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CHAPTER I 

INTRODUCTION 

The basic function of a good suspension system is the 

isolation of the vehicle body from the effects of the road 

excitation. Conventionally the problem has been solved by 

using passive elements. These include combinations of 

springs and shocks (dampers). These eleaents are passive 

in the sense that they do not require an energy source~ 

The control of vibration is effected by the storage or 

dissipation of energy. The ride quality is obviously a 

function of the available suspension workspace. Various 

other factors come into play, one of which is the road 

holding quality of the suspension. The suspension, while 

isolating the vehicle body from the excitation, should not 

cause the tire to lose contact with the road. Other 

criteria may be i.ncorporated into the discussion, but ride 

quality, road holding, and available suspension workspace 

remain primary. 

"Soft" suspensions make for better ride quality and 

are desirable in luxury vehicles. This is at the cost of 

poorer handling (related to road holding). On the other 

hand sports-cars require excellent handling, especially on 

turns and thus have "stiff" suspensions. Hence suspension 

1 
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design involves a trade-off between a comfortable ride and 

good road handling. The available suspension workspace is 

the crucial constraint in the above equation. In some 

vehicles such as formula-one race-cars excellent body 

isolation has to be maintained, with typically small 

suspension workspaces, while simultaneously controlling 

the axle displacements to ensure good handling. 
-

Suspensions fall into three major categories. on on~ 

end of the spectrum are the passive suspensions mentioned 

earlier. However since a passive suspension involves a 

spring of fixed stiffness and a fixed damper, it's 

performance varies with the road surface encountered. No 

passive suspension can be designed for all the various 

types of road surfaces. It is difficult to design a 

passive suspension that is "soft" to the road undulation, 

while is simultaneously "hard" to external forces. The 

passive suspension is simple to realize physically, but is 

limited performance-wise. 

Active suspensions, on the other hand involve some 

kind of force actuator (hydraulic, electromechanical, 

pneumatic, or magnetic) and various measuring and sensing 

devices (accelerometers, force transducers, and 

potentiometers). The force produced is a function of a 

number of measured variables. This ability to modulate 

forces in response to many variables leads to better 

performance. Such a design appears to be attractive, but 

is not without it's drawbacks. Most importantly, though a 
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lot of work has been done on active suspensions primarily 

using optimal control theory, the improvement in 

performance that can be achieved has yet to be quantified. 

Host active suspension designs discussed in the 

literature require complete knowledge of all state 

variables. The physical realization of active suspension 

systems is an interesting engineering problem in it's own 

right. However it is apparent that the design will be 

complicated and costly. There is also a substantial 

energy requirement. Such a system would make sense if 

it's perforaance gains offset the additional cost. 

Various atteapts have been made to simplify the control 

law by considering liaited feedback information. 

Vibration absorbers have been considered as a aeans of 

reducing the axle displacements. Such a design would also 

result in a significant saving of energy. 

Semi-active suspensions are derived from active 

suspensions. The primary purpose of this variety of 

suspension system is to circumvent the use of a power 

source to effect the vibration isolation. A semi-active 

suspension has some active force element. This force 

element produces a force which is again a function of the 

state variables, as long as such a force is dissipative. 

When such a force no longer opposes the relative motion of 

the ends of the damper, the semi-active suspension shuts 

off. Physical realizations of such a system might involve 

a variable rate damper. An "intelligent" shock absorber 



may be employed where a valve controls the flow of fluid 

based on a control law. Some of the performance gains of 

fully active systems may be realized by such an 

arrangement. It should be noted that such devices are 

inherently non-linear. 

4 

Traditionally the analysis of suspension systems 

include simulations (analog or digital) of the system 

model (time domain), frequency response characteristics 

(frequency-domain), and a study of the eigen-values 

(poles) of the systea. The effect of a change in 

suspension parameters on the suspension performance has 

been extensively researched, using the above three 

techniques. Various types of road excitations are 

considered. Isolated instances such as potholes have been 

worked into the analysis. Car models such as the full

car, half-car, and the quarter-car have been used to 

determine the performance characteristics. Most analyses 

use different criteria as the basis for comparison, but 

the ones mentioned earlier are the most popular. 

The idea of describing the road as a continuous 

random excitation is not new. Various types of power 

spectral densities (PSD) have been suggested depending on 

the car model. These are based on actual road profile 

measurements. A lot of literature deals solely with the 

description of the road roughness. In most cases the road 

displacement is described by a type of integrated white 

noise PSD function. Thus if the road is considered as a 
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velocity input, it is a white noise excitation. In 

the case of a half-car model, the speed-dependent delay 

between the excitation experienced by the front and the 

rear wheels is of importance. If a full-car model is 

considered, the correlation between the two road profiles 

exciting the model (roll mode) comes into play, in 

addition to the delay. The quarter-car model, with only a 

bounce mode, is most commonly used if the primary purpose 

of the study is to compare the performance of various 

suspension systems. Root-mean-square (RHS) values of the 

criteria chosen are compared, and conclusions drawn about 

the suspension performance. 

It is the intention of this study to use the above 

random vibration approach in order to compare the fully 

active suspension with the conventional passive suspension 

systea. The active suspension discussed by Thoapson 

(1976) is compared to the spring-shock suspension system. 

In the case of passive suspension systems there are 

essentially two variables, the stiffness and the damping. 

Initially a comparison of the transient response 

characteristics is aade, the eigen-values of the two 

systems are obtained, and the frequency response functions 

evaluated. The problem is then extended to the RHS values 

of certain specific criteria. Next the relative 

performance of the two suspensions for the same workspace 

is examined. It is desirable that the suspension does not 

bottom during it's operation. That is to say that the 
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suspension should only rarely encounter the "bump-stop" 

position. Though it is unlikely that the suspension will 

fail if it bottoms just once, it is important enough to 

know before hand the probability of such an occurence. To 

the designer, the RMS values of the suspension deflection 

gives some indication as to the probability of 

encountering the "bump-stop" position. However to be able 

to predict the same quantitatively is more desirable. 

A quarter-car model is chosen (two degrees of 

freedom). The criteria singled out to form the basis of 

comparison are the body acceleration (ride quality), the 

suspension deflection, and the tire deflection (road 

holding). The road displacement is assumed to have a PSD 

of the integrated white noise type. The vehicle is 

assumed to be traversing the road surface at a fixed 

velocity. The road excitation is assumed stationary and 

Gaussian in nature, and the vehicle model linear. The 

response of the vehicle variables to the random excitation 

is random in nature too. The above simplifying 

assumptions iaply_that the response of the vehicle model 

is stationary and Gaussian too. The vehicle model is 

chosen such that it is conducive to analysis, while at the 

same tiae yields meaningful results. RMS values for the 

passive suspension are discussed for varying stiffnesses 

and damping factors. These values are compared to similar 

values obtained for the active suspension design presented 

by Thompson (1976). This is the fully active variety of 



suspension requiring the complete knowledge of all the 

state variables. The problem is then extended to the 

first-passage time probabilities of the suspension 

deflection for the two types of suspensions. The level 

crossing values are calculated first. These require the 

second order statistics of the suspension deflection and 

it's derivative process. 

7 

Thompson (1976) predicts significant performance 

gains for the active suspension. These gains are evident 

upon comparing the RHS values and the first-passage times. 

These estimates of the first-passage times may be refined 

further using better approximations than the one based on 

the Poisson crossing assumption. There exists a 

possibility that a study of this kind will lead to an 

analysis of the probability of the "failure" of different 

kinds of suspension systems, similar to the probabilistic 

analysis of the phenomenon of fatigue. 



CHAPTER II 

A LITERATURE REVIEW 

Passive and active suspension systems for automobiles 

have been studied extensively, while few predictions of 

the capabilities of semi-active systems have been made. 

Apart from various analyses of suspension systems per se, 

related topics pertinent to this study have been developed 

by various researchers. Chief among these are ·the 

description of the road excitation and specific 

theoretical problems in the realm of random vibration, 

namely first-passage time probabilities. 

Passive Suspension Systems 

Wambold (1983) presents a very lucid tutorial, 

introducing the effects of road roughness on dynamic 

vehicle aodels. A passive suspension system is outlined 

for both the quarter-car and the half-car models. A 

quarter-truck model is also presented to compare the 

effects of road excitation on a truck model as opposed to 

a car model. Passive systems are used in most literature 

which outline active and semi-active systems as a basis 

for comparison of the relative performance 

characteristics. The design choices available for passive 

8 



systems vis a vis other suspension systems are discussed 

at length in Sharp and Hassan (1986), and Chalasani 

(1986). 

Early work in passive suspensions includes a 

discussion by Thompson (1969-1970) about optimum damping 

in a randomly excited non-linear suspension. 

9 

Unsymmetrical damping provides better isolation from large 

bumps with moderate increases in the mean square values 

representative of ride quality and road holding. Thompson 

(1973) expands on the topic of optimum suspension design. 

The excitations considered include both isolated bumps of 

varying length and continuous random excitation. The 

model considered is the half-car model with both bounce 

and pitch. The effect of variations in the ratio of front 

to rear spring stiffness, and the inertia coupling ratios, 

on the ride quality and road holding are studied. 

Active Suspension Systems 

Optimal active suspension systems are designed using 

stochastic optimal control theory. Linear full state 

feedback is assumed, though the case of incomplete state 

variable information is discussed in some of the 

literature. The infinite time case is considered, 

resulting in time-invariant Kalman feedback gains for a 

controllable system. The resulting active suspensions, 

though useful for the purposes of analysis, are difficult 

to realize physically. Quadratic performance indices are 
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used in the analyses, which are formulated to include 

sprung body acceleration (indicative of the ride quality), 

suspension working space, and tire deflection (which 

represents road holding). 

Wilson et al (1986) review some linear stochastic 

control theory relevant to the design of active 

suspension systems subjected to integrated or filtered 

white noise. Conditions of observability and 

controllability are discussed. Limited state feedback 

problem formulations which avoid potential numerical 

problems in deriving optimal control laws are outlined. 

Thompson (1976) considers one such active suspension 

system subjected to the integrated white noise excitation 

of the road displacement. It is concluded, by comparing 

the transient characteristics and mean square values, that 

the performance of the active suspension is significantly 

better. Chalasani (1986) shows that if practical design 

limitations are considered, a 20\ improvement in the 

sprung-mass isolation is realistic, other things being 

more or less equal. When a more complete car model is 

considered (full-car model, seven degrees of freedom), the 

same improvement is estimated to be 15\. Sharp and Hassan 

(1986) make some attempt to quantify the relative 

performance characteristics of various suspension systems. 

Thompson (1984) outlines a practical simplification 

to his earlier active suspension design. This results in 

a simplified feedback structure. The effect of the 
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weighting factors on the systea eigen-values is discussed. 

Thompson and Pearce (1979) outline an active suspension 

using a half-car model. The speed-dependent tiae delay 

between the road disturbance inputs in shown not to effect 

the optimal control law which is linear and time 

invariant. A practical realization of this design is 

discussed~ Thompson et al (1984) show how the active 

suspension for the quarter-car model may be modified using 

dynamic vibration absorbers applied to the axles. A 

method for computing feedback gains and vibration absorber 

spring and damper rates is given. If the active 

suspension is of the electrohydraulic type, a significant 

power saving is predicted. 

Karnopp (1985) offers an insight into the active 

suspension of the type in the literature given above. Two 

different performance indices are used. In one case body 

isolation is traded off against contact force variation 

and in the other against suspension deflection. Symmetric 

root locus sketches are used to show the kind of system 

that results in e.ach case. The conclusion arrived at is 

simply that active suspensions designed accozding to 

different criteria are not necessarily comparable. 

Further it may not even be appropriate to compare an 

optimal active suspension with a conventional passive 

spring-shock suspension, unless all aspects of suspension 

performance are considered simultaneously. 



Semi-active Suspension Systems 

Semi-active suspension systems are an attractive 

alternative to fully active suspensions. Their 

performance gains however have not yet been fully 

quantified. Semi-active suspensions outlined in 

literature, have some of the advantages of active 

suspensions and are easier to realize physically. They 

also result in a saving in energy. 

12 

Karnopp et al (1974) describe a type of force 

generator which can respond to a general feedback signal 

and control vibration. It however does not require the 

power supply of a servo mechanism. Computer simulation 

studies presented, suggest that performance comparable to 

a fully active system may be achieved. Physical 

embodiments of the concept are discussed and compared to 

hardware used in active and passive vibration control 

systems. Margolis (1982) discusses the expected response 

of a quarter-car model with an active or semi-active 

system to non-ideal feedback information. In most 

practical applications, state variable information is 

incomplete or has to be signal processed in some manner 

prior to their use in the control algorithm. Sharp and 

Hassan (1987) consider a type of semi-active suspension 

consisting of a spring of fixed stiffness and an active 

damper. The active damper is considered to be solely an 

energy dissipator, producing a force that is a linear 

combination of the state variables as long as such a force. 
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opposes the relative motion of the ends of the damper. 

Systems based on two alternative forms of a control law 

are studied. Performance of the semi-active suspension is 

comparable to the fully active suspension under moderate 

road conditions, but this is not the case on average main 

road or motorway conditions. 

Random Vibration Approach 

Virchis and Robson (1971) study the response of a 

simplified vehicle model accelerating across a random 

surface. It is shown that for practically occurring 

values of forward acceleration, mean-square response 

differs little from that with zero acceleration. Yadav 

and Nigam (1978) describe the response of a vehicle moving 

with variable velocity and subjected to a non-stationary 

road excitation. Response statistics, obtained by using 

the Monte Carlo method for the non-linear model, and the 

time domain and evolutionary spectra for the linear model, 

are compared. Crandall (1970) studies the classical 

problem of the first crossing probabilities of the linear 

oscillator. A variety of analytical approximations for 

the probability density are described and compared with 

results obtained by simulation and numerical aethods. 

First crossing probabilities for envelopes of the 

oscillator response are also presented. 
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Description of Road Roughness 

Various mathematical models to describe the road 

roughness are proposed in literature. Sayers (1986) puts 

forth an empirical model for random road inputs that 

accounts for both pitch-plane and roll motions. The 

Parkhilovskii assumption (that the roll and vertical 

components of the road excitation are uncorrelated) is 

shown to agree with measured data. The road model is 

formulated as a summation of white noise sources and can 

be used with a variety of analytical methods. Values of 

the coefficients used in the model are calculated and 

presented for various road sites and road surfaces. Dodds 

and Robson (1973) show that typical road surfaces may be 

considered as realizations of homogeneous and isotropic 

two dimensional Gaussian random processes. Complete 

description of any such process is given by a single 

autocorrelation function evaluated from any longitudinal 

track. Heath (1987) presents formulae involving single 

integrations which express the cross spectrum of two 

parallel road profiles in terms of a single track. The 

parallel vehicle tracks are again considered to be 

homogeneous and isotropic random processes. The paper 

looks at the relationship between the spectra of the two 

road profiles, which is of greater interest than that 

between their correlation functions. 

•·, :l. 
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CHAPTER III 

PRELIMINARIES 

Car Models 

A quarter-car model is used to aodel the passive and 

the active suspension systems (Fig. 1, Fig. 2, Appendix 

B). In the model, the portion of the sprung-mass 

corresponding to one corner of the vehicle, and the wheel 

at one corner, is considered. The passive suspension is 

modeled as a spring and a shock (damper) in parallel. 

Both the spring and the damper are assumed to be linear .0.::,<!'- -

In the case of the active suspension, the spring and 

damper of the passive suspension are replaced by an active 

force element. This force actuator is modeled as an ideal 
\'f--' 

force element that has an infinitely small response time. 

Optimal control theory is used to formulate a linear full- , 

state feedback control law to relate the actuation force 

to the state variables. The tire is represented as a 

spring. Since the damping in the tire is typically very 

small, it is neglected in the analysis. It is assumed ,,:, " 

that the tire behaves as a point-contact follower that is 

in contact with the road at all times. 

15 



Road Excitation 

Roads have the appearance of random signals, and 

techniques for describing stochastic signals have proven 

to be suitable as descriptions of road profiles. Road 

measurements have shown that, except at very low 

16 

frequencies, the road profile (vertical displacement of 

the road surface) can be modeled as an integrated white 

noise input. Hence the vertical velocity at the tire road 

interface is modeled as a white noise input (Sayers, 

1986). The approximating power spectral density (PSD) 

function of the road elevation is of the form: 

s-.< v > = c/ ( 21tV) z ( 1) 

where Xo is the elevation of the road, s •• is the PSD of 

the longitudinal road profile, v is the wave number (v = 

!/wavelength), and c is a roughness scaling factor. The 

PSD function of the derivative of the road profile (slope) 

is obtained by multiplying by a factor of (2Kv)z, to yield 

the following. 

S:._( v) = c ( 2 ) 

0 'I.,-

where xo is the longitudinal slope of the road. This 

implies that the road slope may be described as white 

noise in the spatial sense, with a constant PSD amplitude 

of c. This spatial PSD function can be transformed into a 

temporal PSD function, using the relations: 
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f = v.v ( 3) 

and 

SxJf) = S.._(v)/V ( 4 ) A/' \')h' A@~, I\; ij 
\~~~. '\" '..l 

> (~{I.) 

where f is the temporal frequency (Hz) and v is the 

vehicle speed (m/s). The PSD functions can thus be 

expressed in terms of circular frequency w = 2~f (rad/s). 

S._(w) = cV/w• (5) 

and 

S:._(w) = w•S-J.w) = cV ( 6) 

Realistically speaking, if the PSD function for the 

road displacement is used in a frequency-domain analysis, 

a lower frequency cut-off value will have to be applied. 

Eq. 5 indicates that an integrated white noise signal, 

contains infinite power. A cut-off frequency at the low 

end makes sense in the real life situation. Very low 

frequencies are beyond the response of most highway 

vehicles. There are however unique advantages in using 

either of the PSD functions (eq. 5 or eq. 6) to represent 

the input road signal. All roads smooth or rough, are 

represented by a single paramete~. c. Secondly, in the 
"--~--......_ _____ . __ _./_..... ............. _. . . 

I 
case of a 1linear system, the mean square value of any 

output signal of interest is simply related to the 

integral square value of the corresponding output signal 

due to a unit step input (provided the integral 
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converges) • 

Virchis and Robson (1971) have indicated that for 

practically occurring values of forward acceleration, 

the mean square response differs little from that with 

zero acceleration. A simple zero acceleration analysis 

has a wide applicability. A typical constant velocity is 

chosen for the vehicle speed. Thus, in terms of the 

circular frequency, the PSD for the road velocity may be 

considered to be a white noise input (eq. 6). The random 

road input is assumed to be stationary in nature. This 

insures that the statistical properties of the input do 

not change with time. 

Performance Criteria 

The principal performance criteria of interest in 

the comparison of active and passive suspension systems 

are as follows: 

1. Vibration isolation, or ride quality 

2. Suspension travel 

3. Road holding. 

From the vehicle model (Fig. 1, Fig. 2), we can identify 

the variables representative of the above criteria. 

1. The vertical acceleration of the sprung-mass (Xz) 

2. 

3. 

The deflection of the suspension (xz-X1) 

The deflection of the tire (x4-Xo). 

Since the excitation to the vehicle model is random in 

nature, the response is random too. statistics such as 
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the root-mean-square (RMS) values, and the first-passage 

time probabilities of the above variables are used as a 

measure of the ride quality, rattlespace requirement, and 

road holding. These statistics are used as the basis of 

comparison of the active and passive suspension systems. 

Typical Parameter Values 

The following numerical data for a conventional 

automobile front suspension used in Thompson (1976) is 

assumed in the analysis. 

Mu = 28.58 kg Ku = 155900 N/m 

H. = 288.9 kg K. = 19960 N/ll 

c. = 1861 Ns/m 

c5,:.. = 6.3 em c5t: = 2.0 em 

t) 
The t i/~!L_~_ta _!lc, ... deflection ~t: 

~-<•·~---><--·····-----·· ~ 
is derived from the tire 

~~dial stiffness Ku and the weight supported. The maximum 
-·----~--~----------------- -----·- - --- -- ------.. ------- ---··--------

allowable wheel excursion represents the limit of free 
- \; t <·;,--~) 

travel from the point of fully laden equilibriu~ __ to the 

pump_stop position. The available free travel in the 

direction of rebound is generally greater. In order to 

investigate the performance of passive suspensions for the 

entire range from "soft" (Ku/K. = 20.0) to "stiff" (Ku/K. 

= 5.0), the value of K. is varied from 7795 N/m to 31180 

N/m. 

The vehicle is assumed to travel over the road at a 

fixed speed. 

.i· rtt' •: ' 



v = 25 m/s 

A typical value for the road roughness coefficient is 

chosen from Sayers (1986).£:.-:--· 

c = 5 x 10-a rad m 

System Equations 

The following system equations may be written by 

inspection (Fig. 1, Fig. 2). 

represented by the following. 

The passive system is 

The active system is represented by the following. _ 

20 

( 8 ) 



CHAPTER IV 

LINEAR OPTIMAL ACTIVE SUSPENSION 

Integral Square Simplification 

As mentioned earlier, one of the advantages of using 

an integrated white noise type of PSD for the road 

displacement input or a white noise PSD for the road 

velocity input, is that it facilitates the use of the 

integral square simplification (Thompson, 1973). In the 

case of a linear system, the mean square value of any 

output signal of interest is simply related to the 

integral square value of the corresponding output signal 

due to a unit step input (provided the integral 

converges). Denote the following. 

yE(t) = output for random excitation 

y.(t) = corresponding output for a unit step input 

The mean square response to the random signal is given as 

follows. 

E[y~z(t)) = cV J: y.z(t)dt ( 9 ) 

Thus for a fixed vehicle velocity, a system that is 

optimal for a unit step input (in the sense of minimizing 

21 
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the integral on the right hand side of eq. 9), will also 

be optimal for the random road input given by eq. 5 or eq. 

6. Given below is a justification for the integral square 

simplification. Define the following transfer functions. 

HxJ s) = transfer function for a displacement input Xo 
~··-··------ --- --- --·-········-.,·---·~-~----·---·-···-·--· 

H.r..< s) = transfer function for a _ y_elgg!_t_y __ lnpu~_Jco 

They are related as follows. 

H-.( s ) = s . H:c_( s) (10) 

Transfer functions are developed later in the analysis 

assuming a white noise velocity road input. Hence the 

transfer functions assuming a velocity input is used in 

the following derivation, in the interest of consistency. 

Expressing the input-output relations in the frequency 

domain, 

xo < s > = < 1/s > · ·r 
Y.(s) = H._(s)Xo(S) 

Substitute eq. 10 and eq. 11 in eq. 12. 

(11) 

(12) 

(13) 

use Parseval's theorem (Crandall and Hark, 1963; Nigam, 

1983). 

I • y.z(t)dt = _l_ J ~- Y.(s)Y.(-s)ds 
-- 2uj -~-

(14) 

substitute eq. 13 in eq. 14 and note the following 



(1) for t < 0, y.(t) = 0, (11) s = jw. 

I-0 
y.z(t)dt = _l_ J :t- H::c_(s)H:a\(-s)ds 

2ttj -:t-

The mean square value of Yz(t) is given by 

ElYz 1 (t) 1 = _l_ J ='• H:c.(s)H>\(-s)S:C.(s)ds 
2nj -:t• 

Substitute eq. 6 in eq. 16. 

E [ Yz a ( t)) = _.£Y_ J :J• H.:._( s )H.._( -s )ds 
21tj -:t-

The comparison of eq. 15 and eq. 17, establishes the 

relation given by eq. 9. 

Optimal Active suspension 
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(15) 

(16) 

(17) 

Thompson (1976) presents a active suspension design 

which is used in the following analysis. The vehicle 

model is developed as follows. The following state 

variables (Fig. 2) X1, xz, X:a = X1, and x. = Xz are 

assumed to be all zero initially. The output vector y has 

two components, y1 = X1 and Yz = xz. The following state 

variable equations are derived from eq. 8 • 

• X1 = X :a 

• Xz = x .. 

• Ku.(Xo-X1) U/M.,. X :a = -
• U/H. (18) x .. = 

In the light of the integral square simplification, the 



system will be optimized for Xo = 1 (a unit step). The 

control force u is assumed to be applied equally to both 

the axle and the body. 

The state and output equations may be expressed in 

matrix form. 
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[X] = [A](x] + lb1JU + lb2JXo 

[y) = [C) [X) (19) 

where xo is the disturbance input and y = [ X1 X2 )T is the 

output. The system matrix [AJ, the output matrix (CJ, and 

the coefficient vectors lb1J and £b2J are given by, 

[A J = 

[CI = [ 
1 

0 

[b11 = 0 

[b21 = 0 

0 0 1 0 

0 0 0 1 

0 

0 

1 

0 

0 

0 0 0 

0 0 0 

0 0 

] 0 0 

-1/Mu 1/M. 

Ku/Mu 0 )'X' 

)T 

(20) 

The initial conditions are [x(O)J = [ 0 0 0 0 )T and the 

input disturbance is xo = U(t) (a unit step). We require 

zero steady state following errors. The desired output 

vector is given as, 

[y'J = [ 1 1 )Txo (21) 
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Thus the desired axle <x~> and body <x~> responses are 

both unit steps. 

A quadratic type of performance index is chosen. It 

is a weighted sum of the integral square values of the 

variables representative of the criteria chosen for the 

comparison. 

J = ~ I-
2 a 

(22) 

where p, q~, and qz are numerical constants. The body 

force u, the dynamic tire deflection <x~-xo), and the 

suspension deflection (xz-X1) are included in the 

performance index. The body force u is proportional to the 

vertical acceleration of the body (eqs. 18), which in 

turn is indicative of the ride quality. 

There is no loss in generality if one of the 

numerical constants, q2, is set to unity. For random 

signals of the Gaussian type, an approximate value for Q1 

may be arrived at by comparing the values of 6w and 6t. 

To prevent bottoming of the suspension and loss of tire 

contact with the road atleast 99.7\ of the time, the 

necessary conditions are that (3aw < 6w) and (3at < 6t), 

where aw and Ut are the RMS values of the wheel travel 

(suspension deflection) and the dynamic tire deflection, 

respectively. Thus an estimate for q~ is 

(23) 

This establishes q1 = 10. The determination of a suitable 
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value for p requires a one dimensional search which may be 

based on the transient responses of the resulting active 

suspensions for each value of p. Using eq. 21, the 

performance may be expressed in matrix form. 

{ pU I + ( ( Y 1 - ( Y I 1 ) 'l' ( Q 2 1 ( ( Y) - ( Y I ) ) } d t 

where £021 is given by, 

The problem is to find the optimal control u* for the 

system given by the eqs. 19 such that the output [yJ . 

tracks the desired output ly 1 1 and minimizes the 

performance index (eq. 24) simultaneously. This is an 

( 24) 

(25) 

optimal tracking problem. The easiest way to approach the 

problem is to reduce it to an equivalent linear regulator 

problem. 

The application of a unit step Xo = U(t), 

instantaneously compresses the tire spring and establishes 

a new level for the road surface with respect to which we 

can define new state variables. 

X2. = X::t.-Xo 

X2 X2-X2 

. 
X :a = X :a = X::t. 

• x .. = x .. = X2 
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usinq £xl and £yl to denote the new state and output 

vectors, the initial conditions will be given by (x(O)J = 

[ -1 -1 0 0 JT, and system equations will be modified as 

follows. 

(y) = (C) (X) 

The output vectors in the two coordinate systems are 

related by [yJ = [yJ-[y'J. With the new variables the 

disturbance Xo has been eliminated (eqs. 25) and the 

problem has been reduced to that of a linear regulator 

(26) 

with initial conditions. The performance index in terms 

of the new coordinates is given by, 

J = l. J• { pu z + ( x 1 T ( Q 1 [ x 1 } d t 
2 0 

where [QJ = [C)T[Q2J[CJ, and from eqs. 20 and eq. 25, 

(Q] = 
0 0 0 0 

0 0 0 0 

Optimal Control Theory 

(27) 

(28) 

Certain aspects of optimal control theory pertinent 

to the foregoing discussion is presented below. This 

exclusively involves the evaluation of the Kalman feedback 



28 

gains in the case of the linear regulator. The objective 

of optimal control theory is to determine the control 

signals that will cause a process to satisfy the physical 

constraints and at the same time minimize (or maximize) 

some performance criterion (Kirk, 1970). The linear 

regulator system forms an important class of optimal 

control problems. The control law can be found as a 

linear time-varying function of the system states. The 

control law however becomes time-invariant under certain 

conditions. The following results are primarily due to R. 

E. Kalman. 

Consider a system described in general by the state 

equations. 

lx(t)J = [A(t)J£x<t>J + £B(t)J[u(t)J (29) 

The coefficients of the various matrices may be time 

varying. The performance measure to be minimized may be 

expressed in terms of general matrices. 

J = L [X(te))T(HJ[x(te)] + 
2 

L I~ { [ X ( t ) ) T [ 0 ( t ) ) [ X ( t ) 1 + 
2 c. 

[u(t))T(R(t)J[u(t)] }dt (30) 

The final time te is fixed, [HJ and [OJ are symmetric 

positive semi-definite matrices, and (RJ is a real 

symmetric positive definite matrix. The states and the 

control are assumed to be unbounded, and x(te), the state 

at the final time is assumed to be free. Physically 
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speaking we desire to maintain the state vector as close 

to the origin as possible without an excessive expenditure 

of control effort. 

By formulating the Hamiltonian (Kirk, 1970), and 

using the conditions for optimality it may be shown that 

the optimal control is given as follows. 

u*(t) =- [R(t)J[B(t)JT[p(t)J(x(t)) (31) 

This indicates that the optimal control is a time-varying, 

linear combination of the system states. The matrix 

[P(t)] depends on te. The optimal control may be 

expressed in terms of the Kalman feedback gains. 

u*(t) = [K(t)llx(t)l 

Even if the system is fixed, the feedback gain matrix 

[K(t)J is time-varying in general. In addition, 

measurements of all of the state variables must be 

(32) 

available to implement the optimal control • To determine 

the feedback gain matrix (KJ, we have to formulate the 

transition matrix. However if the order of the system is 

large, this is a time consuming task. Also, if any of the 

matrices involved are time-varying, a numerical procedure 

will have to be resorted to. There is an approach that is 

more attractive. It can be shown that matrix [P(t)J (eq. 

31) satisfies the following matrix differential equation 

• [P(t)] =- [P(t)][A(t)l - [A(t))T(P(t)) - [Q(t)] 

+ [P(t)][B(t)J(R(t)]- 1 [B(t)JT(p(t)) (33) 
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with the boundary condition (P(te)J = (HJ. 

The above equation is known as the Ricatti Equation. 

(P(t)J in general is an (n x n) matrix, making the above a 

system of na differential equations. However [P(t)J may 

be shown to be symmetric. Hence only n(n+l)/2 equations 

need be solved. The equations can be numerically 

integrated. It should be noted that the above equations 

evolve backwards in time. So the integration should start 

at time te (final time) and proceed backwards to the 

initial time to. [P(t)J is stored for every time ~tep, 

and thus the feedback gains, and hence the optimal control 

may be determined for any given time step (eq. 31). There 

is however a special case. If the process has to be 

controlled for an infinite duration, Kalman has shown that 

if (i) the plant is completely controllable, (ii) (AJ, 

[BJ, [QJ, and [R) are constant matrices, and (iii) [H) = 
(OJ (no weightage on the final state, see eq. 30), then. 

(P(t)J tends to [Pl (a constant matrix), as te tends to~. 

Thus if the above conditions are satisfied, the Kalman 

feedback gains are time-invariant. To determine the [P] 

matrix for this special case, we either integrate the 

Ricatti equation backwards in time until a steady state 

solution is reached, or solve the following set of 

nonlinear algebraic equations. 

0 =- (P][A] - [A)T(p] - [Q] 

+ [p)[B](R]- 1 [B)T(p] (34) 
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Determination of the Kalman 

Feedback Gains 

It is easier to simulate the Ricatti differential 

equation (eq. 33) and obtain the steady state elements of 

[PJ rather than solve the nonlinear algebraic Ricatti 

equation (eq. 34). The simulation package Parasol-II is 

used to integrate the matrix Ricatti equation backwards, 

with the given boundary conditions, and obtain the Kalman 

feedback gains (Appendix C). 

Comparing eqs. 26, 27, 29, and 30, we may identify 

the following equivalent matrices in our case. 

[H) = [OJ 

[RJ = (pJ 

[0) = [0) 

[AJ = [A] 

(no weightage on the final state) 

(1 X 1) => [R]- 1 = [1/p] 

(4 X 4) 

(4 X 4) 

(4 X 1) 

[PJ is a (4 x 4) matrix and being symmetric, there are ten 

elements to be determined. Once these elements have been 

determined, the Kalman feedback gains may be computed. 

The differential Ricatti equation is formulated as 

follows . 

• [P(t)] =- [P(t)][A] - (A)T(P(t)] - (0] 

+ [P(t)J[b1][b1]T(p(t)) 
p (35) 

This equation is simulated backwards on Parasol-II, 
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with the "initial" condition, [P(te)] = [H) = [0]. Once 

the steady state values of [P) are determined the optimal 

control law is determined as follows. 

where 

[K] = - £b1JT[p] 
p 

The values of the Kalman feedback gains obtained 

(36) 

using Parasol-!! show good agreement with those presented 

in Thompson (1976). For the purposes of the analysis that 

follows, the feedback gains presented in Thompson (1976) 

will be assumed. Table 1 (Appendix A) shows these values 

for various values of p, with the values of Q1 and qz set 

to constants. Expanding the optimal control law, we have 

(37) 

Note that X1 and Xz are axle and body displacements . 
relative to the road, and X2 and X4 are absolute 

velocities of the axle and the body respectively. Using 

the original variables defined (Fig. 2), eq. 37 may be 

expressed as follows. 

(38) 

Physically speaking, the control force may be realized by 

an actuator producing a force 
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(39) 

in parallel with a spring of stiffness K. = k1 and a 

damper with a damping coefficient c. = k2. The required 

signals to the actuator are the absolute body velocity i2, 

and the body displacement relative to the road, (x2-Xo). 

The measurement of these signals may be realized by using 

an ultrasonic transmitter and receive~ to measure the 

relative body displacement, and the integrated output of a 

accelerometer mounted on the body to indicate the absolute 

body acceleration. 



CHAPTER V 

TRADITIONAL ANALYSES 

Transient Response 

On the basis of the transient responses of the body 

and axle displacements, and the body acceleration, the 

active suspension design resulting from setting p = 
0.8(10-•) is chosen. These responses are compared with 

those obtained for a typical passive system with K. = 
19960 N/m and c. = 1861 Ns/m. These two typical active 

and passive suspension systems are compared elsewhere in 

this study. Parasol-II is used to simulate the two 

systems. The active suspension is designed taking into 

consideration the integral square simplification (Chapter 

IV). Thus both systems are excited with a unit step. 

These responses are plotted (Fig. 3 - Fig. 8, 

Appendix B) and it is evident that the body motions of the 

active suspension are much better controlled and with less 

overshoot. This is a indication of superior ride quality. 

The axle response of the active system has a greater 

overshoot, but the transient is damped out more quickly. 

The transient response of active systems are dependent on 

the choice of the weighting factors in the performance 

index. The relative large axle overshoot of the active 

34 
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system could be reduced by either reducing the value of p 

or increasing the value of q1. This in turn would 

penalize (and thus reduce) the axle response to a greater 

extent. A trade-off is implicit in the above argument. 

Doing so would inevitably result in an increased body 

force and hence acceleration. A better method would be to 

apply dynamic vibration absorbers to control the axle 

displacements (Thompson, Davis, and Salzborn, 1984). 

Table II (Appendix A) compares the transient 

characteristics of the two systems. 

Eigen-values 

The determination of the eigenvalues of an undamped 

system is a simpler task than doing so for a system with 

viscous damping. Consider the following general system 

equation, 

.. . 
[H] (X] + [C] [X] + [K] (X] = [F(t)] 

where [MJ, [CJ, and [K] are the mass, damping and 

stiffness matrices respectively, and [F(t)1 is the 

(40) 

forcing function. We consider the homogenous equation to 

determine the eigen-values. The same modal vectors that 

diagonalize the system for the undamped case do not 

diagonalize the the [C) matrix in general. There is a 

special case in which it does so, and that is when 

proportional damping occurs. If the (C] matrix can be 

expressed as a linear combination of the (HJ and £K1 
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matric~s, proportional damping is said to occur. 

[C) = «(MJ + BlKJ (41) 

where « and B are constants. The system of equations may 

be written as, 

lMllxJ + {«(MJ+BlKl}lxl + [Kl[xl = £01 (42) 

considering the homogenous case. By premultiplying each 

of the coefficient matrices by the transpose of the modal 

matrix for the undamped case, and postmultiplying them by 

the modal matrix, the system of equations can be 

diagonalized. A method is given below to diagonalize any 

general second order system of differential equations 

where the damping may or may not be proportional, and each 

of the coefficient matrices may or may not be symmetric. 

This method is due toR. A. Frazer, w. J. Duncan, and A. 

R. Collar. 

Let us say we have a system of n second order 

equations given as in eq. 40, and consider the homogenous 

case. The second order system is first reduced to an 

equivalent system of first order equations. Define a new 

state vector as follows • 

. 
(y) = [ X X )T (43) 

We can define the original system (eq. 40) as, 

• (yJ - [HJ(yJ = [0) (44) 



where [H) is given by 

__ [ -[M]- 1 (CJ 
-[H) 

- (I] 

-(M]- 1 (K] ] 

[ 0] 
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(45) 

(IJ is the identity matrix, and the system of equations 

given by eq. 44 is (2n x 2n). The eigen-values are 

obtained by assuming a solution of the form [yJ = (-].en~, 
where [-] is a (2n x 1) modal vector with complex 

elements, and ~ is a complex number. Substituting the 

assumed solution in eq. 44 yields a system of homogenous 

algegraic equations. 

{~(I] - [H)} = [01 (46) 

The eigenvalues are the roots of the characteristic 

equation, 

det I a [ I l - [ H 1 I = 0 (47) 

(HJ is a square (2n x 2n) matrix, hence there are 2n 

eigen-values which are necessarily complex conjugates. A 

modal vector [-1~ is found by substituting a particular 

eigen-value a~ in eq. 46 and solving the resulting 

homogenous algebraic equations. These are complex 

conjugates too. Being complex, phase information is 

included in the modal vector itself. The modal matrix is 

square (2n x 2n) and is a linear combination of the modal 

vectors resulting from each eigen-value. 
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[~') = (48) 

The system of equations given by eq. 44 is 

diagonalized as follows. Premultiply and postmultiply the 

coefficient matrices by [~•J-1 and [~'1 respectively • 

• 
[~•]-1(~')[y] - [~•]-1[H][~'l[yl = (0] (49) 

This yields, 

[!)(~] - (~~J[y) = [0] (50) 

[~~1 is a diagonal matrix, with the eigenvalues ~~ on the 

diagonal. Subroutines (Tse, Morse and Hinkle, 1978) that 

follow the same procedure and evaluate the eigen-values 

are given in Appendix D. Driver programs are presented 

along the necessary subroutines, to evaluate the eigen-

values and the modal vectors for the active and passive 

systems. 

The eigen-values are located at -6.305±j7.625 and 

-26.29±j78.28 for the active system and at -2.666±7.607 

and -33.12±j68.62 for the passive system. The location of 

the dominant poles correspond to damping ratios of ~ = 

0.637 for the active and Y = 0.330 for the passive 

systems. This increased damping ratio accounts partly for 

the reduced body overshoot in the case of the active 

suspension. 
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Frequency Response 

Evaluation 

Inspecting the vehicle models (Fig. 1, Fig. 2), we 

can identify the following criteria: suspension 

deflection is given by y1=(x2-x1), tire deflection is 

given by y2=(xl.-xo) and body acceleration is given by x2. 

We can express the passive system (eq. 7) as 

(51) 

or alternately as 

H 0 

Mux1 = -Kyyl. + K.y1 + c.y1 (52) 

The active system (eq. 8), in terms of the new variables, 

is given by 

M.(y1+y2) - k2Y1 - (k1+k2)y2 - k.yl. 

- (k2+k4)Y2 = -M.xo + (k3+k4)Xo 

•• • MYY2 + k2Y1 + (Ku+k1+k2)y2 + k4y1 

+ (k2+k4)y2 = -Muxo - <k3+k4)xo (53) 

or alternately as 

(54) 

The control force u, is given by eq. 37. The road 

displacement excitation is of the integrated white noise 
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variety. If the road is considered as a velocity 

excitation, it is a white noise input. The evaluation of 

the RMS values (for which the frequency response functions 

are required), is simplified if the excitation is a white 

noise. Let us make the following substitutions: xo=e~w~, 

y1=H~(w)e~w~, y2=Hy~w)e~w~, and X2=HuJw>e~w~. Substitute 

these expressions in eqs. 51 and eqs. 53 and solve for 

H~(w) and HyJW). Substitute these frequency response 

functions in eqs. 52 and eqs. 54 and obtain H:.::.< w) . The 

frequency response functions for the passive system are 

given by, 

H~(W) = l. {-jwK..aMa} 
D 

= l. {M..aM.jw2 + (M..a+M.)C.wz 
D 

- (H..a+M.)K.jw} 

H~w) = l. {jWKu(K.+jwC.)} 
D 

- {(Mu+M.)K.+KuM.}wz + K..aC.jw + K..aK. (55) 

Similar functions for the active system are as follows. 

H~(w) = l. {-jw[M.(K..a+k1+k2)+M..a(k1+k2)J 
D 

- Ku(k2+k4)} 

H~(W) = l. { jw2M..aMa + wa (Mak2-M..ak•) 
D 

+ jwk2CM..a+M.)} 

H&e,( w) = l. {jw2£Mu(k1+k2)] - wzKuk.:a -jwk2Ku} 
D 



41 

D = MuM.w 4 - (M.k2 - Muk.)jw 3 

- [M.(Ku+k1)-k2Mu]wz - k4KujW - k2Ku (56) 

Analysis 

The frequency response plots for the suspension 

deflection, tire deflection, and the body acceleration are 

plotted and compared for the typical active and passive 

suspensions (Fig. 9 -Fig. 11). The transmissibilities at 

the sprung and unsprung-mass natural frequencies are of 

special interest. For the passive suspension, the peak at 

the sprung-mass natural frequency is pronounced for the 

body acceleration (Fig. 11). Increased damping eliminates 

this resonant peak. However the transmissibility 

increases adversely above the sprung-mass natural 

frequency. Hence it is desirable to employ a damping 

coefficient just large enough, such that the 

transmissibility does not deteriorate at the higher 

frequencies. The active suspension on the other hand 

exhibits a well damped behaviour at the sprung-mass 

natural frequency and a lightly damped behaviour at the 

unsprung-mass natural frequency, much the same as the 

passive system. Much of the improvement in the ride 

quality for the active suspension is experienced at the 

lower frequencies. 

The frequency response plots for the suspension 

deflection are compared in Fig. 9. The active suspension 

does show some reduction of the peak response at the 
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sprung-mass natural frequency, but it exhibits extremely 

large transmissibilities at the lower frequencies. This 

can be explained by an inspection of eqs. 55 and eqs. 56. 

H~(w=O)=O for the passive system, and H~(w=O)=(k3+k.)/k2 

for the active system. Thus the transmissibility does not 

go to zero for the active suspension, as the frequency is 

reduced. The active suspension exhibits larger suspension 

deflections than the passive suspension for very low input 

frequencies. 

Fig. 10 compares the transmissibilities of the tire 

deflection for the two suspension systems. Improvement in 

the tire deflection is shown by the active suspension at 

the sprung-mass natural frequency. At the unsprung-mass 

natural frequency however, it's transmissibility is higher 

than that for the passive system. This may be attributed 

to the passive system having greater damping for the wheel 

hop mode (9~ = C./2(K~M~)~, i~(active)=0.328 compared to 

i~(passive)=0.441). 



CHAPTER VI 

ROOT-MEAN-SQUARE VALUES 

Evaluation 

The frequency response functions evaluated for the 

chosen criteria are used to compute the RHS values. In 

the following discussion it will be assumed that the 

autocorrelation and the PSD are defined by the following 

pair of equations. 

R(Y) = L I-
2tt --

S(w)e='wvdw 

S(W) = I --- (57) 

It may be shown (Nigam, 1983; Crandall and Mark, 1963) 

that for linear time-invariant systems, subjected to 

stationary excitation, the response is stationary too. 

The response mean is given by, 

E[X(t)l = Elf(t)J.H(O) (58) 

where X(t) is the response, f(t) is the excitation, and 

H(w) is the frequency response function. The excitation 

may be assumed to be of zero mean without any loss of 

generality (E[f(t)] = 0). This implies that the response 

is of zero mean too. Further it may be shown that, 

43 
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= Rx(O) = l_ I • IHx(W)fzS.(W)dW 
2n --

(59) 

To compute the RMS values, the road excitation is 

considered to be a velocity input, and substituting eq. 6 

in eq. 59 we have, 

a.• = kY J- IH.(w)l•dw 
2n -- (60) 

The variance and hence the RMS values may be calculated in 

one of two ways. Either the integral given in eq. 60 is 

integrated numerically or the integral square 

simplification is made use of. The appropriate systea has 

to be simulated with a step input and the integral on the 

right hand side of eq. 9 calculated for the appropriate 

response variable whose RMS value is to be known. 

Crandall and Mark (1963) give closed form expressions for 

the integral given in eq. 60 for standard forms of 

frequency response functions. Those expressions are made 

use of. The RMS values obtained using the above closed 

form expressions, were checked with both numerical 

integration as well as using the integral square 

simplification. The following formulae are obtained for 

the RMS values of the chosen criteria for the passive 

suspension. 

a~•/(cV) = O.S(M.+Mv> 
c. 
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a~:/(cV) = 0.5 {(H.+Mu)K.a + KuC.z} 
H.zc. 

Similar formulae are obtained for the active system 

aYaz/(cV) = ~ -KvCka+k.)z { [H.(Ku+k1)-kzMul. 
D kz 

Uy~/(CV) = ~ kzt(Mu+M.)z(H.ka-Muk4) 
D 

= ~ kzZKuz(H.ka-Muk4) 
D 

We require the second order statistics of the 
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(61) 

(62) 

derivative process too, to compute the level crossing rate 

(Chapter VII). The level crossing rate of the suspension 

deflection is required in the next part of the study. 

Given below is the method to compute them. As mentioned 



46 

above, for the assumptions made about the systems and the 

nature of the excitation, the mean of the response is of 

zero mean as the excitation is of zero mean. A similar 

argument may be used to show that if f(t) is of zero mean, 

then X(t) is of zero mean too. 

= k.Y, J • wz I H: .. (w) I zdw 
2u --

Eq. 63 may be written as, 

CT..:C 2 = kY. I - I jw Hx(W) I zdw 
2u --

(63) 

(64) 

Using the closed form expressions for the integrals, we 

get the following formulae. 

CTY.Z/(CV) = 0.5 ~ 
c. 

for the passive system and, 

for the active system. D is as defined in eq. 62 

Analysis 

RMS values for the active system are computed for 

(65) 

different values of the weighting factor p. These values 

are presented in Table III (Appendix A). Similar values 

are presented for the passive suspension for Ku/K.=7.8 
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(Table IV, Appendix A). Various damping coefficients c. 

are considered. These values are plotted in Fig. 13 

(Appendix B). Table v (Appendix A) compares in brief, the 

RMS values for the active system (p=0.8(10)-•) and the 

passive system (C.=1861 Ns/m). Fig. 12 (Appendix B) 

illustrates the trade-off between the RMS values for the 

suspension deflection, and the body acceleration for 

passive suspensions ranging from "stiff" (Ku/K.=S.O) to 

"soft" (Ku/K.=20.0). A reduction in the damping c. of the 

suspension yields a reduction in the RMS value of the body 

acceleration, but this is at the price of increased RMS 

values for the suspension deflection. The damping cannot 

be reduced extensively. In the interest of good road 

holding, the value of the damping ratio in the wheel hop 

mode should realistically atleast be 9u = C./2(KuMu)~ = 

0.2. This gives a cut-of£ point at c.=844.3 Ns/m. Both 

the active and the passive systems focussed on have qu 

values greater than 0.2. As the suspension spring is 

softened, the trade-off curve moves downwards as is 

expected. 

concentrating on Table III, it is evident that as the 

weighting factor for the body force (p) increases, so does 

the suspension working space requirement along with better 

vibration isolation. However this improvement in 

vibration isolation is accompanied by higher RHS values 

for the tire deflection indicating deteriorating road 

holding. Thus the vibration isolation can only be 
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improved to a point where sufficient road holding 

qualities exist. A somewhat similar trend is observed in 

the case of the passive suspension (Table IV). Reduced 

damping results in better ride quality. The RHS value for 

the tire deflection decreases and then increases again. 

This again indicates that the suspension damping cannot be 

decreased at will. There is a distinct region of c. 

values where most passive suspension designs lie (1400 

Ns/m- 2600 Ns/m). Luxury cars have their c. values set 

at the lower end of this spectrum for better ride quality, 

while sports-cars have c. values roughly in the middle of 

this range where the best road holding results. 

Both the active and passive suspension systeas, have 

more or less the same RHS value for the tire deflection 

(Table V). The resulting vibration isolation for the 

active system is about 18% better. 



CHAPTER VII 

FIRST-PASSAGE TIME 

PROBABILITIES 

Evaluation 

Crandall and Mark (1963) and Nigam (1983) show that 

the expected number of crossings of the level x=a with 

positive slope per unit time , v.+ of a random process 

x(t) is given by, 

(67) 

and the frequency of crossing with negative slope, v.- by 

v.- = J_: -x.p(a,x)dx 
(68) 

The above results are due to s. o. Rice. If x(t) is a 

stationary random process, the frequencies v.• and v.- do 

not vary with time. However in general, the joint 

probability density p(x,x) (x(t) and it's derivative 

process) is not known. we make another assumption here, 

and that is that the excitation is Gaussian in nature. 

This is a reasonable assumption since for a linear system 

with normal or Gaussian excitation, the response random 

process is of a Gaussian nature too. With this 
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assumption we now know the joint probability distribution 

of x and X. 

p<x,x> = __ .1 ___ exp [ -~ {(x/a.)z + (x/a~)z}J (69) 
21taxax 

Implicit in the above equation is the fact the x and x are 

uncorrelated, that E[xxJ = 0. The joint probability 

density function p(x,x) is an even function of x. Hence 

V + -.. - v .. -. Substitute eq. 69 in eq. 67 or eq. 68 and we 

have, 

v .. + = v .. - = (l/21t) (a~/a.) exp[-az/(2a.z)] (70) 

The expected number of crossing at level x=O is 

obtained from eq. 70. In the case of narrow band random 

processes where there are discernible "cycles", the 

equation given below represents it's "frequency". 

(71) 

The probability of an occurrence of a peak above 

x(t)=a is simply the fraction v .. +/vo+. Knowledge of the 

process and it's derivative process is essential in order 

to evaluate the level crossing rate. Using the formulae 

for the first and second order statistics for the 

suspension deflection, it's level crossing rates are 

evaluated. An interesting relation exists between the 

zero level crossing rates and the suspension parameters 

for the passive suspension. Substituting appropriate 

statistics from eqs. 61 and eq 65, we have 
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(72) 

Thus the zero level crossing rate is independent of how 

"soft" or "stiff" the suspension is, and is also 

independent ol the suspension damping. We now use the 

level crossing rates to determine the first-passage times 

of the suspension deflection. 

If it is simplistically assumed that the suspension 

"falls" the first time the suspension deflection exceeds 

the "bump stop" position, a = dw = 0.063 m, a first 

passage approach may be applied. dw is the maximum 

allowable wheel travel and it is assumed to be a typical 

value of 6.3 em (Thompson, 1976). This is the aaximua 

allowable wheel excursion till the "bump stop" position is 

encountered. The allowable excursion in the direction of 

rebound is generally more. If the level a is sufficiently 

high, a level crossing may be considered to be a rare 

event and hence independent. This is known as the Poisson 

crossing assumption. Let N(t) be the number of 

upcrossings at x=a in the time (O,tJ. We are interested 

in ly~(t)l > 0.063 a. If y~(t) is stationary, which it is 

assuming stationary excitation, N(t) is a Poisson process 

with the arrival rate (Crandall, 1970), 

(73) 

A level crossing rate is multiplied by a factor of two as 

we are interested in IY1I > a. The probability of n 

upcrossings in (O,tl is 



52 

(74) 

Let T. be the time taken for the first excursion beyond 

IY1I=a to occur from below. 

P(T.>t1 = P(O,t) = exp(-2v.•t) (75) 

The probability of atleast one excursion is thus 

PlT.stJ = 1 - exp(-2v.•t) (76) 

T. exhibits an exponential distribution whose probability 

density function is given by, 

(77) 

with mean= l/(2v.•) and variance = l/(2v.•)•. 

Analysis 

The zero level crossing rates and the level crossing 

rates for the "bump stop" position for the active 

suspension are listed in Table VI (Appendix A) for 

various values of p. Similar values are presented for the 

passive suspension (Ku/K.=7.8) in Table VII (Appendix A) 

for different values of damping. The frequency of zero 

level crossings for the active suspension is around 4.3 

Hz, which is slightly higher than that for the passive 

suspension (3.5 Hz). This is due to higher RMS values for 

t1, the derivative of the suspension deflection, for the 

active suspension. The frequency of encountering the 

"bump stop" position is of the order of 10-11 to 10- 7 Hz 



for both the active and the region of damping where most 

passive suspensions lie. This means that on an average, 

the "bump stop" position is encountered once in 

approximately 10 7 to 1011 cycles. 
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As mentioned above the zero level crossing rate for 

the passive suspension is independent of the suspension 

stiffness K. and the suspension damping c.. The 

permissible operating tiaes , for a 99\ reliability, for 

both the active and passive suspension are presented in 

Tables VIII and IX respectively (Appendix A). This is the 

permissible operating time such that P£T.>tl = 0.99. 

During the operation of the suspension for that duration 

of time, we can be 99\ sure that the suspension will not 

encounter the "bump stop" position and "fail". For the 

active suspension (p=0.8(10-')), To.,,=406.14 hr, whereas 

the same value for the passive suspension (C.=1861 Ns/m, 

Ku/K.=7.8) is To.,,=163.72 hr. The active suspension not 

only yields better vibration isolation, but is also 

apparently more reliable. 



CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

It is apparent that the active suspension can be 

designed to have superior vibration isolation than the 

conventional passive system. However the extent to which 

the ride quality is improved is constrained by the 

available suspension workspace as well as the road holding 

qualities desired for the vehicle. 

In the design of the fully active system (Thompson, 

1976), the weighting factors in the performance index are 

extremely important. They may be set to certain values, 

such that certain specific performance characteristics are 

enhanced tn·the suspension system. For example, in the 

design considered in this study, the weighting factors for 

the suspension workspace and the tire deflection are set 

to constants, and the weighting factor p for the body 

force (and hence the ride quality) is varied. The 

"optimum" value of p is decided on by studying the 

transient responses of the various resulting systems. The 

system resulting from p=0.8(10-•) is said to be "optimum". 

If the resulting transient characteristics are studied 

(Table II), is may be observed that the body overshoot is 

significantly less for the active system. The axle 
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overshoot is slightly higher for the active system but is 

damped out more rapidly. If the designer were more 

interested in controlling the axle overshoot, the 

weighting factor q1 for the tire deflection would be of 

greater interest. p and qz could be set to constants and 

the factor q1 could be varied to see which design best 

controls the axle deflection. 

Thus there is no hard and fast rule as to how the 

weighting factors have to be set. Certain aspects should 

be considered though. The damping in the wheel hop mode 

should at least be iu=0.2. Any value below this results 

in extremely poor road holding. Another aspect pointed 

out by Thompson (1976) is that the values of the various 

integrals in the performance index (eq. 22) should have 

roughly the same value for the "optimum" design. The 

values of the above integrals for the design considered 

here, have integral values of slightly varying magnitudes, 

which suggests a need to refine the choice of the 

weighting factors. 

Frequency response plots of the suspension 

deflection, tire deflection, and the body acceleration, 

show lower transmissibilities for the active suspension 

around the sprung-mass natural frequency. This is not the 

case around the unsprung-mass natural frequency. The body 

acceleration response plot, shows lover transmissibilities 

at both frequencies though. This is the reason for the 

relatively large improvement in the RMS value for the body 
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acceleration (18%). The RMS values for the suspension 

deflection are of roughly the same magnitude for the two 

systems, indicating that a better ride quality is achieved 

for the active system for roughly the same suspension 

workspace. "Softening" of the passive suspension moves 

the tradeoff curves downwards (Fig. 12). "Soft" 

suspensions give a better ride at the cost of poorer road 

holding. The active system on the other hand can respond 

to many different variables at once, and thus shows 

superior performance characteristics over a wide variety 

of operating conditions. 

With respect to the permissible operating tiaes for a 

99\ reliability, the active suspension is again superior. 

The passive suspension that shows a similar operating time 

to that of the active system, is the heavily damped 

passive system that has extremely poor vibration 

isolation. It should be pointed out though that the 

Poisson crossing assumption does not give an accurate 

quantitative estimate for the first passage time. It is 

adequate however for the purposes of comparison. The 

Poisson assumption assumes independent crossings. This is 

a reasonable assumption provided the crossing level is 

very large (a> 5u). This is so in our case. The Poisson 

crossing assumption does not take into account the fact 

that there is a finite probability of failure at t=O (i.e. 

T.=O, or X(O) >a). There are better assumptions such as 

the two state Markov crossing assumption which takes into 
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account the above fact (Nigam, 1983). The two state 

Markov assumption reduces to the Poisson assumption as the 

crossing level becomes large (a tends to~>. It is 

unlikely that the suspension will fall when the "bump 

stop" position is encountered just once. A cumulative 

kind of model to determine the relative reliabilities of 

the two systems makes more sense. This would consider the 

amount of time spent above the critical level. Once the 

total amount of time exceeds some prespecified aaximum 

time, the suspension is said to have "failed". 

Full state feedback laws are attractive in terms of 

analysis, but are difficult to realize physically. Active 

suspension systems designed assuming limited feedback 

information are more realistic. The active systea is more 

complicated in design and has a sizable energy 

requirement. Ways to reduce this energy requirement, such 

as the use of dynamic vibration absorbers along with a 

simplified feedback control law may be an attractive 

alternative~ Another approach would be the semi-active 

suspension system. This in turn means working into the 

analysis, system non-linearities. The performance gains 

of semi-active systems have yet to be studied fully. If 

the application is not extremely specialized, semi-active 

systems may be employed, thus yielding a lot of the 

performance gains of fully active systems, and requiring 

little or no energy. 
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TABLE I 

KALMAN FEEDBACK GAINS 

p k:L k .. 

0.2(10-•) 161240 -70711 2305.9 -8037.2 
0.4(10-•) 97692 -50000 1814.4 -6142.9 
0.6(10-•) 71725 -40825 1555.0 -5316.9 
0.8(10-•) 57240 -35355 1385.7 -4827.0 
1.oc1o-•> 47898 -31623 1263.4 -4492.5 
1.2(10-•) 41333 -28868 1169.4 -4244.6 
1.5(10-•) 34441 -25820 1061.6 -3968.2 
2.0(10-•) 27150 -22361 934.5 -3649.5 



TABLE II 

COMPARISON OF TRANSIENT 
CHARACTERISTICS 

Transient Characteristic 

Body Overshoot 

Axle Overshoot 

Peak Body Acceleration 

Active 

8.5\ 

28.0\ 

252.7 11/S• 

Passive 

45.3\ 

18.0\ 
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283.8 a/s• 



p 

0.2(10-•) 
0.4(10-•) 
0.6(10-•) 
0.8(10-•) 
1.0(10-•) 
1.2(10-•) 
1.5(10-•) 
2.0(10-•) 

TABLE III 

RMS VALUES FOR THE 
ACTIVE SUSPENSION 

~ 
(cV)'Mr 

0.2475 
0.2575 
0.2668 
0.2752 
0.2827 
0.2895 
0.2986 
0.3116 

~ 
(cV),. 

0.1062 
0.1102 
0.1131 
0.1157 
0.1181 
0.1204 
0.1236 
0.1286 

_.!1Ji2. 
(cV)'Mr 

50.77 
44.68 
41.46 
39.24 
37.53 
36.15 
34.47 
32.35 
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c. 
(Ns/m) 

4000 
3200 
2800 
2600 
2400 
2200 
2000 
1861 
1600 
1400 
1200 
1000 
844.3 

TABLE IV 

RMS VALUES FOR THE 
PASSIVE SUSPENSION 

...Jl.n_ 
(cV) .... 

0.1992 
0.2227 
0.2381 
0.2471 
0.2572 
0.2686 
0.2817 
0.2921 
0.3150 
0.3367 
0.3637 
0.3984 
0.4347 

~ 
(cV) ... 

0.1373 
0.1288 
0.1250 
0.1234 
0.1220 
0.1209 
0.1202 
0.1201 
0.1207 
0.1225 
0.1258 
0.1315 
0.1386 

~L 
(cV) .... 

62.65 
56.79 
53.87 
52.15 
50.57 
48.98 
47.40 
46.32 
44.36 
43·. 00 
41.86 
41.13 
41.07 
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Active 

Passive 

TABLE V 

COMPARISON OF RMS VALUES 

~ 
(cV)" 

0.2752 

0.2921 

-..Sl.d. 
(cV)" 

0.1157 

0.1201 

....2:Al~ 
(CV)" 

39.24 

46.32 
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TABLE VI 

LEVEL CROSSINGS FOR THE 
ACTIVE SUSPENSION 

p 

0.2(10-•) 
0.4(10-•) 
0.6(10-•) 
0.8(10-•) 
1.0(10-•) 
1.2(10-•) 
1.5(10-•) 
2.0(1o-•> 

4.326 
4.326 
4.351 
4.381 
4.409 
4.440 
4.478 
4.536 

2.380(10-11 ) 

1.710(10-10 ) 

8.972(10-10 ) 

3.437(10-•) 
1.040(10-•) 
2.582(10-•) 
8.363(10-•) 
3.628(10-") 
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c. 
(Ns/m) 

4000 
3200 
2800 
2600 
2400 
2200 
2000 
1861 
1600 
1400 
1200 
1000 
844.3 

TABLE VII 

LEVEL CROSSINGS FOR THE 
PASSIVE SUSPENSION 

vo+ 
(HZ) 

3.527 
3.527 
3.527 
3.527 
3.527 
3.527 
3.527 
3.527 
3.527 
3.527 
3.527 
3.527 
3.527 

Vo.oa:J+ 
(HZ) 

1.488(10-17 ) 

4.467(10-14 ) 

2.427(10-12 ) 

1.796(10-11 ) 

1.330(10-10 ) 

9.811(10-10 ) 

7.265(10-•) 
2.912(10-•) 
4.004(10- 7 ) 

2.961(10-•) 
2.168(10- 15 ) 

1.608(10-4 ) 

7.587(10- 4 ) 
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TABLE VIII 

PERMISSIBLE OPERATING TIMES 
FOR THE ACTIVE SUSPENSION 

p 

0.2(10-•) 
0.4(10-•) 
0.6(10-•) 
o.8(1o-•> 
1.0(10-•) 
1.2(10-•) 
1.5(10-•) 
2.0(10-•) 

To.•• 
(hJ:) 

58650.42 
8163.04 
1555.42 

406.14 
134.22 

54.06 
16.69 

3.85 

69 



TABLE IX 

PERMISSIBLE OPERATING TIMES 
FOR THE PASSIVE SUSPENSION 

c. 

4000 
3200 
2800 
2600 
2400 
2200 
2000 
1861 
1600 
1400 
1200 
1000 
844.3 

To.•• 
(hr) 

9.380(1010 ) 

3.125(10") 
5.750(10•) 
77721.60 
10495.34 

1422.77 
192.14 
163.72 

3.49 
4.714(10- 1 ) 

6.440(10- 2 ) 

8.680(10-:1) 
1.840(10- 3 ) 
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APPENDIX C 

PARASOL PROGRAMS 

Four Parasol programs are presented overleaf. Two of 

them simply simulate the active and passive systems. 

These programs are pretty straightforward. However, some 

explanation is in order for the other two programs which 

evaluate the Ricatti matrix and the Kalman feedback gains. 

In our case the Ricatti matrix is of dimension (4 x 

4, [pJ). We essentially use Parasol to simulate the 

differential Ricatti equation backwards in time. Since 

we are considering the infinite time case, the Ricatti 

matrix is time-invariant (Chapter IV). The simulation 

starts at time te, the final time, and proceeds on to time 

to, the initial time. The "initial" condition is, (P(te)l 

= [H) = [0]. 

To simulate backwards in time usinq Parasol, a 

negative time step has to be established before the 

simulation is run. Within the Parasol program, the time 

step is set to a positive value. Just before running the 

simulation, say with the time interval -step, the 

statement, -step @.dtp, is typed ln. This sets the time 

step to the required negative value. The simulation is 

then run as usual, again with a negative time step 
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specified as follows: -step f1nal_t1•e run. 

The values of [PJ (which is symmetric) vary for some 

time, and then attain constant values as expected. The 

final_tiae specified has to be a positive value, else an 

error results. Once (PJ attains constant values, the 

simulation is halted using a break sequence, and the 

values of the Ricatti matrix noted. A simple matrix 

multiplication yields the values of the Kalman feedback 

gains. 



$dfsb sys 
;DIFFERENTIAL RICATTI EQUATION 

IP = P b1 m* R $minv m* bl $mtr m* P m* 
P A m* m- A $mtr P m* m- 0 m- $$ 

endsb 
;end of simulation block 
• 
' ;initial conditions 

4 4 $mkmz &P $1c . 
' ;DEFINE MATRICES 
;make A matrix 

0 0 1 0 
0 0 0 1 

-5454.86 0 0 0 
0 0 0 0 

4 4 $mk11 @A 
;make Q matrix 

11 -1 0 0 
-1 1 0 0 

0 0 0 0 
0 0 0 0 

4 4 $mkm @Q 
;make b1 matrix 

0 0 -0.035 0.0035 
4 1 $mkm @b1 
;make R matrix 
0.0000000008 1 1 $mkm @R . 
I 
;output 

0.01 @.dtp 
1 8 5 $frmt 
$dffn print .t P 1 1 $mgd P 2 1 $mgd P 2 2 $agd 

P 3 1 $mgd P 3 2 $mgd P 3 3 $mgd $$ 
;Sdffn print .t P 4 1 $mgd P 4 2 $agd P 4 3 $mgd 

;P 4 4 $mgd $$ 
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;MULTIPLY MATRICES TO GET KALMAN FEEDBACK GAINS 
;unit matrix with -1.0 
-1.0 1 1 $mkm @mu . , 
;R matrix 
0.0000000008 1 1 $mkm @R . 
' ;b1 matrix 
0 0 -0.035 0.0035 4 1 $mkm @b1 . , 
;P matrix 
0.25431 

-0.03917 
0.00077 

-0.00543 

(solution of 
-0.04178 

0.13580 
0.00011 
0.00922 

4 4 $mkm @P . , 
;Matrix Multiplication 

differential Ricattl 
0.00087 -0.00682 
0.00004 0.01317 
0.00003 0.00003 
0.00003 0.00143 

mu R $minv m* b1 $mtr m* P m* @K . , 
1 10 1 $£rmt 
K 1 1 $mgd $ptop 
K 1 2 $mgd $ptop 
K 1 3 $mgd $ptop 
K 1 4 $mgd $ptop 

Equation) 
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;DIFFERENTIAL EQUATION 
;simulation ACTIVE SUSPENSION 
$dfsb sys 
IX = A X m* b1 u m* m+ $$ 
u = k $mtr x m* $$ 
endsb . 
I 

;make A matrix 
0 0 1 0 
0 0 0 1 
-5454.86 0 0 0 
0 0 0 0 
4 4 $mkm @A . , 
;make b1 matrix 
0 0 -0.035 0.0035 
4 1 $mkm @b1 . , 
;Kalman feedback gains 
57240 -35355 1385.7 -4827.0 
4 1 $mkm @k . 
I 

;initial conditions 
-1 -1 0 0 
4 1 $mkm &x $1c . 
I 

;output 
$dffn print .t x 1 1 $mgd x 2 1 

$mgd x 3 1 $mgd x 4 1 $mgd $$ 
1 7 3 $frat 
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;DIFFERENTIAL EQUATION 
;simulation PASSIVE SUSPENSION 
$dfsb sys 
lx = A x m* b1 u m* m+ $$ 
u = k $mtr x m* $$ 
endsb . , 
;make A matrix 
0 0 1 0 
0 0 0 1 
-5454.86 0 0 0 
0 0 0 0 
4 4 $mkm @A . , 
;make b1 matrix 
0 0 -0.035 0.0035 
4 1 $mkm @b1 . , 
;k matrix 
19960.0 -19960.0 1861.0 -1861.0 
4 1 $11\kll @k . , 
;initial conditions 
-1 -1 0 0 
4 1 $mkm &x $ic . , 
;output 
$dffn print .t x 1 1 $mgd x 2 1 

$mgd x 3 1 $mgd x 4 1 $mgd $$ 
1 7 3 $frat 

91 



APPENDIX D 

EIGEN-VALUE PROGRAMS 

92 



APPENDIX 0 

EIGEN-VALUE PROGRAMS 

The FORTRAN programs presented overleaf evaluate the 

eigen-values and the modal vectors of a general damped, 

second order, multi-degree of freedom systea (Tse, Horse, 

and Hinkle, 1978). The driver programs and the 

subroutines are set up in such a way, that they can handle 

matrices of a maximum dimension of (10 x 10). 

The system is specified by the mass lMJ, damplnq lCJ, 

and the stiffness (KJ matrices. The method used is to 

reduce the system of (n x n) second order equations, to an 

equivalent system of (2n x 2n) first order equations 

(Chapter V). As a check, it is verified that the modal 

vectors do indeed diagonalize the system of equations. 

The only subroutine called is caodl(). This in turn 

requires a host of other subroutines to perform specific 

tasks such as evaluating the coefficients of the 

characteristic equation, finding it's roots, and solving 

the set of equations to evaluate the modes. The eigen

values and the modal vectors are complex in general. It 

should be noted that the modal vectors, being complex, 

include phase information in them. 

Two sample driver programs (active and passive 
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systems) are included. Data to be specified (in data 

statements at the top of each driver program) include the 

above-mentioned matrices, the number of second order 

equations, the number of iterations, and the accuracy 

desired. sample output is included along with each driver 

program. 



*** 
*** 
* 
* 

SUBROUTINES TO PERFORM REAL/COMPLEX 
MATRIX MANIPULATIONS *** 

*** 

*** COMPLEX MATRIX SUBSTITUTION: GETS B = A *** 
* 
* 
* 

* 

* 
* 

subroutine csubn(a,b,n) 

complex*16 a(10,10),b(10,10) 

do i=l,n 
do j=l,n 

b(1,::J)=a(1,j) 
end do 

end do 

return 
end 

*** REAL MATRIX SUBSTITUTION: GETS B = A *** 
* 
* 

* 

* 

* 
* 
*** 
*** 
* 

* 

* 

* 

subroutine subn(a,b,n) 

real*8 a(10,10),b(l0,10) 

do i=l,n 
do ::J=l,n 

b(i,j)=a(i,j) 
end do 

end do 

return 
end 

COMPLEX MATRIX MULTIPLICATION: *** 
CALCULATES C = A*B *** 

subroutine cmply(a,b,c,n) 

complex*l6 a(10,10),b(l0,10),c(10,10) 

do i=l,n 
do ::J=l,n 

c(i,j)=(O.O,O.O) 
do k=l,n 

c(i,j)=c(i,j)+a(i,k)*b(k,j) 
end do 

end do 
end do 

return 
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* 
* 

end 

*** REAL MATRIX MULTIPLICATION: *** *** CALCULATES C = A*B *** 
* 
* 
* 

* 
* 

subroutine mply(a,b,c,n) 

real*8 a(10,10),b(l0,10),c(10,10) 

do i=l,n 
do j=l,n 

c(i,j)=O.O 
do k=l,n 

c(i,j)=c(i,j)+a(i,k)*b(k,j) 
end do 

enddo 
end do 

return 
end 

*** COMPLEX MATRIX INVERSION: *** 
*** FINDS INVERSE (hinvs) OF h *** 
* METHOD: FADDEEV-LEVERRIER 
* SUBROUTINES REQD: (1) cmply (2) csubn 
* 
* 

* 

subroutine cinvs(h,hinvs,n) 

complex*16 h(lO,lO),hinvs(lO,lO) 
complex*l6 a(lO,lO),b(lO,lO),sum 

call csubn(h,a,n) 
nml=n-1 
do i=l,nml 

sua=(O.O,O.O) 
do k=l,n 

sum=sum+a(k,k) 
enddo 
su•=sum/1 
do j=l,n 

a(j,j)=a(j,j)-SUII 
end do 
if (1 .eq. nml) then 

call csubn(a,hinvs,n) 
end if 
call cmply(h,a,b,n) 
call csubn(b,a,n) 

end do 
do i=l,n 

do j=l,n 
hinvs(i,j)=hinvs(i,j)/a(l,l) 

end do 
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* 

* 
* 
*** 
*** 
* 
* 
* 
* 

* 

* 

* 
* 

end do 

return 
end 

REAL MATRIX INVERSION: *** 
FINDS INVERSE (hinvs) OF h *** 
METHOD: FADDEEV-LEVERRIER 
SUBROUTINES REQD: (1) mply (2) subn 

subroutine invs(h,hinvs,n) 

real*8 h(10,10),h1nvs(10,10) 
real*8 a(lO,lO),b(lO,lO),sum 

call subn(h,a,n) 
nm1=n-1 
do 1=1,nml 

sum=O.O 
do k=l,n 

sum=sum+a(k,k) 
end do 
sum=sum/1 
do j=l,n 

a(j,j)=a(j,j)-SUII 
end do 
if (1 .eq. nml) then 

call subn(a,hinvs,n) 
end if 
call mply(h,a,b,n) 
call subn(b,a,n) 

enddo 
do i=l,n 

do j=l,n 
hinvs(i,j)=hinvs(i,j)/a(l,l) 

enddo 
end do 

return 
end 

*** TO FIND CEFFICIENTS OF *** 
*** THE CHARACTERISTIC EQUATION *** 
* GIVEN REAL MATRIX-h, SUBROUTINE 
* YIELDS COEFFICIENTS-C's 
* METHOD: FADDEEV-LEVERRIER 
* SUBROUTINES REQD: (1) subn (2) mply 
* 

subroutine coeff(h,c,n) 
* real*8 a(10,10),b(10,10),c(l2),h(10,10),sum 
* 
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* 

* 
* 

call subn(h,a,n) 
np2=n+2 
c(l) .. o.o 
c(np2)=1.0 
do l=l,n 

sum=O.O 
do k=l,n 

sum=sum+a(k,k) 
enddo 
c(np2-1)=-sum/1 
do j=l,n 

a(j,j)=a(j,j)+c(np2-l) 
enddo 
call mply(h,a,b,n) 
call subn(b,a,n) 

end do 
do 1=2,np2 

c(n+4-1)=c(n+4-1)/c(2) 
enddo 

:return 
end 

*** TO FIND THE COMPLEX ROOTS OF *** 
*** THE CHARACTERISTIC EQUATION OF *** 
* POSITIVE DEFINITE SYSTEMS WITH VISCOUS DAMPING 
* ROOTS DISTINCT 
* METHOD: ITERATIVE 
* GIVEN COEFFICIENT MATRIX-h, 
* SUBROUTINE YIELDS COMPLEX ROOTS 
* SUBROUTINES REQD: (1) coeff (2) mply (3) subn 

* 
* 

* 

subroutine cz:oot(h,root,erz:oz:,niter,n) 

real*8 a(2,5),a1,a2,b(12),c(12),dal,da2 
real*8 dbda1(12),dbda2(12),det 
real*8 error,h(lO,lO),p,q,z 
complex*16 root(2,5) 
data b,dbdal,dbda2,z/36*0.0,0.0/ 

b(2)=1.0 
call coeff(h,c,n) 
i=n+2 

10 1=1/2-1 
al=O 
a2=0 
do it=l,nlter 

do j=3,1 
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b(j)=c(j)-al*b(j-1)-a2*b(j-2) 
dbdal(j)=-a1*dbdal(j-1)-a2*dbdal(j-2)-b(j-1) 
dbda2(j)=-al*dbda2(j-1)-a2*dbda2(j-2)-b(j-2) 

end do 
det=dbdal(1-l)*dbda2(1)-dbdal(i)*dbda2(1-1) 



da1=(-b(i-1)*dbda2(1)+b(i)*dbda2(1-1))/det 
da2=(+b(i-1)*dbda1(1)-b(i)*dbda1(i-1))/det 
a1=a1+da1 
a2=a2+da2 
if ((dabs(da1)-error) .ge. 0.0) then 

goto 40 
end if 
if ((dabs(da2)-error) .ge. 0.0) then 

goto 40 
end if 
do i1=4,1 

c(i1-2)=b(il-2) 
end do 
a(1,1)=a1 
a(2,l)=a2 
if ( i • eq. 4 ) then 

goto 11 
end if 
1=1-2 
goto 10 

40 enddo 
11 nd2=n/2 

do j=l,nd2 
p=a(1,j)**2.0-4.0*a(2,j) 
q=dsqrt(dabs(p)) 
1£ (p .ge. 0.0) then 

goto 12 
end if 
root(1,j)=dcmplx(-a(l,j),q) 
root(2,j)=dcmplx(-a(1,j),-q) 
goto 13 

12 root(l,j)=dcmplx(~a(1,j)-q,z) 

root(2,j)•dcmplx(-a(1,j)+q,z) 
13 root(1,j)=root(1,j)/(2*a(2,j)) 

* 

* 
* 

root(2,j)=root(2,j)/(2*a(2,j)) 
enddo 

return 
end 

*** SOLUTION OF COMPLEX ALGEBRAIC *** 
*** HOMOGENEOUS EQUATIONS *** 
* SUBROUTINES REQD: (1) cinvs 
* (2) cmply (3) csubn 

* 
* 

* 

subroutine chomo(a,x,n) 

complex*16 a(10,10),b(10,10) 
complex*l6 b1nvs(l0,10),x(l0),y(l0) 
rea1*8 u,z 
data u,z/1.0,0.0/ 

x(n)=dcmplx(u,z) 
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nml=n-1 
do l=l,nml 

y ( 1 ) =-a ( 1 , n ) 
do j=1,nm1 

b(i,j)=a(i,j) 
enddo 

enddo 
1£ (nal .eq. 1) then 

b1nvs(l,l)=l.O/b(l,l) 
goto 10 

end1f 
call c1nvs(b,b1nvs,nml) 
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10 do i=l,nml 

* 

* 
* 

x(i)=dcaplx(z,z) 
do j=l,nml 

x(i)=x(i)+binvs(l,j)*y(j) 
enddo · 

enddo 

return 
end 

*** CALCULATION OF THE MODAL MATRIX *** 
* POSITIVE DEFINITE SYSTEMS WITH VISCOUS DAMPING 
* SUBROUTINES REQD: (1) coe££ (2) chomo (3) croot 
* (4) cinvs (5) cmply (6) csubn 
* (7) lnvs (8) mply (9) subn 
* 
* 

* 

subroutine cmodl(a,c,k,h,u,root,error,niter,n) 

real*8 c(lO,lO),error,h(lO,lO),hl(lO,lO),h2(10,10) 
real*8 ainvs(lO,lO),unit(lO,lO) 
real*8 zero(10,10),k(10,10),m(10,10) 
coaplex*16 dum(10,10),root(2,5),u(10,10),x(10) 
data unlt,zero/200*0.0/ 

nt2=n*2 
do 1=-l,n 

un1t(i,i)=1.0 
end do 
call invs(m,ainvs,n) 
call mply(minvs,c,hl,n) 
call aply(a1nvs,k,h2,n) 
do 1=1,n 

do j=1,n 
h(i,j)=-hl(i,j) 
h(1,n+j)=-h2(i,j) 
h(n+i,j)=unit(i,j) 
h(n+l,n+j)=zero(i,j) 

enddo 
end do 
call croot(h,root,error,n1ter,nt2) 
do jj=l,n 



* 

do 11=1,2 
do 1=1,n 

do j=l,n 
dum(i,j)=m(i,j)*root(ii,jj)**2 

+ +c(1,j)*root(11,jj)+k(1,j) 
end do 

enddo 
call chomo(dum,x,n) 
j1=2*(jj-1)+11 
do l=l,n 

u(n+l,ji)=x(l) 
u(l,ji)=u(n+l,ji)*root(ii,jj) 

end do 
enddo 

end do 

return 
end 
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* DRIVER PROGRAM TO DETERMINE EIGEN-VALUES 
* AND HODES OF A DAMPED SYSTEM. 
* THE (MJ, [CJ, (K] MATRICES NEED NOT BE 
* SYMMETRIC. 
* THE DAMPING NEED NOT BE PROPORTIONAL. 
* THE (H) (C) [K) MATRICES HAVE TO SPECIFIED 
* IN THE DATA STATEMENTS 
* AT THE TOP OF THE PROGRAM. 
* SUBROUTINES REQD: (1) cmodl 
* (4) croot 
* (7) cmply 
* (10) subn 
* 

program eigen 

(2) coeff 
(5) cinvs 
(8) mply 

rea1*8 m(10,10),k(10,10),c(10,10) 
real*8 error,h(10,10) 

(3) chomo 
( 6) invs 
(9) csubn 

complex*16 crt(2,5),u(10,10),bu£3(10,10) 
complex*16 bufl(10,10),buf2(10,10) 
data error,niter,n/0.000001,800,2/ 

* Data for the active suspension systea 
data((m(i,j),j=1,2),i=1,2)/28.58,0,0,288.9/ 
data((k(i,j),j=1,2),i=1,2)/213140,-35355, 

+ -57240,35355/ 
data((c(i,j),j=1,2),i=1,2)/1385.7,-4827, 

+ -1385.7,4827/ 

* Output [H), (CJ, and [KJ matrices 
n2:zn*2 
print*, 'M' 
do i=l,n 

print 15, (m(i,j),j=l,n) 
enddo 
print* 
print*, 'C' 
do i=l,n 

print 15, (c(i,j),j~l,n) 
enddo 
print* 
print*, 'K' 
do i=l,n 

print 15,(k(i,j),j=1,n) 
end do 

* Evaluate eigen-values and modes 
call caodl(m,c,k,h,u,crt,error,niter,n) 

* Output [HJ, eigen-values, and modes 
print* 
print*, 'H' 
do i=l,n2 

print 15, (h(i,j),j=1,n2) 
end do 
print* 
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print*, 'eigen-values' 
do i=1,n 

do j=l,n 
print 10, crt(i,j) 

end do 
end do 
print* 
print*, 'modes' 
do j=1,n2 

print* 
print 5, 'e-value',j 
do i=l,n2 

print 10, u(i,j) 
end do 

end do 
* Check diagonalization of the [HJ matrix 

do i=l,n2 
do j=l,n2 

buf1(i,j)=h(i,j) 
end do 

end do 
call cinvs(u,bu£2,n2) 
call cmply(bu£2,bu£1,bu£3,n2) 
call cmply(buf3,u,bu£1,n2) 
print* 
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print*, 'U-1 * H * u (displayed column-wise)' 
print*, 'Eigen-values on diagonal' 

* 

print* 
do j=l,n2 

print 5, 'col',j 
do i=l,n2 

print 10, buf1(i,j) 
end do 

enddo 

5 foraat(1x,a,15) 
10 foraat(1x,'(',2f20.5,')') 
15 format(1x,10f15.5) 
* 

stop 
end 
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H 
28.58000 .00000 

.00000 288.89999 

c 
1385.69995 -4827.00000 

-1385.69995 4827.00000 

K 
213140.00000 -35355.00000 
-57240.00000 35355.00000 

H 
-48.48495 168.89433 -7457.66272 1237.05389 

4.79647 -16.70820 198.13085 -122.37799 
1.00000 .00000 .00000 .00000 

.00000 1.00000 .00000 .00000 

eigen-values 
( -6.30539 7.62482) 
( -26.29119 78.28035) 
( -6.30539 -7.62482) 
( -26.29119 -78.28035) 

modes 

e-value 1 
( -1.56290 -.89439) 
( -6.30539 7.62482) 
( .03100 .17934) 
( 1.00000 .00000) 

e-value 2 
( -1.56290 .89439) 
( -6.30539 -7.62482) 
( .03100 -.17934) 
( 1.00000 .00000) 

e-value 3 
( -784.42557 -1138.82895) 
( -26.29119 78.28035) 
( -10.04899 13.39577) 
( 1.00000 .00000) 

e-value 4 
( -784.42557 1138.82895) 
( -26.29119 -78.28035) 
( -10.04899 -13.39577) 
( 1.00000 .00000) 

U-1 * H * U (displayed column-wise) 
Eigen-values on diagonal 
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col 1 
( -6.30539 7.62482) 
( .00000 .00000) 
( .00000 .00000) 
( .00000 .00000) 
col 2 
( .00000 .00000) 
( -6.30539 -7.62482) 
( .00000 .00000) 
( .00000 .00000) 
col 3 
( .00000 .00000) 
( .00000 .00000) 
( -26.29119 78.28035) 
( .00000 .00000) 
col 4 
( .00000 .00000) 
( .00000 .00000) 
( .00000 .00000) 
( -26.29119 -78.28035) 



* DRIVER PROGRAM TO DETERMINE EIGEN-VALUES 
* AND HODBS OF A DAMPED SYSTEM. 
* THE (HJ, (C), (K) MATRICES NEED NOT BE 
* SYMMETRIC. 
* THE DAMPING NEED NOT BE PROPORTIONAL. 
* THE (HJ (C) (KJ MATRICES HAVE TO SPECIFIED 
* IN THE DATA STATEMENTS 
* AT THE TOP OF THE PROGRAM. 
* SUBROUTINES REQD: (1) cmodl 
* (4) croot 
* (7) cmply 
* (10) subn 
* 
* 
* 

program eigen 

(2) coe££ 
(5) cinvs 
(8) mply 

real*8 m(lO,lO),k(lO,lO),c(lO,lO) 
real*8 error,h(lO,lO) 

(3) chomo 
(6) invs 
(9) csubn 

complex*16 crt(2,5),u(10,10),bu£1(10,10) 
coaplex*16 buf2(10,10),buf3(10,10) 
data error,niter,n/0.000001,800,2/ 

* Data for the passive suspension system 
data((a(i,j),j=1,2),i=1,2)/28.58,0,0,288.9/ 
data((k(i,j),j=1,2),i=1,2)/175860,-19960,• 

+ -19960,19960/ 
data((c(i,j),j=1,2),i=1,2)/1861,-1861, 

+ -1861,1861/ 
* 
* Output (Hl, [C), and (KJ matrices 

n2=n*2 
print*, 'M' 
do i=1,n 

print 15, (m(i,j),j=1,n) 
end do 
print* 
print*, 'C' 
do i=1,n 

print 15, (c(i,j),j=l,n) 
enddo 
print* 
print*, 'K' 
do i=1,n 

print 15,(k(i,j),j=1,n) 
enddo 

* Evaluate eigen-values and modes 
call cmodl(m,c,k,h,u,crt,error,niter,n) 

* Output (HJ, eigen-values, and modes 
print* 
print*, 'H' 
do i=1,n2 

print 15, (h(i,j),j=l,n2) 
enddo 
print* 
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print*, 'eigen-values' 
do i=1,n 

do j=1,n 
print 10, crt(i,j) 

end do 
enddo 
print* 
print*, 'modes' 
do j=1,n2 

print* 
print 5, 'e-value',j 
do i=1,n2 

print 10, u(i,j) 
enddo 

end do 
* Check diagonalization of the [Hl matrix 

do i=l,n2 
do j=1,n2 

buf1(1,j)=h(1,j) 
enddo 

end do 
call cinvs(u,bu£2,n2) 
call cmply(bu£2,bu£1,bu£3,n2) 
call cmply(bu£3,u,buf1,n2) 
print* 
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print*, 'U-1 * H * u (displayed column-vise)' 
print*, 'Eigen-values on diagonal' 

* 

print* 
do j=1,n2 

print 5, 'col',j 
do i=l,n2 

print 10, buf1(i,j) 
end do 

end do 

5 format(1x,a,15) 
10 format(lx,'(',2f20.5,')') 
15 format(1x,10£15.5) 
* stop 

end 
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H 
28.58000 .00000 

.00000 288.89999 

c 
1861.00000 -1861.00000 

-1861.00000 1861.00000 

K 
175860.00000 -19960.00000 
-19960.00000 19960.00000 

H 
-65.11547 65.11547 -6153.25404 698.39048 

6.44168 -6.44168 69.08965 -69.08965 
1.00000 .00000 .00000 .00000 

.00000 1.00000 .00000 .00000 

eigen-values 
( -2.65591 7.60674) 
( -33.12266 68.61802) 
( -2.65591 -7.60674) 
( -33.12266 -68.61802) 

a odes 

e-value 1 
( -.83119 .51599) 
( -2.65591 7.60674) 
( .09447 .07629) 
( 1.00000 .00000) 

e-value 2 
( -.83119 -.51599) 
( -2.65591 -7.60674) 
( .09447 -.07629) 
( 1.00000 .00000) 

e-value 3 
( -519.91064 -748.76713) 
( -33.12266 68.61802) 
( -5.88370 10.41701) 
( 1.00000 .00000) 

e-value 4 
( -519.91064 748.76713) 
( -33.12266 -68.61802) 
( -5.88370 -10.41701) 
( 1.00000 .00000) 

U-1 * H * U (displayed column-wise) 
Eigen-values on diagonal 
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col 1 
( -2.65591 7.60674) 
( .00000 .00000) 
( .00000 .00000) 
( .00000 .00000) 
col 2 
( .00000 .00000) 
( -2.65591 -7.60674) 
( .00000 .00000) 
( .00000 .00000) 
col 3 
( .00000 .00000) 
( .00000 .00000) 
( -33.12266 68.61802) 
( .00000 .00000) 
col 
( .00000 .00000) 
( .00000 .00000) 
( .00000 .00000) 
( -33.12266 -68.61802) 
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