Parallel & Cluster
Computing
Stupid Compiler Tricks

Henry Neeman, Director

OU Supercomputing Center for Education & Research
University of Oklahoma

SCO08 Education Program’s Workshop on Parallel & Cluster Computing
August 10-16 2008

%77
' 'l INFORMATION
TECHNOLOGY

THE UNIVERSITY OF OKLAHOMA

Okla. Supercomputing Symposium
Tue Oct 7 2008 (@ OU

Over 250 registrations already!

Over 150 in the first day, over 200 in the first
week, over 225 in the first month.

2003 Keynote:

Peter Freeman 2004 Keynote:
NSF Sangtae Kim
Computer & NSF Shared ‘
Information cvperinfrastructure 2005 Keynote: 5006 K eynote: U e
Science & Division Director Walt Brooks Dan Atkins I
Engineering NASA Advanced Head of NSF’s 2007 Keynote:
Assistant Director Supercomputing Office of Jay Boisseau
Division Director Cyber- Director :
infrastructure 2008 Keynote:
Texas Advanced José Munoz
FREE! Parallel Computing Workshop Computing Center Deputy Office
U. Texas Austin Director/ Senior
Mon Oct 6 @ OU sponsored by SC08 Scientific Advisor
FREE! Symposium Tue Oct7 @ OU Ofrf}igs?fucc%’lizr_
http://symposium2008.oscer.ou.edu/ Na?ﬁﬁﬁhf&é?ce

Qj o ’ SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
- 9L INEORMATION University of Oklahoma, August 10-16 2008 ;";}3 2

HHHHHHHHHHHHHHHHHHHHH

Outline

= Dependency Analysis
= What is Dependency Analysis?
= Control Dependencies
s Data Dependencies

= Stupid Compiler Tricks
s Tricks the Compiler Plays

s Tricks You Play With the Compiler
= Profiling

_———

er. P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
| IID u TR University of Oklahoma, August 10-16 2008

=

3 Dependency Analysis

i What Is Dependency Analysis?

Dependency analysis describes of how different parts of a
program affect one another, and how various parts require
other parts in order to operate correctly.

A control dependency governs how different sequences of
instructions affect each other.

A data dependency governs how different pieces of data affect
cach other.

Much of this discussion is from references [1] and [5].

——

Qj/. P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks }
| R University of Oklahoma, August 10-16 2008 =2 s

Control Dependencies

Every program has a well-defined flow of control that moves
from 1nstruction to instruction to instruction.

This flow can be affected by several kinds of operations:
= Loops
= Branches (if, select case/switch)
= Function/subroutine calls

s I/O (typically implemented as calls)
Dependencies affect parallelization!

Q:OScERA“ Qj‘a, SCO8 Parallel & Cluster Computing: Stupid Compiler Tricks 3
4,”3“& ' l[t TECaLORY University of Oklahoma, August 10-16 2008 5;’;?

Branch Dependency

y =17

IF (x /= 0) THEN
y=1.0/ x

END IF

Note that (x /= 0) means “x not equal to zero.”

The value of y depends on what the condition (x /= 0)
evaluates to:

s If the condition (x /= 0) evaluatesto .TRUE., theny
issettol.0 / =x. (1 divided by x).

= Otherwise, y remains 7.

SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
University of Oklahoma, August 10-16 2008 =

Loop Carried Dependency

DO i = 2, length
a(i) = a(i-1) + b(i)
END DO
Here, each iteration of the loop depends on the previous:
iteration 1=3 depends on 1teration i=2,
iteration i=4 depends on iteration i=3,
iteration 1=5 depends on iteration i=4, etc.
This 1s sometimes called a loop carried dependency.

There 1s no way to execute iteration i until after iteration 1 -1 has
completed, so this loop can’t be parallelized.

Qj/ 7 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
' lit PCoLOoN University of Oklahoma, August 10-16 2008 5;’;? 8

THE UNIVE

Why Do We Care?

Loops are the favorite control structures of High Performance
Computing, because compilers know how to optimize their
performance using instruction-level parallelism:

superscalar, pipelining and vectorization can give excellent
speedup.

Loop carried dependencies affect whether a loop can be
parallelized, and how much.

err. P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
' lit ooy University of Oklahoma, August 10-16 2008 5;’;?

THE UNIVE

Loop or Branch Dependency?

Is this a loop carried dependency or a
branch dependency?

DO 1 = 1, length
IF (x(i) /= 0) THEN
y(i) = 1.0 / x(i)

Qj o ’ SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
9P romumon University of Oklahoma, August 10-16 2008 F

uuuuuuuuuuuuuuuuuuuuu

10

Call Dependency Example

x =5
y = myfunction(7)
z = 22

The flow of the program is interrupted by the call to
myfunction, which takes the execution to somewhere

else in the program.

It’s similar to a branch dependency.

D 9 o 7 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
| ' l|| '7#22‘:.%’3‘:229 University of Oklahoma, August 10-16 2008 5;’;?

THE

11

1/0 Dependency

X =a+Db
PRINT *, x
Y=c+ d

Typically, I/0 1s implemented by hidden subroutine calls, so
we can think of this as equivalent to a call dependency.

9 o ’ SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
el || Y University of Oklahoma, August 10-16 2008 V= 2Rt

THE UNIVERSITY OF OKLAHOMA

i Reductions Aren’t Dependencies

array sum = 0
DO 1 =1, length
array sum = array sum + array (i)

END DO
A reduction 1s an operation that converts an array to a scalar.

Other kinds of reductions: product, .AND., .OR., minimum,
maximum, index of minimum, index of maximum, number of
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are
optimized to handle them.

Also, they aren’t really dependencies, because the order in
which the individual operations are performed doesn’t matter.

Qj‘@, SCO8 Parallel & Cluster Computing: Stupid Compiler Tricks)
gl | University of Oklahoma, August 10-16 2008 =" 2K

Data Dependencies

“A data dependence occurs when an instruction i1s dependent
on data from a previous instruction and therefore cannot be
moved before the earlier instruction [or executed in
parallel].” L]

a=x+y + cos(z);

b=a%®*c;

The value of b depends on the value of a, so these two
statements must be executed in order.

——

Qj/. P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks }
gl | University of Oklahoma, August 10-16 2008 V= L

Output Dependencies

x = a / b;
y = x + 2;
x =d - e;

Notice that x 1s assigned two different values, but

only one of them 1s retained after these statements

are done executing. In this context, the final value
of x 1s the “output.”

Again, we are forced to execute 1n order.

JOS(:ER »ﬁ er/‘ ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
et | lﬁt TECHNOLOGY University of Oklahoma, August 10-16 2008 5;";

15

Why Does Order Matter?

= Dependencies can affect whether we can execute a
particular part of the program 1n parallel.

= If we cannot execute that part of the program 1n parallel,
then 1t’ll be SLOW.

9 o ’ SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
g || University of Oklahoma, August 10-16 2008 ,;f 16

THE UNIVERSITY OF OKLAHOMA

Loop Dependency Example

if ((dst == srcl) && (dst == src2)) {
for (index = 1; index < length; index++) ({
dst[index] = dst[index-1] + dst[index];

}
else if (dst == srcl) {
for (index = 1; index < length; index++) ({
dst[index] = dst[index-1] + src2[index];

}
else if (dst == src2) {
for (index = 1; index < length; index++) ({
dst[index] = srcl[index-1] + dst[index];
}
else if (srcl == src2) {
for (index = 1; index < length; index++) ({
dst[index = srcl[index-1] + srcl[index];
}
else {

for (index = 1; index < length; index++) ({
dst[index] = srcl[index-1l] + src2[index];

SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 7
t#’é’é‘i&’é‘tﬁ‘é\’} University of Oklahoma, August 10-16 2008 Ec;

\\\\\\\\\\\\\\\\\\\\\\\\

17

Loop Dep Example (cont’d)

((dst == srcl) && (dst == src2)) {
for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + dst[index];

else if (dst == srcl) {
for (index = 1; index < length; index++) {
} dst[index] = dst[index-1] + src2[index];
}
else if (dst == src2) {
for (index = 1; index < length; index++) {
dst[index] = srcl[index-1] + dst[index];
}
}
else if (srcl == src2) {
for (index = 1; index < length; index++) {
dst[index] = srcl[index-1] + srcl[index];

}

else {
for (index = 1; index < length; index++) {
dst[index] = srcl[index-1] + src2[index];

}

The various versions of the loop either:
m do haveloop carried dependencies, or

Qj o ’ SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
9P romumon University of Oklahoma, August 10-16 2008 F

uuuuuuuuuuuuuuuuuuuuu

Loop Dependency Performance

Loop Carried Dependency Performance

200

Better

180

160

140

M Pentium3 500 MHz

120

B POWER4

100

B Pentium4 2GHz

MFLOPs

80

B EM64T 3.2 GHz

60
40
20

ol

l | INFORMATION
TECHNOLOGY

HHHHHHHHHHHHHHHHHHHHH

S
b%(/b

s &//6 \//é
» ¥

7
83\

SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008

scos

F 19

Stupid Compiler

3 Tricks

Stupid Compiler Tricks

= Tricks Compilers Play
= Scalar Optimizations
= Loop Optimizations
s Inlining
= Tricks You Can Play with Compilers
= Profiling

s Hardware counters

9 o ’ SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
el || Y University of Oklahoma, August 10-16 2008

THE UNIVERSITY OF OKLAHOMA

scos

Fi

21

Compiler Design

The people who design compilers have a lot of experience
working with the languages commonly used in High
Performance Computing:

s Fortran: 451sh years
s C: 301sh years
s C++: 151sh years, plus C experience

So, they’ve come up with clever ways to make programs
run faster.

_———

er. P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
gl | University of Oklahoma, August 10-16 2008 V-

3 Tricks Compilers Play

Scalar Optimizations

Copy Propagation

Constant Folding
Dead Code Removal
Strength Reduction

Common Subexpression Elimination

Variable Renaming
Loop Optimizations

Not every compiler does all of these, so it sometimes can be

worth doing these by hand.
Much of this discussion is from [2] and [5].

—)

PUTY; C
< 4
N
’ ID " INFORMATION
‘ THE UNIVE

TECHNOLOGY
RSITY OF OKLAHOMA

SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008

scos

Fi

24

Copy Propagation

X =y
Before z =1+ x

Has data dependency

Compile
X =Y
After z=1+vy
No data dependency
Qlﬂ SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks

‘ ll | INFORMATION University of Oklahoma, August 10-16 2008 5‘;

OOOOOOOOOOOOOOOOOOOOOOO

Constant Folding

Before After
add = 100 sum = 300
aug = 200

sum = add + aug

Notice that sum 1s actually the sum of two constants,

so the compiler can precalculate 1t, eliminating the
addition that otherwise would be performed at runtime.

QQO&:ERA“ err. P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
#X W) '|it'T“s‘c%“~f$‘LBfé# University of Oklahoma, August 10-16 2008 5 26

Dead Code Removal

Before After
var = 3 var = 5
PRINT *, var *
STOD PRINT *, var
PRINT *, var * 2 STOP

Since the last statement never executes, the
compiler can eliminate it.

o 7 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
9P romumon University of Oklahoma, August 10-16 2008

uuuuuuuuuuuuuuuuuuuu

scos

F

27

Strength Reduction

Before After
x =y ** 2.0 X =y * y
a=c/ 2.0 a=c* 0.5

Raising one value to the power of another, or
dividing, 1s more expensive than multiplying. If the
compiler can tell that the power 1s a small integer, or
that the denominator 1s a constant, 1t’ll use
multiplication instead.

Note: In Fortran, “y ** 2.0 means “y to the

power 2.”

GEECOMIIING, _—®
e OSCER »ﬁ 9 (7 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
54,'% 7 : lDt INFORMATION

s o O OSY

University of Oklahoma, August 10-16 2008 ,, 28

Common Subexpression Elimination

Before After
d=c* (a/ b) adivb = a / b
e= (a/b) *2.0 d =c * adivb

e = adivb * 2.0

The subexpression (a / b) occurs in both
assignment statements, so there’s no point in
calculating it twice.

This 1s typically only worth doing 1f the common
subexpression 1s expensive to calculate.

SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
University of Oklahoma, August 10-16 2008 =T 2

Variable Renaming

Before After
x =y *z x0 =y * 2z
=+ x*2 gq=r + x0 * 2
x=a+h x =a+b

The original code has an output dependency, while
the new code doesn’t — but the final value of x 1s
still correct.

Qj o 7 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
' l y NEORMATION University of Oklahoma, August 10-16 2008 = 30

F

Loop Optimizations

Hoisting Loop Invariant Code

Unswitching
[teration Peeling
Index Set Splitting
Loop Interchange
Unrolling

Loop Fusion

Loop Fission

Not every compiler does all of these, so it sometimes can be

worth doing some of these by hand.
Much of this discussion is from [3] and [5].

—)

D 9 O™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
‘ ' lﬁt oL University of Oklahoma, August 10-16 2008 5;’; 31

i Hoisting Loop Invariant Code

DO i =1, n

Code that : :
= b +
doesn’t Before 0

change 1nside END DO

the loop 1s

called loop

invariant. It temp = c * d

doesn’t need DO i =1, n

to be After a(i) = b(i) + temp
calculated END DO

over and over. e = g(n)

SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
University of Oklahoma, August 10-16 2008 7T »

Unswitching

DOi=1, n The condition is
DO § = 2, s
IF (t(1) > 0) THEN j-independent.
a(i,j) = a(i,]) * t(i) + b(3)
ELSE
a(i,j) = 0.0
END IF Before
END DO
END DO
DO 1 = ; I ° °
IF (t(1) > 0) THEN So, it can migrate
ali,) = a(i,j) * t(i) + b(j) outside the j loop.
END DO
ELSE
*°atis3)'="0.0 Af
END DO ter
END IF
END DO

@ ’ SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
9P romumon University of Oklahoma, August 10-16 2008 F 33

uuuuuuuuuuuuuuuuuuuuu

Iteration Peeling

DO i =1, n

IF ((i == 1) .OR. (i == n)) THEN
x(1) = y(1)
ELSE
Before x(i) = y(i + 1) + y(i - 1)
END IF
END DO

We can eliminate the IF by peeling the weird iterations.

x(1) = y(1)
DO i =2, n-1
After x(i) =y(@i + 1) + y(i - 1)
END DO
x(n) = y(n)
o4’ SCOS Parallel & Cluster Computing: Stupid Compiler Tricks

9L INEORMATION University of Oklahoma, August 10-16 2008 ; 34

uuuuuuuuuuuuuuuuuuuuu

Index Set Splitting

DO i=1, n
a(i) = b(i) + c(i)
IF (i > 10) THEN
d(i) = a(i) + b(i - 10)
e Before
END DO

DO i = 1, 10
a(i) = b(i) + c(i)

END DO
DO 1 =11, n

a(i) = b(i) + c(i)

d(i) = a(i) + b(i - 10) After
END DO

Note that this 1s a generalization of peeling.

T 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
9P romumon University of Oklahoma, August 10-16 2008

uuuuuuuuuuuuuuuuuuuuu

scos

F

35

Loop Interchange

Before After
DO i = 1, ni DO 3 = 1, nj
Doj=1,nj\ DO i =1, ni
a(i,j) = b(i,J) a(i,j) = b(i,J)
END DO
END DO
END DO
END DO

Array elements a(i,j) and a(i+1,j) are near
cach other in memory, while a (i, j+1) may be
far, so it makes sense to make the i loop be the
inner loop. (This 1s reversed in C, C++ and Java.)

QQO&:ERA“ err. P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
e 33“@ | ' l| TECUNOLOGY University of Oklahoma, August 10-16 2008 5;’; 36

Unrolling

DO 1

Before a(i

=1, n
) =
END DO

a(i)+b (1)

DO i1 =1, n, 4

a(i) = a(i) +b(1i)
a(i+l) = a(i+1)+b (i+1)
After _ (142) = a(i+2)+b (i+2)
a(i+3) = a(i+3)+b (i+3)
END DO

You generally shouldn’t unroll by hand.

SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
University of Oklahoma, August 10-16 2008 V= L

Why Do Compilers Unroll?

We saw last time that a loop with a lot of operations gets
better performance (up to some point), especially 1f there
are lots of arithmetic operations but few main memory
loads and stores.

Unrolling creates multiple operations that typically load from
the same, or adjacent, cache lines.

So, an unrolled loop has more operations without increasing
the memory accesses by much.

Also, unrolling decreases the number of comparisons on the
loop counter variable, and the number of branches to the
top of the loop.

SCO8 Parallel & Cluster Computing: Stupid Compiler Tricks 3
University of Oklahoma, August 10-16 2008 V=

Loop Fusion

DO i =1, n
a(i) = b(i) + 1
END DO
DO i =1, n
c(i) = a(i) / 2
END DO Before
DOi=1, n
d(i)
END DO

I
=
~
Q
—
-

DO i =
a(i)
c (1)
d(i)
END DO

nnine=
Lo Y
’\"\s
N H R
~ +
~NPR

After

As with unrolling, this has fewer branches. It also has fewer
total memory references.

Qj o 7 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
9P romumon University of Oklahoma, August 10-16 2008 -

uuuuuuuuuuuuuuuuuuuu

39

Loop Fission

DO i =1, n
a(i) = b(i) -}- 1
c(i) = a(i) / 2
d(i) = 1 / c(i) Before
END DO !! i =1, n
DO i =1, n
a(i) =b(i) + 1
END DO !! i =1, n
DO i =1, n
c(i) = a(i) / 2
END DO !! i = 1,
DO i =1, IJ; i m

d(i) = 1 / c(i)
END DO !! i =1, n

Fission reduces the cache footprint and the number of
operations per iteration.

7 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
'| [reomunon University of Oklahoma, August 10-16 2008

scos

y=

40

To Fuse or to KFizz?

The question of when to perform fusion versus when to
perform fission, like many many optimization questions, 1s
highly dependent on the application, the platform and a lot
of other 1ssues that get very, very complicated.

Compilers don’t always make the right choices.

That’s why 1t’s important to examine the actual behavior of the
executable.

Qj‘@, SCO8 Parallel & Cluster Computing: Stupid Compiler Tricks)
gl | R University of Oklahoma, August 10-16 2008 =

Inlining

Before After
DO i =1, n -
a(i) = func(i) DO l_ 1’_n
END DO a(i) =1 * 3
- END DO

REAL FUNCTION func (x)

func = x * 3
END FUNCTION func

When a function or subroutine is inlined, 1ts contents
are transferred directly into the calling routine,
eliminating the overhead of making the call.

QQO&:ERA“ err. P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
#X W) '|it'T“s‘c%“~f$‘LBfé# University of Oklahoma, August 10-16 2008 V=

Tricks You Can Play

ﬂ with Compilers

The Joy of Compiler Options

Every compiler has a different set of options that you can set.

Among these are options that control single processor
optimization: superscalar, pipelining, vectorization, scalar
optimizations, loop optimizations, inlining and so on.

err. P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
. 'Iit eom oy University of Oklahoma, August 10-16 2008 5;’; 44

THE UNIVE

Example Compile Lines

= IBM XL
x1£f90 -O —gmaxmem=-1 —-garch=auto

—gqtune=auto —-gcache=auto —ghot
s Intel

ifort -O -tpp7 -xP
= Portland Group 90
pgf90 -03 -fastsse —-Mdalign —-Mvect=sse

m NAG 195
f95 -04 -Ounsafe —-ieee=nonstd

err. P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
' lit ooy University of Oklahoma, August 10-16 2008 5;’;?

THE UNIVE

45

i What Does the Compiler Do?

Example: NAG 95 compiler
£f95 —-O<level> source.f90

Possible levels are =00, -01, -02, -03, -04:

-00 No optimisation.

-01 Minimal quick optimisation.
-02 Normal optimisation.

-03 Further optimisation.

-04 Maximal optimisation. 4

The man page is pretty cryptic.

JOSCER »ﬂ Q,/‘«Z) SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
ol I | RS University of Oklahoma, August 10-16 2008

scos

F

46

Arithmetic Operation Speeds

Ordered Arithmetic Operations

600
500
400
N
~
S
4300
=
200
100
0_
= o o o = = = T > > B -
FEEEE2EEEEEEEEEEEE AT
- e - = . — =

| M Intel/Xcon M PGI/Xeon M NAG/Xcon M xl/POWER4 |

Qj o ’ SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
- 9L INEORMATION University of Oklahoma, August 10-16 2008 ;";}3

HHHHHHHHHHHHHHHHHHHHH

Optimization Performance

Performance
80
70
., 60
A& 50
S %0
L530
20
10 -
O |

Operation

B Pentium3 NAG OO0 M Pentium3 NAG O4 B Pentium3 Vast no opt Il Pentium3 Vast opt

an SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
ll | INFORMATION University of Oklahoma, August 10-16 2008 5‘;

OOOOOOOOOOOOOOOOOOOOOOO

48

j More Optimized Performance

Performance

250

200

150

100

MFLOP/s

WD
)

rmam

2
: Q' s

3 '8/ ’ l' | INFORMATION

oronssS : TECHNOLOGY

OOOOOOOOOOOOOOOOOOOOOOO

E T B & 2 X = 49 ¥ g

< E ho] 5] @) N ~ . -

s E E = & £ 3B 3B B 3

- — — — —
Operation

B Pentium3 NAG O0 M Pentium3 NAG 04
B Pentium3 VAST no opt M Pentium3 VAST opt

SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008

rlot24

scos

F 49

g Profiling

Profiling

Profiling means collecting data about how a program executes.
The two major kinds of profiling are:
= Subroutine profiling

» Hardware timing

err. P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
' lit TECINGLOGY University of Oklahoma, August 10-16 2008 5;’; 51

THE UNIVE

Subroutine Profiling

Subroutine profiling means finding out how much time 1s
spent 1n each routine.

The 90-10 Rule: Typically, a program spends 90% of 1ts
runtime 1n 10% of the code.

Subroutine profiling tells you what parts of the program to
spend time optimizing and what parts you can ignore.

Specifically, at regular intervals (e.g., every millisecond), the
program takes note of what instruction 1t’s currently on.

SCO8 Parallel & Cluster Computing: Stupid Compiler Tricks 3
University of Oklahoma, August 10-16 2008 7w

Profiling Example

On IBM pSeries systems:
x1f90 -O -g -pg
The —g -pg options tell the compiler to set the executable up
to collect profiling information.

Running the executable generates a file named gmon . out,
which contains the profiling information.

_———

er. P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
g | SRS University of Oklahoma, August 10-16 2008 V-

Profiling Example (cont’d)

When the run has completed, a file named gmon . out has
been generated.

Then:
gprof executable

produces a list of all of the routines and how much time was
spent 1n each.

err. P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
' lit TECINGLOGY University of Oklahoma, August 10-16 2008 5;’; 54

THE UNIVE

] cumulative
time seconds

27.

N
[

O R FP R EFPRFRPEFEPLDMNMNDMDWbBLBMLAEIJ
OO N WMUUINDWOKRERAOdDNDOWOO

52.

99.
114.
127.
136.
144.
152.
156.
160.
163.
166.
169.
172.
174.
176.
177.

72
06
19
94
91
79
22
65
77
97
79
53
00
27
13
94

self

seconds

52.
46.
15.

=
w

HENMNNMNOMND WB D I

)W *it.
K15 ’ ID " INFORMATION
TECHNOLOGY

72
35
13
.75
.96
.88
.43
.43
.12
.20
.82
.74
.47
.27
.86
.81

SCO8 Parallel & Cluster Computing: Stupid Compiler Tricks 7
University of Oklahoma, August 10-16 2008 ,,?

Profiling Result

calls
480000
897
300
299
300
300
300
897
300
300
300
300
300
480000
299
300

self

ms/call

0.
51.
50.
45.
29.
26.
24.
.94
13.
10.
.40
.13
.23
.00
.22
.04

4

o O O 0 ©W ©

11
67
43
28
88
27
77

73
66

total

ms/call

0.
51.
50.
45.
29.
31.

212.
56.
24.
10.

9.

9.
15.

0.

177.

.04

11
67
43
98
88
52
36
61
39
66
40
13
33
12
45

name

longwave_ [5]
mpdata3 [8]
turb_ [9]
turb_scalar_[10]
advect2_z [12]
cloud [11]
radiation_ [3]
smlr [7]

tke full [13]
shear prod [15]
rhs [16]
advect2 xy [17]
poisson_ [14]
long wave [4]
advect scalar_ [6]
buoy_ [19]

55

Okla. Supercomputing Symposium
Tue Oct 7 2008 (@ OU

Over 250 registrations already!

Over 150 in the first day, over 200 in the first
week, over 225 in the first month.

2003 Keynote:

Peter Freeman 2004 Keynote:
NSF Sangtae Kim
Computer & NSF Shared ‘
Information cvperinfrastructure 2005 Keynote: 5006 K eynote: U e
Science & Division Director Walt Brooks Dan Atkins I
Engineering NASA Advanced Head of NSF’s 2007 Keynote:
Assistant Director Supercomputing Office of Jay Boisseau
Division Director Cyber- Director :
infrastructure 2008 Keynote:
Texas Advanced José Munoz
FREE! Parallel Computing Workshop Computing Center Deputy Office
U. Texas Austin Director/ Senior
Mon Oct 6 @ OU sponsored by SC08 Scientific Advisor
FREE! Symposium Tue Oct7 @ OU Ofrf}igs?fucc%’lizr_
http://symposium2008.oscer.ou.edu/ Na?ﬁﬁﬁhf&é?ce

Qj o ’ SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
5 ' 'I] | INFORMATION University of Oklahoma, August 10-16 2008 55; 56

HHHHHHHHHHHHHHHHHHHHH

To Learn More Supercomputing

httP://www.oscer.ou.edu/education.PhE

http://symposium2007.oscer.ou.edu/

an SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
’ ll | INFORMATION University of Oklahoma, August 10-16 2008 5‘;

OOOOOOOOOOOOOOOOOOOOOOO

57

Thanks for your

3 attention!

Questions?

References

[1] Steve Behling et al, The POWER4 Processor Introduction and Tuning Guide, IBM, 2001.
[2] Intel® 64 and 1A-32 Architectures Optimization Reference Manual, Order Number: 248966-015
May 2007
http://www.intel.com/design/processor/manuals/248966.pdf
[3] Kevin Dowd and Charles Severance, High Performance Computing,
2rnded. O’Reilly, 1998.
[4] Code courtesy of Dan Weber, 2001.

an SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks 3
’ ll | INFORMATION University of Oklahoma, August 10-16 2008 5;;?

OOOOOOOOOOOOOOOOOOOOOOO

59

