
SEPARABLE PROGRAMMING ANALYSIS OF SPATIAL

COMPETITIVE MARKET MODELS

By

SHIN AN CHIANG
Pt

Bachelor of Science in Engineering
National Cheng Kung University

Tainan, Taiwan
1973

Master of Science
University of Wisconsin

Madison, Wisconsin
1980

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE

December, 1986

lhc5'>i~
tq
cs

SEPARABLE PROGRAMMING ANALYSIS OF SPATIAL

COMPETITIVE MARKET MODELS

Thesis Approved:

Dean of the Graduate College

1263941

i i

PREFACE

The objective of this study is to analyze spatial competitive

market equ i 1 i bri urn mode 1 s by separab 1 e programming. Separab 1 e pro-

gramming is an application of grid linearization techniques for appro­

ximating nonlinear separable functions with linear segments. This

paper uses a grid refinement program to generate different grid sizes,

a matrix generator to convert MINOS input format to MPSX input format,

a trans 1 a tor program to transform MPSX output standard format to a

readable format, an inverse program to convert results of linear

programs into the variables of the quadratic programs, an MPSX program

to execute the MPSX package, a MINOS program to execute the MINOS

package, and the MINIT program to execute linear programming problems.

I would like to express sincere gratitude to my major advisor Dr.

Donald W. Grace for his guidance, motivation, and invaluable help. I

am also thankful to Dr. Keith D. Willett, Dr. John P. Chandler, and Dr.

Ramesh Shard a for the·i r i nsi ghtfu 1 suggestions during the course of

this work. 15

My deepest gratitude?to my parents for their encouragement and for

their love.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION • 1

II. BACKGROUND AND LITERATURE REVIEW . 3

Separable Programming . . 3
Limitation of the Method 4

Linear Programming . 5
Quadratic Programming 7

Availability of Quadratic Programming Software
and Approximations 8

III. METHODOLOGY 10

Applicability of Mathematical Programming Models to
Spatial Competitive Market Analysis • • 10

Development of the Separable Programming Model 13
The Conceptual Model of the Program • 16

Grid Refinement Program. 17
Matrix Generator Program 18
Translator Program • 18
Inverse Program. 18
MINOS Program . 19
MPSX Program 19
MINIT Program • 19

IV. A COMPARISON OF FEATURES . 20

General . 20
Performance Tests 21
Test Criteria 23

Accuracy • . • 23
Computational Efficiency 23
Human Efficiency 25

V. RESULTS AND DISCUSSIONS 27

VI. CONCLUSIONS AND RECOMMENDATIONS 34

Conclusions . 34
Recommendations • 34

LITERATURE CITED. 36

iv

Chapter Page

APPENDICIES • 38

APPENDIX A ~ GRID REFINEMENT PROGRAM 39

APPENDIX B - MATRIX GENERATOR PROGRAM • 41

APPENDIX C - TRANSLATOR PROGRAM 45

APPENDIX D - MATHEMATICAL STATEMENT OF TEST PROBLEM 1 • 48

APPENDIX E - MATHEMATICAL STATEMENT OF TEST PROBLEM 2 . 51

APPENDIX F - INFEASIBLE SOLUTION OF LEMKE'S ALGORITHM FOR
TEST PROBLEM 1. 56

v

LIST OF TABLES

Table

I. Summary of the Programs •

II. A Description of Test Program 1 •

III. A Description of Test Program 2 •

IV. MINOS Input Format ..
V. Accuracy and Speed of MINOS, MPSX and MINIT for

Test Problem 1.

VI. Accuracy and Speed of MINOS, MPSX and MINIT for
Test Problem 2.

VII. The Impact of Different Basic Points for Test
Prob 1 em 1 • ·

VIII. Test Problem 1 Partial Results of MPSX SOLUTION Output

Page

20

21

22

26

27

28

30

Columns Section 31

IX. Summary of Pros and Cons for MPSX, MINOS, and MINIT . 33

vi

LIST OF FIGURES

Figure

1. Grid Linearization of the Demand Curve •

2. Relationship of Programs and Datasets

3. Objective Values vs. Number of Intervals

vii

Page

15

17

31

CHAPTER I

INTRODUCTION

Mathematical programming specifications of spatial competitive

market equilibrium problems have appeared extensively throughout the

economics literature. The basic structural foundations for these models

were first provided by Samuelson [1]. Samuelson•s original specification

was for a single commodity with multiple regions. Takayama and Judge [2]

extended Samuelson•s work to multi-market equilibria using quadratic

programming and have become the standard reference for such extensions.

Furtan et al. [3] have utilized this conceptual model and applied

quadratic programming to problems of international trade in Canadian

agriculture.

A major concern in the use of mathematical programming specifica­

tions for spatial competitive market equilibrium models is generating

numerical solutions. As noted previously, the Takayama and Judge models

were based on a quadratic programming specification. Polito et al. [4]

have pointed out that, in actual applications, relatively small quadratic

programming prob 1 ems have been so 1 ved. These authors have a 1 so noted

that an extreme inefficiency may be achieved by always relying on quad­

ratic programming, i.e., the algorithm fails to solve the problem or the

wrong answer is given. This, in turn, has motivated the development of

approximations or alternative solution procedures. Dulay and Norton [5],

for example, have shown how a quadratic objective function can be

1

2

approximated as a linear objective function with the use of separable

programming. This approach has the advantage of a 11 owing use of the

simplex method for routine numerical solution, thereby expanding the

size and scope of problems which can be considered.

The purpose of Dr. Willett•s work [6] is to present a single

commodity spatial equilibrium model stated as a linear programming

problem. The linearization techniques employed by Duloy and Norton were

used to develop the linear programming model. This is the technique to

approximate nonlinear separable functions with linear segments. Separa­

ble functions are functions that can be expressed as sums of expressions

of a single variable. The optimizing spatial competitive market equili­

brium formulation is based on the assumption that producers are profit

maximizers and that consumers• behavior is adequately described by a set

of aggregate demand functions in the space of prices and quantities.

Supply functions are represented in this model through producers•

technology and behavior specifications, including resource limitations,

and the objective function. The perceived contribution of this thesis is

the implementation of Willett•s methodology which allows models of

spatial competitive market equilibria to be solved as standard linear

programming problems.

CHAPTER II

BACKGROUND AND LITERATURE REVIEW

Separable Programming

Separable programming is a mathematical programming technique that

solves a linear programming problem constructed to be a good approxima-

tion of a nonlinear problem. The data for the linear problem result

from the evaluation of the objective and constraint functions of the

nonlinear problem on a grid of points spanning a suitable portion of

the space of the problem, and substituting a piecewise linear function

for each nonlinear function.

Let x1, x2, ••• xs be a collection of n-vectors. Any point x of

the convex hull of this collection may be written

s
X = I: OS xs (Eq. 1)

Where s=1

I: D = 1 and Ds 2_ 0 s s
(Eq. 2)

for a 11 s

Given any function g of x, the linearization of g on the grid x1,

xs is attained through the approxirnati on by using the same Ds as in

(Eq. 1).

(Eq. 3)

Any mathematical programming problem becomes a linear problem in

the nonnegative variables Ds if x, g(x), and f(x) are replaced through-

3

4

out by their representati ens above. Using this representation, the

mathematical programming problem may be stated in the approximate form:

Minimize L: D F(x) s s s
subject to the constraints

~ OS = 1

~ Dsgi (xs) > 0

for all i

(Eq. 4)

(Eq. 5)

(Eq. 6)

The observations above make grid linearization an effective tool

for problems having the proper convexity; but where-convexity does not

obtain, a more refined technique must be used [7].

Limitation of the Method

This method cannot be called a general-purpose nonlinear

programming procedure, because it solves nonlinear programming problems

with the following important constraints:

1. Each nonlinear function must be a function of only one

variable or a linear combination of such functions, that is, "separa-

ble". However, in many cases nonseparable functions can be converted

to separable forms by using appropriate transformati ens. The appro­

priate transformations depend on the particular functional forms.

Hadley [8] discussed several possible transformations including trans­

formation to logs and the definition of new variables (For example, Xey

can be transformed to natural logarithm expression LnX + Y).

2. Each function must be polygonal, or replaceable by a polygonal

approximation to it. In other words, it must be able to be described by

a piecewise linear function. This approximation automatically increases

the number of variables and thus incurs a substantial computational burden.

5

3. Separable programming does not necessarily lead to the global

optimum and furthermore gives no indication of how far the separable

programming solution might be from the global optimum [9].

Despite these disadvantages, separable programming has been used for

a number of practical problems [10], and computer programs are avail­

able for it [11].

Linear Programming

Linear programming (LP) is an optimization method applicable for

the solution of problems in which the objective function and the con­

straints appear as linear functions of the decision variables. The

constraint equations in a linear programming problem may be in the form

of equalities or inequalities. The linear programming type of optimi­

zation problem was first recognized in the 1930s by economists while

developing methods for the optimal allocation of resources. During

World War II the United States Air Force sought more effective

procedures of a 11 ocati ng resources and turned to 1 i near programming.

George B. Dantzig, who was a member of the Air Force group, formulated

the general linear programming problem and devised the simplex method

of solution in 1947. 'This was a significant step in bringing linear

programming into wider usage. Afterwards, much progress was made in

the theoretical development and in the practical applications of linear

programming. The theoretical contributions made by Kuhn and Tucker had

a major impact in the development of the duality theory in LP. the

work of Charnes and Cooper was directed toward the industrial applica­

tions of LP. In the food processing industry, linear programming has

been used to determine. the opt·imal shipp·in.g. plan for. the. distribution

6

of a particular product from the different manufacturing plants to the

various warehouses. The optimal routing of messages in a communication

network and the routing of aircraft and ships can also be decided by

using linear programming [12].

The general linear programming problem can be stated in the

following standard form:

Minimize T F(x) = C X

subject to the constraints

A X > B

X > 0

Where

xl

x2

X =

xn

all a12

A = a21 a22 . . .

B =

aln

. . a2n

bl

b2

bm

c =

(Eq. 7)

(Eq. 8)

(Eq. 9)

The case n = m is of no interest, for then there is either a

unique solution X which satisfies Eqs. (8) and (9) (in which case there

can be no optimization) or no solution, in which case the constraints

are inconsistent. The case m < n corresponds to an underdetermined set

of linear equations which, if they have one solution, have an infinite

number of solutions. The problem of linear programming is to find one

7

of these solutions satisfying Eqs. (8) and (9) and yielding the minimum

of objective function.

Quadratic Programming

A quadratic programming (QP) problem is the most well-behaved

nonlinear programming problem. In this problem, the objective function

is assumed convex (to assure global minimum) and all the constraints

are linear. Hence quadratic programming problems can be solved by

suitably modifying the simplex method of linear programming. In some

practical optimization problems, the objective and constraint functions

are separable in the design variables. Separable programming techniques

are useful for solving such problems.

A quadratic programming problem can be stated as:

Minimize f(X) = cTX + 1/2 xTo.x

subject to the constraints

Where

all

A = a21

aml

A X~ B

X> 0

X -

a12

a22

.
am2

X. n
.

. .
.

B =

aln

a2n and D

.
amn

bl

b2

bm
....

dll d12

= d21 d22

c =

d nn

(Eq. 10)

(Eq. 11)

(Eq. 12)

8

In Eq. (10), the term X T D X/2 represents the quadratic part of

the objective function with D being assumed a symmetric positive defi­

nite matrix. If D = 0, the problem reduces to a LP problem. The

solution of the quadratic programming problem stated in Eqs. (10) to

(12) can be obtained by using the Lagrange multiplier technique.

Details are in the reference [13].

Availability of Quadratic Programming Software

and Approximations

Quadratic Programming is both a special case of nonlinear

programming and an extended case of linear programming. Consequently,

software from both areas has been adapted for quadratic programs. The

original approach to quadratic programming was by Wolfe, using the

Kuhn-Tucker conditions. The Kuhn-Tucker conditions form,a.,large linear

program, with additional complementary slackness conditions. Wolfe

then utilized a variant of the simplex algorithm which incorporated

provisions to enforce the complementary slackness conditions. Many

available algorithms follow these principles.

In the early 1960s, Cottle and Dantzig, and Lemke developed the

complementary pivoting theory for solution of quadratic problems. This

approach solves problems via a process which allows only one of a pair

of variables in any basis [14].

The third algorithmic approach for quadratic programming is based

on nonlinear gradients. This theory was presented in an article by

Murtagh and Saunders [15]. Later, this work culminated in the Modular

In-core Nonlinear Optimization System (MINOS) package [16].

9

Fourth, there is the decomposition procedure based on Bender's

work [17].

Lemke's complementary pivoting algorithm [18] and MINOS package

are currently available at Oklahoma State University. But according to

author's experience, when running test prob 1 em 1, the camp 1 ementary

pivoting algorithm cannot find the feasible solution. The infeasible

solution is given in Appendix F. Therefore, until this difficulty can

be resolved, only nonlinear gradient theory is considered here in the

comparison with separable programming method.

CHAPTER III

METHODOLOGY

Applicability of Mathematical Programming Models

to Spatial Competitive Market Analysis

The spatial competitive market equilibrium which is to be modeled

can be summarized in the following way. Two or more regions with known

demand functions and production functions produce and consume a homo­

geneous product. Since goods can be shipped back and forth between

regions, therefore, the regions are separated but can communicate for a

price (transfer costs). Given this information, the problem is to

determine the equilibrium levels of production, consumption, and prices

in each region and equilibrium trade flows between .regions.

An optimal solution to the problem described above is characterized

by three equilibrium conditions. First, prices will differ between any

two regions by an amount that is less than or equal to the transfer

costs. For the second condition, assume that the quantity of a good

which is produced and consumed in the same region is viewed as a

transfer flow to the region itself. Then demand in each region equals

the trade flows to that region. Finally, there is an implied condition

that the equilibrium price and quantity must lie on the implicit supply

function and the demand function.

The basic components of the spatial competitive market can match

those of mathematical programming models. Mathematical programming

10

11

models have three basic components: an objective function to be

optimized; a set of alternative activities or processes which can be

used for attaining the objective; and resource or other restrictions on

the solution. The objective function of this model is to maximize the

sum of consumer and producer surplus within a competitive market

system. Activities available for attaining the objective include pro-

duction and distribution of the various commmodities. Finally, limits

on resources available, and institutional restrictions provide con-

straints on the system.

The mathematical programming model that provides a competitive

market equilibrium solution to this spatial problem is driven by an

objective function which Samuelson called the 11 net social payoff 11 •

This objective function is defined as the sum of consumers• plus pro-

ducers• surplus less the total transportation cost for all possible

trade flows. Assume that a single commodity is produced and consumed

in each region. Also assume that the ith region has a known inverse

demand function with demand price as the dependent variable:

Where

D P. = a. - b .q.
1 1 1 1
D p. =the demand prices in region
1

q. = quantity demand in region i
1

a.= demand intercepts in region
1

b.= demand slopes in region i
1

(Eq. 13)

The objective function (expressed in dollars) is formed by subtract-

ing explicit production costs and the cost of shipping commodities

between regions from the area under the demand curve. Let c .. (dollar/
1

unit commodity) denote the explicit cost for purchased inputs, Y. re-
1

present the amount of the commodity produced in region i, and lett ..
1J

12

(dollar/unit commodity) denote the unit cost of shipping the commodity

from region i to region j. A 1 so 1 et Xi j represent the amount of the

commodity from region i to region j. Then the objective function is

written as:

L: (a. -1/2 b.q.)q.- ~ciYi- ~~tiJ: Xi·J· (Eq. 14)
i 1 1 1 1 1 1J

The search for optimal demands, production levels, and prices is

bounded by several constraints. For each region, the quantity of the

commodity demanded is less than or equal to the quantity supplied by

that region p 1 us the quantity shipped from other regions. This con-

straint is written as:

q. < :~X1·J·
J -1

for all j

(Eq. 15)

For each region, total shipments is less than or equal to total produc-

tion. This constraint is written as:

EX··<Y· j 1J - 1

for all i

(Eq. 16)

There are also resources in each region, such as land and certain

types of labor, whose availability is constrained. This, in turn,

means that an additional constraint must be imposed on the production

possibilities set for each region. Let dri represent the amount of re­

source r necessary to produce one unit of the commodity in region i and

let Br·i denote the maximum amount of the rth resource available in

region i. Then the resource availability constraint in the ith region

can be written as:

d . Y. < B .
r1 1 ·- r1

for a 11 r and i .

(Eq. 17)

13

The constraints (Eqs. 15-17) can be combined ~'lith the objective

function (Eq. 14) to form the single commodity spatial competitive

equilibrium model. This model is written as follows:

max L: (a.; - 1/2 b ;q;)q; - ~ c; Y; - ~~ t;. x.J.
i 1 1J J 1

Subject to

q. <L:X ..
J - i 1J

for all j

r X .• < Y.
j 1J - 1

for all i

~i Y; ~ Bri

for all rand i.

Development of the Separable Programming Model

(Eq. 18)

(Eq. 19)

(Eq. 20)

(Eq. 21)

The mathematical model used in this study is formulated within a

genera 1 1 i near programming frame\"lork. The advantages of 1 i near prog-

ramming arise from the fact that the simplex algorithm is a very

powerful solution technique. It allows a greater amount of detail in

the specification of regional factor supplies and production processes

without making the model prohibitively large or expensive. If the

results of interregional analyses are to be of use to the policy

makers, considerable regional detail is needed.

A major limitation of the quadratic programming formulation is

that the solution algorithms are much more expensive than the simplex

algorithm for equivalent-sized problems. The modeler is thus faced

with the tradeoff of greatly increased solution costs or of giving up

some detai 1 in the specification of regional resources and production

activities.

14

The terms in the objective function representing the area under the

demand function must be linearized before setting up the linear program­

ming model, Following Duloy and Norton, this is done by grid lineariza-

tion which requires prior specification of the relevant range of values

on the demand curve and the use of variable interpolation weights on the

grid points. The interpolation weights become special variables in the

model and their values are jointly constrained by a set of convex combi­

nation constraints. The principal advantage of this technique is that the

demand functions can be approximated as closely as required without requi-

ring additional constraints in the model other than the convex constraints.

First, a function representing the area under the demand curve in

the ith region is defined as follows:

A= (a. - l/2 b.q.)q.
1 1 1 1

(Eq. 22)

For each region, the initial demand curve, defined in its own price­

quantity space, must pass through the point (p~ , qi) as illustrated in

Figure 1. The relevant range of the demand curve is defined and

truncated at point a and b. Next, the relevant range of the demand

curve is partitioned into segments s=l, ••. ,S. For each segment, the

area under the demand curve is written as:

A. = (a. - 1/2 b.q.)q.
1S 1 1 1S 1S

(Eq. 23)

For each segment endpoint, the parameters qi s and A is represent the

cumulative quantity demanded and the cumulative area under the demand

function in the ith region, respectively. The quantity demanded and

the value of the area under the demand curve for the good in the ith

region can be expressed as a weighted combination of the qis and Ais

respectively:

(Eq. 24)

Price

a

Area

A.
lS

I

------~------------1
I

I

I.

Demand Curve

15

Quantity
L---~------------~------------~-----------------

Figure 1. Grid Linearization of the Demand Curve

A.= I A. D.
1 S 1S 1S

The D. are special variables and are defined such that
1S

16

(Eq. 25)

ID. = 1 (Eq. 26)
s 1 s .

With all of the necessary steps completed, the linear programming

model which will yield a spatial competitive market equilibrium can be

written as follows:

Maximize L:L:A ._D. - L:c.Y.- H t~. x ..
is 1S 1S i 1 1 ij 1J 1J

subject to the constraints·

L:q. D. < IX ..
s JS JS - i 1J

for all j

I X •. < Y.
j 1J - 1

for all i

d . Y. < B .
rl 1 - rl

for all rand i.

I D. = 1
S 1S

for a 11

The Conceptual Model of the Program

(Eq. 27)

(Eq. 28)

(Eq. 29)

(Eq. 30)

(Eq. 31)

There are seven programs involved in this thesis: (a) the grid

refinement program, which calculates the cumulative area and the cumu-

lative quantity demanded under the demand function in the i region; (b)

the matrix generator program, which converts MINOS input format to the

Mathematical Programming System Extended (MPSX) input format; (c) the

translator program, which translates MPSX output Standard format to a

readable format; (d) the inverse program, which compares the accuracy

of the quadratic part of the objective function between LP and QP

systems; (e) the MINOS program, which executes the MINOS package; (f)

17

the MPSX program, which executes MPSX package; and (g) the MINIT prog-

ram, which solves the linear programming problems. A schematic of

these programs and datasets is given in Figure 2.

MINOS Input
Data

!'

Grid Reflnemint Program

Grid Refinement
Data r------> MINIT

~ ~
I

MINOS -->MATRIX ---> MPSX Input --> MPSX
Generator Data 1

Comparison MPSX Output
Standard Format

INVERSE <--­
Program

!
Readable Format <--- Translator

Program

Figure 2. Relationship of Programs and Datasets

Grid Refinement Program

This program is a starter program for the MPSX package; the user

needs to specify the number of intervals and the basic point value (Pb)

for the grid linearization method. The grid size is calculated by the

formula:

Where

K = (qe- qs) /N

qe: the end node of the interval

(1.45 pb ~ qe ~ 2.0 Pb)

(Eq. 32)

qs: the starting node of the interval

(0.25 pb ~ qs ~ 0.36 Pb)

N number of intervals

K grid size

18

Note that N intervals generate N+l points qk, where qk are equally

spaced, and q1 ~ q2 ~ ••• ~ qn = qe in the interval qs:::; qk ~ qe. The

qk is calculated by the formula:

qk = q k-1 + K (Eq. 33)

The Grid refinement program is given in Appendix A.

Matrix Generator Program

The matrix generator which starts with reading MINOS input data in

the MINOS format, and grid refinement dataset and automatically builds

a mathematical programming model in a format acceptable to the input

procedures of MPSX package. This program can be used to modify the

existing MINOS input format to the MPSX input format. The matrix gene-

rator program is given in Appendix B.

Translator Program

This program is designed to convert MPSX output standard format to
--

a readable format [19]. A standard format is composed of sections

corresponding to various sections of the printed output. The transla-

tor program is given in Appendix C.

Inverse Program

The inverse program converts results of linear programs into the

variables of the original quadratic programs. These results will be

19

substituted into equation (24) and compared with the outputs from

running the quadratic programs directly.

MINOS Program

This program reads MINOS input format and executes the MINOS

package. The MINOS package is a Stanford University product designed

to solve large-scale optimization problems.

MPSX Program

This program reads MPSX input format and executes the MPSX package.

The MPSX package is an IBM program product intended for the study of

linear programming applications.

MINIT Program

This program reads the generated MPSX input data and executes the

linear programming problems. The MINIT algorithm was presented as al­

gorithm 333 in the Communications of the ACM [20].

A 11 of the seven programs are programmed in FORTRAN on an IBM

308lk mainframe. The translator program is delivered to the users in

load module form. The MINOS package and MPSX package, are also written

in standard FORTRAN. However, source code for MPSX is not available

and MINOS cannot legally be exported to some countries.

The comparisons of these approaches will be described in Chapter

IV.

CHAPTER IV

A COMPARISON OF FEATURES

Genera 1

The two packages and MIN IT program compared in this thesis are

listed in Table I. All of them offer linear programming; the MINOS

package has the capabilities to solve quadratic programming problems,.

In this study, the results derived from the MPSX package and MINIT

program are compared with the results obtained from the MINOS package.

TABLE I

SUMMARY OF THE PROGRAMS

Code Maximize Program User
Name Basic Theory Size* Interface

MINOS Gradient L Available

MPSX Revised Simplex
Method VL Available

MIN IT Dual Simplex
Method

*Problem size refers to the number of v ari ab 1 es. L (large, 500-
3000; VL (very large), over 3000.

20

21

Performance Tests

The comparisons presented are based on the program capabi 1 i ties

and demonstration runs. These three programs are compared by attempt-

ing to solve two test problems. Tables II and III exhibit major statis­

tics of the test problems 1 and 2 employed in this study; description

of test problem 1 is in reference [21], and test problem 2 is in refer-

ences [22] and [23]. The mathematical statement of test problems 1 and

2 are given in Appendices D and E respectively. These problems are

realistic problems in that neither is completely randomly generated.

They both include realistic coefficients and structure.

TABLE II

A DESCRIPTION OF TEST PROBLEM 1

Number of*
Name Intervals Rows Columns Density

MINOS 28 42 7.483

MPSX 5 35 66 6.36

MPSX 6 35 72 6.48

MPSX 9 35 90 6.78

MPSX 10 35 96 6.87

MPSX 15 35 126 7.18

~~PSX 20 35 156 7.40

*Number of intervals is applies for grid linearization method
""'"---~.~---

··~r

/

22

Test Problem 1 -> World Energy Model

This is a world petroleum model developed by Takayama to determine

the optimal crude oil quantity processed and the final product optimal

price.

Test Problem 2 -> Electrical Energy Model

This model tries to enhance the likelihood that economic effici-

ency will be obtained in the pricing and allocation of electrical

energy in the USA.

TABLE I II

A DESCRIPTION OF TEST PROBLEM 2

Number of*
Name Intervals Rows Columns Density

MINOS 18 135

MPSX 5 46 243 5. 62

MPSX 6 46 270 5.70

MPSX 9 46 351 5.87

~~PSX 10 46 378 5.91

*Number of intervals is applied for grid linearization method

23

Test Criteria

A good program should provide a fast, accurate solution to a

problem. The program should take minimum time to prepare input. These

criteria are not equally important for all users. While accurate solu­

tions are probably critical to all, fast execution of the simplex algo­

rithm may be important to somebody who has to so 1 ve rather 1 arge

problems regularly. On the othe hand, ease of preparing input may be

more important than solution time to a particular user. Three criteria

for comparison are defined here: accuracy, computation a 1 efficiency,

and human efficiency.

Accuracy

The word 11 approximation 11 implies that error is being introduced

into the process. In one sense, this is always true; in another

sense, this may never be true. Generally, if all problems solved by QP

represent truly quadratic realities, then solution of a quadratic pro­

gramming problem by any other procedure will introduce error. In this

sense, error always occurs when approximations are used. However, the

real test of approximation adequacy should not involve closeness of the

approximated so 1 uti on to the quadratic programming so 1 uti on. Rather,

the criteria should involve the real world purpose of the modeling effort.

In this sense, the quadratic program itself may be an approximation.

Computational Efficiency

One facet of computational efficiency involves model size. In

some cases, the number of rows and columns introduced by an approximation

24

introduced by an approximation yields a larger problem than the

associated quadratic problem. If the number of quadratic variables is

large relative to the total number of variables, then the approximations

of the problem size are likely to be larger than the Kuhn-Tucker

system. Conversely, when relatively few quadratic variables are

involved, the approximation may be much smaller. Thus approximation

may yield either larger or smaller problems. However, size and solution

time are not perfectly correlated [24]. Nevertheless, when the appro­

ximation is significantly smaller, a computational advantage will

likely exist.

A second computational efficiency consideration involves algorithm

characteristics. Unfortunately, two solution packages employing the

same basic algorithm rarely, if ever, perform the same. Solution

packages are quite different in numberical tactics employed to manage

round-off error and data storage, etc. These affect computation a 1

efficiency. Thus, codes may possess characteristics which lead to

differences in computational performance (for instance, codes may be

good on large problems; good on certain structures, numerically stable

or unstable). Programming language and style also affect computational

efficiency. Crowder et al. [25] in discussing computational efficiency

comparisons state that (a) results derived from small problems are not,

in general, representative of results for larger applied problems, only

a conjecture may be made; (b) results on one problem structure are not

true on all problem structures; (c) comparing computer codes written by

different programmers for different uses leads to conclusions which are

valid only on the codes used, not on the methods themselves. Thus,

25

computational efficiency depends on a complex set of issues involving

the problem and algorithms at hand.

Human Efficiency

The packages accept input in a number of ways. Many approximations

require numerous time-consuming steps once a QP problem has been formu­

lated - forming a separable grid, for instance. Thus, solution via

quadratic algorithms may reduce the human time spent on the problem.

When contemplating an approximation, one should ask whether or not

the approximation procedure needs to be performed multiple times in the

analysis. When the procedure is done repeatedly, the necessary human

time increases. However, many approximations can be handled easily

with a uti 1 ity program. Thus, human efficiency problems may be mi ti­

gated by computerizing the approximation. However, this option itself

has costs. Obviously this indicator is difficult to measure, but the

importance should not be ignored.

MINOS, MPSX, and MINIT all support the MINOS format; the input

formats for these problems are quite similar. As can be seen from

Table IV, only nonzero coefficients need to be entered. The matrix

generator and the starter program can convert MINOS input format to an

external file accepted by MPSX Package and MINIT program. For a large

problem, when the format becomes quite cumbersome, the matrix genera­

tor is proven to be powerful.

26

TABLE IV

MINOS INPUT FORMAT

MPSX/370 R1 6 PTF9 MPSCL EXECUTION

NAME MPSX1
ROWS

N OBJECTVE
G CS1
G CS2
G P~111
G PR 112
r, PR121
r, PR122
G PR2 11
G PR212
G PR?21
G PR222
G PR311
G PR312
G PR321
G PR322
G PD 11
G PD12
G PD21
G PD22
G PD31
G PD32
G ASR1
G ASR2
G DIS11
G DIS12
G DIS21
G DIS22
G DIS31
G DIS32
E CD1
E C02
E CD3
E CD4
E CD5
E COG

COLUMNS
X1 OBJECTVE 1.00000 CS1 1.00000
X 1 PR 111 .50000 PR 11:? .60000
X 1 I\SR1 1 .00000
X2 OBJECTVE 1.00000 CS1 1.00000
X2 PR211 .50000 PR212 .60000
X2 I\SR2 1. 00000
X3 OBJECTVE 1.20000 CS1 1.00000
X3 PR311 .50000 PR312 50000
X4 OBJECTVE 1.00000 CS2 1 .00000
X4 PR121 .70000 PR122 .40000
X4 ASR1 1. 00000
X5 OBJECTVE 1.20000 CS2 1 .00000
X5 PR221 . 70000 PR222 .40000
X5 ASR2 1.00000
X6 OBJECTVE 1.00000 C'32 1.00000
X6 PR321 .GOOOO PR322 .50000

CHAPTER V

RESULTS AND DISCUSSION

The accuracy and speed of the software are important for the large

problems. For comparison purposes, two te5t problems are solved on all

of the systems. Table V exhibits results of the optimal solutions

obtained by MINOS, MPSX, and MINIT for test problem 1. Table VI de-

scribes results of the optimal solutions obtained by MINOS, MPSX, and

MINIT for test problem 2.

Code
Name

MINOS
MPSX
MPSX
MPSX
MPSX
MPSX
MPSX
MIN IT
MIN IT
MIN IT
MIN IT
MIN IT
MIN IT

TABLE V

ACCURACY AND SPEED OF MINOS, MPSX, AND MINIT
FOR TEST PROBLEM 1

Number of Format Convert CPU
Intervals (a) Time (b) Time (c)

0.00079
5 0.00013 0.00046
6 0.00013 0.00047
9 0.00013 0.00048

10 0.00013 0.00048
15 0.00013 0.00050
20 0.00013 0.00052
5 0. 00013 0.00048
6 0.00013 0.00059
9 0.00013 0.00065

10 0.00013 0.00067
15 0.00013 0.00096
20 0.00013 0.00129

27

Objective
Value

6584.97
6533.78
6574.95
6574.95
6580.95
6582.54
6574.90
6574.42
6574.89
6571.43
6574.90
6580.46
6582.32

Code
Name

MINOS
MPSX
MPSX
MPSX
MPSX
MIN IT
MIN IT
MIN IT
MIN IT

TABLE VI

ACCURACY AND SPEED OF MINOS, MPSX, AND MINIT
FOR TEST PROBLEM 2

Number of
Intervals

5
6
9

10
5
6
9

10

Format Convert
Time (b)

0.00018
0.00018
0.00018
0.00018
0.00018
0.00018
0.00018
0.00018

CPU
Time (c)

Fail
0.00053
0.00054
0.00057
0.00058
0.00081
0.00090
0. 00114
0.00124

28

Objective
Value

Fai 1 (d)
318426.22
328874.43
346285.67
349767.64
318424.80
328873.00
346284.30
349767.40

(a) The basic point values are available in reference [21]. In
this case, these values are 12.7, 7.7, 4.3, 4.3, 18.0, and
19.0 respectively.

(b) This is the CPU time of the starter program.
(c) CPU time is measured in hours. All these jobs are run during

weekend to minimize the effect of other jobs affecting CPU
time.

(d) Failed to solve the problem because of unbounded (or badly
scaled).

CPU time is the central processing time needed for executing the

algorithm. Generally, CPU time increases with the increased number of

variables. For LP problems, it is evident that MPSX take less CPU time

than MINIT. For MPSX, the CPU time keeps almost steady for different

number of intervals. For MINIT, the CPU time increases with the

increased number of intervals. For MINOS, the CPU time is longer than

that of the other two programs. Therefore, the solution algorithm of

MINOS is much more expensive than the simplex algorithm for the same

29

problem and the solution algorithm of MINIT is much more expensive than

the MPSX package algorithm for the LP problems.

Numerical accuracy is a measurement of the algorithm's ability to

compute a "correct" answer in the face of numerical instability. Table

V and VI indicate that MINIT is able to obtain the same optimal solu­

tion as MPSX in two test problems. The purpose of this study is to

approximate nonlinear separable functions with linear segments. Table

V also indicates that the average accuracy differences between linear

programming and quadratic programming is within 2%.

The ratio of the largest coefficient (147.9043) to the smallest

coefficient (0.00023) in test problem 2 is about 106• This gives MINOS

numerical difficulty, which means that MINOS is sensitive to scaling.

There is no fixed rule for arriving at either the optimal grid

size or the optimal number of grids for a problem. However, the use of

large grid sizes (large, relative to the total range of validity of the

separable problem) may produce less reliable results. As illustrated

in Table V, when the number of intervals is 5, the objective value

obtained from the MPSX package is 6533.78.

In order to test the impact of basic point values, Table VII lists

the test problem 1 objective values by using three different basic points

on the MPSX package. Figure 3 interprets these results graphically.

The accuracy of nonlinear variables depends on the number of inter­

vals and different basic point values, Table VII and Figure 3 indicate

that there is no systematic pattern and Table VII also indicates that

when using different basic points, it does not necessarily give closer

values to MINOS's result. However, the use of finer subdivisions gives

closer answers.

Number of
Intervals

5

6

9

10

MINOS

(a)

(b)

TABLE VII

THE IMPACT OF DIFFERENT BASIC POINTS
FOR TEST PROBLEM 1

Factor Objective Nonlinear Variables
(a) Value 1 2 3 4

0.85 6559.17 12.31 7.46 4.17 4.17
1.0 6533.78 10.92 8. 78 3.7 4.9
1.2 6553.63 11.98 7.95 4.44 4.44

0.85 6571.59 11.48 8.07 4.51 4. 51
1.0 6574.95 12.7 7.7 4.3 4.3
1.2 6534.6 11.68 7.39 3.96 3.96

0.85 6581.22 11.63 8.07 4.5 4.51
1.0 6574.95 11.71 8.30 3.97 4.63
1.2 6561.95 11.68 7.08 3.96 3.96

0.85 6572.71 11.02 7.46 4.17 4.17
1.0 6574.95 12.7 7.7 4.3 4.3
1.2 6573.94 11.88 7.95 4.44 4.44

6584.97 11.69 7.76 4.45 4.3

30

(b)
5 6

18.45 19.45
20.37 17.32
18.58 18.61

18.87 18.56
18.0 19.0
19.16 19.85

18.87 18.42
19.32 18.05
19.96 19.96

19.58 19.60
18.0 19.0
18.58 18.71

18.74 19.06

Factor 1 means the basic point values are the same as in refe-
renee [21]. Factor 0.85 means the basic point values which
are the products of 0.85 and factor 1•s basic point values
(i.e., 10.795, 6.545, 3.655, 3.655, 15.3, and 16.15).

Nonlinear variables are obtained by inverse program.

In separable programming, data are given as in a linear program, with

the addition that there is one set of special variables for each nonlinear

function (see Eqs. 24, 25, and 26). The simplex algorithm is modified

to inhibit pricing (caluclation of the reduced cost coefficients) of
s

the special variables within each set. Table VIII giveri the results of

the simplex algorithm applied to test problem 1.

6590

6580

6570

6560

6550

6540

6530

5 6 9

Number of Intervals

Figure 3. Objective Values vs. Number
of Intervals

TABLE VII I

10

TEST PROBLEM 1 PARTIAL RESULTS OF MPSX SOLUTION
OUTPUT, COLUMNS SECTION

Variable Quantity Reduced Cost
(1) Activity (q) (2) Coefficient

011 0. 3.81 96.71

012 1. 7.37 0.

013 0. 10.92 72.36

014 0. 14.48 312.76

015 0. 18.03 142.61

051 0. 5.40 43.71

052 o. 10.44 762.05

053 0. 15.48 254.02

054 0.02778 20.52 0.

0s5 0.97222 25.56 0.

31

32

(1) The number of intervals for this example is 5. Therefore,
there are five special variables for each nonlinear function
in this problem. D11 means the first special variable (Eq.
26) in the first set.

(2) Quantity values are the point values along the q Axis (see
Figure 1).

To have a workable separable programming algorithm, it must be

shown that the process terminates after a finite number of iterations

and that the terminal solution is optimal in a local sense [9]. That

is, no other feasible solution sufficiently close to it will have a

better objective value. Consider the terminal solution and examine a

particular set of special variables S =(Oil, • ., Din). In view

of Eqs. (24, 25, 26) and Table VIII, there must be at least one element

of S in the basis. Two cases can arise:

Case 1 Two (say Dis' Di(s+T).) of S are basic, and Dis 71" 0, Di (s+1) ~

o.
Case 2 One (say Drs> of S is basic. Necessarily Dis = 1.

If case 1 occurs (Dis' Di(s+1) basic), express the nearby solution

using only qis (Dis) and qi(s+1)<Di(s+l))- i.e., stay between A is and

Ai(s+1) on the graph of A=f(q), Figure 1. If case 2 occurs stay

between Ai(s- 1) and Ais or A;s and A.i(s+1), using only qi(s- 1)

(DiCs-1)) and qis(Dis) or qis (Dis) and qi(s+1) (Di(s+1)). But all of

these special variables were already priced at the last simplex itera-

tion and found to have disadvantageously reduced cost coefficients.

Hence, evaluating any nearby feasible solution via the reduced objec­

tive functional shows it to have a less desirable (at any rate, no

33

better) objective value than the terminal one. So the terminal one is

a local optimum if this is not a convex programming problem.

MPSX has the capability to check the sensitivity of the solution

by ranging and parametric programming. MINOS has the capability to

solve the nonlinear problems. A summary of the features is presented

in Table I X.

Code
Name

MPSX

MINOS

MIN IT

TABLE IX

SUMMARY OF PROS AND CONS FOR MPSX, MINOS,
AND MINIT

Pros

Sensitive analysis
Post-optimal analysis
CPU time is shorter

Nonlinear constrained
optimization

Unconstrained optimi­
zation

Portable

Cons

Non-portable

CPU time is longer
Sensitive to scaling

CPU time depends
strongly upon the
number of variables

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Using grid linearization techniques to approximate nonlinear

functions is proven to be useful. The analyzed results indicate that

the approximation error is with 2%.

For LP problems~ MINIT algorithm is much more expensive than the

MPSX package. The CPU time is pretty steady for the MPSX package but

not for the MINIT program. However, MINIT is portable but MPSX is not.

For Quadratic programs~ MINOS is sensitive to scaling, therefore may

give numerical difficulties for large problems.

Quadratic programs should not always be approximated, nor should

they always be solved as QPs. For small problems, considering computa­

tional efficiency and human effort~ a quadratic programming solver will

be better. Large problems with few quadratic variables seem to be

candidates for approximation. The solution with linear programming is

generally simpler and more reliable.

Recommendations

The benefits from approximation increase with problem size.

Basically, linear programming codes can be utilized on problems which

are larger than can be solved with any quadratic codes. Thus, future

34

35

research work could be continued in three areas: First, a critical

point at which approximation will always be better should be found.

Second, criteria to help the user choose a method should be investi­

gated. Third, if numerical difficulties arise for MINOS package, an

automatic scaling subroutine should be conducted.

LITERATURE CITED

1. Samuelson, P. A. 11 Spatial Price Equilibrium and Linear Programming 11

American Economic Review, 42, (1952), pp. 283-303.

2. Takayama, T., and Judge, G. G. Spatial and Temporal Price and
Allocation Models. North-Holland, New York, 1971.

3. Furtan, W. H., Nagy, J. G. and Storey, G. G., 11 The Impact on the
Canadian Rapeseed Industry·from Changes in Transport to Tariff
Rates 11 American Journal of Agricultural Economics, 61, (1979),
pp. 238-248.

4. Polito, J., McCarl, B. A. and Morin, T. L. 11 Solution of Spatial
Equilibrium Problems with Benders Decomposition .. Management
Science, 26, (1980), pp. 593-605.

5. Dulay, J. H., and Norton, R. D. 11 Prices and Incomes in Linear Pro-
gramming Models 11 American Journal of Agricultural Economics,
57' (1975)' pp. 591-600.

6. Willett, Keith. 11 Moels of Spatial Competitive Market Equilibria:
A Linear Programming Perspective .. Oklahoma State University,
1986.

7. Wolfe, P. 11 Methods of Nonlinear Programming .. in R. L. Graves and
P. Wolfe, Recent Advances in Mathematical Programming. McGraw­
Hill Book Company, New York, 1963.

8. Hadley, G. Nonlinear and Dynamic Programming, Addison-Wesley
Publishing Company, Reading, Mass., 1964.

9. Miller, C. 11 The simplex method for local separable programming ..

10.

11.

12.

in R,. L. Graves and P. Wolfe Recent Advances in Mathematical
Programming. McGraw-Hill Book Company, New York: 1963.

Boggess, W. C., and Heady, E. 0.
of U.S. Agricultural Export,
servation Policies in 1985.
1980. - --

~Separable Programming Analysis
Price and Income, and Soi 1 Con­

Iowa State Uni versi~Iowa,

Neufville, R. D., and Stafford, J. H. Systems Analysis for ~ng{­
neers and Managers McGraw-Hi 11 Book Company, New York, 97 •

Rao, S. S. Optimization Theory and Applications Wiley Eastern
Limited Company, Indian, 1984.-

36

13.

14.

15.

16.

17.

18.

19.

20.

37

Wolfe, P. "The simplex method for quadratic programming" Econo­
metrica, 27, (1959), pp. 382-398.

Cci"ft1e~ W., and Dantzig, G. B. "Complementary Pivot Theory of
Mathemati ca 1 Programming" Linear A 1 gebra and Its App 1 i cation,
1, (1968), pp. 103-126.

Murtagh, B., and Saunders, M. "Large-Scale Linearly Constrained
Optimization" Mathematical Programming, 14, (1978), pp. 41-
72.

Murtagh, B., and Saunders, M. Modular In-core Nonlinear Optimiza­
tion System (MINOS) Users' Manual Stanford Univers1ty, 1983.

Benders, J. F., "Partitioning Procedures for Solving Mixed Varia­
bles Programming Problems." Numerische Mathematik, 4, (1962),
pp. 238-252.

Ravindran, A., "Algorithm 431 A Computer Routine for Quadratic and
Linear Programming Problems" Communications of the ACM, 15(9)
(1972)' pp. 818-820. - -- --

IBM IBM Mathematical Prolramming System Extended/370 - General
Informat1on Manual CH- 9-1090-4, File No. S370-82 IBM Corpora­
tion, New York, 1979.

Rodolfo, C. S., and Subrata, K. S. "Algorithm 333" Communications
of the ACM, 11 (6), (1968), pp. 437-440.

21. Takayama, T. "An Application of Spatial and Temporal Price Equili­
brium Model to World Energy Modeling" Regional Science Asso­
ciation Papers, 41, (1979), pp. 43-58.

22. Uri, N. D. "The Pricing and Allocation of Electrical Energy"
Energy Economics, 6, (1984), pp. 94-101.

23. Uri, N. D. Towards an Efficient Allocation of Electrical Energy
D.C. Heath and Company, Lexington, Massachusetts, 1975.

24. McCarl, B. A. and Tice, T. "Should Quadratic Programming Problems
be Approximated?" American Journal of Agricultural Economics,
62, (1984), pp. 585-589.

25. Crowder, H. P., Dembo, R. S., and Mulvey, J. M. "Reporting Compu­
tational Experiments in Mathematical Programming" Mathematical
Programming, 15, (1978), pp. 316-329.

APPENDIXES

APPENDIX A

GRID REFINEMENT PROGRAM

39

**** ~SO !~?~GROUND HARDCOPY ****
DSNAME=UlG822A.SHW6.CNTL

_.'/':;206:2;. . .:~B (10822,398-62-0158), 'CH:;:ANG' .~:Y.E=(0,5),
,: , C:.ASS=r .. MSGC:.ASS=}:, NO~ I FY=*
1*Pr-.SSWOR:l ????

/!?TQ6F00l DD SYSO~T=A
/;'?':'::.2!002 DD DSN='Cl0822A.!NPUT12.CNTL,DISP=SHR
s.:oB ,:.:sT
C T~:S PROGRAM IS DESIGNED FOR COMPUT!NG AREA :OR DI??E?.ENT
C N~BER OF SEGMENT AT S?ECI?IC QUAN~:TY, A:.SC TH!S PROGRAM
C :N!T:A:.:z::::s 50!-'..E GIVEN VAR:ABLES (N,NC,Ni.,NV)
C N -> N~MBER OF SEGEMNTS
C NC -> N~BER OF CONSTRAINTS
C N:. -> N~3ER OF NONi.INEAR VARIAB:.ES
C NV -> N~BER 0::' LINEAR VARIABLES

c

DIHENSION PM(6) ,W(6) ,WS(6) ,'SG(6) ,5(20,6) ,A(20,6)
DATA N,NC,NL,NV/6,28,6,36/
DATA PM/12.7,7.7,4.3,4.3,18.0,19.0/
DATA W/200.,115.,220.,165.,230.,75./
DATA WS/13.33,10.,40.,30.,10.,2./
DATA FACT/1.00/
IOUT=6
IND=36
DO 90 !=1,NL

90 PM(:}=PM(l)*FACT
WRITE(IOUT,105} N

105 FOR~T(1H1,17HNUMBER OF SEGMENT,I2)
WRI~E(12,126) N,NC,NL,NV,FACT

126 FOR~T(SX,I2,1X,I2,1X,I2,1X,l2,1X,F5.2)
DO 100 J=1,NL
SG(.:)=(1.7*PM(J}-0.3*PM(J))/N
WR:TE(IOUT,106) J

106 FORMAT(SX,6HREGION,I2)
WRITE(IOUT,107) PM(J),SG(J)

107 FORMAT(SX,17HEQUILIBRIUM PRICE,F5.1,2X,17HLENGHT OF SEGMENT,::'10.5)
WRITE(!OUT, 108)

108 FORMAT(15X,8HQuANTITY,4X,4HAREA)
DO :!.10 l=l,N

S(I ,J)=O.
11 0 CONTINUE

DO 120 I=1,N
IF (I .EQ. 1) GO TO 130
SUM=SUM+SG(J)
GO TO 140

130 S(I,J)=0.3*PM(J)
SUM=S(I,J)

140 S(I,J)=SUM
A(I,J)=(W(J)-0.5*WS(J)*S(I,J))*S(I,J)
IND=IND+1
WRITE(!OUT,124) IND,S(I,J),A(I,J)

124 FOR~T(5X,1P~,I3,2X,F10.2,F10.2)
S(I ,J)=-S(l ,J)
WR!TE(l2,125) S(I,J),A(I,J)

125 FORMAT(5X,F10.2,F10.2)
120 CONTINUE
100 CONTINUE

STOP
END

40

APPENDIX B

MATRIX GENERATOR PROGRAM

41

~ ':'58 FOREGROOND HARDCOP! *
:Js:;.;ME=~l DS:2A. SHWS. CNTL

·.::::08::,; COB (:OS22,398-S2-Cl56), 'c:-;:ANG' ,':'!ME={O,Sl,
I ::ASS=A,MSGC~ASS=X,NOT:FY=*
/ ?r-.. ss;.;o:m ????

/'F':'l1F00l DD DSN=Ul0522A.!N?UT11.CN':'~,D:SP=SHR
//F7:2FD01 DD DSN=U10822A.IN?U':'l2.CN':'L,DISP=SHR
//!'':'l6F001 DD DSN=U10522A.INPUT6.CNTL,D!S?=SHR
SC:JE ,LIST
C ':'H:S MATR:X GENERATOR PROGRAM WI~L CON\~RT :NPUT DATA FORMAT
C FOR M:NOS TO INPUT DATA FO~V~T ACCEPTED BY MPSX
C OVA~UE ARE THE OBJECTIVE COEFFIC:ENTS FOR LINEAR VAR:ABLES
C N: -> THE BEGINNING OF X VARIABLE

DIMENSION OVALUE(24)
DATA OVALUE/-1.0,-1.0,-1.2,-1.0,-1.2,-1.0,

* -0. ,-2. ,-3. ,-2. ,-0. ,-1. ,-3. ,-1. ,-0.'
* -D. ,-1.5,-2. ,-1.5,-0. ,-1. ,-2. ,-l. ,-0./

IOU=ll
INl=l2
IN2=16
IV=O
CDVAL=1.0
READ(IN1,35) N,NC,NL,NV,FACT

35 FORMAT(5X,!2,1X,I2,lX,I2,1X,I2,1X,F5.2)
C w~!TE ROWS SECTION

WR::: TE (IOU , 4 5)
45 FO~~T(4HNAME,lOX,5HM?SXl/4HROWS/1X,1HN,2X,8HOBJECTVE)

READ(IN2, 55)
55 FORMAT(//////////)

DO 50 I=l,NC
READ(IN2,56) CON,CNAM1,CNAM2
WRITE(IOU,56) CON,CNAM1,CNAM2

56 FORMAT(A2,A4,A4)
50 CONTINUE

DO 60 I=l,NL
WRITE (IOU, 6 5) I

65 FORMAT(1X,3HE ,2HCD,I1)
60 CONTINUE

C w~ITE COLUMN"SECTION
READ(IN2,66) COL1,COL2
WRITE(!OU,66) COLl,COL2

66 FORMAT(A4,A4)
C SLASHES NUMBER CORRES?ONDSTO NONLINEAR VARIABLES

READ(IN2, 67)
C 36 VARIABLE OCCPUY 82 ROWS IN COLUMN SECTION

67 FORMAT(/////)
DO 200 1=1,82
READ(IN2,68)X,IVALUE,DRESl,DRES2,VALUE

68 FORMAT(A5,I2,7X,A4,A4,F10.2)
IVALUE=IVALUE-6

C FIRST 24 VARIABLES INVOLVED IN THE OBJECTIVE FUNCTION
IF (IVALUE .GT. 24) GO TO 80
IF (!VALUE .EQ. IV) GO TO 80
IV=IV+l
IF (IV .LT. 10) GO TO 76

C WRITE THE OBJECTIVE COEFFICIENTSFOR THE COLUMN SECTION
WRITE(IOU,75) IV,OVALOE(IV)

75 FORMAT(4X,lHX,I2,7X,8HOBJECTVE,F10.2)
GO T080

76 WRITE(IOU,77) IV,OVALOE(IV)

42

so
·c
c~

200

lCS

1:)6

1C7
!OB
l09

llO
:15

116
ll7

l20

125

126
127

l30

135

136
137

140

l45

146
H7

150

155

l56
157

160

165

166
l67
250

P":R!-!; .. ':' { .;}: , :H:·:, =:, Sl:, SHOE.:E:":'\'E, :'l C. 2)
:: \:~~~WE -~~. 10) G: T~ 90
~~:7~(:0~,6S)X,:VALUE.~RES:,~R~S:,vn:UE
G:' ':':' 200
wR:-::::::: oc. e 9 l Jo:. rvr.:.u:::: .nR::::s:. nR:::s:. v;.::::r:::
FOR~~':'(A5,!l,SX,A4,A4,Fl0.2)
CON':'!N~E
!N=t:'*N
DC 2 5 C I = 1 , IN
RE;.:J{ZNl,l05) Q'JAN':',AREA
FOR¥~':'(5X,Fl0.2,Fl0.2)
IVN=!-l
IR=(!VN/N)+l
IV=!+NV
IF (!V .GE. lOO) GO TO l07
wR!':'E (IOU, l 06) IV, AREA
FORMA':'(~X,lHX,!2,7X,8HOBJEC~~.F10.2)
GO TO l09
wR:':'E(IOU,l08) IV,AREA
FOR~':'(4X,lHX,I3,6X,8HOBJECTVE,Fl0.2)
GO TO (110,120,l30,140,l50,160),IK
IF (IV .GE. 100) GO TO ll6
w~!TE(IOO,l15) IV,QUANT,IV,CDVAL
FORMAT(4X,lHX,I2,7X,SHDIS11,3X,Fl0.2/4X,lHX,I2,7X,3HC!l1,5X,Fl0.2)
GO TO 250
WRI':'E(I00,117) IV,QUANT,IV,CDVAL
FORMAT(4X,lHX,I3,6X,5HDISll,3X,Fl0.2/4X,lHX,I3,6X,3HCDl,5X,F10.2)
GO TO 250
IF (IV .GE. lOO) GO TO 126
WRITE(IOO,l25) IV,QUANT,IV,CDVAL
FORMAT(4X,lHX,I2,7X,5HDIS12,3X,Fl0.2/4X,lHX,I2,7X,3HCD2,5X,Fl0.2}
GO TO 250
WRITE(IOO,l27) IV,QOANT,IV,CDVAL ,
FORMAT(4X,1HX,I3,6X,5HDISl2,3X,Fl0.2/4X,lHX,I3,6X,3HCD2,5X,Fl0.2)
GO TO 250
IF (IV .GE. lOO) GO TO l36
w~ITE(IOO,l35) IV,QOANT,IV,CDVAL
FORMAT(4X,lHX,I2,7X,5HDIS21,3X,Fl0.2/4X,1HX,!2,7X,3HC:J3,5X,F10.2)
GO TO 250
WRITE(IOO,l37} IV,QOANT,!V,CDVAL
FORMAT(4X,1HX,I3,6X,5HDIS2l,3X,Fl0.2/4X,lHX:!3,6X,3HC!l3,5X,F10.2)
GO TO 250
IF (IV .GE. lOO) GO TO l46
WRITE(I00,145) IV,QOANT,IV,CDVAL
FORMAT(4X, lHZ, I 2, 7X, 5HDIS22·, 3X,Fl0. 2/4X, lHX, I 2, 7X, 3HC!l4; 5X, FlO. 2)
GO TO 250
WRITE(IOO,l47) IV,QOANT,IV,CDVAL
FORMAT(4X,lHX,I3,6X,5HDIS22,3X,Fl0.2/4X,lHX,I3,6X,3HC!l4,5X,Fl0.2)
GO TO 250
IF (IV .GE. lOO} GO TO l56
WRITE(I00,155) IV,QOANT,IV,CDVAL
FORMAT(4X,1HX,I2,7X,SHDIS3l,3X,Fl0.2/4X,lHX,I2,7X,3HC:J5,5X,Fl0.2}
GO TO 250
WRITE(IOO,l57) IV,QOANT,IV,CDVAL
FORMAT(4X,lHX,I3,6X,5HDIS3l,3X,Fl0.2/4X,lHX,I3,6X,3HCD5,5X,Fl0.2)
GO TO 250
IF (IV .GE. 100) GO TO l66
WR!TE(IOO,l65} IV,QOANT,IV,CDVAL
FORMAT(4X,lHX,I2,7X,5HDIS32,3X,F10.2/4X,lHX,!2,7X,3HC:J6,5X,F10.2)
GO TO 250
WRITE(IOO,l67) IV,QUANT,IV,CDVAL
FORMAT(4X,lHX,I3,6X,5HDIS32,3X,Fl0.2/4X,lHX,!3,6X,3HCD6,5X,F10.2)
CONTINUE
READ(IN2,254) RHS
FOR."'AT(A3)
wR:':'E(I00,255) RHS

43

300

365

D2 3:: :=l,.;
RE;..~:: t.;:, 3 0 5) RTH:, R'!'H::, R'!H3 , RNnME:, RVA~
~::>::t~!.!..':' (.;.;,A'=, ;..2, .;:-:,A.;,.;:::,, FlC. 2)
WR:7~(!0U,305) RTH!,R7H2,RTH3,RNAM~,RVA~
cot::-: t-:t:::
DO 350 I=l,NL
~R:7E(!0~,355l !,C~VAL
FOR~t!.'!'(;x, 6!-iR':'HDSD, 4}:,2H:D, !: , 5Z,P"1C. 2)
c:n-::-:t-:w-E
~R:':'E(!Ou,365)
FOR}'_,;::• (6HEN'DA ':'A)
S':'O?
EN'D

SE!\':.'?.Y
s:ESYS
//

44

APPENDI.X C

TRANSLATOR PROGRAM

45

"*** TSO FOREGROUND HARDCOPY ****
lSNAME=U10522A.SHW11.CNTL

THIS PROGRAM IS DESIGNED TO CO~~RT MPSX OUTPUT
STANDA?~ FORMAT TO A READABLE FORMAT

INTEGER*4
CHARACTER*B
CHARACTER*S
INTEGER*4
CHARAC':'ER*4
CHARACTER*S
DATA
EQlJIVALENCE
F!LE=4
LIST=ll

FILE,L:ST,NOCOL,NOCOL2,I,J,L,M,N,P
NAME
COLUMN(50),VALOES(50)
TYPE(100),VALNUM(100)
VA:::.ALF(100)
ENDSEC,ENDATA
END SEC/' SENDSEC$' /, END~.TA/' ENDATA 'I

(VALUES(1),VALNUM(l),VALALF(l))

SKIP THE NAME,XDATA,RECORD

READ(FILE)

READ(F!LE) NAME,NOCOL
NOCOL2=2*NOCOL
READ(FILE)(COLUMN(N),N=1,NOCOL)
READ(F!LE) (TYPE(N),N=1,NOCOL2)
J=O
DO 21=2,NOCOL2,2
J=J+TYPE(I)

2 CONTINUE
J=J/4
READ(FILE) (VALALF(N),N=1,J)

PRINT THE IDENTIFICATION ARRAY, ONE VALUE PER LINE

WRITE(LIST,9) NAME
WRITE(6,9) NAME

9 FORMAT(1H1,35X,'PRINTOUT OF THE FIELD' ,AS)

J=O
DO 20 N=1,NOCOL
L=J/4+1
M=L+1
P=L+19
IF (TYPE(2*N-1) -2)10,14,12

NUMERIC - INTEGER -VALUE

10 WRITE(LIST,11) COLUMN(N),VALNUM(L)
WRITE(6,11) COLUMN(N),VALNUM(L)

11 FORMAT(1H0,35X,A8,' = ',IS)
GO TO 19

NUMERIC - INTEGER -VALUE

12 WRITE(LIST,13) COLUMN(N),VALALF(L~
WRITE(6,13) COLUMN(N),VALALF(L)

13 FORMAT(lH0,35X,A8,' = ',Fl8.8)
GO TO 19

ALPHAMERIC VALUE. LENGHT MAY BE 4,8 OR 80

~~ IF (TY?E(2*N)-8) 15,17,18

46

c
c
c

c
c
c

c
c
c

c

c
c
c

c
c
c

c

c

c

c

:6

li

:a

2.9
20

21

22

WR:~E\~:S~,:6) COLUMN(N),Vh~A~F(~)
WR:~E(6,16) COLUMN(N) ,Vh~A~F(L)
FOR~T(lH0,35X,A8,' = ',20A4)
GO TO :9

A~PnAY~RIC Vh~uE - LENGHT = 8

WR:TE(LIST,16) (COLUMN(N),VALA~F(K),K=:,M)
wx:TE(6,16) (COLUMN(N),VALALF(K),K=L,M)
GO TO 19

ALPHAMSRIC VALUE - LENGHT = 8

WR:TE(LIST,16) (COLUMN(N),VALALF(K),K=~,P)
WR:~E(6,16) (COLUMN(N),VALALF(K),K=L,P)

J=.J-TYPE(2*N)
CON':":NuE

SKIP THE PENDSECP OF THE IDENTIFICATION ARRAY

READ(FILE)

GET THE ROW AND COLUMN SECTION

READ(FILE) NAME,NOCOL
IF (NAME .EQ. ENDATA) GO TO 31
WR:TE(LIST,9) NAME
WRITE(6,9) NAME

READ(FILE) {COLUMN{N),N=1,NOCOL)
READ(FILE)
WR!TE(LIST,23) (COLUMN(N),N=1,NOCOL)

23 FOR"'1AT(1H0/1H ,AS ,12X,A8 ,12X,A8, 8X,A8 ,SX,AB ,llX,AS, 4X,A8, 4X,A8/)

24 READ(FILE) (VALuES(N),N=l,NOCOL)
IF (VALuES(1) .EQ. ENDSEC) GO TO 21

25 WRITE(LIST,26) (VALUES(N),N=1,NOCOL)
WRITE(6,26) (VALUES(N),N=1,NOCOL)

26 FORMAT(1H ,D15.8,D20.8,D16.4,D16.4,D20.B,F11.0,Al2,A12)
GO TO 24

31 RETURN
END

47

APPENDIX D

MATHEMATICAL STATEMENT OF TEST PROBLEM 1

48

Test Problem 1 (Source: Reference 21)

Objective Function:
~e{Y"l 1 ~ epo s: 1 rt vc

---......_,..~~- ~w~~,,_.•~•-"''"~~ ~"-'""'•'"""'

Maximize

Subject to the constraints:

Crude supply constraints:

- X7 - x8 - x9 = - 20

- x1o - x11 - x12 ~ - 40 }
Production-distribution constraints:

x31 + x33 - x13 - x14 - x15 2:. 0

x32 + x34 - x22 - x23 - x24 2:. 0

x35 + x37 - x16 - x17 - x1a 2:. 0

x36 + x38 - x25 - x26 - x27 2:. 0

x39 + x41 - x19 - x2o - x21 2:. 0

x4o + x42 - x2s - x29 - x3o 2:. 0

)·

Distribution and final regional demand constraints:

x13 + x16 + x19 - x1 ~ 0

x22 + x25 + x2s - x2 ~ 0

x14 + x17 + x2o - x3 ~ 0

x23 + x26 + x29 - x4 ~ 0

x15 + x1a + x21 - x5 ~ 0

x24 + x27 + x3o - x6 ~ 0

Refinery process con~traints:

49

o.5x8 - x35 ~ o
o.6x8 - x36 ~ o
o.7x11 - x37 ~ o
o.4x11 - x38 ~ o
o.5x9 - x39 ~ 0

o.sx9 - x40 ~ o
o.6x12 - x41 ~ o
o.5x12 - x42 ~ o

Refinery capacity constraints:

- x7 - x10 ~ - 15

- x8 - x11 ~ - 15

And

x. > 0 j = 1, 2, , 42
J -

50

APPENDIX E

MATHEMATICAL STATEMENT OF TEST PROBLEM 2

51

Test Problem 2 (Source: References 22 and 23)

Objective Function:

Maximize 147.9043X1 - 0.002915Xi + 147.8661X2 -

0.00102X~ + 130.4007X3 - 0.00675X~ + 136.4894X4 -
2 2 0.00159X4 + 105.6432X5 - 0.0053X5 + 73.14445X6 -

0.00675X~ + 117.9889X7 - 0.00101X~ + 119.1421X8 -
2 2 0.00288X8 + 91.9915X9 - 0.00605X9 + 57.6892X10
2 2 0.00114X10 + 57.77284X11 - 0.00345X11 + 52.26184X12 -
2 2 0.00028X12 + 52.30450X13 - 0.00705X13 + 43.20152X14 -
2 2 0.00024X14 + 37.8308X 15 - 0.00735X15 + 40.74765X16
2 2 0.00032X16 + 40.9598X17 - 0.0620X17 + 36.24478X18 -
2 2 0.00018X 18 + 52.2091X19 - 0.001045X19 + 48.31183X20 -
2 2 0.00023X20 + 43.9390X21 - 0.0015X21 + 49.52139X22 -
2 2 0.00060X22 + 48.5061X23 - 0.00025X23 + 77.90477X24
2 0.00047X24 + 53.8488X25 - 0.00036X25 + 54.78305X26 -

0.00096X~6 + 102.4274X~7 - 0.00062X~7 - 0.00518X 28 -

0.88974X 29 - 4.0758X30 - 5.9595X31 - 4.40342X32 -

4.87846X33 - 7.46253X34 - 8.18329X35 - 12.95419X36 -

0.88974X37 - 0.00518X38 - 3.44514X39 - 4.95627X40 -

3.53524X41 - 4.01028X42 - 6.57797X43 - 7.64682X44 -

12.4177X45 - 4.0758X46 - 3.44154X47 - 0.00518X48 -

2.06919X49 - 2.99467X50 - 2.67934X51 - 3.84238X52 -

4.15361X 53 - 8.96137X54 - 5.95959X55 - 4.95627X56 -

2.06916X57 - 0.00518X58 - 3.30181X59 - 2.92505X60 -

3.84238X61 - 2.48687X62 - 7.66279X63 - 4.40342X64 -

3.53524X65 - 2.99467X66 - 3.30181X67 - 0.00518X68 -

52

0.63584X69 - 3.36324X70 - 5.78350X71 - 10.4193X72 -

4.87846X73 - 4.01028X74 - 2.67934X75 - 2.92505X76 -

0.63584X77 - 0.00518X78 - 2.72849X79 - 5.33712X80 -

9.79679X81 - 7.46253X82 - 6.57797X83 - 3.84238X84 -

3.84238X85 - 3.36324X86 - 2.72849X87 - 0.00518X88 -

3.21581X89 - 7.22501X90 - 8.18329X91 - 7.64602X92 -

4.15361X93 - 2.48687X94 - 5.78350X95 - 5.33712X96 -

3.21581X97 - 0.00518X98 - 5.18151Xgg - 12.9542X100 -

53

12.41772X101 - 8.96136X102 - 7.66729X103 - 10.41926X104 -

9.79679X105 - 7.22501X106 - 5.18151X107 - 0.00518X108 -

1.03X109 - 4.23X110 - 3.47X111 - 1.03X112 - 4.23X113 -

3.47X114 + 1.03X115 - 4.23X116 - 3.47X117 - 1.03X118 -

4.23X119 - 3.47X120 + 1.03X121 - 4.23X122 - 3.47X123 -

1.03X124 - 4.23X125 - 3.47X126 + 1.03X127 - 4.23X128 -

3.47X129 - 1.03X130 - 4.23X131 - 3.47X132 + 1.03X133 -

4.23X134 - 3.46X135

Subject to the constraints:

Production-distribution constraints:

- xl - x1o - x19 + x28 + x37 + x46 + xss + x64 + x73 + x82

+ x91 + x100 2: 0

- x2 - xll - x2o + x29 + x38 + x47 + x56 + x65 + x74 + x83

+ x92 + x101 2: 0

- x3 - x12 - x21 + x30 + x39 + x48 + x57 + x66 + x75 + Xa4

+ x93 + xl02- 2: 0

- x4 - x13 - x22 + x31 + x4o + x49 + Xsa + x67 + x76 + x85

+ x94 + x103 ~ 0

- x5 - x14 - x23 + x32 + x41 + xso + x59 + x68 + x77 + x86

+ x95 + x104 ~ 0

- x6 - x15 - x24 + x33 + x42 + x51 + x6o + x69 + x78 + x87

+ x96 + x 105 ~ 0

- x7 - x16 - x 25 + x34 + x43 + x52 + x61 + x7o + x79 + Xaa

+ x97 + x106 ~ 0

- Xa - x17 - x26 + x35 + x44 + x53 + x62 + x71 + Xao + x89

+ X98 + X 107 ~ O

- x9 - x1a - x27 + x36 + x45 + x54 + x63 + x72 + xa1 + x9o

+ x 99 + x1oa ~ 0

Distribution and final regional demand constraints:

- x2a - x29 - x3o - x31 - x32 - x33 - x34 - x35 - x36 + x109

+ Xno + xll1 ~ 0

- x37 - x38 - x39 - x4o - x41 - x42 - x43 - x44 - x45 + x112

+ x113 + xll4 ~ 0

- x46 - x47 - x48 - x49 - xso - x51 - x52 - x53 - x54 + x115

+X116+X117~ 0

·- x55 - x56 - x57 - Xsa - x59 - x6o - x61 - x62 - x63 + x11a

+ x119 + x12o ~ 0

- x64 - x65 - x66 - x67 - x68 - x69 - x7o - x71 - x72 + x121

+ x122 + x123 ~ 0

54

55

And

X . 2:: 0 J = 1, 2, , 135
J

APPENDIX F

INFEASIBLE SOLUTION OF LEMKE'S ALGORITHM

FOR TEST PROBLEM 1

56

57

Test Problem 1 (Source: Reference 21)

z (1) = 15.03759 z (2) = 11.5 z (3) = 5.5

z (4) = 5.5 z (5) = 23.0 z (6) = 37.5

w (7) = 1.0 w (8) = 1.0 w (9) = 1.2

w (10) = 1.0 W(11) = 1.2 W(12) = 1.0

w (13) = 0.0 W(14) = 2.0 W(15) = 3.0

W(16) = 2.0 W(17) = 0.0 w (18) = 1.0

W(19) = 3.0 W(20) = 1.0 W(21) = 0.0

W(22) = 0.0 W(23) = 1.5 W(24) = 2.0

W(25) = 1.5 W(26) = 0.0 W(27) = 1.0

W(28) = 2.0 W(29) = 1.0 W(30) = 0.0

W(31) = 0.0 W(32) = 0.0 w (33) = 0.0

W{34) = 0.0 W(35) = 0.0 W(36) = 0.0

W(37) = 0.0 W(38) = 0.0 W(39) = 0.0

W(40) = 0.0 W(41) = 0.0 W(42) = 0.0

W(43) = 20.0 W{44) = 40.0 W(45) = 0.0

W(46) = 0.0 W(47) = 0.0 W(48) = 0.0

W(49) = 0.0 w (50) = 0.0 W(51) = 15.03759

W(52) = 11.5 W(53) = 5.5 W(54) = 5.5

W(55) = 23.0 W(56)·= 37.5 W(57) = 0.0

W(58) = 0.0 W(59) = 0.0 W(60) = 0.0

W(61) = 0.0 W(62) = 0.0 w (63) = 0.0

W(64) = 0.0 W(65) = 0.0 W(66) = 0.0

W(67) = 0.0 W(68) = 0.0 W(69) = 15.0

W(70) = 15.0

\
VITA

Shin An Chiang

Candidate for the Degree of

Master of Science

Thesis: SEPARABLE PROGRAMMING ANALYSIS OF SPATIAL COMPETITIVE
MARKET MODELS

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Taipei, Taiwan, June 5, 1950, the son of
Chiang Yung Ching and Yu Wen Quey.

Education: Receivd Bachelor of Science Degree in Engineering from
National Cheng Kung University in July, 1973; received Master
of Science Degree from University of Wisconsin, Madison, in
December 1980; completed requirements for the Master of Science
Degree At Oklahoma State University in December, 1986.

Professional Experience: Research Assistant, Water Resources
Research Center, Ok 1 ahoma State University, June, 1984 to
October, 1986.

