE.0) GOTO 200
        IF (TU.EQ. ZERO) GOTO 195
        IF (S (JMKK) .EQ. ZERO) GOTO 200
        IF (DABS (TU/S (JMKK)). GE. CANCEL) GOTO 200
    195
    200 IF (NPINS.EQ.1) GOTO210
        IF (LOCINS . EQ. 1) GOTO230
C
        IF (TU.NE. ZERO) \(\mathrm{TU}=1.0 / \mathrm{TU}+\mathrm{TZ}\)
        IF (TU.EQ. ZERO) TU=HUGE
        GOTO 100
    C*
    210
    220
    IF (CP.EQ.1) GOTO 240
C
    240
\(\stackrel{C}{C}\)
                                    COMPUTE FUNCTION OF
                                    \(T U=S A /(1.0+S A / S(J M K K+1))\)
        IF (TZ. EQ. ZERO) TU=ZERO
        IF (TZ.NE. ZERO) TU=SA/(1.0+SA/TZ)
        \(\mathrm{CP}=0\)
        \(\mathrm{BOL}=\mathrm{BOL}+1\)
        IF (BOL.GT.EOL) LOCINS=0
```

```
    250 IF(LOCINS.NE.1)GO TO 100
        IF(AP.EQ.0)GO TO 260
        A (EOL) =0.0
        IF(KK.EQ.1)GOTO 255
C
    255
    260
C
    270
C
C
    100
    110
C
    120
C
    125 MXMKT=NMAX-KT
    EXTRP=S (MXMKT)
    130 RETURN
        END
END
```

```
C********************************************************************
    EXAMPLE #1: LINEARLY CONVERGENT ITERATIVE SCHEME FORMATION OF *
                                    THE LAGUERRE POLYNOMIAL SERIES.
                        S(N+1)=1/4* (S N N **2 +2)
        SUBROUTINE ITER(S,H,NSETS)
    C DOUBLE PRECISION S,H
        DIMENSION S(20),H(20)
C
        S (1)=0.0
        H(1)=0.0
        DO 10 J=2,NSETS
                S(J)=0.25 * (S (J-1) **2 + 2)
                H(J)=0.0
            CONTINUE
            RETURN
            END
C********************************************************************
    EXAMPLE #2: THE VERY SLOWLY CONVERGENT LEIBNITZ SERIES *
                                    (N-1)
C
C*********************************************************************
C
    SUBROUTINE LEIBNZ(S,H,NSETS)
C DOUBLE PRECISION S;H
    DIMENSION S(20),H(20)
C
    S (1)=4.0
    H(1)=0.0
    DO 10 J=2,NSETS
        S(J)=S(J-1) + ((-1) ** (J-1)) * (4.0 / (J * 2.DO - 1.DO))
        H(J)=0.0
    CONTINUE
    RETURN
    END
C**********************************************************************
C***************************************************************************
C
C************************************************************************
    SUBROUTINE LN2(S,H,NSETS)
C IMPLICIT REAL*8 (A-H,O-Z)
    DIMENSION TERM(2)
    DOUBLE PRECISION S(20),H(20)
C
    S (1)=1.0
    H(1)=0.0
    DO 10 J=2,NSETS
    S(J)=(((-1.)**(J-1))/J) + S(J-1)
    H(J)=0.0
    10 CONTINUE
    RETURN
    END
C***********************************************************************
C THIS IS TEST SERIES: U(S) = (X ** S) S S ! S=0,1,
C*********************************************************************
    SUBROUTINE PATH(S,H,M)
C
    IMPLICIT REAL*8 (A-H,O-Z)
    DOUBLE PRECISION S(20),DENO,H(20)
C
    S (1)=0.0
    H(1)=0.0
    DO 30 K=2,M
    DENO=1.
    IF (K.LT.4)GOTO 20
    DO 10 J=4,K
    10 DENO=DENO* (J-2)
    20 S(K)= (2 ** (K-2)) / DENO + S(K-1)
```

$H(K)=0.0$
30 CONTINUE
RETURN
END

APPENDIX C

PROGRAM LISTING OF ERROR EXPANSION SERIES

```
l****************************************************
C**** AUTHOR: HUI WEN CHIANG, COMPUTER SCIENCE DEPT.,
C**** OKI_AHOMA STATE UNIVERSITY.
C****
C****THIS PROGRAM GENERATE A SERIES EXPANSION IN NEGATIVE POWERS
C****OF N OF THE MAGNITUDE OF THE ERROR IN THE PARTIAL SUMS OF AN
C****INFINITE SERIES.
C****
C*****************************************************************
C STEPS TO OBTAIN ERROR EXPANSION SERIES:
I.
Suppose there exists an error expansion series which is
of the following form:
    [e(n)[ = - C1 
    II.
        To compute constant C1 the following steps can be followed.
        Compute S(n), n = 1,2,3,\ldots,N.
        Compute e(n) = [ ln2 - S(n) [.
        Then, apply equation Cl = n * [e(n)[ to get the constant
        C1, by applying a repeated Aitken, Epsilon, or Romberg
        algorithm to estimate Cl as n--I .
    III.
        To compute C2.
        Use the true value of C1, if it can be seen to converge
        to a fraction.
        Repeat the above process by using equation
            C2 = ([e(n)[ - C1/n) * (n**2)
                •
    ***********\dot{*}**********************************************************
    IMPLICIT REAL*16 (A-H,O-Z)
C DOUBLE PRECISION NUMER,DENOM,PRODCT,RATIO,POWRN
C DOUBLE PRECISION A (100),XTRAB (100,12),COEF(30),S(100),CONST(30)
C DOUBLE PRECISION ARG
    DIMENSION A (100), XTRAB (100,12),COEF (30),CONST(30) ,S (100)
    REAL NUMER
C
    LX=100
    NTERMS=2048
    NCOLS=7
    KW=6
    JMNPRT=1
JCOEF=10
    JCOEF=9
C
    COEF (1)=0.0DO
    COEF (2) =0.0DO
    COEF (3)=0.0DO
    COEF (4)=0.0DO
    COEF (5)=0.0D0
    COEF (6)=0.0DO
    COEF (7)=0.0DO
    COEF (8)=0.0DO
    COEF (9) =0.0DO
C
    CONST (1) =0.0DO
    CONST (2) =0.0DO
    CONST (3) =0.0DO
    CONST (4) =0.0D0
    CONST (5) =0.0DO
    CONST (6) =0.0DO
    CONST (7) =0.0D0
    CONST (8) =0.0DO
    CONST (9) =0.0DO
C
    CALL COMPA (A,NTERMS)
    DO 2 J=1,JCOEF
```

```
    IF(J/2*2.EQ.J)GO TO 2
    IF (J.GE.JMNPRT) WRITE (KW,6)J
    6 FORMAT(/'1CONSTANT C OF N** (-',I2,')'//1X)
    NN=1
    DO 4 N=1,NTERMS
    EN=NN
    POWRN=EN
    SUM=0.ODO
    IF(J.LT.2) GO TO 5
    JCM=J-1
    DO 3 K=1,JCM
    L=J-K
    SUM=SUM-COEF (K) * (EN**J) / ((EN+CONST (K))**K)
    3 POWRN=POWRN*EN
    S SUM=SUM+A (N) *POWRN
    S(N)=SUM
    XTRAB (N,1)=SUM
    4 NN=NN+NN
    CALL SHANK(S,1,NTERMS,6,EXTRP)
    WRITE (KW, 210) EXTRP
    LP=KW
    IF(J.LT.JMNPRT) LP=0
    CALL AITABL (XTRAB,LX,NTERMS,NCOLS,IP)
    RATIO=2.ODO
C C
C 1 XTRAB (JJ,1)=XTRAB (K,1)
    JJ=JJ+1
    K=K+K
    IF(K.LT.NTERMS) GO TO 1
    CALL ROMBEX (XTRAB,IX,JJ-1,RATIO,1,LP)
    CALL ROMBEX (XTRAB,LX,JJ-1,RATIO, 2,LP)
    CALL AITABL (XTRAB,IX,JJ-1,NCOLS,LP)
    CALL ROMBEX (XTRAB,LX,NTERMS,RATIO,1,LP)
    CALL ROMBEX (XTRAB,LX,NTERMS,RATIO,2,LP)
C C SECOND DO LOOP TO COMPUTE VALUE A
    IF(J.GE.JMNPRT) WRITE(KW,16)J
    16 FORMAT(/'1CONSTANT A OF N**(-',I2,')'//1X)
    IF (J.EQ.1)COEF (1) =0.50D0
    IF (J.EQ.3)COEF (3) =-0.125D0
    IF (J.EQ.5) COEF (5)=0.15625DO
    IF (J.EQ. 7) COEF (7) =-0.4765625D0
    IF (J.EQ.9)COEF (9)=0.27050D1
    NN=1
    DO 40 N=1,NTERMS
    DENOM=0.ODO
    DO 50 L=1,J
    POWRN=NN
    PRODCT=1.D0
    JJ=J-1
    IF(JJ.LT.1)GO TO 120
    DO 100 M=1,JJ
    IF (L.EQ.M) PRODCT=PRODCT*COEF (M)
    IF (I.NE.M) PRODCT=PRODCT * (POWRN + CONST (M))
    IF(L.NE.M) PRODCT=PRODCT * ((POWRN + CONST(M))**M)
    POWRN=POWRN*NN
    100 CONTINUE
    120 IF (L.EQ.J)GO TO 150
    DENOM=DENOM - PRODCT
    GO TO 50
    1 5 0 ~ N U M E R = P R O D C T ~ * ~ C O E F ~ ( J )
        PRODCT=PRODCT* A(N)
        DENOM=DENOM+PRODCT
    5 0 ~ C O N T I N U E ~
C W8 WRITE (KW, 88)N,NUMER,DENOM,POWRN
C }88\mathrm{ FORMAT(/IX,I4,3X,'NUMBER=',D28.17,2X,'DENOM=',D28.17,5X,D28.17)
C S(N)=NUMER / DENOM - POWRN
    ARG=NUMER/DENOM
    XTRAB (N,1)=ARG ** (1.DO/J)
    XTRAB (N,1) = XTRAB (N,1) - NN
```

```
        S (N) =XTRAB (N,1)
40 NN=NN+NN
C 4 XTRAB (N,1)=SUM
    CALL SHANK(S,1,NTERMS,6,EXTRP)
    WRITE (KW, 210) EXTRP
    210 FORMAT (/1X,'EXTRP=',D28.17)
        LP=KW
        IF(J.LT.JMNPRT) LP=0
        CALL AITABL (XTRAB,LX,NTERMS,NCOLS,LP)
        RATIO=2.ODO
    JJ=3
    10 XTRAB (JJ,1)=XTRAB (K,1)
    JJ=JJ+1
    K=K+K
    IF(K.LT.NTERMS) GO TO 10
    CALL ROMBEX (XTRAB,IX,JJ-1,RATIO,1,LP)
    CALL ROMBEX (XTRAB,IX,JJ-1,RATIO,2,LP)
    CALL AITABL (XTRAB,LX,JJ-1,NCOLS,LP)
    CALL ROMBEX (XTRAB,LX,NTERMS,RATIO,1,LP)
C
    2 CONTINUE
    STOP
    END
C
C
    SUBROUTINE COMPA (A,NTERMS)
C
C XIIM=DLOG (RTWO)
    XLIM=QLOG (RTWO)
    PSUM=0.0D0
    DSIGN=1.0DO
    NN=0
    JJ=1
    DO 1 J=1,NTERMS
    AJ=J
    TERM=DSIGN/AJ
    DSIGN=-DSIGN
    PSUM=PSUM+TERM
    IF (J.NE.JJ)GO TO 1
    NN=NN+1
    A (NN) =QABS (PSUM-XLIM)
    JJ=JJ+J
    1 CONTINUE
    NTERMS=NN
    WRITE (6,10) (A (J),J=1,NTERMS)
    10 FORMAT(/1X,'A = ',4D28.17/(5X,4D28.17))
    RETURN
    END
C
    SUBROUTINE AITABL (XTRAB,LX,NROWS,NCOLS,KW)
C
C DOUBLE PRECISION XTRAB,TINY,DENOM,RZERO
```

```
    DIMENSION XTRAB(LX,NCOLS)
C
    TINY=1.D-35
        RZERO=0.DO
        IF(NCOLS.LT.2) RETURN
        IF (NROWS.LT.3 .OR. NROWS.GT.LX) RETURN
C
        DO }1\mathrm{ K=2,NCOLS
        JMIN=2*K-1
        IF(JMIN.GT.NROWS) GO TO 3
        DO 2 J=JMIN,NROWS
        DENOM=(XTRAB (J-2,K-1) -XTRAB (J-1,K-1)) -
        X (XTRAB (J-1,K-1)-XTRAB (J,K-1))
        IF (DENOM.EQ.RZERO) DENOM=TINY
                    USE THE FORM WITH LEAST CANCELLATION FOR
    CONVERGENT SEQUENCES
        2 XTRAB (J,K)=XTRAB (J,K-1) - (XTRAB (J,K-1) -XTRAB (J-1,K-1)) **2/DENOM
        1 CONTINUE
C
        3 IF(KW.LE.0) RETURN
            DO 4 J=1,NROWS
            KMAX=(J+1)/2
            IF(KMAX.GT.NCOLS) KMAX=NCOLS
    4 WRITE (KW,5) J, (XTRAB (J,K),K=1,KMAX)
    5 FORMAT(/1X,I4'4D28.17/(5X,4D28.17))
        RETURN
            END
C
    SUBROUTINE ROMBEX (R,IR,N,RATIO,JPFRST,KW)
C
    IMPLICIT REAL*16 (A-H,O-Z)
    DIMENSION R(LR,N)
    IF(N.LT.2 .OR. N.GT.LR) RETURN
    UNITR=1
    DO 1 J=1,N
    IF(J.EQ.I) GO TO 2
    RPOWR=RATIO*JPFRST
    DO 3 K=2,J
    R(J,K)=R(J,K-1) +(R(J,K-1) -R (J-1,K-1)) /(RPOWR-UNITR)
    3 RPOWR=RPOWR*RATIO
    2 IF(KW.GT.0) WRITE (KW,4) J, (R (J,K),K=1,J)
    FOORMAT(/1X,I4,4D28.17/(5X,4D28.17))
    1 CONTINUE
        RETURN
        END
C
C
    SUBROUTINE SHANK (S,NMIN,NMAX,KMAX,EXTRP)
C DOUBLE PRECISION QTEST,DABS,S,H,EXTRP,HUGE,ZERO,UNITY,TZ,TU,ARG
    DIMENSION S(1)
C QTEST (ARG) =ABS (ARG)
C QTEST (ARG) = DABS (ARG)
    QTEST (ARG) =QABS (ARG)
    HUGE=1.0E35
    ZERO=0.0EO
    UNITY=1.0EO
C
    WRITE (6,44) (S (J) ,J=1,NMAX)
44 FORMAT(/1X,'S = ,4D28.17/(5X,4D28.17))
    IF (NMIN.GT.NMAX) GO TO 130
    EXTRP=S (NMAX)
    KT=2*KMAX
    DO 120 J=NMIN,NMAX
        TZ=0.
        LIMKK=J-NMIN
        IF (LIMKK.GT.KT) LIMKK=KT
        IF (LIMKK.LE.0) GO TO 120
```

```
DO 110 KK=1,LIMKK
        JMKK=J-KK
        IF (QTEST (S (JMKK)).EQ.HUGE) GO TO }8
    IF (QTEST (S (JMKK+1)).EQ.HUGE)GO TO }8
    TU=S (JMKK+1) -S (JMKK)
    IF (QTEST(TU).EQ.ZERO)GO TO }9
    TU=TZ+UNITY/TU
    GO TO 100
80
    9 0
    100
        110
C
    120
C
MXMKT=NMAX-KT
EXTRP=S (MXMKT)
WRITE (6,21) S (MXMKT)
    21
    130
FORMAT (/1X,'S (MXMKT) =' ,D28.17)
RETURN
END
```

$$
\begin{gathered}
\text { VITA } \\
\text { HUI-WEN CHIANG } \\
\text { Candidate for the Degree of } \\
\text { Master of Science }
\end{gathered}
$$

Thesis: A STUDY OF THE EPSILON ALGORITHM AND APPLICATIONS
Major Field: Computing and Information Sciences
Biographical:
Personal Data: Born in Taipei, Taiwan, Republic of China, July 14, 1956, the daughter of Hou-Shen Chiang and Chen-Kan Chiang.

Education: Graduate from Taipei First Girls' Senior High School, July 1974; received Bachelor of Law from Fu Jen University, Taipei, Taiwan, Republic of China, in June 1978; completed requirements for the Master of Science degree at Oklahoma State University, Stillwater, Oklahoma, in December, 1986.

Professional Experience: Lawyer Assistant, Formosa Commercial Law Firm, September, 1978 to July, 1981; Programmer/System Analyst, System Design and Computer Services, OAED, Oklahoma State University, March, 1983 to November, 1986.

