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CHAPTER I 

INTRODUCTION 

The study of the interaction of organic compounds 

with soils is of increasing relevance as the water 

tables become contaminated at ever rising levels with 

pesticides, herbicides, hydrocarbons and other products 

and wastes of a society largely dependent on chemicals 

for many aspects of everyday life. In spite of the 

importance of this problem, soil mineralogy is a 

relatively new scientific discipline (1,2). 

The interaction of organic compounds with soils 

and aquifer minerals has been known for a very long 

time, in a non-scientific manner. For example, the 

fulling process, which is used to remove grease from 

raw wool uses an aqueous slurry of clays. This process 

dates back to Biblical times (3). 

Only recently has it become clear that a better 

understanding of clay - organic interactions is indis­

pensible to the preservation of the ecosystem against 

organic pollutants. With the dramatic increase in the 

use of fossil fuels, the concern for the environmental 

effects of the pollutants produced at various stages of 

the production process and subsequent use of fossil 

1 
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fuels, particularly coal, is very real. 

Sources of Pollution 

Coal is composed of a great variety of polycyclic 

aromatic, heterocyclic aromatic, phenolic, amine, 

quinone, sulfur, nitrogen and other compounds, all of 

which have been shown to have adverse environmental 

effects (4-7). The production of these various fossil 

fuels and their conversion to useable forms of energy 

result in the release of very large aqueous and gaseous 

effluent streams (8 loc.cit). Pollution from sources 

which are not as obvious as energy production and 

consumption include large scale leaks from gasoline 

storage tanks, industrial solvent leakage etc .. For 

example, large aircraft mainteinance facilities 

routinely face serious leaks of paint stripping 

solvents. Such leaks and effluent streams, in turn 

release significant quantities of organic pollutants 

into the environment. This results in the exposure of 

soils and minerals to the organic pollutants, and their 

subsequent sorption (9). 

Extent of Sorption 

The extent of sorption of these organic pollutants 

by soils and aquifer minerals is dependent upon the 

nature of both the sorbent (soil or mineral) and the 
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sorbate (pollutant). 

Previous Studies of Pollutant Transport 

Extensive studies in recent years have provided 

some understanding of the sorption of organic pollu­

tants on soils and aquifer minerals. Mackay et al.(10) 

conducted a large scale field experiment on natural 

gradient transport of solutes in groundwater at a site 

in Borden, Ontario, and provided a quantitative insight 

into the transport and fate of five organic pollutants, 

based on a comparision between two inorganic tracers 

(chloride and bromide) and five halogenated organic 

chemicals (bromoform, carbon tetrachloride, 

tetrachloroethylene, 1,2-dichlorobenzene, and 

hexachloroethane). Roberts et al. (11) examined solute 

transport in a sand aquifer under natural gradient 

conditions. This work provided an extensive set of 

data to aid in modelling the calculations of organic 

solute transport in groundwater. Inglis and coworkers 

(12) analysed pollutant transport in a shallow uncon­

fined aquifer and concluded on the basis of experi­

mental results that the best solution to long range 

aquifer protection is the prevention of contamination. 

As a result of these and other studies, there has 

emerged a pattern that may describe the parameters 

responsible for pollutant sorption on aquifer minerals. 



Octanol/Water Partition Coefficient 

It has been established that three parameters 

govern the abiotic sorption of organic compounds by 

aquifer minerals. These are as follows : 

1. Octanol-Water partition coefficient or Kow of the 

sorbate,(which is inversely related to compound 

solubility in water); 

4 

Low Kow; indicating that the organic compound is 

highly water soluble and that the introduction of this 

pollutant into the aquifer mineral or soil will result 

in its transport properties being dominated by the 

motion of the water itself or of aquifer flow rate 

( 13). 

High Kow; indicating that the nonpolar organic 

compound has little affinity for the aqueous phase, and 

thus the substrate of the aquifer determines the 

transport properties of the sorbate. 

Total Organic Carbon Content (TOC) 

2. Total Organic Carbon or TOC value of the sorbent; 

High TOC: Soils I sediments with a high TOC value 

retain organics by a mecha~ism that relates primarily 

to the organic carbon character of the aquifer mineral 

( 14). 

Low TOC: The information available on the 
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transport properties of nonpolar organic pollutants 

through low TOG soils/sediments is scant. However, it 

is known that low TOG aqui~ers predominate in pollutant 

plume migration pathways. TOG content of the 

subsurface appears to diminish with depth below the 

soil zone (14,15,19). 

3. Sorptive capacity of clay mineral surface: In 

sorbents with a very low TOG content, the mineral 

surfaces of the soil are very important in determining 

the sorption properties of nonpolar organic pollutants 

(11,14,15,18). The surface available for sorption 

will vary with mineral content and with the exposed 

surface area. Previously published studies contain 

several models describing the relationship between the 

first two (17). While the first parameter is a 

property of the sorbate, the other two relate to the 

sorbent (18,19). 

The interaction between the organic pollutants and 

the surface of the solid phase in low TOG aquifer mine­

rals in the absence of biotic transformation processes 

is largely controlled by thermodynamic considerations. 

The change in the chemical potential, and the thermo­

dynamic equilibrium constant for the sorption process 

(Kp), are defined mainly by the entropy of the water, 

the entropy of the water-solvent system, the enthalpy 

of the water-pollutant cage complex and the enthalpy of 
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the pollutant-sorbent complex, and while water is the 

constant factor in the system, the pollutant and 

sorbent surface are not. The interaction of the 

pollutant with the water and sorbent surface will be 

governed by the molecular size and charge distri­

bution. It has been proposed that this water -

pollutant interaction may be adequately represented by 

the parameter Kow (octanol-water partition 

coefficient). The interaction of the sorbent with the 

water and the pollutant, on the other hand, is governed 

by the surface functional groups of the sorbent. 

Infrared spectroscopy as applied to the analysis of 

these surface functional groups, is a useful tool and 

is constantly being improved in its ability to analyze 

more complex systems. Thus, it may be possible to 

reliably predict the Kp values of the aquifer minerals 

using the data obtained from infrared spectroscopy and 

the Kow values of various pollutants (19). 

Rockley et al. (19) have suggested that for low 

TOC aquifer minerals the chemical functionality of the 

clay mineral surface may be one of the dominant factors 

affecting pollutant migration. The problem was to 

design a suitable and reliable method to explore the 

existence of such a relationship. Using FTIR 

spectroscopy, Rockley and coworkers studied ten 

aquifer minerals and concluded that a relationship 
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between factor-analyzed FTIR transmission spectra and 

aquifer material sorption potential did exist, at least 

for the limited set of sorption Kow values available 

(20). 

X-Ray Diffractometry of Clay Minerals 

This discovery showed that the use of infrared 

spectroscopy could indeed be very significant in 

analysing aquifer minerals to obtain data that could be 

linked to pollutant sorption. This was further 

substantiated by the fact that infrared spectroscopy 

has been used by many to study clay minerals to obtain 

qualitative information about several different types 

of clays. Of the many new and improved methods of 

analysis available to the chemist today, none has had a 

more profound impact in the study of clay - organic 

interactions than infrared spectroscopy. The combined 

use of infrared spectroscopy and X-ray diffractometry 

in studying clay - organic interactions has led to the 

discovery of significant new data that has increased 

our understanding of the bonding to and arrangement at 

the clay surface of the organic species (3). 

Infrared Spectroscopy of Aquifer Minerals 

In 1964, Farmer and Russell (21) published the 

results of a detailed study of the infrared spectra of 
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layer silicates. This study, amongst others, provided 

the much needed background information necessary for 

the interpretation of the infrared spectra of soil 

clays. In 1965, Swoboda and Kunze (22), driven by the 

then increasing concern about the adsorption of 

insecticides, herbicides, detergents, and other organic 

compounds by soils, used infrared spectroscopy to study 

adsorption of volatile vapours by soils and clays. 

Continuing their studies of the infrared spectroscopy 

of clay minerals, Farmer and Russell (23) provided more 

insight into the interpretation of infrared spectra of 

clay minerals, recognising at the same time that 

several aspects of the spectra could not be usefully 

interpreted at that time. Over the years the use of 

infrared spectroscopy to study clay-organic 

interactions has continued (24-28). 

Fourier Transform Infrared Spectroscopy 

The real revolution in infrared spectroscopy was 

the advent of Fourier Transform Infrared Spectroscopy. 

That there is very little work in the study of clay 

minerals and their adsorption complexes using FTIR 

methods is very unfortunate, considering the fact that 

FTIR methods are superior to dispersive methods 

(29,30). Also, the use of FTIR-PAS for studying 

clay-organic interactions has not received very much 



attention, in spite of the distinct and dramatic 

advantages that this technique offers. These 

advantages were clearly demonstrated by Rockley and 

coworkers using a simple comparision of the KBr 

spectrum and the PAS spectrum of a particular soil 

sample. This test showed the power of FTIR-PAS for 

observing surface concentrated species in aquifer 

materials (31). 

9 

A brief description of this novel technique is now 

in order. Radiation absorbed by a gas, liquid, or 

solid, is converted totally or partially into kinetic 

energy. If a gas is held in an enclosed chamber, this 

results in an increase in temperature and hence an 

increase in the pressure. Modulating the input 

radiation in the audio frequency range results in the 

modulation of the pressure fluctuations at the same 

frequency and this can be detected with a microphone. 

This is the essence of the photoacoustic effect, also 

referred to as the photothermal effect (30). This 

effect has been applied to the spectroscopic study of 

solid samples with great success. Most often, the 

solid sample is held in contact with a nonabsorbing gas 

in an enclosed cell and is then illuminated with the 

modulated beam from an interferometer. When the sample 

absorbs some part of the incident radiation, a 

modulated temperature fluctuation is generated at the 
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same frequency as that of the incident radiation. This 

causes the layer of gas next to the surface of the 

solid sample to be heated and an acoustic pressure wave 

is generated as a result. This acoustic pressure wave 

can now be detected by means of a suitable microphone 

( 30). 

The first use of this method to obtain useful 

spectroscopic information was reported by Rockley in 

1979 (32-34). Applying the two methods - FTIR by KBr 

pellet transmission and FTIR-PAS - to study clay 

materials, Rockley et al. {35) observed that FTIR-PAS 

gives complementary information to that obtained from 

pellet transmission measurements. The success of 

FTIR-PAS in many applications provided the basis for 

the application of this method to obtain spectroscopic 

information from low TOC soils that could be useful in 

the prediction of properties of the soils that are 

linked to pollutant retention by that soil. As has 

been stated above, the experimental results were 

encouraging and warranted further investigation. 

The tool that led to the development of such a 

relationship between spectral data and pollutant 

retention by a soil was factor analysis. Using factor 

analysis to analyse the FTIR pellet transmission data 

for ten low TOC soil samples provided by the Robert S. 

Kerr Environmental Research Laboratory (RSKERL) in Ada, 
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Oklahoma, Rockley et al. (36) were able to show that 

there was indeed some useful relationship that could be 

derived from spectroscopic studies of aquifer samples, 

as was reported earlier. They proposed the further 

analysis of such samples using Attenuated Total 

Reflectance (ATR) spectroscopy. 

The proposed use of this method finds its basis in 

the fact that FTIR pellet transmission spectroscopy and 

FTIR-PAS spectroscopy had limitations which prevented 

their extensive use. In conventional KBr pellet 

transmission spectroscopy, the need for fairly 

elaborate sample preparation and the concomitant subtle 

alteration in the physical and possibly the chemical 

composition of the sample poses a serious problem (37). 

This problem is overcome to a certain extent by the use 

of FTIR-PAS, which has been proven to have some 

critical advantages over other infrared analytical 

techniques in the significant reduction in sample 

preparation of solid and surface adsorbed species 

(32-34). This method too has its disadvantages. 

Reduced sensitivity and certain experimental 

difficulties associated with sample heating, 

limitations on particle size, and scattering of the 

incident radiation, limit the use of FTIR-PAS in the 

analysis of aquifer materials (35). It is therefore 

clear that a better method of infrared analysis is 



12 

necessary. ATR offers several advantages in the 

studying of aquifer materials by infrared spectroscopy. 

ATR Analysis of Aquifer Minerals 

ATR is a surface reflectance measurement in which 

the sample material - solid, liquid, or thin film - is 

brought close to the reflecting surface, where it 

interacts with the incident wave, and a spectrum is 

thus obtained (38). This method is based on the 

phenomenon of internal total reflection on the 

interface when the radiation beam comes from the phase 

of higher refractive index (nl) at an angle of 

incidence (Q) greater than the critical angle (Fig. 1), 

and penetrates the phase of smaller refractive index 

(n2) to a certain depth (dp). It is then possible to 

obtain a spectrum for the phase with lower refractive 

index, by obtaining the reflection coefficient, 

R=I /I 
R 0 

(where I is the intensity of the 
R 

reflected beam and! is the intensity of the incident 
0 

beam) as a function of the wavelength of the incident 

radiation. 

The extent to which the beam penetrates the phase 

with the lower refractive index (the sample) depends on 

the optical properties of the system and the wavelength 

of the incident radiation and the angle of incidence. 



E = E 0 
-z/dp e 

I 
0 

n 
1 

I 

I 

! . 

Figure 1 . Schematic diagram of internal total reflection 
E = amplitude of electromagnetic wave at interface, 
z0 = distance from the interface in the less dense 

phase, 
dp = depth of penetration, 

refractive indices. 
(38) 

n and n are 
1 2 

the 
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The same parameters control the intensity of the bands 

in the resulting reflection spectrum. Since the 

amplitude of the electromagnetic wave (E) penetrating 

the sample is inversely related to the distance from 

the interface, the reflected beam is chiefly composed 

of information about the surface layers of the sample. 

Since the optical contact of the sample with the 

reflecting surface is the only requirement, sample 

preparation is dramatically reduced. Yet another 

advantage that this method offers is reduced scattering 

of the radiation interacting with the sample (39). 

Thus, if new and useful measurements are to be 

made, full use of the latest and best methods of 

studying aquifer minerals must be made. There remains 

little doubt that unless reliable methods to reduce, if 

not eliminate the serious problem of pollution are 

found, our ecosystem may suffer irreversible damage. 

To overcome many of the problems associated with FTIR 

pellet and PAS studies of clay minerals, it is 

necessary to investigate new methods of studying 

aquifer minerals by infrared spectroscopy. 

Advantages of ATR 

ATR offers more advantages over FTIR pellet 

transmission spectroscopy and FTIR-PAS than any other 

method in existence today. That this is a very sound 
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method is substantiated by the excellent experimental 

results obtained so far. Figure 2a shows the FTIR KBr 

pellet transmission spectrum of EPA10. This spectrum 

was obtained on a Perkin-Elmer 1710 FTIR spectrometer. 

Figure 2b shows the FTIR ATR spectrum of EPA10 also 

obtained using the same instrument. The differences 

between the two are quite dramatic. The ATR spectrum 

shows improved band resolution and more definition than 

the pellet spectrum. This is due to the combination of 

factors which make ATR a superior method for the 

analysis of aquifer materials. 

Factor Analysis 

Spectral acquisition represents the first step in 

the treatment of the problem. Analysis of the spectra 

obtained to produce meaningful results is the next 

step. An FTIR spectrum of a typical sample, represents 

a fairly large data set. There has been considerable 

development in the field of analysis and interpretation 

of large sets of data in the last few years. The 

application of many mathematical-statistical methods, 

combined with the increasing power of digital 

computers, has made it possible to gather information 

about systems which were previously regarded as too 

complex and difficult to analyze. One such technique 

that is relevant to this study is factor analysis. 
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Factor analysis is a very powerful mathematical method 

for studying matrices of data. This method has been 

applied successfully to the study of chemical systems 

for over two decades, and with the increasing use of 

computers in chemistry, has led to the development of a 

new subdiscipline of chemistry called chemometrics. 

Chemometrics has been defined as the science of the 

application of mathematical and statistical methods for 

handling, interpreting, and predicting chemical data 

( 40). 

Virtues of Factor Analysis 

The virtues of factor analysis that make it such a 

popular tool among chemists might be outlined as 

follows (40): 

1. Factor analysis is capable of handling data of 

great complexity because it is a method of 

"multivariate" analysis. This is of particular 

importance in chemistry, where a multivariate approach 

is required for the interpretation of most data. 

2. The ready availability of computing facilities 

and the required software make it possible to use 

factor analys.is to analyze large quantities of data. 

3. Factor analysis is applicable to the study of 

many types of problems. "Predictive" analysis can be 

performed and more insight gained into processes 



about which very little is known. 

4. It is possible to use factor analysis to 

simplify data by constructing matrices employing the 

minimum number of factors to obtain a general pattern 

describing the data. 

5. The abstract factors can be analyzed and 

manipulated to give physically relevant parameters, 

which in turn can be used to predict new data. 

Main Steps in Factor Analysis 

19 

The main steps involved in factor analysis are 

preparation of data, reproduction of data, target 

testing, abstract rotation, and prediction. The 

preparation step involves the mathematical pretreatment 

of data to be factor-analyzed. In the reproduction 

step, an abstract solution using the correct number of 

factors is obtained. The objective of target testing, 

which is a mathematical transformation step, is to 

obtain more useful solutions by identifying real 

factors. Abstract rotation is also a mathematical 

transformation step that converts the abstract steps 

into more meaningful abstract factors. In the 

combination step, complete models of real factors can 

be derived. The prediction step is the final step and 

involves the prediction of new data on the basis of the 

results obtained. A summary of these steps is provided 
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in Table I (40). 

In the data preparation step, a data matrix best 

suited for factor analysis is obtained. Since the 

success of the entire operation depends to a large 

extent on the preparation of data, special care must be 

taken to adhere to the rules for data preparation. In 

the reproduction step, two procedures are carried out. 

The first is to obtain the principal factor solution 

and the second is to determine the correct number of 

factors using a data reproduction method. Calculation 

of the abstract solution is based on eigenanalysis. 

Principal factor analysis (PFA), also called principal 

component analysis (PCA), is often used to carry out 

the eigenanalysis. PFA provides an abstract solution 

containing a set of abstract eigenvectors and a set of 

abstract eigenvalues, where each principal eigenvector 

represents an abstract factor. The associated 

eigenvalue is a measure of the importance of the 

abstract factor, with a large eigenvalue indicating a 

major factor and a small eigenvalue indicating a minor 

factor. The absence of experimental error would yield 

the exact number of factors n, but since this is never 

possible, PFA yields c factors, representing each 

column in the data matrix. Only n of these c 

eigenvectors are physically meaningful. Factor 

analysis renders the data matrix (D) into the product 
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TABLE I 

FEATURES OF THE MAIN STEPS IN FACTOR ANALYSIS 

Step 

Preparation 

Purpose 

Obtain best 
matrix for 

FA 

Reproduction Generate 
abstract 
model 

Transformation 
Target To evaluate 
testing test factors 

individually 
Rotation To interpret 

abstract 
model 

Combination Develop 
models from 
sets of real 

factors 

Prediction Calculate 
new data 

Procedure 

Data selection 
data pretreatment 

PFA, stepwise 
abstract 

reproduction 

Transformation 
into real 
factors 

Transformation 
into new 

abstract matrices 

Simultaneous 
transformation 
into a set of 
real factors 

Free-float 
missing points, 

employ key 
combination set 

Result 

Complete 
data 

matrix in 
suitable 

form 

Principal 
factor 

matrices, 
number 

of factors 

Identify 
real 

factors 
Clustering 

of 
data 

Key sets 
of real 
factors 

New target 
data, new 
data rows 
& columns 

(Malinowski, Edmund R., and Howery, Darryl G., Factor 
Analysis in Chemistry, page 21) 
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of an abstract row matrix (R) and an abstract column 

matrix (C). This is followed by the application of the 

relevant computer program to calculate the principal 

factor solution represented by: 

[D] = [R] 
cPFA 

[C] 
cPFA 

In [C] , the rows represent individual 
cPFA 

(1.1} 

eigenvectors in decreasing order of importance. The 

first row represents the most important factor and the 

last row the least important factor, with the whole 

matrix representing the complete set of data, inclusive 

of the experimental error. 

The determination of the number of factors that 

are physically important, is the next step. Since the 

data is composed of real data and experimental error, 

the number of factors also represent real data and 

experimental error and can be expressed as two 

different sets of factors - a primary set of n factors 

representing real data, and a secondary set of c 

factors representing experimental error. The 

elimination of these unwanted secondary factors is 

called factor compression, and yields 

[D] = [R] 
nPFA 

[C] 
nPFA 

(1.2} 



Equation (1.2) is the general form of the abstract 

solution. This result forms the basis of all other 

calculations in factor analysis (40). 
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Since one of the objectives of factor analysis is 

to obtain the exact number of factors that completely 

describe a given set of data, the elimination of 

experimental error from the data is essential. By its 

very nature, experimental error cannot be eliminated at 

the experimental stage. Thus, a mathematical method 

must be used to achieve this objective. In FTIR-ATR 

spectroscopy, as in other forms of spectroscopy, the 

exact nature of the experimental error cannot be 

determined, at least not in any quantitative manner. 

It is therefore necessary to account for the 

experimental error by using methods in which no prior 

knowledge of experimental error is needed. One such 

method involves the use the Imbedded Error Function 

(IE). The imbedded error is a function of the number 

of factors, the number of rows and columns in the data 

matrix and the Secondary eigenvalues. All this 

information is always available in factor analysis, 

irrespective of the nature of the data or the 

experimental error. Thus by calculating IE as a 

function of n, as n goes from 1 to c, the number of 

true factors may be obtained. The variation of the IE 

with n is usually as follows: 
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IE decreases with the use of increasing number of 

primary factors, and starts increasing once secondary 

factors are used. 

The factor at which IE reaches a minimum is usually 

indicative of the number of true factors representing 

the given set of data. However, for real data, such a 

clear pattern is rarely observed because of the fact 

that nonuniformity of the error is highlighted by the 

principal component feature of factor analysis. Also, 

the presence of non-random error, systematic error, or 

sporadic error will affect the behaviour of the IE 

function (40). 

The Real Error (RE), Extracted Error (XE), and the 

Imbedded Error (IE) are the three types of error that 

may exist in a given set of data. These three 

theoretical errors are related in a Pythagorean way as 

follows: 

where 

2 
(RE) 

RE = 

IE = 

XE = 

2 
= (IE) 

RSD 

RSD (n/c) 

2 
+ (XE) 

1/2 

1/2 
RSD ((c-n)/c)) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 
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and 

RSD = Residual Standard Deviation 

The imbedded error arises because of the fact that in 

the factor analytical reproduction process, only a 

fraction of the error from the data is incorporated, 

and since this error becomes part of the factors, it 

cannot be removed by repeated factor analysis. 

Extracted error is the error that is extracted from the 

data by dropping the secondary eigenvectors (c) from 

the analysis. While the real error (RE) is indicative 

of the difference between the pure data and the raw 

experimental data, the imbedded error (IE) is 

indicative of the difference between the pure data and 

the data reproduced from factor analysis. From 

equation (1.5), it can be seen that 

for n < c, IE < RE (1.7) 

Hence the error between the data reproduced by factor 

analysis and the pure data is less than the original 

error between the raw data and the pure data. This 

means that even without the knowledge of the real 

factors, data can always be improved merely by 

employing more than n (primary factors) columns in the 

data matrix (40). The use and significance of one more 

error function, the factor indicator function is 



explained in Chapter III of this thesis. 

Transformation of the principal factors into 

physically useful parameters represents the most 

significant use of factor analysis. Transforming the 

abstract factors into more recognizable physical 

factors involves the use of a suitable transformation 
-1 

matrix [T] and its inverse [T] The transformation 

is carried out as follows: 
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[D] = [R] [C] 
PFA PFA 

(1.8) 

-1 
= {[R] [T]}{[T] [C] } (1.9) 

PFA PFA 

= [R] [C] (1.10) 
transformed transformed 

If the transformation is successful, the transformed 

matrices will represent factors that are physically 

more meaningful. The transformation process can be 

carried out in one of two ways. Target transformation, 

which handles factors one at a time, or abstract 

rotation in which one of many mathematical techniques 

may be used to transform PFA abstract matrices into 

more significant abstract factors. Combination 

involves the reproduction of the data from real factors 

as opposed to abstract factors. Finally, the 

prediction step enables one to predict new data by 
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means of a procedure called free floating. A detailed 

explanation of these methods may be found in Chapter 2 

(pp 10-22) of the monograph by Malinowski and Howery. 

(40) 

Example of Factor Analysis in Chemistry 

An example of the application of factor analysis 

to a chemical problem is now in order. Consider a 

hypothetical data matrix [A], representing the 

absorbances of four different mixtures of the same 

absorbing components, at five different wavenumbers: 

mixture 
1 2 3 4 

wavenumber 
1 0.371 0.713 0.219 0.186 
2 0.271 0.515 0.202 0.174 

[A] = 3 0.229 0.424 0.241 0.271 (1.11) 
4 0.349 0.641 0.409 0.428 
5 0.182 0.226 0.229 0.265 

(From page 6, chapter 1 of the monograph by Malinowski 
and Howery. (40) ) 

This information is typical of many types of 

spectroscopic measurements commonly used in chemistry. 

The problem represented here is twofold - to find the 

number of components present and to determine their 

concentrations. According to the general solution of 

factor analysis, we obtain 

A (1.12) 
ik 



where 

w = jth abstract row cofactor associated with the 
ij 

ith wavenumber 

m = jth abstract column cofactor associated with 
jk 

the kth mixture 

and 

A = absorbance data point. 
ik 

The inclusion of n factors in the sum accounts for 

absorbances within experimental error. Then, from 

equation (1.12), we obtain the factor analytical 

solution 
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[A] = [W] [M] (1.13) 
abstract abstract 

where 

[W] = wavenumber-factor matrix 
abstract 

and 

[M] = mixture-factor matrix. 
abstract 

This abstract solution gives an indication of the 

number of factors responsible for the absorbance data 

in (1.11). By using a suitable transformation matrix, 

the abstract factor matrix may be converted into a 

matrix of real and physical solution given by 

[A] = [W] [M] 
real real 

(1.14) 
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The transformation process is the most difficult step 

in this analysis. The application of theoretical 

considerations to the transformation process increases 

the probability of the transformation process being 

successful. This leads us to the fact that Beer's law 

can be used to represent absorbance data for 

multicomponent systems, and .hence enable us to 

interpret the factors chemically. On the basis of 

Beer's law, we obtain 
-n 

A =~E c 
ik J~l. ij jk 

where 

( .. = molar absorptivity per unit path length of 
1J 

component j at wavelength i 

and 

(1.15) 

c = molar concentration of component j in the kth 
jk 

mixture. 

Since this is a linear sum of products similar to 

(1.12), it follows that data that follow Beer's law 

must have factor analytical solutions as well. The 

complete solution of this problem will involve the 

transformation of this (1.15) abstract solution into 

the real solution. If this is carried out correctly, 

[A] = [E] [C] (1.16) 
real real 

is obtained as the real solution. [E] is the 
real 

molar absorptivity matrix in which each column 
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corresponds to th~ absorbance of one of the pure 

components at the five different wavelengths, providing 

the spectrum of the pure component. [C] is the 
real 

molar concentration matrix in which each row 

corresponds to the concentration of one of the n 

components in each of the four mixtures. 

Thus, by determining the number of factors it is 

possible to determine the number of absorbing 

components in the mixtures. The transformation process 

results in the chemical identification of each 

component through its spectrum obtained from the molar 

absorptivity matrix, [E] , while the molar 
real 

concentration matrix [C] , provides the 
real 

concentration of each component in the four mixtures. 

Thus, the factor analysis of the absorbance data leads 

to the complete solution of the problem (40). 

The solution for the data presented produces a factor 

size of 3, indicating that there were 3 absorbing 

components in each mixture. This result was found to 

be correct, since the data represented in (1.11) was 

obtained from a 3 component system (40). 

The above example, although a simple one, 

adequately illustrates the power of factor analysis in 

solving many types of problems in chemistry. Many 

difficult and complex chemical problems can be modelled 

after this example , making it possible to attempt 
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solutions that were previously unattainable. 

The FTIR spectra of aquifer materials can be 

related to many of the significant practical properties 

of that material, using factor analysis. Fredricks et 

al. (41) applied factor analysis to develop a method 

for the chara~terization of coal, bauxite, manganese 

dioxide ore, and diesel fuel and concluded that such a 

method would be applicable to any material that 

exhibits an infrared spectrum. The same authors 

provide an excellent description of the application of 

factor analysis to interpret FTIR spectra in another 

publication (42). 

Presentation of the Problem 

The problem of pollutant sorption by aquifer 

minerals is far more complex than many of the problems 

that have been studied so far, mainly because of the 

serious lack of background information and the 

complexity of the clay system. This makes it a likely 

candidate for factor analysis, since factor analysis 

can handle such data quite reliably. The use of 

FTIR-ATR spectroscopy to study aquifer mineral -

organic pollutant interaction, has a better chance of 

providing data of superior quality that can be analyzed 

using factor analysis, eventually leading to the 

development of a significant and sound relationship 
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between aquifer minerals and the sorption and migration 

of organic pollutants. It is hoped that the 

development of such a relationship will verify and 

strengthen the findings of previous studies involving 

the use of KBr pellet transmission spectroscopy and 

FTIR-PAS spectroscopy, which have indicated that there 

does exist a set of high correlation factors, which 

predict - albeit semi-quantitatively - the relationship 

between aquifer minerals and the sorption of organic 

pollutants by them (29). 



CHAPTER II 

EXPERIMENTAL PROCEDURES 

Materials 

Ten aquifer minerals were obtained from the Robert 

S. Kerr Environmental Research Laboratory (RSKERL) in 

Ada, Oklahoma. The samples were obtained by the 

personnel of RSKERL, using a procedure outlined in the 

paper by Banerjee et al. (17). These ten samples are 

labelled as EPA-1 to EPA-10 and are known to the EPA 

lab as J-10 for EPA-4, N-6 for EPA-6, C-1 for EPA-8, 

and B-1 for EPA-9. A description of the physical 

appearance and texture of each of the ten samples is 

provided in Table II. Measured partition coefficients 

(Kp) for four different solvents, Benzene (BZ), 

Trichloroethene (TCE), Tetrachloroethene (PCE), and 

1,2-Dichlorobenzene (DCB), determined by RSKERL on four 

of the ten aquifer materials, were provided by RSKERL 

and are listed in Table III. The partition coefficient 

Kp, is a value determined from the extraction of the 

solid phase (sorbent) in (L/kg). This is based on the 

total mass of the sorbate (pollutant) recovered from 

the sorbent (aquifer mineral) by extraction. An Agate 

33 
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TABLE II 

PHYSICAL DESCRIPTION OF AQUIFER MINERALS EPAl- EPAlO 

Sample # Color Texture 

EPA! Dark Brown Fine 

EPA2 Light Brown Coarse 

EPA3 Dark Brown Fine 

EPA4 Med. Brown Fine 

EPA5 Med. Brown Coarse 

EPA6 Yellow-Brown Medium 

EPA7 Yellow-Brown Medium 

EPA8 Light Brown Sandy 

EPA9 White-Brown Sandy 

EPA10 Pink Fine 
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TABLE III 

MEASURED PARTITION COEFFICIENTS FOR SOLVENTS ON 
AQUIFER SOLIDS (CI = 90% CONFIDENCE INTERVAL) 

SorbentiSolvent BZ TCE PCE DCB 

Eq Kow 2.1 2.3 2.9 3.4 

EPA9 Kp 0.038 0.088 0.35 0.34 

CI .030-.045 .076-.098 .33-.37 .31-.37 

EPA8 Kp 0.026 0.032 0.19 0.082 

CI .021-.031 .029-.036 .17-.21 .072-.091 

EPA6 Kp 0.035 0.076 0.18 0.23 

CI .031-.039 .069-.083 .17-.19 .22-.24 

EPA4 Kp 0.12 0.16 0.48 1.04 

CI .11-.13 .15-.18 .45-.50 1.01-1.08 

Kp = aquifer mineral I pollutant partition coefficient 

Kow = octanol I water partition coefficient 
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mortar and pestle was used for grinding the soil 

samples. The unground particle size of the ten samples 

varied from approximately 220 microns for the fine 

samples to 850 microns for the coarse samples. The 

particle size of the samples after grinding was found 

to be approximately 30 microns. This measurement was 

carried out on a Cambridge Instruments Stereoscan - 90B 

Scanning Electron Microscope. The distilled, deionized 

water used in the sample slurry preparation for 

examination by ATR was obtained each day from 

facilities in the department of chemistry, OSU. 

Sample Preparation 

Approximately 50 mg of each sample was used for 

the acquisition of each spectrum. The soil was weighed 

out using a clean spatula and Lilly brand powder paper 

(glassine) on a Sartorius electronic balance. The soil 

sample was then transferred to a clean agate mortar, 

and after the addition of 7 - 10 drops of distilled 

deionized water (approx. 0.8 ml) was ground to a fine 

paste. The grinding time varied with the coarseness of 

the sample, and in most cases was between 5 and 7 

minutes, and the final particle size obtained was 

approximately 30 microns. No further sample 

preparation was required. 
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X-Ray Analysis of the Soils 

X-Ray analysis of the soils to determine the 

mineral content (XRD analysis) was performed by 

Mineralogy Inc., a commercial lab based in Tulsa, 

Oklahoma. This analysis was done in duplicate for 

samples EPA-6 to EPA-10. The XRD data for all ten 

samples is listed in Table IV. It must be noted that 

the X-Ray data listed in Table IV are not error free. 

Lack of precision, or reproducibility of results, whose 

quantitative nature is questionable, is a serious 

problem associated with XRD analysis. These data must 

be subject to careful scrutiny, before any conclusions 

based on it are made. Although X-Ray analysis is the 

most popular tool for qualitative analysis, its use for 

quantitative analysis is subject to problems associated 

with preferred orientation, extinction and 

micro-absorption, resulting in relatively inaccurate or 

qualitative results at best (43,44). 

Infrared Spectroscopy 

The instrument used to measure the ATR - mid IR 

spectra was a PERKIN-ELMER 1710 FTIR Spectrometer. 

This spectrometer is equipped with a temperature 

stabilised, coated FR-DTGS (Fast Recovery Deuterated 

Tri Glycine Sulphate) detector with moisture resistant 

Csi window. The source is a temperature stabilised 



TABLE IV 

DATA FROM XRD ANALYSIS OF EPA SAMPLES 
EPAl- EPAlO 

MINERAL EPA! EPA2 
VERMICULITE 0 0 
CHLORITE 1 0 
FELDSPAR 7 6 
DOLOMITE trc 0 
QUARTZ 88 92 
ILLITE 2 1 
MTML* trc trc 
CALCITE 1 trc 
GYPSUM 0 0 
KAOLINITE 1 1 

MINERAL EPA6 EPA7 
VERMICULITE 0 0 
CHLORITE 0 0 
FELDSPAR 2/4 4/3 
DOLOMITE 0 0/trc 
QUARTZ 95/89 92/93 
ILLITE 2/2 2/2 
MTML* trc 0 
CALCITE 0/trc 0/trc 
GYPSUM 0 0 
KAOLINITE 1/2 1/2 
HALLOYSITE 0 0 
AMPHIBOLE 0/2 1 

* MTML = MONTMORILLONITE 

trc = trace 
2/4 = duplicate measurement 
precision = 2% on one analysis 

EPA3 EPA4 
0 0 

trc trc 
0 2 
0 0 
98 94 
1 1 
0 1 
trc 0 
0 0 
1 2 

EPA8 EPA9 
0 0 
0 0 

1/1 16/28 
0 1/trc 

96/97 70/52 
2/1 0 
trc 0 
0 9/15 
0 1 

1/1 0 
0 0 
0 0 
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EPA5 
0 
0 
3 
0 
94 
2 
trc 
0 
0 
1 

EPA10 
0 

trc 
1/trc 
trc/0 
85/82 
trc 

0 
trc 

0 
11/14 

3/4 
2/4 

4% on the second analysis of same sample 

(Data obtained from Minerology Inc., Tulsa, Oklahoma). 
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ceramic source operating at 1400 K. The abscissa range 

is from 4400 cm-1 to 400 cm-1, with an accuracy of 0.01 

cm-1 using a He-Ne laser reference. The signal to 

noise is better than 0.1 %T peak to peak, 0.025 %T RMS· 

for a 4 second measurement at 4 cm-1 within the range 

2200 cm-1 to 2000 cm-1. The typical scan time is 1 

second per scan at a resolution of 4 cm-1. Since a 

spectrometer measures only a finite part of the 

interferogram, the output spectrum has unwanted 

oscillations or ''feet" on either side of sharp spectral 

bands. Apodization, a mathematical operation, reduces 

these oscillations, but with a slight loss of 

resolution. The apodization function used was the 

MEDIUM Norton - Beer apodization, one of 9 types 

available on the PE-1710. The Jacquinot stop (J-stop) 

is an aperture placed in the beam path between the 

source and the interferometer. It reduces beam 

divergence which could degrade resolution (30). The 

default J-stop of 2 was used to obtain all the 

spectra. This allows a maximum resolution of 2 cm-1 

over the entire abscissa range. Spectral smoothing was 

not done. (45) The instrument has a single beam and 

the sample spectra are obtained from the ratio of 

spectra with a sample in the beam against background 

spectra obtained without a sample. The ATR accessory 

was positioned carefully and adjusted to give the 
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maximum energy reading on the spectrometer. The 

details of spectral acquisition are explained in the 

next section. The instrument is controlled by a 

Perkin-Elmer Series 1700 intelligent controller. The 

spectra obtained can be stored in one of the three 

memory areas of the Video Display Unit, (VDU). 

Conditions under which the spectra are to be obtained 

are user definable. The conditions under which all the 

spectra in this study were obtained are as follows: 

Abscissa Range ---- 4000 cm-1 to 600 cm-1 

Resolution -------- 4 cm-1 

Number of Scans -~- 256 scans 

The time required to obtain one spectrum was 19.2 

minutes, being the time taken in the slow scan mode. 

In the fast scan mode the time required for 256 scans 

at a resolution of 4 cm-1 is 9.5 minutes. The sample 

chamber of the spectrometer is maintained under a 

constant Nitrogen gas purge (liq. N boil off) to 
2 

reduce spectral interference by water vapor and carbon 

dioxide. 

The attenuated total reflectance accessory used in 

this study was a Harrick Scientific PLC-11M Single 

Reflection Prism Cell. This cell has an optical power 

transmission coefficient of 40% to 60%. This cell is 
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simple in design and is very suitable for recording 

spectra of aqueous solutions or slurries under ambient 

conditions. This cell eliminates the need for 

elaborate sample handling procedures. The entire 

assembly is mounted in the spectrometer using a 

standard sample slide plate (see fig. 3). The soil 

samples, which have been ground into a fine paste, are 

simply spread on the surface of the prism and then 

covered with a glass plate. (Approximately 1.5 ml of 

the slurry is spread over the entire surface of the 

sample ATR prism). After the acquisition of each 

spectrum, the prism is rinsed carefully with distilled 

water and dried off with Kleenex brand facial quality 

tissue. The prism is made of ZnSe and due to its 

toxicity, special precautions such as the use of 

gloves, must be taken in handling the prism. Figure 3 

provides an exploded view of the ATR cell (46). 

The first step in obtaining a spectrum was to 

obtain a background spectrum. This was done by using 

the ATR attachment without any sample. The next step 

was to obtain the spectrum of pure water by spreading a 

thin film of pure water on the prism. Following this, 

each of the ten samples were scanned under the 

conditions stated earlier. As each spectrum was 

obtained, it was stored in one of the memory areas of 

the spectrometer. The spectrum of water was subtracted 



EXPLODED VIEW OF LIQUID PRISM CELL ASSY. 

COVER SLIDE 
(OMIT WHEN 
USING COVER 

PLATES) 

VERlfCAL 
TRAN~LATIONl~ 
~CREW r 

LUER PLUG 

-Ef--11- ,.&- ~.... -1--<7 liE.AM_ 

SLIDE PLATE 

FILM SAMPLE 
COVER PLATE 

Figure 3. Exploded view of Harrick PLC-11M ATR cell. (from instruction manual 
for Harrick 11M ATR cell) """' N 
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from the sample spectrum. This difference spectrum was 

then transferred to the external computer and stored on 

disk. Each spectrum was physically checked for 

accuracy by comparing the data points transferred to 

the external computer with the data points displayed on 

the spectrometer. The background spectrum was scanned 

each day. The spectra of all ten soil samples were 

obtained in duplicate runs. 

Data Acquisition and Transfer 

Although the Perkin-Elmer spectrometer can scan 

and store spectra in one of its three on-board 

memories, it does not have the capability to store the 

spectral data on disk, without the acquisition of an 

external data station. However, the factor analysis 

program required the spectral data to be digitized and 

stored on disk. This transfer from spectrometer to 

computer was accomplished by interfacing the 

Perkin-Elmer spectrometer to a CORDATA PC 400 personal 

computer, equipped with a 20 megabyte hard disk and 

upgraded to IBM AT performance. One of the key 

elements in establishing the computer-spectrometer 

interface was the use of a Smart Cable model SC821PLUS 

Smart Cablemaker, manufactured by IQ Technologies, 

Inc., which permits the user to establish the correct 

communications parameters between the computer and the 



NAME PIN # PIN # 

'ID 2 ? 

RD 
~c--

3 3 •' 

RTS 4 - --4 
EXTERNAL CTS 5 5 SPECTROMETER 

COMPIITER DSR 6 (PERKIN - ELMER 1710) 

(CORDATA PC400) CD 8' ~:0 
Figure 4. 

D'IR 20 

Schematic (cable) diagram of RS232 serial interface between 
CORDATA PC 400 and PERKIN - ELMER 1710 spectrometer 

~ 
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spectrometer. Fig. 4 shows the cable diagram (47). 

Since no suitable data acquisition software was 

available, a program was written in the 'C' programming 

language. This program was developed using Microsoft's 

'C' programming language software version 4.0 (48-53). 

The program transfers control of selected commands of 

the spectrometer to the external computer and permits 

the user to transfer spectra to the computer and store 

it on disk. Further, the program converts the incoming 

spectral data into a form acceptable by the factor 

analysis program. The 'C' program was subjected to 

extensive testing to verify the authenticity of the 

data being transferred. This testing included 

'worst-case' testing, in which spectra with maximum 

possible absorptions were transferred and tested for 

accuracy. (A complete listing of the data transfer 

program can be found in appendix A). Before the 

spectra could be subjected to factor analysis, the data 

files were formatted to meet the requirements of the 

factor analysis program using the EDIX text editor, 

available from Emerging Technologies Inc •. 

Factor Analysis 

Factor analysis of the data was performed by using 

a computer program written in 'C'. This program was 

originally developed by Rockley (20) on the basis of 
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algorithms outlined in Malinowski and Howery (40). 

This program required further modification to accept 

spectral data from the Perkin-Elmer spectrometer. (A 

complete listing of both the original code and the 

modified code can be found in appendix A). The 

modifications to the original program included changes 

in the size of the spectral data arrays, the range of 

analysis and the number of points analysed. The factor 

analysis program could handle ten spectra at the same 

time. (The program can be modified to handle more 

spectra). This program was executed on a Cordata PC 

400 personal computer with a 20 megabyte hard disk, 

upgraded to IBM AT performance. The factor analysis 

returns the eigenvalues and the loadings on the 

abstract mathematical factors into which a set of ten 

spectra (representing the ten aquifer minerals) have 

been compressed. Factor analysis was carried out for 

various spectral ranges. The range between 1400 cm-1 

and 600 cm-1 contained most of the spectral 

information. It was decided to limit the factor 

analysis to the same spectral range. The data from the 

factor analysis can be found in appendix B. 

This data was then transferred to an IBM PS2/80 

personal computer for graphical presentation using 

Microsoft Excel, version 2.0. 



CHAPTER III 

RESULTS AND DISCUSSION 

It is reasonable to assume that some simple 

property of the aquifer minerals may lead to the 

development of a relationship between pollutant 

sorption and Kp values of typical nonpolar pollutants. 

The experiments performed as part of this study show 

that a relatively simple and well established 

spectroscopic technique might be used to characterize 

aquifer minerals to better understand the transport of 

nonpolar pollutants through low TOC soils. 

Mineral analysis on these samples was performed by an 

external lab using XRD, to obtain a quantitative 

estimate of minerals in the ten samples. The results 

from this XRD analysis are shown in Table IV. Results 

were obtained in duplicate for samples EPA6 to EPA10, 

and where available, these values are the second set of 

numbers. As was stated earlier the procedure used for 

this quantitation - XRD, is subject to considerable 

error and hence these values provide us only with 

approximate indications of content. The data obtained 

show that all ten aquifer minerals contain five 

minerals as the principle components. 

47 



These are : feldspar, quartz, illite, calcite and 

kaolinite. 
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Measured partition coefficients (Kp) for the four 

different solvents used were determined by RSKERL on 

four of the ten aquifer minerals being studied and are 

shown in Table II. 

Abstract factors 

FTIR-ATR spectra of the ten aquifer minerals 

provided by RSKERL were measured by the procedure 

outlined earlier (see appendix C for spectra). The 

quantitative prediction of aquifer retention properties 

first involved the transformation of the matrix of 

spectra by factor analysis procedures to obtain four 

abstract factors for FTIR-ATR spectra. These four 

abstract factors were found to be sufficient to 

describe all ten aquifer minerals. That there are only 

four significant factors is supported by the fact that 

the factor indicator function for the factor analysis 

of the ten spectra between 1400 and 600 cm-1 reaches a 

minimum at the fourth factor. The factor indicator 

function specified by Malinowski (40) is an empirical 

function which appears to be more reliable than the 

imbedded error (IE) function in its ability to define 

the correct number of abstract factors describing the 

system. The indicator function reaches a minimum when 
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the correct number of factors are employed. This 

minimum is more pronounced than the minimum in the IE 

function and more importantly, often occurs in 

situations in which the IE function exhibits no 

minimum. It must be noted however that the indicator 

function is not fully understood at this time and that 

it must be used cautiously. The results of this 

analysis between 1400 and 600 cm-1 are shown in Table 

V. Although the XRD analysis would seem to indicate 

the presence of five principal components, the fact 

that the factor analysis indicates only four principal 

components suggests that only four of those five 

components are truly significant. While the four 

abstract factors from the factor analysis do not 

directly correspond to the components observed by XRD 

analysis, it is fairly certain that there are four 

components which would emerge after suitable rotation 

procedures such as automated spectral isolation (ASI) 

described by Lin and Liu (54) and Lin and Lin (55). 

They used automated spectral isolation (ASI) to succe­

ssfully isolate component spectra from the spectra of 

mixtures. One of the advantages of ASI is that it does 

not require regions of spectral purity. In ASI, the 

first step is to normalize each digitized spectrum such 

that the maximum absorption is 1.000. Principal factor 

analysis (PFA) is then carried out to define the 
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TABLEV 

ABSTRACT FACTOR ANALYTICAL REDUCTION OF A SET OF 
TEN FTIR-ATR SPECTRA 

FREQUENCY RANGE: 1400 cm-1 to 600 cm-1 

Eigenvalue RE XE 

36.81734 0.01497 0.01497 
1.24248 0.00875 0.00830 
0.38398 0.00511 0.00457 
0.08254 0.00388 0.00325 
0.03728 0.00313 0.00242 
0.02639 0.00227 0.00161 
0.01200 0.00164 0.00104 
0.00495 0.00124 0.00068 
0.00215 0.00097 0.00044 
0.00152 0.00000 0.00000 

Where 
RE = real error 
XE = extracted error 
IE = imbedded error 

IE 

0.00000 
0.00277 
0.00228 
0.00212 
0.00198 
0.00161 
0.00127 
0.00103 
0.00087 
0.00000 

IND = factor indicator function 

IND 

0.00015 
0.00011 
0.00008 
0.00008 
0.00009 
0.00009 
0.00010 
0.00014 
0.00024 
0.00000 



primary eigenvectors and, hence the number of compo­
• 

nents. Finally, to define the spectral axes for the 
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pure components, "prototype spectra" are target tested 

and a risk function is used to judge the predicted 

vectors. The smaller the risk function, the closer the 

predicted spectrum is expected to match the spectrum of 

the pure component. A detailed analysis of the exact 

procedure used in ASI is outlined in chapter 7 of the 

book on factor analysis by Malinowski and Howery (40). 

If these four factors that correspond to the 

abstract factors can be reliably determined, it is 

possible to obtain the spectra of those components 

which are chiefly responsible for pollutant sorption by 

the soils tested in this set of samples. Once these 

spectra are obtained it will be possible to better 

understand the mechanism of pollutant sorption on low 

TOC soils. 

Factor Analytical Compression 

Factor analytical compression was done to obtain 

the loadings of the aquifer minerals (EPAl - EPAlO) on 

each of the abstract factors. In factor analysis the 

raw data is not used for analysis. Raw data is first 

converted into a covariance or correlation matrix. By 

the application of standard mathematical techniques, 
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the covariance or correlation matrix is decomposed into 

a set of abstract factors. These abstract factors, 

when multiplied, reproduce the original data. The 

reason these factors are called abstract is because, 

although they have mathematical meaning, they do not 

have any physical or chemical meanings in their present 

form. These abstract factors are then converted into 

physically meaningful parameters by target 

transformation. 

Target Transformation 

Target transformation requires an intimate 

knowledge of the theoretical aspects that form the 

basis of infrared spectroscopy. This process is 

preceded by factor compression, in which unwanted 

factors are dropped. The reproduction of the original 

data, in this case an FTIR spectrum, from the minimum 

number of eigenvectors is a very challenging process. 

Not all the eigenvectors are required. It is seen that 

the magnitude of the eigenvalue is a measure of the 

importance of the corresponding eigenvector. The 

higher the magnitude of the eigenvalue, the more 

important is the corresponding eigenvector. It stands 

to reason therefore, that since the smallest 

eigenvectors are the least important, they may be 

dropped from the analysis. It has been observed that 
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the inclusion of these insignificant eigenvectors often 

leads to the re-introduction of experimental error. 

Hence, the retention of unnecessary eigenvectors is not 

profitable. This process of dropping the unwanted 

eigenvectors is called factor compression (40). 

At this point it was necessary to eliminate six of 

the ten aquifer minerals from the study due to the 

unavailability of Kp values. The four samples retained 

were EPA4, EPA6, EPAS, and EPA9. It was further 

necessary to drop EPA4 from the study since it was 

learnt that sample number EPA4 (known to RSKERL as 

J-10) was a high TOC soil. Thus the final analysis was 

based on the use of three samples only - EPA6, EPAS, 

and EPA9. 

Normalization of Factors 

The abstract factors from the factor analysis for 

these three soils were then normalized. The 

normalization was done as follows: 

1. Obtain the sum of the squares of the four 

factors, for each of the three soils. 

2. Take the square root of this sum. 

3. Divide each factor of each sample by the 

corresponding sum to obtain the normalized 

factor. 

If C1, C2, C3, and C4 are the four factors for a 
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particular sample, the normalization process can be 

expressed as follows: 

step 1: 
2 2 2 2 

SUM= {(C1) +(C2) +(C3) +(C4) } 

step 2: 

SQSUM = SQRT (SUM) 

step 3: 

divide each factor by SQSUM to obtain the 

normalized factor. This is given by 

NORMC1 = (C1/SQSUM) 

NORMC2 = (C2/SQSUM) 

NORMC3 = (C3/SQSUM) 

NORMC4 = (C4/SQSUM) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

where NORM# is the normalized factor, for a particular 

aquifer mineral sample. This process is repeated for 

the three EPA samples analyzed. 

Relationship between Kp and Abstract Factors 

After normalization it was found that at least for 

the four sets of Kp values for the range of solvents 

obtained by RSKERL so far, there was a good linear fit 

which described the relationship between the Kp values 

for a given solvent and the corresponding loadings on 

abstract factors 2 and 4 (C2 and C4) for the three 

soils analysed, as shown in figures 5(a-d) and 6(a-d), 

respectively. The one exception was in the case of 
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PCE, for which the abstract factor Cl gave the best 

linear fit, (figure 7c) followed by C4. Abstract 

factors Cl and C3 also correlate fairly well (figures 

7(a-d) and 8(a-d), respectively). The slopes and the 

ordinate intercepts of these linear fits were then 

plotted against the Kow values for the solvents used. 

This resulted in a good correlation with a linear fit, 

for the abstract factors 2 and 4 (C2 and C4) as shown 

in figure 9(a,b), respectively. These results, while 

limited in scope due to the small number of Kp values 

provided by RSKERL, suggest a useful way to define and 

understand pollutant - soil interactions. For a given 

soil - pollutant system, the Kow (octanol-water 

partition coefficient) value of the pollutant is 

obtained from literature. From the plot of Kp vs 

loading on the physically relevant factors, in this 

case C2 and C4, determine the offset and slope of the 

linear fit, for that particular pollutant. Next, 

measure the FTIR-ATR spectrum of the soil and factor 

compress to obtain the loadings on factors C2 and C4 

for that soil. Finally, from the solvent Kp versus C2 

or C4 lines for the general case (as defined by this 

work) and the value of C2 or C4 obtained from the 

spectral - FA measurement, calculate Kp for the solvent 

of interest on that particular soil. 
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Correlation of Factors 

There exists a rationale for the fact that only 

some of the factors seem to exhibit high correlation 

for the loadings of the soils on the different factors. 

It must be that the abstract factors 2 and 4 indicate 

the presence of physical factors which are responsible 

for pollutant retention in these samples. Although the 

correlation from the abstract factors 1 and 3 is not as 

good as that from abstract factors 2 and 4, it may well 

be that factors C1 and C3 indicate the presence of some 

low concentration causative agent responsible for 

pollutant retention in soils. Factors 1 through 4 are 

abstract factors, 1 indicating the most predominant 

component and 4 the least predominant component in the 

"average" of the set of ten soils. Since the aquifer 

minerals, from XRD studies appear to be predominantly 

quartz, abstract factors C2 through C4 may well 

correlate with the presence of various clay and 

carbonate components, in small concentrations, on the 

surface of the parent quartz component. Since useful 

correlations between abstract factors C2 and C4, and to 

a lesser extent C1 and C3 are observed, these 

components must play a very important role in pollutant 

sorption by aquifer minerals under conditions of low 

total organic carbon content (TOC). 

On the basis of these results, it is seen that it 
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may be possible to obtain the offset and slope of a 

straight line which reliably describes the relationship 

between Kp and the loading on factors 2 and 4 for any 

soil, for a given pollutant and its Kow. Further, it 

is possible to obtain loadings on those factors for a 

given low TOC soil using FTIR-ATR spectral analysis and 

factor compression. From this the Kp for the pollutant 

of interest on the soil under examination can be 

inferred. Thus by using a standard experimental 

technique - FTIR-ATR spectroscopy - and factor 

analysis, it is possible to obtain the Kp value of any 

pollutant on any low TOC soil. The time required from 

start to finish for this process is about 30 minutes. 

This may be compared with current methodology which 

involves time consuming column chromatography on large 

quantities of aquifer minerals. 

In spite of the excellent results observed so far, 

the generalization of these results is unwise because 

of the limited number of samples studied. The dearth 

of measured Kp values imposes a severe constraint on 

the extensive application of these methods to study 

pollutant - soil interactions. The Environmental 

Protection Agency must enhance its scope of study to 

obtain more extensive sets of data, and make full use 

of this promising technique. 
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Conclusion 

The conclusions based on these results are 

twofold. Firstly, the excellent spectral data obtained 

using FTIR-ATR as opposed to conventional pellet 

transmission spectroscopy (see figures 2a and 2b, and 

appendix C), justifies the use of this method for the 

infrared studies of aquifer minerals. We see that 

although the KBr pellet transmission spectrum of the 

sample in fig. 2a is good, the ATR spectrum of the same 

sample (fig. 2b) is even better under these 

circumstances. This is further supported by the fact 

that the use of FTIR-ATR minimizes the effects of 

particle size on the spectra. Using ATR, it is 

possible to record spectra of samples containing 

particles as big as 50 - 60 microns. This is not 

possible with pellet transmission spectroscopy. ATR is 

cost effective in that, by the use of a simple 

reflection element, older dispersive instruments may 

also be used to obtain infrared spectra. Moreover, ATR 

can be invaluable in cases where extremely small 

quantities of sample are available. Unlike pellet 

transmission spectroscopy, in which the sample is lost, 

ATR allows the reuse of the same sample for other 

studies. The problems associated with the Christiansen 

effect can also be of a serious nature in pellet 

transmission and FTIR-PAS spectroscopy (56). All the 
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for the analysis of aquifer minerals. 
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Secondly, the combination of FTIR-ATR spectroscopy 

with factor analysis provides us with a reasonably 

reliable and useful method to analyse pollutant -

solvent systems for possible relationships that may 

eventually lead to the development of a useful 

relationship between pollutant Kow and low TOC soil Kp. 

That such a relationship between factor analyzed 

FTIR-ATR spectra and aquifer mineral sorption potential 

does exist is now certain, based on the results 

obtained with the limited set of data studied so far in 

this work. The four abstract factors generated by the 

factor analysis adequately describe the set of ten 

aquifer minerals studied. It is more than likely that 

these four abstract factors are indicative of physical 

components present in the aquifer minerals. This must 

be explored further. One direction to proce~d would be 

to use procedures similar to automated spectral 

isolation of Lin and Liu (54) and Lin and Lin (55) as 

outlined earlier for the determination of the basic 

physical factors from the four defining abstract 

factors. This must be suitably supplemented by the EPA 

through provision of more Kp and Kow values for a wider 

variety of soil - pollutant systems. Successful 

spectral isolation using methods such as AS! has never 
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been achieved before with a system as degenerate as the 

clay system. If, through the application of infrared 

spectroscopy and factor analysis this can be achieved 

the rewards would be enormous. This must be the 

catalyst that spurs more research in this 

environmentally important research area. 
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ORIGINAL FACTOR ANALYSIS PROGRAM 
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I* 
I* 

This program performs a factor analysis of 

all dominant factors in a random set of spectra 
*I 
*I 

/include "math.h" 

/include "stdio.h" 

/include "stdlib.h" 

/define SPEC_SIZE 23~~ 

/define RANK 12 
/define RANGE 4~~ 

I* Typical number of eigenvalues expected *I 
I* Typical number of wavelengths analyzed *I 

/define NOISE ~.~8 I* 1~~~:1 T mode noise at 50% transmission*/ 

/define DELTA_F 1.9294 I* frequency spacing in wavenumbers *I 
/define HIGH_F 4814 I* Starting frequency in cm-1 of Spectra *I 

float predicted[RANGE],testvector[RANGE],risk[RANGE]; 
float irinfo[SPEC_SIZE],datamatrix[RANGE][RANK]; 

float covariancematrix[RANK][RANK]; 

float runningmatrix[RANK][RANK],subtrahend[RANK][RANK]; 

float abst_row[RANGE][RANK],eigenvalues[RANK],guess[RANK],guess2[RANK]; 
float crosselement,improvement,eigenvectors[RANK][RANK]; 

double amplitude,oldamplitude,residual; 

int elements,samples,result,i,j,k,l,row,column,passthru,sampcnt; 

int start_wlength,end_wlength,where_to_begin,position,space_size; 
char query,query2,fname[1][14],dateinfo[30],inputname[RANK][20],fdataname[20]; 

FILE *fdata; 
int best_guesses[RANK],lowpossible; 

char stopit; 

main() 

FILE *f9; 

float temp; 

int sampcnt: 

result=system("cls"): 

printf(" Please Enter the DATE (any format) ... "); 

scanf("%s" ,dateinfo); 

printf("\n\n\n ******* ABSTRACT FACTOR ANALYTICAL REDUCTION ******\n"); 

printf(" Analysis Date .... %s\n",dateinfo); 

printf( • Enter file name for data output ...... "); 

scanf("%s",fdataname); 

fdata=fopen(fdataname,"w"); 

fprintf(fdata,"\n\n\n ******* ABSTRACT FACTOR ANALYTICAL REDUCTION ******\n") ; 
fprintf(fdata," Analysis Date .... %s\n",dateinfo); 

printf(" Enter the number of samples .......... "); 

scanf("%d",&samples); 

printf(" Will data be from IRD files? (yin) ... "); 

query=getche(); 

passthru=-1; 
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if ((query!='y') && (query!='V')) 

{query2='n'; 
printf( "\n Enter the number of elements/sample "); 

scanf("%d",&elements); 

if ((query=='y') ll (query=='V')) 
{lowpossible=400+(RANGE*1 .9294); 

printf("\n Enter --integer-- for starting frequency in cm-1 ... "); 

do 
{printf("\n Value must be greater than %4d cm-1. Value= ",lowpossible); 
scanf("%d",&where_to_begin); 
} 

while (where_to_begin<lowpossible); 

printf(" Starting frequency in cm-1 = %5d \n",where_to_begin); 

printf(" %4d points used at a spacing of %6.4f cm-l",RANGE,DELTA_F); 

printf("\n"); 

fprintf(fdata," Starting frequency in cm-1 • %5d \n" ,where_to_begin); 

fprintf(fdata," %4d points used at a spacing of %6.4f cm-1",RANGE,DELTA_F); 

fprintf(fdata,"\n"); 

start_wlength=(HIGH_F-where_to_begin)/DELTA_F; 

end_wlength=start_wlength+RANGE; 

elements=RANGE; 

f9=fopen("BOOKDATA","r"); 

for (sampcnt=0;sampcnt<samples;++sampcnt 
{printf("\n"); 

if ((query=='y') l l (query••'V')) 

else 

{printf("Name of file for sample I %3d= ",sampcnt); 
scanf ( "%s·· , fname) ; 

printf("\n"); 

get_irinfo(fname,irinfo,SPEC_SIZE); 

put_irinfo_into_data(datamatrix,sampcnt,irinfo,elements); 
} 

{for (j=0:j<elements;++j ) 

{printf("Element I %3d= ",j); 

fscanf(f9,"%f",&temp); 

datamatrix[j][sampcnt]=temp; 

printf("%6.3f ",temp); 
} 

fclose(f9); 
find_the_covariance_matrix(); 

printf("\n\n ******EIGENVALUES and EIGENVECTORS******"); 

fprintf(fdata,"\n\n 

do 
{passthru=passthru+1; 
guess_the_initial_vector(); 

run_x_initial_guess(); 

******EIGENVALUES and EIGENVECTORS ******\n"); 
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load_vector_into_eigenvectors(); 
find_new_running_matrix(); 
get_residual (); 
} 

while ((passthru<samples-1) ); 
display_errors(); 

calc_abstract_row_matrix(); 
if ((queryl='y') && (query!='Y') && (query21='y') && (query21='Y')) 

disp_abst_row_matrix(); 
find_loadings(); 

fclose(fdata); 
/*needle_search();*/ 
} /* End of procedure MAIN 

find_the_covariance_matrix() 

int i,k,l; 

for (i=I'J;i<samples;++i 

{for (k=l'l;k<samples;++k 
{covariancematrix[i][k]=0.0; 

*I 

for (l=l'l;l<elements;++l) 
{crosselement=datamatrix[l][i)*datamatrix[l][k]; 
covariancematrix[i][k]+=crosselement; 

runningmatrix[i)[k]=covariancematrix[i][k]; 
} 

/*of the function to find the covariance matrix DtD *I 

guess_the_initial_vector() 
{ 

double temp; 

int i; 

for (i=l'l;i<samples;++i 

{temp=1.0/samples; 
guess[i]=sqrt(temp); 
} 

/*of the function to guess the initial vector 

run_x_initial_guess() 
{ 

float posneg; 

ampl itude=I'J .1'1; 

*I 
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do 
{for (i=~:i<samples;++i ) 

{crosselement=~.l'.l; 

for (j=~:j<samples;++j 

crosselement+=runningmatrix[i][j]*guess[j]; 
guess2[i]=crosselement; 
} 

oldamplitude=amplitude; 

amplitude=~-~; 

for (i=~;i<samples;++i ) 
amplitude+=guess2[i]*guess2[1]; 

for (i=l'.l;i<sarnples;++i ) 
guess[i]=guess2[i]/(sqrt(amplitude)); 

printf("\n"); 
posneg=(1.l'.l~-(oldarnplitude/amplitude)); 

if (posneg<~)posneg=-posneg; 
improvement=posneg; 
locatxy(15,2~);printf(" ");locatxy(1,2~); 

printf("improvement ~ %6.4f\n",improvement); 
} 

while (improvement>~.l'.l~1); 

eigenvalues[passthru]=sqrt(amplitude); 
printf("\n"); 
printf("Amplitude -Eigenvalue lambda-= %7.3f\n",eigenvalues[passthru]); 
fprintf(fdata,"Amplitude -Eigenvalue lambda-= %7.3f\n",eigenvalues[passthru]); 
printf( "That eigenvector is .... •); 
fprintf(fdata,"That eigenvector is .... "); 
for (i=~:i<samples;++i ) 

{printf("%6.3f ",guess[i]); 
fprintf( fdata, "%6 .3f •, guess[i]); 
} 

printf("\n"); 
fprintf(fdata,"\n"); 

} /*of the function to mult. running matrix by guess vector *I 

get _residual() 
{ 

float temp; 

residual=~-~; 

for (i=~:i<samples;++i 
{for (j=~:j<sarnples;++j 

{temp=runningmatrix[i][j]; 

residual+=temp*temp; 

/*of the function to find the residual sum of sqrs of matrix*/ 
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find_new_running_matrix() 
{ 

for (i=~;i<samples;++i ) 
{for (j=~;j<samples;++j 

subtrahend[i][j]:~.0; 

for (i=~;i<samples;++i ) 

{for (j=0;j<samples;++j 
{subtrahend[i][j]+=(eigenvalues[passthru] 

*eigenvectors[passthru][i]*eigenvectors[passthru][j]); 
} 

for (i=0;i<samples;++i) 

{for (j=~;j<samples;++j) 
runningmatrix[i][j]-=subtrahend[i][j]; 

/*of function to find new running matrix */ 

load_vector_into_eigenvectors() 
{ 

for (i=0;i<samples;++i ) 

eigenvectors[passthru][i]=guess[i]; 

/*of function to load iterated guess into eigenvectors *I 

display_errors() 
{ 

double temp; 
float re,ie,xe,ind,ind_test; 
int u,t,n,j,infinity; 

if (samples>elements) u=samples; else u=elements; 
if (samples <elements) t=samples; else t=elements; 
n=passthru; 

space_size=l; /*increment by one until indicator minimizes*/ 

printf(•\n\n ******* ERROR ANALYSIS *******\n"); 
printf("RE =real error\n");printf("XE =extracted error\n"); 
printf("IE • imbedded error\n"); 
printf("IND= indicator function\n"); 
printf("\nEigenvalue RE XE IE IND\n"); 
printf("--------------------------------------------------------\n"); 
fprintf(fdata,"\n\n ******* ERROR ANALYSIS *******\n"); 
fprintf(fdata,"RE =real error\n");printf("XE =extracted error\n"); 
fprintf(fdata,"IE =imbedded error\n"); 

fprintf(fdata,"IND= indicator function\n"); 
fprintf(fdata,"\nEigenvalue RE XE IE IND\n"); 
fprintf(fdata,•--------------------------------------------------------\n"); 
for (n•8;n<=passthru;++n) 

{infinity=~; 
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re=ll:ie=ll:xe=ll: 

for (j=n+l:j<t:++j) 

{re+=eigenvalues[j]; 

xe+=eigenvalues[j]; 
} 

if (t>n) 

{temp=(re/(u*(t-n))): 

re=sqrt (temp): 

ind=re/((t-n)*(t-n)): 

if (n==ll) 

ind_test=ind: 

else if (ind<=ind_test) 

++space_size: 

if (t<=n) infinity=l 

temp=xe/(u*t); 

xe=sqrt(temp); 

temp=(re*re)-(xe*xe); 

ie=sqrt(temp): 

if (infinity==ll) 

{printf("%10.5f %10.5f %10.5f %10.5f %10.5f\n", 

eigenvalues[n],re,xe,ie,ind); 

fpr1ntf(fdata,"%10.5f %10.5f %10.5f %10.5f %10.5f\n", 

eigenvalues[n],re,xe,ie,ind); 

else {pr1ntf("%10.5f *** %10.5f *** 

fpr1ntf(fdata,"%10.5f *** 
} 

%10.5f *** 
***\n",eigenvalues[n],xe): 

***\n",eigenvalues[n],xe); 

/*of function to find the errors and display them */ 

calc_abstract_row_matrix() 
{ 

float storage: 

int i,j,k,l: 

for (i=ll:i<=passthru:++i) 

{for (j=ll:j<elements;++j 

{storage=ll.fl: 

for (k•ll:k<samples:++k 
storage+•(datamatrix[j][k]*eigenvectors[i][k]); 

abst_row[j][i]=storage; 
} 

I* function to calculate abstract row matrix *I 

disp_abst_row_matrix() 
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int i,j,k,l; 

printf("\n Abstract Row Matrix R "): 
printf("\n----------------------------\n"): 
fprintf(fdata,"\n Abstract Row Matrix R "): 
fprintf(fdata,"\n----------------------------\n"): 
for (i=0:i<elements;++i) 

{for (j=0:j<=passthru;++j) 
{printf("%10.5f ",abst_row[i][j]): 
fprintf(fdata,"%10.5f ",abst_row[i][j]): 
} 

printf("\n"); 

fprintf(fdata,"\n"); 
} 

printf("\n\n"): 
fprintf(fdata,"\n\n"): 
} /*of function to display the abstract row matrix */ 

find_loadings() 
{ 

double temp: 
float loading[RANK][RANK],amount: 
int i,j,k,l: 

printf("\n\n 

"******DATA COLUMN LOADINGS ONTO THE FACTORS******"); 
printf("C=eigenvector (or factor) 1\n"): 
printf(" C1 C2 C~ C4 C5"): 
printf(" C6 C7 ca C9"l: 
printf(" C10 C11 C12\n"): 
fprintf(fdata,"\n\n " . 

"******DATA COLUMN LOADINGS ONTO THE FACTORS******"): 
fprintf(fdata,"C=eigenvector (or factor) 1\n"): 
fprintf(fdata,• C1 C2 C~ C4 C5"): 
fprintf(fdata," C6 C7 CS C9"): 
fprintf(fdata," C10 C11 C12\n"): 
for (k=0:k<samples;++k ) 

{printf("Sample %2d = \n",k): 
fprintf(fdata,"Sample %2d = \n",k); 
for (j=0:j<=passthru:++j) 

{temp=eigenvalues[j]; 
amount=(sqrt(temp)*eigenvectors[j][k]); 
printf("%8.~f ",amount); 
fprintf(fdata,"%8.~f ",amount): 
} 

printf("\n"): 
fprintf(fdata,"\n"): 
} 
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/*of function to display the loadings *I 

get_irinfo(argv,hangar,size)/* get from filename argv into array hangar[size)*/ 
char *argv[]; 

float *hangar; 

int size; I* size = limit to number of points to retrieve */ 

FILE *f1; 

float temp; 
int i,j,k; 

i=0; 
f1=fopen(argv,"r+b"); 

while ((fscanf(f1,"%f",&temp)!=EOF)&&(i<size)) 

{*(hangar+i)=temp/1000.; 
++i; 

fclose(f1); 
} 

needle_search() 

int i ,j ,k; 

for (i=0;i<elements;++i) 

/*amplitude mod to be removed later *I 

{printf("\n Search position= %d",i); 

design_testvector(i); 

predicted_from_testvector(); 
compare_test_to_predicted(i); 
} 

pick_best_and_store(); 
} 

put_irinfo_into_data(matrix,col,info,no_elements) 

float matrix[RANGE][RANKJ,info[SPEC_SIZE]; 

int no_elements,col; 

int i,j,k,l; 

start_wlength=(HIGH_F-where_to_begin)/DELTA_F; 

end_wlength=start_wlength+RANGE; 

elements=RANGE; 

for (i=start_wlength,j=0;i<end_wlength;++i,++j) 

matrix[j][col]=info[i]; 

design_testvector(locale) 
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int locale; 

int i,j,k; 

for (i=0;1<elements;++i) 
testvector[i]=NOISE; 

testvector[locale]z1.000; 

predicted_from_testvector() 
{ 

float rhs[RANK]; 
int i,j,k,l,m,n; 

for (j=0;j<zpassthru;++j) 

{rhs[j]=0.0; 
for (1z0;i<elements;++i) 

rhs[j]+=abst_row[i][j]*testvector[i]; /*abst row transpose*/ 
rhs[j]zrhs[j]/eigenvalues[j]; 
} 

for (k=0;k<elements;++k) 
{predicted[k]z0,0; 
for (1•0;l<zpassthru;++l) 

predicted[k]+•abst_row[k][l]*rhs[l]; 

compare_test_to_predicted(position) 
int position; 

int i,j,k; 
I* This is a NON-WEIGHTED risk analysis *I 
I* This should be advanced at some point*/ 
I* For example in defining spectra one */ 
I* should penalize negatives in predict.*/ 

float temp,pure,weighted; 

for (i=0,risk[position]•0.0,pure=0.0,weighted•0.0:i<elements;++i) 
{temp=(predicted[i]-testvector[i]); 
tempztemp*temp; 

pure+•temp; 
if (predicted[il<0.0) weighted+•100*(predicted[i]*predicted[i]); 
else weighted+=predicted[i]*predicted[i]; 
} 

risk[position]=pure*weighted; 

pick_best_and_store() 
{ 

FILE *fout; 
float minima[RANK],temp; 
int i,j,k,l,m; 

95 



char fname[S]; 

fname[l'l]='X'; 
fname[2]=NULL; 
for (i=l'l;i<=passthru;++i) 

{minima[i]=risk[i]; 
best_guesses[i]=i; 

I* Have to start somewhere *I 

} 

for (i=0;1<=passthru;++i) 
{for (j=i+1;j<elements;++j) 

{if (risk[j]<risk[best_guesses[i]]) 
{if (i==0) 
best_guesses[i]=j; 
else 
if (risk[j]>risk[best_guesses[i-1]]) 

best_guesses[i]=j; 

for (i=l'l;i<=passthru;++i) 
{fname[1]=65+i; 
fout=fopen(fname,"w"); 
j=best_guesses[i]; 
design_testvector(j); 
predicted_from_testvector(); 
for (k•l'l,temp=where_to_begin+DELTA_F;k<elements;++k) 

{temp-•DELTA_F; 
fprintf(fout,"%8.2f %8.5f\n",temp,predicted[k]); 
} 

fclose(fout); 

I* Now print out the risk function vs. frequency *I 
fname[0]•'R';fname[1]='I';fname[2]='S';fname[)]='K';fname[4]=NULL; 
fout=fopen(fname,"w"); 
for (k=0,temp=where_to_begin+DELTA_F;k<elements;++k) 

{temp-•DELTA_F; 
fprintf(fout,"%8.2f %8.5f\n",temp,risk[k]); 
} 

fclose(fout); 
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MODIFIED FACTOR ANALYSIS PROGRAM 

• 
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I* 
I* 

This program performs a factor analysis of 
all dominant factors in a random set of spectra 

/include "math.h" 
/include "stdio.h" 
/include "stdlib.h" 

*I 
*I 

/define SPEC_SIZE ~4~~ I* Total number of data points in spectra */ 
/define RANK 12 /*Typical number of eigenvalues expected *I 
/define RANGE 8~0 I* Typical number of wavelengths analyzed *I 
/define NOISE 0.~8 I* 1~~0:1 T mode noise at 5~~ transmission*/ 
/define DELTA_F 1.00~0 I* frequency spacing in wavenumbers */ 
/define HIGH_F 4000 I* Starting frequency in cm-1 of Spectra */ 

float predicted[RANGE],testvector[RANGE],risk[RANGE]; 
float irinfo[SPEC_SIZE],datamatrix[RANGEJ[RANK]; 
float covariancematrix[RANK][RANK]; 
float runningmatrix[RANK][RANK],subtrahend[RANK][RANK]; 
float abst_row[RANGE][RANK],eigenvalues[RANK],guess[RANK],guess2[RANK]; 
float crosselement,improvement,eigenvectors[RANK][RANKJ: 
double amplitude,oldamplitude,residual; 
int elements,samples,result,i,j,k,l,row,column,passthru,sampcnt; 
int start_wlength,end_wlength,where_to_begin,position,space_size; 
char query,query2,fname[1][14],dateinfo[~0],inputname[RANK][2~].fdataname[20]: 

FILE *fdata; 
int best_guesses[RANK],lowpossible; 
char stopit; 

main() 
{ 

FILE *f9; 
float temp; 
int sampcnt: 

result=system("cls"); 

printf(" Please Enter the DATE (any format) ... "); 
scanf("~s",dateinfo); 

printf("\n\n\n ******* 
printf(" 

ABSTRACT FACTOR ANALYTICAL REDUCTION 
Analysis Date .... %s\n",dateinfo); 

printf(" Enter file name for data output ...... "); 
scanf("%s",fdataname); 
fdata=fopen(fdataname,"w"); 

******\n") : 

fprintf(fdata,"\n\n\n ******* ABSTRACT FACTOR ANALYTICAL REDUCTION ******\n") ; 
fprintf(fdata," Analysis Date .... ~s\n",dateinfo); 
printf(" Enter the number of samples ....•..... "); 
scanf("f.d",&samples); 
printf(" Will data be from IRD files? (y/n) ... "); 
query=getche(); 
passthru=-1; 
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if ((query!='y') && (query!='V')) 

{query2='n'; 
printf("\n Enter the number of elements/sample "); 

scanf("%d",&elements); 

if ((query=='y') l l (query=•'V')) 

{lowpossible=440+(RANGE*1.0000); 

printf("\n Enter --integer-- for starting frequency in cm-1 ... "); 

do 
{printf("\n Value must be greater than %4d cm-1. Value • ",lowpossible); 

scanf("%d",&where_to_begin); 
} 

while (where_to_begin<lowpossible); 
printf(" Starting frequency in cm-1 • %5d \n",where_to_begin); 
printf(" %4d points used at a spacing of %6.4f cm-1",RANGE,DELTA_F); 
printf("\n"); 

fprintf(fdata," Starting frequency in cm-1 • %5d \n",where_to_begin); 
fprintf(fdata," %4d points used at a spacing of %6.4f cm-l",RANGE,DELTA_F); 

fprintf(fdata,"\n"); 
start_wlength•(HIGH_F-where_to_begin)/DELTA_F; 

end_wlength•start_wlength+RANGE; 
elements=RANGE; 

f9=fopen("BOOKDATA","r"); 
for (sampcnt•0;sampcnt<samples;++sampcnt 

{printf("\n"); 
if ((query•='y') I I (query••'V')) 

else 

{printf("Name of file for sample I %3d= ",sampcnt); 
scanf("%s",fname); 

printf("\n"); 
get_irinfo(fname,irinfo,SPEC_SIZE); 

put_irinfo_into_data(datamatrix,sampcnt,irinfo,elements); 
} 

{for (j•0:j<elements;++j ) 

{printf("Element I %3d • ",j); 

fscanf(f9,"%f",&temp); 

datamatrix[j][sampcnt]=temp; 
printf("%6.3f ",temp); 
} 

fclose(f9): 
find_the_covariance_matrix(); 

printf("\n\n ******EIGENVALUES and EIGENVECTORS******"); 

fprintf(fdata,"\n\n 
do 

{passthru•passthru+1; 
guess_the_initial_vector(); 

run_x_initial_guess(); 

******EIGENVALUES and EIGENVECTORS ******\n"); 
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load_vector_into_eigenvectors(); 
find_new_running_matrix(); 
get_residual(); 
} 

while ((passthru<samples-1) ); 
display_errors(); 
calc_abstract_row_matrix(); 
if ((query!='y') && (query!='V') && (query2!•'y') && (query21='V')) 

disp_abst_row_matrix(); 
find_loadings(); 
fclose(fdata); 

/*needle_search();*/ 
I* End of procedure MAIN 

find_the_covariance_matrix() 

int i,k,l; 

for (i=~;i<samples;++i 

{for (k=~;k<samples;++k ) 
{covariancematrix[i][k]=~-~; 

*I 

for (l·~:l<elements;++l) 

{crosselement=datamatrix[l][i]*datamatrix[l][k]; 
covariancematrix[i][k]+=crosselement; 

runningmatrix[i][k]•covariancematrix[i][k]; 
} 

/*of the function to find the covariance matrix DtD */ 

guess_the_initial_vector() 
{ 

double temp; 

int i; 

for (i=~;i<samples;++i 

{temp•1.~/samples; 

guess[i]•sqrt(temp); 
} 

/*of the function to guess the initial vector 

run_x_initial_guess() 
{ 

float posneg; 

amplitude=~-~; 

*I 
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do 
{for (i=0;i<samples;++i ) 

{crosselement=0.0; 

for (j=0;j<samples;++j 
crosselement+~runningmatrix[i][j]*guess[j]; 

guess2[i]=crosselement; 
} 

oldamplitude=amplitude; 
amplitude=0.0; 
for (i=0;i(samples;++i ) 

amplitude+=guess2[i]*guess2[i]; 

for (i=0:i<samples;++i ) 
guess[i]=guess2[i]/(sqrt(amplitude)); 

printf("\n"); 

posneg=(1.00-(oldamplitude/amplitude)); 

if (posneg<0)posneg=-posneg; 

improvement=posneg; 
locatxy(15,20);printf(" ");locatxy(1,20); 

printf("improvement = %6.4f\n",improvement); 
} 

while (improvement>0.001): 

eigenvalues[passthru]=sqrt(amplitude); 
printf("\n"); 

printf("Amplitude -Eigenvalue lambda-= %7.3f\n",eigenvalues[passthru]); 

fprintf(fdata,"Amplitude -Eigenvalue lambda-= %7.3f\n",eigenvalues[passthru]); 
printf("That eigenvector is ...• "): 

fprintf(fdata,"That eigenvector is .... "); 

for (i=0;i<samples;++i ) 
{printf("%6.3f ",guess[i]); 

fprintf(fdata,"%6.3f ",guess[i]); 
} 

printf("\n"); 

fprintf(fdata,"\n"); 

} /*of the function to mult. running matrix by guess vector *I 

get_residual() 
{ 

float temp; 

residual=0.0; 
for (i~0;i<samples;++i 

{for (j=0;j<samples;++j 
{temp•runningmatrix[i][j]; 

residual+•temp*temp; 
} 

/*of the function to find the residual sum of sqrs of matrix*/ 
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find_new_running_matrix() 
{ 

for (i=~:i<samples;++i ) 
{for (j=~:j<samples;++j 

subtrahend[i][j]=~-~: 

for (i=~:i<samples;++i ) 
{for (j=~:j<samples;++j 

{subtrahend[i][j]+=(eigenvalues[passthru] 
*eigenvectors[passthru][i]*eigenvectors[passthru][j]); 
} 

for (i·~:i<samples;++i) 

{for (j=~:j<samples;++j) 
runningmatrix[i][j]-=subtrahend[i][j]; 

/*of function to find new running matrix */ 

load_vector_into_eigenvectors() 
{ 

for (i=~;i<samples;++i ) 
eigenvectors[passthru][i]=guess[i]; 

/*of function to load iterated guess into eigenvectors */ 

display_ errors() 
{ 

double temp; 
float re,ie,xe,ind,ind_test; 
int u,t,n,j,infinity; 

if (samples>elements) u=samples; else u=elements; 
if (samples <elements) t•samples; else t=elements; 
n=passthru; 

space_size•1; /*increment by one until indicator minimizes*/ 
printf("\n\n ******* ERROR ANALYSIS *******\n"): 
printf("RE =real error\n");printf("XE ~extracted error\n"): 
printf("IE = imbedded error\n"); 
printf("IND= indicator function\n"); 
printf("\nEigenvalue RE XE IE IND\n"); 
printf("--------------------------------------------------------\n"): 
fprintf(fdata,"\n\n ******* ERROR ANALYSIS *******\n"): 
fprintf(fdata,"RE • real error\n");printf("XE • extracted error\n"): 
fprintf(fdata,"IE • imbedded error\n"); 
fprintf(fdata,"IND• indicator function\n"); 
fprintf(fdata,"\nEigenvalue RE XE IE IND\n"); 
fprintf(fdata,•--------------------------------------------------------\n"); 
for (n•S:n<=passthru;++n) 

{infinity=~: 
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re=l'l;ie•l'l;xe=l'l; 
for (j=n+l;j<t;++j) 

{re+•eigenvalues[j]; 
xe+•eigenvalues[j]; 
} 

if (t>n) 
{temp•(re/(u*(t-n))); 
re=sqrt(temp); 
ind=re/((t-n)*(t-n)); 
if (n==l'l) 

ind_test=ind; 
else if (ind<=ind_test) 

++space_size; 

if (t<=n) infinity=l 
temp=xe/ ( u*t) ; 
xe=sqrt(temp); 
temp=(re*re)-(xe*xe); 
i e=sqrt (temp) ; 
if (infinity==l'l) 

{printf("%1l'l.5f %1l'l.5f %1l'l.5f %10.5f %10.5f\n", 
eigenvalues[n],re,xe,ie,ind); 

fprintf(fdata,"%1l'l.5f %10.5f %1l'l.5f %10.5f %10.5f\n", 
eigenvalues[n],re,xe,ie,ind); 

else {printf("%10.5f *** %10.5f *** 
fprintf(fdata,"%10.5f *** 

} 

%10.5f *** 

***\n",eigenvalues[n],xe); 
***\n",eigenvalues[n],xe); 

/*of function to find the errors and display them */ 

calc_abstract_row_matrix() 

float storage; 
int i,j,k,l; 

for (i=l'l;i<=passthru;++i) 
{for (j=l'l;j<elements;++j 

{storage=l'l.l'l; 
for (k=l'l;k<samples;++k 

storage+•(datamatrix[j][k]*eigenvectors[i][k]); 
abst_row[j][i]=storage; 
} 

I* function to calculate abstract row matrix */ 

disp_abst_row_matrix() 
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int i,j,k,l; 

printf("\n Abstract Row Matrix R "); 
printf("\n----------------------------\n"); 
fprintf(fdata,"\n Abstract Row Matrix R "); 
fprintf(fdata,"\n----------------------------\n"); 
for (i=0;i<elements;++i) 

{for (j=0;j<=passthru;++j) 
{printf("%10.5f ",abst_row(i][j]); 
fprintf(fdata, "%10.5f ",abst_row[i][j]); 
} 

printf("\n"); 
fprintf(fdata,"\n"); 
} 

printf("\n\n"); 
fprintf(fdata,"\n\n"); 
} /*of function to display the abstract row matrix */ 

find_loadings() 
{ 

double temp; 
float loading[RANK][RANK],amount; 
int i,j,k,l; 

printf("\n\n 

"******DATA COLUMN LOADINGS ONTO THE FACTORS******"); 
printf("Czeigenvector (or factor) 1\n"); 
printf(" Cl C2 C3 C4 C5"); 
printf(" C6 C7 CS C9"); 
printf(" C10 Cll C12\n"); 
fprintf(fdata,"\n\n . . 

"******DATA COLUMN LOADINGS ONTO THE FACTORS******"); 
fprintf(fdata,"C=eigenvector (or factor) 1\n"); 
fprintf(fdata," Cl C2 C3 C4 C5"); 
fprintf(fdata," C6 C7 CS C9"); 
fprintf(fdata," C10 Cll C12\n"); 
for (k=0;k<samples;++k ) 

{printf("Sample %2d = \n",k); 
fprintf(fdata,"Sample %2d z \n",k); 
for (j=0;j<=passthru;++j) 

{tempzeigenvalues[j]; 
amountz(sqrt(temp)*eigenvectors[j][k]); 
printf("%8.3f ",amount); 
fprintf(fdata,"%8.3f ",amount); 
} 

printf("\n"); 
fprintf(fdata,"\n"); 
} 
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/*of function to display the loadings *I 

get_irinfo(argv,hangar,size)/* get from filename argv into array hangar[size]*/ 
char *argv[] ; 
float *hangar; 
int size; I* size • limit to number of points to retrieve */ 

FILE *f1; 
float temp; 
int i,j,k; 

i=l:l; 
f1=fopen(argv,"r+b"); 
while ((fscanf(f1,"%f",&temp)!=EOF)&&(i<size)) 

{*(hangar+i)=temp; 
++i; 

fclose(f1); 
} 

needle_ search() 
{ 

int i,j,k; 

for (i•l:l;i<elements;++i) 

/*amplitude mod to be removed later */ 

{printf("\n Search position • %d",i); 
design_testvector(i); 
predicted_from_testvector(); 
compare_test_to_predicted(i); 
} 

pick_best_and_store(); 
} 

put_1rinfo_1nto_data(matr1x,col,info,no_elements) 
float matrix[RANGE][RANK],info[SPEC_SIZE]; 
int no_elements,col; 

int i,j,k,l; 

start_wlength•(HIGH_F-where_to_begin)/DELTA_F; 
end_wlength=start_wlength+RANGE; 
elements•RANGE; 

for (i•start_wlength,j=l:l;i<end_wlength;++i,++j) 
matrix[j][col]•info[i]; 

design_testvector(locale) 
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int locale; 

int i,j,k; 

for (i=~;i<elements;++i) 
testvector[i]=NOISE; 

testvector[locale]=l.~~~; 

predicted_from_testvector() 
{ 

float rhs[RANK]; 

int i,j,k,l,m,n; 

for (j=~;j<=passthru;++j) 
{rhs[jJzll.~; 

for (i·~;i<elements;++i) 

rhs[j]+=abst_row[i][j)*testvector[i]; /*abst row transpose*/ 

rhs[j]•rhs[j]/eigenvalues[j]; 
} 

for (k=~;k<elements;++k) 

{predicted[k]=~.~; 

for (l·~;l<•passthru;++l) 
predicted[k)+=abst_row[k)[l]*rhs[l]; 

compare_test_to_predicted(position) 

int position; 

int i,j ,k; 
I* This is a NON-WEIGHTED risk analysis */ 

I* This should be advanced at some point*/ 

I* For example in defining spectra one *I 
I* should penalize negatives in predict.*/ 

float temp,pure,weighted; 

for (i=~.risk[position]=~.~.pure=~.S,weighted=S.S;i<elements;++i) 
{temp•(predicted[i]-testvector[i]); 

temp•temp*temp; 

pure+=temp; 

if (predicted[i]<S.~) weighted+•1~0*(predicted[i]*predicted[i]); 

else weighted+•predicted[i]*predicted[i]; 
} 

risk[position]=pure*weighted; 

pick_best_and_store() 
{ 

FILE *fout; 
float minima[RANK],temp; 

int i,J,k,l,m; 
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char fname[B]; 

fname[0]s'X'; 

fname[2]=NULL; 

for (i=0;i<=passthru;++i) 
{minima[i]=risk[i]; 

best_guesses[i]=i; 

I* Have to start somewhere *I 

} 

for (i=0;i<=passthru;++i) 

{for (j=1+1;j<elements;++j) 

{if (risk[j]<risk[best_guesses[i]]) 
{if (iniJ) 

best_guesses[i]sj; 

else 
if (risk[j]>risk[best_guesses[i-1]]) 

best_guesses[i]=j; 

for (i=0;i<•passthru;++i) 
{fname[1]•65+i; 

fout•fopen(fname,"w"); 
j•best_guesses[i]; 

design_testvector(j); 
predicted_from_testvector(); 
for (k•0,tempzwhere_to_begin+DELTA_F;k<elements;++k) 

{temp-•DELTA_F; 

fprintf(fout,"~8.2f %B.5f\n",temp,predicted[k]); 
} 

fclose(fout); 

I* Now print out the risk function vs. frequency *I 

fname[0]•'R';fname[1]•'I';fname[2]•'S';fname[3]•'K';fname[4]zNULL; 
fout•fopen(fname,"w"); 

for (k=0,tempxwhere_to_begin+DELTA_F:k<elements;++k) 

{temp-•DELTA_F; 
fprintf(fout,"~B.2f %8.5f\n",temp,risk[k]); 
} 

fclose ( fout) ; 
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PROGRAM TO TRANSFER SPECTRAL DATA FROM 

SPECTROMETER TO THE EXTERNAL COMPUTER 
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I* 
I* 
I* 

This program allows the user to obtain the spectral data points 
of a spectrum scanned into the memory areas of the Perkin Elmer 
17~~ FT - IR spectrometer 

/include <stdio.h> 
/include <conio.h> 
/include <fcntl.h> 
/include <float.h> 
/include <io.h> 
/include <math.h> 
/include <stdlib.h> 
/include <types.h> 
/include <process.h> 

*I 
*I 
*I 

unsigned char spect_data[5~~~]; 
unsigned char spect_temp[2~]; 

I* Array in which spectral data is stored *I 
I* Array used for data conversion *I 

char fdataname[2~]; 

int i,j,k,l,m,n,p,nc,ch; 
int memory,high,inter,low,numread,result; 
float absorb,magnitude,trans; 

FILE *fdata; 

I* Where 

I* 
I* 
I* 
I* 
I* 
I* 
I* 

main() 

FILE *pe; 

FILE *sk; 

memory • memory area to obtain spectrum from 
reference area • ~ ; sample area • 1 

high • starting frequency of spectrum in cm-1 
low = ending frequency of spectrum in em-
inter • data interval of spectrum 
absorb • spectral data as absorbance 
trans • spectral data as transmittance 

result=system("CLS"); 

printf(" ******WELCClolE TO THE SPECTRtx-1 GRABBER I I! I****** \n\n\n"); 

*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 

printf(" Oata Acquisition and Control Software, Version 1~~ March 25th 1988\n\n\n"); 

start: 

printf(" Please enter 'filename.ird' for data output\n "); 
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scanf("%s",fdataname); 
printf("\n\n"); 

printf(" Please enter memory area to grab spectrum from\n"); 
printf(" Allowed memory areas are 1 ~A, 2 • B, ~ • C, 4 • Difference.\n\n"); 

scanf("%d",&memory); 

while((memory < 1) II (memory> 4)) 
{ 

printf("\n\n"); 

printf(" Wrong ·memory area, please reenterl\n"); 
scanf("%d",&memory); 

printf(" Please enter the starting wavenumber for spectral data \n "); 
printf(" Starting wavenumber must be between 441'.18 and 41'.12 cm-1\n"); 

scanf("%d",&high); 

while((high < 41'.12) II (high> 4488)) 
{ 

printf("\n\n"); 

printf(" Incorrect starting wavenumber!! Please reenterl\n"); 
scanf("%d",&high); 
} 

printf(" Now enter the ending wavenumber for spectral data \n"); 
printf(" Ending wavenumber must be between 41'.18 and 4398 cm-1\n"); 

scanf("%d",&low); 

while((low > 4398) II (low < 41'.18)) 
{ 

printf("\n\n"); 

printf(" Incorrect ending wavenumber!! Please reenterl\n"); 
scanf("%d",&low); 

printf(" Finally, Please enter the data interval for the spectrum \n"); 
printf(" Data interval must be an integer value* 11'.18 1!1\n"); 

scanf("%d",&inter); 

while((inter < 188) II (inter> 11'.11'.18)) 
{ 

printf(" Incorrect data intervallll Please reenter\n"); 
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scanf("%d",&inter); 

printf("\n\n"); 

printf(" I am busy, please wait ...... \n"); 
printf("\n\n"): 

I* Open COM1 to send and receive data 

pezfopen("COM1","w"); 
sk•fopen("COM1","r"); 

I* Open the file to write the spectral data 

fdatazfopen(fdataname,"w"); 

I* Reset the PE 17~~ to ASCI mode 

result•fprintf(pe,"SASCI\r"): 
fflush(pe): 

I* Read the port to obtain return value 

numread=fread(spect_data,1,4,sk); 
for(i•3:1<numread;++i); 
printf("%c",spect_data[i]); 
printf("\n"): 
fflush(sk): 

I* Send the MOVE command to the spectrometer 

resultzfprintf(pe,"SMOVE %d !I'd !I'd %d\r",high,low,inter,memory); 
fflush(pe): 

I* Read the port to obtain return value 

numread•fread(spect_data,1,1~,sk); 

for(i•S;i<numread;++i) 
printf("%c",spect_data[i]); 
printf("\n"): 
fflush(sk); 

*I 

*I 

*I 

*I 

*I 

*I 

I* Send the MOVE command to the spectrometer again to initiate spectral *I 
I* transfer. This procedure is necessary to obtain the data. *I 

while (spect_data[2]!='6') 

result=fprintf(pe,"SMOVE\r"): 

111 



fflush(pe); 

numread~fread(spect_data,1,4~~4.sk); 

for(i=4;i<numread;) 

trans~~-~; 

magnitude=~-~1: 

nc=~; 

p•i; 

do 

if((spect_data[p] >· 48) && (spect_data[p] <= 57)) 
{ 

spect_temp[nc] = spect_data[p]; 
++nc; 

++p; 

while((spect_data[p-1] >• 48) && (spect_data[p-1] <=57)); 

fflush(sk); 

for(m•nc-1;m>=~;--m) 

} 

trans+•magnitude*(spect_temp[m]-48.8); 
magnitude*·1~.8; 

transh8.5; 
absorb•2.~-log1~(trans); 

fprintf(fdata,"%8.4f",absorb); 

i=p; 

result=fprintf(pe, "$RLSE\r"); 
fflush(pe); 

printf("\n\n"); 
printf(" Do you wish to obtain another spectrum? (y/n)\n\n"); 

ch = getche () ; 
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if((ch =s 'y') II (ch == 'V')) 
{printf("\n\n\n"); 

goto start;} 
else 

printf("\n\n"); 

printf(" Thank you. Bye !!\n"); 

result=fprintf(pe,"$RLSE\r"); 
fflush(pe); 

fclose(pe); 
fclose(sk); 
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APPENDIX B 

RESULTS FROM FACTOR ANALYSIS 
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******* ABSTRACT FACTOR ANALYTICAL REDUCTION ****** 
Analysis Date .... 5-7-88 

Starting frequency in cm-1 = 1400 

800 points used at a spacing of 1.0000 cm-1 

****** EIGENVALUES and EIGENVECTORS ****** 
Amplitude -Eigenvalue lambda- = 36.817 

That eigenvector is .... 0.257 0.623 0.273 0.251 0.341 0.308 0.326 0.258 0.137 kUl62 
Amplitude -Eigenvalue lambda- = 1.242 

That eigenvector is .... -0.390 -0.242 0.263 0.429 0.507 -0.382 -0.068 0.187 -0.185 0.243 
Amplitude -Eigenvalue lambda- = 0.384 

That eigenvector is .... 0.583 -0.585 -0.078 0.225 -0.043 0.174 0.012 0.459 0.089 0.099 
Amplitude -Eigenvalue lambda- = 0.083 

That eigenvector is •... 0.109 -0.097 -0.107 -0.077 0.399 0.097 -0.235 -0.452 0.612 0.398 
Amplitude -Eigenvalue lambda- = 0.!!37 
That eigenvector is .... -0.438 -!!.203 ll.1ll0 0.125 -0.351 0.474 0.430 -!!.074 0.036 0.449 
Amplitude -Eigenvalue lambda- = 0.026 
That eigenvector is .... -0.416 -0.124 0.100 -lUllS 0.017 0.130 -0.08!! 0.343 0.611 -0.536 
Amplitude -Eigenvalue lambda- = 0.012 
That eigenvector is .... 0.075 0.196 -0.190 0.409 -0.423 -0.589 0.222 -0.007 0.401 0.129 
Amplitude -Eigenvalue lambda- = 0.005 

That eigenvector is .... -0.008 0.163 0.400 -0.441 -0.259 -0.151 -0.357 0.424 0.113 0.458 
Amplitude -Eigenvalue lambda- = 0.002 
That eigenvector is .... 0. 219 -0.276 0.632 -0.261 0.026 -0.260 0.463 -0.287 0.Hl3 -!!.182 
Amplitude -Eigenvalue lambda- = 0.002 
That eigenvector is .... l'J.Hl8 !!.036 0.467 0.502 -l'J.310 0.204 -0.509 -l'J.315 -0.036 -0.1)9 

******* ERROR ANALYSIS ******* 
RE = real error 

IE = imbedded error 

!NO= indicator function 

Eigenvalue RE XE IE !NO 

--------------------------------------------------------
36.81734 0.01497 0.01497 0.00000 0.00015 

1 . 24248 0.00875 0.00830 l'J.00277 0.00011 

0.38398 0.l'Jl'J511 0.00457 0.00228 ll.lllllll'J8 

0.08254 ll.llfl388 ll.l'Jl'J325 ll.l'lll212 ll.llll008 

ll.ll3728 ll.0l'J313 0.l'J0242 ll.0ll198 ll.lllllll'J9 

l'J.02639 l'J.l'Jl'J227 !!.00161 0.00161 !!.00009 
0.01200 0.00164 0.0flH14 0.00127 ll.l'J0l'J10 
0.l'Jl'J495 ll.l'Jl'J124 l'J.0flfl68 0.00103 0.flflfl14 

ll.0ll215 ll.llllll97 l'l.lllll'l44 ll.0llll87 ll.0llll24 
0.llll152 ll.0llllllll l'l.fl0flflfl fl.llllllllll ll.llllllflll 
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C=eigenvector (or factor) I 

C1 C2 C3 C4 C5 C6 C7 C8 C9 CHl '1 C12 

Sample 11 = 
1.562 -11.434 11.%1 11.031 -11.1185 -11.1168 0. f]J8 -0.001 11.111~ r.004 

Sample 1 = 
3. 781 -11.2711 -0.%3 -0.028 -11.1139 -11.11211 11.021 0.011 -11.1113 .'.0111 

Sample 2 = 

1.6611 0.293 -11.1148 -11.031 0.1119 0.016 -11.02: 11.1128 0.1129 0.018 

Sample 3 = 
1 .526 0.478 0.1411 -11.1122 11.024 -0.001 11.045 -11.1131 -11.012 fl.iL::l 

Sample 4 = 
2.072 11.566 -0.1127 11.115 -11.1168 0.003 -0.046 -11.018 0.001 -11.012 

Sample 5 = 
1.869 -ll.426 11.108 11.1128 11.1192 ll.·021 -11 . .'· -11.011 -11.1112 ll.l1118 

Sample 6 = 
1. 9811 -11.1175 11.11117 -11.1167 11.1183 -11.1113 0.1124 -11.1125 0.1121 -11.11211 

Sample 7 = 
1.568 11.209 11.284 -11.1311 -11.1114 11.1156 -11.11111 0.030 -11.013 -11.1112 

Sample 8 = 
11.831 -11.2117 11.1155 11.176 11.1107 0.1199 0.044 11.11118 11.005 -0.11111 

Sample 9 = 
0.378 11.271 0.1161 0.114 0.087 -0.1187 11.1114 11.032 -0.11118 -11.11115 
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******* ABSTRACT FACTOR ANALYTICAL REDUCTION ****** 
Analysis Date .... 5-9-88 

Starting frequency in cm-1 = 2000 
800 points used at a spacing of 1.0000 cm-1 

****** EIGENVALUES and EIGENVECTORS ****** 
Amplitude -Eigenvalue lambda- = 13.602 
That eigenvector is .... -0.024 0.415 0.386 0.434 0.541 0.081 0.240 0.347 -0.016 0.111 
Amplitude -Eigenvalue lambda- = 0.251 
That eigenvector is .... 0.177 -0.096 -0.144 -0.012 -0.032 0.298 0.250 0.047 0.826 0.320 
Amplitude -Eigenvalue lambda- = 0.080 
That eigenvector is .... 0.278 -0.118 -0.172 -0.001 -0.169 0.338 0.422 0.061 -0.558 0.494 
Amplitude -Eigenvalue lambda- = 0.013 
That eigenvector is .... 0.492 0.325 -0.097 -0.248 0.080 0.540 -0.169 0.086 -0.042 -0.495 
Amplitude -Eigenvalue lambda- = 0.005 
That eigenvector is .... 0.448 0.263 0.366 0.144 -0.604 -0.379 0.214 0.048 0.085 -0.101 
Amplitude -Eigenvalue lambda- = 0.001 
That eigenvector is .... 0.496 0.184 -0.451 -0.006 0.378 -0.510 -0.191 -0.096 -0.002 0.259 
Amplitude -Eigenvalue lambda- = 0.000 
That eigenvector is .... 0.261 -0.481 0.171 0.211 -0.063 0.045 -0.546 0.554 -0.014 0.127 
Amplitude -Eigenvalue lambda- = 0.000 
That eigenvector is .... 0.120 0.083 0.604 -0.409 0.125 0.105 -0.283 -0.404 -0.004 0.420 
Amplitude -Eigenvalue lambda- = 0.000 
That eigenvector is .... 0.338 -0.584 0.216 0.166 0.342 -0.052 0.322 -0.357 -0.011 -0.346 
Amplitude -Eigenvalue lambda- = 0.000 
That eigenvector is .... -0.021 -0.106 0.125 -0.678 0.198 -0.275 0.337 0.530 0.004 -0.066 

******* ERROR ANALYSIS ******* 
RE = real error 
IE = imbedded error 
IND= indicator function 

1 

Eigenvalue RE XE IE !NO 

--------------------------------------------------------
13.60209 0.00662 0.00662 0.00000 0.00007 
0. 25117 0.00371 0.00352 0.00117 0.00005 
0.08027 0.00172 0.00154 0.00077 0.00003 
0.01281 0.00105 0.00088 0.00057 0.00002 
0.00460 0.00057 0.00044 0.00036 0.00002 
0.00128 0.00026 ll.0ll018 0.ll0018 0.00001 
0.00013 0.00020 0.00013 ll.00016 ll.00001 
0.0001ll 0.ll0011 0.ll0ll06 0.00ll09 0.000ll1 
0.00002 ll.00007 ll.ll0003 0.00006 ll.00llll2 
0.llllll01 0.00llllll ll.000ll0 0.ll0000 0.00000 
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C=eigenvector (or factor) I 

C1 C2 C3 C4 C5 C6 C7 C8 C9 CHl C11 C12 

Sample 0 = 

-0.090 0.089 0.079 0.056 0.030 0.018 fl.003 0.001 0.002 -0.000 

Sample 1 = 
1.531 -0.048 -0.033 0.037 0.018 0.007 -0.006 0.001 -0.003 -0.000 

Sample 2 = 
1.425 -fU72 -0.049 -0.011 0.025 -0.016 0.002 0.006 0.001 0.000 

Sample 3 = 
1 .600 -0.006 -0.000 -0.028 0.010 -0.000 0.002 -0.004 0.001 -0.002 

Sample 4 = 

1. 994 -0.016 -0.048 0.009 -0.041 0.014 -0.001 0.001 0.002 0.001 

Sample 5 = 
0.300 0.149 0.096 0.061 -0.026 -0.018 0.001 0.001 -0.000 -0.001 

Sample 6 = 
0.885 0.125 0.120 -ll.ll19 0.015 -0.!107 -0.!106 -!1.0!13 0.001 !1.001 

Sample 7 = 
1.280 0.024 !1.017 !1.010 0.003 -0.003 11.006 -0.004 -0.002 0.001 

Sample 8 = 
-!1.060 0.414 -0.158 -0.005 0.006 -0.000 -0.000 -0.000 -0.000 0.000 

Sample 9 = 
0.409 0.160 0.140 -0.056 -0.007 0.009 0.001 0.004 -0.002 -0.000 
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******* ABSTRACT FACTOR ANALYTICAL REDUCTION ****** 
Analysis Date .... 5-9-88 

Starting frequency in cm-1 = 3000 
800 points used at a spacing of 1.0000 cm-1 

****** EIGENVALUES and EIGENVECTORS ****** 
Amplitude -Eigenvalue lambda- = 34.411 
That eigenvector is ..•. 0.028 0.394 0.362 0.409 0.516 0.198 0.274 0.352 £1.092 0.182 
Amplitude -Eigenvalue lambda- = 0.121 
That eigenvector is .... 0.640 0.013 0.444 -0.239 -0.335 fU16 -0.096 0.140 0.426 0.115 
Amplitude -Eigenvalue lambda- = 0.022 
That eigenvector is .... -0.033 -0.138 -0.369 -0.040 -0.068 0.752 0.087 -0.099 0.264 0.430 
Amplitude -Eigenvalue lambda- = 0.001 
That eigenvector is .... 0.105 -0.136 0.012 0.072 -0.204 -0.228 0.886 -0.267 -0.023 0.119 
Amplitude -Eigenvalue lambda- = 0.000 
That eigenvector is .... -0.076 0.043 -0.443 0.270 -0.021 -0.523 -0.107 0.206 0.559 0.290 
Amplitude -Eigenvalue lambda- = 0.000 
That eigenvector is .... 0.492 0.539 -0.284 0.263 -0.033 -0.015 -0.165 -0.472 -0.243 0.085 
Amplitude -Eigenvalue lambda- = 0.000 
That eigenvector is .... -0.382 0.333 0.261 -0.018 0.018 0.069 0.005 -0.540 0.548 -0.279 
Amplitude -Eigenvalue lambda- = 0.000 
That eigenvector is .... 0.198 -0.049 -0.039 -0.392 0.701 -0.149 -0.024 -0.486 0.221 0.058 
Amplitude -Eigenvalue lambda- = 0.000 
That eigenvector is .... -0.197 0.050 0.039 0.392 -0.701 0.150 0.024 0.486 -0.221 -0.059 
Amplitude -Eigenvalue lambda- = 0.000 
That eigenvector is .... -0.197 0.050 0.039 0.392 -0.701 0.150 0.024 0.486 -0.221 -0.059 

******* ERROR ANALYSIS ******* 
RE = real error 

IE = imbedded error 

!NO= indicator function 

Eigenvalue RE XE IE !NO 

--------------------------------------------------------
34.41097 0.00424 0.00424 0.00000 0.00004 
0.12073 0.00180 0.00171 0.00057 0.00002 
0.02172 0.00052 0.00046 0.00023 0.00001 
0.00131 0.00026 0.00022 0.00014 0.00001 
0.00028 0.00015 0.00012 0.00010 0.00000 
0.00001 0.00016 0.00011 0.00011 0.00001 
0.00001 0.00017 0.00010 0.00013 0.00001 
0.00001 0.00018 0.00010 0.00015 0.00002 
0.00003 ll.00018 0.00008 0.00016 0.00004 
0.00005 0.00000 0.00000 0.00000 0.00000 
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C=eigenvector (or factor) I 

C1 C2 C3 C4 C!) C6 C7 C8 C9 CH'J C11 C12 

Sample 11 = 
0.164 0.223 -0.005 0.004 -0.001 0.002 -0.001 0.001 -0.001 -0.001 

Sample 1 = 

2.3Hl 0.005 -0.020 -0.005 0.001 0.002 0.001 -0.000 0.000 0.000 

Sample 2 = 
2.124 0.154 -0.054 0.000 -0.007 -0.001 0.001 -0.000 0.000 0.000 

Sample 3 = 
2.397 -0.083 -0.006 0.003 0.004 0.001 -0.000 -0.001 0.002 0.003 

Sample 4 = 

3.028 -0. 116 -0.010 -0.007 -0.000 -0.000 0.000 0.002 -0.004 -0.005 

Sample 5 = 
1.160 0.005 0.111 -0.008 -0.009 -0.000 0.000 -0.001 0.001 0.001 

Sample 6 = 
1.610 -0.033 0.013 0.032 -0.002 -0.001 0.000 -0.000 0.000 0.000 

Sample 7 = 

2.063 0.049 -0.015 -0.010 0.003 -0.002 -0.002 -0.002 0.002 0.003 

Sample 8 = 

0.542 0.148 0.039 -0.001 0.009 -0.001 0.002 0.001 -0.001 -0.002 

Sample 9 = 
1.066 0.040 0.063 0.004 0.005 0.000 -0.001 0.000 -0.000 -0.000 



******* ABSTRACT FACTOR ANALYTICAL REDUCTION ****** 
Analysis Date .... 5-10-88 

Starting frequency in cm-1 = 4000 
800 points used at a spacing of 1.0000 cm-1 

****** EIGENVALUES and EIGENVECTORS ****** 
Amplitude -Eigenvalue lambda- = 18.036 

That eigenvector is .... -0.060 0.356 0.411 0.393 
Amplitude -Eigenvalue lambda- = 0.136 
That eigenvector is .... 0.534 0.143 -0.190 -0.052 
Amplitude -Eigenvalue lambda- = 0.027 
That eigenvector is .... 0.158 0.471 0.404 0.105 
Amplitude -Eigenvalue lambda- = 0.008 
That eigenvector is .... 0.375 0.481 -0.052 -0.088 
Amplitude -Eigenvalue lambda- = 0.002 
That eigenvector is .... 0.218 -0.103 -0.509 0.381 
Amplitude -Eigenvalue lambda- = 0.001 
That eigenvector is .... 0.410 -0.294 0.366 -0.026 
Amplitude -Eigenvalue lambda- = 0.001 
That eigenvector is .... 0.073 -0.429 0.460 0.046 
Amplitude -Eigenvalue lambda- = 0.000 
That eigenvector is .... 0.410 -0.299 0.116 -0.122 
Amplitude -Eigenvalue lambda- = 0.000 
That eigenvector is .... 0.372 -0.066 -0.100 0.343 
Amplitude -Eigenvalue lambda- = 0.000 
That eigenvector is .... -0.121 -0.132 0.022 0.741 

******* ERROR ANALYSIS ******* 
RE = real error 
IE = imbedded error 
IND= indicator function 

Eigenvalue RE XE IE IND 

--------------------------------------------------------
18.03569 0.00469 0.00469 0.00000 0.00005 
0.13647 0.00234 0.00222 0.00074 0.00003 
0.02716 0.00138 0.00123 0.00062 0.00002 
0.00793 0.00087 0.00073 0.00048 0.00002 
0.00208 0.00067 0.00052 0.00043 0.00002 
0.00118 0.00050 0.00035 0.00035 0.00002 
0.00069 0.00031 0.00020 0.00024 0.00002 
0.00023 0.00018 0.00010 0.00015 0.00002 
0.00005 0.00012 0.0011115 0.1111010 11.111111113 
11.110002 11.01111011 0.0111100 0.1111000 11.11011011 

121 

0.531 0.225 0.192 0.373 0.076 0.178 

-0.233 0.251 0.385 -0.088 0.478 0.393 

-0.588 0.129 0.056 -0.012 -0.219 -0.405 

0.330 -0.644 -0.163 -0.208 0.099 -0.119 

-0.067 -0.166 0.174 0.583 -0.053 -0.363 

-0.129 -0.044 -0.621 0.388 0.170 0.162 

-0.075 -0.510 0.571 -0.030 -0.038 0.047 

0.414 0.399 0.078 -0.238 0.015 -0.567 

0.058 0.072 -0.063 -0.245 -0.715 0.381 

-0.091 -0.045 -0.200 -0.435 0.410 -0.105 
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C=eigenvector (or factor) I 

C1 C2 C3 C4 C5 C6 C7 C8 C9 CH'l C11 C12 

Sample l'l = 

-11.256 11.197 11.1126 11.1133 11.11111 11.1114 11.11112 £!.11116 11.11£!3 -l'l.£!111 

Sample 1 = 

1 .5111 11.1153 1'!.1178 11.1143 -11.11115 -11.11111 -l'l.l'l11 -11.11115 -11.111'!11 -lUll'l1 

Sample 2 = 

1. 747 -l'l.£!7£! l'l.l'l67 -l'l.l'l£!5 -l'l.l'l23 11.1113 11.1112 11.11112 -11.111'!1 l'l.l'll'll'l 

Sample 3 = 

1.668 -l'l.l119 11.1117 -l'l.l'll18 1'!.1117 -l'l.l'll'l1 £!.11111 -11.11112 11.11113 11.11113 

Sample 4 = 

2.254 -11.1'!86 -1'!.1197 11.l'l29 -11.1'!£!3 -11.l'll14 -11.11112 11.l'll'l6 l'l.l11111 -11.11l'll1 

Sample 5 = 

11.958 11.1193 11.1121 -11.1157 -11.11118 -11.11112 -11.1'!13 1'!.11116 11.11111 -11.1'!1'!11 

Sample 6 = 

11.815 1'!.142 £!.1'!119 -11.l'l15 11.11118 -1'!.1121 11.1'!15 l'l.l'll'l1 -l'l.l'll'll'l -l'l.l'll11 

Sample 7 = 

1.586 -1'!.1132 -l'l.l'll'l2 -lUJ18 l'l.l'l27 l'l.l:J13 -l:J.l'll'l1 -1'!.11114 -11.1'!112 -11.1'!1'!2 

Sample 8 = 

1'!.321 1'!.177 -1'!.1'!36 l'l.l'll'l9 -l'l.l'll'l2 l'l.l'll'l6 -l:J.l:JI'l1 1'!.111'!1'! -l'l.l'll:J5 ll.l'll:J2 

Sample 9 = 

11.756 11.145 -11.1167 -1'!.011 -1'!.1117 11.111'!6 11.11111 -11.1'!119 11.11113 -11.111111 
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