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PREFACE 

The objective of this study is to analyze spatial competitive 

market equ i 1 i bri urn mode 1 s by separab 1 e programming. Separab 1 e pro-

gramming is an application of grid linearization techniques for appro­

ximating nonlinear separable functions with linear segments. This 

paper uses a grid refinement program to generate different grid sizes, 

a matrix generator to convert MINOS input format to MPSX input format, 

a trans 1 a tor program to transform MPSX output standard format to a 

readable format, an inverse program to convert results of linear 

programs into the variables of the quadratic programs, an MPSX program 

to execute the MPSX package, a MINOS program to execute the MINOS 

package, and the MINIT program to execute linear programming problems. 

I would like to express sincere gratitude to my major advisor Dr. 

Donald W. Grace for his guidance, motivation, and invaluable help. I 

am also thankful to Dr. Keith D. Willett, Dr. John P. Chandler, and Dr. 

Ramesh Shard a for the·i r i nsi ghtfu 1 suggestions during the course of 

this work. 15 

My deepest gratitude?to my parents for their encouragement and for 

their love. 
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CHAPTER I 

INTRODUCTION 

Mathematical programming specifications of spatial competitive 

market equilibrium problems have appeared extensively throughout the 

economics literature. The basic structural foundations for these models 

were first provided by Samuelson [1]. Samuelson•s original specification 

was for a single commodity with multiple regions. Takayama and Judge [2] 

extended Samuelson•s work to multi-market equilibria using quadratic 

programming and have become the standard reference for such extensions. 

Furtan et al. [3] have utilized this conceptual model and applied 

quadratic programming to problems of international trade in Canadian 

agriculture. 

A major concern in the use of mathematical programming specifica­

tions for spatial competitive market equilibrium models is generating 

numerical solutions. As noted previously, the Takayama and Judge models 

were based on a quadratic programming specification. Polito et al. [4] 

have pointed out that, in actual applications, relatively small quadratic 

programming prob 1 ems have been so 1 ved. These authors have a 1 so noted 

that an extreme inefficiency may be achieved by always relying on quad­

ratic programming, i.e., the algorithm fails to solve the problem or the 

wrong answer is given. This, in turn, has motivated the development of 

approximations or alternative solution procedures. Dulay and Norton [5], 

for example, have shown how a quadratic objective function can be 
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approximated as a linear objective function with the use of separable 

programming. This approach has the advantage of a 11 owing use of the 

simplex method for routine numerical solution, thereby expanding the 

size and scope of problems which can be considered. 

The purpose of Dr. Willett•s work [6] is to present a single 

commodity spatial equilibrium model stated as a linear programming 

problem. The linearization techniques employed by Duloy and Norton were 

used to develop the linear programming model. This is the technique to 

approximate nonlinear separable functions with linear segments. Separa­

ble functions are functions that can be expressed as sums of expressions 

of a single variable. The optimizing spatial competitive market equili­

brium formulation is based on the assumption that producers are profit 

maximizers and that consumers• behavior is adequately described by a set 

of aggregate demand functions in the space of prices and quantities. 

Supply functions are represented in this model through producers• 

technology and behavior specifications, including resource limitations, 

and the objective function. The perceived contribution of this thesis is 

the implementation of Willett•s methodology which allows models of 

spatial competitive market equilibria to be solved as standard linear 

programming problems. 



CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

Separable Programming 

Separable programming is a mathematical programming technique that 

solves a linear programming problem constructed to be a good approxima-

tion of a nonlinear problem. The data for the linear problem result 

from the evaluation of the objective and constraint functions of the 

nonlinear problem on a grid of points spanning a suitable portion of 

the space of the problem, and substituting a piecewise linear function 

for each nonlinear function. 

Let x1, x2, ••• xs be a collection of n-vectors. Any point x of 

the convex hull of this collection may be written 

s 
X = I: OS xs ( Eq. 1) 

Where s=1 

I: D = 1 and Ds 2_ 0 s s 
( Eq. 2) 

for a 11 s 

Given any function g of x, the linearization of g on the grid x1, 

xs is attained through the approxirnati on by using the same Ds as in 

(Eq. 1). 

( Eq. 3) 

Any mathematical programming problem becomes a linear problem in 

the nonnegative variables Ds if x, g(x), and f(x) are replaced through-

3 
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out by their representati ens above. Using this representation, the 

mathematical programming problem may be stated in the approximate form: 

Minimize L: D F(x ) s s s 
subject to the constraints 

~ OS = 1 

~ Dsgi (xs) > 0 

for all i 

(Eq. 4) 

(Eq. 5) 

(Eq. 6) 

The observations above make grid linearization an effective tool 

for problems having the proper convexity; but where-convexity does not 

obtain, a more refined technique must be used [7]. 

Limitation of the Method 

This method cannot be called a general-purpose nonlinear 

programming procedure, because it solves nonlinear programming problems 

with the following important constraints: 

1. Each nonlinear function must be a function of only one 

variable or a linear combination of such functions, that is, "separa-

ble". However, in many cases nonseparable functions can be converted 

to separable forms by using appropriate transformati ens. The appro­

priate transformations depend on the particular functional forms. 

Hadley [8] discussed several possible transformations including trans­

formation to logs and the definition of new variables (For example, Xey 

can be transformed to natural logarithm expression LnX + Y). 

2. Each function must be polygonal, or replaceable by a polygonal 

approximation to it. In other words, it must be able to be described by 

a piecewise linear function. This approximation automatically increases 

the number of variables and thus incurs a substantial computational burden. 
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3. Separable programming does not necessarily lead to the global 

optimum and furthermore gives no indication of how far the separable 

programming solution might be from the global optimum [9]. 

Despite these disadvantages, separable programming has been used for 

a number of practical problems [10], and computer programs are avail­

able for it [11]. 

Linear Programming 

Linear programming (LP) is an optimization method applicable for 

the solution of problems in which the objective function and the con­

straints appear as linear functions of the decision variables. The 

constraint equations in a linear programming problem may be in the form 

of equalities or inequalities. The linear programming type of optimi­

zation problem was first recognized in the 1930s by economists while 

developing methods for the optimal allocation of resources. During 

World War II the United States Air Force sought more effective 

procedures of a 11 ocati ng resources and turned to 1 i near programming. 

George B. Dantzig, who was a member of the Air Force group, formulated 

the general linear programming problem and devised the simplex method 

of solution in 1947. 'This was a significant step in bringing linear 

programming into wider usage. Afterwards, much progress was made in 

the theoretical development and in the practical applications of linear 

programming. The theoretical contributions made by Kuhn and Tucker had 

a major impact in the development of the duality theory in LP. the 

work of Charnes and Cooper was directed toward the industrial applica­

tions of LP. In the food processing industry, linear programming has 

been used to determine. the opt·imal shipp·in.g. plan for. the. distribution 
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of a particular product from the different manufacturing plants to the 

various warehouses. The optimal routing of messages in a communication 

network and the routing of aircraft and ships can also be decided by 

using linear programming [12]. 

The general linear programming problem can be stated in the 

following standard form: 

Minimize T F(x) = C X 

subject to the constraints 

A X > B 

X > 0 

Where 

xl 

x2 

X = 

xn 

all a12 

A = a21 a22 . . . 

B = 

aln 

. . a2n 

bl 

b2 

bm 

c = 

( Eq. 7) 

( Eq. 8) 

(Eq. 9) 

The case n = m is of no interest, for then there is either a 

unique solution X which satisfies Eqs. (8) and (9) (in which case there 

can be no optimization) or no solution, in which case the constraints 

are inconsistent. The case m < n corresponds to an underdetermined set 

of linear equations which, if they have one solution, have an infinite 

number of solutions. The problem of linear programming is to find one 
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of these solutions satisfying Eqs. (8) and (9) and yielding the minimum 

of objective function. 

Quadratic Programming 

A quadratic programming (QP) problem is the most well-behaved 

nonlinear programming problem. In this problem, the objective function 

is assumed convex (to assure global minimum) and all the constraints 

are linear. Hence quadratic programming problems can be solved by 

suitably modifying the simplex method of linear programming. In some 

practical optimization problems, the objective and constraint functions 

are separable in the design variables. Separable programming techniques 

are useful for solving such problems. 

A quadratic programming problem can be stated as: 

Minimize f(X) = cTX + 1/2 xTo.x 

subject to the constraints 

Where 

all 

A = a21 

aml 

A X~ B 

X> 0 

X -

a12 

a22 

. 
am2 

X. n 
. 

. . 
. 

B = 

aln 

a2n and D 

. 
amn 

bl 

b2 

bm 
.... 

dll d12 

= d21 d22 

c = 

d nn 

(Eq. 10) 

(Eq. 11) 

(Eq. 12) 



8 

In Eq. (10), the term X T D X/2 represents the quadratic part of 

the objective function with D being assumed a symmetric positive defi­

nite matrix. If D = 0, the problem reduces to a LP problem. The 

solution of the quadratic programming problem stated in Eqs. (10) to 

(12) can be obtained by using the Lagrange multiplier technique. 

Details are in the reference [13]. 

Availability of Quadratic Programming Software 

and Approximations 

Quadratic Programming is both a special case of nonlinear 

programming and an extended case of linear programming. Consequently, 

software from both areas has been adapted for quadratic programs. The 

original approach to quadratic programming was by Wolfe, using the 

Kuhn-Tucker conditions. The Kuhn-Tucker conditions form,a.,large linear 

program, with additional complementary slackness conditions. Wolfe 

then utilized a variant of the simplex algorithm which incorporated 

provisions to enforce the complementary slackness conditions. Many 

available algorithms follow these principles. 

In the early 1960s, Cottle and Dantzig, and Lemke developed the 

complementary pivoting theory for solution of quadratic problems. This 

approach solves problems via a process which allows only one of a pair 

of variables in any basis [14]. 

The third algorithmic approach for quadratic programming is based 

on nonlinear gradients. This theory was presented in an article by 

Murtagh and Saunders [15]. Later, this work culminated in the Modular 

In-core Nonlinear Optimization System (MINOS) package [16]. 
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Fourth, there is the decomposition procedure based on Bender's 

work [17]. 

Lemke's complementary pivoting algorithm [18] and MINOS package 

are currently available at Oklahoma State University. But according to 

author's experience, when running test prob 1 em 1, the camp 1 ementary 

pivoting algorithm cannot find the feasible solution. The infeasible 

solution is given in Appendix F. Therefore, until this difficulty can 

be resolved, only nonlinear gradient theory is considered here in the 

comparison with separable programming method. 



CHAPTER III 

METHODOLOGY 

Applicability of Mathematical Programming Models 

to Spatial Competitive Market Analysis 

The spatial competitive market equilibrium which is to be modeled 

can be summarized in the following way. Two or more regions with known 

demand functions and production functions produce and consume a homo­

geneous product. Since goods can be shipped back and forth between 

regions, therefore, the regions are separated but can communicate for a 

price (transfer costs). Given this information, the problem is to 

determine the equilibrium levels of production, consumption, and prices 

in each region and equilibrium trade flows between .regions. 

An optimal solution to the problem described above is characterized 

by three equilibrium conditions. First, prices will differ between any 

two regions by an amount that is less than or equal to the transfer 

costs. For the second condition, assume that the quantity of a good 

which is produced and consumed in the same region is viewed as a 

transfer flow to the region itself. Then demand in each region equals 

the trade flows to that region. Finally, there is an implied condition 

that the equilibrium price and quantity must lie on the implicit supply 

function and the demand function. 

The basic components of the spatial competitive market can match 

those of mathematical programming models. Mathematical programming 

10 
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models have three basic components: an objective function to be 

optimized; a set of alternative activities or processes which can be 

used for attaining the objective; and resource or other restrictions on 

the solution. The objective function of this model is to maximize the 

sum of consumer and producer surplus within a competitive market 

system. Activities available for attaining the objective include pro-

duction and distribution of the various commmodities. Finally, limits 

on resources available, and institutional restrictions provide con-

straints on the system. 

The mathematical programming model that provides a competitive 

market equilibrium solution to this spatial problem is driven by an 

objective function which Samuelson called the 11 net social payoff 11 • 

This objective function is defined as the sum of consumers• plus pro-

ducers• surplus less the total transportation cost for all possible 

trade flows. Assume that a single commodity is produced and consumed 

in each region. Also assume that the ith region has a known inverse 

demand function with demand price as the dependent variable: 

Where 

D P. = a. - b .q. 
1 1 1 1 
D p. =the demand prices in region 
1 

q. = quantity demand in region i 
1 

a.= demand intercepts in region 
1 

b.= demand slopes in region i 
1 

(Eq. 13) 

The objective function (expressed in dollars) is formed by subtract-

ing explicit production costs and the cost of shipping commodities 

between regions from the area under the demand curve. Let c .. (dollar/ 
1 

unit commodity) denote the explicit cost for purchased inputs, Y. re-
1 

present the amount of the commodity produced in region i, and lett .. 
1J 
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(dollar/unit commodity) denote the unit cost of shipping the commodity 

from region i to region j. A 1 so 1 et Xi j represent the amount of the 

commodity from region i to region j. Then the objective function is 

written as: 

L: (a. -1/2 b.q.)q.- ~ciYi- ~~tiJ: Xi·J· (Eq. 14) 
i 1 1 1 1 1 1J 

The search for optimal demands, production levels, and prices is 

bounded by several constraints. For each region, the quantity of the 

commodity demanded is less than or equal to the quantity supplied by 

that region p 1 us the quantity shipped from other regions. This con-

straint is written as: 

q. < :~X1·J· 
J -1 

for all j 

(Eq. 15) 

For each region, total shipments is less than or equal to total produc-

tion. This constraint is written as: 

EX··<Y· j 1J - 1 

for all i 

(Eq. 16) 

There are also resources in each region, such as land and certain 

types of labor, whose availability is constrained. This, in turn, 

means that an additional constraint must be imposed on the production 

possibilities set for each region. Let dri represent the amount of re­

source r necessary to produce one unit of the commodity in region i and 

let Br·i denote the maximum amount of the rth resource available in 

region i. Then the resource availability constraint in the ith region 

can be written as: 

d . Y. < B . 
r1 1 ·- r1 

for a 11 r and i . 

(Eq. 17) 
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The constraints (Eqs. 15-17) can be combined ~'lith the objective 

function (Eq. 14) to form the single commodity spatial competitive 

equilibrium model. This model is written as follows: 

max L: (a.; - 1/2 b ;q;)q; - ~ c; Y; - ~~ t;. x.J. 
i 1 1J J 1 

Subject to 

q. <L:X .. 
J - i 1J 

for all j 

r X .• < Y. 
j 1J - 1 

for all i 

~i Y; ~ Bri 

for all rand i. 

Development of the Separable Programming Model 

(Eq. 18) 

(Eq. 19) 

(Eq. 20) 

(Eq. 21) 

The mathematical model used in this study is formulated within a 

genera 1 1 i near programming frame\"lork. The advantages of 1 i near prog-

ramming arise from the fact that the simplex algorithm is a very 

powerful solution technique. It allows a greater amount of detail in 

the specification of regional factor supplies and production processes 

without making the model prohibitively large or expensive. If the 

results of interregional analyses are to be of use to the policy 

makers, considerable regional detail is needed. 

A major limitation of the quadratic programming formulation is 

that the solution algorithms are much more expensive than the simplex 

algorithm for equivalent-sized problems. The modeler is thus faced 

with the tradeoff of greatly increased solution costs or of giving up 

some detai 1 in the specification of regional resources and production 

activities. 
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The terms in the objective function representing the area under the 

demand function must be linearized before setting up the linear program­

ming model, Following Duloy and Norton, this is done by grid lineariza-

tion which requires prior specification of the relevant range of values 

on the demand curve and the use of variable interpolation weights on the 

grid points. The interpolation weights become special variables in the 

model and their values are jointly constrained by a set of convex combi­

nation constraints. The principal advantage of this technique is that the 

demand functions can be approximated as closely as required without requi-

ring additional constraints in the model other than the convex constraints. 

First, a function representing the area under the demand curve in 

the ith region is defined as follows: 

A= (a. - l/2 b.q.)q. 
1 1 1 1 

(Eq. 22) 

For each region, the initial demand curve, defined in its own price­

quantity space, must pass through the point (p~ , qi) as illustrated in 

Figure 1. The relevant range of the demand curve is defined and 

truncated at point a and b. Next, the relevant range of the demand 

curve is partitioned into segments s=l, ••. ,S. For each segment, the 

area under the demand curve is written as: 

A. = (a. - 1/2 b.q. )q. 
1S 1 1 1S 1S 

(Eq. 23) 

For each segment endpoint, the parameters qi s and A is represent the 

cumulative quantity demanded and the cumulative area under the demand 

function in the ith region, respectively. The quantity demanded and 

the value of the area under the demand curve for the good in the ith 

region can be expressed as a weighted combination of the qis and Ais 

respectively: 

(Eq. 24) 



Price 

a 

Area 

A. 
lS 

I 

------~------------1 
I 

I 

I. 

Demand Curve 

15 

Quantity 
L---~------------~------------~-----------------

Figure 1. Grid Linearization of the Demand Curve 



A.= I A. D. 
1 S 1S 1S 

The D. are special variables and are defined such that 
1S 
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(Eq. 25) 

ID. = 1 (Eq. 26) 
s 1 s . 

With all of the necessary steps completed, the linear programming 

model which will yield a spatial competitive market equilibrium can be 

written as follows: 

Maximize L:L:A ._D. - L:c.Y.- H t~. x .. 
is 1S 1S i 1 1 ij 1J 1J 

subject to the constraints· 

L:q. D. < IX .. 
s JS JS - i 1J 

for all j 

I X •. < Y. 
j 1J - 1 

for all i 

d . Y. < B . 
rl 1 - rl 

for all rand i. 

I D. = 1 
S 1S 

for a 11 

The Conceptual Model of the Program 

(Eq. 27) 

(Eq. 28) 

(Eq. 29) 

(Eq. 30) 

(Eq. 31) 

There are seven programs involved in this thesis: (a) the grid 

refinement program, which calculates the cumulative area and the cumu-

lative quantity demanded under the demand function in the i region; (b) 

the matrix generator program, which converts MINOS input format to the 

Mathematical Programming System Extended (MPSX) input format; (c) the 

translator program, which translates MPSX output Standard format to a 

readable format; (d) the inverse program, which compares the accuracy 

of the quadratic part of the objective function between LP and QP 

systems; (e) the MINOS program, which executes the MINOS package; (f) 
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the MPSX program, which executes MPSX package; and (g) the MINIT prog-

ram, which solves the linear programming problems. A schematic of 

these programs and datasets is given in Figure 2. 

MINOS Input 
Data 

!' 

Grid Reflnemint Program 

Grid Refinement 
Data r------> MINIT 

~ ~ 
I 

MINOS -->MATRIX ---> MPSX Input --> MPSX 
Generator Data 1 

Comparison MPSX Output 
Standard Format 

INVERSE <--­
Program 

! 
Readable Format <--- Translator 

Program 

Figure 2. Relationship of Programs and Datasets 

Grid Refinement Program 

This program is a starter program for the MPSX package; the user 

needs to specify the number of intervals and the basic point value (Pb) 

for the grid linearization method. The grid size is calculated by the 

formula: 

Where 

K = (qe- qs) /N 

qe: the end node of the interval 

(1.45 pb ~ qe ~ 2.0 Pb) 

( Eq. 32) 



qs: the starting node of the interval 

(0.25 pb ~ qs ~ 0.36 Pb) 

N number of intervals 

K grid size 

18 

Note that N intervals generate N+l points qk, where qk are equally 

spaced, and q1 ~ q2 ~ ••• ~ qn = qe in the interval qs:::; qk ~ qe. The 

qk is calculated by the formula: 

qk = q k-1 + K (Eq. 33) 

The Grid refinement program is given in Appendix A. 

Matrix Generator Program 

The matrix generator which starts with reading MINOS input data in 

the MINOS format, and grid refinement dataset and automatically builds 

a mathematical programming model in a format acceptable to the input 

procedures of MPSX package. This program can be used to modify the 

existing MINOS input format to the MPSX input format. The matrix gene-

rator program is given in Appendix B. 

Translator Program 

This program is designed to convert MPSX output standard format to 
--

a readable format [19]. A standard format is composed of sections 

corresponding to various sections of the printed output. The transla-

tor program is given in Appendix C. 

Inverse Program 

The inverse program converts results of linear programs into the 

variables of the original quadratic programs. These results will be 
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substituted into equation (24) and compared with the outputs from 

running the quadratic programs directly. 

MINOS Program 

This program reads MINOS input format and executes the MINOS 

package. The MINOS package is a Stanford University product designed 

to solve large-scale optimization problems. 

MPSX Program 

This program reads MPSX input format and executes the MPSX package. 

The MPSX package is an IBM program product intended for the study of 

linear programming applications. 

MINIT Program 

This program reads the generated MPSX input data and executes the 

linear programming problems. The MINIT algorithm was presented as al­

gorithm 333 in the Communications of the ACM [20]. 

A 11 of the seven programs are programmed in FORTRAN on an IBM 

308lk mainframe. The translator program is delivered to the users in 

load module form. The MINOS package and MPSX package, are also written 

in standard FORTRAN. However, source code for MPSX is not available 

and MINOS cannot legally be exported to some countries. 

The comparisons of these approaches will be described in Chapter 

IV. 



CHAPTER IV 

A COMPARISON OF FEATURES 

Genera 1 

The two packages and MIN IT program compared in this thesis are 

listed in Table I. All of them offer linear programming; the MINOS 

package has the capabilities to solve quadratic programming problems,. 

In this study, the results derived from the MPSX package and MINIT 

program are compared with the results obtained from the MINOS package. 

TABLE I 

SUMMARY OF THE PROGRAMS 

Code Maximize Program User 
Name Basic Theory Size* Interface 

MINOS Gradient L Available 

MPSX Revised Simplex 
Method VL Available 

MIN IT Dual Simplex 
Method 

*Problem size refers to the number of v ari ab 1 es. L (large, 500-
3000; VL (very large), over 3000. 

20 
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Performance Tests 

The comparisons presented are based on the program capabi 1 i ties 

and demonstration runs. These three programs are compared by attempt-

ing to solve two test problems. Tables II and III exhibit major statis­

tics of the test problems 1 and 2 employed in this study; description 

of test problem 1 is in reference [21], and test problem 2 is in refer-

ences [22] and [23]. The mathematical statement of test problems 1 and 

2 are given in Appendices D and E respectively. These problems are 

realistic problems in that neither is completely randomly generated. 

They both include realistic coefficients and structure. 

TABLE II 

A DESCRIPTION OF TEST PROBLEM 1 

Number of* 
Name Intervals Rows Columns Density 

MINOS 28 42 7.483 

MPSX 5 35 66 6.36 

MPSX 6 35 72 6.48 

MPSX 9 35 90 6.78 

MPSX 10 35 96 6.87 

MPSX 15 35 126 7.18 

~~PSX 20 35 156 7.40 

*Number of intervals is applies for grid linearization method 
""'"---~.~---

··~r 

/ 
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Test Problem 1 -> World Energy Model 

This is a world petroleum model developed by Takayama to determine 

the optimal crude oil quantity processed and the final product optimal 

price. 

Test Problem 2 -> Electrical Energy Model 

This model tries to enhance the likelihood that economic effici-

ency will be obtained in the pricing and allocation of electrical 

energy in the USA. 

TABLE I II 

A DESCRIPTION OF TEST PROBLEM 2 

Number of* 
Name Intervals Rows Columns Density 

MINOS 18 135 

MPSX 5 46 243 5. 62 

MPSX 6 46 270 5.70 

MPSX 9 46 351 5.87 

~~PSX 10 46 378 5.91 

*Number of intervals is applied for grid linearization method 
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Test Criteria 

A good program should provide a fast, accurate solution to a 

problem. The program should take minimum time to prepare input. These 

criteria are not equally important for all users. While accurate solu­

tions are probably critical to all, fast execution of the simplex algo­

rithm may be important to somebody who has to so 1 ve rather 1 arge 

problems regularly. On the othe hand, ease of preparing input may be 

more important than solution time to a particular user. Three criteria 

for comparison are defined here: accuracy, computation a 1 efficiency, 

and human efficiency. 

Accuracy 

The word 11 approximation 11 implies that error is being introduced 

into the process. In one sense, this is always true; in another 

sense, this may never be true. Generally, if all problems solved by QP 

represent truly quadratic realities, then solution of a quadratic pro­

gramming problem by any other procedure will introduce error. In this 

sense, error always occurs when approximations are used. However, the 

real test of approximation adequacy should not involve closeness of the 

approximated so 1 uti on to the quadratic programming so 1 uti on. Rather, 

the criteria should involve the real world purpose of the modeling effort. 

In this sense, the quadratic program itself may be an approximation. 

Computational Efficiency 

One facet of computational efficiency involves model size. In 

some cases, the number of rows and columns introduced by an approximation 
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introduced by an approximation yields a larger problem than the 

associated quadratic problem. If the number of quadratic variables is 

large relative to the total number of variables, then the approximations 

of the problem size are likely to be larger than the Kuhn-Tucker 

system. Conversely, when relatively few quadratic variables are 

involved, the approximation may be much smaller. Thus approximation 

may yield either larger or smaller problems. However, size and solution 

time are not perfectly correlated [24]. Nevertheless, when the appro­

ximation is significantly smaller, a computational advantage will 

likely exist. 

A second computational efficiency consideration involves algorithm 

characteristics. Unfortunately, two solution packages employing the 

same basic algorithm rarely, if ever, perform the same. Solution 

packages are quite different in numberical tactics employed to manage 

round-off error and data storage, etc. These affect computation a 1 

efficiency. Thus, codes may possess characteristics which lead to 

differences in computational performance (for instance, codes may be 

good on large problems; good on certain structures, numerically stable 

or unstable). Programming language and style also affect computational 

efficiency. Crowder et al. [25] in discussing computational efficiency 

comparisons state that (a) results derived from small problems are not, 

in general, representative of results for larger applied problems, only 

a conjecture may be made; (b) results on one problem structure are not 

true on all problem structures; (c) comparing computer codes written by 

different programmers for different uses leads to conclusions which are 

valid only on the codes used, not on the methods themselves. Thus, 
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computational efficiency depends on a complex set of issues involving 

the problem and algorithms at hand. 

Human Efficiency 

The packages accept input in a number of ways. Many approximations 

require numerous time-consuming steps once a QP problem has been formu­

lated - forming a separable grid, for instance. Thus, solution via 

quadratic algorithms may reduce the human time spent on the problem. 

When contemplating an approximation, one should ask whether or not 

the approximation procedure needs to be performed multiple times in the 

analysis. When the procedure is done repeatedly, the necessary human 

time increases. However, many approximations can be handled easily 

with a uti 1 ity program. Thus, human efficiency problems may be mi ti­

gated by computerizing the approximation. However, this option itself 

has costs. Obviously this indicator is difficult to measure, but the 

importance should not be ignored. 

MINOS, MPSX, and MINIT all support the MINOS format; the input 

formats for these problems are quite similar. As can be seen from 

Table IV, only nonzero coefficients need to be entered. The matrix 

generator and the starter program can convert MINOS input format to an 

external file accepted by MPSX Package and MINIT program. For a large 

problem, when the format becomes quite cumbersome, the matrix genera­

tor is proven to be powerful. 
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TABLE IV 

MINOS INPUT FORMAT 

MPSX/370 R1 6 PTF9 MPSCL EXECUTION 

NAME MPSX1 
ROWS 

N OBJECTVE 
G CS1 
G CS2 
G P~111 
G PR 112 
r, PR121 
r, PR122 
G PR2 11 
G PR212 
G PR?21 
G PR222 
G PR311 
G PR312 
G PR321 
G PR322 
G PD 11 
G PD12 
G PD21 
G PD22 
G PD31 
G PD32 
G ASR1 
G ASR2 
G DIS11 
G DIS12 
G DIS21 
G DIS22 
G DIS31 
G DIS32 
E CD1 
E C02 
E CD3 
E CD4 
E CD5 
E COG 

COLUMNS 
X1 OBJECTVE 1.00000 CS1 1.00000 
X 1 PR 111 .50000 PR 11:? .60000 
X 1 I\SR1 1 .00000 
X2 OBJECTVE 1.00000 CS1 1.00000 
X2 PR211 .50000 PR212 .60000 
X2 I\SR2 1. 00000 
X3 OBJECTVE 1.20000 CS1 1.00000 
X3 PR311 .50000 PR312 50000 
X4 OBJECTVE 1.00000 CS2 1 .00000 
X4 PR121 .70000 PR122 .40000 
X4 ASR1 1. 00000 
X5 OBJECTVE 1.20000 CS2 1 .00000 
X5 PR221 . 70000 PR222 .40000 
X5 ASR2 1.00000 
X6 OBJECTVE 1.00000 C'32 1.00000 
X6 PR321 .GOOOO PR322 .50000 



CHAPTER V 

RESULTS AND DISCUSSION 

The accuracy and speed of the software are important for the large 

problems. For comparison purposes, two te5t problems are solved on all 

of the systems. Table V exhibits results of the optimal solutions 

obtained by MINOS, MPSX, and MINIT for test problem 1. Table VI de-

scribes results of the optimal solutions obtained by MINOS, MPSX, and 

MINIT for test problem 2. 

Code 
Name 

MINOS 
MPSX 
MPSX 
MPSX 
MPSX 
MPSX 
MPSX 
MIN IT 
MIN IT 
MIN IT 
MIN IT 
MIN IT 
MIN IT 

TABLE V 

ACCURACY AND SPEED OF MINOS, MPSX, AND MINIT 
FOR TEST PROBLEM 1 

Number of Format Convert CPU 
Intervals (a) Time (b) Time (c) 

0.00079 
5 0.00013 0.00046 
6 0.00013 0.00047 
9 0.00013 0.00048 

10 0.00013 0.00048 
15 0.00013 0.00050 
20 0.00013 0.00052 
5 0. 00013 0.00048 
6 0.00013 0.00059 
9 0.00013 0.00065 

10 0.00013 0.00067 
15 0.00013 0.00096 
20 0.00013 0.00129 
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Objective 
Value 

6584.97 
6533.78 
6574.95 
6574.95 
6580.95 
6582.54 
6574.90 
6574.42 
6574.89 
6571.43 
6574.90 
6580.46 
6582.32 



Code 
Name 

MINOS 
MPSX 
MPSX 
MPSX 
MPSX 
MIN IT 
MIN IT 
MIN IT 
MIN IT 

TABLE VI 

ACCURACY AND SPEED OF MINOS, MPSX, AND MINIT 
FOR TEST PROBLEM 2 

Number of 
Intervals 

5 
6 
9 

10 
5 
6 
9 

10 

Format Convert 
Time (b) 

0.00018 
0.00018 
0.00018 
0.00018 
0.00018 
0.00018 
0.00018 
0.00018 

CPU 
Time (c) 

Fail 
0.00053 
0.00054 
0.00057 
0.00058 
0.00081 
0.00090 
0. 00114 
0.00124 
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Objective 
Value 

Fai 1 (d) 
318426.22 
328874.43 
346285.67 
349767.64 
318424.80 
328873.00 
346284.30 
349767.40 

(a) The basic point values are available in reference [21]. In 
this case, these values are 12.7, 7.7, 4.3, 4.3, 18.0, and 
19.0 respectively. 

(b) This is the CPU time of the starter program. 
(c) CPU time is measured in hours. All these jobs are run during 

weekend to minimize the effect of other jobs affecting CPU 
time. 

(d) Failed to solve the problem because of unbounded (or badly 
scaled). 

CPU time is the central processing time needed for executing the 

algorithm. Generally, CPU time increases with the increased number of 

variables. For LP problems, it is evident that MPSX take less CPU time 

than MINIT. For MPSX, the CPU time keeps almost steady for different 

number of intervals. For MINIT, the CPU time increases with the 

increased number of intervals. For MINOS, the CPU time is longer than 

that of the other two programs. Therefore, the solution algorithm of 

MINOS is much more expensive than the simplex algorithm for the same 
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problem and the solution algorithm of MINIT is much more expensive than 

the MPSX package algorithm for the LP problems. 

Numerical accuracy is a measurement of the algorithm's ability to 

compute a "correct" answer in the face of numerical instability. Table 

V and VI indicate that MINIT is able to obtain the same optimal solu­

tion as MPSX in two test problems. The purpose of this study is to 

approximate nonlinear separable functions with linear segments. Table 

V also indicates that the average accuracy differences between linear 

programming and quadratic programming is within 2%. 

The ratio of the largest coefficient (147.9043) to the smallest 

coefficient (0.00023) in test problem 2 is about 106• This gives MINOS 

numerical difficulty, which means that MINOS is sensitive to scaling. 

There is no fixed rule for arriving at either the optimal grid 

size or the optimal number of grids for a problem. However, the use of 

large grid sizes (large, relative to the total range of validity of the 

separable problem) may produce less reliable results. As illustrated 

in Table V, when the number of intervals is 5, the objective value 

obtained from the MPSX package is 6533.78. 

In order to test the impact of basic point values, Table VII lists 

the test problem 1 objective values by using three different basic points 

on the MPSX package. Figure 3 interprets these results graphically. 

The accuracy of nonlinear variables depends on the number of inter­

vals and different basic point values, Table VII and Figure 3 indicate 

that there is no systematic pattern and Table VII also indicates that 

when using different basic points, it does not necessarily give closer 

values to MINOS's result. However, the use of finer subdivisions gives 

closer answers. 



Number of 
Intervals 

5 

6 

9 

10 

MINOS 

(a) 

(b) 

TABLE VII 

THE IMPACT OF DIFFERENT BASIC POINTS 
FOR TEST PROBLEM 1 

Factor Objective Nonlinear Variables 
(a) Value 1 2 3 4 

0.85 6559.17 12.31 7.46 4.17 4.17 
1.0 6533.78 10.92 8. 78 3.7 4.9 
1.2 6553.63 11.98 7.95 4.44 4.44 

0.85 6571.59 11.48 8.07 4.51 4. 51 
1.0 6574.95 12.7 7.7 4.3 4.3 
1.2 6534.6 11.68 7.39 3.96 3.96 

0.85 6581.22 11.63 8.07 4.5 4.51 
1.0 6574.95 11.71 8.30 3.97 4.63 
1.2 6561.95 11.68 7.08 3.96 3.96 

0.85 6572.71 11.02 7.46 4.17 4.17 
1.0 6574.95 12.7 7.7 4.3 4.3 
1.2 6573.94 11.88 7.95 4.44 4.44 

6584.97 11.69 7.76 4.45 4.3 
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(b) 
5 6 

18.45 19.45 
20.37 17.32 
18.58 18.61 

18.87 18.56 
18.0 19.0 
19.16 19.85 

18.87 18.42 
19.32 18.05 
19.96 19.96 

19.58 19.60 
18.0 19.0 
18.58 18.71 

18.74 19.06 

Factor 1 means the basic point values are the same as in refe-
renee [21]. Factor 0.85 means the basic point values which 
are the products of 0.85 and factor 1•s basic point values 
(i.e., 10.795, 6.545, 3.655, 3.655, 15.3, and 16.15). 

Nonlinear variables are obtained by inverse program. 

In separable programming, data are given as in a linear program, with 

the addition that there is one set of special variables for each nonlinear 

function (see Eqs. 24, 25, and 26). The simplex algorithm is modified 

to inhibit pricing (caluclation of the reduced cost coefficients) of 
s 

the special variables within each set. Table VIII giveri the results of 

the simplex algorithm applied to test problem 1. 
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Figure 3. Objective Values vs. Number 
of Intervals 

TABLE VII I 

10 

TEST PROBLEM 1 PARTIAL RESULTS OF MPSX SOLUTION 
OUTPUT, COLUMNS SECTION 

Variable Quantity Reduced Cost 
(1) Activity (q) (2) Coefficient 

011 0. 3.81 96.71 

012 1. 7.37 0. 

013 0. 10.92 72.36 

014 0. 14.48 312.76 

015 0. 18.03 142.61 

051 0. 5.40 43.71 

052 o. 10.44 762.05 

053 0. 15.48 254.02 

054 0.02778 20.52 0. 

0s5 0.97222 25.56 0. 

31 
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(1) The number of intervals for this example is 5. Therefore, 
there are five special variables for each nonlinear function 
in this problem. D11 means the first special variable (Eq. 
26) in the first set. 

(2) Quantity values are the point values along the q Axis (see 
Figure 1). 

To have a workable separable programming algorithm, it must be 

shown that the process terminates after a finite number of iterations 

and that the terminal solution is optimal in a local sense [9]. That 

is, no other feasible solution sufficiently close to it will have a 

better objective value. Consider the terminal solution and examine a 

particular set of special variables S =(Oil, • ., Din). In view 

of Eqs. (24, 25, 26) and Table VIII, there must be at least one element 

of S in the basis. Two cases can arise: 

Case 1 Two (say Dis' Di(s+T).) of S are basic, and Dis 71" 0, Di (s+1) ~ 

o. 
Case 2 One (say Drs> of S is basic. Necessarily Dis = 1. 

If case 1 occurs (Dis' Di(s+1) basic), express the nearby solution 

using only qis (Dis) and qi(s+1)<Di(s+l))- i.e., stay between A is and 

Ai(s+1) on the graph of A=f(q), Figure 1. If case 2 occurs stay 

between Ai(s- 1) and Ais or A;s and A.i(s+1), using only qi(s- 1) 

(DiCs-1)) and qis(Dis) or qis (Dis) and qi(s+1) (Di(s+1) ). But all of 

these special variables were already priced at the last simplex itera-

tion and found to have disadvantageously reduced cost coefficients. 

Hence, evaluating any nearby feasible solution via the reduced objec­

tive functional shows it to have a less desirable (at any rate, no 
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better) objective value than the terminal one. So the terminal one is 

a local optimum if this is not a convex programming problem. 

MPSX has the capability to check the sensitivity of the solution 

by ranging and parametric programming. MINOS has the capability to 

solve the nonlinear problems. A summary of the features is presented 

in Table I X. 

Code 
Name 

MPSX 

MINOS 

MIN IT 

TABLE IX 

SUMMARY OF PROS AND CONS FOR MPSX, MINOS, 
AND MINIT 

Pros 

Sensitive analysis 
Post-optimal analysis 
CPU time is shorter 

Nonlinear constrained 
optimization 

Unconstrained optimi­
zation 

Portable 

Cons 

Non-portable 

CPU time is longer 
Sensitive to scaling 

CPU time depends 
strongly upon the 
number of variables 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

Using grid linearization techniques to approximate nonlinear 

functions is proven to be useful. The analyzed results indicate that 

the approximation error is with 2%. 

For LP problems~ MINIT algorithm is much more expensive than the 

MPSX package. The CPU time is pretty steady for the MPSX package but 

not for the MINIT program. However, MINIT is portable but MPSX is not. 

For Quadratic programs~ MINOS is sensitive to scaling, therefore may 

give numerical difficulties for large problems. 

Quadratic programs should not always be approximated, nor should 

they always be solved as QPs. For small problems, considering computa­

tional efficiency and human effort~ a quadratic programming solver will 

be better. Large problems with few quadratic variables seem to be 

candidates for approximation. The solution with linear programming is 

generally simpler and more reliable. 

Recommendations 

The benefits from approximation increase with problem size. 

Basically, linear programming codes can be utilized on problems which 

are larger than can be solved with any quadratic codes. Thus, future 

34 
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research work could be continued in three areas: First, a critical 

point at which approximation will always be better should be found. 

Second, criteria to help the user choose a method should be investi­

gated. Third, if numerical difficulties arise for MINOS package, an 

automatic scaling subroutine should be conducted. 
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**** ~SO !~?~GROUND HARDCOPY **** 
DSNAME=UlG822A.SHW6.CNTL 

_.'/':;206:2;. . .:~B (10822,398-62-0158), 'CH:;:ANG' .~:Y.E=(0,5), 
,: , C:.ASS=r .. MSGC:.ASS=}:, NO~ I FY=* 
1*Pr-.SSWOR:l ???? 

/!?TQ6F00l DD SYSO~T=A 
/;'?':'::.2!002 DD DSN='Cl0822A.!NPUT12.CNTL,DISP=SHR 
s.:oB ,:.:sT 
C T~:S PROGRAM IS DESIGNED FOR COMPUT!NG AREA :OR DI??E?.ENT 
C N~BER OF SEGMENT AT S?ECI?IC QUAN~:TY, A:.SC TH!S PROGRAM 
C :N!T:A:.:z::::s 50!-'..E GIVEN VAR:ABLES (N,NC,Ni.,NV) 
C N -> N~MBER OF SEGEMNTS 
C NC -> N~BER OF CONSTRAINTS 
C N:. -> N~3ER OF NONi.INEAR VARIAB:.ES 
C NV -> N~BER 0::' LINEAR VARIABLES 

c 

DIHENSION PM(6) ,W(6) ,WS(6) ,'SG(6) ,5(20,6) ,A(20,6) 
DATA N,NC,NL,NV/6,28,6,36/ 
DATA PM/12.7,7.7,4.3,4.3,18.0,19.0/ 
DATA W/200.,115.,220.,165.,230.,75./ 
DATA WS/13.33,10.,40.,30.,10.,2./ 
DATA FACT/1.00/ 
IOUT=6 
IND=36 
DO 90 !=1,NL 

90 PM(:}=PM(l)*FACT 
WRITE(IOUT,105} N 

105 FOR~T(1H1,17HNUMBER OF SEGMENT,I2) 
WRI~E(12,126) N,NC,NL,NV,FACT 

126 FOR~T(SX,I2,1X,I2,1X,I2,1X,l2,1X,F5.2) 
DO 100 J=1,NL 
SG(.:)=(1.7*PM(J}-0.3*PM(J))/N 
WR:TE(IOUT,106) J 

106 FORMAT(SX,6HREGION,I2) 
WRITE(IOUT,107) PM(J),SG(J) 

107 FORMAT(SX,17HEQUILIBRIUM PRICE,F5.1,2X,17HLENGHT OF SEGMENT,::'10.5) 
WRITE( !OUT, 108) 

108 FORMAT(15X,8HQuANTITY,4X,4HAREA) 
DO :!.10 l=l,N 

S(I ,J)=O. 
11 0 CONTINUE 

DO 120 I=1,N 
IF (I .EQ. 1) GO TO 130 
SUM=SUM+SG(J) 
GO TO 140 

130 S(I,J)=0.3*PM(J) 
SUM=S(I,J) 

140 S(I,J)=SUM 
A(I,J)=(W(J)-0.5*WS(J)*S(I,J))*S(I,J) 
IND=IND+1 
WRITE(!OUT,124) IND,S(I,J),A(I,J) 

124 FOR~T(5X,1P~,I3,2X,F10.2,F10.2) 
S(I ,J)=-S(l ,J) 
WR!TE(l2,125) S(I,J),A(I,J) 

125 FORMAT(5X,F10.2,F10.2) 
120 CONTINUE 
100 CONTINUE 

STOP 
END 
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***~ ':'58 FOREGROOND HARDCOP! **** 
:Js:;.;ME=~l DS:2A. SHWS. CNTL 

·.::::08::,; COB (:OS22,398-S2-Cl56), 'c:-;:ANG' ,':'!ME={O,Sl, 
I ::ASS=A,MSGC~ASS=X,NOT:FY=* 
/ .... ?r-.. ss;.;o:m ???? 

/'F':'l1F00l DD DSN=Ul0522A.!N?UT11.CN':'~,D:SP=SHR 
//F7:2FD01 DD DSN=U10822A.IN?U':'l2.CN':'L,DISP=SHR 
//!'':'l6F001 DD DSN=U10522A.INPUT6.CNTL,D!S?=SHR 
SC:JE ,LIST 
C ':'H:S MATR:X GENERATOR PROGRAM WI~L CON\~RT :NPUT DATA FORMAT 
C FOR M:NOS TO INPUT DATA FO~V~T ACCEPTED BY MPSX 
C OVA~UE ARE THE OBJECTIVE COEFFIC:ENTS FOR LINEAR VAR:ABLES 
C N: -> THE BEGINNING OF X VARIABLE 

DIMENSION OVALUE(24) 
DATA OVALUE/-1.0,-1.0,-1.2,-1.0,-1.2,-1.0, 

* -0. ,-2. ,-3. ,-2. ,-0. ,-1. ,-3. ,-1. ,-0.' 
* -D. ,-1.5,-2. ,-1.5,-0. ,-1. ,-2. ,-l. ,-0./ 

IOU=ll 
INl=l2 
IN2=16 
IV=O 
CDVAL=1.0 
READ(IN1,35) N,NC,NL,NV,FACT 

35 FORMAT(5X,!2,1X,I2,lX,I2,1X,I2,1X,F5.2) 
C w~!TE ROWS SECTION 

WR::: TE ( IOU , 4 5 ) 
45 FO~~T(4HNAME,lOX,5HM?SXl/4HROWS/1X,1HN,2X,8HOBJECTVE) 

READ( IN2, 55) 
55 FORMAT(//////////) 

DO 50 I=l,NC 
READ(IN2,56) CON,CNAM1,CNAM2 
WRITE(IOU,56) CON,CNAM1,CNAM2 

56 FORMAT(A2,A4,A4) 
50 CONTINUE 

DO 60 I=l,NL 
WRITE (IOU, 6 5) I 

65 FORMAT(1X,3HE ,2HCD,I1) 
60 CONTINUE 

C w~ITE COLUMN"SECTION 
READ(IN2,66) COL1,COL2 
WRITE(!OU,66) COLl,COL2 

66 FORMAT(A4,A4) 
C SLASHES NUMBER CORRES?ONDSTO NONLINEAR VARIABLES 

READ( IN2, 67) 
C 36 VARIABLE OCCPUY 82 ROWS IN COLUMN SECTION 

67 FORMAT(/////) 
DO 200 1=1,82 
READ(IN2,68)X,IVALUE,DRESl,DRES2,VALUE 

68 FORMAT(A5,I2,7X,A4,A4,F10.2) 
IVALUE=IVALUE-6 

C FIRST 24 VARIABLES INVOLVED IN THE OBJECTIVE FUNCTION 
IF (IVALUE .GT. 24) GO TO 80 
IF (!VALUE .EQ. IV) GO TO 80 
IV=IV+l 
IF (IV .LT. 10) GO TO 76 

C WRITE THE OBJECTIVE COEFFICIENTSFOR THE COLUMN SECTION 
WRITE(IOU,75) IV,OVALOE(IV) 

75 FORMAT(4X,lHX,I2,7X,8HOBJECTVE,F10.2) 
GO T080 

76 WRITE(IOU,77) IV,OVALOE(IV) 
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so 
·c 
c~ 

200 

lCS 

1:)6 

1C7 
!OB 
l09 

llO 
:15 

116 
ll7 

l20 

125 

126 
127 

l30 

135 

136 
137 

140 

l45 

146 
H7 

150 

155 

l56 
157 

160 

165 

166 
l67 
250 

P":R!-!; .. ':' { .;}: , :H:·:, =:, Sl:, SHOE.:E:":'\'E, :'l C. 2) 
:: \:~~~WE -~~. 10) G: T~ 90 
~~:7~(:0~,6S)X,:VALUE.~RES:,~R~S:,vn:UE 
G:' ':':' 200 
wR:-::::::: oc. e 9 l Jo:. rvr.:.u:::: .nR::::s:. nR:::s:. v;.::::r::: 
FOR~~':'(A5,!l,SX,A4,A4,Fl0.2) 
CON':'!N~E 
!N=t:'*N 
DC 2 5 C I = 1 , IN 
RE;.:J{ZNl,l05) Q'JAN':',AREA 
FOR¥~':'(5X,Fl0.2,Fl0.2) 
IVN=!-l 
IR=(!VN/N)+l 
IV=!+NV 
IF (!V .GE. lOO) GO TO l07 
wR!':'E (IOU, l 06) IV, AREA 
FORMA':'(~X,lHX,!2,7X,8HOBJEC~~.F10.2) 
GO TO l09 
wR:':'E(IOU,l08) IV,AREA 
FOR~':'(4X,lHX,I3,6X,8HOBJECTVE,Fl0.2) 
GO TO (110,120,l30,140,l50,160),IK 
IF (IV .GE. 100) GO TO ll6 
w~!TE(IOO,l15) IV,QUANT,IV,CDVAL 
FORMAT(4X,lHX,I2,7X,SHDIS11,3X,Fl0.2/4X,lHX,I2,7X,3HC!l1,5X,Fl0.2) 
GO TO 250 
WRI':'E(I00,117) IV,QUANT,IV,CDVAL 
FORMAT(4X,lHX,I3,6X,5HDISll,3X,Fl0.2/4X,lHX,I3,6X,3HCDl,5X,F10.2) 
GO TO 250 
IF (IV .GE. lOO) GO TO 126 
WRITE(IOO,l25) IV,QUANT,IV,CDVAL 
FORMAT(4X,lHX,I2,7X,5HDIS12,3X,Fl0.2/4X,lHX,I2,7X,3HCD2,5X,Fl0.2} 
GO TO 250 
WRITE(IOO,l27) IV,QOANT,IV,CDVAL , 
FORMAT(4X,1HX,I3,6X,5HDISl2,3X,Fl0.2/4X,lHX,I3,6X,3HCD2,5X,Fl0.2) 
GO TO 250 
IF (IV .GE. lOO) GO TO l36 
w~ITE(IOO,l35) IV,QOANT,IV,CDVAL 
FORMAT(4X,lHX,I2,7X,5HDIS21,3X,Fl0.2/4X,1HX,!2,7X,3HC:J3,5X,F10.2) 
GO TO 250 
WRITE(IOO,l37} IV,QOANT,!V,CDVAL 
FORMAT(4X,1HX,I3,6X,5HDIS2l,3X,Fl0.2/4X,lHX:!3,6X,3HC!l3,5X,F10.2) 
GO TO 250 
IF (IV .GE. lOO) GO TO l46 
WRITE(I00,145) IV,QOANT,IV,CDVAL 
FORMAT( 4X, lHZ, I 2, 7X, 5HDIS22·, 3X,Fl0. 2/4X, lHX, I 2, 7X, 3HC!l4; 5X, FlO. 2) 
GO TO 250 
WRITE(IOO,l47) IV,QOANT,IV,CDVAL 
FORMAT(4X,lHX,I3,6X,5HDIS22,3X,Fl0.2/4X,lHX,I3,6X,3HC!l4,5X,Fl0.2) 
GO TO 250 
IF (IV .GE. lOO} GO TO l56 
WRITE(I00,155) IV,QOANT,IV,CDVAL 
FORMAT(4X,1HX,I2,7X,SHDIS3l,3X,Fl0.2/4X,lHX,I2,7X,3HC:J5,5X,Fl0.2} 
GO TO 250 
WRITE(IOO,l57) IV,QOANT,IV,CDVAL 
FORMAT(4X,lHX,I3,6X,5HDIS3l,3X,Fl0.2/4X,lHX,I3,6X,3HCD5,5X,Fl0.2) 
GO TO 250 
IF (IV .GE. 100) GO TO l66 
WR!TE(IOO,l65} IV,QOANT,IV,CDVAL 
FORMAT(4X,lHX,I2,7X,5HDIS32,3X,F10.2/4X,lHX,!2,7X,3HC:J6,5X,F10.2) 
GO TO 250 
WRITE(IOO,l67) IV,QUANT,IV,CDVAL 
FORMAT(4X,lHX,I3,6X,5HDIS32,3X,Fl0.2/4X,lHX,!3,6X,3HCD6,5X,F10.2) 
CONTINUE 
READ(IN2,254) RHS 
FOR."'AT(A3) 
wR:':'E(I00,255) RHS 
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300 

365 

D2 3:: :=l,.; 
RE;..~:: t.;:, 3 0 5) RTH:, R'!'H::, R'!H3 , RNnME:, RVA~ 
~::>::t~!.!..':' (.;.;,A'=, ;..2, .;:-:,A.;,.;:::,, FlC. 2) 
WR:7~(!0U,305) RTH!,R7H2,RTH3,RNAM~,RVA~ 
cot::-: t-:t::: 
DO 350 I=l,NL 
~R:7E(!0~,355l !,C~VAL 
FOR~t!.'!'( ;x, 6!-iR':'HDSD, 4}:,2H:D, !: , 5Z,P"1C. 2) 
c:n-::-:t-:w-E 
~R:':'E(!Ou,365) 
FOR}'_,;::• ( 6HEN'DA ':'A) 
S':'O? 
EN'D 

SE!\':.'?.Y 
s:ESYS 
// 
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TRANSLATOR PROGRAM 
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"*** TSO FOREGROUND HARDCOPY **** 
lSNAME=U10522A.SHW11.CNTL 

THIS PROGRAM IS DESIGNED TO CO~~RT MPSX OUTPUT 
STANDA?~ FORMAT TO A READABLE FORMAT 

INTEGER*4 
CHARACTER*B 
CHARACTER*S 
INTEGER*4 
CHARAC':'ER*4 
CHARACTER*S 
DATA 
EQlJIVALENCE 
F!LE=4 
LIST=ll 

FILE,L:ST,NOCOL,NOCOL2,I,J,L,M,N,P 
NAME 
COLUMN(50),VALOES(50) 
TYPE(100),VALNUM(100) 
VA:::.ALF(100) 
ENDSEC,ENDATA 
END SEC/' SENDSEC$' /, END~.TA/' ENDATA 'I 

(VALUES(1),VALNUM(l),VALALF(l)) 

SKIP THE NAME,XDATA,RECORD 

READ(FILE) 

READ(F!LE) NAME,NOCOL 
NOCOL2=2*NOCOL 
READ(FILE)(COLUMN(N),N=1,NOCOL) 
READ(F!LE) (TYPE(N),N=1,NOCOL2) 
J=O 
DO 21=2,NOCOL2,2 
J=J+TYPE(I) 

2 CONTINUE 
J=J/4 
READ(FILE) (VALALF(N),N=1,J) 

PRINT THE IDENTIFICATION ARRAY, ONE VALUE PER LINE 

WRITE(LIST,9) NAME 
WRITE(6,9) NAME 

9 FORMAT(1H1,35X,'PRINTOUT OF THE FIELD' ,AS) 

J=O 
DO 20 N=1,NOCOL 
L=J/4+1 
M=L+1 
P=L+19 
IF (TYPE(2*N-1) -2)10,14,12 

NUMERIC - INTEGER -VALUE 

10 WRITE(LIST,11) COLUMN(N),VALNUM(L) 
WRITE(6,11) COLUMN(N),VALNUM(L) 

11 FORMAT(1H0,35X,A8,' = ',IS) 
GO TO 19 

NUMERIC - INTEGER -VALUE 

12 WRITE(LIST,13) COLUMN(N),VALALF(L~ 
WRITE(6,13) COLUMN(N),VALALF(L) 

13 FORMAT(lH0,35X,A8,' = ',Fl8.8) 
GO TO 19 

ALPHAMERIC VALUE. LENGHT MAY BE 4,8 OR 80 

~~ IF (TY?E(2*N)-8) 15,17,18 
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c 
c 
c 

c 
c 
c 

c 
c 
c 

c 

c 
c 
c 

c 
c 
c 

c 

c 

c 

c 

:6 

li 

:a 

2.9 
20 

21 

22 

WR:~E\~:S~,:6) COLUMN(N),Vh~A~F(~) 
WR:~E(6,16) COLUMN(N) ,Vh~A~F(L) 
FOR~T(lH0,35X,A8,' = ',20A4) 
GO TO :9 

A~PnAY~RIC Vh~uE - LENGHT = 8 

WR:TE(LIST,16) (COLUMN(N),VALA~F(K),K=:,M) 
wx:TE(6,16) (COLUMN(N),VALALF(K),K=L,M) 
GO TO 19 

ALPHAMSRIC VALUE - LENGHT = 8 

WR:TE(LIST,16) (COLUMN(N),VALALF(K),K=~,P) 
WR:~E(6,16) (COLUMN(N),VALALF(K),K=L,P) 

J=.J-TYPE(2*N) 
CON':":NuE 

SKIP THE PENDSECP OF THE IDENTIFICATION ARRAY 

READ(FILE) 

GET THE ROW AND COLUMN SECTION 

READ(FILE) NAME,NOCOL 
IF (NAME .EQ. ENDATA) GO TO 31 
WR:TE(LIST,9) NAME 
WRITE(6,9) NAME 

READ(FILE) {COLUMN{N),N=1,NOCOL) 
READ(FILE) 
WR!TE(LIST,23) (COLUMN(N),N=1,NOCOL) 

23 FOR"'1AT(1H0/1H ,AS ,12X,A8 ,12X,A8, 8X,A8 ,SX,AB ,llX,AS, 4X,A8, 4X,A8/) 

24 READ(FILE) (VALuES(N),N=l,NOCOL) 
IF (VALuES(1) .EQ. ENDSEC) GO TO 21 

25 WRITE(LIST,26) (VALUES(N),N=1,NOCOL) 
WRITE(6,26) (VALUES(N),N=1,NOCOL) 

26 FORMAT(1H ,D15.8,D20.8,D16.4,D16.4,D20.B,F11.0,Al2,A12) 
GO TO 24 

31 RETURN 
END 

47 



APPENDIX D 

MATHEMATICAL STATEMENT OF TEST PROBLEM 1 
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Test Problem 1 (Source: Reference 21) 

Objective Function: 
~e{Y"l 1 ~ epo s: 1 rt vc 

---......_,..~~- ~w~~,,_.•~•-"''"~~ ~"-'""'•'"""' 

Maximize 

Subject to the constraints: 

Crude supply constraints: 

- X7 - x8 - x9 = - 20 

- x1o - x11 - x12 ~ - 40 } 
Production-distribution constraints: 

x31 + x33 - x13 - x14 - x15 2:. 0 

x32 + x34 - x22 - x23 - x24 2:. 0 

x35 + x37 - x16 - x17 - x1a 2:. 0 

x36 + x38 - x25 - x26 - x27 2:. 0 

x39 + x41 - x19 - x2o - x21 2:. 0 

x4o + x42 - x2s - x29 - x3o 2:. 0 

)· 

Distribution and final regional demand constraints: 

x13 + x16 + x19 - x1 ~ 0 

x22 + x25 + x2s - x2 ~ 0 

x14 + x17 + x2o - x3 ~ 0 

x23 + x26 + x29 - x4 ~ 0 

x15 + x1a + x21 - x5 ~ 0 

x24 + x27 + x3o - x6 ~ 0 

Refinery process con~traints: 
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o.5x8 - x35 ~ o 
o.6x8 - x36 ~ o 
o.7x11 - x37 ~ o 
o.4x11 - x38 ~ o 
o.5x9 - x39 ~ 0 

o.sx9 - x40 ~ o 
o.6x12 - x41 ~ o 
o.5x12 - x42 ~ o 

Refinery capacity constraints: 

- x7 - x10 ~ - 15 

- x8 - x11 ~ - 15 

And 

x. > 0 j = 1, 2, ...... , 42 
J -
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APPENDIX E 

MATHEMATICAL STATEMENT OF TEST PROBLEM 2 
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Test Problem 2 (Source: References 22 and 23) 

Objective Function: 

Maximize 147.9043X1 - 0.002915Xi + 147.8661X2 -

0.00102X~ + 130.4007X3 - 0.00675X~ + 136.4894X4 -
2 2 0.00159X4 + 105.6432X5 - 0.0053X5 + 73.14445X6 -

0.00675X~ + 117.9889X7 - 0.00101X~ + 119.1421X8 -
2 2 0.00288X8 + 91.9915X9 - 0.00605X9 + 57.6892X10 
2 2 0.00114X10 + 57.77284X11 - 0.00345X11 + 52.26184X12 -
2 2 0.00028X12 + 52.30450X13 - 0.00705X13 + 43.20152X14 -
2 2 0.00024X14 + 37.8308X 15 - 0.00735X15 + 40.74765X16 
2 2 0.00032X16 + 40.9598X17 - 0.0620X17 + 36.24478X18 -
2 2 0.00018X 18 + 52.2091X19 - 0.001045X19 + 48.31183X20 -
2 2 0.00023X20 + 43.9390X21 - 0.0015X21 + 49.52139X22 -
2 2 0.00060X22 + 48.5061X23 - 0.00025X23 + 77.90477X24 
2 0.00047X24 + 53.8488X25 - 0.00036X25 + 54.78305X26 -

0.00096X~6 + 102.4274X~7 - 0.00062X~7 - 0.00518X 28 -

0.88974X 29 - 4.0758X30 - 5.9595X31 - 4.40342X32 -

4.87846X33 - 7.46253X34 - 8.18329X35 - 12.95419X36 -

0.88974X37 - 0.00518X38 - 3.44514X39 - 4.95627X40 -

3.53524X41 - 4.01028X42 - 6.57797X43 - 7.64682X44 -

12.4177X45 - 4.0758X46 - 3.44154X47 - 0.00518X48 -

2.06919X49 - 2.99467X50 - 2.67934X51 - 3.84238X52 -

4.15361X 53 - 8.96137X54 - 5.95959X55 - 4.95627X56 -

2.06916X57 - 0.00518X58 - 3.30181X59 - 2.92505X60 -

3.84238X61 - 2.48687X62 - 7.66279X63 - 4.40342X64 -

3.53524X65 - 2.99467X66 - 3.30181X67 - 0.00518X68 -
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0.63584X69 - 3.36324X70 - 5.78350X71 - 10.4193X72 -

4.87846X73 - 4.01028X74 - 2.67934X75 - 2.92505X76 -

0.63584X77 - 0.00518X78 - 2.72849X79 - 5.33712X80 -

9.79679X81 - 7.46253X82 - 6.57797X83 - 3.84238X84 -

3.84238X85 - 3.36324X86 - 2.72849X87 - 0.00518X88 -

3.21581X89 - 7.22501X90 - 8.18329X91 - 7.64602X92 -

4.15361X93 - 2.48687X94 - 5.78350X95 - 5.33712X96 -

3.21581X97 - 0.00518X98 - 5.18151Xgg - 12.9542X100 -

53 

12.41772X101 - 8.96136X102 - 7.66729X103 - 10.41926X104 -

9.79679X105 - 7.22501X106 - 5.18151X107 - 0.00518X108 -

1.03X109 - 4.23X110 - 3.47X111 - 1.03X112 - 4.23X113 -

3.47X114 + 1.03X115 - 4.23X116 - 3.47X117 - 1.03X118 -

4.23X119 - 3.47X120 + 1.03X121 - 4.23X122 - 3.47X123 -

1.03X124 - 4.23X125 - 3.47X126 + 1.03X127 - 4.23X128 -

3.47X129 - 1.03X130 - 4.23X131 - 3.47X132 + 1.03X133 -

4.23X134 - 3.46X135 

Subject to the constraints: 

Production-distribution constraints: 

- xl - x1o - x19 + x28 + x37 + x46 + xss + x64 + x73 + x82 

+ x91 + x100 2: 0 

- x2 - xll - x2o + x29 + x38 + x47 + x56 + x65 + x74 + x83 

+ x92 + x101 2: 0 

- x3 - x12 - x21 + x30 + x39 + x48 + x57 + x66 + x75 + Xa4 

+ x93 + xl02- 2: 0 

- x4 - x13 - x22 + x31 + x4o + x49 + Xsa + x67 + x76 + x85 



+ x94 + x103 ~ 0 

- x5 - x14 - x23 + x32 + x41 + xso + x59 + x68 + x77 + x86 

+ x95 + x104 ~ 0 

- x6 - x15 - x24 + x33 + x42 + x51 + x6o + x69 + x78 + x87 

+ x96 + x 105 ~ 0 

- x7 - x16 - x 25 + x34 + x43 + x52 + x61 + x7o + x79 + Xaa 

+ x97 + x106 ~ 0 

- Xa - x17 - x26 + x35 + x44 + x53 + x62 + x71 + Xao + x89 

+ X98 + X 107 ~ O 

- x9 - x1a - x27 + x36 + x45 + x54 + x63 + x72 + xa1 + x9o 

+ x 99 + x1oa ~ 0 

Distribution and final regional demand constraints: 

- x2a - x29 - x3o - x31 - x32 - x33 - x34 - x35 - x36 + x109 

+ Xno + xll1 ~ 0 

- x37 - x38 - x39 - x4o - x41 - x42 - x43 - x44 - x45 + x112 

+ x113 + xll4 ~ 0 

- x46 - x47 - x48 - x49 - xso - x51 - x52 - x53 - x54 + x115 

+X116+X117~ 0 

·- x55 - x56 - x57 - Xsa - x59 - x6o - x61 - x62 - x63 + x11a 

+ x119 + x12o ~ 0 

- x64 - x65 - x66 - x67 - x68 - x69 - x7o - x71 - x72 + x121 

+ x122 + x123 ~ 0 
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And 

X . 2:: 0 J = 1, 2, ...... , 135 
J 



APPENDIX F 

INFEASIBLE SOLUTION OF LEMKE'S ALGORITHM 

FOR TEST PROBLEM 1 
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Test Problem 1 (Source: Reference 21) 

z (1) = 15.03759 z (2) = 11.5 z (3) = 5.5 

z ( 4) = 5.5 z (5) = 23.0 z (6) = 37.5 

w (7) = 1.0 w (8) = 1.0 w (9) = 1.2 

w ( 10) = 1.0 W(11) = 1.2 W(12) = 1.0 

w ( 13) = 0.0 W(14) = 2.0 W(15) = 3.0 

W(16) = 2.0 W(17) = 0.0 w ( 18) = 1.0 

W(19) = 3.0 W(20) = 1.0 W(21) = 0.0 

W(22) = 0.0 W(23) = 1.5 W(24) = 2.0 

W(25) = 1.5 W(26) = 0.0 W(27) = 1.0 

W(28) = 2.0 W(29) = 1.0 W(30) = 0.0 

W(31) = 0.0 W(32) = 0.0 w ( 33) = 0.0 

W{34) = 0.0 W(35) = 0.0 W(36) = 0.0 

W(37) = 0.0 W(38) = 0.0 W(39) = 0.0 

W(40) = 0.0 W(41) = 0.0 W(42) = 0.0 

W(43) = 20.0 W{44) = 40.0 W(45) = 0.0 

W(46) = 0.0 W( 47) = 0.0 W(48) = 0.0 

W(49) = 0.0 w (50) = 0.0 W(51) = 15.03759 

W(52) = 11.5 W(53) = 5.5 W(54) = 5.5 

W(55) = 23.0 W(56)·= 37.5 W(57) = 0.0 

W( 58) = 0.0 W(59) = 0.0 W(60) = 0.0 

W(61) = 0.0 W(62) = 0.0 w ( 63) = 0.0 

W(64) = 0.0 W(65) = 0.0 W(66) = 0.0 

W(67) = 0.0 W(68) = 0.0 W(69) = 15.0 

W(70) = 15.0 
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