
Parallel & Cluster
Computing

Shared Memory Parallelism
Henry Neeman, Director

OU Supercomputing Center for Education & Research
University of Oklahoma

SC08 Education Program’s Workshop on Parallel & Cluster Computing
August 10-16 2008

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 2

Okla. Supercomputing Symposium

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &

Engineering
Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2008.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Tue Oct 7 2008 @ OU
Over 250 registrations already!

Over 150 in the first day, over 200 in the first
week, over 225 in the first month.

FREE! Parallel Computing Workshop
Mon Oct 6 @ OU sponsored by SC08
FREE! Symposium Tue Oct 7 @ OU

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 3

Outline
n Parallelism
n Shared Memory Parallelism
n OpenMP

Parallelism

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 5

Parallelism

Less fish …

More fish!

Parallelism means doing
multiple things at the
same time: you can get
more work done in the
same amount of time.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 6

What Is Parallelism?
Parallelism is the use of multiple processing units – either

processors or parts of an individual processor – to solve a
problem, and in particular the use of multiple processing
units operating concurrently on different parts of a problem.

The different parts could be different tasks, or the same task on
different pieces of the problem’s data.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 7

Kinds of Parallelism
n Shared Memory Multithreading (our topic today)
n Distributed Memory Multiprocessing (next time)
n Hybrid Shared/Distributed

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 8

Why Parallelism Is Good
n The Trees: We like parallelism because, as the number of

processing units working on a problem grows, we can solve
the same problem in less time.

n The Forest: We like parallelism because, as the number of
processing units working on a problem grows, we can solve
bigger problems.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 9

Parallelism Jargon
n Threads: execution sequences that share a single memory

area (“address space”)
n Processes: execution sequences with their own independent,

private memory areas
… and thus:
n Multithreading: parallelism via multiple threads
n Multiprocessing: parallelism via multiple processes
As a general rule, Shared Memory Parallelism is concerned

with threads, and Distributed Parallelism is concerned with
processes.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 10

Jargon Alert
In principle:
n “shared memory parallelism” è “multithreading”
n “distributed parallelism” è “multiprocessing”
In practice, these terms are often used interchangeably:
n Parallelism
n Concurrency (not as popular these days)
n Multithreading
n Multiprocessing
Typically, you have to figure out what is meant based on the

context.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 11

Amdahl’s Law
In 1967, Gene Amdahl came up with an idea so crucial to our

understanding of parallelism that they named a Law for him:

p

p
p S

F
F

S
+−

=
)1(

1

where S is the overall speedup achieved by parallelizing a code,
Fp is the fraction of the code that’s parallelizable, and Sp is the
speedup achieved in the parallel part.[1]

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 12

Amdahl’s Law: Huh?
What does Amdahl’s Law tell us?
Imagine that you run your code on a zillion processors. The

parallel part of the code could speed up by as much as a
factor of a zillion. For sufficiently large values of a zillion,
the parallel part would take zero time!

But, the serial (non-parallel) part would take the same
amount of time as on a single processor.

So running your code on infinitely many processors would
still take at least as much time as it takes to run just the
serial part.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 13

Max Speedup by Serial %

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

1E-101E-091E-081E-071E-060.000010.00010.0010.010.11

Serial Fraction

M
ax

im
um

 S
pe

ed
up

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 14

Amdahl’s Law Example
PROGRAM amdahl_test
IMPLICIT NONE
REAL,DIMENSION(a_lot) :: array
REAL :: scalar
INTEGER :: index

READ *, scalar !! Serial part
DO index = 1, a_lot !! Parallel part
array(index) = scalar * index

END DO !! index = 1, a_lot
END PROGRAM amdahl_test

If we run this program on infinitely many CPUs, then the total
run time will still be at least as much as the time it takes to
perform the READ.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 15

The Point of Amdahl’s Law
Rule of Thumb: When you write a parallel code, try to make

as much of the code parallel as possible, because the serial
part will be the limiting factor on parallel speedup.

Note that this rule will not hold when the overhead cost of
parallelizing exceeds the parallel speedup. More on this
presently.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 16

Speedup
The goal in parallelism is linear speedup: getting the speed of

the job to increase by a factor equal to the number of
processors.

Very few programs actually exhibit linear speedup, but some
come close.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 17

Scalability

Platinum = NCSA 1024 processor PIII/1GHZ Linux Cluster
Note: NCSA Origin timings are scaled from 19x19x53 domains.

Scalable means “performs just as well regardless of
how big the problem is.” A scalable code has near
linear speedup.

Better

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 18

Strong vs Weak Scalability
n Strong Scalability: If you double the number of processors,

but you keep the problem size constant, then the problem
takes half as long to complete (i.e., the speed doubles).

n Weak Scalability: If you double the number of processors,
and double the problem size, then the problem takes the
same amount of time to complete (i.e., the speed doubles).

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 19

Scalability

Platinum = NCSA 1024 processor PIII/1GHZ Linux Cluster
Note: NCSA Origin timings are scaled from 19x19x53 domains.

This benchmark shows weak scalability.

Better

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 20

Granularity
Granularity is the size of the subproblem that each thread or

process works on, and in particular the size that it works on
between communicating or synchronizing with the others.

Some codes are coarse grain (a few very big parallel parts)
and some are fine grain (many little parallel parts).

Usually, coarse grain codes are more scalable than fine grain
codes, because less time is spent managing the parallelism,
so more is spent getting the work done.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 21

Parallel Overhead
Parallelism isn’t free. Behind the scenes, the compiler and

the hardware have to do a lot of overhead work to make
parallelism happen.

The overhead typically includes:
n Managing the multiple threads/processes
n Communication among threads/processes
n Synchronization (described later)

Shared Memory
Parallelism

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 23

The Jigsaw Puzzle Analogy

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 24

Serial Computing
Suppose you want to do a jigsaw puzzle
that has, say, a thousand pieces.

We can imagine that it’ll take you a
certain amount of time. Let’s say
that you can put the puzzle together in
an hour.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 25

Shared Memory Parallelism
If Horst sits across the table from you,
then he can work on his half of the
puzzle and you can work on yours.
Once in a while, you’ll both reach into
the pile of pieces at the same time
(you’ll contend for the same resource),
which will cause a little bit of
slowdown. And from time to time
you’ll have to work together
(communicate) at the interface
between his half and yours. The
speedup will be nearly 2-to-1: y’all
might take 35 minutes instead of 30.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 26

The More the Merrier?
Now let’s put Bruce and Dee on the
other two sides of the table. Each of
you can work on a part of the puzzle,
but there’ll be a lot more contention
for the shared resource (the pile of
puzzle pieces) and a lot more
communication at the interfaces. So
y’all will get noticeably less than a
4-to-1 speedup, but you’ll still have
an improvement, maybe something
like 3-to-1: the four of you can get it
done in 20 minutes instead of an hour.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 27

Diminishing Returns
If we now put Rebecca and Jen and
Alisa and Darlene on the corners of
the table, there’s going to be a whole
lot of contention for the shared
resource, and a lot of communication
at the many interfaces. So the
speedup y’all get will be much less
than we’d like; you’ll be lucky to get
5-to-1.

So we can see that adding more and
more workers onto a shared resource
is eventually going to have a
diminishing return.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 28

Load Balancing

Load balancing means giving everyone roughly the same
amount of work to do.

For example, if the jigsaw puzzle is half grass and half sky,
then you can do the grass and Julie can do the sky, and then
y’all only have to communicate at the horizon – and the
amount of work that each of you does on your own is
roughly equal. So you’ll get pretty good speedup.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 29

Load Balancing

Load balancing can be easy, if the problem splits up into
chunks of roughly equal size, with one chunk per
processor. Or load balancing can be very hard.

How Shared Memory
Parallelism Behaves

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 31

The Fork/Join Model
Many shared memory parallel systems use a programming

model called Fork/Join. Each program begins executing on
just a single thread, called the parent.

Fork: When a parallel region is reached, the parent thread
spawns additional child threads as needed.

Join: When the parallel region ends, the child threads shut
down, leaving only the parent still running.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 32

The Fork/Join Model (cont’d)
Parent Thread

Fork

Join

Start

End

Child Threads
C

om
pu

te
 ti

m
e

Overhead

Overhead

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 33

The Fork/Join Model (cont’d)
In principle, as a parallel section completes, the child threads

shut down (join the parent), forking off again when the
parent reaches another parallel section.

In practice, the child threads often continue to exist but are
idle.

Why?

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 34

Principle vs. Practice

Fork

Join

Start

End

Fork

Join

Start

End

Idle

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 35

Why Idle?
n On some shared memory multithreading computers, the

overhead cost of forking and joining is high compared to
the cost of computing, so rather than waste time on
overhead, the children sit idle until the next parallel section.

n On some computers, joining threads releases a program’s
control over the child processors, so they may not be
available for more parallel work later in the run. Gang
scheduling is preferable, because then all of the processors
are guaranteed to be available for the whole run.

OpenMP

Most of this discussion is from [2], with a little bit from [3].

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 37

What Is OpenMP?
OpenMP is a standardized way of expressing shared memory

parallelism.
OpenMP consists of compiler directives, functions and

environment variables.
When you compile a program that has OpenMP in it, if your

compiler knows OpenMP, then you get an executable that
can run in parallel; otherwise, the compiler ignores the
OpenMP stuff and you get a purely serial executable.

OpenMP can be used in Fortran, C and C++, but only if your
preferred compiler explicitly supports it.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 38

Compiler Directives
A compiler directive is a line of source code that gives the

compiler special information about the statement or block of
code that immediately follows.

C++ and C programmers already know about compiler
directives:

#include "MyClass.h"

Many Fortran programmers already have seen at least one
compiler directive:

INCLUDE ’mycommon.inc’

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 39

OpenMP Compiler Directives
OpenMP compiler directives in Fortran look like this:
!$OMP …stuff…
In C++ and C, OpenMP directives look like:
#pragma omp …stuff…
Both directive forms mean “the rest of this line contains

OpenMP information.”
Aside: “pragma” is the Greek word for “thing.” Go figure.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 40

Example OpenMP Directives
Fortran

!$OMP PARALLEL DO
!$OMP CRITICAL
!$OMP MASTER
!$OMP BARRIER
!$OMP SINGLE
!$OMP ATOMIC
!$OMP SECTION
!$OMP FLUSH
!$OMP ORDERED

C++/C
#pragma omp parallel for
#pragma omp critical
#pragma omp master
#pragma omp barrier
#pragma omp single
#pragma omp atomic
#pragma omp section
#pragma omp flush
#pragma omp ordered

Note that we won’t cover all of these.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 41

A First OpenMP Program
PROGRAM hello_world
IMPLICIT NONE
INTEGER :: number_of_threads, this_thread, iteration
INTEGER,EXTERNAL :: omp_get_max_threads, omp_get_thread_num

number_of_threads = omp_get_max_threads()
WRITE (0,"(I2,A)") number_of_threads, " threads"

!$OMP PARALLEL DO DEFAULT(PRIVATE) &
!$OMP SHARED(number_of_threads)
DO iteration = 0, number_of_threads - 1

this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A) ")"Iteration ", &

& iteration, ", thread ", this_thread, &
& ": Hello, world!"
END DO

END PROGRAM hello_world

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 42

Running hello_world
% setenv OMP_NUM_THREADS 4
% hello_world
4 threads
Iteration 0, thread 0: Hello, world!
Iteration 1, thread 1: Hello, world!
Iteration 3, thread 3: Hello, world!
Iteration 2, thread 2: Hello, world!
% hello_world
4 threads
Iteration 2, thread 2: Hello, world!
Iteration 1, thread 1: Hello, world!
Iteration 0, thread 0: Hello, world!
Iteration 3, thread 3: Hello, world!
% hello_world
4 threads
Iteration 1, thread 1: Hello, world!
Iteration 2, thread 2: Hello, world!
Iteration 0, thread 0: Hello, world!
Iteration 3, thread 3: Hello, world!

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 43

OpenMP Issues Observed
From the hello_world program, we learn that:
n At some point before running an OpenMP program, you must

set an environment variable
OMP_NUM_THREADS

that represents the number of threads to use.
n The order in which the threads execute is nondeterministic.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 44

The PARALLEL DO Directive
The PARALLEL DO directive tells the compiler that the DO

loop immediately after the directive should be executed in
parallel; for example:

!$OMP PARALLEL DO
DO index = 1, length

array(index) = index * index
END DO

The iterations of the loop will be computed in parallel (note
that they are independent of one another).

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 45

A Change to hello_world

% hello_world
4 threads
Iteration 9, thread 3: Hello, world!
Iteration 0, thread 0: Hello, world!
Iteration 10, thread 3: Hello, world!
Iteration 11, thread 3: Hello, world!
Iteration 1, thread 0: Hello, world!
Iteration 2, thread 0: Hello, world!
Iteration 3, thread 1: Hello, world!
Iteration 6, thread 2: Hello, world!
Iteration 7, thread 2: Hello, world!
Iteration 8, thread 2: Hello, world!
Iteration 4, thread 1: Hello, world!
Iteration 5, thread 1: Hello, world!

Suppose we do 3 loop iterations per thread:
DO iteration = 0, number_of_threads * 3 – 1

Notice that the
iterations are split into
contiguous chunks,
and each thread gets
one chunk of
iterations.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 46

Chunks
By default, OpenMP splits the iterations of a loop into chunks

of equal (or roughly equal) size, assigns each chunk to a
thread, and lets each thread loop through its subset of the
iterations.

So, for example, if you have 4 threads and 12 iterations, then
each thread gets three iterations:

n Thread 0: iterations 0, 1, 2
n Thread 1: iterations 3, 4, 5
n Thread 2: iterations 6, 7, 8
n Thread 3: iterations 9, 10, 11
Notice that each thread performs its own chunk in

deterministic order, but that the overall order is
nondeterministic.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 47

Private and Shared Data
Private data are data that are owned by, and only visible to, a

single individual thread.
Shared data are data that are owned by and visible to all

threads.

(Note: In distributed parallelism, all data are private, as we’ll
see next time.)

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 48

Should All Data Be Shared?
In our example program, we saw this:
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(number_of_threads)

What do DEFAULT(PRIVATE) and SHARED mean?
We said that OpenMP uses shared memory parallelism. So
PRIVATE and SHARED refer to memory.

Would it make sense for all data within a parallel loop to be
shared?

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 49

A Private Variable
Consider this loop:
!$OMP PARALLEL DO …

DO iteration = 0, number_of_threads - 1
this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A) ") "Iteration ", iteration, &

& ", thread ", this_thread, ": Hello, world!"
END DO

Notice that, if the iterations of the loop are executed
concurrently, then the loop index variable named
iteration will be wrong for all but one of the threads.

Each thread should get its own copy of the variable named
iteration.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 50

Another Private Variable

!$OMP PARALLEL DO …
DO iteration = 0, number_of_threads - 1
this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A)") "Iteration ", iteration, &

& ", thread ", this_thread, ": Hello, world!"
END DO

Notice that, if the iterations of the loop are executed
concurrently, then this_thread will be wrong for all but
one of the threads.

Each thread should get its own copy of the variable named
this_thread.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 51

A Shared Variable
!$OMP PARALLEL DO …

DO iteration = 0, number_of_threads - 1
this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A)"“) "Iteration ", iteration, &

& ", thread ", this_thread, ": Hello, world!"
END DO

Notice that, regardless of whether the iterations of the loop are
executed serially or in parallel, number_of_threads
will be correct for all of the threads.

All threads should share a single instance of
number_of_threads.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 52

SHARED & PRIVATE Clauses
The PARALLEL DO directive allows extra clauses to be

appended that tell the compiler which variables are shared and
which are private:

!$OMP PARALLEL DO PRIVATE(iteration,this_thread) &
!$OMP SHARED (number_of_threads)

This tells that compiler that iteration and this_thread
are private but that number_of_threads is shared.

(Note the syntax for continuing a directive in Fortran90.)

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 53

DEFAULT Clause
If your loop has lots of variables, it may be cumbersome to put

all of them into SHARED and PRIVATE clauses.
So, OpenMP allows you to declare one kind of data to be the

default, and then you only need to explicitly declare
variables of the other kind:

!$OMP PARALLEL DO DEFAULT(PRIVATE) &
!$OMP SHARED(number_of_threads)

The default DEFAULT (so to speak) is SHARED,except for the
loop index variable, which by default is PRIVATE.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 54

Different Workloads
What happens if the threads have different amounts of work to

do?
!$OMP PARALLEL DO
DO index = 1, length
x(index) = index / 3.0
IF (x(index) < 0) THEN
y(index) = LOG(x(index))

ELSE
y(index) = 1.0 - x(index)

END IF
END DO

The threads that finish early have to wait.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 55

Chunks
By default, OpenMP splits the iterations of a loop into chunks

of equal (or roughly equal) size, assigns each chunk to a
thread, and lets each thread loop through its subset of the
iterations.

So, for example, if you have 4 threads and 12 iterations, then
each thread gets three iterations:

n Thread 0: iterations 0, 1, 2
n Thread 1: iterations 3, 4, 5
n Thread 2: iterations 6, 7, 8
n Thread 3: iterations 9, 10, 11

Notice that each thread performs its own chunk in
deterministic order, but that the overall order is
nondeterministic.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 56

Scheduling Strategies
OpenMP supports three scheduling strategies:
n Static: The default, as described in the previous slides –

good for iterations that are inherently load balanced.
n Dynamic: Each thread gets a chunk of a few iterations, and

when it finishes that chunk it goes back for more, and so on
until all of the iterations are done – good when iterations
aren’t load balanced at all.

n Guided: Each thread gets smaller and smaller chunks over
time – a compromise.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 57

Static Scheduling
For Ni iterations and Nt threads, each thread gets one chunk of

Ni/Nt loop iterations:

T0 T1 T2 T3 T4 T5

n Thread #0: iterations 0 through Ni/Nt-1
n Thread #1: iterations Ni/Nt through 2Ni/Nt-1
n Thread #2: iterations 2Ni/Nt through 3Ni/Nt-1
…
n Thread #Nt-1: iterations (Nt-1)Ni/Nt through Ni-1

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 58

Dynamic Scheduling
For Ni iterations and Nt threads, each thread gets a fixed-size

chunk of k loop iterations:

T0 T1 T2 T3 T4 T5 T2 T3 T4 T0 T1 T5 T3 T2
When a particular thread finishes its chunk of iterations, it gets

assigned a new chunk. So, the relationship between
iterations and threads is nondeterministic.

n Advantage: very flexible
n Disadvantage: high overhead – lots of decision making

about which thread gets each chunk

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 59

Guided Scheduling
For Ni iterations and Nt threads, initially each thread gets a

fixed-size chunk of k < Ni/Nt loop iterations:

T0 T1 T2 T3 T4 T5 2 3 4 1 0 2 5 4 231

After each thread finishes its chunk of k iterations, it gets a
chunk of k/2 iterations, then k/4, etc. Chunks are assigned
dynamically, as threads finish their previous chunks.

n Advantage over static: can handle imbalanced load
n Advantage over dynamic: fewer decisions, so less overhead

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 60

How to Know Which Schedule?
Test all three using a typical case as a benchmark.
Whichever wins is probably the one you want to use most of

the time on that particular platform.
This may vary depending on problem size, new versions of the

compiler, who’s on the machine, what day of the week it is,
etc, so you may want to benchmark the three schedules from
time to time.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 61

SCHEDULE Clause
The PARALLEL DO directive allows a SCHEDULE clause to be

appended that tell the compiler which variables are shared and
which are private:

!$OMP PARALLEL DO … SCHEDULE(STATIC)
This tells that compiler that the schedule will be static.
Likewise, the schedule could be GUIDED or DYNAMIC.
However, the very best schedule to put in the SCHEDULE clause

is RUNTIME.
You can then set the environment variable OMP_SCHEDULE to
STATIC or GUIDED or DYNAMIC at runtime – great for
benchmarking!

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 62

Synchronization
Jargon: Waiting for other threads to finish a parallel loop (or

other parallel section) before going on to the work after the
parallel section is called synchronization.

Synchronization is BAD, because when a thread is waiting for
the others to finish, it isn’t getting any work done, so it isn’t
contributing to speedup.

So why would anyone ever synchronize?

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 63

Why Synchronize?
Synchronizing is necessary when the code that follows a parallel

section needs all threads to have their final answers.
!$OMP PARALLEL DO
DO index = 1, length
x(index) = index / 1024.0
IF ((index / 1000) < 1) THEN
y(index) = LOG(x(index))

ELSE
y(index) = x(index) + 2

END IF
END DO

! Need to synchronize here!
DO index = 1, length
z(index) = y(index) + y(length – index + 1)

END DO

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 64

Barriers
A barrier is a place where synchronization is forced to occur; that

is, where faster threads have to wait for slower ones.
The PARALLEL DO directive automatically puts an invisible,

implied barrier at the end of its DO loop:
!$OMP PARALLEL DO
DO index = 1, length
… parallel stuff …

END DO
! Implied barrier
… serial stuff …

OpenMP also has an explicit BARRIER directive, but most people
don’t need it.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 65

Critical Sections
A critical section is a piece of code that any thread can

execute, but that only one thread can execute at a time.
!$OMP PARALLEL DO
DO index = 1, length
… parallel stuff …

!$OMP CRITICAL(summing)
sum = sum + x(index) * y(index)

!$OMP END CRITICAL(summing)
… more parallel stuff …

END DO

What’s the point?

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 66

Why Have Critical Sections?
If only one thread at a time can execute a critical section, that

slows the code down, because the other threads may be
waiting to enter the critical section.

But, for certain statements, if you don’t ensure mutual exclusion,
then you can get nondeterministic results.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 67

If No Critical Section
!$OMP CRITICAL(summing)

sum = sum + x(index) * y(index)
!$OMP END CRITICAL(summing)

Suppose for thread #0, index is 27, and for thread #1, index
is 92.

If the two threads execute the above statement at the same time,
sum could be

n the value after adding x(27) * y(27), or
n the value after adding x(92) * y(92), or
n garbage!
This is called a race condition: the result depends on who wins

the race.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 68

Pen Game #1: Take the Pen
We need two volunteers for this game.
1. I’ll hold a pen in my hand.
2. You win by taking the pen from my hand.
3. One, two, three, go!
Can we predict the outcome? Therefore, can we guarantee that

we get the correct outcome?

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 69

Pen Game #2: Look at the Pen
We need two volunteers for this game.
1. I’ll hold a pen in my hand.
2. You win by looking at the pen.
3. One, two, three, go!
Can we predict the outcome? Therefore, can we guarantee that

we get the correct outcome?

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 70

Race Conditions
A race condition is a situation in which multiple processes can

change the value of a variable at the same time.
As in Pen Game #1 (Take the Pen), a race condition can lead to

unpredictable results.
So, race conditions are BAD.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 71

Reductions
A reduction converts an array to a scalar: sum, product,

minimum value, maximum value, location of minimum
value, location of maximum value, Boolean AND, Boolean
OR, number of occurrences, etc.

Reductions are so common, and so important, that OpenMP has
a specific construct to handle them: the REDUCTION clause
in a PARALLEL DO directive.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 72

Reduction Clause
total_mass = 0

!$OMP PARALLEL DO REDUCTION(+:total_mass)
DO index = 1, length

total_mass = total_mass + mass(index)
END DO !! index = 1, length

This is equivalent to:
total_mass = 0
DO thread = 0, number_of_threads – 1

thread_mass(thread) = 0
END DO

$OMP PARALLEL DO
DO index = 1, length

thread = omp_get_thread_num()
thread_mass(thread) = thread_mass(thread) + mass(index)

END DO !! index = 1, length
DO thread = 0, number_of_threads – 1

total_mass = total_mass + thread_mass(thread)
END DO

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 73

Parallelizing a Serial Code #1
PROGRAM big_science
… declarations …

DO …
… parallelizable work …
END DO

… serial work …

DO …
… more parallelizable work …
END DO

… serial work …
… etc …
END PROGRAM big_science

PROGRAM big_science
… declarations …
!$OMP PARALLEL DO …
DO …
… parallelizable work …
END DO

… serial work …
!$OMP PARALLEL DO …
DO …
… more parallelizable work …
END DO

… serial work …
… etc …
END PROGRAM big_science

This way may have lots of synchronization overhead.

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 74

Parallelizing a Serial Code #2
PROGRAM big_science
… declarations …

DO task = 1, numtasks
CALL science_task(…)

END DO
END PROGRAM big_science

SUBROUTINE science_task (…)
… parallelizable work …

… serial work …

… more parallelizable work …

… serial work …

… etc …
END PROGRAM big_science

PROGRAM big_science
… declarations …
!$OMP PARALLEL DO …

DO task = 1, numtasks
CALL science_task(…)

END DO
END PROGRAM big_science

SUBROUTINE science_task (…)
… parallelizable work …
!$OMP MASTER
… serial work …
!$OMP END MASTER
… more parallelizable work …
!$OMP MASTER
… serial work …
!$OMP END MASTER
… etc …
END PROGRAM big_science

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 75

Okla. Supercomputing Symposium

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &

Engineering
Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2008.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Tue Oct 7 2008 @ OU
Over 250 registrations already!

Over 150 in the first day, over 200 in the first
week, over 225 in the first month.

FREE! Parallel Computing Workshop
Mon Oct 6 @ OU sponsored by SC08
FREE! Symposium Tue Oct 7 @ OU

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 76

To Learn More Supercomputing
http://www.oscer.ou.edu/education.php

http://symposium2007.oscer.ou.edu/

Thanks for your
attention!

Questions?

SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 78

References
[1] Amdahl, G.M. “Validity of the single-processor approach to achieving large scale computing
capabilities.” In AFIPS Conference Proceedings vol. 30 (Atlantic City, N.J., Apr. 18-20). AFIPS Press,
Reston VA, 1967, pp. 483-485. Cited in
http://www.scl.ameslab.gov/Publications/AmdahlsLaw/Amdahls.html
[2] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald and R. Menon, Parallel Programming in
OpenMP. Morgan Kaufmann, 2001.
[3] Kevin Dowd and Charles Severance, High Performance Computing, 2nd ed. O’Reilly, 1998.

