
A STUDY OF THE EPSILON ALGORITHM

AND APPLICATIONS

By

HUI-WEN CHIANG
(f

Bache lor of Lm'IT

Fu Jen University

Taipei, Tahvan

Republic of China

1978

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements
for the Degree of
MASTER OF SCIENCE

December, 1986

A STUDY OF THE EPSILON ALGORITHM

AND APPLICATIONS

Thesis Approved:

(Z)2 ::a~~__:_:::___ __
LLfHAWJ/h 27. AJ ---~--~ -
Dean of the Graduat~

1263939

ii

PREFACE

This thesis describe Wynn and Shanks' epsilon algorithm

and its implementations. The main objective of this study is

to observe the characteristics of the epsilon algorithm and to

formulate an update form of the epsilon algorithm to speed up

iterative processes by reducing duplicated steps. The update

epsilon algorithm has been tested on several sets of numerical

problems and the results have been satisfactory.

The author wishes to express her sincere appreciation to

her major adviser, Dr. John P. Chandler, for his lasting

patience, constant guidance, and expertise throughout this

study. Appreciation is also expressed to the other committee

members, Dr. Donald W. Grace and Dr. Sharilyn A. Thoreson,

for their cooperation and assistance. Gratitude is also

extended to Sharon Steele for her outstanding clerical

assistance.

Finally, special thanks is expressed to my parents and to

my husband for their continued emotional support, moral

encouragement and understanding throughout this study.

iii

Chapter

T
..L •

II.

III.

IV.

TABLE OF CONTENTS

Page

INTRODUCTION .•... 1

THE EPSILON A~GORITH1'<1 . 5

Introduction and Historical Overview 5
Motivation of Shanks' Transforms . . 6
Wynn's Epsilon Algorithm . . • • • . 9
Implementation of Epsilon Algorithm. . • 12
Stability of Epsilon Algorithm •...••. 17

UPDATE FORM OF THE EPSILON ALGORITHM. • • 19

Motivations. • • . . ••.•.. 19
Update Epsilon Algorithm ...•..•••. 22
Numerical Test Problems •...•...... 23

Fourier Series. . • . .•••• 23
The Confluent Hypergeometric Function • 25

SINGULAR RULES FOR THE EPSILON ALGORITHM. • • 2 8

Introduction . . • • • . • . • . • . 28
Singular Rules . . • . • • • • • . • • . 29
Applying the Singular Rule to the Epsilon
Program. 33
Test Results • . . . • • . • • • . 35

V. ERROR EXPANSION SERIES AND TEST RESULTS ..••• 36

VI. CONCLUSION AND RECOMMENDATIONS.

A SELECTED BIBLIOGRAPHY ...

APPENDIX A - PROGRAM LISTING OF "SIJAB 11 WITH UPDATE
EPSILON ALGORITHM . . • . . . • . . •

• • 40

• • • • 4 2

• • 45

APPENDIX B - PROGRAM LISTING OF EPSILON ALGORITHM WITH
THE UPDATE FORM AND SINGULAR RULE • • • . . • 53

APPENDIX C - PROGRAM LISTING OF ERROR EXPANSION SERIES . . 62

iv

I...IST OF TABI...ES

Table Page

I. The Epsilon Table for I...eibnitz Series,
Sum=3.14159 • 13

II. The Epsilon Table of Shanks' Double Geometric
Series at X=10. Surn=2.77777778D-1 •.•.••... 15

III. Failure of Aitken's Method on Shanks' Double
Geometric Series at X=lO. Sum=o277777D-1 ..•• 0 15

IV. Failure of Aitken's Method on Lubkin's Series,
Sum=1.1314. 16

V. The Epsilon Table for Lubkin's Series,

VI.

Sum=l.l31... 17

The Values of Twenty Diffusions at
Time=0.666111170477D1 ..•. 0 • . 25

VII. The Epsilon Table in Confluent Hypergeometric
Function o • • • • • • • • • • • • 2 7

v

LIST OF FIGURES

Figure Page

1. Graphs of the Numerical Sequences • 6

2. Configuration for the ei transforms . • . . . • • 9

3. Epsilon Algorithm Lozenge Diagram .. 11

4. Programming Lozenge Algorithm • • • . ..•.•. 19

5. Motivation of the Update Epsilon Algorithm. • . • 22

6. Numerical Example of the Singular Rule Case .•.•. 28

7. Epsilon Scheme of the Singular Case • . • 29

8. Singular Case in the Large Lozenge Diagram ••••.. 30

9. Programming Lozenge Diagram of Singular Rule. . . 34

vi

CHAPTER I

INTRODUCTION

//(Techniques for accelerating the convergence of
'--

iterative processes have been developed almost a century.

~\ 0 I One of the main strategies of such techniques is to use some
'~ \.._

kind of transformation on the partial sums of a slowly

convergent series to produce a transformed series which

converges to the same limit as the original sequence, but

faster.)

Assume that we want to compute the sum of the series,

7T /4 = 1 - 1/3 + 1/5 - 1/7 + •••

= .~0 (-1) 1 (2j + 1). (1.1)
J- ~-- \

'..J ,,
1

The series converges very slowly. Even after 500 terms there

still occur changes in the third decimal. If we do not know

that the limit is ~/4, it is very difficult to find the limit

to the required tolerance, unless we can do something besides

simply adding up partial sums. This is what the acceleration

methods are designed for.

r~) lThere are several acceleration techniques available for
\...:'
speeding up the convergence of an iterative solution. These

well-known techniques include Richardson integration,

1

Romberg integration, Euler's method, power series methods,

the Q-D algorithm, Aitken's method, the epsilon algorithm,

etc. Most of these techniques work well in most of the

problems and then fail miserably in some specific cases.

However, the epsilon algorithm is considered a relatively

simple but powerful technique for accelerating the

convergence of slowly convergent sequences and inducing

convergence in divergent sequences~The epsilon algorithm

may also be used (i) to obtain useful results from divergent

series and iterations, (ii) to obtain the limits of iterated

vector and matrix sequences, (iii) to aid in the solution of

differential and integral equations, {iv) to carry out

numerical integration in a new way, (v) to extrapolate, (vi)

to fit a curve to a polynomial or to a constant plus a sum

of exponentials.)
~

> l It is the purpose of this thesis to study the

properties of the epsilon algorithm and, based on its

recursive nature, to modify the epsilon algorithm for

speeding up the iterative process in order to reduce some

possible duplicate steps by saving previous results for

further computation (see Chapter III). Furthermore, the

discussion of the singular rule which was suggested by Wynn

to overcome the instability of the epsilon algorithm is also

\ included in this paper. 1
/

Since the transformations take a very important role in

the epsilon algorithm, a brief historical overview, as well

as Shanks' motivations of the transforms, and Wynn's epsilon

2

table will be presented at the beginning of Chapter II.

Following this will be the descriptions of the

implementations and stability of the epsilon algorithm.

The motivation to update the epsilon algorithm will be

presented in Chapter III. Meanwhile, the logic to update

the epsilon algorithm will be described step by step. (The

description of several numerical problems which have been

tested both on the "original" and the "update" epsilon

' t algorithm are then illustrated.;(The four sets of the
) \

numerical test problems are Fourier series, confluent

hypergeometric function, Gauss-Seidel relaxation scheme, and

Jacobi relaxation scheme. The comparison of the test

results between the "original" epsilon algorithm and the

"update" epsilon algorithm with respect to the storage

requirements and the time requirements are made with respect

to each of the four test problems.~

However, when using the formula of the epsilon

algorithm it may sometimes occur that an entity is

numerically ill-determined and causes all entities lying in

a certain sector to become ill-determined too. P. Wynn's

singular rule to overcome these misfortunes is studied and

tested in Chapter IV.

In Chapter V, the epsilon algorithm is applied

repeatedly in order to obtain a new series expansion in

negative powers of n of the magnitude of the error in the

partial sums of an infinite series.

The final conclusion of this thesis and the suggestion

3

for further study are given in Chapter VI. Finally, all

program listings are collected in the Appendices.

4

CHAPTER II

THE EPSILON ALGORITHM

Introduction and Historical Overview

The epsilon algorithm is a method of generating

non-linear transforms for increasing the rate and expanding

" the domain of convergence of sequences.) The family of
i

(m)
non-linear epsilon transforms includes ek, e k , 'E\, and e d"

The e1 transform has been developed by several well-known

authors including Delauncy (1926) , Samuelson (1945), Shanks

and Walton (1948), Hartree (1949), and Isakson (1949).

However, more general discussions of the epsilon transforms

and their applications were given by Shanks. But, because

of the vast amount of time consumed and labor needed in

evaluating the determinant of the entries, the use of these

transformations was limited. In 1956, Wynn discovered an

easier way to determine the entries of the epsilon table

without any determinant calculations. Since then, the

epsilon algorithm has become popular. In the next section

a summary of Shanks' approach to obtain the transformations

will be given.

5

Motivation of Shanks' Transforms

,, /(Let us define a typical numerical sequence A by

A= A) , r = 0,1,2,3, ••• ,
r

(2.1)

and draw a smooth curve through the discrete points which

are plotted by A versus r. Figure 1 shows the graphs of

some sequences that are defined as convergent, divergent,

monotonic, and oscillatory sequences. By comparing common

points in the sequences of the graph,

A(Y)
AtY)

----~~----------------~~y

Figure 1: Graphs of the numerical sequences

6

Shanks devised a function of r in the form of

k r
A = B + I: X Q

r i=1 i i
(Qi=j:.l,O) (2.2)

to represent those sequences, where Xi is the spectrum of

amplitudes, Oi is the spectrum of ratios, and B as the

"base". Here the prime concern is computing the base B. For

if {Ar) is a mathematical transient i.e. if it satisfies

(2.1) and if each ratio satisfies !oil < 1 then clearly

B = lim A
r-> oo

If (A r) is a transient and one or more I Qi I >= 1, Ar does

not converge; Shanks said that "Ar diverges from B" and calls

B the nanti-limit" of (A r).

Many sequences which arise naturally in analysis are

indeed mathematical transients of some finite order k. Other

sequences that are of infinite order (k = oo) we can in many

cases say that (A~) is nearly of Kth order for some K -- at

least for r greater than some fixed N. Then by analogy with

(2.1) Shanks determines a local Kth order base Bk n by
'

solving the 2k+1 equations

k
A r = B k n + ~ xi,n Oi,n ,

' i=l
n-k <= r <= n+k, n>=k,
(Qi,n :::=f1,0)

or the 2k+1 quantities Bk,n, X i,n, Q i,n, (i=1,2, ... ,k).

Algebraically the formula for B k n is obtain by
'

7

A -------- A A
n-k n-1 n

L':.An-k -------- L':.An-1 I':. A
n

1':.~-k+l -------- I':. A L':.An+l ,n •

L':.An-1 -------- L':.An+k-2 L':.~+k-1
B =
k,n 1 -------- 'I 1

L':.An-k -------- L':.An-1 I':. A (2. 3)
n

L':.An-k+l -------- I':. A L':.,An+l ,n

I':. A'
n-1

-----...,.....- L':.An+k-2 ~An+k-1

where L':.A =A -A , and this is Shanks' "K'th order
n+l n

transform of (Ar)".

The transforms may also be written in operator form:

B = e (A.) • (2. 4)
k,n k n

where e K is the nonlinear operator defined by the right hand

side of the equation (2.3).

Followed by the first iteration transform eK' the

higher order iteration transforms can be gained by

2
c = e (B = e (An) , (n >= 2k)
k,n k k,n k

2 3
D = e (C = e (B = e (A) ' (n>= 3k)
k,n k k,n k k,n k

{2.5)

From the above iteration the operator e K was transformed.

The "Kth

e
k

order iterated transformation", is

(A ; A ; A ; A ; •••) =
0 1 2 3

A ; B ;
0 k,k

c ;
k,2k

defined by:

D ; ••• (2.6)
k,3k

8

and the operator ed, the "diagonal transformation", is

defined by:

e (An) = B
d n,n

/
I
\ From Shanks' definition of the epsilon transforms, we
'·

may indicate the dependencies on the Ai as in Figure 2 where

each transform depends on the A 's directly.

Ao

Al el(Ao)

Az el(Al) ez (Ao)
Ag el(Az) ez(Al) e3(A0)

A4 el(A3) ez (Az)

As e1 (~)

As

Figure 2: Configuration for the ei transforms

Note that the computation for any particular entry of A

proceeds quite independently with an effort similar to anv

other transformation entry. So with the use of Shanks'

transforms in its present form as a sequence to sequence

9

10

transformation in which entries of the transformed sequence

are of the form em(Su) (n=n,n+1, ... ,m=1,2, •..), transform

entries may be examined for approaching a limit faster.

Therefore, the next transform may save a vast amount of labor.

In 1955, Wynn successfully proved the epsilon theorem

which carried out the transformation more efficiently. He

calculated the entries from the previous column by saving

some auxiliary numbers along the calculations.

Following is the epsilon theorem developed by Wynn.

Epsilon Theoren:

If

then

Ezm+1 <Su) =

1
Es+1 (Sn) = Es-1 (Su+1) + ----------------

E s (S n+ 1) - Es (S u)

(n, s = 0, 1, ...). (2. 7)

provided that the initial conditions of E (-1)=0,

m=1,2, •.. , E (O) = S(m) ,m=O,l, ... ; and none of the

quantities E Zk(A 1J becomes infinite.

The quantities Es may be placed in a two-dimensional

array in which the suffix s indicates a column number and

the superscript rn a diagonal (see Figure 3).

11

(0)
E

-1 (0)
E

(1) 0 (0)
E E

-1 (1) 1
E

(2) 0 (1) (0)
E E E

-1 (2) 1 s (0)
E E

(3) 0 (2) (1) s+1
E E E

-1 1 s

Figure 3: Epsilon algorithm lozenge diagram

The even-numbered columns Ezk (An) display the transformed

sequences ek(AJ, and generally the transformed sequences

converge to the limit of the An more rapidly than the original

sequence An. The odd-numbered columns Ezk+l (An) are

intermediate and diverge to +-oo; so there is no need for the

printing of E 2k+l {An).

According to equation 2.7 the four quantities can be

arrange in a lozenge, as shown below.

(n)
E

(n+1) s (n)
E E

s-1 (n+l) s+l
E

s

12

The right side entry can be computed by adding the left

side entry to the inverse of the difference of the two in

the middle. So the quantities Es are constructed by means

of the relationship of

(m) (m+1) (m) -1
E = E +

(m+1)
E E) (m, s=O, 1, •••) •

s+1 s-1 s s

This is called the fundamental relationship of the epsilon

algorithm.

Implementation of the Epsilon Algorithm

af'.P.1Y the epsilon algorithm with great success. First, we

illustrate the transforms on Leibnitz series:

1T = 4 - 4/3 + 4/5 - 4/7 + •••• (2. 8)

This a very slowly convergent series but the epsilon

algorithm speeds it up considerably. The transformation

table is shown in Table I.

The tenth partial sum, A9, is correct to only one

figure; it takes about 40,000,000 terms to get eight figures.

However, e4 is already corrected to eight figure.

n
0
1
2
3
4
5
6
7
8
9

TABLE I

THE EPSILON TABLE FOR LEIBNITZ SERIES,
SUM=3.14159 .•.

A(n) e1 e2 e3
4.0000000
2.6666667 3.1666667
3.4666667 3.1333333 3.1421053
2.8952381 3.1452381 3.1441502 3.1415993
3.3396825 3.1396825 3.1416433 3.1415909
2.9760462 3.1427129 3.1415713 3.1415933
3.2837385 3.1408814 3.1416029 3.1415925
3.0170718 3.1420718 3.1415873
3.2523659 3.1412548
3.0418396

2

13

e4

3.1415928
3.1415927

Aitken "A" method is considered one of the powerful

acceleration techniques and it had been a great success at

the geometric series problems. The motivation for the method

is to use the ratio of consecutive errors in the partial sums

sequence to transform the original sequence to a faster

converging sequence. Aitken's method can be written in

the forms as below:

or

A n+I- A A n+2 - A
r = --------- = ----~------

A n+l - A

2
An An+2 - A n+2

A = ----------------------------

=

(A n+2 - An+l) - (A n+l - An)
2

A -n

(AAn)

(2. 9)

(2.10)

(2.11)

14

= (2.12) --------------- ,

where r is a constant and A(n) is a numerical sequence.

Aitken's method would seem to have a good chance of

success when the ratio of consecutive errors approaches any

constant between r = 0 and r = 1. As it can be shown that

the denominators in (2.10), (2.11), and (2.12) go to zero if

r=1 and this would lead to the method not working well.

Overall, Aitken's method is the "perfect" linear convergent

accelerator for the geometric series.

The-next example illustrates the weakness of Aitken's

method in Shanks' "double" geometric series. The sequence

of partial sums of A(n) is originally defined as

A(n) = f(z) = 1 + 3zl2 + 7ll4 + 15zJ8 + 31:114 + ••• ,

and the right side could be written as

f(z) = 2 I (1-z) (2-z)
2 2

= 2 I (1 + z + z + •••) - 1 I (1 + zl2 + zl4 + •••) •
(2.13)

The e 2 transform of the epsilon algorithm transforms

the sum perfectly on any given five consecutive partial sums.

It is not so fortunate with the Aitken's method in this case,

especially when z=10. See Table II for the Epsilon table of

Shanks' double geometric series and Table II for Aitken's

transforms.

n
0
1
2
3
4
5
6
7
8

n
0
1
2
3
4
5
6
7
8
9

TABLE II

THE EPSILON TABLE OF SHANKS' DOUBLE GEOMETRIC SERIES
AT X=lO. SUM= 2.77777778D-1

L(n) e2 e4
.100000000Dl
.160000000D2
.191000000D3 -.4062500DO
.206600000D4 -.2014706D1
.214410000D5 -.9892857D1 .2777778D-1
.218316000D6 -.4887675D2 .2777778D-1
.220269100D7 -.2427850D3 .2777778D-1
.221245660D8 -.1209806D4 .2777778D-1
.221733941D9 -.6038617D4 .2777778D-1

TABLE III

FAILURE OF AITKEN'S METHOD ON
SHANKS' DOUBLE GEOMETRIC SERIES AT X=10.

SUM=.277777D-l.

L(n)
0

.10000D1

.16000D2 -.71D-1

.19100D3 .41DO

.20660D4 -.20D1 .17D-1

.21441D5 -.98Dl .64D-2

.21831D6 -.48D2 -.19D-1 .23D-1

.22026D7 -.24D3 -.83D-1 .24D-1

.22124D8 -.12D4 -.24DO .24D-1 .24D-1

.22173D9 -.60D4 -.64DO .23D-1 .24D-1

15

Our -last· example .shows another disadvantage of Ai.tken ~-s-·

16

Lubkin's series:

1 . 1319 71 7 s . . . = 'IT I 4 + ln C 2) I 2

= 1 + 112 - 113 - 114 + 115 + 116 - • • • I

{2.14)

the repeated Aitken's method is completely confused by the

ratio of consecutive errors which keeps switching signs and

therefore will not find the convergent answer (as shown in

Table IV). However, in Table V, we find that the epsilon

method soon approaches the correct limit in the later columns.

TABLE IV

FAILURE OF AITKEN'S METHOD ON LUBKIN'S SERIES,
SUM = 1.1314 •••

L(n)
0
1. 00
1. 50
1.1667
0.9167
1.1167
1. 2833
1.1405
1. 0155

2.00
1. 30
0.1667
1.0278
2.1167
1.2064
0.1405

3.1308
.6560

-3.0888
1. 6209
7.4390

7.9530
-1.0027

-23.098

L(n)
0
1. 00
1.50
1.17
0.917
1.12
1.28
1.14

h\ 1. 02 , I ~
I{ i 1.13

I
i
I

\
'

TABLE V

THE EPSILON TABLE FOR LUBKIN'S SERIES
SUM = 1.131 •..

e1 e2 e3

2.00
1.30
0.167 1.0755
1. 03 1.1248
2.12 1.1420 1.1504
1. 21 1.1333 1.1359
0.140 1.1285 1.1226
1. 07 1.1315 1.1304

17

e4

1.1300
1.1317

;:_-.---. -- - ~~ .

Stability of the Epsilon Algorithm

From the nature of the epsilon algorithm we may say that

it is a recursive process involving repeated subtractions and

divisions. And as such one would expect it to be numerically

unstable because of the possibility of loss of digits due to

cancellations which occur during the transformation. However,

we found that in certain circumstances it is quite remarkably

stable.

After studying the behavior of some sequences Wynn found

that in certain circumstances the epsilon algorithm is a

regular (i.e., convergence preserving) transformation:

certain types of slowly convergent monotonic sequences are

transformed into slowly convergent sequences of single-signed

terms and certain type of slowly convergent oscillating

18

sequences are transformed into rapidly convergent oscillating

sequences.

Wynn concluded that transformations of monotonic

sequences require the repeated subtraction of approximately

equal quantities, and that in turn induces instability in

which the rounding errors jump up and take complete charge

of the computations after a few steps. On the other hand,

the transformations of oscillating sequences showed the

consistent subtraction of quantities having opposite signs

with no loss of digits due to cancellation and the

computation appeared to be completely stable.

CHAPTER III

UPDATE FORM OF THE EPSILON ALGORITHM

Motivations

As mentioned in Chapter II the epsilon algorithm uses the

lbzenge algorithm relationship. The four quantities below

form a lozenge of the epsilon-array.

(m)
E

(m+l) s (m)
E E

s-1 (m+l) s+l
E

The computation of the lozenge algorithm requires storing

a vector of quantities, not a two-dimensional array; and the

auxiliary variables auxO, auxl, and aux2 are implemented in

the processes, as shown in Figure 4.

auxO/-

Figure 4: Programming lozenge algorithms

19

20

The vector 1 contains the quantities from Eo to Em, which

lie along the thick line in Figure 9. The contents of l(s-1),

l(s), auxO, and aux1 form a lozenge in the E-array. The

processing starts with the computation of the auxO quantity

from those of l(s-1), l(s), and aux1;, then the contents of

l(s-1) is replaced by aux2, aux2 by aux1, and aux1 by auxO

accordingly. The value of s is increased by one, and the

process is moved to the next step to form a new lozenge; and

the above processes are repeated until all of the entries in

the new diagonal are computed.

An ALGOL epsilon algorithm procedure which is given by

Henry C. Thacher, Jr. in the COMM. A.C.M. Vol. 6, 1963

follows. This algorithm is a revision of the original epsilon

algorithm constructed by P. Wynn and is the one used in this

thesis.

01 Procedure Shanks(nmin,nmax,kmax,S);
02 value nmin, nmax, kmax;
03 integer nmin, nmax, kmax;
04 array S;

05
06
07
08

---- 09
10
11
12
13
14
15
16
17
18
19
20

begin integer j,k,limj,limk,two kmax;
real TO,T1;
two kmax := kmax + kmax;
limj := nmax;

for j :=_ nmin step 1 until limj do r i begin tQ_ ;.:::= __ 0_;
I limk : ,;- j - nmin;

if limk > two kmax then limk := two kmax; limk := limk - 1;
~:,-for k := 0 step 1 until,~limk,,do

: begin T1 :-;, S (j-k) - S (j-k-1);
if T1 = 0 then T1 := TO + 1/T1 else
if S(j-k) = largest number then T1 :=TO else

T1 := largest number;
TO := S (j-k-1)
S (j-k-1) := T1

end for k

21 end for j
22 end Shanks

This procedure replaces the elements S(nmin) through

21

S(nmax-2*kmax) of the arrayS by the e(kmax) transform of the

sequenceS. The elements S(nmax-2*kmax+1) through S(nmax-1)

are destroyed. Note that the array S is the same as vector l

in the preceding description.

If, in a slowly convergent sequence, one can transform a

certain E from the transformed sequence by applying the

epsilon algorithm and we decide that a value of Ei may be a

better approximation to the true value, then it is certainly

wasteful to start the process from the original sequence. It

seems more appropriate to start the process with the

transformed sequence as the initial value. We may name this

situation the horizontal extended process of the epsilon

algorithm.

Or if the m+n elements of the basic sequence are

considered after a transformed sequence has been obtained from

m elements then it seems more reasonable to continue the

process from the m+1th element to reach a transformed position

rather than from the first element. This shall be called the

vertical extended process of the epsilon algorithm.

Figure 5 shows the examples of two basic situations.

The computing processes to obtain the first converted value X1

are included in the dashed zone. However, the steps needed to

obtain the second converted value X2 are shown in the thick

22

line zone. It is obvious that a lot of processes in the

overlapped area are repeated and wasted. This leads to the

following algorithm.

...
__ , ,.. X~ , .,

.... x.r ,. .,.. x
"""" ""x' x

x-

To extend vertically To extend horizontally

Figure 5: Motivations of the update epsilon algorithm

Update Epsilon Algorithm

Procedure 3.1: Updated epsilon algorithm procedure

01 Procedure Shanks(nmin,nmax,kmax,S,H);
02 value nmin, nmax, kmax;
03 integer nmin, nmax, kmax;
04 array S,H;

05 begin integer j,k,limj,limk,two kmax;
06 real TO,Tl;
07 two kmax := kmax + kmax;
08 limj := nmax;
09 .-·for j : = nmin step 1 until limj do
10 begin TO := H(j)~
11 limk :=- j ...; n.'min;
12 if limk > two kmax then limk := two kmax; limk := limk - 1;
13 -for k := 0 step 1 until limk do

14 begin T1 := S (j-k) - S (j-k-1);
15 if T1 = 0 then T1 := TO + 1/T1 else
16 if S(j-k) = largest number then T1 :=TO else
17 Tl := largest number;
18 TO := S(j-k-1)
19 S(j-k-1) := T1
20 ~n~ for k
21 . H: (j h: : = TO
2 2 ---encr for-}~
23 end Shanks

23

The variables of nmin and nmax indicate the subscript of

the beginning and ending terms of array, S 1~ When nmin is not
'· .

equal to 1, the vertical extended process is applied and more

elements are included in the process. The array H, holding

the values of the previous Ei column, is defined for the

purpose of the horizontal extended process. Kmax indicates

the order of the epsilon transform~ (when the horizontal

extending process is applied, the order of the epsilon

transform is numbered from the transformed sequence and not

from the original sequence~

When both horizontal and vertical extended processes are

to be applied to the transformed sequence, it is recommended

that one apply the horizontal extended process first, then

apply the vertical extended process.~
I

_)

Numerical Test Problems

1. Fourier Series:

A Fourier series may be defined as an expansion of a

function or representation of a function in a series of sines

and cosines such as
00 00

f (x) = a 012 + E a (n) cos (nx) + E b (n) sin (nx)
n=l n=l

(.3 • 1)
I

where a(o), ..• ,a(n) and b(l) , ... ,b(n) are real or complex

constants. The conditions imposed on f(x) to make this

equation valid are that f(x) has only a finite number of

infinite discontinuities and only a finite number of extreme

values, maxima and minima.

24

One of the advantages of a Fourier representation over

some other representation, such as a Taylor series, is that it

may represent a discontinuous function or a periodic function

conveniently.

The first example is to model diffusion in an infinite

slab which has plane parallel sides. The boundary

conditions at the face of the slab are piecewise constant in

time. The method of Fourier series is used to compute one

function value and an error estimate. To accelerate the

convergence of the series, the epsilon algorithm is applied.

The program, called SLAB, is provided by Dr. Chandler.

The update epsilon algorithm is tested by replacing the

original epsilon algorithm in the SLAB program. The table VI

shows the test results of the SLAB program when time is equal

to 0.666111170477D01.

In this case, only the situation of horizontal extension

is tested. The above results in Table VI are the same as the

results when the original epsilon algorithm is applied twice

in the SLAB program.

TABLE VI

THE VALUES OF TWENTY DIFFUSIONS AT TIME =0.666111170477Dl

0.1600000D-01
0.48323520-02
0.3657657D-02
0.31408590-02
0.32467890-02
0.3952481D-02
0.5001130D-02

0.9708385D-02
0.43093220-02
0.34204660-02
0.31052590-02
0.34204660-02
0.42967380-02
0.51307650-02

0.6143988D-02
0.3953008D-02
0.32467890-02
0.31408590-02
0.36576460-02
0.46705100-02
O.SOOOOOOD-02

2. The Confluent Hypergeometric Function_ I
L _j

The confluent hypergeometric equation

zy" (z) + (c-z)y' (z) - ay(z) = 0 (3. 2)

25

is simplified from the hypergeometric equation by merging two

of its singularities. ~(One solution of the confluent

hypergeometric equation is

y(z) =1 F1 (a,c;z) = M(a,c:z)

a X a(a+l) x2
= 1 + -c-·-r! + -ccc+ry----·-----2!-- + ... ,

c= 0,-1,-2,.... (3.3)

The solution is convergent for all finite z. In terms of

the Pochhammer symbols,

(a) m = a (a+ 1) (a+ 2) • • . (a +n -1) = (a +n -1) ! I (a -1) ! ,

(a) 0 = 1,

the confluent hypergeometric function becomes

(3. 4)

26

M(a,c:z) = 4 F.1 (a,c:z) (3. 5)

oo (A)n Xn = n~l --(c)n_, ___ n ___ .

The leading subscript 1 indicates that one Pochhammer

symbol appears in the numerator and the final subscript 1

indicates one Pochhammer symbol in the denominator. If the

parameter a is zero or a negative integer, M(a,c;z) becomes

a polynomial.

Both the "original" epsilon algorithm and the "update"

epsilon algo~ithm are applied to the confluent hypergeometric
' I

series with the initialization of a=1,c=1,\and
---"~---

z=(0,1.5707963267949).
~

L~ The test results are shown in Table VII.

The quantities of the confluent hypergeometric series are
€;

first included to reach the column of ei. When processing to

column e4, the method to extend horiTntally in the updated

epsilon algorithm is applied. Furthermore, five more

quantities of the confluent hypergeometric series are added

into the process to test the vertical extension functionJ The

dashed zones in Table VII indicate the different processing

steps. The test results shown in Table VII are similar to the

original epsilon algorithm.

TABLE VII

'EHE EPSIJJON TABLE IN CONFLUENT HYPERGF.ONE'l'RIC FUNCTION

.lOOOOOOODOl,.OOOOOOOODO)
(.lOOOOOOODOl,.l5707963Dl)
(-.~33/0055D00,.15707963Dl)

(-.23370055D00,.92483222DO)
(.J9968957D-1,.92483222DO)
(.J9968957D-1,.10045248Dl)
(-.89452299D-3,.10045248Dl)
(-.89452299D-3,.99984310DO)
(.24737276D-4,.99984310DO)
(.24737276D-4,.10000035Dl)

(.23697291D00,.97151625DO)
(.31750537D-1,.10638220DO)
(-.13923435D-1,.10111385Dl)
(-.28182153D-2,.99736605DO)
(.44371597D-3,.99941315DO)
(.10569411D-3,.10000675DO)
(-.93874791D-5,.10000168Dl)
(-.24372107D-5,.99999879DO)

(.11374722D-1,.99993530DO)
(.50818081D-3,.100179]7Dl)
(-.25577479D-3,.10001280Dl)
(-.23167201D-4,.99996636DO)
{ .41047145D-5,.99999646DO)
(.47744989D-6,.10000004Dl)

(.21234162D-3,.99999997DO)
(.48431629D-5,.10000237Dl)
(-.25077908D-5,.10000009Dl)
(-.13028J08D-6,.99999974DO)

(.21315865D-5,.99999999DO)
(.29803821D-7,.10000001Dl)

N
........

CHAPTER IV

SINGULAR RULES FOR EPSILON ALGORITHM

Introduction

~Regardless of precision, when using the formula o~ the

epsilon algorithm it may sometimes occur that a quantit~· is

nurrerically ill-determined. As a result of this end because

of the way in which the algorithmic formulae are used, this

~isfortune is propagated throughout a whole sector.) Wynn

(1963), Cordellier (1977), and Brezinski (1978) have suggested

ways to deal with them. We begin the discussion with o simple

example.

According to the partial sums of the power series for ex,

its initial members are as follows:

0
0

0 1 1 1 1 ------
(2-4X+X2) (1-X)

l+X X (2+X) ----=~:z---- 2(3+X) 1 ------
-~=~~~~2-2 ;~:z (2-X) -2(6-6X+X2) l+X+~

1 (6+4X+X2) -----~3-------------
2 x3 ~~3 (6-2X)

l+X+~ + -6-

0

0

0

0

Figure 6: IJur:,erical example of the s.:Dgt:lar rule case

28

29

When x=2 we construct the above array under the epsilon

scheme as shown below:

0
1

1 --------~ 1/2
3

1/2
00

1/2
5

19/3

Figure 7: Epsilon scheme of the singular case

In this example when one follows the above formulae we

find that two entries in the tL column have attained the same

value (1/2 and 1/2). However, by using the epsilon algorithm

we can hardly obtain the value 5, instead infinity in that

entry is obtained. This is one of the typical singular cases.

(when we repeatedly apply the epsilon algorithm, we may

forecast that the misfortune is propagated throughout the

whole sector. Therefore, the singular rule was introduced by

Wynn in 1963 to overcome this difficulty.)

Singular Rules

Now suppose that the example in figure 6 has been put into

the large lozenge diagram as below,

(oo) m+l
E

s

m
(x)ss+l

Figure 8: Singular case in the large lozenge diagram

i
and two entries in the s8 _folumn are both equal to the

same value - say x. It is immediately noticeable that

m m+l m .
becomes finite, Es+l and E8 _ 1 are equal to x, and Es+Z lS

30

indeterminate. Further quantities in a sector whose vertex is

ats:+zremain undetermined. However, if we try to avoid using

the entry of sm+lto calculate the value of
s

Em , the
s+2

indeterminate situation will be eliminated. One can substitute

the appropriate values that were originally used to derive the

particular entry that progressed to infinity as opposed to

using the ill-determined infinity term. This should alleviate

indeterminate quantities. This multiple appeal to the epsilon

algorithm relationship appears as follows:

= €m+1
s

m+1
€

s

m+1
€

s

1
+ ---

1

m+2 m+1
€ - €

s s

1

m+1
€ -s-1

1

m+1 m
€ €

s s

+ ---
1 1 1 -------------- + -----,.------- - -------------

m+1
€

s
m+2

- €
s

m+2
€

s
m+1

- €

mt1
€ l

s

s
m+1

€
s

m
- € s

- ---------------------------~~-----------------------

- ·:-lmf-2
€

1 -

m+2
8 s-2

------------- +
m+1

€
s

m+1
€

s

m+2
€

s

m+2
€

s
m+1

€
s

m+2
€

s

m
€

s

--------~--------- +

m
€

s
m+2

€ s-2

1 -
m

€
s 1 *

--------------------------~-----------~-------------------------

1 -

m+2
8 s-2

----------------- +
m+1

€
s

m+2
€

---------~-------- +
m+1

€
s

m+2
€

s
m+1

€
s

m
€

s

m
€

s

(4.1)

31

From the above illustration we find that
m

£s+2 becomes large

and ill-determined when £~~iand £~i are almost equal. But when E::+l

and
m+1 m

E: 8 +1 are derived ~rom the regular eps f. lon algorithm and E: s+2is

derived from the singular rule (2.7), they are all quite well

32

determined.

However, -.;vhen values of sm·!-land sm+2
s-1 s-1

are exactly equal, the

singular rule for the epsilon algorithm becomes quite simple --

=
m+2

E
s + m

E
s

m+2
E s-2

(4.2)

As in Figure 6, we may obtain the value 5 by applying the

singular rule (5=9+(-1)+3) .

Since, the more common case is that sm 2 is highly
s+

susceptible to the loss of significant digits via subtraction

when sm+1 and sm+21 are almost equal. Thus it is very importpnt
s-1 s-

to know when the cancellation occurred. Wynn asserts that tcvhen

a loss of "f" decimal figures takes place at the subtraction of

sm+1 and sm+2 , it is the time to apply the singular rule. The
s-1 s-1

general rule to estimate the loss of "f" decimal figures is

obtained by

f

m+1
E s-2

'----------------------) (- .
m+2 m+1

ss-2 ss-2

E.g., when s~;i~ about ten times as large as the difference

b m+2 d m+1 . . f. d. . . l etween s 2 an s 2 , one s1gn1 1cant 1g1 t 1s ost.
s- s+

~ lrn the singular epsilon algorithm procedure a real

parameter called - CANCEL, equal in magnitude to 10 ** f, is

provided to detect when the singular rule needs to be

implemented. --l
I

/

33

Applying The Singular Rule To The Epsilon Program

To apply the singular rules to the normal epsilon

procedures, the formula of the singular rule in (4.1) may be

reformed in several steps.

If (4 0 4)

A= m+2
(1 - m+2

(e:m+l)-1)-1 e: s-2 e: s-2 s

(4 0 5)
B m (1 - m (e:m+1)-1)-1 = e: e: s s-1 s

D m+2
(1 - m+2

(e:m+1)-1)-1 (4 0 6)
= e: e: s s s

and a = D + B- A (4 0 7)

m c a(1+a*(m+l)-1)-1. e:s+2 = e:
then s (4.8)

m+2 -Suppose that cancellation occurs in the formation of e: 8 _ 1

e::~i during the process of computing quantities lying

m+2 m+l m . on the diagonal through e: 1 , e: and e: 1 • Immed1ately,
s- s s+

we know that we areabout to compute A from (4.4), and store

it. The value of S that points to the current position in

the E-array needs to be saved too. Next, after the entry of

e::+1 is computed, the value of B can be obtained before the

next process. After reaching the end of the E-array, the

E-array process is repeated at the other end. When the

current value of s is equal to the previous stored value s

plus 1 then we do know that we are about to compute D. Then

we reach the point to compute c: :+2 by applying the singular

rule (4.8) instead of the normal epsilon algorithm and

thereby nullify the ill effects of cancellation.

Figure 9: Programming lozenge diagram of singular rule

The entries with an asterisk in figure 9 represent the

computing processes necessary to apply the singular rules

h h ll . b h . . <= m+l w en t e cance at1on etween t e quant1t1es OL c: 8 _ 1 and

m-1-2 c: occur.
s-1 :/

Hov1ever, so far a (the single point of instabi lit~(:}-~

concerned; We should apply the above procedure in the c~se

in which there are a number of points in the E-array at

which cancellation takes place. Basically the ways to

handle the multiple points of instabilitv are the same as

the above procedures, but the array S is created to store

34

the multiple instability positions instead of point S.

Moreover, the same situation happens at the points A, B, and

D.

Wynn's singular rules are appropriate to isolated

points of cancellation when two or more instability points

occur in the same column. Otherwise, Wynn's singular rules

are not appropriate. If the vector case is concerned, the

special rules of Cordellier (1977) are suggested for

implementation.

TEST RESULTS

The ALGOL procedure that Wynn suggested to apply the

multiple singular rule has been rewritten in FORTRAN and the

power series for ex with x=2 has been tested and the value 5

has been obtained. See Appendix B.

35

CHAPTER V

ERROR EXPANSION SERIES AND TEST RESULTS

Series expansions are a very important aid in numerical

calculations, especially for quick estimates made in hand

calculation- e.g., in evaluating functions, integrals, or

derivatives. Solutions to differential equations can often be

expressed in terms of series expansions. In practice, one is

seldom seriously concerned about a strict error bound when the

computed terms reach acceptable accuracy. To use the first

neglected term as an estimate of the remainder is very common

and easy. However, in numerical analysis sometimes it is not

accurate enough. The Euler-Maclaurin summation formula can be

used to get the value of the remainder with higher accuracy,

but it leads to very comp l~cate~'-'~~a 1~": l~,;t~~~ ,,, ~. r ph·' .. {,
l.,. k ' '!..,../ jr " {_ ... 't • I

1 Hew.e.:v.e;r:., ... we intend .. "t·O .. JJJ?..~ .. a ... new ... approach .. tto compute the
I

I I

\j/ magnitude of the error in the partial sums of an infinite

series, by assuming that there exists a series expansion in

negative powers of n. And we apply the epsilon algorithm

repeatedly to compute the values of the numerators in the

error expansion series. In order to facilitate the

discussion, the example below is given.

36

To get the value of ln2 we apply the following series

expansion

S(n) = ln2 = 1- 1/2 + 1/3- 1/4 + •••••

or in summation formula

n
E

i=1

i+1
C-1) I i.

(5. 1)

(5. 2)

Suppose there exists an error expansion series which is

of the following form:

C1 C2 C3 C4
le(n) I = ------ + ------ + ------ + ------ + . . . ,

n n**2 n**3 n**4

n=1,2, ••• N. (5. 3)

To compute constant C1 the following steps can be followed.

Compute S(n), n = 1,2,3, ••• ,N.

Compute e (n) = I ln2 - S {n) I.
Then, apply equation C1 = n * le(n) I to get the constant

C1, by applying a repeated Aitken, Epsilon, or Romberg

algorithm to estimate C1 as n-->-.

To compute C2.

Use the true value of C1, if it can be seen to converge

to a fraction.

Repeat the above process by using equation

C2 = (I e (n) I - C1/n) * (n**2)

37

38

Finally, the error expansion series for ln2 is gained, as

follows:

(1/2) (-1/4) 0 (1/8) 0
I e (n) I = ------ + ------ + ------ + ------ + ------ +

n n**2 n**3 n**4 n**5

(-1/4)
------- + (50 4)

n**6

Notice that the values in each constant c are in

fractional form. However, the above expansion series is

invalid when n=O.

If the original series is modified as below

Cl C2 C3
I e (n) I = +

________ ..,.
+ ---------- + • • • I (5. 5)

n+a1 (n+a2)**2 (n+a3)**3

where al, a2, a3, 0 • • are constant and then apply the

original processes with the modified series, we'obtain a new

series:

(1/2) (-1/8) (5/32)
I e (n) I = -----

n+1/2
+ 0 + -------- + 0 + ------- + 0 +

(n+1/2) 3 (n+1/2) 5

(-61/128) (1385/512)
+ 0 + ----------

(n+1/2)9
+ • • • I (5. 6) --------~

(n+l/2) 7

which is valid even when n=O. And in this case the value of

"a" is a fixed constant, 1/2. Furthermore, the numerators of

the constants C are just Euler numbers B and the denominators

are 2 to the power of n.

Note that due to the cancellation that occurs in the

computer process, it runs out of accuracy in the computation

39

,....,
of the sixth term of the Euler number B, even using double

{ precision arithmetic (64 bits) •
}<-'"-... ""~ _,

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The flexibility to extend the epsilon algorithm process

vertically or horizontally has been tested on several

numerical examples. The numerical results as shown in Chapter

III are satisfied. The array H, as mentioned in Chapter III,

used in the update epsilon algorithm, is the only additional

storage space added into the original epsilon algorithm_ . .))

~ T Practically speaking, with the application of the update
(3,) _
\"E!,psi lon algorithm, time is saved by erasing duplication of the

entire process in order to reach the final state that is

desired. It becomes even more obvious when the epsilon

algorithm must be applied to a large numerical sequence.

Thus, the update epsilon algorithm is a very useful tool

indeed.

Since the epsilon algorithm is formed under the lozenge

diagram algorithm, it is possible to apply the same principle

to other algorithms which are also formed under the lozenge

algorithm. Therefore, it is logical to apply this process to

the t algorithm, Q-D algorithm, etc. ~
__ _j

In Chapter V, an alternate method to estimate the error

bound in the partial sum series has been developed. The error

expansion series of the series ln(2) has been obtained. The

40

author believes that this is a much easier and less

complicated method than the Euler-Maclaurin summation formula

to estimate the error. Therefore, this method is highly

recommended for other partial sum series.

41

A SELECTED BIBLIOGRAPHY

Aitken, A. C. "On Bernoulli's Numerical Solution of Algebraic
Equations." Proceedings of the Royal Society of Edinburgh,
46 (1926), 289-305.

Brezinski, C. "A ,,General Extrapolation Algorithm." Numerische
Mathematik~0'\J5 (1980), ,PP· 1980.

Brezinski, C. "Convergence Acceleration Methods: The Past
Decade." J. Computational and Applied Meath. Vol. 12
(May 1985), 19-36.

cj) Brezinski, C. "Numerical Stability of a Quadratic Method
for Solving Systems of Non Linear Equations." Computing,
Vol. 14 (1975), 205-211.

w; /;rezinski, C. "Some Results in the Theory of the Vector
~ E-Algorithm." Linear Algebra and Its Applications,

Vol. 8 (19 7 4) , 7 7_::J2_~=·!". :~. __
·- ~¥~_.....---

Chandler, J. P. FORTRAN Program "SLAB". Computer Science
Department, Oklahoma State University. 1981.

~onte Samuel D./Carl de Boor, Elementary Numerical Analysis:
~~< an Algorithmic Approach. 2nd Edition. New Work: McGraw

Hill Book Company, 1972.

Cordellier, F. "Particular Rules for the Vector E-algorithm."
Numerische Mathematik, Vol. 27 (1977), 203-207.

Dahlquist Germund and Bjorck Ake Numer~i.c.a l Methods,
Prentice-Hall Series in Automatic ComPu~~tion, 1974.

~ .. -- ... _...,'-

_Froberg, Carl-Erik Introduction to Numerical Analysis,
Addison-Wesley Publishing Company, 1965.

,'

('• H~rtree, D. R. "Note on Iterative Process" Cam. Phil. Soc.,
! Vol. 45 part 2 (April 1949), 230-236.

Hildebrand, F. B. Introduction to Numerical Analysis.
1 New York: McGraw Hill,··~·~

Isakson, Gabriel "A Method for Accelerating the Convergence
of an Iteration Procedure" Jour. Aero. Soc. Vol. 16,
No. 7 (July 1949), 443.

42

Jennings, A. "Accelerating the Convergence of Matrix Iterative
Processes." Journal of Institute Mathematic Application,
Vol. 8 (1971), 99-110.

Lubkin, S. "A Method of Summing Infinite Series." Journal of
Research, National Bureau of Standards, Vol. B48 (1952),
228-254.

MacDonald, J. "Accelerated Convergencer Divergence, Iteration,
Extrapolation and Curve Fitting." Journal of Applied
Physics, Vol. 35, No. 10 (Oct. 1964), 3034-3041.

McLeod, J. B. "A Note on theE-Algorithm." Computing, Vol. 7
(1971), 17-24.

Richardson, L. F. "The Deferred Approach to the Limit."

/

Royal Society of London Philosophical Transactions,
Vol. A226 (1927), 299~349.

9'amue l son, P. A. "A Convergent Iterative Process" Jour. of
and Phys. VoL 24 (1945), 131-134. ~~ Math. - ,. /

I

Sandberg, Dan "0.8660254 = 3/2: An Algorithm that Converts
Decimals to Fractions." BYTE, Nay 1985, 429-464.

Schmidt, R. J. "On the Numerical Solution of Linear
Simultaneous Equations by an Iterative Method."
The Philosophical Magazine and Journal of Science,
7th Series, Vol. 32 (1941), 369-383.

Shanks, D. "Non-Linear Transformations of Divergent and
Slowly Convergent Sequences." Journal of Mathematics and
Physics, Vol. 34 (April 1955), 1-42.

Shanks, D. and Walton, T. S. The Use of Rational Functions as
Approximate Solutions of Certain Trajectory Problems
Naval Ordnance Laboratory Memorandum 9524 (1948)
White Oak, Md. P2; P13, equation (23).

Smith, D., and W. Ford. "Numerical Comparisons of Nonlinear
Convergence." SIAM Journal on Numerical_ Ana lysis, Vol. 16
(1 9 7 9) , 4 8 1-4 9 9'~ ~ ~

Thacher, H. c. "Algorithm 215: Shanks." Comm. ACM, Vol. 6
(November 1963), 662.

Traub, J. F. Iterative Methods for the Solution of Equations.
New York: Prentice-Hall Inc., 1964.

Wynn, P. "A Comparision Technique for the Numerical
Transformation of Slowly Convergent Series Based on
the Use of Rational Functions." Numer. Math.,

43

Vol. 4 (1962), 8-14.

Wynn, P. "A Note on Prograrruning Repeated Application of the
Epsilon Algorithm." Revue Francaise de Traitement de
l'Information. Chiffres, 8 (1965), 23-62.

Wynn, P. "Acceleration Techniques for Iterated Vector and
Matrix Problems." Math. Comp., Vol. 16 (July 1962),
301-322.

~vynn, P. "Acceleration Techniques in Numerical Analysis,
with Particular Reference to Problems in One Independent
Variable." Jnforrnation Processing, 1962.

44

Wynn, P. "An Arsenal of Algol Procedures for Complex Arithmetic"
BIT, 2 (1962), 232-255.

Wynn, P. "General Purpose Vector Epsilon Algorithm: Algol
Procedures." Numer. Matl:'!.., Vol. 6 (1964), 22-36.

/::'1-/
f<Jt~nn, P. "On a Device for Computing the em(sn) Transformation."
v - Mathematical Tables and Other Aids to Computation,

Vol. 10 (1956), 91--96.

Wynn, P. "On the Convergence and Stability of the Epsilon
Algorithm." SIAM Journal on Numerical Analysis, Vol. 3
(1966), 91-122. --··~---...

Wynn, P.
BIT,

rsingular Rules for Certain Non-linear Algorithms."
3 (1963) 1 175-195.

Wynn, P. "The Epsilon Algorithm and Operational Formulas of
Numerical Analysis" Math. of Comp., Vol. 15 (1960),
151-158.

APPENDIX A

PROGRAM LISTING OF "SLAB" WITH

UPDATE EPSILON ALGORITHM

45

$JOB
C THIS PROGRAM MODELS DIFFUSION IN AN INFINITE SLAB HAVING PLANE
C PARALLEL SIDES. THE DIFFUSIVITY, D, MUST BE GIVEN AND FIXED.
C THE BOUNDARY CONDITIONS AT THE FACES OF THE SLAB MUST BE GIVEN AND
C BE PIECEWISE CONSTANT IN TIME.
c
C AUTHOR: J. P. CHANDLER, COMPUTER SCIENCE DEPT.,
C OKLAHOMA STATE UNIVERSITY.
c
C THE DIMENSIONS OF THE ARRAYS MUST BE BV(NTPMX,2), TFIN(NTPMX),
C B(2,NTRMX), C(NTPMX-1,NTRMX), U(NDXMX+1) •
c

c
c
c

c

c
c

c

c
c
c

c

c

c

c

c

IMPLICIT REAL*8 (A-H,O-Z)
DIHENSION U(51)
COHHON /SLAB/ BV(10,2) ,TFIN(10) ,B(2,100),C(9,100),

X EL,D,T,X,ARG~lli,FX,ABERF,NTIMP,NTRMS,KW,NTACT

KR=S
KW=6

NTPMX=10

NTRMX=100

NDXMX=SO

ARGMN=-60.
RZERO=O

KR AND Iav ARE THE LOGICAL UNIT NUMBERS OF
THE CARD READER AND THE LINE PRINTER.

NTPMX ••. MAXIMUM NUMBER OFTIME PERIODS

NTRMX . • • MAXIMUM NUMBER OF TERMS TO BE
USED IN THE FOURIER SERIES

NDXMX ..• MAXIMUM NUMBER OF X INTERVALS

ARGMN .•. A NEGATIVE NUMBER SOMEWHAT
GREATER THAN THE GREATEST VALUE OF
X FOR WHICH EXP(X) WOULD UNDERFLOW

READ(KR,10)NTIMP,NTRMS,EL,D
10 FORMAT(2I5,2D10.5)

WRITE(KW,20)NTIMP,NTRMS,EL,D
20 FORMAT(/////42H DIFFUSION IN A SLAB, USING FOURIER SERIES///

* 8X,26H NUMBER OF TIME PERIODS = ,IS//
* 8X,34H NUMBER OF TERMS IN EACH SERIES = ,IS//
* 8X,13H THICKNESS= ,D15.7//8X,15H DIFFUSIVITY = ,D15.7)
IF(NTI~W.LT.2) GO TO 26
IF(NTIMP.GT.NTPMX) GO TO 26
IF(NTRMS.GT.NTRMX) GO TO 26

READ(KR,30) (BV(J,1) ,BV(J,2) ,TFIN(J) ,J=1,NTI~W)
30 FORMAT(3D10.5)

WRITE (KW, 40)
40 FORMAT(//////6H TIME,12X,16H BOUNDARY VALUES,14X,

* 12H TIME AT END/7H PERIOD,12X,14H DURING PERIOD,16X,
* 10H OF PERIOD//1H)

NTMU=NTIMP-1
DO 50 J=1,NTMU

50 WRITE(KW,60)J,BV(J,1),BV(J,2) ,TFIN(J)
60 FORMAT(1X,I4,D20.7,D16.7,D20.7)

WRITE(KW,60)NTIMP,BV(NTIMP,1),BV(NTIMP,2)
IF(NTIMP.EQ.2) GO TO 69
DO 65 J=2,NTMU
IF(TFIN(J) .LE.TFIN(J-1)) GO TO 26

65 CONTINUE

69 CALL CALCC
DO 70 JB=1,2

COMPUTE AND PRINT THE FOURIER COEFFICIENTS.

70 WRITE(KW,80)JB, (B(JB,J) ,J=1,NTRMS)
80 FORMAT(///3H B(,I1,6H,J) ... /(10X,7E15.7))

DO 90 KT=2,NTIMP
90 WRITE(KW,lOO)KT, (C(KT-1,J) ,J=1,NTRMS)

100 FORMAT(///45H FOURIER COEFFICIENTS FOR TIME PERIOD NUMBER ,I2,
* 3H ••• //(8X,7E15.7))

110 READ(KR,10)NDX,NDT,TMIN,TMAX

46

c TEST FOR END OF RUN.
IF(NDX.LT.O) STOP

130 WRITE(KW,140)NDX,NDT,TMIN,TMAX
140 FORMAT(////8X,29H NUMBER OF INCREMENTS IN X ,IS//

* 8X,29H NUMBER OF INCREMENTS IN T = ,IS//
* 8X,16H INITIAL TIME= ,E1S.7//
* 8X,16H FINAL TIME ,E1S.7///1H)

IF(NDX.GT.NDXMX) GO TO 26
DX=RZERO
IF(NDX.EQ.O) GO TO 142

141 ENDX=NDX
DX=EL/ENDX

142 DT=RZERO
IF(NDT.LE.O) GO TO 144

143 ENDT=NDT
DT=(TMAX-TMIN)/ENDT

144 NDXPU=NDX+l
NDTPU=NDT+1

c LOOP OVER THE TIME POINTS REQUESTED.

160

DO 230 KT=1,NDTPU
AKTMU=KT-1
T=THIN+AKTMU*DT

IF(KT.EQ.NDTPU) T=TMAX
ERMAX=RZERO
NTMAX=O

c LOOP OVER THE X VALUES REQUESTED.

c

180

DO 220 JX=1,NDXPU
AJXMU=JX-1
X=AJXMU*DX

IF(JX.EQ.NDXPU) X=EL
CALL CALCF
U(JX)=FX

IF(NTACT.GT.NTMAX) NTMAX=NTACT
IF(ABERF.GT.ERMAX) ERMAX=ABERF

220 CONTINUE
230 WRITE(KW,240}T,ERMAX,NTMAX,(U(JX) ,JX=1,NDXPU)
240 FORMAT(/8H TIME= ,D14.7,9X,24H ~ffiX. ESTIMATED ERROR=

* 8X,23H MAX. NO. TERMS USED= ,I3//(1X,7D1S.7))
,D14.7,

C GO BACK FOR MORE VALUES OF NDX, ETC.

c

GO TO 110
26 WRITE(KW,987)

987 FORMAT(///42H THERE IS A FATAL ERROR IN THE DATA ABOVE./1H)
STOP
END
SUBROUTINE CALCC

C COMPUTES THE FOURIER COEFFICIENTS FOR THE SLAB PROGRAM.
c

c
c

c

IMPLICIT REAL*8 (A-H,O-Z)
COMMON /SLAB/ BV(10,2) ,TFIN(10) ,B(2,100),C(9,100),

X EL,D,T,X,ARGMN,FX,ABERF,NTIMP,NTRMS,KW,NTACT

QEXP(ARG)=DEXP(ARG)

PI=3.141S926S3S89793DO
RZERO=O
UNITY=1
RTW0=2
RFOUR=4

C B(1,J) IS THE COEFFICIENT OF SIN(J*PI*X/L) IN THE SINE SERIES
C FOR F(X)=1.0, ZERO .LT. X .LT. L.
C B(2,J) IS THE COEFFICIENT IN THE SINE SERIES FOR F(X)=X.
c

SGN=UNITY
DO 1000 J=1,NTRMS

B(1,J)=RZERO
AJ=J
B(2,J)=SGN*RTWO*EL/(PI*AJ)

1000 SGN=-SGN
c

47

1010
c

DO 1010 J=1,NTRMS,2
AJ=J
B(1,J)=RFOUR/(PI*AJ)

c
c
c

c
c
c

c

COMPUTE THE PROBLEM-DEPENDENT FOURIER COEFFICIENTS.

1016

1020

1025
1030
1040

LOOP OVER THE TIME PERIODS.
DO 1040 KT=2,NTIMP
KTMU=KT-1
AZDIF=BV(KT,1)-BV(KTMU,1)
AUDIF=((BV(KT,2)-BV(KT,1))-(BV(KTMU,2)-BV(KTMU,1)))/EL
IF(KT.GE.3) DTDIF=D*(TFIN(KT-1)-TFIN(KT-2))

DO 1030 J=1,NTRMS
TOLD=RZERO

IF(KT.LT.3) GO TO 1030
AJ=J

LOOP OVER THE FOURIER COEFFICIENTS FOR
THIS TIME PERIOD.

ARG=-(AJ*PI/EL)**2*DTDIF
IF(ARG.LT.ARGMN) GO TO 1030
TOLD=C(KTMU-1,J)*QEXP(ARG)
C(KTMU,J)=TOLD-AZDIF*B(1,J)-AUDIF*B(2,J)

CONTINUE
RETURN
END
SUBROUTINE CALCF

C COMPUTES ONE FUNCTION VALUE AND AN ERROR ESTIMATE, FOR THE
C SLAB PROGRAM. THE METHOD OF FOURIER SERIES IS USED.
C TO ACCELERATE THE CONVERGENCE OF THE SERIES, THE EPSILON ALGORITHM
C IS APPLIED TO THE COMPLEX EXPONENTIAL SERIES, AND THE IMAGINARY
C PART IS THEN RECOVERED. (THE REAL EPSILON ALGORITHM DOES NOT WORK
C WELL IN THIS PROBLEM.)
c

c

c
c
c

IMPLICIT REAL*8 (A-H,O-Z)
COMPLEX*16 S,SAVE,QCMPL,DCMPLX,QCEXP,CARG,CDEXP,CI,XFACT,CXFAC,

* SUM,EXTRP,EXTSV,SUMSV,CTERM,HOLD
DOUBLE PRECISION DSAVE,DHOLD,DEXTRP,DEXTSV
DIMENSION S(101),SAVE(101) ,HOLD(101) ,DSAVE(101) ,DHOLD(101)
COMMON /SLAB/ BV(10,2),TFIN(10) ,B(2,100),C(9,100),

X EL,D,T,X,ARGMN,FX,ABERF,NTIMP,NTRMS,KW,NTACT

QABS(ARG)=DABS(ARG)
QEXP(ARG)=DEXP(ARG)
QCMPL(ARGA,ARGB)=DCMPLX(ARGA,ARGB)
QCABS(CARG)=CDABS(CARG)
QCEXP(CARG)=CDEXP(CARG)
QIMAG(CARG)=-CI*CARG

KRUNC=1
PI=3.141592653589793DO
RZERO=O
CZERO= (0 • I 0 •)
CI= (0. I 1.)

KRUNC =1 TO USE ALTERNATE PARTIAL
SUMS (RECOMMENDED VALUE = 1)

C COMPUTE MACHINE EPSILON.
UNITR=1.
RTEN=10.
EPS=1.

1 EPS=EPS/RTEN
XPLUS=UNITR+EPS
IF(XPLUS.NE.UNITR) GO TO 1
EPS=EPS*RTEN

C FIND THE TIME PERIOD IN WHICH T LIES.
NTMU=NTIMP-1
DO 2000 KT=1,NTMU
IF(T.LE.TFIN(KT)) GO TO 2010

2000 CONTINUE
KT=NTIMP

2010 NTUSE=1

48

EXTRP=CZERO
EXTSV=CZERO
ABERF=RZERO

C TEST FOR A POINT ON A FACE OF THE SLAB.
IF(X.LE.RZERO) GO TO 2150
IF(X.GE.EL) GO TO 2150
IF(KT.LE.1) GO TO 2150
KTMU=KT-1
DTDIF=D*(T-TFIN(KTMU))
SUM=CZERO
S(1)=CZERO
SAVE(1)=CZERO
HOLD(1)=CZERO

C INITIALIZE FOR THE RECURRENCE RELATIONS.
TFACT=QEXP(-(PI/EL)**2*DTDIF)
RBSQ=TFACT**2
RTFAC=RBSQ*TFACT
CXFAC=QCEXP(QCMPL(RZERO,PI*X/EL))
XFACT=CXFAC

C LOOP OVER THE TERMS IN THE FOURIER SERIES.
DO 2090 J=1,NTRMS
CTERM=QCMPL(C(KTMU,J)*TFACT,RZERO)*XFACT
ABERF=ABERF+EPS*QCABS(CTERM}

SUMSV=SUM
SUM=SUM+CTERM
IF(QCABS(SUM-SUMSV) .NE.RZERO) GO TO 2080
IF(QABS(C(KTMU,J)) .NE.RZERO) GO TO 2070

2080 S(J+1)=SUM
SAVE(J+l)=SUM
HOLD(J+1)=CZERO
NTUSE=J+1

C USE THE RECURRENCE RELATIONS TO COMPUTE
C TFACT AND XFACT FOR TERM J+1.

AJPL=J+1
ARG=-(AJPL*PI/EL)**2*DTDIF

IF(ARG.GE.ARGMN) GO TO 2050
2070 EXTRP=SUM

GO TO 2150
2050 IF(J.EQ.NTRMS) GO TO 2090

TFACT=TFACT*RTFAC
RTFAC=RTFAC*RBSQ

C AT THIS POINT, TFACT=QEXP(ARG) .

c
c

XFACT=XFACT*CXFAC
AT THIS POINT,

XFACT=QCEXP(QCMPL(RZERO,AJPL*PI*X/EL)).
2090 CONTINUE

c SKIP ALTERNATE PARTIAL SUMS IF REQUESTED.

2100

2110
c
c

2120

2130

NKR=NTUSE
IF(KRUNC.EQ.O) GO TO 2120
NKR=O
JMIN=2-(NTUSE-(NTUSE/2)*2)
DO 2110 J=JMIN,NTUSE,2

NKR=NKR+1
S(NKR)=S(J)
SAVE(NKR)=SAVE(J)

KTOP=(NKR-1)/2

EXTRAPOLATE TO MAXIMUM ORDERS USING THE
COMPLEX EPSILON ALGORITHM.

DO 2130 JJ=1,NKR
DSAVE(JJ)=QIMAG(SAVE(JJ))
DHOLD(JJ)=QIMAG(HOLD(JJ))

DEXTSV=QIMAG(EXTSV)
DEXTRP=QIMAG(EXTRP)
WRITE (KW,9) (DSAVE(J),J=1,NKR)
WRITE (KW,19) (DHOLD(J) ,J=1,NKR)
CALL SHANK (DSAVE,l,NKR,KTOP-l,DEXTSV,DHOLD,l)
NKR=NKR-2*(KTOP-l)
WRITE (KW,9) (DSAVE(J},J=l,NKR)
WRITE (KW,l9) (DHOLD(J) ,J=l,NKR)
CALL SHANK (DSAVE,l,NKR,l,DEXTRP,DHOLD,l)
WRITE (KW,9) (DSAVE(J) ,J=l,NKR)
WRITE (KW I 19) (DHOLD (J) ,J=l ,NKR)

49

c

9 FORMAT (//1X,'SAVE=' ,6D18.10/(6X,6D18.10))
19 FORMAT (//lX,'HOLD=' ,6D18.10/(6X,6D18.10))

EXTRP=QCMPL(RZERO,DEXTRP)
PRINT,'EXTRP=' ,EXTRP
ABERF=QABS(DEXTRP-DEXTSV)
PRINT,'DABERF=',ABERF

C EXTRACT THE IMAGINARY PART OF THE EXTRAPOLATED VALUE, AND ADD
C THE LINEAR PART OF THE SOLUTION.
c

2150 FX=QIMAG(EXTRP)+BV(KT,1)+(BV(KT,2)-BV(KT,1))*(X/EL)
NTACT=NTUSE-1
RETURN
END

50

c
c
c
c
c
c
c
c

SUBROUTINE SHANK (S,NMIN,NMAX,KMAX,EXTRP,H,NPMIN)

UPDATE EPSILON ALGORITHM
FOR ACCELERATING THE CONVERGENCE OF A SEQUENCE.

AUTHOR: HUI WEN CHIANG, COMPUTER SCIENCE DEPT.,
OKLAHOMA STATE UNIVERSITY.

C THIS PROCEDURE IS MODIFIED FROM THE ALOGORITHM 215, COMM.A.C.M. 6
C (1963) P.662 (AUTHOR: H. C. THACHER, JR.) TO ALLOW NOT ONLY
C ACCELERATING THE CONVERGENCE OF A SEQUENCE BUT ALSO ACCELERATING
C THE CONVERGENCE BY EXTENDING THE ORIGINAL SEQUENCE VERTICALLY
C (ADD MORE ENTRIES) OR HORIZONTALLY (COMPUTE THE FURTHER ORDER
C OF EXTRAPOLATED VALUE) BY USING THE PREVIOUS COMPUTED VALUES
C WITHOUT REPEATING THE ORIGINAL PROCESSES. 09-15-84
C THE ARRAY H HOLDS THE VALUES IN PREVIOUS E(i) COLUMN
C FOR EXTENDED PROCESSING PURPOSE.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

HINTS TO EXTEND THE SEQUENCE VERTICALLY:
1) ADD THE ELEMENTS TO THE BOTTOM OF SEQUENCE
2) SPECIFY THE INDEX NO OF THE FIRST CURRENT ADDED ENTRY

TO VARIABLE NMIN
3) SPECIFY THE INDEX NO OF THE LAST CURRENT ADDED ENTRY

TO VARIABLE NMAX
HINTS TO EXTEND THE SEQUENCE HORIZONTALLY:

1) SPECIFY THE FURTHER ORDER OF EXTRAPOLATED VALUE
NEEDED TO VARIABLE KMAX.

2) COMPUTE THE TOTAL ELEMENTS OF THE CURRENT LIST AND MOVE
THE FIRST AND LAST ENTRIES TO NMIN, NMAX RESPECTIVELY.

HINTS TO EXTEND THE SEQUENCE VERTICALLY AND HORIZONTALLY:
1) EXTEND VERTICALLY FIRST THEN HORIZONTIALL IS SUGGESTED.

THIS PROCEDURE REPLACES THE ELEMENTS S(NMIN) THROUGH S(NMAX-2*KMAX)
OF THE ARRAY S BY THE E(KMAX) TRANSFORM OF THE SEQUENCE S.
THE ELEMENTS S(NMAX-2*KMAX+l) THROUGH S(NMAX-1) ARE DESTROYED.
THE HIGHEST ORDER ELEMENT OF THE TRANSFORM IS RETURNED IN EXTRP.

THE MAXIMUM PERMISSIBLE VALUE OF KMAX IS (NMAX-NMIN)/2 .
THEREFORE, TO FIND THE HIGHEST ORDER EXTRAPOLATED VALUE OF THE
SEQUENCE S(NMIN), ••. ,S(NMAX), PROCEED THUS •.•.

CALL SHANK (S,NMIN,NMAX,(NMAX-NMIN)/2,EXTRP)
AND THE EXTRAPOLATED VALUE IS RETURNED IN EXTRP.

REFERENCES •...
D. SHANKS, J. MATH. AND PHYSICS 34 (1955) 1-42
D. C. JOYCE, S.I.A.M. REVIEW 13 (1971) 435-490
W. B. GRAGG, S.I.A.M. REVIEW 14 (1972) 1-62

J. P. CHANDLER, COMPUTER SCIENCE DEPT., OKLAHOMA STATE UNIVERSITY

H. C. THACHER, JR., ALGORITHM 215, COMM.A.C.M. 6 (1963) P. 662

THIS PROCEDURE REPLACES THE ELEMENTS S(NMIN) THROUGH S(NMAX-2*KMAX)
OF THE ARRAY S BY THE E(KMAX) TRANSFORM OF THE SEQUENCE S.
THE ELEMENTS S(NMAX-2*KMAX+l) THROUGH S(NMAX-1) ARE DESTROYED.
THE HIGHEST ORDER ELEMENT OF THE TRANSFORM IS RETURNED IN EXTRP.

THE MAXIMUM PERMISSIBLE VALUE OF KMAX IS (NMAX-NMIN)/2 •
THEREFORE, TO FIND THE HIGHEST ORDER EXTRAPOLATED VALUE OF THE
SEQUENCE S(NMIN) , ... ,S(NMAX), PROCEED THUS •••.

CALL SHANK (S,NMIN,NMAX,(NMAX-NMIN)/2,EXTRP)
AND THE EXTRAPOLATED VALUE IS RETURNED IN EXTRP.

REFERENCES ...•
D. SHANKS, J. MATH. AND PHYSICS 34 (1955) 1-42
D. C. JOYCE, S.I.A.M. REVIEW 13 (1971) 435-490
W. B. GRAGG, S.I.A.M. REVIEW 14 (1972) 1-62

TO CONVERT THIS ROUTINE FROM COMPLEX TO DOUBLE PRECISION, REPLACE
SIX STATEMENTS BELOW BY THE FOLLOWING FIVE ••.

51

N

C DOUBLE PRECISION S,EXTRP,HUGE,ZERO,UNITY,TZ,TU,ARG,QTEST
C QTEST(ARG)=ARG
C HUGE=l.E35
C ZERO=O
C UNITY=1
c
c
c

c

c
80

90
100
110

120
c

130

DOUBLE PRECISION QTEST,DABS,S,H,EXTRP,HUGE,ZERO,UNITY,TZ,TU,ARG
DIMENSION S(1) ,H(1)
QTEST(ARG)=DABS(ARG)
HUGE=1.0D35
ZERO=O.ODO
UNITY=1.0DO

IF (NMIN.GT.NMAX)GO TO 130
EXTRP=S(NMAX)
KT=2*KMAX
DO 120 J=NMIN,NMAX

TZ=H(J)
LIMKK=J-NPMIN
IF (LIMKK.GT.KT}LIMKK=KT
IF (LIMKK.LE.O) GO TO 120
DO 110 KK=1,LIMKK

JMKK=J-KK
IF (QTEST(S(JMKK)) .EQ.HUGE)GO TO 80
IF (QTEST(S(JMKK+1)) .EQ.HUGE)GO TO 80
TU=S(JMKK+1)-S(JMKK)
IF (QTEST(TU) .EQ.ZERO)GO TO 90
TU=TZ+UNITY/TU
GO TO 100

TU=TZ
GO TO 100
TU=HUGE
TZ=S(JMKK)
S(JMKK)=TU
H(JMKK)=TZ

CONTINUE

MXMKT=NMAX-KT
EXTRP=S(MXMKT)
RETURN
END

52

APPENDIX B

PROGRAM LISTING OF THE EPSILON ALGORITHM

WITH THE UPDATE FORM AND SINGULAR RULE

53

$JOB
C**
C THE EPSILON ALOGRITHM *
C FOR ACCELERATING THE CONVERGENCN OF A SEQUENCE. *
c *
C AUTHOR: HUI WEN CHIANG, COMPUTER SCIENCE DEPT., *
C OKLAHOMA STATE UNIVERSITY. *
C THIS PROCEDURE CONTAINS TWO VERSIONS OF THE EPSILON ALGORITHM, *
C 1) THE UPDATE EPSILON ALGORITHM THAT ALLOWS TO EXTEND EPSILON *
C ALGORITHM PROCESSING VERTICALLY AND HORIZONTALLY, *
C 2) THE EPSILON ALGORITHM WITH SINGULAR RULE. *
C ONE OF THE OPTION CAN APPLY RESPECTIVELY, AS THE SINGULAR RULE *
C DOES NOT WORK PROPERLY WITH SINGULAR RULE. *
C THE VARIABLE "SINGUL" ACTS AS A FLAG BETWEEN THOSE TWO VERSIONS*
c *
C**
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

VARIABLES:

NPMIN
NMIN

NMAX

Kt1AX
H
s
EXTRP
SINGUL

FIRST ELEMENT NUMBER IN THE S LIST.
FIRST ELEMENT NUMBER IN THE LIST THAT NEEDS TO BE

PROCESSED. IF THE LIST EXTENED VERTICALLY AFTER FIRST
CALL SHANK NMIN CONTAINS THE FIRST ADDED ELEMENT NUMBER.

LAST ELEMENT NUMBER IN THE LIST. IF THE LIST EXTENED
HORIZONTIALLY AFTER FIRST CALL SHANK Nt1AX SHOULD BE
COJYIPUTED BY NMAX = NMAX - 2 * KMAX

ORDER OF EXTRAPOLATED
HOLD THE VALUES OF PREVIOUS E(I) COLUMN
THE EPSILON ARRAY
HOLD THE EXTRAPOLATED VALUE
FLAG TO APPLY SINGULAR RULES
SINGUL = 0 NO SINGULAR RULE APPLIED
SINGUL = 1 SINGULAR RULE APPLIED

C**
C**********VARIABLES THAT APPLIED IN SINGULAR RULES ****************
C*** AP A ABOUT TO BE COMPUTED *
C*** BP B ABOUT TO BE COMPUTED *
C*** CP C ABOUT TO BE COMPUTED *
C*** BOL BEGIN OF LIST INDEX *
C*** EOL END OF LIST INDEX *
C*** SA SMALL A *
C*** A(*) A ARRAY *
C*** B(*) B ARRAY *
C*** D D VALUE *
C*** CANCEL CANCELLATION *
C*** S1(*) S1 ARRAY *
C*** NPINS NEW POINT INSTABILITY *
C*** LOCINS LOCAL INSTABILITY *
C*** NIS NON ISOLATED SINGULARITY *
C***

c
c

DOUBLE PRECISION S,H,EXTRP
DIMENSION S(20) ,H(20)

DOUBLE PRECISION A(S) ,B(S) ,SA,D,CANCEL
INTEGER AP,BP,CP,NIS,LOCINS,BOL,EOL,NPINS,S1(5)
COMMON /SING/ A,B,SA,D,CANCEL,AP,BP,CP,NIS,

X LOCINS,BOL,EOL,NPINS,S1
C INITIALIZATION

c

JCOUNT=1
KW=6
KR=5
NPMIN=1
NMIN=1
NMAX=10
KMAX=4

CANCEL=1.D-10
NIS=O
NPINS=O
LOCINS=O

INITIALIZATION FOR SINGULAR ROUTINE

54

c

CP=O
BOL=1
EOL=O

C READ IN SEQUENCE ELEMENT NUMBER
READ(KR,2}NSETS

2 FORMAT(I5)
C COMPUTE THE SERIES FUNCTION

CALL PATH(S,H,NSETS)
C CALL ITER(S,H,NSETS)
C CALL LEIBNZ(S,H,NSETS)
C CALL LN2(S,H,NSETS)

WRITE (KW,5) (S(J) ,J=NPMIN,NSETS)
WRITE (KW ,10) (H (J) ,J=NPMIN ,NSETS)

C CALL TO COMPUTE THE EXTRAPOLATED VALUE OF S

c
c

c
c
c
c

c
c

IF (SINGUL.EQ.O) CALL SHANK(S,NMIN,NMAX,KMAX,EXTRP,NPMIN,H}
IF (SINGUL.EQ.1) CALL SINGULR(S,MIN,NMAX,KMAX,EXTRP)

KEND=NMAX-2*KMAX
WRITE (KW,10) (H(J) ,J=NPMIN,KEND)
WRITE (KW,20) (S(J) ,J=NPMIN,KEND)
~ffiiTE (KW,30)EXTRP

IF (SINGUL.EQ.1)GO TO 99

NMIN=5
NMAX=5
KMAX=2

END OF THE SINGULAR RULE PROCESSES

ADD ONE MORE ELEMENT
EXTEND VERTICALLY

WRITE (KW,5) (S(J) ,J=NMIN,NMAX)
CALL SHANK(S,NMIN,NMAX,KMAX,EXTRP,NPMIN,H)
KEND=NMAX-2*KMAX
WRITE (KW,20) (S(J),J=NPMIN,KEND)
WRITE (KW,10) (H(J) ,J=NPMIN,KEND)
WRITE (KW,30)EXTRP

C CALL TO COMPUTE THE EXTRAPOLATED VALUE OF S
C COMPUTE THE FURTHER ORDER OF EXTRAPOLATED VLAUE
C EXTEND HORIZONTIALLY
C* NMIN=NPMIN
C* NMAX=NMAX-2*KMAX
C PRVCOL=PRVCOL+2*K}ffiX
C NMIN=1
C NMAX=3
C KMAX=1
C CALL SHANK(S,NMIN,NMAX,KMAX,EXTRP,NPMIN,H)
C KEND=NMAX-2*KMAX
C WRITE (KW,20) (S(J) ,J=NPMIN,KEND)
C WRITE (KW,10) (H(J) ,J=NPMIN,KEND)
C WRITE (KW,30)EXTRP

c

5 FORMAT (///1X,'S = ',6E18.10/(7X,6E18.10))
10 FORMAT (/1X,'H = ',6E18.10/(7X,6E18.10))
20 FORMAT (/1X,'E(l)= ',6E18.10/(7X,6E18.10))
30 FORMAT (/1X,'EXTRP=',E18.10)
99 STOP

END

55

SUBROUTINE SHANK (S,NMIN,NMAX,KMAX,EXTRP,NPMIN,H)
c
C************ UPDATE EPSILON ALGORITHM ****************************
C EPSILON ALGORITHM FOR ACCELERATING THE CONVERGENCE OF A SENQUENCE.
c
c
c
c
c
c
c
c
c

THIS PROCEDURE IS MODIFIED FROM THE ALOGORITHM 215, COMM.A.C.M. 6
(1963) P.662 (AUTHOR: H. C. THACHER, JR.) TO ALLOW NOT ONLY

ACCELERATING THE CONVERGENCE OF A SEQUENCE BUT ALSO ACCELERATING
THE CONVERGENCE BY EXTENDING THE ORIGINAL SEQUENCE VERTICALLY
(ADD MORE ENTRIES) OR HORIZONTIALLY (COMPUTE THE FURTHER ORDER

OF EXTRAPOLATED VALUE) BY USING THE PREVIOUS COMPUTED VALUES
WITHOUT REPEATING THE ORIGINAL PROCESSES. 09-15-84

C HINTS TO EXTEND THE SEQUENCE VERTICALLY:
c 1) ADD THE ENTRIES TO THE BOTTOM OF SEQUENCE
c 2) SPECIFY THE INDEX OF THE FIRST CURRENT ADDED ENTRY

TO VARIABLE NMIN c
c 3) SPECIFY THE INDEX OF THE LAST CURRENT ADDED ENTRY

TO VARIABLE NMAX c
C HINTS TO
c 1)
c

EXTEND THE SEQUENCE HORIZONTIALLY:
SPECIFY THE FURTHER ORDER OF EXTRAPOLATED VALUE
NEEDED TO VARIABLE KMAX.

c
c
c

2)
I.E. KMAX = THE FURTHER ORDER - THE CURRENT ORDER
COMPUTE THE TOTAL ELEMENTS OF THE CURRENT LIST AND MOVE
THE FIRST & LAST ELEMENT # TO NMIN, NMAX RESPECTIVELY.

C HINTS TO
c 1)

EXTEND THE SEQUENCE VERTICALLY AND HORIZONTIALLY:
EXTEND VERTICALLY FIRST THEN HORIZONTIALL IS SUGGESTED.

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

THIS PROCEDURE REPLACES THE ELEMENTS S(NMIN) THROUGH S(NMAX-2*KMAX)
OF THE ARRAY S BY THE E(KMAX) TRANSFORM OF THE SEQUENCE S.
THE ELEMENTS S(NMAX-2*KMAX+1) THROUGH S(NMAX-1) ARE DESTROYED.
THE HIGHEST ORDER ELEMENT OF THE TRANSFORM IS RETURNED IN EXTRP.

THE MAXIMUM PERMISSIBLE VALUE OF KMAX IS (NMAX-NMIN)/2 •
THEREFORE, TO FIND THE HIGHEST ORDER EXTRAPOLATED VALUE OF THE
SEQUENCE S(NMIN) , •.. ,S(NMAX), PROCEED THUS ..••

CALL SHANK (S,NMIN,NMAX,(NMAX-NMIN)/2,EXTRP)
AND THE EXTRAPOLATED VALUE IS RETURNED IN EXTRP.

REFERENCES •.••
D. SHANKS, J. MATH. AND PHYSICS 34 (1955) 1-42
D. C. JOYCE, S.I.A.M. REVIEW 13 (1971) 435-490
W. B. GRAGG, S.I.A.M. REVIEW 14 (1972) 1-62

DOUBLE PRECISION QTEST,DABS,S,H,EXTRP,HUGE,ZERO,UNITY,TZ,TU,ARG
DIMENSION S(1),H(1)

C QTEST(ARG)=ABS(ARG)

c

QTEST(ARG)=DABS(ARG)
SINGUL=O
HUGE=1.0E35
ZERO=O.OEO
UNITY=1.0EO

IF (NMIN.GT.NMAX)GO TO 130
EXTRP=S(NMAX)
KT=2*KMAX
DO 120 J=NMIN,NMAX

TZ=H(J)
LIMKK=J-NPMIN
IF (LIMKK.GT.KT)LIMKK=KT
IF (LIMKK.LE.O) GO TO 120
DO 110 KK=1,LIMKK

JMKK=J-KK
IF (QTEST(S(JMKK)) .EQ.HUGE)GO TO 80
IF (QTEST(S(JMKK+1)) .EQ.HUGE)GO TO 80
TU=S(JMKK+1)-S(JMKK)
IF (QTEST(TU) .EQ.ZERO)GO TO 90
TU=TZ+UNITY/TU
GO TO 100

80 TU=TZ

56

c

c
c

57

GO TO 100
90 TU=HUGE
100 TZ=S(JMKK)
110 S(JMKK)=TU

H(JMKK)=TZ
120 CONTINUE

125 MXMKT=NMAX-KT
EXTRP=S (MXMKT)

130 RETURN

SUBROUTINE SINGULR(S,NMIN,NMAX,KMAX,EXTRP)
c
C THIS PROCEDURE APPLIES THE SINGULAR RULE TO THE EPSILON ALGORITHM.
C THE PROCEDURE IS MODIFIED FROM P. WYNN "SINGULAR RULES FOR CERTAIN
C NON-LINEAR ALGORITHMS" IN BIT 3 1963, P 175-195.
C THE SINGULAR RULE AVOIDS THE INSTABILE ENTRY IN THE EPSILON
C TABLE BY APPLYING THE SPECIAL RULE BUT THE REGULAR EPSILON
C ALGORITHM.
c

DOUBLE PRECISION QTEST,DABS,S,EXTRP,HUGE,ZERO,UNITY,TZ,TU,ARG
DIMENSION S(1)
INTEGER SINGUL
DOUBLE PRECISION A(15) ,B(15) ,SA,D,CANCEL
INTEGER AP,BP,CP,NIS,LOCINS,BOL,EOL,NPINS,S1(15)
COMMON /SING/ A,B,SA,D,CANCEL,AP,BP,CP,NIS,

X LOCINS,BOL,EOL,NPINS,S1
C QTEST(ARG)=ABS(ARG)

QTEST(ARG)=DABS(ARG)
C SINGUL=O

c

HUGE=1.0E35
ZERO=O.OEO
UNITY=1.0EO

IF (NMIN.GT.NMAX)GO TO 130
EXTRP=S (NMAX)
KT=2*KMAX
DO 120 J=NMIN,NMAX

TZ=O
LIMKK=J-NMIN
IF (LIMKK.GT.KT)LIMKK=KT
IF (LIMKK.LE.O) GO TO 120
DO 110 KK=1,LIMKK

JMKK=J-KK
IF (SINGUL.EQ.1)GOTO 190

C SINGULAR RULE APPLIED

c

c

190 TU=S(JMKK+1)-S(JMKK)
IF(KK+PRVCOL.GE.J)GOTO 200
IF(CP.NE.O)GOTO 200
IF(TU.EQ.ZERO)GOTO 195
IF(S(JMKK) .EQ.ZERO)GOTO 200
IF(DABS(TU/S(JMKK)).GE.CANCEL)GOTO 200

195 NPINS=1
EOL=EOL+1

200 IF (NPINS.EQ.1)GOT0210
IF(LOCINS.EQ.1)GOT0230

COMPUTE AUXO
IF(TU.NE.ZERO)TU=1.0/TU + TZ
IF(TU.EQ.ZERO)TU=HUGE
GOTO 100

DO ONLY WHEN
C*

210
(LOCINS.EQ.1) .AND. (IS.EQ.S1(BOL))

IF (LOCINS.NE.1)GOTO 220

c

c
c

220

230

240

IF (KK+PRVCOL.NE.S1(BOL))GOTO 220
NIS=1
GOTO 125
LOCINS=1
AP=l
NPINS=O
S1(EOL)=KK+PRVCOL
IF(CP.EQ.1)GOTO 240

IF(TU.NE.ZERO)TU=1.0/TU + TZ
IF(TU.EQ.ZERO)TU=HUGE
GO TO 250
SA=D+B(BOL)-A(BOL)

COMPUTE FUNCTION OF
TU=SA/(1.0+SA/S(JMKK+1))

IF(TZ.EQ.ZERO)TU=ZERO
IF(TZ.NE.ZERO)TU=SA/(1.0+SA/TZ)
CP=O
BOL=BOL+1
IF(BOL.GT.EOL)LOCINS=O

58

c
c

c

c

c
c
c
c

c
c

250 IF(LOCINS.NE.1)GO TO 100
IF(AP.EQ.O)GO TO 260
A(EOL)=O.O
IF(KK.EQ.1)GOTO 255

255

260

270

100
110

120

125

130

COMPUTE FUNCTION OF
A(EOL)=L(IS-1)/(1.0-L(IS-1)/AUXO)

IF(TU.EQ.ZERO)A(EOL)=ZERO
IF(TU.NE.ZERO)A(EOL)=TZ/(1.0-TZ/TU)
AP=O
BP=1
GOTO 100
IF (BP.EQ.1)GOTO 270
IF (KK.EQ.1)GOTO 100
IF (KK.NE.S1(BOL)+1)GOTO 100

D=AUX1/(1.0-AUX1/L(IS))
IF(S(JMKK) .EQ.ZERO)D=ZERO
IF(S(JMKK) .NE.ZERO)D=S(JMKK+1)/(1.0-S(JMKK+1)/S(JMKK))
CP=1
GOTO 100
IF (BP.NE.1)GOTO 100

B(EOL)=L(IS)/(1.0-L(IS)/AUX1)
IF(S(JMKK+1) .EQ.ZERO)B(EOL)=HUGE
IF(S(JMKK+1) .NE.ZERO)B(EOL)=S(JMKK)/(1.0-S(JMKK)/S(JMKK+1))
BP=O

TZ=S (JMKK)
S(JMKK)=TU

CONTINUE

MXMKT=NMAX-KT
EXTRP=S(MXMKT)
RETURN
END

END OF SINGULAR RULES

END

59

C***
C EXAMPLE #1: LINEARLY CONVERGENT ITERATIVE SCHEME FORMATION OF *
C THE LAGUERRE POLYNOMIAL SERIES. *
C S(N+1)= 114 * (S(N)**2 + 2) *
C***

SUBROUTINE ITER(S,H,NSETS)
C DOUBLE PRECISION S,H

DIMENSION S(20) ,H(20)
c

S(1)=0.0
H(1)=0.0
DO 10 J=2,NSETS

S(J)=0.25 * (S(J-1)**2 + 2)
H(J)=O.O

10 CONTINUE
RETURN
END

C**
C EXAMPLE #2: THE VERY SLOWLY CONVERGENT LEIBNITZ SERIES *
C (N-1) *
c TT S(N)= S(N-1) + (-1) * (4 I (N * 2- 1)) *
C**
c

SUBROUTINE LEIBNZ(S,H,NSETS)
C DOUBLE PRECISION S,H

DIMENSION S(20) ,H(20)
c

S(1)=4.0
H(1)=0.0
DO 10 J=2,NSETS

S(J)=S(J-1) + ((-1) ** (J-1)) * (4.0 I (J * 2.DO- 1.DO))
H(J)=O.O

10 CONTINUE
RETURN
END

C***
C* THIS COMPUTE SERIES LN(2) *
C* & *
C* LN(2)= E ((-1) ** M) I (M+1) *
C* M=O *
C***

c

c

SUBROUTINE LN2(S,H,NSETS)

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION TERM(2)
DOUBLE PRECISION S(20) ,H(20)

s (1) =1.0
H(1)=0.0
DO 10 J=2,NSETS
S(J)=(((-l.)**(J-1)) I J) + S(J-1)
H(J)=O.O

10 CONTINUE
RETURN
END

C**
C PATHOLOGICAL EXAMPLES P 177 *
C THIS IS TEST SERIES: U(S) = (X** S) IS ! S=0,1,... *
C**

c

c

SUBROUTINE PATH(S,H,M)

IMPLICIT REAL*8 (A-H,O-Z)
DOUBLE PRECISION S(20) ,DENO,H(20)

8(1)=0.0
H(1)=0.0
DO 30 K=2,M
DEN0=1.
IF (K.LT.4)GOTO 20
DO 10 J=4,K

10 DENO=DENO*(J-2)
20 S(K)= (2 ** (K-2)) I DENO + S(K-1)

60

H(K)=O.O
30 CONTINUE

RETURN
END

61

APPENDIX C

PROGRAM LISTING OF ERROR EXPANSION SERIES

62

C***
C**** ERROR EXPANSION SERIES
C**** AUTHOR: HUI WEN CHIANG, COMPUTER SCIENCE DEPT.,
C**** OKLAHOMA STATE UNIVERSITY.
C****
C****THIS PROGRAM GENERATE A SERIES EXPANSION IN NEGATIVE POWERS
C****OF N OF THE MAGNITUDE OF THE ERROR IN THE PARTIAL SUMS OF AN
C****INFINITE SERIES.
C****
C***
C STEPS TO OBTAIN ERROR EXPANSION SERIES:
c I.
C Suppose there exists an error expansion series which is
C of the following form:
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Cl C2 C3
[e (n) [= + --------- + --------- + •.. ,

n+al (n+a2)**2 (n+a3)**3

II.
To compute constant Cl the following steps can be followed.
Compute S (n) , n = 1, 2, 3, ••• ,N.
Compute e (n) = [ln2 - S (n) [.
Then, apply equation Cl = n * [e(n) [to get the constant
Cl, by applying a repeated Aitken, Epsilon, or Romberg
algorithm to estimate Cl as n--~ .

III.
To compute C2.
Use the true value of
to a fraction.

Cl, if it can be seen to converge

Repeat the above process by using equation
C2 = ([e (n) [- Cl/n) * (n**2)

c .
C***

c
c
c

c

IMPLICIT REAL*16 (A-H,O-Z)
DOUBLE PRECISION NU~lliR,DENOM,PRODCT,RATIO,POWRN
DOUBLE PRECISION A(lOO) ,XTRAB(100,12) ,COEF(30) ,S(lOO),CONST(30)
DOUBLE PRECISION ARG
DIMENSION A(lOO) ,XTRAB(l00,12) ,COEF(30),CONST(30) ,S(lOO)
REAL NUMER

LX=lOO
NTERMS=2048
NCOLS=7
KW=6
JMNPRT=l

C JCOEF=lO
JCOEF=9

C INITIZATION

c

COEF(l)=O.ODO
COEF(2)=0.0DO
COEF(3)=0.0DO
COEF(4)=0.0DO
COEF(5)=0.0DO
COEF(6}=0.0DO
COEF(7)=0.0DO
COEF(B)=O.ODO
COEF(9)=0.0DO

CONST(l)=O.ODO
CONST(2)=0.0DO
CONST(3)=0.0DO
CONST(4)=0.0DO
CONST(S)=O.ODO
CONST(6)=0.0DO
CONST(7)=0.0DO
CONST(B)=O.ODO
CONST(9)=0.0DO

INITIZATION

C COMPUTE FUNCTION VALUES
CALL COMPA (A,NTERMS)
DO 2 J=l,JCOEF

63

c

c
c
c
c
c
c
c
c
c

c

IF(J/2*2.EQ.J)GO TO 2
IF(J.GE.JMNPRT) WRITE(KW,6)J

6 FORMAT(/'1CONSTANT C OF N**(-' ,I2,') '//1X)
NN=1
DO 4 N=1,NTERNS
EN=NN
POWRN=EN
SUN=O.ODO
IF(J.LT.2) GO TO 5
JCM=J-1
DO 3 K=1,JCM
L=J-K
SUM=SUM-COEF(K)*(EN**J)/((EN+CONST(K))**K)

3 POWRN=POWRN*EN
5 SUM=SUM+A(N)*POWRN

S(N)=SUM
XTRAB(N,1)=SUM

4 NN=NN+NN
CALL SHANK(S,1,NTERMS,6,EXTRP)
WRITE(KW,210)EXTRP
LP=Kr.Y
IF(J.LT.JMNPRT) LP=O
CALL AITABL (XTRAB,LX,NTERMS,NCOLS,LP)
RATI0=2.0DO
JJ=3
K=4

1 XTRAB(JJ,1)=XTRAB(K,1)
JJ=JJ+l
K=K+K
IF(K.LT.NTERMS) GO TO 1
CALL ROMBEX {XTRAB,LX,JJ-1,RATI0,1,LP)
CALL ROMBEX (XTRAB,LX,JJ-1,RATI0,2,LP)
CALL AITABL (XTRAB,LX,JJ-1,NCOLS,LP)
CALL ROMBEX (XTRAB,LX,NTERMS,RATI0,1,LP)
CALL ROMBEX (XTRAB,LX,NTERMS,RATI0,2,LP)

C SECOND DO LOOP TO COMPUTE VALUE A
c

c

c

c

IF(J.GE.JMNPRT) WRITE(KW,16)J
16 FORMAT(/'1CONSTANT A OF N**(-' ,I2,') '//1X)

IF (J.EQ.1)COEF(1}=0.50DO

100
120

150

IF (J.EQ.3)COEF(3)=-0.125DO
IF (J.EQ.5)COEF(5)=0.15625DO
IF (J.EQ.7)COEF(7)=-0.4765625DO
IF (J.EQ.9)COEF(9)=0.27050D1
NN=1
DO 40 N=1,NTERMS
DENOH=O.ODO
DO 50 L=1,J
POWRN=NN
PRODCT=1.DO
JJ=J-1
IF(JJ.LT.1)GO TO 120
DO 100 M=1,JJ
IF(L.EQ.H) PRODCT=PRODCT*COEF(H)
IF(L.NE.M) PRODCT=PRODCT * (POWRN + CONST(M))
IF(L.NE.M) PRODCT=PRODCT * ((POWRN + CONST(M))**H)
POWRN=POWRN*NN
CONTINUE
IF (L.EQ.J)GO TO 150
DENOM=DENOH - PRODCT
GO TO 50
NUMER=PRODCT * COEF(J)
PRODCT=PRODCT* A(N)
DENOH=DENOH+PRODCT

50 CONTINUE

c 88
c

WRITE(KW,88)N,NUMER,DENOM,POWRN
FORMAT(/1X,I4,3X,'NUMBER=',D28.17,2X,'DENOM=' ,D28.17,5X,D28.17)
S(N)=NUMER / DENOM- POWRN
ARG=NUMER/DENOM
XTRAB(N,1)=ARG ** (1.DO/J)
XTRAB(N,l)=XTRAB(N,1) - NN

64

S(N)=XTRAB(N,1)
40 NN=NN+NN

C 4 XTRAB(N,1)=SUM
CALL SHANK(S,1,NTERMS,6,EXTRP)
WRITE(KW,210)EXTRP

210 FORMAT(/1X,'EXTRP=' ,D28.17)
LP=KW
IF(J.LT.JMNPRT) LP=O
CALL AITABL (XTRAB,LX,NTERMS,NCOLS,LP)
RATI0=2.0DO

c JJ=3
C K=4
C 10 XTRAB(JJ,1)=XTRAB(K,1)
c JJ=JJ+1
C K=K+K
C IF(K.LT.NTERMS) GO TO 10
C CALL ROMBEX (XTRAB,LX,JJ-1,RATI0,1,LP)
C CALL ROMBEX (XTRAB,LX,JJ-1,RATI0,2,LP)
C CALL AITABL (XTRAB,LX,JJ-1,NCOLS,LP)

CALL ROMBEX (XTRAB,LX,NTERMS,RATI0,1,LP)
CALL ROMBEX (XTRAB,LX,NTERMS,RATI0,2,LP)

c

c
c

IF(J.EQ.1)CONST(1)=0.5DO
IF(J.EQ.3)CONST(3)=0.5DO
IF(J.EQ.S)CONST(S)=O.SDO
IF(J.EQ.7)CONST(7)=0.5DO

2 CONTINUE
STOP
END

SUBROUTINE COMPA (A,NTERMS)

C COMPUTES THE MAGNITUDE OF THE ERROR IN THE PARTIAL SUMS OF THE
C ALTERNATING HARMONIC SERIES.
c

c

IMPLICIT REAL*16 (A-H,O-Z)
DIMENSION A(l)

RTW0=2.0DO
C XLIM=DLOG(RTWO)

c
c
c

XLIM=QLOG(RTWO)
PSUM=O.ODO
DSIGN=1.0DO
NN=O
JJ=1
DO 1 J=1,NTERMS
AJ=J
TERM=DSIGN/AJ
DSIGN=-DSIGN
PSUM=PSUM+TERM
IF (J.NE.JJ)GO TO 1
NN=NN+1
A(NN)=QABS(PSUM-XLIM)
JJ=JJ+J

1 CONTINUE
NTERMS=NN
WRITE (6 I 10) (A (J) ,J=1 ,NTERMS)

10 FORMAT(/1X,'A = ',4D28.17/(SX,4D28.17))
RETURN
END

SUBROUTINE A~TABL (XTRAB,LX,NROWS,NCOLS,KW)

C COMPUTES A TABLE OF REPEATED AITKEN EXTRAPOLATION AND, IF KW IS
C POSITIVE, PRINTS THE TABLE ON OUTPUT UNIT NUMBER KW.
C THE GIVEN INPUT SEQUENCE MUST BE PROVIDED IN (XTRAB§(J,1) ,J=l,NROWS).
C LX IS THE FIRST DIMENSION OF THE ARRAY XTRAB.
c
c

IMPLICIT REAL*16 (A-H,O-Z)
C DOUBLE PRECISION XTRAB,TINY,DENOM,RZERO

65

c

c
c

c

DIMENSION XTRAB(LX,NCOLS)

TINY=1.D-35
RZERO=O.DO
IF(NCOLS.LT.2) RETURN
IF(NROWS.LT.3 .OR. NROWS.GT.LX) RETURN

COMPUTE THE TABLE.
DO 1 K=2,NCOLS
JMIN=2*K-1
IF(JMIN.GT.NROWS) GO TO 3
DO 2 J=JMIN,NROWS
DENOM=(XTRAB(J-2,K-1)-XTRAB(J-1,K-1))-

X (XTRAB(J-1,K-1)-XTRAB(J,K-1))
IF(DENOM.EQ.RZERO) DENOM=TINY

C USE THE FORM WITH LEAST CANCELLATION FOR
C CONVERGENT SEQUENCES.

c
c

c
c

c
c
c

2 XTRAB(J,K)=XTRAB(J,K-1)-(XTRAB(J,K-1)-XTRAB(J-1,K-1))**2/DENOM
1 CONTINUE

3 IF(KW.LE.O) RETURN
PRINT THE TABLE.

DO 4 J=1,NROWS
KMAX=(J+1)/2
IF(KMAX.GT.NCOLS) ~{=NCOLS

4 WRITE(KW,5)J,(XTRAB(J,K),K=1,KMAX)
5 FORMAT(/1X,I4,4D28.17/(5X,4D28.17))

RETURN
END

SUBROUTINE ROMBEX (R,LR,N,RATIO,JPFRST,KW)

IMPLICIT REAL*16 (A-H,O-Z)
DIMENSION R(LR 1 N)
IF(N.LT.2 .OR. N.GT.LR) RETURN
UNITR=1
DO 1 J=1 1 N
IF(J.EQ.1) GO TO 2
RPOWR=RATIO*JPFRST
DO 3 K=2,J
R(J,K)=R(J,K-1)+(R(J,K-1)-R(J-1,K-1))/(RPOWR-UNITR)

3 RPOWR=RPOWR*RATIO
2 IF(KW.GT.O) WRITE(KW,4)J,(R(J 1 K) 1 K=1,J)
4 FORMAT(/1X,I4,4D28.17/(5X,4D28.17))
1 CONTINUE

RETURN
END

SUBROUTINE SHANK (S, NMIN 1 N.JI1AX, KMAX 1 EXTRP)

IMPLICIT REAL*16 (A-H,O-Z)
C DOUBLE PRECISION QTEST,DABS,S,H,EXTRP,HUGE,ZERO,UNITY,TZ,TU,ARG

DIMENSION S(1)
C QTEST(ARG)=ABS(ARG)
C QTEST(ARG)=DABS(ARG)

c

QTEST(ARG)=QABS(ARG)
HUGE=1.0E35
ZERO=O.OEO
UNITY=1.0EO

WRITE (6 1 44) (S (J) ,J=1 ,NMAX)
44 FORMAT(/1X,'S = ',4D28.17/(5X,4D28.17))

IF (NMIN.GT.NMAX)GO TO 130
EXTRP=S(NMAX)
KT=2*KMAX
DO 120 J=NMIN 1 NMAX

TZ=O.
LIMKK=J-NMIN
IF (LIMKK.GT.KT)LIMKK=KT
IF (LIMKK.LE.O) GO TO 120

66

c

c

c

80

90
100
llO

120

DO 110 KK=1,LIMKK
JJ.I1KK=J-KK
IF (QTEST(S(JMKK)) .EQ.HUGE)GO TO 80
IF (QTEST(S(JMKK+1)) .EQ.HUGE)GO TO 80
TU=S(JMKK+1)-S(JMKK)
IF (QTEST(TU) .EQ.ZERO)GO TO 90
TU=TZ+UNITY/TU
GO TO 100

TU=TZ
GO TO 100
TU=HUGE
TZ=S (JMKK)
S(JMKK)=TU
H(JMKK)=TZ

CONTINUE

MXMKT=NMAX-KT
EXTRP=S(MXMKT)
WRITE(6,21)S(MXMKT)

21 FORMAT(/1X,'S(MXMKT)=' ,D28.17)
130 RETURN

END

67

\
VITA

HUI-WEN CHIANG

Candidate for the Degree of

Master of Science

Thesis: A STUDY OF THE EPSILON ALGORITHM AND APPLICATIONS

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Taipei, Taiwan, Republic of
China, July 14, 1956, the daughter of Hou-Shen
Chiang and Chen-Kan Chiang.

Education: Graduate from Taipei First Girls' Senior
High School, July 1974; received Bachelor of
Law from Fu Jen University, Taipei, Taiwan,
Republic of China, in June 1978; completed
requirements for the Master of Science degree
at Oklahoma State University, Stillwater,
Oklahoma, in December, 1986.

Professional Experience: Lawyer Assistant, Formosa
Commercial Law Firm, September, 1978 to July,
1981; Programmer/System Analyst, System Design
and Computer Services, OAED, Oklahoma State
University, March, 1983 to November, 1986.

