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Outline
n Parallelism
n Shared Memory Parallelism
n OpenMP



Parallelism
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Parallelism

Less fish …

More fish!

Parallelism means doing 
multiple things at the 
same time: you can get 
more work done in the 
same amount of time.
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What Is Parallelism?
Parallelism is the use of multiple processing units – either 

processors or parts of an individual processor – to solve a 
problem, and in particular the use of multiple processing 
units operating concurrently on different parts of a problem.

The different parts could be different tasks, or the same task on 
different pieces of the problem’s data.
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Kinds of Parallelism
n Shared Memory Multithreading (our topic today)
n Distributed Memory Multiprocessing (next time)
n Hybrid Shared/Distributed
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Why Parallelism Is Good
n The Trees: We like parallelism because, as the number of 

processing units working on a problem grows, we can solve 
the same problem in less time.

n The Forest: We like parallelism because, as the number of 
processing units working on a problem grows, we can solve 
bigger problems.
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Parallelism Jargon
n Threads:  execution sequences that share a single memory 

area (“address space”)
n Processes:  execution sequences with their own independent, 

private memory areas
… and thus:
n Multithreading:   parallelism via multiple threads
n Multiprocessing: parallelism via multiple processes
As a general rule, Shared Memory Parallelism is concerned 

with threads, and Distributed Parallelism is concerned with 
processes.
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Jargon Alert
In principle:
n “shared memory parallelism” è “multithreading”
n “distributed parallelism”        è “multiprocessing”
In practice, these terms are often used interchangeably:
n Parallelism
n Concurrency (not as popular these days)
n Multithreading
n Multiprocessing
Typically, you have to figure out what is meant based on the 

context.
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Amdahl’s Law
In 1967, Gene Amdahl came up with an idea so crucial to our 

understanding of parallelism that they named a Law for him:
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where S is the overall speedup achieved by parallelizing a code, 
Fp is the fraction of the code that’s parallelizable, and Sp is the 
speedup achieved in the parallel part.[1]
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Amdahl’s Law: Huh?
What does Amdahl’s Law tell us?
Imagine that you run your code on a zillion processors. The 

parallel part of the code could speed up by as much as a 
factor of a zillion. For sufficiently large values of a zillion, 
the parallel part would take zero time!

But, the serial (non-parallel) part would take the same 
amount of time as on a single processor.

So running your code on infinitely many processors would 
still take at least as much time as it takes to run just the 
serial part.
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Amdahl’s Law Example
PROGRAM amdahl_test
IMPLICIT NONE
REAL,DIMENSION(a_lot) :: array
REAL    :: scalar
INTEGER :: index

READ *, scalar      !! Serial part
DO index = 1, a_lot !! Parallel part
array(index) = scalar * index

END DO !! index = 1, a_lot
END PROGRAM amdahl_test

If we run this program on infinitely many CPUs, then the total 
run time will still be at least as much as the time it takes to 
perform the READ.
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The Point of Amdahl’s Law
Rule of Thumb: When you write a parallel code, try to make 

as much of the code parallel as possible, because the serial 
part will be the limiting factor on parallel speedup.

Note that this rule will not hold when the overhead cost of 
parallelizing exceeds the parallel speedup. More on this 
presently.
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Speedup
The goal in parallelism is linear speedup: getting the speed of 

the job to increase by a factor equal to the number of 
processors.

Very few programs actually exhibit linear speedup, but some 
come close.
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Scalability

Platinum = NCSA 1024 processor PIII/1GHZ Linux Cluster
Note: NCSA Origin timings are scaled from 19x19x53 domains.

Scalable means “performs just as well regardless of 
how big the problem is.” A scalable code has near 
linear speedup.

Better
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Strong vs Weak Scalability
n Strong Scalability: If you double the number of processors, 

but you keep the problem size constant, then the problem 
takes half as long to complete (i.e., the speed doubles).

n Weak Scalability: If you double the number of processors, 
and double the problem size, then the problem takes the 
same amount of time to complete (i.e., the speed doubles).
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Scalability

Platinum = NCSA 1024 processor PIII/1GHZ Linux Cluster
Note: NCSA Origin timings are scaled from 19x19x53 domains.

This benchmark shows weak scalability.

Better



SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 20

Granularity
Granularity is the size of the subproblem that each thread or 

process works on, and in particular the size that it works on 
between communicating or synchronizing with the others.

Some codes are coarse grain (a few very big parallel parts) 
and some are fine grain (many little parallel parts).

Usually, coarse grain codes are more scalable than fine grain 
codes, because less time is spent managing the parallelism, 
so more is spent getting the work done.
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Parallel Overhead
Parallelism isn’t free.  Behind the scenes, the compiler and 

the hardware have to do a lot of overhead work to make 
parallelism happen.

The overhead typically includes:
n Managing the multiple threads/processes
n Communication among threads/processes
n Synchronization (described later)



Shared Memory 
Parallelism
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The Jigsaw Puzzle Analogy
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Serial Computing
Suppose you want to do a jigsaw puzzle
that has, say, a thousand pieces.

We can imagine that it’ll take you a
certain amount of time.  Let’s say
that you can put the puzzle together in
an hour.
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Shared Memory Parallelism
If Horst sits across the table from you, 
then he can work on his half of the 
puzzle and you can work on yours.  
Once in a while, you’ll both reach into 
the pile of pieces at the same time 
(you’ll contend for the same resource), 
which will cause a little bit of 
slowdown.  And from time to time 
you’ll have to work together 
(communicate) at the interface 
between his half and yours.  The 
speedup will be nearly 2-to-1:  y’all 
might take 35 minutes instead of 30.
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The More the Merrier?
Now let’s put Bruce and Dee on the 
other two sides of the table.  Each of 
you can work on a part of the puzzle, 
but there’ll be a lot more contention 
for the shared resource (the pile of 
puzzle pieces) and a lot more 
communication at the interfaces.  So 
y’all will get noticeably less than a   
4-to-1 speedup, but you’ll still have 
an improvement, maybe something 
like 3-to-1:  the four of you can get it 
done in 20 minutes instead of an hour.
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Diminishing Returns
If we now put Rebecca and Jen and 
Alisa and Darlene on the corners of 
the table, there’s going to be a whole 
lot of contention for the shared 
resource, and a lot of communication 
at the many interfaces.  So the 
speedup y’all get will be much less 
than we’d like; you’ll be lucky to get 
5-to-1.

So we can see that adding more and 
more workers onto a shared resource 
is eventually going to have a 
diminishing return.
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Load Balancing

Load balancing means giving everyone roughly the same 
amount of work to do.

For example, if the jigsaw puzzle is half grass and half sky, 
then you can do the grass and Julie can do the sky, and then 
y’all only have to communicate at the horizon – and the 
amount of work that each of you does on your own is 
roughly equal.  So you’ll get pretty good speedup.
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Load Balancing

Load balancing can be easy, if the problem splits up into 
chunks of roughly equal size, with one chunk per 
processor.  Or load balancing can be very hard.



How Shared Memory 
Parallelism Behaves



SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 31

The Fork/Join Model
Many shared memory parallel systems use a programming 

model called Fork/Join. Each program begins executing on 
just a single thread, called the parent.

Fork: When a parallel region is reached, the parent thread 
spawns additional child threads as needed.

Join: When the parallel region ends, the child threads shut 
down, leaving only the parent still running.
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The Fork/Join Model (cont’d)
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The Fork/Join Model (cont’d)
In principle, as a parallel section completes, the child threads 

shut down (join the parent), forking off again when the 
parent reaches another parallel section.

In practice, the child threads often continue to exist but are 
idle.

Why?
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Principle vs. Practice
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Why Idle?
n On some shared memory multithreading computers, the 

overhead cost of forking and joining is high compared to 
the cost of computing, so rather than waste time on 
overhead, the children sit idle until the next parallel section.

n On some computers, joining threads releases a program’s 
control over the child processors, so they may not be 
available for more parallel work later in the run. Gang 
scheduling is preferable, because then all of the processors 
are guaranteed to be available for the whole run.



OpenMP

Most of this discussion is from [2], with a little bit from [3].
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What Is OpenMP?
OpenMP is a standardized way of expressing shared memory 

parallelism.
OpenMP consists of compiler directives, functions and 

environment variables.
When you compile a program that has OpenMP in it, if your 

compiler knows OpenMP, then you get an executable that 
can run in parallel; otherwise, the compiler ignores the 
OpenMP stuff and you get a purely serial executable.

OpenMP can be used in Fortran, C and C++, but only if your 
preferred compiler explicitly supports it.
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Compiler Directives
A compiler directive is a line of source code that gives the 

compiler special information about the statement or block of 
code that immediately follows.

C++ and C programmers already know about compiler 
directives:

#include "MyClass.h"

Many Fortran programmers already have seen at least one 
compiler directive:

INCLUDE ’mycommon.inc’
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OpenMP Compiler Directives
OpenMP compiler directives in Fortran look like this:
!$OMP …stuff…
In C++ and C, OpenMP directives look like:
#pragma omp …stuff…
Both directive forms mean “the rest of this line contains 

OpenMP information.”
Aside: “pragma” is the Greek word for “thing.” Go figure.
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Example OpenMP Directives
Fortran

!$OMP PARALLEL DO
!$OMP CRITICAL
!$OMP MASTER
!$OMP BARRIER
!$OMP SINGLE
!$OMP ATOMIC
!$OMP SECTION
!$OMP FLUSH
!$OMP ORDERED

C++/C
#pragma omp parallel for
#pragma omp critical
#pragma omp master
#pragma omp barrier
#pragma omp single
#pragma omp atomic
#pragma omp section
#pragma omp flush
#pragma omp ordered

Note that we won’t cover all of these.
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A First OpenMP Program
PROGRAM hello_world
IMPLICIT NONE
INTEGER :: number_of_threads, this_thread, iteration
INTEGER,EXTERNAL :: omp_get_max_threads, omp_get_thread_num

number_of_threads = omp_get_max_threads()
WRITE (0,"(I2,A)") number_of_threads, " threads"

!$OMP PARALLEL DO DEFAULT(PRIVATE) &
!$OMP             SHARED(number_of_threads)
DO iteration = 0, number_of_threads - 1

this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A) ")"Iteration ", &

&    iteration, ", thread ", this_thread, &
&    ": Hello, world!"
END DO

END PROGRAM hello_world
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Running hello_world
% setenv  OMP_NUM_THREADS  4
% hello_world
4 threads
Iteration  0, thread  0: Hello, world!
Iteration  1, thread  1: Hello, world!
Iteration  3, thread  3: Hello, world!
Iteration  2, thread  2: Hello, world!
% hello_world
4 threads
Iteration  2, thread  2: Hello, world!
Iteration  1, thread  1: Hello, world!
Iteration  0, thread  0: Hello, world!
Iteration  3, thread  3: Hello, world!
% hello_world
4 threads
Iteration  1, thread  1: Hello, world!
Iteration  2, thread  2: Hello, world!
Iteration  0, thread  0: Hello, world!
Iteration  3, thread  3: Hello, world!
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OpenMP Issues Observed
From the hello_world program, we learn that:
n At some point before running an OpenMP program, you must 

set an environment variable
OMP_NUM_THREADS

that represents the number of threads to use.
n The order in which the threads execute is nondeterministic.
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The PARALLEL DO Directive
The PARALLEL DO directive tells the compiler that the DO

loop immediately after the directive should be executed in 
parallel; for example:

!$OMP PARALLEL DO
DO index = 1, length

array(index) = index * index
END DO

The iterations of the loop will be computed in parallel (note 
that they are independent of one another).
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A Change to hello_world

% hello_world
4 threads
Iteration  9, thread  3: Hello, world!
Iteration  0, thread  0: Hello, world!
Iteration 10, thread  3: Hello, world!
Iteration 11, thread  3: Hello, world!
Iteration  1, thread  0: Hello, world!
Iteration  2, thread  0: Hello, world!
Iteration  3, thread  1: Hello, world!
Iteration  6, thread  2: Hello, world!
Iteration  7, thread  2: Hello, world!
Iteration  8, thread  2: Hello, world!
Iteration  4, thread  1: Hello, world!
Iteration  5, thread  1: Hello, world!

Suppose we do 3 loop iterations per thread:
DO iteration = 0, number_of_threads * 3 – 1

Notice that the 
iterations are split into 
contiguous chunks, 
and each thread gets 
one chunk of 
iterations.
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Chunks
By default, OpenMP splits the iterations of a loop into chunks 

of equal (or roughly equal) size, assigns each chunk to a 
thread, and lets each thread loop through its subset of the 
iterations.

So, for example, if you have 4 threads and 12 iterations, then 
each thread gets three iterations:

n Thread 0: iterations 0, 1, 2
n Thread 1: iterations 3, 4, 5
n Thread 2: iterations 6, 7, 8
n Thread 3: iterations 9, 10, 11
Notice that each thread performs its own chunk in 

deterministic order, but that the overall order is 
nondeterministic.
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Private and Shared Data
Private data are data that are owned by, and only visible to, a 

single individual thread.
Shared data are data that are owned by and visible to all 

threads.

(Note: In distributed parallelism, all data are private, as we’ll 
see next time.)
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Should All Data Be Shared?
In our example program, we saw this:
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(number_of_threads)

What do DEFAULT(PRIVATE) and SHARED mean?
We said that OpenMP uses shared memory parallelism.  So 
PRIVATE and SHARED refer to memory.

Would it make sense for all data within a parallel loop to be 
shared?
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A Private Variable
Consider this loop:
!$OMP PARALLEL DO …

DO iteration = 0, number_of_threads - 1
this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A) ") "Iteration ", iteration, &

&    ", thread ", this_thread, ": Hello, world!"
END DO

Notice that, if the iterations of the loop are executed 
concurrently, then the loop index variable named 
iteration will be wrong for all but one of the threads.

Each thread should get its own copy of the  variable named 
iteration.



SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 50

Another Private Variable

!$OMP PARALLEL DO …
DO iteration = 0, number_of_threads - 1
this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A)") "Iteration ", iteration, &

&    ", thread ", this_thread, ": Hello, world!"
END DO

Notice that, if the iterations of the loop are executed 
concurrently, then this_thread will be wrong for all but 
one of the threads.

Each thread should get its own copy of the  variable named 
this_thread.
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A Shared Variable
!$OMP PARALLEL DO …

DO iteration = 0, number_of_threads - 1
this_thread = omp_get_thread_num()
WRITE (0,"(A,I2,A,I2,A)"“) "Iteration ", iteration, &

&    ", thread ", this_thread, ": Hello, world!"
END DO

Notice that, regardless of whether the iterations of the loop are 
executed serially or in parallel, number_of_threads
will be correct for all of the threads.

All threads should share a single instance of 
number_of_threads.
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SHARED & PRIVATE Clauses
The PARALLEL DO directive allows extra clauses to be 

appended that tell the compiler which variables are shared and 
which are private:

!$OMP PARALLEL DO PRIVATE(iteration,this_thread) &
!$OMP SHARED (number_of_threads)

This tells that compiler that iteration and this_thread
are private but that number_of_threads is shared.

(Note the syntax for continuing a directive in Fortran90.)
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DEFAULT Clause
If your loop has lots of variables, it may be cumbersome to put 

all of them into SHARED and PRIVATE clauses.
So, OpenMP allows you to declare one kind of data to be the 

default, and then you only need to explicitly declare 
variables of the other kind:

!$OMP PARALLEL DO DEFAULT(PRIVATE) &
!$OMP             SHARED(number_of_threads)

The default DEFAULT (so to speak) is SHARED,except for the 
loop index variable, which by default is PRIVATE.
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Different Workloads
What happens if the threads have different amounts of work to 

do?
!$OMP PARALLEL DO
DO index = 1, length
x(index) = index / 3.0
IF (x(index) < 0) THEN
y(index) = LOG(x(index))

ELSE
y(index) = 1.0 - x(index)

END IF
END DO

The threads that finish early have to wait.
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Chunks
By default, OpenMP splits the iterations of a loop into chunks 

of equal (or roughly equal) size, assigns each chunk to a 
thread, and lets each thread loop through its subset of the 
iterations.

So, for example, if you have 4 threads and 12 iterations, then 
each thread gets three iterations:

n Thread 0: iterations 0, 1, 2
n Thread 1: iterations 3, 4, 5
n Thread 2: iterations 6, 7, 8
n Thread 3: iterations 9, 10, 11

Notice that each thread performs its own chunk in 
deterministic order, but that the overall order is 
nondeterministic.
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Scheduling Strategies
OpenMP supports three scheduling strategies:
n Static: The default, as described in the previous slides –

good for iterations that are inherently load balanced.
n Dynamic: Each thread gets a chunk of a few iterations, and 

when it finishes that chunk it goes back for more, and so on 
until all of the iterations are done – good when iterations 
aren’t load balanced at all.

n Guided: Each thread gets smaller and smaller chunks over 
time – a compromise.
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Static Scheduling
For Ni iterations and Nt threads, each thread gets one chunk of 

Ni/Nt loop iterations:

T0          T1          T2        T3          T4        T5

n Thread #0: iterations     0 through Ni/Nt-1
n Thread #1: iterations Ni/Nt through 2Ni/Nt-1
n Thread #2: iterations 2Ni/Nt through 3Ni/Nt-1
…
n Thread #Nt-1: iterations (Nt-1)Ni/Nt through Ni-1



SC08 Parallel & Cluster Computing: Shared Memory Parallelism
University of Oklahoma, August 10-16 2008 58

Dynamic Scheduling
For Ni iterations and Nt threads, each thread gets a fixed-size 

chunk of k loop iterations:

T0  T1 T2  T3 T4  T5 T2  T3 T4 T0  T1  T5 T3 T2
When a particular thread finishes its chunk of iterations, it gets 

assigned a new chunk. So, the relationship between 
iterations and threads is nondeterministic.

n Advantage: very flexible
n Disadvantage: high overhead – lots of decision making 

about which thread gets each chunk
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Guided Scheduling
For Ni iterations and Nt threads, initially each thread gets a 

fixed-size chunk of k < Ni/Nt loop iterations:

T0   T1    T2   T3    T4    T5  2  3  4  1 0 2 5 4 231

After each thread finishes its chunk of k iterations, it gets a 
chunk of k/2 iterations, then k/4, etc. Chunks are assigned 
dynamically, as threads finish their previous chunks.

n Advantage over static: can handle imbalanced load
n Advantage over dynamic: fewer decisions, so less overhead
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How to Know Which Schedule?
Test all three using a typical case as a benchmark.
Whichever wins is probably the one you want to use most of 

the time on that particular platform.
This may vary depending on problem size, new versions of the 

compiler, who’s on the machine, what day of the week it is, 
etc, so you may want to benchmark the three schedules from 
time to time.
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SCHEDULE Clause
The PARALLEL DO directive allows a SCHEDULE clause to be 

appended that tell the compiler which variables are shared and 
which are private:

!$OMP PARALLEL DO … SCHEDULE(STATIC)
This tells that compiler that the schedule will be static.
Likewise, the schedule could be GUIDED or DYNAMIC.
However, the very best schedule to put in the SCHEDULE clause 

is RUNTIME.
You can then set the environment variable OMP_SCHEDULE to 
STATIC or GUIDED or DYNAMIC at runtime – great for 
benchmarking!
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Synchronization
Jargon: Waiting for other threads to finish a parallel loop (or 

other parallel section) before going on to the work after the 
parallel section is called synchronization.

Synchronization is BAD, because when a thread is waiting for 
the others to finish, it isn’t getting any work done, so it isn’t 
contributing to speedup.

So why would anyone ever synchronize?
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Why Synchronize?
Synchronizing is necessary when the code that follows a parallel 

section needs all threads to have their final answers.
!$OMP PARALLEL DO
DO index = 1, length
x(index) = index / 1024.0
IF ((index / 1000) < 1) THEN
y(index) = LOG(x(index))

ELSE
y(index) = x(index) + 2

END IF
END DO

! Need to synchronize here!
DO index = 1, length
z(index) = y(index) + y(length – index + 1)

END DO
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Barriers
A barrier is a place where synchronization is forced to occur; that 

is, where faster threads have to wait for slower ones.
The PARALLEL DO directive automatically puts an invisible, 

implied barrier at the end of its DO loop:
!$OMP PARALLEL DO
DO index = 1, length
… parallel stuff …

END DO
! Implied barrier
… serial stuff …

OpenMP also has an explicit BARRIER directive, but most people 
don’t need it.
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Critical Sections
A critical section is a piece of code that any thread can 

execute, but that only one thread can execute at a time.
!$OMP PARALLEL DO
DO index = 1, length
… parallel stuff …

!$OMP CRITICAL(summing)
sum = sum + x(index) * y(index)

!$OMP END CRITICAL(summing)
… more parallel stuff …

END DO

What’s the point?
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Why Have Critical Sections?
If only one thread at a time can execute a critical section, that 

slows the code down, because the other threads may be 
waiting to enter the critical section.

But, for certain statements, if you don’t ensure mutual exclusion, 
then you can get nondeterministic results.
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If No Critical Section
!$OMP CRITICAL(summing)

sum = sum + x(index) * y(index)
!$OMP END CRITICAL(summing)

Suppose for thread #0, index is 27, and for thread #1, index
is 92.

If the two threads execute the above statement at the same time, 
sum could be

n the value after adding x(27) * y(27), or
n the value after adding x(92) * y(92), or
n garbage!
This is called a race condition: the result depends on who wins 

the race.
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Pen Game #1: Take the Pen
We need two volunteers for this game.
1. I’ll hold a pen in my hand.
2. You win by taking the pen from my hand.
3. One, two, three, go!
Can we predict the outcome? Therefore, can we guarantee that 

we get the correct outcome?
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Pen Game #2: Look at the Pen
We need two volunteers for this game.
1. I’ll hold a pen in my hand.
2. You win by looking at the pen.
3. One, two, three, go!
Can we predict the outcome? Therefore, can we guarantee that 

we get the correct outcome?
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Race Conditions
A race condition is a situation in which multiple processes can 

change the value of a variable at the same time.
As in Pen Game #1 (Take the Pen), a race condition can lead to 

unpredictable results.
So, race conditions are BAD.
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Reductions
A reduction converts an array to a scalar: sum, product, 

minimum value, maximum value, location of minimum 
value, location of maximum value, Boolean AND, Boolean 
OR, number of occurrences, etc.

Reductions are so common, and so important, that OpenMP has 
a specific construct to handle them:  the REDUCTION clause 
in a PARALLEL DO directive.
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Reduction Clause
total_mass = 0

!$OMP PARALLEL DO REDUCTION(+:total_mass)
DO index = 1, length

total_mass = total_mass + mass(index)
END DO !! index = 1, length

This is equivalent to:
total_mass = 0
DO thread = 0, number_of_threads – 1

thread_mass(thread) = 0
END DO

$OMP PARALLEL DO
DO index = 1, length

thread = omp_get_thread_num()
thread_mass(thread) = thread_mass(thread) + mass(index)

END DO !! index = 1, length
DO thread = 0, number_of_threads – 1

total_mass = total_mass + thread_mass(thread)
END DO
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Parallelizing a Serial Code #1
PROGRAM big_science
… declarations …

DO …
… parallelizable work …
END DO

… serial work …

DO …
… more parallelizable work …
END DO

… serial work …
… etc …
END PROGRAM big_science

PROGRAM big_science
… declarations …
!$OMP PARALLEL DO …
DO …
… parallelizable work …
END DO

… serial work …
!$OMP PARALLEL DO …
DO …
… more parallelizable work …
END DO

… serial work …
… etc …
END PROGRAM big_science

This way may have lots of synchronization overhead.
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Parallelizing a Serial Code #2
PROGRAM big_science
… declarations …

DO task = 1, numtasks
CALL science_task(…)

END DO
END PROGRAM big_science

SUBROUTINE science_task (…)
… parallelizable work …

… serial work …

… more parallelizable work …

… serial work …

… etc …
END PROGRAM big_science

PROGRAM big_science
… declarations …
!$OMP PARALLEL DO …

DO task = 1, numtasks
CALL science_task(…)

END DO
END PROGRAM big_science

SUBROUTINE science_task (…)
… parallelizable work …
!$OMP MASTER
… serial work …
!$OMP END MASTER
… more parallelizable work …
!$OMP MASTER
… serial work …
!$OMP END MASTER
… etc …
END PROGRAM big_science
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Office of
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Sangtae Kim
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Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &

Engineering
Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2008.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Tue Oct 7 2008 @ OU
Over 250 registrations already!

Over 150 in the first day, over 200 in the first 
week, over 225 in the first month.

FREE! Parallel Computing Workshop 
Mon Oct 6 @ OU sponsored by SC08
FREE! Symposium Tue Oct 7 @ OU

2008 Keynote: 
José Munoz 

Deputy Office 
Director/ Senior 

Scientific Advisor 
Office of Cyber-

infrastructure 
National Science 

Foundation
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To Learn More Supercomputing
http://www.oscer.ou.edu/education.php

http://symposium2007.oscer.ou.edu/



Thanks for your 
attention!

Questions?
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