
Parallel & Cluster
Computing

Stupid Compiler Tricks
Henry Neeman, Director

OU Supercomputing Center for Education & Research
University of Oklahoma

SC08 Education Program’s Workshop on Parallel & Cluster Computing
August 10-16 2008

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 2

Okla. Supercomputing Symposium

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &

Engineering
Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2008.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Tue Oct 7 2008 @ OU
Over 250 registrations already!

Over 150 in the first day, over 200 in the first
week, over 225 in the first month.

FREE! Parallel Computing Workshop
Mon Oct 6 @ OU sponsored by SC08
FREE! Symposium Tue Oct 7 @ OU

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 3

Outline
n Dependency Analysis

n What is Dependency Analysis?
n Control Dependencies
n Data Dependencies

n Stupid Compiler Tricks
n Tricks the Compiler Plays
n Tricks You Play With the Compiler
n Profiling

Dependency Analysis

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 5

What Is Dependency Analysis?
Dependency analysis describes of how different parts of a

program affect one another, and how various parts require
other parts in order to operate correctly.

A control dependency governs how different sequences of
instructions affect each other.

A data dependency governs how different pieces of data affect
each other.

Much of this discussion is from references [1] and [5].

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 6

Control Dependencies
Every program has a well-defined flow of control that moves

from instruction to instruction to instruction.
This flow can be affected by several kinds of operations:

n Loops
n Branches (if, select case/switch)
n Function/subroutine calls
n I/O (typically implemented as calls)

Dependencies affect parallelization!

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 7

Branch Dependency
y = 7
IF (x /= 0) THEN

y = 1.0 / x
END IF
Note that (x /= 0) means “x not equal to zero.”
The value of y depends on what the condition (x /= 0)

evaluates to:
n If the condition (x /= 0) evaluates to .TRUE., then y

is set to 1.0 / x. (1 divided by x).
n Otherwise, y remains 7.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 8

Loop Carried Dependency
DO i = 2, length

a(i) = a(i-1) + b(i)
END DO
Here, each iteration of the loop depends on the previous:

iteration i=3 depends on iteration i=2,
iteration i=4 depends on iteration i=3,
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.
There is no way to execute iteration i until after iteration i-1 has

completed, so this loop can’t be parallelized.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 9

Why Do We Care?
Loops are the favorite control structures of High Performance

Computing, because compilers know how to optimize their
performance using instruction-level parallelism:
superscalar, pipelining and vectorization can give excellent
speedup.

Loop carried dependencies affect whether a loop can be
parallelized, and how much.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 10

Loop or Branch Dependency?
Is this a loop carried dependency or a

branch dependency?

DO i = 1, length
IF (x(i) /= 0) THEN

y(i) = 1.0 / x(i)
END IF

END DO

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 11

Call Dependency Example
x = 5
y = myfunction(7)
z = 22

The flow of the program is interrupted by the call to
myfunction, which takes the execution to somewhere
else in the program.

It’s similar to a branch dependency.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 12

I/O Dependency
X = a + b
PRINT *, x
Y = c + d

Typically, I/O is implemented by hidden subroutine calls, so
we can think of this as equivalent to a call dependency.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 13

Reductions Aren’t Dependencies
array_sum = 0
DO i = 1, length
array_sum = array_sum + array(i)

END DO

A reduction is an operation that converts an array to a scalar.
Other kinds of reductions: product, .AND., .OR., minimum,

maximum, index of minimum, index of maximum, number of
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are
optimized to handle them.

Also, they aren’t really dependencies, because the order in
which the individual operations are performed doesn’t matter.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 14

Data Dependencies
“A data dependence occurs when an instruction is dependent

on data from a previous instruction and therefore cannot be
moved before the earlier instruction [or executed in
parallel].” [6]

a = x + y + cos(z);
b = a * c;
The value of b depends on the value of a, so these two

statements must be executed in order.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 15

Output Dependencies
x = a / b;
y = x + 2;
x = d – e;

Notice that x is assigned two different values, but
only one of them is retained after these statements
are done executing. In this context, the final value
of x is the “output.”

Again, we are forced to execute in order.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 16

Why Does Order Matter?
n Dependencies can affect whether we can execute a

particular part of the program in parallel.
n If we cannot execute that part of the program in parallel,

then it’ll be SLOW.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 17

Loop Dependency Example
if ((dst == src1) && (dst == src2)) {

for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + dst[index];

}
}
else if (dst == src1) {

for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + src2[index];

}
}
else if (dst == src2) {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + dst[index];

}
}
else if (src1 == src2) {

for (index = 1; index < length; index++) {
dst[index = src1[index-1] + src1[index];

}
}
else {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src2[index];

}
}

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 18

Loop Dep Example (cont’d)
if ((dst == src1) && (dst == src2)) {

for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + dst[index];

}
}
else if (dst == src1) {

for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + src2[index];

}
}
else if (dst == src2) {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + dst[index];

}
}
else if (src1 == src2) {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src1[index];

}
}
else {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src2[index];

}
}

The various versions of the loop either:
n do have loop carried dependencies, or
n don’t have loop carried dependencies.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 19

Loop Dependency Performance
Loop Carried Dependency Performance

0

20

40

60

80

100

120

140

160

180

200

dst=
src

1+
src

2

dst=
src

1+
src

1

dst=
dst+

src
2

dst=
src

1+
dst

dst=
dst+

dst

M
FL

O
Ps Pentium3 500 MHz

POWER4
Pentium4 2GHz
EM64T 3.2 GHz

Better

Stupid Compiler
Tricks

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 21

Stupid Compiler Tricks
n Tricks Compilers Play

n Scalar Optimizations
n Loop Optimizations
n Inlining

n Tricks You Can Play with Compilers
n Profiling
n Hardware counters

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 22

Compiler Design
The people who design compilers have a lot of experience

working with the languages commonly used in High
Performance Computing:
n Fortran: 45ish years
n C: 30ish years
n C++: 15ish years, plus C experience

So, they’ve come up with clever ways to make programs
run faster.

Tricks Compilers Play

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 24

Scalar Optimizations
n Copy Propagation
n Constant Folding
n Dead Code Removal
n Strength Reduction
n Common Subexpression Elimination
n Variable Renaming
n Loop Optimizations
Not every compiler does all of these, so it sometimes can be

worth doing these by hand.
Much of this discussion is from [2] and [5].

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 25

Copy Propagation
x = y
z = 1 + x

x = y
z = 1 + y

Has data dependency

No data dependency

Compile

Before

After

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 26

Constant Folding

add = 100
aug = 200
sum = add + aug

Notice that sum is actually the sum of two constants,
so the compiler can precalculate it, eliminating the
addition that otherwise would be performed at runtime.

sum = 300

Before After

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 27

Dead Code Removal

var = 5
PRINT *, var
STOP
PRINT *, var * 2

Since the last statement never executes, the
compiler can eliminate it.

var = 5
PRINT *, var
STOP

Before After

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 28

Strength Reduction

x = y ** 2.0
a = c / 2.0

x = y * y
a = c * 0.5

Before After

Raising one value to the power of another, or
dividing, is more expensive than multiplying. If the
compiler can tell that the power is a small integer, or
that the denominator is a constant, it’ll use
multiplication instead.
Note: In Fortran, “y ** 2.0” means “y to the
power 2.”

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 29

Common Subexpression Elimination

d = c * (a / b)
e = (a / b) * 2.0

adivb = a / b
d = c * adivb
e = adivb * 2.0

Before After

The subexpression (a / b) occurs in both
assignment statements, so there’s no point in
calculating it twice.
This is typically only worth doing if the common
subexpression is expensive to calculate.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 30

Variable Renaming

x = y * z
q = r + x * 2
x = a + b

x0 = y * z
q = r + x0 * 2
x = a + b

Before After

The original code has an output dependency, while
the new code doesn’t – but the final value of x is
still correct.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 31

Loop Optimizations
n Hoisting Loop Invariant Code
n Unswitching
n Iteration Peeling
n Index Set Splitting
n Loop Interchange
n Unrolling
n Loop Fusion
n Loop Fission
Not every compiler does all of these, so it sometimes can be

worth doing some of these by hand.
Much of this discussion is from [3] and [5].

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 32

Hoisting Loop Invariant Code
DO i = 1, n

a(i) = b(i) + c * d
e = g(n)

END DO

Before

temp = c * d
DO i = 1, n

a(i) = b(i) + temp
END DO
e = g(n)

After

Code that
doesn’t
change inside
the loop is
called loop
invariant. It
doesn’t need
to be
calculated
over and over.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 33

Unswitching
DO i = 1, n

DO j = 2, n
IF (t(i) > 0) THEN

a(i,j) = a(i,j) * t(i) + b(j)
ELSE

a(i,j) = 0.0
END IF

END DO
END DO
DO i = 1, n

IF (t(i) > 0) THEN
DO j = 2, n

a(i,j) = a(i,j) * t(i) + b(j)
END DO

ELSE
DO j = 2, n

a(i,j) = 0.0
END DO

END IF
END DO

Before

After

The condition is
j-independent.

So, it can migrate
outside the j loop.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 34

Iteration Peeling
DO i = 1, n
IF ((i == 1) .OR. (i == n)) THEN
x(i) = y(i)

ELSE
x(i) = y(i + 1) + y(i – 1)

END IF
END DO

x(1) = y(1)
DO i = 2, n - 1

x(i) = y(i + 1) + y(i – 1)
END DO
x(n) = y(n)

Before

After

We can eliminate the IF by peeling the weird iterations.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 35

Index Set Splitting
DO i = 1, n
a(i) = b(i) + c(i)
IF (i > 10) THEN
d(i) = a(i) + b(i – 10)

END IF
END DO

DO i = 1, 10
a(i) = b(i) + c(i)

END DO
DO i = 11, n
a(i) = b(i) + c(i)
d(i) = a(i) + b(i – 10)

END DO

Before

After

Note that this is a generalization of peeling.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 36

Loop Interchange

DO i = 1, ni
DO j = 1, nj
a(i,j) = b(i,j)

END DO
END DO

DO j = 1, nj
DO i = 1, ni

a(i,j) = b(i,j)
END DO

END DO

Array elements a(i,j) and a(i+1,j) are near
each other in memory, while a(i,j+1) may be
far, so it makes sense to make the i loop be the
inner loop. (This is reversed in C, C++ and Java.)

Before After

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 37

Unrolling
DO i = 1, n

a(i) = a(i)+b(i)
END DO

DO i = 1, n, 4
a(i) = a(i) +b(i)
a(i+1) = a(i+1)+b(i+1)
a(i+2) = a(i+2)+b(i+2)
a(i+3) = a(i+3)+b(i+3)

END DO

Before

After

You generally shouldn’t unroll by hand.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 38

Why Do Compilers Unroll?
We saw last time that a loop with a lot of operations gets

better performance (up to some point), especially if there
are lots of arithmetic operations but few main memory
loads and stores.

Unrolling creates multiple operations that typically load from
the same, or adjacent, cache lines.

So, an unrolled loop has more operations without increasing
the memory accesses by much.

Also, unrolling decreases the number of comparisons on the
loop counter variable, and the number of branches to the
top of the loop.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 39

Loop Fusion
DO i = 1, n

a(i) = b(i) + 1
END DO
DO i = 1, n

c(i) = a(i) / 2
END DO
DO i = 1, n

d(i) = 1 / c(i)
END DO

DO i = 1, n
a(i) = b(i) + 1
c(i) = a(i) / 2
d(i) = 1 / c(i)

END DO

As with unrolling, this has fewer branches. It also has fewer
total memory references.

Before

After

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 40

Loop Fission
DO i = 1, n

a(i) = b(i) + 1
c(i) = a(i) / 2
d(i) = 1 / c(i)

END DO !! i = 1, n

DO i = 1, n
a(i) = b(i) + 1

END DO !! i = 1, n
DO i = 1, n

c(i) = a(i) / 2
END DO !! i = 1, n
DO i = 1, n

d(i) = 1 / c(i)
END DO !! i = 1, n

Fission reduces the cache footprint and the number of
operations per iteration.

Before

After

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 41

To Fuse or to Fizz?
The question of when to perform fusion versus when to

perform fission, like many many optimization questions, is
highly dependent on the application, the platform and a lot
of other issues that get very, very complicated.

Compilers don’t always make the right choices.
That’s why it’s important to examine the actual behavior of the

executable.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 42

Inlining

DO i = 1, n
a(i) = func(i)

END DO
…
REAL FUNCTION func (x)
…
func = x * 3

END FUNCTION func

DO i = 1, n
a(i) = i * 3

END DO

Before After

When a function or subroutine is inlined, its contents
are transferred directly into the calling routine,
eliminating the overhead of making the call.

Tricks You Can Play
with Compilers

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 44

The Joy of Compiler Options
Every compiler has a different set of options that you can set.
Among these are options that control single processor

optimization: superscalar, pipelining, vectorization, scalar
optimizations, loop optimizations, inlining and so on.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 45

Example Compile Lines
n IBM XL

xlf90 –O –qmaxmem=-1 –qarch=auto
–qtune=auto –qcache=auto –qhot

n Intel
ifort –O –tpp7 -xP

n Portland Group f90
pgf90 –O3 -fastsse –Mdalign –Mvect=sse

n NAG f95
f95 –O4 –Ounsafe –ieee=nonstd

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 46

What Does the Compiler Do?
Example: NAG f95 compiler

f95 –O<level> source.f90
Possible levels are –O0, -O1, -O2, -O3, -O4:
-O0 No optimisation. …
-O1 Minimal quick optimisation.
-O2 Normal optimisation.
-O3 Further optimisation.
-O4 Maximal optimisation.[4]

The man page is pretty cryptic.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 47

Arithmetic Operation Speeds
Ordered Arithmetic Operations

0

100

200

300

400

500

600

ra
dd

ia
dd

rs
um

is
um rs
ub

is
ub

rm
ul

im
ul

rm
am

im
am

rm
ad

im
ad

rd
iv

id
iv

rp
ow

im
od

rs
qr
t

rc
os

re
xp rlo
g i2
r

r2
i

M
FL

O
P/

s

Intel/Xeon PGI/Xeon NAG/Xeon xl/POWER4

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 48

Optimization Performance

 Performance

0
10
20
30
40
50
60
70
80
ra

dd

ia
dd

rs
um

is
um rs
ub

is
ub

rm
ul

im
ul

rd
iv

id
iv

Operation

M
FL
O
P/
s

Pentium3 NAG O0 Pentium3 NAG O4 Pentium3 Vast no opt Pentium3 Vast opt

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 49

More Optimized Performance

Performance

0

50

100

150

200

250
rm

am

im
am

rm
ad

im
ad rd
ot

re
uc

rlo
t8

rlo
t1

0

rlo
t1

2

rlo
t1

6

rlo
t2

0

rlo
t2

4

Operation

M
FL
O
P/
s

Pentium3 NAG O0 Pentium3 NAG 04
Pentium3 VAST no opt Pentium3 VAST opt

Profiling

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 51

Profiling
Profiling means collecting data about how a program executes.
The two major kinds of profiling are:

n Subroutine profiling
n Hardware timing

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 52

Subroutine Profiling
Subroutine profiling means finding out how much time is

spent in each routine.
The 90-10 Rule: Typically, a program spends 90% of its

runtime in 10% of the code.
Subroutine profiling tells you what parts of the program to

spend time optimizing and what parts you can ignore.
Specifically, at regular intervals (e.g., every millisecond), the

program takes note of what instruction it’s currently on.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 53

Profiling Example
On IBM pSeries systems:
xlf90 –O –g -pg …

The –g -pg options tell the compiler to set the executable up
to collect profiling information.

Running the executable generates a file named gmon.out,
which contains the profiling information.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 54

Profiling Example (cont’d)
When the run has completed, a file named gmon.out has

been generated.
Then:
gprof executable

produces a list of all of the routines and how much time was
spent in each.

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 55

Profiling Result
% cumulative self self total
time seconds seconds calls ms/call ms/call name
27.6 52.72 52.72 480000 0.11 0.11 longwave_ [5]
24.3 99.06 46.35 897 51.67 51.67 mpdata3_ [8]
7.9 114.19 15.13 300 50.43 50.43 turb_ [9]
7.2 127.94 13.75 299 45.98 45.98 turb_scalar_ [10]
4.7 136.91 8.96 300 29.88 29.88 advect2_z_ [12]
4.1 144.79 7.88 300 26.27 31.52 cloud_ [11]
3.9 152.22 7.43 300 24.77 212.36 radiation_ [3]
2.3 156.65 4.43 897 4.94 56.61 smlr_ [7]
2.2 160.77 4.12 300 13.73 24.39 tke_full_ [13]
1.7 163.97 3.20 300 10.66 10.66 shear_prod_ [15]
1.5 166.79 2.82 300 9.40 9.40 rhs_ [16]
1.4 169.53 2.74 300 9.13 9.13 advect2_xy_ [17]
1.3 172.00 2.47 300 8.23 15.33 poisson_ [14]
1.2 174.27 2.27 480000 0.00 0.12 long_wave_ [4]
1.0 176.13 1.86 299 6.22 177.45 advect_scalar_ [6]
0.9 177.94 1.81 300 6.04 6.04 buoy_ [19]

...

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 56

Okla. Supercomputing Symposium

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &

Engineering
Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2008.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Tue Oct 7 2008 @ OU
Over 250 registrations already!

Over 150 in the first day, over 200 in the first
week, over 225 in the first month.

FREE! Parallel Computing Workshop
Mon Oct 6 @ OU sponsored by SC08
FREE! Symposium Tue Oct 7 @ OU

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 57

To Learn More Supercomputing
http://www.oscer.ou.edu/education.php

http://symposium2007.oscer.ou.edu/

Thanks for your
attention!

Questions?

SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
University of Oklahoma, August 10-16 2008 59

References
[1] Steve Behling et al, The POWER4 Processor Introduction and Tuning Guide, IBM, 2001.
[2] Intel® 64 and IA-32 Architectures Optimization Reference Manual, Order Number: 248966-015
May 2007
http://www.intel.com/design/processor/manuals/248966.pdf
[3] Kevin Dowd and Charles Severance, High Performance Computing,

2nd ed. O’Reilly, 1998.
[4] Code courtesy of Dan Weber, 2001.

