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PREFACE 

This thesis describe Wynn and Shanks' epsilon algorithm 

and its implementations. The main objective of this study is 

to observe the characteristics of the epsilon algorithm and to 

formulate an update form of the epsilon algorithm to speed up 

iterative processes by reducing duplicated steps. The update 

epsilon algorithm has been tested on several sets of numerical 

problems and the results have been satisfactory. 
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CHAPTER I 

INTRODUCTION 

//( Techniques for accelerating the convergence of 
'--

iterative processes have been developed almost a century. 

~\ 0 I One of the main strategies of such techniques is to use some 
'~ \.._ 

kind of transformation on the partial sums of a slowly 

convergent series to produce a transformed series which 

converges to the same limit as the original sequence, but 

faster.) 

Assume that we want to compute the sum of the series, 

7T /4 = 1 - 1/3 + 1/5 - 1/7 + ••• 

= .~0 (-1) 1 (2j + 1). (1.1) 
J- ~-- \ 

'..J ,, 
1 

The series converges very slowly. Even after 500 terms there 

still occur changes in the third decimal. If we do not know 

that the limit is ~/4, it is very difficult to find the limit 

to the required tolerance, unless we can do something besides 

simply adding up partial sums. This is what the acceleration 

methods are designed for. 

r~) lThere are several acceleration techniques available for 
\...:' 
speeding up the convergence of an iterative solution. These 

well-known techniques include Richardson integration, 
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Romberg integration, Euler's method, power series methods, 

the Q-D algorithm, Aitken's method, the epsilon algorithm, 

etc. Most of these techniques work well in most of the 

problems and then fail miserably in some specific cases. 

However, the epsilon algorithm is considered a relatively 

simple but powerful technique for accelerating the 

convergence of slowly convergent sequences and inducing 

convergence in divergent sequences~The epsilon algorithm 

may also be used (i) to obtain useful results from divergent 

series and iterations, (ii) to obtain the limits of iterated 

vector and matrix sequences, (iii) to aid in the solution of 

differential and integral equations, {iv) to carry out 

numerical integration in a new way, (v) to extrapolate, (vi) 

to fit a curve to a polynomial or to a constant plus a sum 

of exponentials.) 
~ 

> l It is the purpose of this thesis to study the 

properties of the epsilon algorithm and, based on its 

recursive nature, to modify the epsilon algorithm for 

speeding up the iterative process in order to reduce some 

possible duplicate steps by saving previous results for 

further computation (see Chapter III). Furthermore, the 

discussion of the singular rule which was suggested by Wynn 

to overcome the instability of the epsilon algorithm is also 

\ included in this paper. 1 
/ 

Since the transformations take a very important role in 

the epsilon algorithm, a brief historical overview, as well 

as Shanks' motivations of the transforms, and Wynn's epsilon 
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table will be presented at the beginning of Chapter II. 

Following this will be the descriptions of the 

implementations and stability of the epsilon algorithm. 

The motivation to update the epsilon algorithm will be 

presented in Chapter III. Meanwhile, the logic to update 

the epsilon algorithm will be described step by step. (The 

description of several numerical problems which have been 

tested both on the "original" and the "update" epsilon 

' t algorithm are then illustrated.;(The four sets of the 
) \ 

numerical test problems are Fourier series, confluent 

hypergeometric function, Gauss-Seidel relaxation scheme, and 

Jacobi relaxation scheme. The comparison of the test 

results between the "original" epsilon algorithm and the 

"update" epsilon algorithm with respect to the storage 

requirements and the time requirements are made with respect 

to each of the four test problems.~ 

However, when using the formula of the epsilon 

algorithm it may sometimes occur that an entity is 

numerically ill-determined and causes all entities lying in 

a certain sector to become ill-determined too. P. Wynn's 

singular rule to overcome these misfortunes is studied and 

tested in Chapter IV. 

In Chapter V, the epsilon algorithm is applied 

repeatedly in order to obtain a new series expansion in 

negative powers of n of the magnitude of the error in the 

partial sums of an infinite series. 

The final conclusion of this thesis and the suggestion 
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for further study are given in Chapter VI. Finally, all 

program listings are collected in the Appendices. 
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CHAPTER II 

THE EPSILON ALGORITHM 

Introduction and Historical Overview 

The epsilon algorithm is a method of generating 

non-linear transforms for increasing the rate and expanding 

" the domain of convergence of sequences.) The family of 
i 

(m) 
non-linear epsilon transforms includes ek, e k , 'E\, and e d" 

The e1 transform has been developed by several well-known 

authors including Delauncy (1926) , Samuelson (1945), Shanks 

and Walton (1948), Hartree (1949), and Isakson (1949). 

However, more general discussions of the epsilon transforms 

and their applications were given by Shanks. But, because 

of the vast amount of time consumed and labor needed in 

evaluating the determinant of the entries, the use of these 

transformations was limited. In 1956, Wynn discovered an 

easier way to determine the entries of the epsilon table 

without any determinant calculations. Since then, the 

epsilon algorithm has become popular. In the next section 

a summary of Shanks' approach to obtain the transformations 

will be given. 
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Motivation of Shanks' Transforms 

,, /(Let us define a typical numerical sequence A by 

A= A ) , r = 0,1,2,3, ••• , 
r 

(2.1) 

and draw a smooth curve through the discrete points which 

are plotted by A versus r. Figure 1 shows the graphs of 

some sequences that are defined as convergent, divergent, 

monotonic, and oscillatory sequences. By comparing common 

points in the sequences of the graph, 

A(Y) 
AtY) 

----~~----------------~~y 

Figure 1: Graphs of the numerical sequences 
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Shanks devised a function of r in the form of 

k r 
A = B + I: X Q 

r i=1 i i 
(Qi=j:.l,O) (2.2) 

to represent those sequences, where Xi is the spectrum of 

amplitudes, Oi is the spectrum of ratios, and B as the 

"base". Here the prime concern is computing the base B. For 

if {Ar) is a mathematical transient i.e. if it satisfies 

(2.1) and if each ratio satisfies !oil < 1 then clearly 

B = lim A 
r-> oo 

If ( A r ) is a transient and one or more I Qi I >= 1, Ar does 

not converge; Shanks said that "Ar diverges from B" and calls 

B the nanti-limit" of ( A r). 

Many sequences which arise naturally in analysis are 

indeed mathematical transients of some finite order k. Other 

sequences that are of infinite order (k = oo ) we can in many 

cases say that ( A~ ) is nearly of Kth order for some K -- at 

least for r greater than some fixed N. Then by analogy with 

(2.1) Shanks determines a local Kth order base Bk n by 
' 

solving the 2k+1 equations 

k 
A r = B k n + ~ xi,n Oi,n , 

' i=l 
n-k <= r <= n+k, n>=k, 
(Qi,n :::=f1,0) 

or the 2k+1 quantities Bk,n, X i,n, Q i,n, (i=1,2, ... ,k). 

Algebraically the formula for B k n is obtain by 
' 
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A -------- A A 
n-k n-1 n 

L':.An-k -------- L':.An-1 I':. A 
n 

1':.~-k+l -------- I':. A L':.An+l ,n • 

L':.An-1 -------- L':.An+k-2 L':.~+k-1 
B = 
k,n 1 -------- 'I 1 

L':.An-k -------- L':.An-1 I':. A ( 2. 3) 
n 

L':.An-k+l -------- I':. A L':.,An+l ,n 

I':. A' 
n-1 

-----...,.....- L':.An+k-2 ~An+k-1 

where L':.A =A -A , and this is Shanks' "K'th order 
n+l n 

transform of ( Ar )". 

The transforms may also be written in operator form: 

B = e ( A.) • ( 2. 4) 
k,n k n 

where e K is the nonlinear operator defined by the right hand 

side of the equation (2.3). 

Followed by the first iteration transform eK' the 

higher order iteration transforms can be gained by 

2 
c = e (B = e (An) , (n >= 2k) 
k,n k k,n k 

2 3 
D = e (C = e (B = e (A ) ' (n>= 3k) 
k,n k k,n k k,n k 

{2.5) 

From the above iteration the operator e K was transformed. 

The "Kth 

e 
k 

order iterated transformation", is 

(A ; A ; A ; A ; ••• ) = 
0 1 2 3 

A ; B ; 
0 k,k 

c ; 
k,2k 

defined by: 

D ; ••• (2.6) 
k,3k 
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and the operator ed, the "diagonal transformation", is 

defined by: 

e (An) = B 
d n,n 

/ 
I 
\ From Shanks' definition of the epsilon transforms, we 
'· 

may indicate the dependencies on the Ai as in Figure 2 where 

each transform depends on the A 's directly. 

Ao 

Al el(Ao) 

Az el(Al) ez (Ao) 
Ag el(Az) ez(Al) e3(A0) 

A4 el(A3) ez (Az) 

As e1 (~) 

As 

Figure 2: Configuration for the ei transforms 

Note that the computation for any particular entry of A 

proceeds quite independently with an effort similar to anv 

other transformation entry. So with the use of Shanks' 

transforms in its present form as a sequence to sequence 

9 
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transformation in which entries of the transformed sequence 

are of the form em(Su) (n=n,n+1, ... ,m=1,2, •.. ), transform 

entries may be examined for approaching a limit faster. 

Therefore, the next transform may save a vast amount of labor. 

In 1955, Wynn successfully proved the epsilon theorem 

which carried out the transformation more efficiently. He 

calculated the entries from the previous column by saving 

some auxiliary numbers along the calculations. 

Following is the epsilon theorem developed by Wynn. 

Epsilon Theoren: 

If 

then 

Ezm+1 <Su) = 

1 
Es+1 ( Sn) = Es-1 ( Su+1 ) + ----------------­

E s ( S n+ 1) - Es ( S u) 

(n, s = 0, 1, ... ). ( 2. 7) 

provided that the initial conditions of E (-1)=0, 

m=1,2, •.. , E (O) = S(m) ,m=O,l, ... ; and none of the 

quantities E Zk(A 1J becomes infinite. 

The quantities Es may be placed in a two-dimensional 

array in which the suffix s indicates a column number and 

the superscript rn a diagonal (see Figure 3). 
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( 0) 
E 

-1 (0) 
E 

(1) 0 ( 0) 
E E 

-1 ( 1) 1 
E 

( 2) 0 ( 1) ( 0) 
E E E 

-1 (2) 1 s ( 0) 
E E 

( 3) 0 ( 2) (1) s+1 
E E E 

-1 1 s 

Figure 3: Epsilon algorithm lozenge diagram 

The even-numbered columns Ezk (An) display the transformed 

sequences ek(AJ, and generally the transformed sequences 

converge to the limit of the An more rapidly than the original 

sequence An. The odd-numbered columns Ezk+l (An) are 

intermediate and diverge to +-oo; so there is no need for the 

printing of E 2k+l {An). 

According to equation 2.7 the four quantities can be 

arrange in a lozenge, as shown below. 

(n) 
E 

(n+1) s (n) 
E E 

s-1 (n+l) s+l 
E 

s 
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The right side entry can be computed by adding the left 

side entry to the inverse of the difference of the two in 

the middle. So the quantities Es are constructed by means 

of the relationship of 

(m) (m+1) (m) -1 
E = E + 

(m+1) 
E E ) (m, s=O, 1, ••• ) • 

s+1 s-1 s s 

This is called the fundamental relationship of the epsilon 

algorithm. 

Implementation of the Epsilon Algorithm 

af'.P.1Y the epsilon algorithm with great success. First, we 

illustrate the transforms on Leibnitz series: 

1T = 4 - 4/3 + 4/5 - 4/7 + •••• ( 2. 8) 

This a very slowly convergent series but the epsilon 

algorithm speeds it up considerably. The transformation 

table is shown in Table I. 

The tenth partial sum, A9, is correct to only one 

figure; it takes about 40,000,000 terms to get eight figures. 

However, e4 is already corrected to eight figure. 



n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

TABLE I 

THE EPSILON TABLE FOR LEIBNITZ SERIES, 
SUM=3.14159 .•. 

A(n) e1 e2 e3 
4.0000000 
2.6666667 3.1666667 
3.4666667 3.1333333 3.1421053 
2.8952381 3.1452381 3.1441502 3.1415993 
3.3396825 3.1396825 3.1416433 3.1415909 
2.9760462 3.1427129 3.1415713 3.1415933 
3.2837385 3.1408814 3.1416029 3.1415925 
3.0170718 3.1420718 3.1415873 
3.2523659 3.1412548 
3.0418396 

2 

13 

e4 

3.1415928 
3.1415927 

Aitken "A" method is considered one of the powerful 

acceleration techniques and it had been a great success at 

the geometric series problems. The motivation for the method 

is to use the ratio of consecutive errors in the partial sums 

sequence to transform the original sequence to a faster 

converging sequence. Aitken's method can be written in 

the forms as below: 

or 

A n+I- A A n+2 - A 
r = --------- = ----~------

A n+l - A 

2 
An An+2 - A n+2 

A = ----------------------------

= 

(A n+2 - An+l) - (A n+l - An) 
2 

A -n 

( AAn) 

( 2. 9) 

(2.10) 

(2.11) 
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= (2.12) --------------- , 

where r is a constant and A(n) is a numerical sequence. 

Aitken's method would seem to have a good chance of 

success when the ratio of consecutive errors approaches any 

constant between r = 0 and r = 1. As it can be shown that 

the denominators in (2.10), (2.11), and (2.12) go to zero if 

r=1 and this would lead to the method not working well. 

Overall, Aitken's method is the "perfect" linear convergent 

accelerator for the geometric series. 

The-next example illustrates the weakness of Aitken's 

method in Shanks' "double" geometric series. The sequence 

of partial sums of A(n) is originally defined as 

A(n) = f(z) = 1 + 3zl2 + 7ll4 + 15zJ8 + 31:114 + ••• , 

and the right side could be written as 

f(z) = 2 I (1-z) (2-z) 
2 2 

= 2 I (1 + z + z + ••• ) - 1 I (1 + zl2 + zl4 + ••• ) • 
(2.13) 

The e 2 transform of the epsilon algorithm transforms 

the sum perfectly on any given five consecutive partial sums. 

It is not so fortunate with the Aitken's method in this case, 

especially when z=10. See Table II for the Epsilon table of 

Shanks' double geometric series and Table II for Aitken's 

transforms. 



n 
0 
1 
2 
3 
4 
5 
6 
7 
8 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

TABLE II 

THE EPSILON TABLE OF SHANKS' DOUBLE GEOMETRIC SERIES 
AT X=lO. SUM= 2.77777778D-1 

L(n) e2 e4 
.100000000Dl 
.160000000D2 
.191000000D3 -.4062500DO 
.206600000D4 -.2014706D1 
.214410000D5 -.9892857D1 .2777778D-1 
.218316000D6 -.4887675D2 .2777778D-1 
.220269100D7 -.2427850D3 .2777778D-1 
.221245660D8 -.1209806D4 .2777778D-1 
.221733941D9 -.6038617D4 .2777778D-1 

TABLE III 

FAILURE OF AITKEN'S METHOD ON 
SHANKS' DOUBLE GEOMETRIC SERIES AT X=10. 

SUM=.277777D-l. 

L(n) 
0 

.10000D1 

.16000D2 -.71D-1 

.19100D3 .41DO 

.20660D4 -.20D1 .17D-1 

.21441D5 -.98Dl .64D-2 

.21831D6 -.48D2 -.19D-1 .23D-1 

.22026D7 -.24D3 -.83D-1 .24D-1 

.22124D8 -.12D4 -.24DO .24D-1 .24D-1 

.22173D9 -.60D4 -.64DO .23D-1 .24D-1 

15 

Our -last· example .shows another disadvantage of Ai.tken ~-s-· 
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Lubkin's series: 

1 . 1319 71 7 s . . . = 'IT I 4 + ln C 2 ) I 2 

= 1 + 112 - 113 - 114 + 115 + 116 - • • • I 

{2.14) 

the repeated Aitken's method is completely confused by the 

ratio of consecutive errors which keeps switching signs and 

therefore will not find the convergent answer (as shown in 

Table IV). However, in Table V, we find that the epsilon 

method soon approaches the correct limit in the later columns. 

TABLE IV 

FAILURE OF AITKEN'S METHOD ON LUBKIN'S SERIES, 
SUM = 1.1314 ••• 

L(n) 
0 
1. 00 
1. 50 
1.1667 
0.9167 
1.1167 
1. 2833 
1.1405 
1. 0155 

2.00 
1. 30 
0.1667 
1.0278 
2.1167 
1.2064 
0.1405 

3.1308 
.6560 

-3.0888 
1. 6209 
7.4390 

7.9530 
-1.0027 

-23.098 



L(n) 
0 
1. 00 
1.50 
1.17 
0.917 
1.12 
1.28 
1.14 

h\ 1. 02 , I ~ 
I{ i 1.13 

I 
i 
I 

\ 
' 

TABLE V 

THE EPSILON TABLE FOR LUBKIN'S SERIES 
SUM = 1.131 •.. 

e1 e2 e3 

2.00 
1.30 
0.167 1.0755 
1. 03 1.1248 
2.12 1.1420 1.1504 
1. 21 1.1333 1.1359 
0.140 1.1285 1.1226 
1. 07 1.1315 1.1304 

17 

e4 

1.1300 
1.1317 

;:_-.---. -- - ~~ . 

Stability of the Epsilon Algorithm 

From the nature of the epsilon algorithm we may say that 

it is a recursive process involving repeated subtractions and 

divisions. And as such one would expect it to be numerically 

unstable because of the possibility of loss of digits due to 

cancellations which occur during the transformation. However, 

we found that in certain circumstances it is quite remarkably 

stable. 

After studying the behavior of some sequences Wynn found 

that in certain circumstances the epsilon algorithm is a 

regular (i.e., convergence preserving) transformation: 

certain types of slowly convergent monotonic sequences are 

transformed into slowly convergent sequences of single-signed 

terms and certain type of slowly convergent oscillating 
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sequences are transformed into rapidly convergent oscillating 

sequences. 

Wynn concluded that transformations of monotonic 

sequences require the repeated subtraction of approximately 

equal quantities, and that in turn induces instability in 

which the rounding errors jump up and take complete charge 

of the computations after a few steps. On the other hand, 

the transformations of oscillating sequences showed the 

consistent subtraction of quantities having opposite signs 

with no loss of digits due to cancellation and the 

computation appeared to be completely stable. 



CHAPTER III 

UPDATE FORM OF THE EPSILON ALGORITHM 

Motivations 

As mentioned in Chapter II the epsilon algorithm uses the 

lbzenge algorithm relationship. The four quantities below 

form a lozenge of the epsilon-array. 

(m) 
E 

(m+l) s (m) 
E E 

s-1 (m+l) s+l 
E 

The computation of the lozenge algorithm requires storing 

a vector of quantities, not a two-dimensional array; and the 

auxiliary variables auxO, auxl, and aux2 are implemented in 

the processes, as shown in Figure 4. 

auxO/-

Figure 4: Programming lozenge algorithms 

19 
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The vector 1 contains the quantities from Eo to Em, which 

lie along the thick line in Figure 9. The contents of l(s-1), 

l(s), auxO, and aux1 form a lozenge in the E-array. The 

processing starts with the computation of the auxO quantity 

from those of l(s-1), l(s), and aux1;, then the contents of 

l(s-1) is replaced by aux2, aux2 by aux1, and aux1 by auxO 

accordingly. The value of s is increased by one, and the 

process is moved to the next step to form a new lozenge; and 

the above processes are repeated until all of the entries in 

the new diagonal are computed. 

An ALGOL epsilon algorithm procedure which is given by 

Henry C. Thacher, Jr. in the COMM. A.C.M. Vol. 6, 1963 

follows. This algorithm is a revision of the original epsilon 

algorithm constructed by P. Wynn and is the one used in this 

thesis. 

01 Procedure Shanks(nmin,nmax,kmax,S); 
02 value nmin, nmax, kmax; 
03 integer nmin, nmax, kmax; 
04 array S; 

05 
06 
07 
08 

---- 09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

begin integer j,k,limj,limk,two kmax; 
real TO,T1; 
two kmax := kmax + kmax; 
limj := nmax; 

for j :=_ nmin step 1 until limj do r i begin tQ_ ;.:::= __ 0_; 
I limk : ,;- j - nmin; 

if limk > two kmax then limk := two kmax; limk := limk - 1; 
~:,-for k := 0 step 1 until,~limk,,do 

: begin T1 :-;, S (j-k) - S (j-k-1); 
if T1 = 0 then T1 := TO + 1/T1 else 
if S(j-k) = largest number then T1 :=TO else 

T1 := largest number; 
TO := S (j-k-1) 
S (j-k-1) := T1 

end for k 



21 end for j 
22 end Shanks 

This procedure replaces the elements S(nmin) through 

21 

S(nmax-2*kmax) of the arrayS by the e(kmax) transform of the 

sequenceS. The elements S(nmax-2*kmax+1) through S(nmax-1) 

are destroyed. Note that the array S is the same as vector l 

in the preceding description. 

If, in a slowly convergent sequence, one can transform a 

certain E from the transformed sequence by applying the 

epsilon algorithm and we decide that a value of Ei may be a 

better approximation to the true value, then it is certainly 

wasteful to start the process from the original sequence. It 

seems more appropriate to start the process with the 

transformed sequence as the initial value. We may name this 

situation the horizontal extended process of the epsilon 

algorithm. 

Or if the m+n elements of the basic sequence are 

considered after a transformed sequence has been obtained from 

m elements then it seems more reasonable to continue the 

process from the m+1th element to reach a transformed position 

rather than from the first element. This shall be called the 

vertical extended process of the epsilon algorithm. 

Figure 5 shows the examples of two basic situations. 

The computing processes to obtain the first converted value X1 

are included in the dashed zone. However, the steps needed to 

obtain the second converted value X2 are shown in the thick 



22 

line zone. It is obvious that a lot of processes in the 

overlapped area are repeated and wasted. This leads to the 

following algorithm. 

... 
__ , ,.. X~ , ., 

.... x.r ..... ,. .,.. x .... ... 
"""" ""x' x 

x-

To extend vertically To extend horizontally 

Figure 5: Motivations of the update epsilon algorithm 

Update Epsilon Algorithm 

Procedure 3.1: Updated epsilon algorithm procedure 

01 Procedure Shanks(nmin,nmax,kmax,S,H); 
02 value nmin, nmax, kmax; 
03 integer nmin, nmax, kmax; 
04 array S,H; 

05 begin integer j,k,limj,limk,two kmax; 
06 real TO,Tl; 
07 two kmax := kmax + kmax; 
08 limj := nmax; 
09 .-·for j : = nmin step 1 until limj do 
10 begin TO := H(j)~ 
11 limk :=- j ...; n.'min; 
12 if limk > two kmax then limk := two kmax; limk := limk - 1; 
13 -for k := 0 step 1 until limk do 



14 begin T1 := S (j-k) - S (j-k-1); 
15 if T1 = 0 then T1 := TO + 1/T1 else 
16 if S(j-k) = largest number then T1 :=TO else 
17 Tl := largest number; 
18 TO := S(j-k-1) 
19 S(j-k-1) := T1 
20 ~n~ for k 
21 . H: ( j h: : = TO 
2 2 ---encr for-}~ 
23 end Shanks 
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The variables of nmin and nmax indicate the subscript of 

the beginning and ending terms of array, S 1~ When nmin is not 
'· . 

equal to 1, the vertical extended process is applied and more 

elements are included in the process. The array H, holding 

the values of the previous Ei column, is defined for the 

purpose of the horizontal extended process. Kmax indicates 

the order of the epsilon transform~ (when the horizontal 

extending process is applied, the order of the epsilon 

transform is numbered from the transformed sequence and not 

from the original sequence~ 

When both horizontal and vertical extended processes are 

to be applied to the transformed sequence, it is recommended 

that one apply the horizontal extended process first, then 

apply the vertical extended process.~ 
I 

_) 

Numerical Test Problems 

1. Fourier Series: 

A Fourier series may be defined as an expansion of a 

function or representation of a function in a series of sines 

and cosines such as 
00 00 

f (x) = a 012 + E a (n) cos (nx) + E b (n) sin (nx) 
n=l n=l 

(.3 • 1) 
I 



where a(o), ..• ,a(n) and b(l) , ... ,b(n) are real or complex 

constants. The conditions imposed on f(x) to make this 

equation valid are that f(x) has only a finite number of 

infinite discontinuities and only a finite number of extreme 

values, maxima and minima. 
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One of the advantages of a Fourier representation over 

some other representation, such as a Taylor series, is that it 

may represent a discontinuous function or a periodic function 

conveniently. 

The first example is to model diffusion in an infinite 

slab which has plane parallel sides. The boundary 

conditions at the face of the slab are piecewise constant in 

time. The method of Fourier series is used to compute one 

function value and an error estimate. To accelerate the 

convergence of the series, the epsilon algorithm is applied. 

The program, called SLAB, is provided by Dr. Chandler. 

The update epsilon algorithm is tested by replacing the 

original epsilon algorithm in the SLAB program. The table VI 

shows the test results of the SLAB program when time is equal 

to 0.666111170477D01. 

In this case, only the situation of horizontal extension 

is tested. The above results in Table VI are the same as the 

results when the original epsilon algorithm is applied twice 

in the SLAB program. 



TABLE VI 

THE VALUES OF TWENTY DIFFUSIONS AT TIME =0.666111170477Dl 

0.1600000D-01 
0.48323520-02 
0.3657657D-02 
0.31408590-02 
0.32467890-02 
0.3952481D-02 
0.5001130D-02 

0.9708385D-02 
0.43093220-02 
0.34204660-02 
0.31052590-02 
0.34204660-02 
0.42967380-02 
0.51307650-02 

0.6143988D-02 
0.3953008D-02 
0.32467890-02 
0.31408590-02 
0.36576460-02 
0.46705100-02 
O.SOOOOOOD-02 

2. The Confluent Hypergeometric Function_ I 
L _j 

The confluent hypergeometric equation 

zy" (z) + (c-z)y' (z) - ay(z) = 0 ( 3. 2) 
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is simplified from the hypergeometric equation by merging two 

of its singularities. ~(One solution of the confluent 

hypergeometric equation is 

y(z) =1 F1 (a,c;z) = M(a,c:z) 

a X a(a+l) x2 
= 1 + -c-·-r! + -ccc+ry----·-----2!-- + ... , 

c= 0,-1,-2,.... (3.3) 

The solution is convergent for all finite z. In terms of 

the Pochhammer symbols, 

(a) m = a (a+ 1 ) (a+ 2 ) • • . (a +n -1 ) = (a +n -1 ) ! I (a -1 ) ! , 

(a) 0 = 1, 

the confluent hypergeometric function becomes 

( 3. 4) 
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M(a,c:z) = 4 F.1 (a,c:z) ( 3. 5) 

oo (A)n Xn = n~l --(c)n_, ___ n ___ . 

The leading subscript 1 indicates that one Pochhammer 

symbol appears in the numerator and the final subscript 1 

indicates one Pochhammer symbol in the denominator. If the 

parameter a is zero or a negative integer, M(a,c;z) becomes 

a polynomial. 

Both the "original" epsilon algorithm and the "update" 

epsilon algo~ithm are applied to the confluent hypergeometric 
' I 

series with the initialization of a=1,c=1,\and 
---"~---

z=(0,1.5707963267949). 
~ 

L~ The test results are shown in Table VII. 

The quantities of the confluent hypergeometric series are 
€; 

first included to reach the column of ei. When processing to 

column e4, the method to extend horiTntally in the updated 

epsilon algorithm is applied. Furthermore, five more 

quantities of the confluent hypergeometric series are added 

into the process to test the vertical extension functionJ The 

dashed zones in Table VII indicate the different processing 

steps. The test results shown in Table VII are similar to the 

original epsilon algorithm. 



TABLE VII 

'EHE EPSIJJON TABLE IN CONFLUENT HYPERGF.ONE'l'RIC FUNCTION 

.lOOOOOOODOl,.OOOOOOOODO) 
( .lOOOOOOODOl,.l5707963Dl) 
(-.~33/0055D00,.15707963Dl) 

(-.23370055D00,.92483222DO) 
( .J9968957D-1,.92483222DO) 
( .J9968957D-1,.10045248Dl) 
(-.89452299D-3,.10045248Dl) 
(-.89452299D-3,.99984310DO) 
( .24737276D-4,.99984310DO) 
( .24737276D-4,.10000035Dl) 

( .23697291D00,.97151625DO) 
( .31750537D-1,.10638220DO) 
(-.13923435D-1,.10111385Dl) 
(-.28182153D-2,.99736605DO) 
( .44371597D-3,.99941315DO) 
( .10569411D-3,.10000675DO) 
(-.93874791D-5,.10000168Dl) 
(-.24372107D-5,.99999879DO) 

( .11374722D-1,.99993530DO) 
( .50818081D-3,.100179]7Dl) 
(-.25577479D-3,.10001280Dl) 
(-.23167201D-4,.99996636DO) 
{ .41047145D-5,.99999646DO) 
( .47744989D-6,.10000004Dl) 

( .21234162D-3,.99999997DO) 
( .48431629D-5,.10000237Dl) 
(-.25077908D-5,.10000009Dl) 
(-.13028J08D-6,.99999974DO) 

(.21315865D-5,.99999999DO) 
(.29803821D-7,.10000001Dl) 

N 
........ 



CHAPTER IV 

SINGULAR RULES FOR EPSILON ALGORITHM 

Introduction 

~Regardless of precision, when using the formula o~ the 

epsilon algorithm it may sometimes occur that a quantit~· is 

nurrerically ill-determined. As a result of this end because 

of the way in which the algorithmic formulae are used, this 

~isfortune is propagated throughout a whole sector.) Wynn 

(1963), Cordellier (1977), and Brezinski (1978) have suggested 

ways to deal with them. We begin the discussion with o simple 

example. 

According to the partial sums of the power series for ex, 

its initial members are as follows: 

0 
0 

0 1 1 1 1 ------
(2-4X+X2) (1-X) 

l+X X (2+X) ----=~:z---- 2(3+X) 1 ------
-~=~~~~2-2 ;~:z (2-X) -2(6-6X+X2) l+X+~ 

1 (6+4X+X2) -----~3-------------
2 x3 ~~3 (6-2X) 

l+X+~ + -6-

0 

0 

0 

0 

Figure 6: IJur:,erical example of the s.:Dgt:lar rule case 
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When x=2 we construct the above array under the epsilon 

scheme as shown below: 

0 
1 

1 --------~ 1/2 
3 

1/2 
00 

1/2 
5 

19/3 

Figure 7: Epsilon scheme of the singular case 

In this example when one follows the above formulae we 

find that two entries in the tL column have attained the same 

value (1/2 and 1/2). However, by using the epsilon algorithm 

we can hardly obtain the value 5, instead infinity in that 

entry is obtained. This is one of the typical singular cases. 

(when we repeatedly apply the epsilon algorithm, we may 

forecast that the misfortune is propagated throughout the 

whole sector. Therefore, the singular rule was introduced by 

Wynn in 1963 to overcome this difficulty. ) 

Singular Rules 

Now suppose that the example in figure 6 has been put into 

the large lozenge diagram as below, 



(oo) m+l 
E 

s 

m 
(x)ss+l 

Figure 8: Singular case in the large lozenge diagram 

i 
and two entries in the s8 _folumn are both equal to the 

same value - say x. It is immediately noticeable that 

m m+l m . 
becomes finite, Es+l and E8 _ 1 are equal to x, and Es+Z lS 
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indeterminate. Further quantities in a sector whose vertex is 

ats:+zremain undetermined. However, if we try to avoid using 

the entry of sm+lto calculate the value of 
s 

Em , the 
s+2 

indeterminate situation will be eliminated. One can substitute 

the appropriate values that were originally used to derive the 

particular entry that progressed to infinity as opposed to 

using the ill-determined infinity term. This should alleviate 

indeterminate quantities. This multiple appeal to the epsilon 

algorithm relationship appears as follows: 



= €m+1 
s 

m+1 
€ 

s 

m+1 
€ 

s 

1 
+ -----------------------------------------------

1 

m+2 m+1 
€ - € 

s s 

1 

m+1 
€ -s-1 

1 

m+1 m 
€ € 

s s 

+ -----------------------------------------------
1 1 1 -------------- + -----,.------- - -------------

m+1 
€ 

s 
m+2 

- € 
s 

m+2 
€ 

s 
m+1 

- € 

mt1 
€ l 

s 

s 
m+1 

€ 
s 

m 
- € s 

- ---------------------------~~-----------------------

- ·:-lmf-2 
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1 -
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------------- + 
m+1 
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m+1 
€ 

s 

m+2 
€ 

s 

m+2 
€ 

s 
m+1 

€ 
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m+2 
€ 

s 

m 
€ 

s 

--------~--------- + 

m 
€ 

s 
m+2 

€ s-2 

1 -
m 

€ 
s 1 * 

--------------------------~-----------~-------------------------

1 -

m+2 
8 s-2 

----------------- + 
m+1 

€ 
s 

m+2 
€ 

---------~-------- + 
m+1 

€ 
s 

m+2 
€ 

s 
m+1 

€ 
s 

m 
€ 

s 

m 
€ 

s 

(4.1) 
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From the above illustration we find that 
m 

£s+2 becomes large 

and ill-determined when £~~iand £~i are almost equal. But when E::+l 

and 
m+1 m 

E: 8 +1 are derived ~rom the regular eps f. lon algorithm and E: s+2is 

derived from the singular rule (2.7), they are all quite well 
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determined. 

However, -.;vhen values of sm·!-land sm+2 
s-1 s-1 

are exactly equal, the 

singular rule for the epsilon algorithm becomes quite simple --

= 
m+2 

E 
s + m 

E 
s 

m+2 
E s-2 

(4.2) 

As in Figure 6, we may obtain the value 5 by applying the 

singular rule ( 5=9+(-1)+3 ) . 

Since, the more common case is that sm 2 is highly 
s+ 

susceptible to the loss of significant digits via subtraction 

when sm+1 and sm+21 are almost equal. Thus it is very importpnt 
s-1 s-

to know when the cancellation occurred. Wynn asserts that tcvhen 

a loss of "f" decimal figures takes place at the subtraction of 

sm+1 and sm+2 , it is the time to apply the singular rule. The 
s-1 s-1 

general rule to estimate the loss of "f" decimal figures is 

obtained by 

f 

m+1 
E s-2 

'----------------------) (- . 
m+2 m+1 

ss-2 ss-2 

E.g., when s~;i~ about ten times as large as the difference 

b m+2 d m+1 . . f. d. . . l etween s 2 an s 2 , one s1gn1 1cant 1g1 t 1s ost. 
s- s+ 

~ lrn the singular epsilon algorithm procedure a real 

parameter called - CANCEL, equal in magnitude to 10 ** f, is 

provided to detect when the singular rule needs to be 

implemented. --l 
I 

/ 
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Applying The Singular Rule To The Epsilon Program 

To apply the singular rules to the normal epsilon 

procedures, the formula of the singular rule in (4.1) may be 

reformed in several steps. 

If ( 4 0 4) 

A= m+2 
( 1 - m+2 

( e:m+l)-1)-1 e: s-2 e: s-2 s 

( 4 0 5) 
B m ( 1 - m ( e:m+1)-1)-1 = e: e: s s-1 s 

D m+2 
( 1 - m+2 

( e:m+1)-1)-1 ( 4 0 6) 
= e: e: s s s 

and a = D + B- A ( 4 0 7) 

m c a(1+a*( m+l )-1)-1. e:s+2 = e: 
then s (4.8) 

m+2 -Suppose that cancellation occurs in the formation of e: 8 _ 1 

e::~i during the process of computing quantities lying 

m+2 m+l m . on the diagonal through e: 1 , e: and e: 1 • Immed1ately, 
s- s s+ 

we know that we areabout to compute A from (4.4), and store 

it. The value of S that points to the current position in 

the E-array needs to be saved too. Next, after the entry of 

e::+1 is computed, the value of B can be obtained before the 

next process. After reaching the end of the E-array, the 

E-array process is repeated at the other end. When the 

current value of s is equal to the previous stored value s 



plus 1 then we do know that we are about to compute D. Then 

we reach the point to compute c: :+2 by applying the singular 

rule (4.8) instead of the normal epsilon algorithm and 

thereby nullify the ill effects of cancellation. 

Figure 9: Programming lozenge diagram of singular rule 

The entries with an asterisk in figure 9 represent the 

computing processes necessary to apply the singular rules 

h h ll . b h . . <= m+l w en t e cance at1on etween t e quant1t1es OL c: 8 _ 1 and 

m-1-2 c: occur. 
s-1 :/ 

Hov1ever, so far a (the single point of instabi lit~(:}-~ 

concerned; We should apply the above procedure in the c~se 

in which there are a number of points in the E-array at 

which cancellation takes place. Basically the ways to 

handle the multiple points of instabilitv are the same as 

the above procedures, but the array S is created to store 
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the multiple instability positions instead of point S. 

Moreover, the same situation happens at the points A, B, and 

D. 

Wynn's singular rules are appropriate to isolated 

points of cancellation when two or more instability points 

occur in the same column. Otherwise, Wynn's singular rules 

are not appropriate. If the vector case is concerned, the 

special rules of Cordellier (1977) are suggested for 

implementation. 

TEST RESULTS 

The ALGOL procedure that Wynn suggested to apply the 

multiple singular rule has been rewritten in FORTRAN and the 

power series for ex with x=2 has been tested and the value 5 

has been obtained. See Appendix B. 
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CHAPTER V 

ERROR EXPANSION SERIES AND TEST RESULTS 

Series expansions are a very important aid in numerical 

calculations, especially for quick estimates made in hand 

calculation- e.g., in evaluating functions, integrals, or 

derivatives. Solutions to differential equations can often be 

expressed in terms of series expansions. In practice, one is 

seldom seriously concerned about a strict error bound when the 

computed terms reach acceptable accuracy. To use the first 

neglected term as an estimate of the remainder is very common 

and easy. However, in numerical analysis sometimes it is not 

accurate enough. The Euler-Maclaurin summation formula can be 

used to get the value of the remainder with higher accuracy, 

but it leads to very comp l~cate~'-'~~a 1~": l~,;t~~~ .... ,,, ~. r ph·' .. {, 
l.,. ....... k ...... ' '!..,../ jr " {_ ... 't • I 

1 Hew.e.:v.e;r:., ... we intend .. "t·O .. JJJ?..~ .. a ... new ... approach .. tto compute the 
I 

I I 

\j/ magnitude of the error in the partial sums of an infinite 

series, by assuming that there exists a series expansion in 

negative powers of n. And we apply the epsilon algorithm 

repeatedly to compute the values of the numerators in the 

error expansion series. In order to facilitate the 

discussion, the example below is given. 
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To get the value of ln2 we apply the following series 

expansion 

S(n) = ln2 = 1- 1/2 + 1/3- 1/4 + ••••• 

or in summation formula 

n 
E 

i=1 

i+1 
C-1) I i. 

( 5. 1) 

( 5. 2) 

Suppose there exists an error expansion series which is 

of the following form: 

C1 C2 C3 C4 
le(n) I = ------ + ------ + ------ + ------ + . . . , 

n n**2 n**3 n**4 

n=1,2, ••• N. ( 5. 3) 

To compute constant C1 the following steps can be followed. 

Compute S(n), n = 1,2,3, ••• ,N. 

Compute e (n) = I ln2 - S {n) I. 
Then, apply equation C1 = n * le(n) I to get the constant 

C1, by applying a repeated Aitken, Epsilon, or Romberg 

algorithm to estimate C1 as n-->-. 

To compute C2. 

Use the true value of C1, if it can be seen to converge 

to a fraction. 

Repeat the above process by using equation 

C2 = (I e (n) I - C1/n) * (n**2) 
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Finally, the error expansion series for ln2 is gained, as 

follows: 

(1/2) (-1/4) 0 (1/8) 0 
I e (n) I = ------ + ------ + ------ + ------ + ------ + 

n n**2 n**3 n**4 n**5 

(-1/4) 
------- + . . . . (50 4) 

n**6 

Notice that the values in each constant c are in 

fractional form. However, the above expansion series is 

invalid when n=O. 

If the original series is modified as below 

Cl C2 C3 
I e (n) I = + 

________ ..,. 
+ ---------- + • • • I ( 5. 5) 

n+a1 (n+a2)**2 (n+a3)**3 

where al, a2, a3, 0 • • are constant and then apply the 

original processes with the modified series, we'obtain a new 

series: 

( 1/2) (-1/8) (5/32) 
I e (n) I = -----

n+1/2 
+ 0 + -------- + 0 + ------- + 0 + 

(n+1/2) 3 (n+1/2) 5 

(-61/128) (1385/512) 
+ 0 + ----------

(n+1/2)9 
+ • • • I ( 5. 6) --------~ 

(n+l/2) 7 

which is valid even when n=O. And in this case the value of 

"a" is a fixed constant, 1/2. Furthermore, the numerators of 

the constants C are just Euler numbers B and the denominators 

are 2 to the power of n. 

Note that due to the cancellation that occurs in the 

computer process, it runs out of accuracy in the computation 
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,...., 
of the sixth term of the Euler number B, even using double 

{ precision arithmetic (64 bits) • 
}<-'"-... ""~ _, 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The flexibility to extend the epsilon algorithm process 

vertically or horizontally has been tested on several 

numerical examples. The numerical results as shown in Chapter 

III are satisfied. The array H, as mentioned in Chapter III, 

used in the update epsilon algorithm, is the only additional 

storage space added into the original epsilon algorithm_ . .)) 

~ T Practically speaking, with the application of the update 
( 3,) \_ 
\"E!,psi lon algorithm, time is saved by erasing duplication of the 

entire process in order to reach the final state that is 

desired. It becomes even more obvious when the epsilon 

algorithm must be applied to a large numerical sequence. 

Thus, the update epsilon algorithm is a very useful tool 

indeed. 

Since the epsilon algorithm is formed under the lozenge 

diagram algorithm, it is possible to apply the same principle 

to other algorithms which are also formed under the lozenge 

algorithm. Therefore, it is logical to apply this process to 

the t algorithm, Q-D algorithm, etc. ~ 
__ _j 

In Chapter V, an alternate method to estimate the error 

bound in the partial sum series has been developed. The error 

expansion series of the series ln(2) has been obtained. The 
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author believes that this is a much easier and less 

complicated method than the Euler-Maclaurin summation formula 

to estimate the error. Therefore, this method is highly 

recommended for other partial sum series. 
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UPDATE EPSILON ALGORITHM 
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$JOB 
C THIS PROGRAM MODELS DIFFUSION IN AN INFINITE SLAB HAVING PLANE 
C PARALLEL SIDES. THE DIFFUSIVITY, D, MUST BE GIVEN AND FIXED. 
C THE BOUNDARY CONDITIONS AT THE FACES OF THE SLAB MUST BE GIVEN AND 
C BE PIECEWISE CONSTANT IN TIME. 
c 
C AUTHOR: J. P. CHANDLER, COMPUTER SCIENCE DEPT., 
C OKLAHOMA STATE UNIVERSITY. 
c 
C THE DIMENSIONS OF THE ARRAYS MUST BE BV(NTPMX,2), TFIN(NTPMX), 
C B(2,NTRMX), C(NTPMX-1,NTRMX), U(NDXMX+1) • 
c 

c 
c 
c 

c 

c 
c 

c 

c 
c 
c 

c 

c 

c 

c 

c 

IMPLICIT REAL*8 (A-H,O-Z) 
DIHENSION U(51) 
COHHON /SLAB/ BV(10,2) ,TFIN(10) ,B(2,100),C(9,100), 

X EL,D,T,X,ARG~lli,FX,ABERF,NTIMP,NTRMS,KW,NTACT 

KR=S 
KW=6 

NTPMX=10 

NTRMX=100 

NDXMX=SO 

ARGMN=-60. 
RZERO=O 

KR AND Iav ARE THE LOGICAL UNIT NUMBERS OF 
THE CARD READER AND THE LINE PRINTER. 

NTPMX ••. MAXIMUM NUMBER OFTIME PERIODS 

NTRMX . • • MAXIMUM NUMBER OF TERMS TO BE 
USED IN THE FOURIER SERIES 

NDXMX ..• MAXIMUM NUMBER OF X INTERVALS 

ARGMN .•. A NEGATIVE NUMBER SOMEWHAT 
GREATER THAN THE GREATEST VALUE OF 
X FOR WHICH EXP(X) WOULD UNDERFLOW 

READ(KR,10)NTIMP,NTRMS,EL,D 
10 FORMAT(2I5,2D10.5) 

WRITE(KW,20)NTIMP,NTRMS,EL,D 
20 FORMAT(/////42H DIFFUSION IN A SLAB, USING FOURIER SERIES/// 

* 8X,26H NUMBER OF TIME PERIODS = ,IS// 
* 8X,34H NUMBER OF TERMS IN EACH SERIES = ,IS// 
* 8X,13H THICKNESS= ,D15.7//8X,15H DIFFUSIVITY = ,D15.7) 
IF(NTI~W.LT.2) GO TO 26 
IF(NTIMP.GT.NTPMX) GO TO 26 
IF(NTRMS.GT.NTRMX) GO TO 26 

READ(KR,30) (BV(J,1) ,BV(J,2) ,TFIN(J) ,J=1,NTI~W) 
30 FORMAT(3D10.5) 

WRITE (KW, 40) 
40 FORMAT(//////6H TIME,12X,16H BOUNDARY VALUES,14X, 

* 12H TIME AT END/7H PERIOD,12X,14H DURING PERIOD,16X, 
* 10H OF PERIOD//1H ) 

NTMU=NTIMP-1 
DO 50 J=1,NTMU 

50 WRITE(KW,60)J,BV(J,1),BV(J,2) ,TFIN(J) 
60 FORMAT(1X,I4,D20.7,D16.7,D20.7) 

WRITE(KW,60)NTIMP,BV(NTIMP,1),BV(NTIMP,2) 
IF(NTIMP.EQ.2) GO TO 69 
DO 65 J=2,NTMU 
IF(TFIN(J) .LE.TFIN(J-1)) GO TO 26 

65 CONTINUE 

69 CALL CALCC 
DO 70 JB=1,2 

COMPUTE AND PRINT THE FOURIER COEFFICIENTS. 

70 WRITE(KW,80)JB, (B(JB,J) ,J=1,NTRMS) 
80 FORMAT(///3H B(,I1,6H,J) ... /(10X,7E15.7)) 

DO 90 KT=2,NTIMP 
90 WRITE(KW,lOO)KT, (C(KT-1,J) ,J=1,NTRMS) 

100 FORMAT(///45H FOURIER COEFFICIENTS FOR TIME PERIOD NUMBER ,I2, 
* 3H ••• //(8X,7E15.7)) 

110 READ(KR,10)NDX,NDT,TMIN,TMAX 

46 



c TEST FOR END OF RUN. 
IF(NDX.LT.O) STOP 

130 WRITE(KW,140)NDX,NDT,TMIN,TMAX 
140 FORMAT(////8X,29H NUMBER OF INCREMENTS IN X ,IS// 

* 8X,29H NUMBER OF INCREMENTS IN T = ,IS// 
* 8X,16H INITIAL TIME= ,E1S.7// 
* 8X,16H FINAL TIME ,E1S.7///1H) 

IF(NDX.GT.NDXMX) GO TO 26 
DX=RZERO 
IF(NDX.EQ.O) GO TO 142 

141 ENDX=NDX 
DX=EL/ENDX 

142 DT=RZERO 
IF(NDT.LE.O) GO TO 144 

143 ENDT=NDT 
DT=(TMAX-TMIN)/ENDT 

144 NDXPU=NDX+l 
NDTPU=NDT+1 

c LOOP OVER THE TIME POINTS REQUESTED. 

160 

DO 230 KT=1,NDTPU 
AKTMU=KT-1 
T=THIN+AKTMU*DT 

IF(KT.EQ.NDTPU) T=TMAX 
ERMAX=RZERO 
NTMAX=O 

c LOOP OVER THE X VALUES REQUESTED. 

c 

180 

DO 220 JX=1,NDXPU 
AJXMU=JX-1 
X=AJXMU*DX 

IF(JX.EQ.NDXPU) X=EL 
CALL CALCF 
U(JX)=FX 

IF(NTACT.GT.NTMAX) NTMAX=NTACT 
IF(ABERF.GT.ERMAX) ERMAX=ABERF 

220 CONTINUE 
230 WRITE(KW,240}T,ERMAX,NTMAX,(U(JX) ,JX=1,NDXPU) 
240 FORMAT(/8H TIME= ,D14.7,9X,24H ~ffiX. ESTIMATED ERROR= 

* 8X,23H MAX. NO. TERMS USED= ,I3//(1X,7D1S.7)) 
,D14.7, 

C GO BACK FOR MORE VALUES OF NDX, ETC. 

c 

GO TO 110 
26 WRITE(KW,987) 

987 FORMAT(///42H THERE IS A FATAL ERROR IN THE DATA ABOVE./1H ) 
STOP 
END 
SUBROUTINE CALCC 

C COMPUTES THE FOURIER COEFFICIENTS FOR THE SLAB PROGRAM. 
c 

c 
c 

c 

IMPLICIT REAL*8 (A-H,O-Z) 
COMMON /SLAB/ BV(10,2) ,TFIN(10) ,B(2,100),C(9,100), 

X EL,D,T,X,ARGMN,FX,ABERF,NTIMP,NTRMS,KW,NTACT 

QEXP(ARG)=DEXP(ARG) 

PI=3.141S926S3S89793DO 
RZERO=O 
UNITY=1 
RTW0=2 
RFOUR=4 

C B(1,J) IS THE COEFFICIENT OF SIN(J*PI*X/L) IN THE SINE SERIES 
C FOR F(X)=1.0, ZERO .LT. X .LT. L. 
C B(2,J) IS THE COEFFICIENT IN THE SINE SERIES FOR F(X)=X. 
c 

SGN=UNITY 
DO 1000 J=1,NTRMS 

B(1,J)=RZERO 
AJ=J 
B(2,J)=SGN*RTWO*EL/(PI*AJ) 

1000 SGN=-SGN 
c 
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1010 
c 

DO 1010 J=1,NTRMS,2 
AJ=J 
B(1,J)=RFOUR/(PI*AJ) 

c 
c 
c 

c 
c 
c 

c 

COMPUTE THE PROBLEM-DEPENDENT FOURIER COEFFICIENTS. 

1016 

1020 

1025 
1030 
1040 

LOOP OVER THE TIME PERIODS. 
DO 1040 KT=2,NTIMP 
KTMU=KT-1 
AZDIF=BV(KT,1)-BV(KTMU,1) 
AUDIF=((BV(KT,2)-BV(KT,1))-(BV(KTMU,2)-BV(KTMU,1)))/EL 
IF(KT.GE.3) DTDIF=D*(TFIN(KT-1)-TFIN(KT-2)) 

DO 1030 J=1,NTRMS 
TOLD=RZERO 

IF(KT.LT.3) GO TO 1030 
AJ=J 

LOOP OVER THE FOURIER COEFFICIENTS FOR 
THIS TIME PERIOD. 

ARG=-(AJ*PI/EL)**2*DTDIF 
IF(ARG.LT.ARGMN) GO TO 1030 
TOLD=C(KTMU-1,J)*QEXP(ARG) 
C(KTMU,J)=TOLD-AZDIF*B(1,J)-AUDIF*B(2,J) 

CONTINUE 
RETURN 
END 
SUBROUTINE CALCF 

C COMPUTES ONE FUNCTION VALUE AND AN ERROR ESTIMATE, FOR THE 
C SLAB PROGRAM. THE METHOD OF FOURIER SERIES IS USED. 
C TO ACCELERATE THE CONVERGENCE OF THE SERIES, THE EPSILON ALGORITHM 
C IS APPLIED TO THE COMPLEX EXPONENTIAL SERIES, AND THE IMAGINARY 
C PART IS THEN RECOVERED. (THE REAL EPSILON ALGORITHM DOES NOT WORK 
C WELL IN THIS PROBLEM.) 
c 

c 

c 
c 
c 

IMPLICIT REAL*8 (A-H,O-Z) 
COMPLEX*16 S,SAVE,QCMPL,DCMPLX,QCEXP,CARG,CDEXP,CI,XFACT,CXFAC, 

* SUM,EXTRP,EXTSV,SUMSV,CTERM,HOLD 
DOUBLE PRECISION DSAVE,DHOLD,DEXTRP,DEXTSV 
DIMENSION S(101),SAVE(101) ,HOLD(101) ,DSAVE(101) ,DHOLD(101) 
COMMON /SLAB/ BV(10,2),TFIN(10) ,B(2,100),C(9,100), 

X EL,D,T,X,ARGMN,FX,ABERF,NTIMP,NTRMS,KW,NTACT 

QABS(ARG)=DABS(ARG) 
QEXP(ARG)=DEXP(ARG) 
QCMPL(ARGA,ARGB)=DCMPLX(ARGA,ARGB) 
QCABS(CARG)=CDABS(CARG) 
QCEXP(CARG)=CDEXP(CARG) 
QIMAG(CARG)=-CI*CARG 

KRUNC=1 
PI=3.141592653589793DO 
RZERO=O 
CZERO= ( 0 • I 0 • ) 
CI= (0. I 1.) 

KRUNC =1 TO USE ALTERNATE PARTIAL 
SUMS (RECOMMENDED VALUE = 1) 

C COMPUTE MACHINE EPSILON. 
UNITR=1. 
RTEN=10. 
EPS=1. 

1 EPS=EPS/RTEN 
XPLUS=UNITR+EPS 
IF(XPLUS.NE.UNITR) GO TO 1 
EPS=EPS*RTEN 

C FIND THE TIME PERIOD IN WHICH T LIES. 
NTMU=NTIMP-1 
DO 2000 KT=1,NTMU 
IF(T.LE.TFIN(KT)) GO TO 2010 

2000 CONTINUE 
KT=NTIMP 

2010 NTUSE=1 
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EXTRP=CZERO 
EXTSV=CZERO 
ABERF=RZERO 

C TEST FOR A POINT ON A FACE OF THE SLAB. 
IF(X.LE.RZERO) GO TO 2150 
IF(X.GE.EL) GO TO 2150 
IF(KT.LE.1) GO TO 2150 
KTMU=KT-1 
DTDIF=D*(T-TFIN(KTMU)) 
SUM=CZERO 
S(1)=CZERO 
SAVE(1)=CZERO 
HOLD(1)=CZERO 

C INITIALIZE FOR THE RECURRENCE RELATIONS. 
TFACT=QEXP(-(PI/EL)**2*DTDIF) 
RBSQ=TFACT**2 
RTFAC=RBSQ*TFACT 
CXFAC=QCEXP(QCMPL(RZERO,PI*X/EL)) 
XFACT=CXFAC 

C LOOP OVER THE TERMS IN THE FOURIER SERIES. 
DO 2090 J=1,NTRMS 
CTERM=QCMPL(C(KTMU,J)*TFACT,RZERO)*XFACT 
ABERF=ABERF+EPS*QCABS(CTERM} 

SUMSV=SUM 
SUM=SUM+CTERM 
IF(QCABS(SUM-SUMSV) .NE.RZERO) GO TO 2080 
IF(QABS(C(KTMU,J)) .NE.RZERO) GO TO 2070 

2080 S(J+1)=SUM 
SAVE(J+l)=SUM 
HOLD(J+1)=CZERO 
NTUSE=J+1 

C USE THE RECURRENCE RELATIONS TO COMPUTE 
C TFACT AND XFACT FOR TERM J+1. 

AJPL=J+1 
ARG=-(AJPL*PI/EL)**2*DTDIF 

IF(ARG.GE.ARGMN) GO TO 2050 
2070 EXTRP=SUM 

GO TO 2150 
2050 IF(J.EQ.NTRMS) GO TO 2090 

TFACT=TFACT*RTFAC 
RTFAC=RTFAC*RBSQ 

C AT THIS POINT, TFACT=QEXP(ARG) . 

c 
c 

XFACT=XFACT*CXFAC 
AT THIS POINT, 

XFACT=QCEXP(QCMPL(RZERO,AJPL*PI*X/EL)). 
2090 CONTINUE 

c SKIP ALTERNATE PARTIAL SUMS IF REQUESTED. 

2100 

2110 
c 
c 

2120 

2130 

NKR=NTUSE 
IF(KRUNC.EQ.O) GO TO 2120 
NKR=O 
JMIN=2-(NTUSE-(NTUSE/2)*2) 
DO 2110 J=JMIN,NTUSE,2 

NKR=NKR+1 
S(NKR)=S(J) 
SAVE(NKR)=SAVE(J) 

KTOP=(NKR-1)/2 

EXTRAPOLATE TO MAXIMUM ORDERS USING THE 
COMPLEX EPSILON ALGORITHM. 

DO 2130 JJ=1,NKR 
DSAVE(JJ)=QIMAG(SAVE(JJ)) 
DHOLD(JJ)=QIMAG(HOLD(JJ)) 

DEXTSV=QIMAG(EXTSV) 
DEXTRP=QIMAG(EXTRP) 
WRITE (KW,9) (DSAVE(J),J=1,NKR) 
WRITE (KW,19) (DHOLD(J) ,J=1,NKR) 
CALL SHANK (DSAVE,l,NKR,KTOP-l,DEXTSV,DHOLD,l) 
NKR=NKR-2*(KTOP-l) 
WRITE (KW,9) (DSAVE(J},J=l,NKR) 
WRITE (KW,l9) (DHOLD(J) ,J=l,NKR) 
CALL SHANK (DSAVE,l,NKR,l,DEXTRP,DHOLD,l) 
WRITE (KW,9) (DSAVE(J) ,J=l,NKR) 
WRITE (KW I 19) (DHOLD (J) ,J=l ,NKR) 
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c 

9 FORMAT (//1X,'SAVE=' ,6D18.10/(6X,6D18.10)) 
19 FORMAT (//lX,'HOLD=' ,6D18.10/(6X,6D18.10)) 

EXTRP=QCMPL(RZERO,DEXTRP) 
PRINT,'EXTRP=' ,EXTRP 
ABERF=QABS(DEXTRP-DEXTSV) 
PRINT,'DABERF=',ABERF 

C EXTRACT THE IMAGINARY PART OF THE EXTRAPOLATED VALUE, AND ADD 
C THE LINEAR PART OF THE SOLUTION. 
c 

2150 FX=QIMAG(EXTRP)+BV(KT,1)+(BV(KT,2)-BV(KT,1))*(X/EL) 
NTACT=NTUSE-1 
RETURN 
END 
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c 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE SHANK (S,NMIN,NMAX,KMAX,EXTRP,H,NPMIN) 

UPDATE EPSILON ALGORITHM 
FOR ACCELERATING THE CONVERGENCE OF A SEQUENCE. 

AUTHOR: HUI WEN CHIANG, COMPUTER SCIENCE DEPT., 
OKLAHOMA STATE UNIVERSITY. 

C THIS PROCEDURE IS MODIFIED FROM THE ALOGORITHM 215, COMM.A.C.M. 6 
C (1963) P.662 (AUTHOR: H. C. THACHER, JR.) TO ALLOW NOT ONLY 
C ACCELERATING THE CONVERGENCE OF A SEQUENCE BUT ALSO ACCELERATING 
C THE CONVERGENCE BY EXTENDING THE ORIGINAL SEQUENCE VERTICALLY 
C (ADD MORE ENTRIES) OR HORIZONTALLY (COMPUTE THE FURTHER ORDER 
C OF EXTRAPOLATED VALUE) BY USING THE PREVIOUS COMPUTED VALUES 
C WITHOUT REPEATING THE ORIGINAL PROCESSES. 09-15-84 
C THE ARRAY H HOLDS THE VALUES IN PREVIOUS E(i) COLUMN 
C FOR EXTENDED PROCESSING PURPOSE. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

HINTS TO EXTEND THE SEQUENCE VERTICALLY: 
1) ADD THE ELEMENTS TO THE BOTTOM OF SEQUENCE 
2) SPECIFY THE INDEX NO OF THE FIRST CURRENT ADDED ENTRY 

TO VARIABLE NMIN 
3) SPECIFY THE INDEX NO OF THE LAST CURRENT ADDED ENTRY 

TO VARIABLE NMAX 
HINTS TO EXTEND THE SEQUENCE HORIZONTALLY: 

1) SPECIFY THE FURTHER ORDER OF EXTRAPOLATED VALUE 
NEEDED TO VARIABLE KMAX. 

2) COMPUTE THE TOTAL ELEMENTS OF THE CURRENT LIST AND MOVE 
THE FIRST AND LAST ENTRIES TO NMIN, NMAX RESPECTIVELY. 

HINTS TO EXTEND THE SEQUENCE VERTICALLY AND HORIZONTALLY: 
1) EXTEND VERTICALLY FIRST THEN HORIZONTIALL IS SUGGESTED. 

THIS PROCEDURE REPLACES THE ELEMENTS S(NMIN) THROUGH S(NMAX-2*KMAX) 
OF THE ARRAY S BY THE E(KMAX) TRANSFORM OF THE SEQUENCE S. 
THE ELEMENTS S(NMAX-2*KMAX+l) THROUGH S(NMAX-1) ARE DESTROYED. 
THE HIGHEST ORDER ELEMENT OF THE TRANSFORM IS RETURNED IN EXTRP. 

THE MAXIMUM PERMISSIBLE VALUE OF KMAX IS (NMAX-NMIN)/2 . 
THEREFORE, TO FIND THE HIGHEST ORDER EXTRAPOLATED VALUE OF THE 
SEQUENCE S(NMIN), ••. ,S(NMAX), PROCEED THUS •.•. 

CALL SHANK (S,NMIN,NMAX,(NMAX-NMIN)/2,EXTRP) 
AND THE EXTRAPOLATED VALUE IS RETURNED IN EXTRP. 

REFERENCES •... 
D. SHANKS, J. MATH. AND PHYSICS 34 (1955) 1-42 
D. C. JOYCE, S.I.A.M. REVIEW 13 (1971) 435-490 
W. B. GRAGG, S.I.A.M. REVIEW 14 (1972) 1-62 

J. P. CHANDLER, COMPUTER SCIENCE DEPT., OKLAHOMA STATE UNIVERSITY 

H. C. THACHER, JR., ALGORITHM 215, COMM.A.C.M. 6 (1963) P. 662 

THIS PROCEDURE REPLACES THE ELEMENTS S(NMIN) THROUGH S(NMAX-2*KMAX) 
OF THE ARRAY S BY THE E(KMAX) TRANSFORM OF THE SEQUENCE S. 
THE ELEMENTS S(NMAX-2*KMAX+l) THROUGH S(NMAX-1) ARE DESTROYED. 
THE HIGHEST ORDER ELEMENT OF THE TRANSFORM IS RETURNED IN EXTRP. 

THE MAXIMUM PERMISSIBLE VALUE OF KMAX IS (NMAX-NMIN)/2 • 
THEREFORE, TO FIND THE HIGHEST ORDER EXTRAPOLATED VALUE OF THE 
SEQUENCE S(NMIN) , ... ,S(NMAX), PROCEED THUS •••. 

CALL SHANK (S,NMIN,NMAX,(NMAX-NMIN)/2,EXTRP) 
AND THE EXTRAPOLATED VALUE IS RETURNED IN EXTRP. 

REFERENCES ...• 
D. SHANKS, J. MATH. AND PHYSICS 34 (1955) 1-42 
D. C. JOYCE, S.I.A.M. REVIEW 13 (1971) 435-490 
W. B. GRAGG, S.I.A.M. REVIEW 14 (1972) 1-62 

TO CONVERT THIS ROUTINE FROM COMPLEX TO DOUBLE PRECISION, REPLACE 
SIX STATEMENTS BELOW BY THE FOLLOWING FIVE ••. 
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C DOUBLE PRECISION S,EXTRP,HUGE,ZERO,UNITY,TZ,TU,ARG,QTEST 
C QTEST(ARG)=ARG 
C HUGE=l.E35 
C ZERO=O 
C UNITY=1 
c 
c 
c 

c 

c 
80 

90 
100 
110 

120 
c 

130 

DOUBLE PRECISION QTEST,DABS,S,H,EXTRP,HUGE,ZERO,UNITY,TZ,TU,ARG 
DIMENSION S(1) ,H(1) 
QTEST(ARG)=DABS(ARG) 
HUGE=1.0D35 
ZERO=O.ODO 
UNITY=1.0DO 

IF (NMIN.GT.NMAX)GO TO 130 
EXTRP=S(NMAX) 
KT=2*KMAX 
DO 120 J=NMIN,NMAX 

TZ=H(J) 
LIMKK=J-NPMIN 
IF (LIMKK.GT.KT}LIMKK=KT 
IF (LIMKK.LE.O) GO TO 120 
DO 110 KK=1,LIMKK 

JMKK=J-KK 
IF (QTEST(S(JMKK)) .EQ.HUGE)GO TO 80 
IF (QTEST(S(JMKK+1)) .EQ.HUGE)GO TO 80 
TU=S(JMKK+1)-S(JMKK) 
IF (QTEST(TU) .EQ.ZERO)GO TO 90 
TU=TZ+UNITY/TU 
GO TO 100 

TU=TZ 
GO TO 100 
TU=HUGE 
TZ=S(JMKK) 
S(JMKK)=TU 
H(JMKK)=TZ 

CONTINUE 

MXMKT=NMAX-KT 
EXTRP=S(MXMKT) 
RETURN 
END 
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APPENDIX B 

PROGRAM LISTING OF THE EPSILON ALGORITHM 

WITH THE UPDATE FORM AND SINGULAR RULE 

53 



$JOB 
C******************************************************************** 
C THE EPSILON ALOGRITHM * 
C FOR ACCELERATING THE CONVERGENCN OF A SEQUENCE. * 
c * 
C AUTHOR: HUI WEN CHIANG, COMPUTER SCIENCE DEPT., * 
C OKLAHOMA STATE UNIVERSITY. * 
C THIS PROCEDURE CONTAINS TWO VERSIONS OF THE EPSILON ALGORITHM, * 
C 1) THE UPDATE EPSILON ALGORITHM THAT ALLOWS TO EXTEND EPSILON * 
C ALGORITHM PROCESSING VERTICALLY AND HORIZONTALLY, * 
C 2) THE EPSILON ALGORITHM WITH SINGULAR RULE. * 
C ONE OF THE OPTION CAN APPLY RESPECTIVELY, AS THE SINGULAR RULE * 
C DOES NOT WORK PROPERLY WITH SINGULAR RULE. * 
C THE VARIABLE "SINGUL" ACTS AS A FLAG BETWEEN THOSE TWO VERSIONS* 
c * 
C******************************************************************** 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

VARIABLES: 

NPMIN 
NMIN 

NMAX 

Kt1AX 
H 
s 
EXTRP 
SINGUL 

FIRST ELEMENT NUMBER IN THE S LIST. 
FIRST ELEMENT NUMBER IN THE LIST THAT NEEDS TO BE 

PROCESSED. IF THE LIST EXTENED VERTICALLY AFTER FIRST 
CALL SHANK NMIN CONTAINS THE FIRST ADDED ELEMENT NUMBER. 

LAST ELEMENT NUMBER IN THE LIST. IF THE LIST EXTENED 
HORIZONTIALLY AFTER FIRST CALL SHANK Nt1AX SHOULD BE 
COJYIPUTED BY NMAX = NMAX - 2 * KMAX 

ORDER OF EXTRAPOLATED 
HOLD THE VALUES OF PREVIOUS E(I) COLUMN 
THE EPSILON ARRAY 
HOLD THE EXTRAPOLATED VALUE 
FLAG TO APPLY SINGULAR RULES 
SINGUL = 0 NO SINGULAR RULE APPLIED 
SINGUL = 1 SINGULAR RULE APPLIED 

C****************************************************************** 
C**********VARIABLES THAT APPLIED IN SINGULAR RULES **************** 
C*** AP A ABOUT TO BE COMPUTED * 
C*** BP B ABOUT TO BE COMPUTED * 
C*** CP C ABOUT TO BE COMPUTED * 
C*** BOL BEGIN OF LIST INDEX * 
C*** EOL END OF LIST INDEX * 
C*** SA SMALL A * 
C*** A(*) A ARRAY * 
C*** B(*) B ARRAY * 
C*** D D VALUE * 
C*** CANCEL CANCELLATION * 
C*** S1(*) S1 ARRAY * 
C*** NPINS NEW POINT INSTABILITY * 
C*** LOCINS LOCAL INSTABILITY * 
C*** NIS NON ISOLATED SINGULARITY * 
C******************************************************************* 

c 
c 

DOUBLE PRECISION S,H,EXTRP 
DIMENSION S(20) ,H(20) 

DOUBLE PRECISION A(S) ,B(S) ,SA,D,CANCEL 
INTEGER AP,BP,CP,NIS,LOCINS,BOL,EOL,NPINS,S1(5) 
COMMON /SING/ A,B,SA,D,CANCEL,AP,BP,CP,NIS, 

X LOCINS,BOL,EOL,NPINS,S1 
C INITIALIZATION 

c 

JCOUNT=1 
KW=6 
KR=5 
NPMIN=1 
NMIN=1 
NMAX=10 
KMAX=4 

CANCEL=1.D-10 
NIS=O 
NPINS=O 
LOCINS=O 

INITIALIZATION FOR SINGULAR ROUTINE 
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c 

CP=O 
BOL=1 
EOL=O 

C READ IN SEQUENCE ELEMENT NUMBER 
READ(KR,2}NSETS 

2 FORMAT(I5) 
C COMPUTE THE SERIES FUNCTION 

CALL PATH(S,H,NSETS) 
C CALL ITER(S,H,NSETS) 
C CALL LEIBNZ(S,H,NSETS) 
C CALL LN2(S,H,NSETS) 

WRITE (KW,5) (S(J) ,J=NPMIN,NSETS) 
WRITE (KW ,10) (H (J) ,J=NPMIN ,NSETS) 

C CALL TO COMPUTE THE EXTRAPOLATED VALUE OF S 

c 
c 

c 
c 
c 
c 

c 
c 

IF (SINGUL.EQ.O) CALL SHANK(S,NMIN,NMAX,KMAX,EXTRP,NPMIN,H} 
IF (SINGUL.EQ.1) CALL SINGULR(S,MIN,NMAX,KMAX,EXTRP) 

KEND=NMAX-2*KMAX 
WRITE (KW,10) (H(J) ,J=NPMIN,KEND) 
WRITE (KW,20) (S(J) ,J=NPMIN,KEND) 
~ffiiTE (KW,30)EXTRP 

IF (SINGUL.EQ.1)GO TO 99 

NMIN=5 
NMAX=5 
KMAX=2 

END OF THE SINGULAR RULE PROCESSES 

ADD ONE MORE ELEMENT 
EXTEND VERTICALLY 

WRITE (KW,5) (S(J) ,J=NMIN,NMAX) 
CALL SHANK(S,NMIN,NMAX,KMAX,EXTRP,NPMIN,H) 
KEND=NMAX-2*KMAX 
WRITE (KW,20) (S(J),J=NPMIN,KEND) 
WRITE (KW,10) (H(J) ,J=NPMIN,KEND) 
WRITE (KW,30)EXTRP 

C CALL TO COMPUTE THE EXTRAPOLATED VALUE OF S 
C COMPUTE THE FURTHER ORDER OF EXTRAPOLATED VLAUE 
C EXTEND HORIZONTIALLY 
C* NMIN=NPMIN 
C* NMAX=NMAX-2*KMAX 
C PRVCOL=PRVCOL+2*K}ffiX 
C NMIN=1 
C NMAX=3 
C KMAX=1 
C CALL SHANK(S,NMIN,NMAX,KMAX,EXTRP,NPMIN,H) 
C KEND=NMAX-2*KMAX 
C WRITE (KW,20) (S(J) ,J=NPMIN,KEND) 
C WRITE (KW,10) (H(J) ,J=NPMIN,KEND) 
C WRITE (KW,30)EXTRP 

c 

5 FORMAT (///1X,'S = ',6E18.10/(7X,6E18.10)) 
10 FORMAT (/1X,'H = ',6E18.10/(7X,6E18.10)) 
20 FORMAT (/1X,'E(l)= ',6E18.10/(7X,6E18.10)) 
30 FORMAT (/1X,'EXTRP=',E18.10) 
99 STOP 

END 

55 



SUBROUTINE SHANK (S,NMIN,NMAX,KMAX,EXTRP,NPMIN,H) 
c 
C************ UPDATE EPSILON ALGORITHM **************************** 
C EPSILON ALGORITHM FOR ACCELERATING THE CONVERGENCE OF A SENQUENCE. 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THIS PROCEDURE IS MODIFIED FROM THE ALOGORITHM 215, COMM.A.C.M. 6 
(1963) P.662 (AUTHOR: H. C. THACHER, JR.) TO ALLOW NOT ONLY 

ACCELERATING THE CONVERGENCE OF A SEQUENCE BUT ALSO ACCELERATING 
THE CONVERGENCE BY EXTENDING THE ORIGINAL SEQUENCE VERTICALLY 
(ADD MORE ENTRIES) OR HORIZONTIALLY (COMPUTE THE FURTHER ORDER 

OF EXTRAPOLATED VALUE) BY USING THE PREVIOUS COMPUTED VALUES 
WITHOUT REPEATING THE ORIGINAL PROCESSES. 09-15-84 

C HINTS TO EXTEND THE SEQUENCE VERTICALLY: 
c 1) ADD THE ENTRIES TO THE BOTTOM OF SEQUENCE 
c 2) SPECIFY THE INDEX OF THE FIRST CURRENT ADDED ENTRY 

TO VARIABLE NMIN c 
c 3) SPECIFY THE INDEX OF THE LAST CURRENT ADDED ENTRY 

TO VARIABLE NMAX c 
C HINTS TO 
c 1) 
c 

EXTEND THE SEQUENCE HORIZONTIALLY: 
SPECIFY THE FURTHER ORDER OF EXTRAPOLATED VALUE 
NEEDED TO VARIABLE KMAX. 

c 
c 
c 

2) 
I.E. KMAX = THE FURTHER ORDER - THE CURRENT ORDER 
COMPUTE THE TOTAL ELEMENTS OF THE CURRENT LIST AND MOVE 
THE FIRST & LAST ELEMENT # TO NMIN, NMAX RESPECTIVELY. 

C HINTS TO 
c 1) 

EXTEND THE SEQUENCE VERTICALLY AND HORIZONTIALLY: 
EXTEND VERTICALLY FIRST THEN HORIZONTIALL IS SUGGESTED. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THIS PROCEDURE REPLACES THE ELEMENTS S(NMIN) THROUGH S(NMAX-2*KMAX) 
OF THE ARRAY S BY THE E(KMAX) TRANSFORM OF THE SEQUENCE S. 
THE ELEMENTS S(NMAX-2*KMAX+1) THROUGH S(NMAX-1) ARE DESTROYED. 
THE HIGHEST ORDER ELEMENT OF THE TRANSFORM IS RETURNED IN EXTRP. 

THE MAXIMUM PERMISSIBLE VALUE OF KMAX IS (NMAX-NMIN)/2 • 
THEREFORE, TO FIND THE HIGHEST ORDER EXTRAPOLATED VALUE OF THE 
SEQUENCE S(NMIN) , •.. ,S(NMAX), PROCEED THUS ..•• 

CALL SHANK (S,NMIN,NMAX,(NMAX-NMIN)/2,EXTRP) 
AND THE EXTRAPOLATED VALUE IS RETURNED IN EXTRP. 

REFERENCES •.•• 
D. SHANKS, J. MATH. AND PHYSICS 34 (1955) 1-42 
D. C. JOYCE, S.I.A.M. REVIEW 13 (1971) 435-490 
W. B. GRAGG, S.I.A.M. REVIEW 14 (1972) 1-62 

DOUBLE PRECISION QTEST,DABS,S,H,EXTRP,HUGE,ZERO,UNITY,TZ,TU,ARG 
DIMENSION S(1),H(1) 

C QTEST(ARG)=ABS(ARG) 

c 

QTEST(ARG)=DABS(ARG) 
SINGUL=O 
HUGE=1.0E35 
ZERO=O.OEO 
UNITY=1.0EO 

IF (NMIN.GT.NMAX)GO TO 130 
EXTRP=S(NMAX) 
KT=2*KMAX 
DO 120 J=NMIN,NMAX 

TZ=H(J) 
LIMKK=J-NPMIN 
IF (LIMKK.GT.KT)LIMKK=KT 
IF (LIMKK.LE.O) GO TO 120 
DO 110 KK=1,LIMKK 

JMKK=J-KK 
IF (QTEST(S(JMKK)) .EQ.HUGE)GO TO 80 
IF (QTEST(S(JMKK+1)) .EQ.HUGE)GO TO 80 
TU=S(JMKK+1)-S(JMKK) 
IF (QTEST(TU) .EQ.ZERO)GO TO 90 
TU=TZ+UNITY/TU 
GO TO 100 

80 TU=TZ 
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c 

c 
c 

57 

GO TO 100 
90 TU=HUGE 
100 TZ=S(JMKK) 
110 S(JMKK)=TU 

H(JMKK)=TZ 
120 CONTINUE 

125 MXMKT=NMAX-KT 
EXTRP=S (MXMKT) 

130 RETURN 



SUBROUTINE SINGULR(S,NMIN,NMAX,KMAX,EXTRP) 
c 
C THIS PROCEDURE APPLIES THE SINGULAR RULE TO THE EPSILON ALGORITHM. 
C THE PROCEDURE IS MODIFIED FROM P. WYNN "SINGULAR RULES FOR CERTAIN 
C NON-LINEAR ALGORITHMS" IN BIT 3 1963, P 175-195. 
C THE SINGULAR RULE AVOIDS THE INSTABILE ENTRY IN THE EPSILON 
C TABLE BY APPLYING THE SPECIAL RULE BUT THE REGULAR EPSILON 
C ALGORITHM. 
c 

DOUBLE PRECISION QTEST,DABS,S,EXTRP,HUGE,ZERO,UNITY,TZ,TU,ARG 
DIMENSION S(1) 
INTEGER SINGUL 
DOUBLE PRECISION A(15) ,B(15) ,SA,D,CANCEL 
INTEGER AP,BP,CP,NIS,LOCINS,BOL,EOL,NPINS,S1(15) 
COMMON /SING/ A,B,SA,D,CANCEL,AP,BP,CP,NIS, 

X LOCINS,BOL,EOL,NPINS,S1 
C QTEST(ARG)=ABS(ARG) 

QTEST(ARG)=DABS(ARG) 
C SINGUL=O 

c 

HUGE=1.0E35 
ZERO=O.OEO 
UNITY=1.0EO 

IF (NMIN.GT.NMAX)GO TO 130 
EXTRP=S (NMAX) 
KT=2*KMAX 
DO 120 J=NMIN,NMAX 

TZ=O 
LIMKK=J-NMIN 
IF (LIMKK.GT.KT)LIMKK=KT 
IF (LIMKK.LE.O) GO TO 120 
DO 110 KK=1,LIMKK 

JMKK=J-KK 
IF (SINGUL.EQ.1)GOTO 190 

C SINGULAR RULE APPLIED 

c 

c 

190 TU=S(JMKK+1)-S(JMKK) 
IF(KK+PRVCOL.GE.J)GOTO 200 
IF(CP.NE.O)GOTO 200 
IF(TU.EQ.ZERO)GOTO 195 
IF(S(JMKK) .EQ.ZERO)GOTO 200 
IF(DABS(TU/S(JMKK)).GE.CANCEL)GOTO 200 

195 NPINS=1 
EOL=EOL+1 

200 IF (NPINS.EQ.1)GOT0210 
IF(LOCINS.EQ.1)GOT0230 

COMPUTE AUXO 
IF(TU.NE.ZERO)TU=1.0/TU + TZ 
IF(TU.EQ.ZERO)TU=HUGE 
GOTO 100 

DO ONLY WHEN 
C* 

210 
(LOCINS.EQ.1) .AND. (IS.EQ.S1(BOL)) 

IF (LOCINS.NE.1)GOTO 220 

c 

c 
c 

220 

230 

240 

IF (KK+PRVCOL.NE.S1(BOL))GOTO 220 
NIS=1 
GOTO 125 
LOCINS=1 
AP=l 
NPINS=O 
S1(EOL)=KK+PRVCOL 
IF(CP.EQ.1)GOTO 240 

IF(TU.NE.ZERO)TU=1.0/TU + TZ 
IF(TU.EQ.ZERO)TU=HUGE 
GO TO 250 
SA=D+B(BOL)-A(BOL) 

COMPUTE FUNCTION OF 
TU=SA/(1.0+SA/S(JMKK+1)) 

IF(TZ.EQ.ZERO)TU=ZERO 
IF(TZ.NE.ZERO)TU=SA/(1.0+SA/TZ) 
CP=O 
BOL=BOL+1 
IF(BOL.GT.EOL)LOCINS=O 

58 



c 
c 

c 

c 

c 
c 
c 
c 

c 
c 

250 IF(LOCINS.NE.1)GO TO 100 
IF(AP.EQ.O)GO TO 260 
A(EOL)=O.O 
IF(KK.EQ.1)GOTO 255 

255 

260 

270 

100 
110 

120 

125 

130 

COMPUTE FUNCTION OF 
A(EOL)=L(IS-1)/(1.0-L(IS-1)/AUXO) 

IF(TU.EQ.ZERO)A(EOL)=ZERO 
IF(TU.NE.ZERO)A(EOL)=TZ/(1.0-TZ/TU) 
AP=O 
BP=1 
GOTO 100 
IF (BP.EQ.1)GOTO 270 
IF (KK.EQ.1)GOTO 100 
IF (KK.NE.S1(BOL)+1)GOTO 100 

D=AUX1/(1.0-AUX1/L(IS)) 
IF(S(JMKK) .EQ.ZERO)D=ZERO 
IF(S(JMKK) .NE.ZERO)D=S(JMKK+1)/(1.0-S(JMKK+1)/S(JMKK)) 
CP=1 
GOTO 100 
IF (BP.NE.1)GOTO 100 

B(EOL)=L(IS)/(1.0-L(IS)/AUX1) 
IF(S(JMKK+1) .EQ.ZERO)B(EOL)=HUGE 
IF(S(JMKK+1) .NE.ZERO)B(EOL)=S(JMKK)/(1.0-S(JMKK)/S(JMKK+1)) 
BP=O 

TZ=S (JMKK) 
S(JMKK)=TU 

CONTINUE 

MXMKT=NMAX-KT 
EXTRP=S(MXMKT) 
RETURN 
END 

END OF SINGULAR RULES 

END 
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C******************************************************************* 
C EXAMPLE #1: LINEARLY CONVERGENT ITERATIVE SCHEME FORMATION OF * 
C THE LAGUERRE POLYNOMIAL SERIES. * 
C S(N+1)= 114 * (S(N)**2 + 2) * 
C******************************************************************* 

SUBROUTINE ITER(S,H,NSETS) 
C DOUBLE PRECISION S,H 

DIMENSION S(20) ,H(20) 
c 

S(1)=0.0 
H(1)=0.0 
DO 10 J=2,NSETS 

S(J)=0.25 * (S(J-1)**2 + 2) 
H(J)=O.O 

10 CONTINUE 
RETURN 
END 

C****************************************************************** 
C EXAMPLE #2: THE VERY SLOWLY CONVERGENT LEIBNITZ SERIES * 
C (N-1) * 
c TT S(N)= S(N-1) + (-1) * (4 I (N * 2- 1)) * 
C****************************************************************** 
c 

SUBROUTINE LEIBNZ(S,H,NSETS) 
C DOUBLE PRECISION S,H 

DIMENSION S(20) ,H(20) 
c 

S(1)=4.0 
H(1)=0.0 
DO 10 J=2,NSETS 

S(J)=S(J-1) + ((-1) ** (J-1)) * (4.0 I (J * 2.DO- 1.DO)) 
H(J)=O.O 

10 CONTINUE 
RETURN 
END 

C******************************************************************* 
C* THIS COMPUTE SERIES LN(2) * 
C* & * 
C* LN(2)= E ((-1) ** M) I (M+1) * 
C* M=O * 
C******************************************************************* 

c 

c 

SUBROUTINE LN2(S,H,NSETS) 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION TERM(2) 
DOUBLE PRECISION S(20) ,H(20) 

s (1) =1.0 
H(1)=0.0 
DO 10 J=2,NSETS 
S(J)=(((-l.)**(J-1)) I J) + S(J-1) 
H(J)=O.O 

10 CONTINUE 
RETURN 
END 

C****************************************************************** 
C PATHOLOGICAL EXAMPLES P 177 * 
C THIS IS TEST SERIES: U(S) = (X** S) IS ! S=0,1,... * 
C****************************************************************** 

c 

c 

SUBROUTINE PATH(S,H,M) 

IMPLICIT REAL*8 (A-H,O-Z) 
DOUBLE PRECISION S(20) ,DENO,H(20) 

8(1)=0.0 
H(1)=0.0 
DO 30 K=2,M 
DEN0=1. 
IF (K.LT.4)GOTO 20 
DO 10 J=4,K 

10 DENO=DENO*(J-2) 
20 S(K)= (2 ** (K-2)) I DENO + S(K-1) 
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H(K)=O.O 
30 CONTINUE 

RETURN 
END 
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APPENDIX C 

PROGRAM LISTING OF ERROR EXPANSION SERIES 
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C******************************************************************* 
C**** ERROR EXPANSION SERIES 
C**** AUTHOR: HUI WEN CHIANG, COMPUTER SCIENCE DEPT., 
C**** OKLAHOMA STATE UNIVERSITY. 
C**** 
C****THIS PROGRAM GENERATE A SERIES EXPANSION IN NEGATIVE POWERS 
C****OF N OF THE MAGNITUDE OF THE ERROR IN THE PARTIAL SUMS OF AN 
C****INFINITE SERIES. 
C**** 
C***************************************************************** 
C STEPS TO OBTAIN ERROR EXPANSION SERIES: 
c I. 
C Suppose there exists an error expansion series which is 
C of the following form: 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Cl C2 C3 
[e (n) [ = + --------- + --------- + •.. , 

n+al (n+a2)**2 (n+a3)**3 

II. 
To compute constant Cl the following steps can be followed. 
Compute S (n) , n = 1, 2, 3, ••• ,N. 
Compute e (n) = [ ln2 - S (n) [. 
Then, apply equation Cl = n * [e(n) [ to get the constant 
Cl, by applying a repeated Aitken, Epsilon, or Romberg 
algorithm to estimate Cl as n--~ . 

III. 
To compute C2. 
Use the true value of 
to a fraction. 

Cl, if it can be seen to converge 

Repeat the above process by using equation 
C2 = ( [e (n) [ - Cl/n) * (n**2) 

c . 
C***************************************************************** 

c 
c 
c 

c 

IMPLICIT REAL*16 (A-H,O-Z) 
DOUBLE PRECISION NU~lliR,DENOM,PRODCT,RATIO,POWRN 
DOUBLE PRECISION A(lOO) ,XTRAB(100,12) ,COEF(30) ,S(lOO),CONST(30) 
DOUBLE PRECISION ARG 
DIMENSION A(lOO) ,XTRAB(l00,12) ,COEF(30),CONST(30) ,S(lOO) 
REAL NUMER 

LX=lOO 
NTERMS=2048 
NCOLS=7 
KW=6 
JMNPRT=l 

C JCOEF=lO 
JCOEF=9 

C INITIZATION 

c 

COEF(l)=O.ODO 
COEF(2)=0.0DO 
COEF(3)=0.0DO 
COEF(4)=0.0DO 
COEF(5)=0.0DO 
COEF(6}=0.0DO 
COEF(7)=0.0DO 
COEF(B)=O.ODO 
COEF(9)=0.0DO 

CONST(l)=O.ODO 
CONST(2)=0.0DO 
CONST(3)=0.0DO 
CONST(4)=0.0DO 
CONST(S)=O.ODO 
CONST(6)=0.0DO 
CONST(7)=0.0DO 
CONST(B)=O.ODO 
CONST(9)=0.0DO 

INITIZATION 

C COMPUTE FUNCTION VALUES 
CALL COMPA (A,NTERMS) 
DO 2 J=l,JCOEF 
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c 

c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

IF(J/2*2.EQ.J)GO TO 2 
IF(J.GE.JMNPRT) WRITE(KW,6)J 

6 FORMAT(/'1CONSTANT C OF N**(-' ,I2,') '//1X) 
NN=1 
DO 4 N=1,NTERNS 
EN=NN 
POWRN=EN 
SUN=O.ODO 
IF(J.LT.2) GO TO 5 
JCM=J-1 
DO 3 K=1,JCM 
L=J-K 
SUM=SUM-COEF(K)*(EN**J)/((EN+CONST(K))**K) 

3 POWRN=POWRN*EN 
5 SUM=SUM+A(N)*POWRN 

S(N)=SUM 
XTRAB(N,1)=SUM 

4 NN=NN+NN 
CALL SHANK(S,1,NTERMS,6,EXTRP) 
WRITE(KW,210)EXTRP 
LP=Kr.Y 
IF(J.LT.JMNPRT) LP=O 
CALL AITABL (XTRAB,LX,NTERMS,NCOLS,LP) 
RATI0=2.0DO 
JJ=3 
K=4 

1 XTRAB(JJ,1)=XTRAB(K,1) 
JJ=JJ+l 
K=K+K 
IF(K.LT.NTERMS) GO TO 1 
CALL ROMBEX {XTRAB,LX,JJ-1,RATI0,1,LP) 
CALL ROMBEX (XTRAB,LX,JJ-1,RATI0,2,LP) 
CALL AITABL (XTRAB,LX,JJ-1,NCOLS,LP) 
CALL ROMBEX (XTRAB,LX,NTERMS,RATI0,1,LP) 
CALL ROMBEX (XTRAB,LX,NTERMS,RATI0,2,LP) 

C SECOND DO LOOP TO COMPUTE VALUE A 
c 

c 

c 

c 

IF(J.GE.JMNPRT) WRITE(KW,16)J 
16 FORMAT(/'1CONSTANT A OF N**(-' ,I2,') '//1X) 

IF (J.EQ.1)COEF(1}=0.50DO 

100 
120 

150 

IF (J.EQ.3)COEF(3)=-0.125DO 
IF (J.EQ.5)COEF(5)=0.15625DO 
IF (J.EQ.7)COEF(7)=-0.4765625DO 
IF (J.EQ.9)COEF(9)=0.27050D1 
NN=1 
DO 40 N=1,NTERMS 
DENOH=O.ODO 
DO 50 L=1,J 
POWRN=NN 
PRODCT=1.DO 
JJ=J-1 
IF(JJ.LT.1)GO TO 120 
DO 100 M=1,JJ 
IF(L.EQ.H) PRODCT=PRODCT*COEF(H) 
IF(L.NE.M) PRODCT=PRODCT * (POWRN + CONST(M)) 
IF(L.NE.M) PRODCT=PRODCT * ((POWRN + CONST(M))**H) 
POWRN=POWRN*NN 
CONTINUE 
IF (L.EQ.J)GO TO 150 
DENOM=DENOH - PRODCT 
GO TO 50 
NUMER=PRODCT * COEF(J) 
PRODCT=PRODCT* A(N) 
DENOH=DENOH+PRODCT 

50 CONTINUE 

c 88 
c 

WRITE(KW,88)N,NUMER,DENOM,POWRN 
FORMAT(/1X,I4,3X,'NUMBER=',D28.17,2X,'DENOM=' ,D28.17,5X,D28.17) 
S(N)=NUMER / DENOM- POWRN 
ARG=NUMER/DENOM 
XTRAB(N,1)=ARG ** (1.DO/J) 
XTRAB(N,l)=XTRAB(N,1) - NN 
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S(N)=XTRAB(N,1) 
40 NN=NN+NN 

C 4 XTRAB(N,1)=SUM 
CALL SHANK(S,1,NTERMS,6,EXTRP) 
WRITE(KW,210)EXTRP 

210 FORMAT(/1X,'EXTRP=' ,D28.17) 
LP=KW 
IF(J.LT.JMNPRT) LP=O 
CALL AITABL (XTRAB,LX,NTERMS,NCOLS,LP) 
RATI0=2.0DO 

c JJ=3 
C K=4 
C 10 XTRAB(JJ,1)=XTRAB(K,1) 
c JJ=JJ+1 
C K=K+K 
C IF(K.LT.NTERMS) GO TO 10 
C CALL ROMBEX (XTRAB,LX,JJ-1,RATI0,1,LP) 
C CALL ROMBEX (XTRAB,LX,JJ-1,RATI0,2,LP) 
C CALL AITABL (XTRAB,LX,JJ-1,NCOLS,LP) 

CALL ROMBEX (XTRAB,LX,NTERMS,RATI0,1,LP) 
CALL ROMBEX (XTRAB,LX,NTERMS,RATI0,2,LP) 

c 

c 
c 

IF(J.EQ.1)CONST(1)=0.5DO 
IF(J.EQ.3)CONST(3)=0.5DO 
IF(J.EQ.S)CONST(S)=O.SDO 
IF(J.EQ.7)CONST(7)=0.5DO 

2 CONTINUE 
STOP 
END 

SUBROUTINE COMPA (A,NTERMS) 

C COMPUTES THE MAGNITUDE OF THE ERROR IN THE PARTIAL SUMS OF THE 
C ALTERNATING HARMONIC SERIES. 
c 

c 

IMPLICIT REAL*16 (A-H,O-Z) 
DIMENSION A(l) 

RTW0=2.0DO 
C XLIM=DLOG(RTWO) 

c 
c 
c 

XLIM=QLOG(RTWO) 
PSUM=O.ODO 
DSIGN=1.0DO 
NN=O 
JJ=1 
DO 1 J=1,NTERMS 
AJ=J 
TERM=DSIGN/AJ 
DSIGN=-DSIGN 
PSUM=PSUM+TERM 
IF (J.NE.JJ)GO TO 1 
NN=NN+1 
A(NN)=QABS(PSUM-XLIM) 
JJ=JJ+J 

1 CONTINUE 
NTERMS=NN 
WRITE (6 I 10) (A (J) ,J=1 ,NTERMS) 

10 FORMAT(/1X,'A = ',4D28.17/(SX,4D28.17)) 
RETURN 
END 

SUBROUTINE A~TABL (XTRAB,LX,NROWS,NCOLS,KW) 

C COMPUTES A TABLE OF REPEATED AITKEN EXTRAPOLATION AND, IF KW IS 
C POSITIVE, PRINTS THE TABLE ON OUTPUT UNIT NUMBER KW. 
C THE GIVEN INPUT SEQUENCE MUST BE PROVIDED IN (XTRAB§(J,1) ,J=l,NROWS). 
C LX IS THE FIRST DIMENSION OF THE ARRAY XTRAB. 
c 
c 

IMPLICIT REAL*16 (A-H,O-Z) 
C DOUBLE PRECISION XTRAB,TINY,DENOM,RZERO 
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c 

c 
c 

c 

DIMENSION XTRAB(LX,NCOLS) 

TINY=1.D-35 
RZERO=O.DO 
IF(NCOLS.LT.2) RETURN 
IF(NROWS.LT.3 .OR. NROWS.GT.LX) RETURN 

COMPUTE THE TABLE. 
DO 1 K=2,NCOLS 
JMIN=2*K-1 
IF(JMIN.GT.NROWS) GO TO 3 
DO 2 J=JMIN,NROWS 
DENOM=(XTRAB(J-2,K-1)-XTRAB(J-1,K-1))-

X (XTRAB(J-1,K-1)-XTRAB(J,K-1)) 
IF(DENOM.EQ.RZERO) DENOM=TINY 

C USE THE FORM WITH LEAST CANCELLATION FOR 
C CONVERGENT SEQUENCES. 

c 
c 

c 
c 

c 
c 
c 

2 XTRAB(J,K)=XTRAB(J,K-1)-(XTRAB(J,K-1)-XTRAB(J-1,K-1))**2/DENOM 
1 CONTINUE 

3 IF(KW.LE.O) RETURN 
PRINT THE TABLE. 

DO 4 J=1,NROWS 
KMAX=(J+1)/2 
IF(KMAX.GT.NCOLS) ~{=NCOLS 

4 WRITE(KW,5)J,(XTRAB(J,K),K=1,KMAX) 
5 FORMAT(/1X,I4,4D28.17/(5X,4D28.17)) 

RETURN 
END 

SUBROUTINE ROMBEX (R,LR,N,RATIO,JPFRST,KW) 

IMPLICIT REAL*16 (A-H,O-Z) 
DIMENSION R(LR 1 N) 
IF(N.LT.2 .OR. N.GT.LR) RETURN 
UNITR=1 
DO 1 J=1 1 N 
IF(J.EQ.1) GO TO 2 
RPOWR=RATIO*JPFRST 
DO 3 K=2,J 
R(J,K)=R(J,K-1)+(R(J,K-1)-R(J-1,K-1))/(RPOWR-UNITR) 

3 RPOWR=RPOWR*RATIO 
2 IF(KW.GT.O) WRITE(KW,4)J,(R(J 1 K) 1 K=1,J) 
4 FORMAT(/1X,I4,4D28.17/(5X,4D28.17)) 
1 CONTINUE 

RETURN 
END 

SUBROUTINE SHANK ( S, NMIN 1 N.JI1AX, KMAX 1 EXTRP) 

IMPLICIT REAL*16 (A-H,O-Z) 
C DOUBLE PRECISION QTEST,DABS,S,H,EXTRP,HUGE,ZERO,UNITY,TZ,TU,ARG 

DIMENSION S(1) 
C QTEST(ARG)=ABS(ARG) 
C QTEST(ARG)=DABS(ARG) 

c 

QTEST(ARG)=QABS(ARG) 
HUGE=1.0E35 
ZERO=O.OEO 
UNITY=1.0EO 

WRITE (6 1 44) (S (J) ,J=1 ,NMAX) 
44 FORMAT(/1X,'S = ',4D28.17/(5X,4D28.17)) 

IF (NMIN.GT.NMAX)GO TO 130 
EXTRP=S(NMAX) 
KT=2*KMAX 
DO 120 J=NMIN 1 NMAX 

TZ=O. 
LIMKK=J-NMIN 
IF (LIMKK.GT.KT)LIMKK=KT 
IF (LIMKK.LE.O) GO TO 120 
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c 

c 

c 

80 

90 
100 
llO 

120 

DO 110 KK=1,LIMKK 
JJ.I1KK=J-KK 
IF (QTEST(S(JMKK)) .EQ.HUGE)GO TO 80 
IF (QTEST(S(JMKK+1)) .EQ.HUGE)GO TO 80 
TU=S(JMKK+1)-S(JMKK) 
IF (QTEST(TU) .EQ.ZERO)GO TO 90 
TU=TZ+UNITY/TU 
GO TO 100 

TU=TZ 
GO TO 100 
TU=HUGE 
TZ=S (JMKK) 
S(JMKK)=TU 
H(JMKK)=TZ 

CONTINUE 

MXMKT=NMAX-KT 
EXTRP=S(MXMKT) 
WRITE(6,21)S(MXMKT) 

21 FORMAT(/1X,'S(MXMKT)=' ,D28.17) 
130 RETURN 

END 
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