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IDENTIFICATION OF SYSTEM FREQUENCY RESPONSE BY
STATISTICAL CORRELATION AND SPECTRAL ANALYSIS

CHAPTER I
INTRODUCTION

The inpelligent design or analysis of any plant
control system requires a kﬁowledge of the plant dynamic’
éharacteristics. In the area of chemical processes the
dynamic characteristiés are not readily known exéept in
the more simple cases. Measurement of dynamic relationships
thus playvs a vital role in the application of automatic
control to chemical ﬁrocesses. |

As bart of a control syétem the process to be
controlled, or regulated, is normally the most significant
component of the system. The accuracy of describing its
dynamic characteristics‘thereforé contributés'ﬁo the |
reéﬁlting degree of contrél attained. If a measurement
methodlis employed to obtain this knowledge of process
dynamics, then the reliability of the method should be
established to a satisfacﬁory degree.

After the knowledge of dynamics 1is gained,'thé
design or analysis probiem can be met. A host of textbooks

1
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and papers in the literature are devoted to these aspects
and they are not to be treated herein. In the case of
linear, time-invariant systems, the entire control system
and its parameters can be specified throﬁgh the use of
.analytical techniques. TFor many syétems, both non-linear
and time-&arying,.ahaIOg computer simulation proVides a
useful means of studying the control problém; |

.Fufthermore,'advanced conceptsfdf dontrol are made
possibie through ﬁhe khowlédée of dynamics. Computer
control utilizing feedforward principles combined with those
of feedback can be established. Computer control systems,
termed "adaptive," can be programmed to employ a periodic
measurement of process dynamics in ordef to follow their~
time varying characteristics and thus can be progfammed to
provide continual.optimal control action. Another attack
encompassing both of the above concepts is static and
dynamic optimigzation by computer control using the “dYﬁamié
programming" techniques of Bellman (2).

Knowledge of process dynamics may be determined
possibly in ﬁwo manners. First, a theoretical model may
often give satisfactory results. Mathematical models in the
form of differential equations can be obtained through the
application of the appropriate mass, energy, and momentum
balances. Parameters of these equations can be obtained
from eQuilibrium relations, rate constants, physical

broperties, and dimensions of the systems to complete the
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mathematical model. However, unless considerable experience
of representing similar processes in this manner has been
accumulated, the model may not represent the process
satisfactorily; The second determination, that of an actual
measurement ﬁéthod, remains as the only positive check.

Several different types of methods for measuring
process dynamics are fossible° Certainly an investigator
might employ variations of. any one method he has found to be
advantageous. Yet the measurement methods might be
basically classified as (1) the original,.direct sinusoidal
response, (2) empirical time response fitting techniques,
(3) the pulsing Fourief transform method, and (L) the
statistical correlation and spectral aﬁalysis method.
Critical factors affecting the selection of a methodhare
the disturbances imparted to process operation and the
... desired accuracy and form of the results. Other factors may
be the available measurirg and récording equipment and the
available computing facilities.

Each of the above has its particular advantages
and disadvantages. The sinusoidal method,‘although simple
and accurate when noise signals can be minimized, involves
relatively long periods of‘teSting which are upsets to
normal operation. The empirical time response fitting
methods can be made quickly and With little testing equipment
réquired, but‘these results serve only as approximations.

Pulse testing (13) requires a relatively short testing
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period and yields accurate results when noise signals are not
present. All of these methods require specific input
functions and are applicable only to linear. systems.
However, frequency response description itself, as one form
of expressing process dynamics, is significant only for
linear systems.

The fourth method, statistical correlation and.
spectral analys1s,'makes use of random input variables and
places requlrements only on the statistical nature of the
input variables. Attractive features are that special test
signals may ﬁot'be needed to disturb phe.proéess operatibn
and that the effect of the unwanted process "noise™ may be
made negligible.. Therefore; the method provides the potential
of measuring dynamic characteristics from the process
variables recorded during normal plant operation.

These ére decided advantages where large, complex
prbcessing equipment éfe concerned. -Dynamic tesﬁing which
leads to off-specification products. can be rather expensivé‘
when there are large throughputs. Even when such tests are
allowable, the experiménter normally finds few single input--
.single dﬁtput relationships but rather processes having a
host of interrelatéd variables.

One example oﬁt of many existing in the chemical
and petroleum industries is the distillationAcolumn. If, for
instahce, the dynamic relationship between.feboiler steam

flow rate and analysis of a light key component in the bottom
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product were desired, a number of other process variables
could simultaneously affect the response. Such variables
might be column pressure, feed rate, feed compositioh,
reflux fatio, steam pressure and quality, and several others.

Another advantage of the correlation method is that
when applied to non-linear systems the resﬁits are those of
a linear fit which is the best in a least squares sense.

In theory the correlation method shows excellent
potential,»bﬁt some problems exist yet in its practical
application. Experience with the method has been repérted
in a few previous papers, but ﬁhe results have been somewhat
inconclusive. The present work has been undertaken in order
to contribute to adaptation of this method as one of dynamic
analysis of chemical, petroleum, and other processes where

testing under normal operating conditions is desirable.



CHAPTER IT

REVIEW OF THEORY

History

Methods of harmonic, or frequency analysis of
periodic and aperiodic functions have been employed as far
back as Fourier's original work in 1882, A frequency
response approach to feedback control systems probably
started with a paper-in 1932 by H. Nyquist concerning the
stability of feedback amplifiers. The real impetus for
using these techniques came during World War II. Contri-
butions were centered upon gun fire-control problems with
their eléctronic, hydraulic, and mechanical servomechanism
components. Following the war, applications were made
rapidly to other areas. However, not until about 1953 did
the literature begin to show many contributions to the
dynamics and frequency response of chemical processing
equipment for the design of feedback controls. At the
present time, many sigﬁificant contributions are being made.

Theoretical developments concerning random time
functions have come somewhat later than with the deterministic

variables. A large part of the theory of frequency analysis

6



7
of random time functions can be attributed to N. Weiner.
In 1930 his papers concerning Brownian motion titled
"Generalized Harmonic Analysis" and published in Acta

Mathematica provided a mathematical basis for the frequency

analysis of random processes. An important paper was
published by Kolmogorov (16) in Russia in 1941, but it is
Weiner's later work (29) in 1949 which is given broad

credit (at least in the United States) for influencing most
of the modern developments in both communication theory and
information theory. Statistical filtering and prediction
theory was a part of this work. As an important implemen-
tation of Weiner's work, Lee (20, 21) showed, in 1950, a
treatment of random functions especially for the determination
of system dynamics. Since that time interest and literature
contributions on this subject have continually grown and are

given account of in Chapter IV.

Dynamic Systems

Time Relationshipé

The purpose in presenting the following discussion
is to point out to the reader the theory concerning the
experimental work described in later parts herein. A
number of excellent texts (7, 14, 25, 28) deal with these
points in detail. This dispussioh will summarize applicable
relationships and definipiqns; Many of the following |
relationships were originally conceived by‘electrical

engineers in conjunction with electrical filters and later
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to servomechanisms. The language of methematics, however,
is a common one and these relations can be applied to many
‘different systems. Such systems might be construed to be
anything from simple mechanical devices to complex chemical
processing plants.

A most conveniently handled system is one which can
be represented by a constant coefficient, ordinary differen-
tial equation as

e d®y(e) + o " Tly(6) +—mx 4 e y(t) = x(c)

el dgn-1 (1)
where x(t) is an input, or driving, function and y(t) is the
output, or responee. When the coefficients, cj, above are
eonstants, the.system is said to be linear, time-invariant.
The system has the property that for every pair of inputs,
xl(t), xz(t) and corresponding outputs yl( ), y2( t), the
input a Ecl( ZI + b s :l produces an output a Erl ] +
b[?z(tﬂ » Or, the effects produced by a number of inputs

can be superlmposed. Because of this property of super-

position, the convolution relationship -

0

y(t) =f h(t - 1) x(1) 4T (2)

also holds. After a change of variable, the convolution

integral can also be written as

y(t) =.l;;h(7) x(t -=T)dT (3)
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The weighting function, h(T), is also the unit
impulse response of the system. If, in Equation (1) the
input x(t) is Dirac's delta function occurring at t = 0,
or §(t), the solution of Equation (1) is y(t) = h(t).
Thus, h(t) is a characteristic of the system which uniquely
describes the system behavior for any input through the
use of‘Equation (2) or (3). For all physically realizable
systems, h(t) has the property thaﬁ it is zero for all
ﬁegative values of its argument; otherwise, the system
- would produce an effect before the corresponding cause.

Also, the system is stable if
, . _
-[ lh(t) l dt < constant < » (L)
o0 .

A system can be termed as "linear" by the definition of

superposition above.,

Frequency Response.

The'Fourier transform of the impulse response,
. w ' . .
H(w) =f h(t)e 9%t | (5)

exists for stable systems and it is called the frequency
response function. This function ié the response of the
system to a sinuscidal input of frequency, w . The_ linear
time-invarianﬁ syétem is-uniquely characteriéed by the
frequency response function since its response to a
sinusoid is a pﬁfe sinusoid of the same frequency. One of

the simplest ways to catalog the system dynamics is to test
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and record the process frequency response by direct sinusoidal
testing.
If the input function, x(t), fulfils the condition
of Equation (4), its Fourier transférm, X(w), exists and
Equation (2) or (3) can be transformed to yield

Y(w) = Hw) .+ X(w) (6)

- - o

This relationship is the basis on which pulse testing (13)

or

-
€
i

is carried out. A pulse yielding an appropriate transform

is'used as the input and transforms are conputed numerically

from the recorded input and output functions to yield H(w).
The Laplace transform of the impulse response is,

of course,

H(s) =f e”5% n(t)dt (8)
. &0 oo

This function is usually called the process transfer
function. "Ihﬂthe same procedure as above, it can be shown
that it is the ratio of transforms of output to input |
'variable, as

H(s) = Y(s . v (9)

It is often convenient to determine this function
approximately from the frequency response testing results

by comparison with various assumed functions of lim @(sﬂ o
: S—»jw
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Statistical Theory

Dynamic systems are often under the influence of
variables which. are non-deterministic, or random, in nature.
That is, future values cannot be entirely predicted in light
of the past. In the chemical industry an abundance of éuch
functions occurs as load disturbances to control systems.
Thése can occur in the form of feed compositions or flow
rateé, as "noise" geherated within the process (from
turbulence, for exémple), or even as ambient weather
changes. These random functions are often best described
by their statistical, or averaged, characteristics. For
comprehensive treatments on statistical theory, the reader
is referred to the work of Cramer (4) and Lanning and

Battin (18).

Properties of Random Processes

A random process can be considered as an ensemble
or collection comprised of functions of time. For this
ensemble, there exist probability distribution functions,
although it may be difficult to compute many of these
probabilities. The probability that in the set of functions
[x(tﬂ that the variable X; = x(t;) has a value equal to or

less than x) at time t] is expressed as
and is called the first probability distribution function.

It has the properties that
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Fi( -w,t9) =0 o (11)
Fl( +°o,tl) =1 (12)
A probability density function is alco defined as

f] (Xl) tl) = aFl(Xl, tl)
o 5 (13)

if Fi(xq, tl) is differentiable. The probability density
function is the probability that x(tl) is greater than xj,

- and less than or equal to x3 + dxj, or

The probability densit§ has the property of

b .
_L £1(x1,51) dx; = F (b, ty) - Fy(a,t;) (15)
and similarly,
@ 0

' The n-th moment of set [x(t)] is

. L
x(t)F =fw x" f(x,t)dx = E [x(t)n] ©(17)

E)[x(t)n] is the mean value, or expectation over all functions

of the set [x(t)]. The first moment, x(t), is the mean value

or expectation of x(t) as

00
X (%) =.l' x £ (x,t)dx (18)
o ) ‘
The second moment is the mean square value
' )
2 = 2 '
x“(t) L x“f(x,t)dx (19)

and is the variance, if the mean value is zero.
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A second probability distribution ranction may also
be used in the description of the random process. This
function is a joint probability for two random variables,
say X7 = x(ty) and Xy = x(t,), where ty and t, are arbitrary
. fixed values of t, as

FZ(Xl’tl:XZ’tZ) = PI'(X:L: Xl:X2 = X2)

= - . -
Pr‘(x(tl) = xg8 x(tz) = x2) (20)
A corresponding probability density function is
. 2
f2(xl’tl:x2’t2) = a F2(Xl‘tl:){2,t2) (21)
90Xy 332

when this derivative exists. The joint distribution
”

function has properties that in pairs of variables (xj,t7)

and (x,, t

21 ol

F2(x2,t2:x'l,tl) = Fz(xl.,tl:xQ,tZ) " (22)
and also that
Folx,tq8 +%,t5) = Fylxy,69) - (23)

The general moments may now be defined as

B Ecl tl) X2 t2]

f f xl x2 f (Xl’ 11X, b5 )dx sdxq (2u)~

The function Q41 will be of special interest and is defined -

ik .

as the correlation function., It is ‘usually given the symbol
xx(tl’tZ) for the ensemble average of the random process

(tj)J and from Equation (24) is



qb:xx(tl’tZ) - X (t1) x(t 2]

f f x %55 Xl’ 1:%5, 2) dx, dxq (25)

Likewise, a "cross-~correlation" function between two random

processes, x(t) and y( t) may. be defined as

¢xy(tl’t2) - (tZ)J

(x, tl y,tg is the most elementary joint

X,¥)

where fll(

‘probability density function between x(t) and y(t).
Correlation functions have the property that for random
functions where the time difference (tp - tj) is large the
correlation function of x(t), or "autocdrrelation," beécmes

@, (65,87) = E Ec(tl) x(t,)] = E Ec(tl):l E Ec(tzzl (27)
because the two become statistically independent. If the |
mean values are zero, then the correlation function becomes
zero. Cross correlations have this identical property.

In a manner similar to the‘joint, or second,

probability distribution function, third and higher order
| distribution functions may be defiﬁed. Obviously, as the
higher order distributions are known, more is known about
the statistical characteristics of the random process. For
the case where two or more different random processes are
considered together, joint probability distribution of a
‘higher arbitrary order may also be considered.

Stationary Random Processes. In many practical

situations, the statistical characteristics do not change
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with time. If this criteria is met, the random process is
'said to be "stationary."™ There are a number of important
properties of such stationary processes. The mean, or
expected, value does not change under a translation in the
time axis, or ‘
E Ec(t] =E |x(t + Tz| (28)
The joint probability distribution functions then depend
only upon time differences in the events specified, as
Fo(Xy,89, X5,t5) = Fplxy,0: X5,t5-t7) (29)
and, similarly, this relation holds for the higher order
joint distributions of a stationary random process. For
corfelation functions, the stationary property allows
Blt1,t) =P (0,85-t7) =P (to-tq) =P _(T)  (30)
when t, -t,=T,

Ergodic Property. "For a stationary random process,

an assumption is frequently made.that averages made over an
ensemble of functions aré equivalent to the timé averages of
one representative function of the ensemble. This condition
is known as the "ergodic" property. When this propert& is

valid, some valuable relationships can be made as in the

following. .
0 ' T .
E Ec(tﬂ =I X fl(x,t) dx = lim ___1_.] x(t +T)dT (31)
- T>o 2T JoT | »
[* o] N T
E [xz(t] =[ x f(x,t) dx = lim _1 x2(t + T)dT
. 00 T3 2T J.T
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T
E [x(t)x(t +Tﬂ = (1) = Lin 1 i x(t)x(t +T)dt( |
33

Correlation Functions. The autocorrelation function,

bex(T), of an ergodic random process as defined in Equation
(33) has some interesting and useful properties. When the
delay time, T , is gzero, _
' _ 2

®..(0) = XET (34)
the correlation function is the mean-square value. This

value also has the pl"Opel"ty thatl
z : = ¢ T

The autocorrelation function is an even function and when
it has a sharp peak at the origin the view may be taken that
x(t) is not correlated with itself well at the tiﬁe, t +7T,
The converse may be visualized also.

The cross-correlation function between two ergodic
random processes can be expressed as

o . T
¢xy(T) = lim 1 f x

1 (t) y(t +T)dt o (36)
T 2T -T .

and is not normally an even function. From this equation it

can be seen also that _
Py (T) = qbyx(-T) (37)

Power Spectral Density. It is often useful to

. treat signals in the frequency domain by means of a Fourier
analysis. For periodic-signals a discrete set of coefficients
<representing harmonic amplitudes in a Fourier series can be

obtained. For non-~periodic (and non-stochastic) signals, a
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continuous spectrum representation may be found if the
Fourier transform exists.

Fourier analysis can also be usefully applied to
stationary random processes. For this purpose the term
power spectral density is convenient. Let us consider the
random function x(t) to be represented by

xp(t) = x(t) . for =T <t =T (38)

=0 elsewhere
and let us define L4
AT(:») =j:

Wiﬁh this notation, we can define the power spectral
density, S{as %), of the function x(t) to be
. A(w>]2

Stw,x) = lim. | T'*" (40)

: ' T->» [ 2T
‘Now an expected value of the above relation can be' found
for the case when x(t) is a stationary random process. We
find the result that the power spectral density of a
stationary random process, written as §Xx(w), is related to

the autocorrelation function as its Fourier transform, or
= il :
5@ I qux aT (41)

m) is

Because the autocorrelation function is even, §xx(

real and can also be expressed as

- 2f G, (T) cos «FaT o (42)
o ’ i
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From Equation (40), it can be seen that éxx(“) is also
non-negative.
A cross-power spectral density, S(w,X,y), between
two random processes, x(t) and y(t), can be derived in
the same manner. When both x(t) and y(t) are stationary,

their cross-power spectral density can be expressed as

S(wyX,¥) =§xy(w) =f ¢Xyl(ﬂr)e-ijdT' (43)

Because the cross-correlation is normally not even, the

cross-power spectral density contains real and imaginary

parts.



CHAPTER III
THEORETICAL APPLICATIONS

Now that some fundamental definitions, their
pfoperties, and relationships of statistical communication
theory have been‘reviewed, we can investigate methods of
anaiysis involving these functions. The interest in this

analysis will be concerning applications to dynamic systems.

Input and Output Autocorrelations and Spectral Densities

Let us consider a linear system with input x(t) and
output y(t) and investigate the relation between input and

output autocorrelations and their spectral densities. An

-

assumption ic mads f e derivation that the input is a

b
1 %]

a
o]
-

member function of an ergodic random process. Therefore,

the output autocorrelation function is

T
Byy (T) = tn 1 f v (t) v (t +T) dt (44)
. 00 -T .

The output variables can be expressed as

y(t) =_L h(A) x(t'—l) dA » (45)

and

oyl +T) =L hin) x (¢+T-7n)dn - (46)

19
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since h(h) represents a physically realizable system. That

is, h(A) for‘A negative is zero., Then

(1) llm 1 ) x(t- A) dA h(n) x(t+T-n) dndt
¢YV T+ 2T . YT

(47)
By combining the integration, inverting the order’of'

integration and recognizing the correlation function inside

the integrals we find

ffh(A h(n) ¢ (T+ -m) dndA” (48)
=L h(h-[ h(n)@ (T+ -n) dndx

It is found that a double integral relation between input

and output autocorrelations exists. If the above relationship
is transformed by multiplying by éd“frdT'and integrating
‘between * o, the result can be obtained that

éy},m = H(w) + H(-w) . &

I
N
o

— . (49)

where H(w) is the Fourier transform of the impulse response,
h(T). It is apparent that this relationship does not
contain phase information; it has only magnitude information
for the frequency plot. |

Input-Output Crosscorrelation. A relationship of

prime importance, and on which'much of the work herein is
based, is that between the input autocorrelation and input-
output crosscorrelation involving the impulse response. For

a brief derivation, consider the crosscorrelation function
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between the input, x(t), and output, y(t), of a linear
system which has an input, a member function of an ergodic

random process. The crosscorrelatior function is

T
¢xy(T) = lim .l_f x(t) y(t+T) dt ' ' (50)

A convolutidn integral with infinite limits can be substi-

tuted for y(t +T) as

Py () = Lim :ZLTf f x(t+T-A)dAdt (51)

By inverting the order of integration and employing the
- definition of qux it can be seen that the expression

reduces to-.

Py (T) =f h(A) Puy(T-A) d) (52)

o0
Stable, physical systems have the properties that

h(A)
h(A)

where B is some large value, perhaps 10 times the highest

0 for -—ow <\ <O

n

0O for B< A <@

time constant of the system. Therefore, the above may

sometimes be expressed as

' B , ,
By (1) =f B(A) @ (T-A) dA (53)

The impulse response h(Mh) might be solved for by a process
of deconvolution of Equation (53) when the correlation
functions are known.

An equivalent relationship for these "input-output"

statistical variables is in terms of frequency. Through a
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Fourief transformation of.thevabové equation,'éssuming the
system is stable, it can‘be shown that-the power spectral
densities. are relatea b§ . A

§ (w) =.H(w) §XX("°) . . . . (54) -

or

: (w ‘
Hlw) = X '
Tox®) (55)

This relationship is somewhat simpler than the convolution
operation, and the process frequency response can be. found
when the spectral densities are known.

It should be noticed that no spegial restrictions
are placed upon the input variable, x(t); except that it is
to be a member of an ergodic random process. Its auto-
correlation function form or power spectral density form are
arbitrary. It may even contain periodic bomponents as a
constituent of the random variable.

A convenient situation occurs when the input is a
pure "white" noise, or one which contains eqqal power for
all frequencies. The autocorrelation function for guch
noise is an impulse at the origin. The crosscorrelation
thus becomes the system impulse response, by Equation (52),
and the frequency response H(w) becomes proportional to the
cross power spectral density by Equation (54).

Prior to the realization of Equation (52), Weiner
(29) had derivéd a very similar relationship. His problem

concerned the optimum linear (time invariant) filter for
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separating a desired random function from one also containing
a disturbance. The criteria used for an optimum was a least

mean-square type defined to minimize

€2'= 1im 1 f E‘ ]Zdt (56)
T 2T

where fo(t) is the function obtained and fd(t) is the
desired function. By applying a calculus of variations a

criterion for this optimum was derived to be of the form,

B (T) =f KA) @ (r=D) dA for TZO  (57)

o0
This result is called the Weiner-Hopf equation and it

differs from Equation (52) only in the restriction on T above.
There is no requirement of this relationship made for T= 0,
Actually, the condition of Equation (57) is met in Equation
(52)3 therefore, the'weighting function h(A) of Equation (52)
is an optimum (as defined above) linear representation of

ﬁhe system. For the linear, time-invariant system Equation
(52) identically defines the weighting function; for the noﬁ—
linear time-invariant system, the relationship fits a best
linear representation (in a least mean square sense) to the
system.

Multidimensional Systems. In practice many systems

have two or more input variables which affect an observed
"output." This condition is certainly‘true for chemical
processing equipment. Consider as a simple example a
mixing tank which is diluting a solution with a solvent to

some desired concentration. Suppose that the total flow of
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the two streams is held constant and tﬁat.perfect mixing
occurs. Either of two variables might simultaneously cause
the effluent’Concgnt}ation to chénge-——the concentration of
the inlet solution or the ratio of the two inlet flow

rates. Many such examples occur; often they are more complex.
Goodman (8, 9), among others, has shown how the statistical
functions of linear systems may be related using the
convenient properties of linearity. The developments of
these relationships are outlined below.

Two Inputs. Figure 1 shows a system having two
inputs which add together through separate linear responses,
g(t) and h(t), to produce an output y(t). The inputs are
ergodic random variables, x(t) and n(t). The variable n(t)
might be, in some cases, an undesirable but ever-present
noise signal that is interfering. The output can be

written as

y(t) =_[ g('b)n(t—b)db +f h(/\)x(t—/\)d/\ (58)

o0 Q0

—us

x(t) Sl n(e)

Figure 1.
Two Input - Single Output System
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If the equation is shifted in time from (t) to (t +T),
multiplied by x(t) dt, and integrated between -T and +T,

there results

T
f x(t) y(t +T) f f tin(t +T -¢)dedt
-T

f x(t) x(t + T -A) dAds (59)

-T -

After multiplying the equétion by 1 , obtaining the limit
2T

as T—w, and inverting the order of integration the result

“is

T w T
lim ;L__f x(t) y(t+T)dt =f gleg) 1im 1 f x(t)n(t+T~¢c)
T»0 2T J=T _ 00 . Too0 2T

0 T
dtde +f h(A) lim _1__f x(t)x(t+T-A)dAdt (60)
0 Tpo0 2T _ -

Since the variables are of an ergodic random process,

¢xy(T) =f glo) ¢Xn(7—¢r)d<r +f h(/\)¢xx(7-/\)d)\ (61)

o0 00

A similar procedure can produce the relationship

Poy(T) =f gle) P —U)dwf h(A) @, (T-A)dA  (62)

00 . =00

The time responses, g(o) and h(A), could be
obtained by a process of simultaneous -deconvolution when
the correlation functions are known.

It is not uncommon that the noise, n(t) and x(t) are
statistically independent of each other. Under these

circumstances,
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G (T) = D (T) = P _(0) = P () =0lE) * X(T) (63)

and if either n(t) or x(t) have a zero mean value, Equation

(61) and (62) become independent of each other for the

solution for the impulse responses, as

Py (T) f h(A) @, (T-A) dA (64)

Py (T)

f g(A) @, (T-2) dA (65)

For stable systems, Fourier transforms of Equation

1l

(61) and (62) yield

Biplu) = Cla) B (w) + Hlw) 2, (w) (66)
() = Glu) & (w) + ) B (u) (67)

With independent inputs (and if either has a zero mean), the
cross spectral densities are zero, and the above relationships

would simplify to the form for a single input system.

Multiple Inputs, Single Output Linear System

The previous analysis can readily be extended to a
system having, in geﬁeral, n inputs affecting a single
output. With reference toﬁFigure 2 consider a linear system
with inputs, x7(t), xp(t),,, x5(t),,, x{t). In this model
each input, x;(t), has associated with it a unique function
h.

;(t) --the impulse response of the output. Considering

that the inputs are each members of ergodic random processes,
a derivation similar to that for Equations (61) and (62)

yields
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> ¥o(t)

~
xp(t) —> _ Pi(t)
ho(t)
—_—— 2 =
— =T hp(t)
/
x,(t) —
Figure 2

Multiple Inputs - Single Outlet System

ﬂ—;———> y1(t)

—> yo(t)

Y ¢ ¢ ¢

Yn(t).

Figure 3

System Having Multiple Inputs and Outputs
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P

= ¢ll* hl+ ¢12* h2 + _——— ¢ln=:: hl’l

= ¢21|:‘ hl

qgno -

where:

Pa1* by

|
]

(68)

95i0‘= crosscorrelation function and the output yo(t)

o2
1

5
|

between input x;(t)

impulse response of y_(t) from input x

;(t)

1

= auto or cross correlation function between

inputs xi(t) and x.(t)

and the symbol,

J

%, indicates the process of convolution,

The above may alco be expressed in matrix notation as

X =

where:

I = K
1l

e
prd

h

SR URSY
LQ Jie JIo |

i
i

J

a

a

Each of the above is a

The equivalent

(69)

column vector of n components
square matrix of order n
column yebtor of n components
function of a time variable.

information in the frequency domain

can be obtained by a Fourier transformation, assuming that

each transfer relation is stable. There results

where

Y=p.H

(70)
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I=[3i¢

[~
B = .ﬁii
£ [

Either of the column vectors h(t) or H(w) répresent the
dynamics of the multiple input system.

" Multiple Inputs and Outputs. The'multiple input,

multiple output linear system may be treated by a further
extension of the previous analysis. Consider the system

as shown in Figure 3 having m inputs and n outputs. For
each output, say yj(t), there exists some impulse response
hij(t) associated with every input x;(t). Therefore, a
system of m equations identical in form to Equation (68)
exist for every output. A matrix of m x n impulse responses,
or equivalently frequency response functions, can be used

to describe the system.

Chemical Processing Egquipment
Liﬁearity,
The statistical, dynamic relationships considered

in the preceding seqtions have poncernéd systems which
are time-invariant aﬁd linear. Lineérity, as defined
previously, implies that the system respondé to a collection
of .functions in an input just as though the individual
responses were superimposed.

| The dynamics of chemical engineering equipment
inherently seem to defy description as linear systems.

However, in a number of cases a few reasonably simplying
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assumptions will allow derivation of equations that
represent a linear system. The chemical engineering
literature is rapidly growing with such linear dynamic
representations.

Under the classification of "linear," two divisions
may be made --- time—invariant, or stationary, and time-
variant.

Time-Invariant System. A time-invariant system can

be represented by a constant coefficient equation of the
form of Equation (1) as

2 ey -

' at* | (71)
The impulse response of this type of system is a function
of one time variable, the delay T from the occurrence time

of the impulse, such as h(T).

Time-Variant Systems. The linear, time-variant
system can be represented by an equation of the type
:Z a;(t) db
i €Y = 4(t)

! dt _ (72)

where the coefficients may be functions of time. However,"
the coefficients can not be functions of the independent |
variable x(t) and still retain the property of superposition
--as Stewart (27) has shown for a flow-forced chemical
reactor. The impulse response for the system of Equation
(72) is a function of time t and the delay T from the

“occurrence of the impulse, and is written as h(t,T ). The
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- treatment of time variant, linear systems is beyond the

.

scope of this present work.

Lumped and Distributed Parameter Systems. In

addition to the classification of linearity, chemical
process dyhamiés can also be divided into "lumped parameter"
or "distributed parameter" systems. A glance at past and
even present textbooks concerning control of dynamic
physical processes will show attention directed predominantly
to the lumped parameter treatment. In spite of the
complexity of analyzing dynamic systems having distributed
parameters, these systems can possess the property of

linearity.

Lumped Parameter Systems.

Equations (71) and (72) are ordinary differential
equations and, as such, represent lumped parameter systems.
‘Properties of these systems can be iésignated at-various
points or over portions of the systems. Examples of this
type are most common. For mechanical systems these might
describe the mass---spring---dashpot combination. For
electrical circuits they might describe resistance---
inductance~--capacitance combinations. |

Some chemical processes also can be considered as
lumped parameter systems. Generally, these are éhemical
processes for which the assumption of perfect mixing is
quite nearly valid, at least in the frequencies of interest.

The literature shows numerous examples which cannot be
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covered here. Such lumped parameter processes include
continuous stirred tank reactors, finite stage liquid-vapor'
mass trahsfer(operations such as bubble-tray distillation,
absorption, stripping, etc. and finite stage liquid-liquid

operations such as extraction.

Distributed Parameter Systems

Systems whose variables are continuous functions
of two or more iﬁdependent variables, such as position and
time, are classified as having distributed parameters.
Their dynamic descriptions, or mathematical models, are in
the form of partial differential equations. Chemical
processes are predominantly of this type because they
normally involve transfer of heat, mass, or.momentum (or
combinations of these) through the dimensions the equipmeht
and as a function of time. Nevertheless, some distributed
parameter systems can have the property of linearity as
discussed'previously. To illustrate this point, two examples
will be considered.

The equipment shown in Figure 4 is a concentric
pipe heat exchanger in which a hot fluid, for instance, is
‘transfering heat to the outer, cooler fluid. Flow may be
either concurrent or counter-current. An energy bélance
over a differential length of fluid in the inner tube yields

aT Fe 8T Umw d - (S-T)

8% T APy Bx  KPyCpp (73)
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Ve
F ]
t Tl (e
N7A
N A
Figure 4

Concentric Pipe Heat Exchanger Model

and similarly for the shell fluid,

3s =+¥Fs ¥ + Ux d  (T-S)
3¥ TED %  Ailp (74)
where
T = temperature of fluid in tube
S = temperature of fluid in shell
F = mass flow rate
" A = cross sectional area
U = overall heat transfer coefficient (based on 4d)
d = outside diameter of inner tube
P = density
cp = heat capacity
t = time

x = longitudinal distance
subscripts refer to
‘s = shell fluid
t = tube fluid

The coefficient of §§ is negative for concurrent flow and

ot
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conversly for counter-current flow. Assumptions which
permit the use of the above equations for a mathematical
model aré:
(1.) Properties of the fluids are constant with
temperature;
(2.) Thevinner and outer tube wall thermal capacities
are negligible compared to the flowing fluids.
(3.) Plug flow exists in\both the shell and tube.
(L.) The fluid thermal conductivities are infinite.
(5.) No heat is transferred across the outer shell
wall.
Fcr convenience, the constant coefficients above can be

grouped and written as

T = -~k OT + k, (S-T) (75)
5t 1 S5 2

and
dS = + ky 98 + k, (T-5) (76)
ot bop

.Without solving the above equations for the impulse
response, or frequency response, in order to identify its
linearity, rather let us observe some properties of the
equationé themselves. Suppose that the inlet tube fluid
temperature is the only input variable to the system and the
-outlet tube temperature response is observed. For a given
change in inlet tube temperature the fesponse can be called

[?l(t,xZ] x = L, (outlet) as a solution of
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0T7 = .y 3Ty 4 k. (5.-T

2 2T iy 1857y | (77)
S35, _ oS ' '

1=tk °°1 + x, (T,-34)

ST 3 5% L 17~1 (78)

and certain known boundary conditions, and for a different
input the response can be called E@(t,x] x = L, (outlet)

as a solution of

T, _ T, .
3_% -k, ?T% *k, (8,-T,) | ‘79)
%?% = k3 %?% * kh (T2 So) ' (80)

and known boundary conditions. By adding (77) and (79) it

BT | AT Ly g s ) (14T (e
—E T T T E 1*8p) -(Ty? 2{] (81)
and by adding (78) and (80) that

d(Sy *+ 5y) — . A8y +Sy) (T - (8, + S,)

— st~ 3T ST i» [ 1 2](82

The last results show that the system has the property of
superposition and is theréfore linear. Nearly the same
requirements hold for the distributed parameter system to
be linear as for the lumped parameter systems. Note that
if the flow of one éystem, say Ft’ were changed as an inputA
variable, the system would not remain linear.

‘Another example of a distributed parameter system is
diffusion in a flowing conduit, as represented in Figure 5.
. If the inlet concentration of a solution (or mixture) to the

conduit is Ci(t), concentration becomes a function of
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velocit rofile, u(r '
i yp ‘ ’ ( )/radial diffusion

bulk flow direction

—> longitudinal of flow
Y  diffusion

—_—_ e

e o |
-—]

Figure 5

Model for Mass'Transport in a Conduit
distance, radius, and time according to the eauation
D[ + 13c + 3% |- ulr)

er r

O ¥
and the given boundary conditions, where

oc = 3¢
ot DX

C concentration of solute, mass per unit volume
r = radial distance

x = longitudinal distance

t = time
u(r) = velocity profile throughout the radius
D = diffusion coefficient

The assumptions are made that:

(l1.) The diffusion coefficient, D, is equal in the
directions of r and x and it includes-both
molecular and eddy diffusion if the flow is
turbulent.

(2.) The velociﬁy profile u(r) is constant throughout

x and t.
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By the same procedure it can be seen that for two different

inputs, [Ci(tzll and i:Ci(tﬂz the solutions can be

superimposed as

AC7Cy)l o p|FIC4*) g B(CHC,) L F(Cy7Cy)
X R T

.-u(r)b(Cl+CZ)
d% (84)
when all the boundary conditions except Ci(t) remain the
same. Therefore, this distributed barameter system is also

linear.



CHAPTER IV
REVIEW OF PREVIOUS WORK AND STATEMENT OF THE PROBLEM

Problems in Practical Determination

The actual practice of determining system dynamics
by correlation involves several basic difficulties. Some
of these can be realized by observing tne acsumptions and
requirements made in the definitions and the theoretical
relationships of the previous chapter. Reference is made
here chiefly to Equation (52) involving correlation functions
and the impulse response and to Equation (54) or (55) the
equivalent relationship as a function of frequency. Some
difficulties can be listed as follows.

Ergodic Random Inputs. Correlatiop functions are

most conveniently calculated as time averages in practice.
The requirement that the variables are statistically
stationary and also are members of ergodic random processes
may not be satisfied.

" Correlations from Finite Averaging. The time

averaging célculation of correlation functions, as in
Equations (33) and (36), requires as infinite averaging
period in theory. Regardless of the equipment or method

38
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used in practice, only an estimate of the correlation
function, taken from a finite length of record, can be

determined.

Fourier Transform Truncation. The preferred method
of solving the integral equétion, Equation (52), for the
éystem response is in the frequency domain, as in Eqﬁation
(55). By this method the power spectral density estimates
are obtained by transforming the correlation function.
Calculated estimates of the correlation functions may not

be determined out to values of the delay variable, T

e nigh

enough for the functions to disappeér essentially. A
consequence is that such Fourier transform calculations
must be truncated at some finite value. IThis simplification
introduces another error in addition to the error resulting
from the use of estimated correlation functions.
Deconvolution of Equation (52) in the time domain
for the impulse response h(t) leads to divergent and
erroneous results‘When calculated numerically from the
correlation estimates.

Calculations. Difficulties or inaccuracies

encountered in calculations depend largely upon the methods
or eQuipment‘used. However, effect of finite record
lengths and the effect of the maximum delay,Th, used in the
correlation functions are common to all methods of
calculation, With the more accurate calculation évaiiable

through the use of a digital computer, the sampling interval,
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Z&t, must be properly selected. Digital calculation was
used in this study and implementation of other (analog)
methods was considered beyond the scope of this work. An
excellent survey of various correlation computing methods
has been presented by Kaiser and Angell (15).

Input Power Spedtral Density. It is desired that

the input power spectral densities be constant out to the
higher frequencies of interest. Inaccuracies of measure-
ment can be encountered when the input variables, such as
those of a normally operating system, dc not contain
sufficient relative power at some frequencies where the
response 1is desired to be measured. ‘Examples of this kind
may exist where slightly nonlinear systems are under control
but follow a limit cycle in their variations. Under this
'kind of operation, the input power spectral density may

peak greatly éﬁ the control system's "resonant" frequenéy

and have relatively little power at other frequencies.

Previous Investigations

Investigations in determining system dynamics
under the influence of random disturbances Wefe initially
stimulated on the most part by the work of Lee (19) in
1950. As part of this work Lee showed how the‘dynamics of
a linear éystem could be determined from the statistical
properties of its input and output variables. Goodman (8,

9) in 1955 showed in theory the natural extension of the .

method to multidimensional linear systems. He also
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showed that by this method a non-linear system would be
fitted by a linear representation under a minimum least-
squares criterion. Using random inputs, Goodman studied
a distillation column transfer relationship between the
reflux flow rate and the overhead vapor stream temperature.
His results gave only qualitative agreement with the
standard sinusoidal festing method. Also in 1955, Margolis
(22) investigated a laboratory heat exchanger and Chang (3)
investigated a flow contfol process to determine system
dynamics using random inputs. Their recults were approximate
due to relatively short record "lengths.

Some books have also been puﬁlished concerning the
broader field of random processes in automatic control.
Solodovnikov's book (26), published in 1952 in Russia, was
one of the first comprehensive treatments. Lanning and
Battin (18), in 1956, presented an excellent text on the
subject. Davenport.and Root;s text (5) of 1958 was
similar, |

“ Contributions in the chemical engineering literature
on determining system dynamics from random. disturbances have
been scarce until recently. Aris and Amundson (1), in 1958,
considered time responses éf a chemical reactor from
correlation functions involving input and output variables.
This work was a theoretical study of a 1inearized mathematical
model disturbed by random noise having assumed statistical

properties. Using an analog computer to simulate first and
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" second order system behavior and digital computation of

the statistical functions, Gore (11l), in 1959, determined
frequency response by this method. His accuracy was
limited by record lengths. Homan and Tierney (12), in
1960, simulated the dynamic behavior of a chemical reactor
to a random ihput by a digital computer. They showed the
effects of some time parameters used in the -determination
of the impulse response and real and imaginary parts of the

frequency response.

Scope of this Investigation

Experimental determinations of system dynamids by
statistical measurements are necessarily'approximate.
Experimenters in this field are troubled with the question
of accuracy. In actual determinations of this kind it is
desirabie to know beforehand the requirements of the
‘measurements and calculations to produce a giveﬁ degree of
accuracy. A'knoﬁledge‘of the more advantageous numerical
techniques also becomes important. This study was under-
taken to qualify some of these requirements. | ‘

Specific objectives of this study are the following:

(1.) To carry out determinations of frequency response

on an experimental apparatus uﬁder simulated
operating conditions.

(2.) To evaluate the effect of and to establish

reQuirements on time parameters in the

recordings and calculations of the above.



| 43
(3.) To evaluate accuracy of determinations using
this method, especially as a function of the
time parameters above.
(4L.) To investigate some numerical techniques needed

to improve the calculations.



CHAPTER V
EXPERIMENTAL APPARATUS

Experimental work of this study was for the purpose
of simulating the dynamic 5peration of a continuous stirred
tank reactor. The aim was to simulate operation of a
reactor representative of an industrial type where a
liquid phase exothermic reaction would be carried out. The
dynamic or transfer relationship of interest for this case
~is usually that between the coolant flow_rate as the input
and reactor temperature as a response. The reactor and its
auxiliary equipment used were designed to measure this
reiationship. o

No actual chemical reaction was carried out in the
reactor; a heat exchange process waé made between a hot.
inlet fluid to the reactor and the fluid passing through
the coolant coils. Both fluids used were water. This
arrangement served two purposes. It kept the transfer
relationship simplified and avoided the expense involved
with a continuous flow of reactants.

A functional afrangement df‘equiphent is shown in
‘Figure 6. Hot water entered the reactor at a constant flow

LL
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rate. Temperature changes were caused by cooling water flow
rate through the reactor coils. The exit reactor fluid
recycled back to a feed dfum where constant temperatufe was
maintained. The variables, reactor temperature and c¢ lant
flow rate, were sensed and recorded as shown.

Two different types of operation were used. The
first, employing only one inpdt variable, was made keeping
the reactor inlet fluid at a constant temperature. In the
second, employing two simultaneous disturbances, the inlet
temperature was also varied. This disturbance was accom-
plished by pulsing steam into the jacket of a small concentric

pipe heat exchanger around a section of a inlet pipe.

Reactor
The reactor used in these tests was one for which

Fanning (6) has investigated dynémic relationships. A
thorough description of the reactor can be found in his
thesis. The reactor was basically a tank 12-inches in
diameter and l5-inches in height. Throughout the height
of the reactor, four vertical baffles extended one inch
- from the inner wall and were set 90 degrees apart. The
walls were #1L gauge type 316 stainléss steel. Thermal
‘insqlation was,prbvided by a one inch thick covering of glass
wool gheéthed with aluminum foil.

. Operation was carried on at atmospheric pressure.
- The reactor was open at the top buﬁ used with a formedv

wooden cover over the top to reduce heat and evaporation
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losses. Flow entered into the reactor*in the bottom at the
center and left by a 3/4-inch hole in the side wall near
the top. The exit fluid was syphdne& through a pipe to an
accumulator approximately three feet below the reactor.
By maintaining a constant flow through the_feactor a
constant volume was held in the reactor.

Cooling coils inside the reactor were made from
5/8-inch 0.D. copper tubing. Heat exchange area was 1.8L
square feet produced by 7.5 turns wound on an approximate
5-inch diameter.

Stirring action was provided by a Model CV-4
"ILightnin" portable mixer with a turbine type impellor.
The mixer motor was a 1/4 H.P. variable speed brush
shifting type. The‘h-inch diameter turbine was run at 360
R.P.M. for all runs.

Fluid entering the reactor was pumped from a feed
drum‘by'a centrifugal pump and controlled manually with a
3/8-inch needle values in the line. The pump was a Gould
10 G.P.M. pump (rated at 20 feet of water differential).
A Fischef—Pdrﬁér series.l7OO "Flowrator" was used to |
indicate flow rate. ALl runs were made at 3.84 G.P.M.
Some miﬁutq flow rate vériations were encountered, but the
réteidid'hot drift significantly during any run.

Afper leaving the reactor, the exit fluid was
collected, by siphbning, in a 55 gallon overflow accumulator

barrel. A 10 G.P.M. Deming centrifugal pump (rated at 20
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feet of water differential) was used to remove this fluid
from the barrel. Since the recirculation rate was well
below 10 G.P.M., this barrel remained nearly empty during

a rrune.

Temperature-Controlled Feed Tank

Fluid recirculated from the overflow accumulator
tank was mixed in a temperature controlled feed'druﬁ before
reentering the reactor. About 30 gallons of fluid were
kept in this 55 gallon open—tdp barrel. The fluid was
kept well stirred by the use of a 1/4 H.P. portable mixer
clamped on the Eop edge of the barrel. The mixer shaft
transmitted its power to the fluid by two, 3-inch diameter
‘propellors.

A temperatﬁre control system was used to maintain
temperature at approximately lSOOF. Temperature was sensed
in a pipe tee immediately after leaving the feed drum by
means of a bare copper-constantan thermocouple. Indicating,
recording, and controlling actions of this temperature were
carried out by means of a Model 152 Minneapolis-Honeywell
Brown "Electronik" Potentiometer. Pneumatic controls were
an integral part of the instfument. Used with thg type T
thermocouple, the range was 50°F to 250°F. Both proportional
and reset action were used. The 3-15 psi output signal
operated a Research Controls valve Model 75B to produce the
required steam flow through the coils immersed in the tank.

The control valve had a linear trim, a C, equal to 1.25,
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and air to close action. Steam supply pressure was
regulated at approximately 60 psig. and a steam trap was
employed at the discharge of the steam coils. The 5/8-inch
coppér tubing coils provided approximately 2.8 square feet
of outside surface. After final adjustments of proportional
band and rest, temperatures could be maintained within a

range of 1°F at a desired temperature level.

Cooling Water Flow Controlé

Cooling water {iow rate was the main variable used
to cause reactor temperature variations during operation.
For the statistical input, it was desired to have a random
square wave, which necessitated a means of holding two
drift-free levels of flow and swi :hing between them
rapidly. It was accomplished by providing two parallel
paths for flow. In one, a 3/8-inch needle valve was used
and in the other path, a 1/4-inch needle valve was used in
series with an electric solenoid val&e, a Skinner Model
IC-2 ndfmally closed valve which uses a 110 volt AC coil.
This arrangement allowed rapid flow changes between 0.8
G.P.M. and 1.2 G.P.M., although'some rounding of the leading
edges of the square wave'waé produced. To assure a constant
upsteam pressure, and thus to practically eliminate the flow
rate "drifting," the val&e manifold was fed from a standpipe
29 feet above the exip of ﬁhe reactor coils. With the ébove
‘aparatﬁs, either of two coolant flow rates could be selected

by means of a switch. Steady state reactor temperatures
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produced by the two flow rates were 2.9°F in difference.
Figure 7 shows a sample of the recording for this single

input case.

Reactor Inlet Fluid Heat' Exchanger

To produce the second input variable, reactor inlet
temperature, the fluid entering was passed through the
center tube of a concentric pipe heat exchanger. A thin-
walled 5/8—inch outside diameter brass tube was used as the
inner pipe and the outer jacket was constructed of a 3-inch
diameter steel pipe. The jacket length was 1l2-inches and
thus an effective area for heat exchange was 47.l-square
inches. Saturated steam regulated at 60 lb/quin} gage was
allowed to flow into the jacket volume by means of a
solenoid valve---the same type as used in the water line.
Switching of the valve on and off did not produce a square
wa&e response in reactor inlet temperature becaqse of thé
thermal cepacity of the inner’tube wall.and flowing water.
The shape of response to random éwitching can be seen in
Figure 8. The heat flux difference imported by this
exéhanger was enough to prodﬁce steédy state reactor

temperature differences of 1.8°F.

Sensing and Recording the Operating: Data

Reactor Temperature. In order to provide the
reactor temperature measurement with good sensitivity and a

wide bandwidth in frequency response, a pile of five bar
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copper--constantan thermocouples were used. The thermo-
couples were mounted on a probe around circle of an
approximate li-inch diameter. The probe was extended into
the reactor so that the thermocouple junctions were approxi-
mately 2%-inches from the side exit "hole, and approximately
2%-inches below the top surface of fluid. Thermocouple
ledds were carried out for approximately 3-ft. to an ice
bath used as the cold junction for all five thefmocoupleg.
From the ice bath, the potential developed by the five
couples in series was carried by a tWo (copper) conductor
shielded cable to an amplifier. A potential of approximatei§
110 microvolts per degree Fahrenheit could be obtained by
this arrangement.

In order to record a suitable temperature range,
the thermocouple potential was amplified using a Sanborn
Model 350-1500 Low-Level D.C. Preamplifier with a Model
'350-2 Plug—in‘Uﬁit. Tﬁis instrument allowed a continuously
adjuétable gain factor up to S0,000 and an input suppression
of + 100 millivolts. Its input impedance was 100,000 ohms |
and frequency response was O to 100 cycles per second.

In the case of two input functions only, between
the preamplifier and amplifier of the recorder, the
thermocoﬁple signal was passed through a two stage R.C.
filter having break frequencies at 82.2 and 541, radians per
minute. Its purpose was to filter out uﬁnecessary noise at

frequencies far beyond the bandpass of the chemical reactor
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being measured. The filter thus served to reduce aliasing
while not attenuating greatly at those frequencies of
interest.

Recordings were made on a Sanborn Model 60-1300
Two Channel:Recorder. ‘The maximum sensitivity available
on this recorder and its amplifiers was 0.025 volts for a
full scale deflection of 5 centimeters. This sensitivity
made it possible for the overall system to record a temper-
ature range as low as .00455°F full scale. For the work |
herein a range of either 3,2° or 5.90F full scale was used.
The zero level of this range céuld be changed widely by a
potentiometer sétting the millivolts of supﬁréésibn. The
recorder bandwidth was O to 45 cycles per second so that no
"useful" frequencies were attenuated.

Reactor Inlet Temperature. The reactor inlet

temperature was sensed and recorded in a duplicate system.
At approximately two feet before entering the reactof, fivé
bare copper-constantan thermocouples sensed the temperaﬁure
of the flowing fluid. The sensing location was in a z-inch
pipe tee where the flow direction was changedeO degrees.
The thermocouples were led through and held in place by a
cylindrical Teflon plug fitted snugly in a %—inch Crawford
_pipe—to—tubing adépter. Gain settings on the préamplifier
and récorder_amplifier were made to record a 5°F range,éﬁd'

the recorder zero level could be varied to any desired

temperature. A typical record of inlet temperature is
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shown as a part of Figure 8.

Coolant Flow Rate. Measurement of the coolant flow
rate after leaving the reactor coils was provided by a
Waugh Model F1-6S turbine type flow pickup. The signal
from this device was carried by a shielded two conductor
cable to a control; panel-mounted conversion unit. This
unit was a Waugh Model FR-111 Pulse Rate Cpnverter which
served to convert pulse frequeneieé to an énalog voltage
proportional to flow. These two devices combined to give a
calibration of 0.3 to 2.0 G.P.M. on a linear scale with less
than 0.5 per cent error. The analog voltage, O to 50
millivolts, from the pulse rate converter could be recorded
on the two channel recorder. A typical recording is shown
in Figure 7.

For the runs in which two inputs were used, it was
desired to record three variables, inlet reactor temperature,
inside reactor temperature, and coolant flow rate. Because
the coolant flow rate assumed only two different values,
or was binary type information, another arrangement was made
to record it. In place of sénsing the flow.and recording it,
information was put on the recording by the marker pen. A
relay energized through the coolant sqlenoid switch was used
to actuate the marker peﬁ; When the high flow occured, the
marker pen then gave an envelope of 60 cycle variations, and
when low flow occufred, the mérker ?en was still. Three
channels of information could thus be recorded as shown in

Figure 8.



CHAPTER VI
INVESTIGATIONS

Transfer Relationship

Experimental data of these investigationslconsisted
of.operating records of the equipment as described in the
previous chapter. Two different recordings were mads for
the determination of the trénsfer relationship between
cooling water flow rate and reactor temperature. Each
recording was made for a period of approximately 3 hours
and 10 minutes. In the first, only one random disturbance-
cooling water flow rate was imposed upon the reactor. All
other inpit variables were held essentially constant. In
the second recording, random distufbances were introduced
by both cooling water flow rate and temperature of the

reactor inlet fluid.

Data Generation and Processing

Random Input Functions. Coolant flow rate disturb-

ances were introduced into the experiméntal equipment in the
form of a random square wave. This type of random input was
a rather simple matter to generate. It was generated by

. selecting one of two predetermined flow rates at a fixed

56
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interval of time, 10 seconds. The random selection of either
flow rate was made by the use of a table of random digits

(23) in which each digit appears with equal probability.

solenoid valve, was determined from sampling an .odd or
even digit at the beginning of each time interval. There-
fore, during any future interval of time, a high or low
flow rate could occur with'qual,prObability.

Input Autocorrelation Function. The autocorrelation'

function of this input function has the simple form of an

isosceles triangle centered at the origin as

x* (t) [1- 1Tl for 0= ITI =7
.|

BT

S

=0 for |T| =T (85)
. where Tg is the table sampling, or switching, period. A
derivation of this relationship is pfesented-in Appendix A.
With reference to Figure 9, it can be seen that this
autocorrelation function approaches an impulse function as

Ty approaches zero.

IeTg«Tgi
Figure 9

Autocorrelation of Input Random Square Ware
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This property becomes convenient, because a crosscorrelation,
bez, between this input x(t) and the output z(t) then
approaches an impulse response function.
The power spectral density of this random square
wave‘is, of course, the Fourier transform of Equation (85).

The result becomes

wT\?

wTg
2 (86)

(See Appendix A.) For small values of the parameter Tg this
function is broad in frequency and the converse holds. A
necessity of this statistical method of measuring a system
frequency response is that the input function contains
enough power at the frequencies of interest so that a
response can be measured at those frequencies. This
requirement holds similarly for all types of frequency
»respdnse measurements, including pulse testing. It is
therefore quite helpful to know a priori the'approximate
frequency response of the system or the frequency range of
interest.'

Selection of Tg. A mathematical model of the

experimental system -was first examined to approximate its
‘ frequency response.T“A lumped parameter system and linear
constant coeffigient equations. were assumed to apply. ,Sée
Appendix B for the defivation. A comparison of the model's

frequency response and the input power spectral density
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(from Equation (86) for T, = 10 seconds was made. The

power sectral density of this random square wave does

extend beyond the system frequency response but it has a
slight disadvantage in that it has a repeating zero vaiue

at #Tg = nm, where n = 1,2,5, etc. Selection of a 10

second basic switching period makes the first zero occur at B
37.7 radians where the system response is exéected to be

attenuated more than 2 decades. The.value Tg = 10 seconds

was thus suitable for the experimental work.

Preparation of Recorded Data for Digital Computation

Selection of Sampling Interval, At. Digital computer

calculations made on the-continuously recorded data from the
experiméntél equipment must ﬁecessarily involve discrete
values taken at some definite sampling interval. To
minimize the computétion, large intervals are desired; but
to recover the higher frequency-information of the function,
the inﬁerval must be less ?han one-half of the period of the
highest frequencf&uf, to be recovered, according to the
Nyquist sampling théorem. Any information above the
frequeﬁcy'wf is folded back and adaed to the true épectrum
as the resulting spectrum of the discfete function. Thus,
the sampling interval must be chosen to give a folding
frequency that will not fold back, or cause aliasing, into
the significant range of the frequency response.

The sampling interval used was 1l.93 seconds

corresponding to one millimeter of record length. This
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interval defines the folding frequency to be 97.5 radians

per minute.

This frequency is well above the significant

response of the equipment.

Data Transfer to Digital Computer. The process of

_transferring recorded data to the digital computer was

performed almost entirely by hand. An outline of this

procedure was as follows:

(a) Each sampled point of the system variables was

read (by eye) to two,digits from the 50
division, 5 centimeter wide recoraings. Values
for the coolant flow rate were read as either
plus or minus one for the high and low flow
rates respectively.

The series of numbers were punched on IBM cards.
The cards'were read into the computer and
converted to floating_poinﬁ decimal numbers.
The average value for the entire record was
computed and suhtracted from each number.
Coolant fiow rate values were kept as plus

Or minus one.

These series of numbers were stored for’
computations. In'the first phase of the work,
for one input variable, storage was in the form
of IBM cards. In the second part, storage Was

made on magnetic tape of an IBM 727 unit.

Because the variables were read from a recording, it
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was convenient to use only the recorder units to specify
their levels. In so doing, a transformation of the variables
was made as the following:

For the one input case,

ry = +1 for W(iAt) = 1.0 G.P.M.
-1 for w(ilt) - 0.6 G.P.M. (87)
and o | |
ci = aqe E2<1At) - (1) LOW] L (s8)

where Tp(iAt) is the reactor temperature (°F) at time i At,

(T2) 10w 1s the steady state reactor temperature at the high
- 10 scale units - 3.12 units

coolant flow rate and a

3.2 °F °p
For the two input case,
x; = +1 for W(i At) = 1.0 G.P.M. (89)
= -1 for w(i At) = 0.6 G.P.M.
yi = ap ° Efl(iAt)' - (T1) AVG] (90)

where T (j;At) is the reactor inlet temperature (°F) at time
i At’.(Tl)LOW is the reactor inlet temperature when no heat

is added to the inlet exchanger, and

a, = 10 scaie units _ 1.695 uglts
5.97F ' F
and
2; = ag E‘z(iAt) - (T2)Lov\z| (91)
10 scale units units

where ag = 5. 9UF = 1,695 —op
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Computations

The computations of this work have been programmed
and run on an IBM type 650 digital computer at the University
of Oklahoma Computer Laboratory. The latter part of this
work dnvolving two input functions was run on this computer
“when augmented with immediate access storage, a #305 disk
storage file and two #727 magnetic tape units.,

Correlation Estimates. The correlation function

estimates were calculated from the discrete data using an

N-T N-T.
%(T) = 1 zﬂ r.C. . ~| 1 za r |l 1 ﬁ c.
qbrc TR i 71T N = i} (92)

i=1 | m i=1 m i=T+1

expression of the form

~——

Equation (92) defines a cross-correlation estimate and an
autocorrelation estimate is similar. The factors on the
far right were used to subtract any bias of the function
that might occur when fractioné.of the total record were
used.

A normalized correlation estiméte could also be

computed as

gbrc #(T )

= (T =
Preo*(T) — - (93)
1. r.c, - 1 :E r. || 1 S;- C.
N-Tm 12 N-’T'm 1 N"Tm tkrl_T 1
i=1 i=1 i=t+l

Time required for computations were approximately

proportional to the product -- (N-T_) (T, ). For an
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autocorrelation function the time required was approximately
0.02 (N—ZM)(ZM) seconds. For a crosscorrelation function
the time was approximately U.03 (N-2y) (2y) seconds.

Fourier Transforms. The power spectral density

estimates were obtained by calculating Fourier transforms
" of the correlation fuﬁction estiﬁa£es. The computef'
prbgram for this calculation considéred the correlation
function, or any time;function to be.tranéformed, to'be_
represented by straight line segments between discrete
values. A constant increment length between discrete
values was used. Sums'bf terms resulting from analytical

integration over each increment were added to yield the

transform. The expression programmed was

- n+l .
= I:l .l W, (t) I:o(n +ﬂn(t-nAtE] e" W ¢ (94)
n&

where, if f(nAt) is the function to be transformed,
 Xp = £(nAt)
A = f((nt1)At - £nht)

and
[1—(3)2]1‘ o (95)
T
This procedure avoids the inaccuracies at high
| frequencies whlch result when the product finlt) 'janAt is

formed and integrated by a trape201dal or Slmpson's rule
method.
Two types of errors can occur in calculating

Fourier transforms by this method, assuming that there is
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no error in the discrete values given the program. One is
the representation of the time function to be transformed,
f( At), by straight line segments between the discrete
values. Of course, if the function is a straight line, this
type érrér does not occur. Otherwise for a given time
function, this error in transforming varies with interval
length. However, this error is not serious as can be seen
.from some actual results bresented in Appendix C. The.
second type of error is due to using a truncated repre-
sentation of the time function. Only if the time function
exists beyond the time limit of integration does this error
occur. Fortunately, the correlation functibns of random
functions diminish for high values of it's time argument
SO that this error involved in the power spectral density is
not serious. To compensate for this truncation effect and
yet to preserve the frequency information of the time
‘function, a weighting function Wy (t) has been incorporated
into the above program. This function, as defined by
Equation (95), has been devised by Ross (24) and is discussed

in Appendix-C.



CHAPTER VII
DISCUSSION OF RESULTS

Reactor Dynamics

Prior to the correlation determinations, frequency
response of the reactor was obtained by two other approaches
in order to establish a basis for comparing accuracy of the
subsequent correlation results. The first determination
was.a‘theoretical analysis as bresented.in'Appendix B, and
the other was by an experimental, or siunsoidal, testing.

A comparison of these results is shown in Figures 10 and 11.

The theoretical normalized frequency response, as
determined from the work of Appendix B, is a lincar, second
order systeﬁ determined to be

TZ(jw) = N 9.413 _

Wo(jw)  (9.413-4F) + j13.082w ) (96)

where the frequehcy, jw, is in radians per minute. . A'good
agreement exists between these results and sinusoidal
testing, although it is not:within the limits of gxperimental
accuracy. In general, experimental points lie to the right
of the theoretical model indicating thatltime constants

smaller than the theoretical values are in effect. This
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deviation is more pronounced in the phase lag diagram of
Figure 1l. These differences are believed to reveal an
interesting pbint in the dynamic behavior of the reactor
and are discussed below.

The second order theoretical model, neglecting
thermal capacitances of the cooling coil walls ahd reactor
walls, has been verified by Fanning's earlier work (6) to
be the more exact model. This- theoretical model assumes
perfect stirring within the reactor and constant physical
parameters. These parameters were carefully checked for
accuracy and the effect of the overall heat transfer
coefficient, U, varying with coolant {low rate was found
not to change the normalized frequency response more than
the width of the line shown in Figure 10 and 1l. The
discrepancy is therefore believed”to lie in the assumption
of perfect mixing.

In fact, the flow patterns‘of the reactor support
this viewpoint. The impeller, near the bottom of the
reactor, generated fluid flow outward past the lower portion
of the coil where most of the heat exchange took place,
upward around the outside of the coils, and downward
through the center ef the reactor. The sensing thermocouples
were in the path of this fluid in the outside at the top.
Thus, eomething of a M"short circuit" probably existed which
could account for an appreciable phase lead and decrease in

attenuation.
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Although these two determinations do not agree
perfectly, continuous values of the theoretical frequency
}ésponse serve as a.gobd reference and are used in later

comparisons with the "correlation" results.

Statistical Determinations for é Singié Input

The dynamic behavior of the experimental equipment
was first investigated by using records of randomly varying
input-outputs when only one forcing function was imposed.
The relationship of Equation (55) was used to define the
system fréquency response. This relationship involves the
input and cross-power spectral densities. Calculations
were made as described in the previous chapter to determine
first the auto- and cross-correlation estimates and then
the power spectral density estimates by Fourier transfor-
mation. To help evaluate this experimental technique
determinations were made for various record lengths and
degrees of‘weighting functions. |

Correlation Estimates. Both auto- and cross-

correlation function estimates were calculated for the

following record lengths:

N -2y = 750
N - & = 1500
N - 7g = 2250
N - 2y = 3000
N - 2Zp = 3750
N - Zm = 4500
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5250
5592

The value, N - ¢, is the number of products averaged to

N - Zn
N -2,

il

determine the correlation estimate. The maximum value of
7, denoted as 27, which was used in the calculations was
180 increments of the basic sampling pericd, 1.93 seconds.
Or, the maximum delay was for a time of approximately 5.8
minutes., ince the largest time constant of the experimental
equipment waé 1.31 minutes, this delay corresponded to
approximately 4.4 time constants, for which any response
would settle to approkimately one per cent of its initial
value.

Correlation estimates for values of N - z., = 750,
3000, and 5592 are shown in Figures 12, 13, and 14
respectively. Estimates for the other record lengths were
guite similar. (Results of all correlation function
estimates are on file in digitallform at the School of
Chemical Engineering, University of Oklahoma.) Cross-
correlation function estimates are normalized as expressed
by Equation (93). As related by Equation (53), the cross-
correlation function is the response to the input, the
autocorrelation function. The expected value of the auto-
cofrelation function estimate is an isosceles triangle at
the origin as pictured in Figuré 9 previously. The
correlation functions appear to apprqach their expected

values as the record length increases. Otherwise, a
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definite vgriance, or "noise," seems to exist. Variance
of the correlation estimate about its expected value is
treated more fully in Appendix D. .

An increase of coolant flow caused a decrease in
reactor temperature; therefore, the cross-correlation
estimate Qbrc*(Tﬁ was negative as a response to the auto-
correlation function which was a positive, even pulse at the
origin. The Figures 12 to 14 show the cross-correlation
estimates normalized with respect to their values at % = O;
the peak values are therefore positive. The maximum value
of cross-correlation occurred at a delay of approximately
7 sampling increments, or 13.5 seconds, after the origin of
the input. Cross-correlation estimates for 2 negative were
- calculated only out to Z =-6 increments since the expected
.values were Zero for Z=-5 increments. Negative arguments
for the autocorrelations were not calculated either, since
the exﬁected values were known to be even functions.

Spectral Estimates. The input power spectral

density estimates are shown in Figure 15 as obtainedvfrom
750, 3000, and 5592 products. _Calculations in the form of
Fourier transformations were made on each of the auto-
correlation estimates and are listed in Table 1. The
expected value of the input spectrum, derived in Appendix A,
is also listed for comparison. In each of these calculations
‘the Fourier transform weighting function for k = 2 was used;

therefore these estimates were smoothed considerably over
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TABIE 1

INPUT POWER SPECTRAL DENSITY ESTIMATES
(FOR WEIGHTING FUNCTION OF k = 2

e
——— —e

N -2, =

Frequency
Radians . ‘
Per Minute 750 1500 2250 3000 3750 4500 5250 5592 Expected
' Value
0.03 13.14 13.14 13.88 12.72 11,03 10.57 9.95 9.12 10.0
0.06 13.09 12.82 13.74 12.44 11.07 10.42 9.66 9.22 10.0
0.12 12.86 12.72 13.52 12.30 10.98 10.14 9.49 9,025 10.0 .
0.24 12.21 12.34 13.20 11.95 10.76 9.94 9.31 8.95 10.0
0.48 10.22 11.38 12.36 10.92 10.19 9.43 g8.81 8.72 10.0 >
0.96 6.66 $.76 11.99 9.66 9.73 8.89 8446 8.70 9.99
1.92 5.19 6.57 7 .29 9.50 9.72 8.16 8..40 8.09 9.92
3.84 6.30 7.28 7.70 9.35 9.4L2 9.94 9.67 9.85 - 9.66
7.68 12.54 9.28 9.59 8.80 9.00 9.44 8.68 8.58 8.70
15.36 L7k 3.86 3.75 Lo3k 5.19 5.03 5.28 5.62 5.60
30.72 0.758. 0.532 0.623 0.620 0.549 0.512 0.466 0.469 0.460
61.44 0.257 0.200 0.259 0.258 0.251 D.248  0.287 0.277 0.321
- 122.88 0.0349 0.0318 0.0245 0.0221 0.0231 0.0277 0.0279 0.0277 0.0504
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non-weighted estimates. The transform calculations were
truncated at the maximum value of T, = 180 sampling
increments. Only the theoretical, or expected, value is
plotted in the high frequency range because not enough
values of the estimates were calculated to give the
resolution necessary for defining curves. The’eStimates
at 61.4 radians per minute are within 20 per cent accuracy.

Figures 16 and 17 show the magnitude and phase
respectively of the cross-power specﬁral density estimates.
The weighting function for k = 2 and a maximum of 180 time
increments were uséd in the Fourier transform calculations.
The complete results of magnitude and phase are presénted
in Tables 2 and 3 respectively. The differences in
magnitudes at low freqﬁéncies for each record length is
due to the finite averaging times for the correlation
estimates.

The effect of smoothing by using higher order:
weighting functions can be seen in Figures 18 and 19.
Magnitude and phase of the cross power spectral density
estimate from 5592 products show smoother plots for k = 2.
The weighting was found particularly useful to recover
phase information at the higher frequencies.

Process Frequency Response. ~Figure 20 shows the

normalized magnitude ratio of the frequency response
determined from the spectral density ‘estimates. Normali-

zation was performed by dividing by the highest values of
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TABLE 2 ,
CROSS-POWER SPECTRAL DENSITY ESTIMATES - MAGNITUDE

(FOR WEIGHTING FUNCTION OF k = 2)
N—zh=

Frequency A

Radians _ ’ ‘ .

Per Minute 750 1500 2250 3000 3750 4500 5250 5592
0.03 271. 251, R36. 240, 251. 278. 285. 292.
0.06 270. 251. 236. 240, 251. 277 285. 291.
0.12 269. 249, 236. 239. - R50. . 276. 281L. 290.
0.24 264. 2LL . 232. 235. 246, 271. 279. 285.
0.48 2L3. 223. 216. 219. 230. 254 . 261. 268.
0.96 183. 160. 170. 172. 181. . 199.- 207. 213.
1.92 113. 80.3 89.4 97.0 102. 108. 116. 117.
3.84 35.9 36.3 40.7 45.0 493 57.6 60.8 62.8
7.68 32.0 19.7 21.9 21.7 23.0 26.9 27.6 28.1

15.36 6.86 L.78 L.61 5.02 5.7h 6.22 6.91 7 o by
30.72 0.245 0.409 0.380 0.303 0.223 0.0984 0.161 0.202
61l.hl 0.0608 0.095 0.0606 0.0293 0.0226 0.04847 0.0604 0.0838
122.88 0.0241 0.0224 0.0202 0.00592 0.00552 0.00836

0.0177 0.0282

08



CROSS-PUWER SPECTRAL DENSITY ESTIMATES -- PHASE (DEGREES NEGATIVE)

TABLE 3

(FOR WEIGHTING FUNCTION OF k = 2
N-27,=

Frequency

Radians .

Per Minute 750 1500 2250 3000 3750 4560 5250 5592
0.03 1.97 - 2.20 - 1.90 1.88 1.85 1.87 1.83 1.83
0.06 3094 Lol 3.8 3.76 3.71 3.73 3.66 3.64
0.12 7.87 8.8 7.58 749 740 7ol 7.31 7.25
0.24 15.6C 17.50 15.07 14.90 14.70 14.80 14.50" 14.40
0.48 30.30 34.00 29.34 29.00 28,70 29.00 28.30 28.30
0.96 53.2 60.50 53.10 52.5C 52.1. 52.90 51.50 51.80
1.92 67.80 - 73.70 78 .00 VL. 8O L300 71 .00 73.80 7h .10
3.84 110.10 95.90 95. 14 92.3C DEINSIS 89.10 87.80 - 89.50
7.68 107.60 102.00 99.87 150.37 RIS, 103.10 103.70 103.40

15.36 111.30 97.50 108.60 114.80 Lde 123.30 129.60 127.70
30.72 126.70 22.40 29.80 35.10 630 109.20 -153.50 162.10
61l.44 258,90 19.8 50.30 36,10 2040 145,00 183.20 174.00
122.88 228.80 351.90 .40 350,10 247420 21.990 -68.10 114.90

18
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the spectra which usually was at the lowest frequency
calculation, so that the normalized magnitude ratio

(estimate) was calculated as

3 poxw)

| IWI ) IR C (97)
By )
§rr*(4%in)

The three record-length determinations, from 750, 3000, and
5592 products, are shown in Figure 20 in comparison with the
derived and sinuéoid frequency responses.

A better agreement is found wihien the normalized
magnitude ratio is determined by the use of the theoretical,
or expected value of the input power spectral density in
Equation (97). Figure 21 shows these results. This agree-
ment might have been expected, since it is, in effect,
~obtaining a ratio of an estimate and a known function rather
than the ratio of two estimated functions;'

Observations of the magnitude ratio estimates in
Figure 21 and phase lag estimates in Figure 22 show clearly
that the determinatioﬁs'improve as the record lengths
increase. The estimates from the short record of 750
products have the largest excursion away’from the sinusoidal
’and‘theorétical values. The determinations from the longest
reCord, 5592 products, more nearly approach the expected

response curves. These differences are believed to be due
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to the finite record length estimates calculated. A
further explanation is believed to lie in the fact that some
"noise" was generated within the process itself. Recorded
data showed evidence of low amplitude, high frequéncy
variations apparently associated with temperature eddies
of the reactor fluid. The output temperature would then be

related to the input as

c(t) =f h(A)  (t-A)dA + n(t) (98)

where n(t) is the "noise"™ imposed upon the recordings. Under
the assumption of having ergodic random variables above, a

correlation relationship exists as

() j; h(A) . (z-A)dr + @_ (=) (99)

and an equivalent spectral relationship exists as

$..@) =Hw g (@ + T (w)

or  H(w)

3..(0) -2, (@) ~ (100)
3, .. (w) o

An actual calculation onb*pn(t) could not be made since n(t)

was not readily distinguishable in the output. However,v

‘under the condition that the value ofqzxﬂzﬁ was negative

the magnitude curve of Figure 21 would appear high if the

noise effect was not accounted for as. in Equation (100).
Phase lag determinations show a remarkable agreement

with sinusoidal measurements out to a frequencylof 30 radians

per minute. It is important to note that the correlation
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results here agree with the sinusoidal, or experimental,
results rather than the linéar theoretical model. Above
30 radians per minute, the phase results were not reliable -
as expgcted. Two reasons are that the input power spectrum
is zero at both 37.7 and 75.4 radians per minute and the

folding frequency was at 97.5 radians per minute.

Statistical Determinations for Two Inputs

The second part of the experimental work was the
determination of the process frequency response while the
process was under the influence of two input variables
simultaneously. A typical portion of the experimental
recording of these variables was shown in Figure 8. 1In the
calculations the process variables were scaled for x(t) to
represent coolant flow rate, y(t), the reactor inlet
temperature and z(t) to represent the reactor outlet
temperature, all as defined in Equations (89) to (91).
Spectra §f these variables have theoreticai relaﬁioﬁshi§5‘
éimilar to Equations (66) and (67) as

5, ) =H@) 3§

§yz(w)

@) G B @) (101)

H(w) §yy(w) + G(o) §yy(w) (102)

i

where H(#) is the frequency response function between x(t)
-and z(t) and_ G(w) is that between y(t) and z(t). It is the .
primary objective of the experimental work in this section
'to'sblVe for H(W).

Correlation Estimates. For the case of two input
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variables the cross-correlation estimates,ﬁbxz*(f7 and
autocorrelation estimates,gbxx*(zﬁ were calculated from
record lengths up to N-2; = 4800 products at intervals of
.600 each. 1In all these calculations the range of Z was
—Ziﬁ 7 =201 increments. Therefore the maximum delay was
approximately 6.5 minutes, or a factor of approximately
five times greater than the highest process time constant.

Figures 23, 24, and 25 show results of correlation
estimates calculated from this experimental data. Values of
¢&X*(Tﬁ and XZ*(T) are shown for record lengths of N-2, =
1800, 3000, and 4800 products. The theoretical value for
¢&y*(7) was zero since x(t) and y(t) were generated
independently. Calculations of Qb#f421 were therefore made
for record lengths out to only N—zh = 3000.

The correlation estimates ¢%D;k(T7 and (Z)

7
appeared similar to their counterparts in the case of one

input. The autocorrelation function (Z) was identical

XX
'in that it appeared as an isosceles triangle at the origin
(2= 0) with some variance about a zero value for T=>5.2
‘increments due to its being a random estimate of ﬁhe
expected value. The cross-correlation estimates on the
average showed'maxima at a delay of approximately 9 sampling
intervals, or 17.4 seconds, after the origin of the input
pulse. The value of maximum cross-correlation was‘¢&z*(2ﬁ =
0.304 in dimensionless scale units of x(t) and z(t). This

value compares with 0.588 for the one input case where the

recording sensitivity was a factor of 5.9/3.2 greater.
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By comparing theQsz*(T) estimates in Figures 23,
2L, and 25 it can be seen that each appears to have a bias
value which is not zero. That is, the values of the
estimates for large rT| (negative and positive values)
appear to settle to some value other than zero and which
varies with recérd length. In spite of the fact that the
product of average values of both variables cver each
record were subtracted as a bias as in Equation (92), there
seems to be a slightly different bias value in effect.
This difference again is probably due to‘the use of finite
record lengths.

" Ordinarily the frequency response H(@) would be

solved from Equations (101) and (102) by the relationship

H( ) = By @) & @) & ()% (@) |
o, (@ B, W] e W) g @) (103)

However, since x(t) and Y(t) were indépendent,

Xy yX : (104)

and the solution for H(w)'reduces to
Hw) =2, @)
Ty@l (105)

which is identical to the case when only one input and no
noise signal exist. In.view of this fact the correlation
(T) were not computed. The

estimates of (T) and

vy g
correlation estimate bey*(T) was computed out to a record
length of N -7 = 3000 in order to detect any possible

correlation., These estimates appeared merely as random



95
functions with variances that decreased with record length.

Spectral Estimates. Results of input power spectral

density estimates, §Xy$%w),-are listed in Table 4. The
input variable x{(t) for the case of two inputs and the input
r(t) for one input were generated identically and therefore
the spectra of §Xy*(w) were very similar to those of §rr*tw)
shown in Figure 15. Both have the theoretical value
2
§xx(!_"> = §rr(w) = Tg [sin ‘fg_s
ot
2 (106)
as determined in Appendix A, and appear to approach this
function as sample length is increased. The Fourier
transform calculations were made using the weightihg
function for k = 2.
| The results of determining cross-power spectral
density estimates §XZ*WW)4are listed in Table 5 for record
lengths of N -1 = 3600, 4200, and 4800 products. These
spectra ars close in agreement with each other. The
quz*kr):estimates, which were transformed to yield these
spectra, all had apparent bias values close together but
yet two slight adjustments were'made on these functions
as input data to the Fourier transform program. The first
was that estimates for each record length were shifted in
bias so that each had the same yalue at T = 0. This value

of (0) was selected as the value at which the estimate

pv

for N —’Tm'= L4800 crossed the T = 0 axis when it was shifted



TABLE 4

INPUT POWER SPECTRAL DENSITY ESTIMATES - TWO INPUTS

N-2, =
Frequency
Radians - Expected
Per Minute 1800 2400 3000 3600 4200 4800 Value
0.03. 12.31 11.35 9.05 11.77 10.81 11.39 10.0
0.06 12.15 10.87 8.90 11.37 10.79 11.29. 10.0
0.12 12.05 10.77 9.00 11.09 10. 74 11.26 10,0
0.24 11.83 . 10.47 8.86 10.75 10.37 10.89 10.0
0.48 10.95 9.39 8.26 9.56 9.19 9.65 10.0
0.96 7.80 6.83 6.87 724 6.99 7.65 9.99
1.92 773 8.70 14.38 13.89 12.86 12.02 9.92
3.84 12.43 - 13.96 11.93 10.57 9.80 8.91 9.66
7.68 7.37 7.89 8.69 947 9.93 10.50 8.70
15.36 6.07 6.20 5.36 5.22 5.80 5.69 5.60
30.72 0.439 0,370 0.381 0.3%73 0417 0.493 0.460
61,4t 0.154 0.203 - 0,21V 0.213 0.204 0.321
122.88 0.054 0,045 -— 0.038 0.035 0.036 0.0504
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TABIE 5

CROSS-POWER SPECTRAL DENSITY ESTIMATES - TWO INPUTS
(WEIGHTING FUNGTION k = 2)

Frequency N-2z = 3600 N- z, = 4200 N-2Z, = 4800
Radians ' .
Per Minute Magnitude Degrees lag Magnitude Degrees lLag Magnitude Degrees lag

0.03 245 2.19 24,3 2.26 2L 5 2.19
0.06 oo L.37 2h.3 L.51 Rl 5 L .37
0.12 24 .3 8.71 2L .1 9.00 24,3 8.7k
0.24 23.7 17.3 23.5 17.8 23.7 17.3
0.48 21.% 33.1 21.1 3Lk.1 21.6 ©33.4
0.96 15.6 55.0 14.9 55.5 15.8 56.8
1.92 11.L 79.0 11.0 76.7 10.4 80.1
3.8L L.37 94,8 Loll 98.0 3.98 97 ol
7.68 2.02 123.8 1.97 125.7 2.08 128.5
15.36 0.515 . 154.7 0.536 1547 0.523 152.0
30.72 0.0235 125.2 0.0232 138.2 0.0243  -133.4
122.88 0.0u246  321.9 0.00227  329.4 0.00271  335.4

L6
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to have an apparently zero bias. In this manner all
cross-correlation estimates were brought into close agree-
ment. The second adjustment was that cross-correlation
estimates were made to be zero for the negative values
except for five discrete values near the origin whére the
function was allowed to approach zero smoothly.

Justifications of these adjustments are based on
the following: (1l.) Frequency information of interest is
contained only in that part of the correlation function
away from its bias level, (2.) The theoretical value of
the cross-correlation function was zero 10or negative values
except those near the origin which weire part of the response
to the autocorrelatioﬁ pulse.

Table 6 lists results of cross-power spectral
estimates determined for different weighting functions..
Considerable smoothing of the magnitudes is achieved over
the unweighted, truncéted estimate. The low frequency
portion of the magnitudes is affected somewhat due to the
fact that the total area under the curve described by
QQKZVT)°WR(T) is decreased as the weighting is increased.

Process Frequency Response. Initial determinations .

of process frequency response were attempted by the use of
Equation (101), which includes the effect of input cross-

power spectral density as

3.,@) =HW)E W) +Gcw3

o T, (101)

The response, G(®), was derived from the rather simple



TABIE 6 |
EFFECT OF WEIGHTING FUNCTION ON CROSS POWER SPECTRAL DENSITY ESTIMATE

(N-2, = 4200)
Frequency Unweighted- = k =1 k =2
Radians Truncated
Per Minute Magnitude Phase Lag Magnitude Phase lag Magnitude Phase
0.03 . 31.7 3.21 27.2 2.64 2443 2.
0.06 31.7 . 642 27.1 5.26 2443 L.
0.12 31.3 12.8 26.8 . 10.5 2L.1 9.
0.24 29.8 25.L 25.8 20.7 23.5 17.8
0.48 2L .1 4L8.2 22.3 39.3 21.1 34.1
0.96 - 11.5 61.9 13.9 58.9 1.9 - 55.5
1.92 11.9 - 81.9 11.4 77.8 11.0 76.7
3.8L L.63 97.8 L.18 97.3 Lol 98.0
7.68 1.86 116.5 1.67 - 124.6 1.97 125.7
15.36 - 0.672 158.4 0.559 154.5 0.536 154.7
30.72 0.00205 = 329:0 - 0.0217 138.0 0.0232 138.2
61l.L4 0.00477 115.7 0.0102 L5.7 0.00977 46.3
'122.88 0] 7 0.00244 328.9 0.00227 329.4

.0080L 321,

66
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dynamic equations of the process, and estimates of each

spectral density, & __(®), §X3Jw), and §xy(w)‘ The equation

Xz
was then solved for H{@w).

Results from this determination were of no
signifiicant value, primarily due to the fact that variance
of the §Xy(w) estimate was too large in magnitude. This
variance indicates that this method would demand extremely
long regords for identifying multi-input systems where the
input functions are correlated. ‘

However, satisfactory results were obtained using
the assumptions that the input cross power.spectrum,
§quu), was zero. Results are shown in Figure 26 for the
normalized magnitude ratio and in Figure 27 for phase lag.
Both are determinations for record lengths of N -Th = 4800,
Table 7 lists results for three different record lengths.
The normalized frequehcy responses were determined by the

- expression

Xy . {107)
where B(#) represents the normalized frequency response of
the filter used to attenuate higher fréqueﬁcy.noise and
thus minimize aliasing of the noise. It should be noticed’
that the theoretical input speétfa were used for the-abdve
determinations. The filter B(&@) had break frequéncies at

82.2 and 541 radians per minute so that it was siénificant
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TABLE 7
NORMALIZED PROCESS FREQUENCY RESPONSE RESULTS - FOR TWO INPUTS

Frequency N- Z,= 3600 N- 2, = 4200 N- 2= 4800
Radians . ’
Per Minute Magnitude Phase Lag Magnitude Phase Lag Magnitude Phase Lag
Ratio Degree . Ratio Degree Ratio Degree
0.03 1.0 2.19 1.0 .26 1.0 2.19
0.06 0.998 L.37 1.0 L.51 1.0 L.37
0.12 0.991 8.71 0.992 9.00 0.991 8.74
0.24 0.966 17.25 0.965 17.8 0.968 17.32
0.48 0.876 . 33.14 0.868 3441 0.882 33.41
0.96 ' 0.635 55.7 0.613 56.2 0.645 56.0
1.92 0.467 77 L 0.453 75.2 0.426 78.5
3.84 0.183 91.7 0.175 95.0 0.168 94.3
7.68 0.0950 117.7 0.093 119.6 0.0980 122.4
15.36 0.0379 142.5 0.399 142.5 0.0363 139.7
30.72 0.0222 101.5 0.0222 114.5 0.0203 109.7
61. 4L 0.0151 - 0.0157 - 0.0161 166.4
122.88 0.0362 - 0.0342 - 0.0395 266.4

£0T
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only in the high frequencies. The spectral estimates were
calculated using the weighting function k = 2. |

With reference to Figure 26, magnitude ratios
appear to agree quite well with experimental, or sinusoidal,
measurements out to approximately 20 radians per minute
where thé input is attenuated by a factor of approximately
0.03. it is interesting to note that above this frequency
the conventional, sinusoidal measurements also could not be
made with desirable accuracy due to low signal-to-noise
ratios. Fluctuations in the recorded temperature, caused
by eddys of fluid at varying temperatures, were of the
same amplitudes as the sinusoidal response. While the
sinusoidal measurements and the statistical results agree
well in magnitude ratio, they both show less attenuation
than the theoretical model predicts. This result is
further verification of a slightly inaccurate mathematical
model. |

Phase lags determined by correlation as shown in
Figure 27 agree closely witﬁ sinusoidal and theoretical
results in the low frequencies out to approximately 20
radians per minute. However, the agreement at higher
frequencies is not as good as for the case of one input
function; the phase lags shown by correlation resulté are
generally higher than expected.

Both magnitude and phase lag reéﬁlts determined by

this statistical'method appeared to be unreliable above
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20 radians per minute for these particular tests. Several
factors combine to give sﬁch errors and it is rather
difficult to assign their contributions in a quantitative
manner. Certainly no reliable determinations could be
expected possible above the folding frequency, 97.5
radians per.minute. It is believed that the factofs
responsible for these errcrs, listed in order of magnitude,
are the following: |
(1) The correlation functions, and therefore the
spectral density functions, nre estimates from
finite lengtq records.
(2) The relative power in th> input power spectrum
decreased rapidly above the frequency of 2
radians per minute. At frequencies of 3%.7
and 75.4 radians per‘minute thie input power

was zero.



CHAPTER VIII
CONCLUSIONS

Summary of Experimental Program

The‘frequency response relation between coolant

flow rate and.reactor temperature of a laboratory, continuous,
stirred-tank, chemical reactor was first determined by two
direct approaches. These determinations, used as references
of comparison for subsequent results were by direct
sinusoidal measurements and by a thgoretical approach of
‘obtaining frequency response from the differential equations
of an assumed model of the process.

| Under the response to a single randomlinput
variable, the coolant fiow rate, frequency response was
then determined through the use of the relationship between
auto- and cross-correlation functions and the impulse
response of a linear system. Correlation estimates were
calculated from recorded operating data for various record
lengths. Fourier transforms of correlation estimates were
calculated to yield estimates of the power spectral densities
and the process frequency response.

Frequency response was determined similarly when the

106
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process was forced by two statistically independent random

variables -- coolant flow rate and reactor inlet temperature.

Comparison of Theoretical and Sinusoidally
Measured Frequency Response

An interesting point was revealed upon comparing
frequency response results between theoretical and
sinusoidal measurements. Phase lag of sinusoidal measure-
ments was generally less than that predicted by the results
of the theoretical model. The discrepancy was thought to
be due to the assumption of perfect mixing. It was more'
likely that mixing and heat transfer chiraciaristics exilsted
which were functions of the pértfcula& seometry of construc-
tion. One could conclude that outimun placément of sensing
devices, such as'thermoéouples, i a reactor should be
determined from the flqw patterns and heat transfer
geometries. . Locations in stfeams of higher velocity, and
which are affected more strongly by heat transfer surfaces,

would appear to present slightly faster responses.

Single Input Frequency Response Determination

Time Parameters

For a determination cf process frequency respoﬁse by
the "correlation" method a number of parameters are left to
the choice of the experimenter. Such planning affects the
quality of results énd experience from this work is
summarized in the following discussion.

Sampling Time, At. Choice of a sampling time is
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determined quite well from the Nyquist folding frequency.
The resulting spectrum will be folded at this frequency,
@= -, It is recommended that this frequency be made to
be approximately twice the highest frequency of interest in
order to avoid this folding, or aliasing.

Maximum Correlation Argument,T m. The value ofT’m

can be determined from an approximation of the highest
process time constant. AT  equal to or greater than 4
(four) times the highest process time constant assures thaﬁ
approximately 98 per cent of the total response is recovered.

Record length, T. It has been shown that variance

of the correlation estimates decreases proportionately as
1/T%, or the standard deviation as 1/T. WithT, selected

as above, the ratio T/Fm is significant fbr~qualifying
record lengths. A minimum ratio of T/T, = 15 is recommended
to obtain significant informatioﬁ for design purposes.

The experimental work for the. highest value, T/T = 32,

yielded good frequency-féspohse description.

Other Factors
Further considerations important to the correlation
techniques are discussed below.

System Generated Noise. Frequently a system'to be

identified may generate noise within.itself. If the noise
has power in and above theé fange of frequency interest the
use of a low-pass filter (pfeferably having a sharp cut-off

at the upper frequency range) is quite helpful for minimizing
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errors. If the system noise and input function are known
to be'uncorrelated, or rn(T) = 0, no trouble arises.

Input Power. Input power must be well distributed

thfoﬁghout the range of frequency interest. If only a
narrow range, or ranges, of frequencies have power, accuracy
is limited to these ranges. Frequently, normally operating
processes may have to be given additional disturbances in
order to cover all'frequencies of interest. The experi-
mental work has shown that accuracy could not be obtained

in the region of zero input power.

Numerical Techniques. For the calculation of

correlation functions, it is more desirable to use records
having zero mean values, since frequency response is itself
information about incremental changes. Also, it is desirable
to subtract out mean Qalues of the variables over the record
lenéth used, as in Equation (92)

The use of a weighting functlon, developed by Ross;
has proved useful in yielding smoothed spectia upon

transformation of truncated time functions.

Apﬁiicaﬁions

Experimental work has shown that the method of
auto- crosscorrelatlon and spectral analys1s can yield
frequency response 1nformat10n w1th1n the accuracy needed
for designing most control systems. The fact that this
technique identifies a nonlinear system in the form of a

best linear system (in a least squares sense) has been



110
verified to some extent. ‘Results compared to those of a
linear model and actual sinusoid measurements have closely
fitted the sinusoidal measurements.

Results herein are not limited merely to open loop,
isolated systems; but the method can be applied to any
dynamic systeh which is a component of a larger, more
complex system just as long as the input and output

variables can be measured.

Two_Input-Single Output Freguency Response Determination

Results have shown that frequency reéponse'of a
system having tﬁo inputs can be determined to a satisfactory
degree when the two inﬁuts are not correlated. Calculatiohs
in this case have to be made under the assumption that the
cross~correlation between inputs is zero.

Attempts to.solve for the frequency response
fgnctions for two inputs led to erroneous results due to the
high“maghitude of variance of the_input cross-power spectral
estimate. These results indicate that identification of
multi-input frequency responses would require éxtremely long

records for calculation of spectfal estimates to the desired

degree of accuracy.
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APPENDIX A

Autocorrelation of a Random Square Wave

Let us assume that a random square wave x(t) such
as that shown in Figure 28 is a member of an ergodic

random process.

— +D

i - Tsk—
Figure 28

A Random Square Wave, x(t)

The function x(t) can be expressed as

t (1 + 7)) -
x(t) = a ' S

=0, + T, *+ 2T ,--- (108)

where the a;'s are independent random variables taking on
the values -D and +D with equal probability. :
Let us determine the autocorrelation function from

a time averaging.point of view. It is expressed as

m

._ T
BTy = %im %_T f x(t) x(t +7T)dt (109)
300 -7

For values of |T|>Tg the a;'s are independent and
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- have a zero mean so that the average value of the product

x(t) x(t +T) is zero or ¢(T) = 0, s
When T = O, |
Byy(0) = X(ET =D (110)

For values of O = IT] = Ts the fraction of products
x(t)x(t +T) which are correlated is just 1 - |Tl.
. Ts
The correlation function is then D2 1- l'IT_‘ .
s

In summary,

@ fr) =D 1-11;2- for 0= 7| = T
=0 for |T| = T (111)

Input Power Spectral Density

The injpat power spectral density can be determined

as ., §xx(w) f ¢ dT
sz [1 %—] Wy
Ts
f I:l- %—s cos TdT

2D ' ‘
T 2 (l-cos &T)

D2TS sin @7 2
_—
T

2 (112)



- APPENDIX B

Derivation of Theoretical System Frequency Response

Consider the eqﬁipment as shown in Figure 29 below

" Figure 29

A Stirred Tank Reactor Model

For'the derivations of dynamic equations concerning the
reactor, let us make the following assumptions:

(1) The reactor fluid is perfectly stirred.

(2) Densities and heat capacities‘remain constant.

(3) The fluid in the cooling coil is uniform in
temperature throughout the length of the coil
and this temperature is the arithmetic average
of inlet and outlet coolant temperature.

(4) The‘amouﬁt of eneréy imparted to the reactor
fluid by the stirrer is negligible and heat
transfer through reactor walls is negligible.

(5) The thermal capacitance of the cooling coil
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wall is negligible.

An energy balance taken on the reactor fluid yields

dT, -
2 = _F (7,-T,) + UA__ (Ty-Ty) .
® Tp 17 pcg R (113)

Likewise, an energy balance made on the cooling water

inside the coil yields

dTW =
dt

o

"Cp : ’ (114)

According to assumption (3) above, Ty = T -T! . Each
2

W (T,-T,) + UA (Tr-T )
g U=t v Ja (-

variable can be interpreted as the sum of a steady state

value and a time varying part, such as

To = Tp +T2' o (115)
- 1

T, =T, T, | (116)

w = W + W' (117)

At steady state conditions, Equation (113) and

(114) become, respectively (using the definition of T )

_[E. - LUA_ [T2,T _T
NSRS R 2) (118)
0 =W(Ty -T,) +UA [To- To - T (119)

AR (2 a %)

After combining Equation (113) through (119) and the
~definition of T,; the time varying parts of the vériablés

can be related 4&s

dT' = _ fp +UA \ Tt *+(UA_\ T (120
at TV Tpop 2Vpcp) *
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ﬂ-__ 2(T3-—T_!)]W"<2_.W+QA_)TA'
dt M M Mcp
@) mew - () 2

Since this system is flow-forced, a.non;linearity
results in Equation (121) due to the product T, 'W'. This
system of equations was programmed on an analog computer
and the problem circuit is shown in Figure 30. The analog
computer used was a Donner Scientific, Model 3100D, a part
of the School of Chemical Engineering Graduate Research
Process Control Laboratory at the University of Oklahoma.
Normalized frequency response results obtained with this
model showed no differeﬁce between using the % T 'W' term
and omitting it. The model was therefére considered as being
linear. The transfer function oflthe linear model was -

T,(8) 1,215 o _
5% + 13.082s + 9.413 = - (122)

Units of temperatﬁre are in °F, flow is in pounds per
minute, and time is in minutes. Consﬁanté for the
coefficients of Equations (120) and (121) are listed in
Table (8). 'Th; impulse réSpdnse from the ab&ve model is

h(t) = L3646 (e70TOKE L gm12.32F " (123)
The time constants of_ﬁhe équipment were therefore

'approximéﬁely 1.31 minutes and 0.081 minutes.
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PARAMETER VALUES OF EXPERIMENTAL EQUIPMENT

F = 32.0 lbs./min.

v = 7671 £67.

p=62., .

U = 39.7 B.T.U./min. ft°. °F
A = 1.8l ft.?

¢p = 1.0 B.T.U./1b. °p
W = 6.66 1b./min.
M

= 1.682 1b.
T, = 140 °F
T3 = 70 OF

T, = 116.5



APPENDIX C

Fourier Transformation

Computer Program
To compute the truncated Fourier transform,

T, |
F () =f £(t)e™ ¥ g (124)
_Tm

by a digital computer the function, f(t) may be represented
by straight line segments between discrete values as shown

in Figure 31. fna
fn —%

. n tn+17
Figure 31

'Straight Line Segment Representation of f(t) '

Then between t = t, and t ="tn*i, we let

£(t) =ty B (t-ty) : (125)
An approximation of Equation (124), signified by F*x@),
" can be made by '

N-1 o+l | .
F(w) =z f E<n +ﬁ(t+tn] e~ 14T 4 (126)
==N n

Nn=e=
Because of the analytical integration between discrete

121
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values, the accuracy of this expression depends upon the
accuracy with which f(t). is represented and not upon the
"scanning" frequency . Actually, the program used in this
work incorporated the series of weighting functions

developed by Ross (24) which are

2 | k : '
={1- [t
W (t) [l (Tm) ] | (127)
in order to smooth or compensate for the effect of
truncating f(t) at t = T, = N t. The transform calculation

M
was therefore

. N-1 pentl B o |
Fy (@) =z j; Evk(t)] [ogn-rﬁn(t-t.n):] o~ 1Aty (128)

n=-N
After integration, this Equation (126) can be expressed in

‘more suitable form for digital computation as the following:

F kW) = _"17 fo sin@NAc + (1 (£ -f ;) cosuNAt

N wht

N-1
-(fq-f5) + z (Rf-fre1-fp_1) cosamAt:}
n=1

+‘% fN sin wNAt +a7i? f_yf_(n-1)) cOS@WNAS
-(N=-1)

_(f_l-fo) + 2 (2fn—f(n+l)-f(n_l))coswnA{I}
n=-1 .

+‘% (£y cos®NAL-f_) -w_ZlSE I:(fN-fN_l) Sind N At

+ S (2fp-f4q-fpoq) sinwnAtzl‘}‘
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t 1=y coszAt-fo) - _‘_%? E(f—N_f(N—-l)) sinwNAt
. . v | _.
- E (2f -fp4q-Fp 1) sinl)nAtil} (129)
n=1
where f_ = W, ( (nAt). f(nAt). The program was made to

transform either an even function, an odd function, or an
unsymmetrical function. Only the first line of terms is
evaluated for an odd function. 'The values of sin nwAt and
cos nwAt are determined by the identities '
'sin nuAt = sin(n-1)w At cosw At + cos(n-1)wAt sin wAt (130)
cos WAt = cos (n—l)wAtcosmAt—"sin{n—l)tﬁ Atsin'wAt; (131)
so that only the values of sin WAt and cos wAt are required.

to be found by their series expansion.

Results of Transform Program Accuracy

Accuracy of Straight Line Segment Fit. To test for

the magnitude of error involved in representing a function
by straight line segments, a simple function was transformed
and the results compared with its theoretical transform.

The function employed was e~ ,tlfor -5.91' =t = 5,91 and was
repreSented by 394 straight line segments over this interval.
The theoretical,-truncatéd, Fourier transform of this

function is

so1 .
Flw) {e It f -t coswtdt =

'5 91 (wsin 5. 9lw—cos 5.91w) +£] (132)

ltw
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The comparison is listed in Table 9; the theoretical values
are of slide rule accuracy. This comparison shows the
program to give an unmeasurable error at the lower freQuencies
and an error of only 2% at 4 decades-of attenuation.

Another test was made to determine the error
possible from the combined truncation effect and straight
line segment fit of f(t). The function transformed by the
computer was thé truncated theoretical impulse response
h(t) of the experimental équipment or the desired expression

was

6.53
FWw) =j; N (e-.761+t _e-12.32t)e-ilot dt (133)

Amplitude factors have -been omitted for simplicity.
The impulse response was represented by 203 segmenté over
‘the interval 0=tZ6.53 minutes. Results were compared with
the frequency response function of Equatioh (122) normalized
so that ; |
| 413

F(®) Theor. = v 9. |
FEO). < (9.413-4°) + j13.082w (134)

Tables 10- and 11 show thehbomparison of results. The
subscripfs 0 to 1 designaté the use of exponents O to 1
‘respectively for the brogram weighting function Wk(t).

At the frequency of 122.8 radians per minute where
tﬁe‘funcﬁibn is attenuated more than 3'decédes; the
magnitude error is approximately 5.5 per cent using no
weighting function and approximately 7.5 per cent using the

Wl(t) as the weighting function. Error in phase lag is
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TABLE 9

COMPARISON OF THEORETICAL AND PROGRAM FOURIER TRANSFORMS

(Radiaigegginggiﬁ Time) (Thegﬁggical) (Computzgw%rogram)
(Truncated)
.032 2.0 2.0
.06k 1.99 1.997
.128 1.97 1.9671
256 - 1.878 1.879
512 1.581 1.589
1.024 976 .9732
2.048 384 .3832
L.096 <1127 21213
8.19 0294 .02876
16.38 .00762 .007616
32.77 .00171 .001710
1 65.51 .000410 .000401
131.10 .0001562 ©.0001567
262.1 .00001662 .00001987
5243 .00001410 .00001556
1048 .00000691 .000006 14
2097 -.00000218 ~.00000102
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TABLE 10

COMPARISON OF COMPUTED AND THEORETICAL
PROCESS MAGNITUED RATIOS

Frequency ga(; Folw) Fylw)
(Radians Per Minute) (Theoretical) F (0] F1(0)
.03 <9996 1.0 1.0
.06 <9969 9912 997
.12 .9878 .9812 . 992
2L <9539 .9526 7L
48 8465 .8512 .8939
.96 .6213 6156 .6803
1,92 3654 .3622 .4008
3.84 . 1863 | . 1847 2034
- 7.68 .08404 .08334 .09155
15.36 .03108 ~.03088 .033B5
30,72 009263 .009263 .01007
61l.4 | «002445 .002504 " .002657
122.8 .0006197 .00065L4 - .000667
245.7 © .0001558 000144 .QOOléhé
L91.5 .00003896 .0600489 .00004186

983.0 00000974 000009829 ,0000048L7
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TABILE 11
COMPARISON OF COMPUTED AND THEORETICAL
PHASE ILAG
Frequenc A@) Theor. Ay (w) A, ()
(Rad/Min (Degrees lLag) (Degrees lag) (Degrees lLag)

.03 2.39 2.30 2.04
.06 4.73 L4.61 4,08
.12 7.09- 7.20 8.12
2L 18.5 18.2 16.1
48 by 3ok 31.1
.96 55.9 56.0 54L.2
1.92° 77.1 774 76.8
3.84 96.1 96.5 93.2.
7.68 116.2 117.1 116.7
15.36 138.4 ‘140.0 139.6
30.72 156.7 1159.8 158.8
61.4 168.0 173.6 172.2
122.8 173.9 183.6 185.1
24,5.7 177.0 160.5 168.8
L91.5 178.5 185.7 180.6
983.0 179.2 125.3 110.9
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approximately 5.5 per cent for no weighting function and
6.4 per cent using Wy(t). Since the function transformed - ™
was approximately the same as the cross-correlation function
expected, these tests give a measure of best accuracy to be

obtained by these numerical techniques.

Spectral Window of Weighting Functions

The weighting functions wy(t) have been used in this
work to obtain better estimates of f(t) which maf exist for
all t but may be known only for -T = t = T. The effect of
~ the wy(t) can alternatively be visualized by their:
"spectral windows." The product of the weighting function
and the time function. .to be transformed has an equivalent
expression in the frequency domain which is a convolution
operation. The transform of the weighting function is
sometimes.called a "spectral window" .because of this
convolving window. The equivalence can be. realized through
the following derivation.'

The product, wk( f(t) can be written as

Wk'(t) £(t) =Iw Wy (@ ) eIt dwf Fw) ¢ qu (135)

or, upon forming a double integral,

W, (t) f(pi éL aw, Lo dw W () Fla,) oI Wit

(136)
For the inner integration a change of variable can be made

such that @y + W, =0 and d@; = dW. Because the limits of
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integration are infinite, they still remain infinite and we

have

W (t) £(¢) fj.‘: v .[oo Wi (w-ay) Flw,) eI* (137)

By inverting the order of integration, we find,

W (t) £(t) =_[°° aw[w dw, W, W-w,) Fw,) eIt (138)

W (t) £(t) =f C(w) eI 4w (139) .

where C(®) is a spectrum resulting from the convolution in
the inner integral of Equation (138).

If the spectrum Wi (@) were an impulse at af¥ 0, a
perfect recovery of F(®#) could be made. This situation is
the desirable but physically impossible case for it requires -
that wk(t) be a constant for -« = t=x , TIn general, as
the width of the Wk(AU spectrum increases, so does its
smoothing action because of this convolution operation
on F(W). Figure 32 shows some spectra of the weighting
functions as calculated by the transform program described
previously. As the amount of weighting (determined here
by k) increases the spectrum shapes become Wider andvlower

in amplitude at -the origin.
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APPENDIX D

Variance of Correlation Estimates

In measuring dynamics by the correlation method it
is ordinarily desirable to know beforehand the necessary .
record length to use for any desired factor of accuracy.
This section treats the variance between correlation
estimates from a finite record length and the true

correlation functions as the record length varies.

Variance of Autocorrelation Estimates
Consider the normalized autocorrelation estimate
determined experimentally from a finite record length.

This valuevmay be céiculated as

=2 _ - _
. s i (140)

where the T subscript refers to the average over a time T.
Assuming that x(t) is a member of an ergodic random process,

.the infinitely averaged value of the above is
" » —2
vir) = P -% |
X - X - - (141)

A variance expression between the two .can be formed as -

131
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<. 2 - 2 -2 g
X - X * (142)
For the experimental work herein, values of x(t) were taken

as plus or minus one so that E% and x;Z were both one and

the mean value, X, was zero. For this case Equation (142)

then becomes

. _2 \2
62 [\:]':::(Tﬂ = E (¢XX*(T) - X - ¢xx(’T) .
1 - v 2
T
_ _ o2 (143)
5 [Pt - %" T BT (1E2)
1-%.°
X
For T =0,
2 sl = F - 2 - - 2 =
6 Emoj B | [(1%2) - (152 0
1-% 2
i T - (14)
For T>Tg, Equation (143) shows,
B
-2\ 7%
6% [rx(m)] = & P*(T) - %g )
| -
1-Xg (145)

since the true autocorrelation becomes zero. In the
- 2
experimental work Xp was found to be quite small so that

the variance could be approximated as .

2 Lo ~ ” 2 :
6 [ (] B [ Bt(m) ] L (146)
for T = Tg. The variance of the normalized estimate becomes

approximately equal to the expected value of the correlation

estimate squared. Upon taking the expected value inside the
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equivalent double integration,

2Ef f dtlf dto E[ £7)x(E1+T)x(tp)x(tp ]

(147)
When x(t) is a member of an ergodlc random process which has

a Gaussian probability distribution,

.E[ x(t1Tx(t)x(627T)] = Polleatr) + B A(M)
Pttt B () ()

The function of thx(r) is zero in the region of
T> T . Since we are interested in the region of T = Ty, the
function is then zero in the range of interest. By a |
transformation and integration using Equation (148) in (147)

the double integral can be reduced to-

T ‘
Jzﬁr(Tﬂ =2 f (T-t) E}5 ) (E+T) C}SXX(—t-m') dt
T
(149)
In the experimental work the input autocorrelation
function is known to be

B (1) =1 - _I_%l_ for 0 = |T| = 1,

S

=0 . for |T| = T (150)
Substitution of this into Equation (149) and integration

yields the result

2 - . 2 ‘ _
[y E/'(T)] %—S_g-%Z . (151)

This variance expression is independent of T since the
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autocorrelation is constant (zero) for |T| > Ts. The
theoretical standard deviation of the autocorrelation was
calculated from Equation (151) and shown in Figure (33)
as a function of record length. In comparison, approximate
values of standard deviation for the actual éutocorrelation
calculations are shown on this same figure. These latter
values were obtained from autocorrelation calculations for
Tg=T = Tp, or in this case, from 175 incremental values of
q@xx*(T); The COmparisbn shows a good verification of the
theory even for such_a‘reiatively small number of experi-
mental valueé'uéed'in'eétimatiné the ‘standard deviations.

In conclusion, it can be seen that by the help of
an expression such as Equation (149) a variance expression
may be used to select a desirable record length. For the
example herein a minimum of 3000 lagged products might be
desirable for the correlation estimate, since the standard
deviation changes rapidly up to that récord length. These
considerations assume that the true correlation function
is known, which is most likely not the case. However, if -
the estimates are used in the expression such as Equation
(149), the variance can, at least, be approximated. In
this manner, the experiménter can approximate his accuracy
and determine it better as he increases the record length

used.

Variance of Crosscorrelation Estimates

The variance of crosscorrelation estimates may be
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Theoretical Staﬁdard Deviation of the Autocorrelation Estimate
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determined in a quite similar manner as the autocorrelation
estimates. Consider the variance of such an estimate from

a finite record length as

6 [et)] - = @™ - B ] o (152)
| B [Pre(m)d - |

where ¢r‘c(T) is the expected value of the estimate ¢rc*(’r).

I

Upon further evaluating the above we may write

T T %
2 ES%C(TEI = %j; dtlfo dt, E I:r(tl‘)r(tz)c(tl’r§
02T - B2 (153)

In similar manner to the previous section for members an
ergodic random process and which have Gaussian probability

distributions, 3
g I: tplelty*T eltrT)] = ¢rr tpmt1) Prolty-t
2 P T o 8 .
* q%c (T) + qbrc(t2+’r —tl) qbrc(tl+T t2) (l54)
Also use of this relationship in Equation (153) after a

transformation and integration yieéelds

T
¢° [P, ] - —2fo (1-t) [B(6) B (6 + P (ee

Pl ] at (155)
Unfortunately this relationship requires much moré
information than will ordinarily be known. In fact, it
requires a knowlédge of the system dynamics through the
crosscorrelation function and also requires knowledge of

autocorrelations of input and output. Similar to the
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results of the previous section, the variance for a given
T and T may be approximated from the calculated results
by the use of Equation (155).

Variance of Normalized Crosscorrelation. The

variance of a normalized crosscorrelation estimate obtained

from a finite record may be expressed as

2 _ ¢rc;:‘(7) - rpcp - ¢rc -r ¢ _
J. @rc(’rzl E o rec (156)

T Tl re

r
It can be seen that at T = 0 this variance is zero.

However the exact calculation for T = 0 is quite complicated
and will not be considered here. Xutin. (28) has considered

approximations of some normalized correlation estimate

variances.
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APPENDIX E

LIST OF NOMENCLATURE

-an arbitrary constant

an arbitrary constant
a variable of time

hHeat capacity at constant pressure

outside diameter of inner tube, except when used

as a differential operator

base of Naperian logarithms, 2.71812
function of time

i-th probability density function

an impulse response

an impulse response

imaginary vector, N-1

a constant

noise variable

radial distance

function of time

complex variable of Laplace transformation, a + j

time variable
longitudinal distance
function of time

138
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[%(t] = a set of random variables

x(t )1 = the n-th moment of x(t)

y(t) = a function of timé

z(t) = a function of time

A = ¢cross sectional area

AT(w) = Fourier transform of truncated function, f(t)

C = concentration of solute

D = diffusion coefficient

F(w) = Fourier transform of f(t)'

Glw) = Fourier Transform of g(t).

H(w) = Fourier Transform of h(t)

F = mass flow rate

F;(x,t) = i-th probability distribution function

M = mass of liquid inside heat transfer coils

N = total number of sampling intervals in a record

Q = a constant of time above which the impulse response
is approximately zero

S = temperature of fluid in'shell

S(w,x) = power spectral density of the function x(t)

S(w,x,y)= cross power spectral density between x(t) and y(t)

T = arbitranj constant of time; or temperature where
locally defined in the text

U = overall heat transfer coefficient

vV = reactor Volume

V() = g normalized correlation function

= flow of coolant fluid

wk(t) = weighting function
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Fourier transform of x(t)

Fourier transform of y(t)

Greek Symbols:

ol

oLk

the value of a discrete variable
general moment of the order i x k

the slope between adjacent ordinates of a discrete
variable

Diracts delté function

a time variable

a time variable

a time variable

3.1416

density

a time variable

a time variable

autocorrelation function of the variable x(t)

cross-correlation of the variables x(t) and y(t)

(W) = power spectral density of x(t)
(W) = cross power spectral density of x(t) and y(t)
Subscripts:
k = a positive discrete variable denoting the degree
of weighting
n = a discrete variable denoting time absciséé
m = symbol denoting a maximumvvalue
N = the maximum value taken by n



Superscripts:

S

14l

symbol denoting an estimate

Operator's:

d

operator
operator
operator
operator

variance

of partial differentiation

of total differentiation

to indicate the expected value

to indicate the probability of an eveﬁt

operator



