
CORRECTNESS AND LEVEL OF INCDRREcrNESS

DETERMINATIOOS OF ProGRAM SEGMENTS;

FUNCTIOOAL EC.UNALENCE OF

MHLE-00 STATEMENTS

by

KAY ELLEN SlACK
II

Bachelor of Science

East Central Oklahoma State University

Ada, Oklahana

1984

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1988

Oklahoma State Univ. Library

CORRECTNESS AND LEVEL OF INmRRECTNESS

DEI'ERMINATiaJS OF PROGRAM SEGMEN'IS1

FUNcriCNAL ECUIVALENCE OF

"MUIE-00 STATEMENTS

Thesis Approved:

Thesis Advisor

Dean of the Graduate cOi ege

PREFACE

This study is concerned with the expansion of the Statements

Evaluation System which evaluates the functional equivalence of program

segments. Program segments are input by the student user and compared

to a set of expected responses (templates) developed by the instructor.

It is believed that such a system will aid the student user in gaining

knowledge through hands-on experience, and trial and error situations.

The motivation for this study was provided by my committee

members: Dr. Donald D. Fisher, Dr. K. M. George, Dr. Michael Folk.

The idea originated with Dr. Donald D. Fisher, who is my major advisor.

I would like to express my appreciation to each member for the guidance

he gave throughout this study. Finally, I would like to express my

gratitude to my family members and my current employers for their

support and encouragement.

iii

Chapter

I.

II.

III.

IV.

TABLE OF a:Nl'ENI'S

INI'IDWCTICN • • •
LITERATURE REVIEW . • • • •

Functional Equivalence • .
Review of the Original SES . .
Computer-Based Instruction • • . •

STATEMENI' OF THE PRCBLEM . . . •
DESI~ AND IMPLEMENI'ATICN . • • • • . •

. .

. . . •

. . •
• • . •
. • .
. . • .

. . . • •

. . .

. • .

Page

1

4

4
4
7

10

11

The CDRE Program Seg:nent • • • • • • • • • • • • 11
The CDRE Compiler • • • • • • • • • • • • 12

The Lexical Analyzer • • • • • • • • • • • • • • 12
YACC - Inp1.t Parsing • • • • • • • • • • • • 16

Equivalence Detennination • • • • • • • • • • • • • • 20
Preliminary Matching • • • • • 28
Basic Matching • • • • • • • • • • • • • 31
Functional Equivalence • 35

V. RESULTS OF THE SIUDY • • • • • • • 39

Equivalent and Nonequivalent Programs •
Suggestions for Future Study
Stnmary • • •••

BIBLIOGRAPHY
APPENDIX A - SES INSTRUCTOR' S OPERATICN MANUAL

APPENDIX B - SES SIUIENI' USER'S MANUAL

APPENDIX C - MINI -lANGUAGE CORE SYNTACTIC CATEGJRIES

iv

. . 39
42
43

44

46

59

68

Table

1.

2.

3.

4.

LIST OF TABLES

Numerical Representation of Token Sequence • • • • •

Quadruple Numerical Statement Identifiers ••

Internal Numerical Representation of Operators

Single Character Representation of CORE Operators

y

Page

14

19

25

27

Figures

1.

2.

3.

4.

5.

6.

7.

8.

LIST OF FIGURES

Information Flow of the Original SES

overview of Current SES •

The CORE Canpiler •••

Creating the Lexical Analyzer with LEX

Generation of Token Sequence

Program Transformation in the SES •

Pictorial DAG Representation of Array Information •

Phases of Equivalence Determination •

vi

Page

5

11

12

12

13

21

26

28

CHAPI'ER I

INI'R:>DUCTIOO

This paper investigates use of the computer to determine the

correctness of a program segment designed to perform a specific task

designated by a given set of instructions. The idea is to present the

user with a problem statement and evaluate his/her response against a

series of correct and incorrect templates. As opposed to requiring a

direct match to an existing template, this system attempts to determine

the functional equivalence of the program segnent. Determining

functional equivalence is a many faceted problem and is, in general,

unsolvable. Using such an approach, however, provides freedom for

expansion and enhancement of the user's current logical thinking

patterns while developing a program to perform the given task. This is

a definite advantage over conventional computer-based instructional

techniques which lnnit the user to choosing or developing a single

response as an exact match to a given answer. Soould a system such as

this be paired with the capabilities of artificial intelligence, a

powerful instructional tool could be developed for use in and out of the

conventional classroom setting. While the current system makes no use

of artificial intelligence responses to the user, it provides an

excellent base for such expansion. In addition to informing the user

that his/her program was found to be functionally equivalent to a

correct or incorrect response, the computer could detect errors in the

1

program segment, point these out to the user, and offer suggestions for

correction.

The current system, hereafter referred to as the Statements

Evaluation System (SES), is implemented to respond to the mini-language

CORE, developed by Ledgard and Marcotty (12). Specifications of this

language are provided in the appendix. The mini-language allows the

three basic classes of statements (assignment, iteration, selection),

but reduces the membership of the iteration class to one member, that of

the while loop. The language also restricts the usage of types to the

type integer. It does allow interactive progranming through the use of

the input/output statements, and allows nesting of if statements and

while loops.

The system in this project is an expansion of the original SES

developed by Tsang (3). There are a number of differences, including

the approach taken to solve the problem, and the addition of the while

loop to the system. The original system detennined equivalence for

assignment, declaration, and selection statements only.

As an example of the complexity of the problem of trying to

determine the correctness of a program segment, consider the problem of

summing the integers from one to ten. A number of different correct

segments exist which satisfy this problem. One correct segment which

might be used as a template against which responses are compared

follows.

program
declare x,y;
bag in

X := 0;
y := 0;
while x < 10 do

X := X + 1;
y := y + x;

2

end;
end;

Two other program segnents that might be generated to form the sum

are given below.

1) program
declare x,y;
begin

2) program

X := 1;
y := 0;
while x <= 9 loop

y := y + x;
X := X + 1;

end;
y := y + x;

end;

declare a,b,c,d;
begin

input a;
b := 10;
c := 1;
d := 0;
while (b >= a) loop

d := d + a;
a := a + c;

end;
end;

The above program segments are only two of the many variations that

could be presented as correct responses. The problem is to determine

whether a response program segnent is "correct" or "incorrect". The

student program segment is compared against a series of stored

comparison templates. Multiple correct and multiple anticipated

incorrect comparison templates are entered into the SES by an

instructor. A student response segment is compared with correct

comparison templates and if no match occurs, the response is compared

with any anticipated incorrect templates.

When considering the functional equivalence of loops, major factors

that must be considered are:

a) the initial value of variables,
b) the conditional operator,
c) the value of the condition variable,
d) the body of the loop,
e) any assignment statements preceeding

and/or succeeding the loop,
f) the number of iterations of the loop.

3

CHAPI'ER II

LITERATURE REVIEW

Functional Equivalence

In recent years interest and research in the areas of equivalence

and functional equivalence have increased. The equivalence problem is,

given two programs, to decide whether or not they produce the same

outputs for identical inputs (1). It has been shown that equivalence is

decidable for {x <- 1, x<- x + y, x <- x * y, x <- x/y J-programs

(straight-line programs) with one input variable (2). Work has also

been done to determine the equivalence of conditional statements and

loop statements. It has been stated that the equivalence problem for

loops is unsolvable (1). This paper deals with the topic of functional

equivalence, in particular with relation to the loop construct.

Throughout this study, the problem of functional equivalence will be to

decide whether two syntactically and semantically correct program

segments, written in the same language to perform the same task, produce

the same results.

Review of the Original SES

The original statements evaluation system was developed by Peter Yu

Yee Tsang. The idea itself originated with Dr. Donald D. Fisher and the

intent is to continually expand upon the system until it becanes one

that can be used as a teaching aid in both academic and industrial

4

fields. The initial SES, develoi;ed to run on an IBM PC, tests the

equivalence of the mini-language CORE declaration, assignment, and

selection statements. The system contains a lexical analyzer and

recursive descent parser written in the Pascal language. Expression

tables are used to determine functional equivalence. The stages of the

SES are as follows:

Input > lexical > token > parse
analyzer stream tree

> translator > declaration,
assigrrnent,
expression
tables

Figure 1. Flow of Control in Original SES

For example, to test the equivalence of the following two program

segments, the translator would build three tables, A, B, and c.

l) declare x,y;
x := y + z * w;

(for program 1) :

A. Declaration
Table

X

y
integer
integer

(for program 2):

A. Declaration
Table

y
X

integer
integer

B. Assignment
Table

X

B. Ass ignroent
Table

X

2) declare y;
declare x;
X := W * Z + y;

c. Expression
Table

y

0

z
w
0

c. Expression
Table

w

0

y
z
0

The rows of the expression table represent addition while the

columns represent multiplication. The last row is a sign bit for each

column. This bit is set to zero if the column value is positive, and

5

set to one if the column value is negative. TWo declaration tables are

equivalent if they have the same variables in their tables, regardless

of their order. Two expression tables are equivalent if they have·the

same elements, regardless of the order of the columns or order of the

rows of each individual column. If given the template:

program
declare x, y, z;
begin

X := Z + Yi
if x > y then

X:= Z * (y + 1);
else

X:= Z * (y- 1);
end if;

end;

the original SES would be able to determine that the following program

segments were equivalent to the template:

1) program 2) program
declare x,z,y; declare y,x,z;
begin begin

X := z + y; X := y + z;
if X > y then if x < y then

X := (y + 1) * z; X := z * (y- 1);
else else

X := y * z - 1 * z; X := (y + 1) * z;
end if; end if;

end; end;

The next segment would not be evaluated as equivalent to the template.

3) program
declare x,y.
begin

x := y + z;
if x > y then

X := Z * (y + 1);
else

X:= Z * (y- 1);
end if;

end;

The problem with segment number three (above) is that there is a

syntax error on the declaration line, that is, there is a period

terminating that line instead of a semi-colon. The original SES was

6

integrated with the compiler so that syntax errors and/or detectable

logic errors were output after a single pass through the program. The

current SES is designed to allow the user to debug his/her program by

sending it through a CORE compiler. When the program is syntactically

correct, the user must request the computer to compare the program

segment with the available templates.

Computer-Based Instruction (CBI)

Just as the widespread use of automobiles, telephones, airplanes,

and television changed the face of society and education, so too will

the computer revolution alter (at least indirectly) the nature of

instruction. Computer-Aided Instruction (CAI) offers many advantages

over the conventional methods of teaching while maintaining equivalent

levels of student performance. Currently, we may break down the areas

computers are affecting education into five major categories. The first

and most oammon is that of drill and practice. This technique starts

the student at a particular skill level and presents a set of problems

(sbnilar to that of a workbook). The student types in his/her response,

and the computer infonns the student if the correct answer was received.

If the answer was wrong, the camputer generally instructs the student to

try again. The second method of CAl is that of the tutorial. In this

situation, the computer instructs the student in some area of knowledge,

much in the same way an instructor would in a one-on-one situation. Of

course, the programmer must anticipate most of the potential responses

that the student might make in order to create a meaningful dialogue.

This is extemely difficult to do, requires more memory than is available

in most small computer systems, and takes a lot of field testing. The

7

third method, demonstration, makes use of one of the main features of

traditional teaching. Utilizing the color, graphics, and sound

potential of most small computers, software manufacturers are rapidly

developing demonstration packages that will soon make the overhead

projector obsolete. The fourth area is simulation. A simulation model

imitates a real or imaginary system based on the theory of the operation

of that system. Simulations focus the student's attention on certain

aspects of the process under investigation. The design and programming

of good computer simulations is very difficult. The last major

category is that of instructional games. These games are designed to be

'fun' for students and thereby increase the chance of their learning the

embedded concept.

The concept of using the computer as an aid to teaching is not new

to the industrial community. Its emergence in the field of education,

however, is relatively new. It is affecting the way students learn from

kindergarden to college. This is important as society is becoming

increasingly dependent upon computers. There is a growing need to

produce computer-literate students that will be able to function in such

a society.

Consider the use of computers in teaching computer programming.

This is a new area of educational computer use that is drawing interest

and research. There is evidence to suggest that students learn their

cognitive network for a programming language through experience rather

than actual classroom instruction. (8). This knowledge network is not

only syntax and semantics, but also involves constructs and concepts

which are not limited to a single programming language. Debugging

skills are also difficult to teach in a classroom. Most instructors

8

provide a few sbnple exercises and then hope that the students discover

the art of debugging on their own. It is a fact that much error

diagnosing with beginning computer science students occurs on a

one-to-one basis. It is not unoonmon to find a student who feels

completely inadequate until an experienced student or instructor

volunteers their expertise. Such assistance requires an enormous amount

of tbne. As sho.vn in a study by Farrell, Anderson, and Reiser (9),

however, a student who is working directly with the machine learns both

more quickly and more deeply than students in classrooms. Therefore, a

major goal of CAI in the field of oomputer science would be to capture

the instructor's expertise by oonstructing an intelligent computer-based

tutor that could help students. Such a program would give students the

hands-on experience they need, the individual attention they require,

and the encouragement to develop the proper knowledge network that is

demanded. Such is the goal of the SES. While yet in its early stages

of development, it already offers the student the ability to work

directly with the computer and gives feedback on the correctness or

incorectness of the submitted response. A major advantage over current

CAI packages is that the student does not have to give a specific

predetermined response. The SES is flexible in that:

a) it provides multiple templates that may be directly matched to the
students response, and

b) it does not require a direct match to any stored template, but is
able to determine if the response is functionally equivalent to
any stored templates.

Such a system will allow a student to develop his/her own style and

logical constructs. The student may submit multiple correct but

different responses to the same problem. Such flexibility is needed in

teaching the fundamentals of programming.

9

CHAPTER III

STATFNENI' OF THE PROBLEM

The purpose of this study is to develop a.portable program that

will detennine whether two input seg:nents, written in the mini-language

CORE and designed to perform the same task, will produce the same

results.

10

CHAPTER N

DESI~ AND IMPLEMENI'ATIOO

The CORE Program Segnent

Figure 2 presents a broad overview of the current SES design.

CORE program ->
segnent

CORE canpiler -> Equivalence -> Analysis of
Determination Program Segnent

Figure 2. OVerview of the Current SES

The input to the system is a program segnent written in the Legard

and Marcotty mini-language CORE. Specifications of the CORE syntax are

in Appendix C. The general design of a CORE program is as follows:

program
declare ... ;
begin
CORE statanents ~
end~

The program must be written in lowercase letters and all variables

must be declared in the 'declare' statanent. The maxlinum length of a

variable name is ten characters. The variable name may be canposed of

any canbination of letters, digits, and underscores (_), as long as the

first character is a letter. variable names may include capital letters

but the programmer must ranain consistent with the original name

throughout the program, i.e. the compiler will not make a distinction

between upper- and lower-case letters. The body of a CORE program may

11

consist of any combination of if, while, and assignment statements.

Each statement must be terminated with a semi-colon. There are no

procedures allowed. Nesting of if and while statements is allowed.

The CORE Compiler

The CORE compiler operates in the given manner:

CORE
SOURCE
CODE

The Lexical Analyzer

LEXICAL
ANALYZER

REGULAR
EXPRESSION
RECOGNIZER

INSTALL
TABLE

Figure 3. The CORE Compiler

ERROR
LISTING

12

The lexical analyzer is implemented using LEX, an automatic lexical

analyzer generator. LEX generates a program which recognizes regular

expressions. The LEX source (consisting of the user's regular

expressions and actions) is passed through the LEX compiler which

produces the lexical analyzer written in the C language (lex.yy.c).

LEX
SOURCE

LEX
COMPILER

LEXICAL
~------~~ ANALYZER

(lex.yy.c)

Figure 4. Creating the Lexical Analyzer with LEX

l3

The input text (CORE program) is then passed through the lexical

analy~r and a sequence of tokens is produced.

I CORE l
>I i I SOURCE lex.yy.c TOKENS

CODE I
Figure 5. Generation of Token Sequence

Each regular expression in the LEX source file has an associated

action which is to be executed when a token specified by that regular

expression is recognized. Execution occurs in the following manner.

The input is read, one character at a time, until it has found a match

to a regular expression (a token). Once a token has been found, the

analyzer executes the associated action. After completion of the

action, control returns to the parser where the next input characters

are read (5). In the case of the current SES, each action specified

passes a numerical indication of the token found to the parser and makes

an entry in the symbol table when appropriate. For example, the

following is a regular expression and associated action sequence

contained in the LEX source of the SES.

[a-zA-Z] (_? [a-zA-Z0-9]) * inbuf (yytext);
yylval = install(yytext,lOl,declr,

stmtctr,linectr);
return(ll4); l

The regular expression defined above will recogni~ any string of input

symbols that begins with an upper- or lower-case letter of the alphabet.

The character must be followed by zero or more instances of the

sequence: one (optional) underscore character followed by an upper- or

14

lower-case character or a digit. The associated action sequence places

the recognized token (yytext) into the input buffer, makes an entry in

the symbol table (install table), and returns the value of 114. This

value (114) is the numerical representation of an identifier name. A

complete listing of all recognzed tokens and their numerical

representations is given in Table 1.

TABLE 1

NUMERICAL REPRESENrATICN OF 'IDKEN SEQUENCE

'IDKEN NUMERICAL
NAME REPRESENrATICN

BEGIN 101
DECIARE 102
EISE 103
END 104
ENDIF 105
ENDLCX>P 106
IF 107
INPUT 108
LOOP 109
OUTPUT 110
PROGRAM 111
THEN 112
WIILE 113
ID 114
OJNST 115
OPEN 116
CLOSE 117
MULT 118
PLUS 119
MINUS 120
DIV 121
LT 122
LE 123
NE 124
GE 125
GI' 126
EQ 127
CEQ 128
SCOLCN 129
OJMMA 130

15

The symbol table, hereafter referred to as the install table, keeps

a separate record for each identifier name and constant that is used in

the program. Each record consists of four fields: name, value, stmtnum,

and linenum. A description of the content of each field follows.

Name holds the name of an identifier or constant. The maximum
length of an identifier is ten characters. In the case of
an identifier, this field contains the actual identifier
name, in the case of a constant, it holds the character
equivalent of the constant, such as '10'.

Value Gives the index position in the install table of the first
occurrence of the constant or variable. Entry is a -1 if the
current entry is the first entry.

Stmtnum - Gives the statement nunber in the source program that
contains the current variable or constant reference.

Linenum -- Gives the line number in the source program that contains
the current variable or constant reference.

As an example, given the program statements below, the

corresponding entries would be made in the install table.

progran
declare x;
begin

X := 0;
X :=X + 1;

end;

(Index Name Value Stmtnum Linenum
Position)

0 X -1 1 4
1 0 -1 1 4
2 X 0 2 5
3 X 0 2 5
4 1 -1 2 5

The data stored in the install table is used in the equivalence

determination section of the system. Therefore, its contents are output

to an external file. The name of the student's file is 'install.stud'.

Because the instructor may enter many templates, each template file's

16

prefix is appended to an extension of '.nst'. For example, if the

instructor entered a template stored in the file 'templatel.cor' then

the name of the corresponding install table data file would be

'templatel.nst'.

YACC - Input Parsing

In order to complete the CORE compiler, the tool YACC was used.

YACC is an automatic parser generator and is an acronym for 11 Yet Another

Compiler Compiler11 • YACC controls the parsing of the input. It makes

successive calls to the lexical analyzer, obtaining a token as the

result of each call. These tokens are organized according to the

grammar rules supplied by the programmer. When a rule has been

recognized, an associated programmer-defined action takes place. YACC

requires that every specification file consist of three sections: the

declarations, grammar rules, and programs. The sections are separated

by double percent (%%) marks. An overview of a full specification file

would look like (6):

declarations
%%
gramnar rules
%%
programs

The declaration section may be left empty. However, YACC requires

token names to be declared as such. This is done by sbnply specifying:

%token namel name2 •••

For example, the token PROGREAM is specified as:

%token PROGRAM

As was stated earlier, the lexical analyzer returns a numerical

indication of the recognized token. For this reason, the specification

17

of tokens as they appear in the CORE compiler are slinilar to:

%token PROGRAM 123

where 123 is the numerical indication passed by the lexical analyzer.

When specifying the grarrmar rules, each rule has the form:

A : BODY ;

where A represents a nonterminal name, and BODY represents a sequence of

names and literals. The names represent terminals or nonterminals, and

may be composed of letters, periods, underscores, and digits. A literal

is a character enclosed in single quotes. In general, a grammar

involves four quantities: terminals, nonterminals, a start symbol, and

productions. The productions define the ways in which the nonterminals

may be built up from the terminals and other nonterminals. The start

symbol denotes the language of interest and is presurnmed to be the left

hand side of the first grammar rule in the rules section. The central

idea in defining a language is to repeatedly apply the productions to

expand the nonterminals into a string of nonterminals and terminals.

For example, consider the following specification:

(l) A-> X
(2) X -> a b

The symbol'->' is read as 'derives'. Therefore, production number one

(above) tells us that A derives X. This means that we can replace one

instance of X with any string that X derives. For example, we might

replace X in production number one with the 'a' from production number

two. A sequence of such replacements is termed a derivation. In the

YACC specification, the '->' symbol is replaced by the colon. The ' I'

symbol separates string that may be derived from a single nonterminal.

The following specification appears at the beginning of the grammar

rules section in the CORE compiler.

prog

program

program
decseq
reg in
stmtseq
end SCOLrn
empty

PROGRAM
f quadgen(quadnum++,l,O,O,O,O);l

The start symbol is 'prog'. It is defined as being the derivation of

each of the nonterminals: program, decseq, regin, stmtseq, and end, and

18

the tenninal SCOLON. Alternately it may be empty, which means it has no

program body and is therefore deemed an error. The nonterminal

'program' derives the tenninal PROGRAM which would be matched by a token

sent from the lexical analyzer (identified in the example by capital

letters). In each grammar rule, associated actions are specified in

brackets f 1. In the above example, there is an action associated with

the nontenninal 'program'. It is a temporary transfer of control to the

procedure 'quadgen' • This procedure is cxxied in the 'programs' section

of the YACC specification file. Its purpose is to generate the

intermediate cxxie and is discussed subsequently in this paper.

If at any point the parser is not able to complete its derivation

sequence, this indicates that a token has been found for which there is

no corresponding match. This indicates an error. All errors are passed

to the error routine with a number indicating the type of error. An

appropriate error message will be generated to the user.

In addition to the install table data, the compiler also produces a

file of intermediate code in the fonn of quadruples. The student

quadruples appear in the file 'outquad.stud'. The instructor's

quadruples appear in the file with the original program's prefix and the

extension '.oq'. For example, if the original program were stored in

19

the file 'templatel.oor' then the corresponding quadruples would be

stored in the file 'teriplatel.oq'. Each quadruple is linplemented as a

record with four fields: operator, argument one, argument two, and

result.

Quadruples are a form of three-address code which is a sequence of

statements, generally in the form of A := B op C. A, B, and C are

either user-defined names, constants, or compiler-generated temporary

names. 'Op' is any operator or logical operator. In the statement 'A

: = B + C' , B would be stored in argument one, C would be stored in

argument two, A would be stored in the result field, and the appropriate

representation of addition would be stored in the op field. In the

current CORE compiler, what is actually stored in the quadruple record

is the install table index of the current operand. That is, in the last

example, the install table index of B would be stored in argument one.

Each operation also has its own numerical representation. For example,

the representation of'+', or addition, is '11'. A complete listing of

11 possible quadruple statement and operation representations is given

in Table 2.

TABLE 2

QUADRUPLE NUMERICAL STATEMENT IIENI'IFIERS

IIENI'IFIER

1
2
3
4
5

STATEMENT
REPRESENI'ATIOO

'Program•
'Begin'
'End Loop'
Assignment

'If/Then'

TABLE 2 (continued)

IIENTIFIER

6
7
8
9

10
11
12
13
15
16
17
18
19
20

STATEMENT
REPRESENTATIOO

Greater Than
Equal
Not Equal
Less Than
Multiplication
Addition
Subtraction
While Loop

'Else•
'Input •
•output•
Less Than/Equal
Grtr Than/Equal
End

Equivalence Detennination

While the above section, that of the CORE canpiler, was completed

in the C language, the system section that determines functional

equivalence is written in AU\. It consists of twelve separately

20

compiled packages, and a main program (this does not include the student

or instructor menus). The first package, package type_definitions,

consists of all the user-defined types needed to complete the system.

The system is supported entirely by arrays, that is, there are no

dynamic variables. In all, eight arrays are implemented. The program

reads in the quadruples produced by the compiler and converts them into

expression tables. The process of transformation is shown in Figure 6.

QUADRUPLES ~ BASIC BLOCKS ~ DAGS ~ EXPRESSION
TABLES

Figure 6. Program Transfonnation in the SES

The type_definitions package is followed by an initialization

package which initializes each element in many of the arrays. Also, a

utility package exists which holds various utility programs that are

helpful such as char_to_integer which converts a character string to an

integer value. The actual equivalence determination begins with the

reading of each external file that holds the quadruples. Each file is

read into an array of type 'quadprog'. Each entry in the array is a

record which contains the following fields:

op
argl
arg2
rslt
martr

integer
integer
integer
integer
integer

The fields 'op', 'argl', 'arg2', and 'rslt' each hold the install

table index of their corresponding operands. All fields are initially

21

set to zero. The 'markr' field will be used at a later time to mark the

leaders of basic blocks. After the quadprog has been successfully

filled, the quadruples are optimized and decomposed into basic blocks.

Package quadruple_transformer contains the procedures and functions

necessary to make these transformations. This is best explained with an

example. Consider the following CORE program and its corresponding set

of quadruples.

CORE Program

program
declare a,b,c;
begin

(1) a := 5;
(2) b := 5;
(3) c :=a + b;

end;

Install Table

Index Name
1 a
2 5
3 b
4 5
5 c
6 a
7 b
8 #1

Value
-1
-1
-1

2
-1

1
3

-1

Statement number one in

(1)

(2)
(3)
(4)
(5)
(6)
(7)

the

22

Quadprog Array (Quadruples)

Op Argl Arg2 Rslt Markr

1 0 0 0 0
no quadruple for 'declare•

2 0 0 0 0
4 2 0 1 0
4 2 0 3 0
4 1 3 8 0
4 8 0 5 0

16 0 0 0 0

Stmtnun Linen urn
1 4
1 4
2 5
2 5
3 6
3 6
3 6
0 0

above program (a := 5) corresponds to

quadruple number three. The •op• field contains the value of four which

indicates an assignment. 'Argl' contains the value two. Index position

two of the install table contains data on the constant five. The •rslt'

field contains the value of one which refers to index position one of

the install table which holds data about variable •a•.

The first optimization routine removes the •trivial' quadruples.

These are the first two and the last quadruple of every set. These

represent the •program•, 'begin', and •end' statements respectively.

The second optimization technique handles the situation that occurs as a

result of an assignment such as the one in statement number three of the

program. If one assignment statanent has two (or more) operands, there

is an extra quadruple produced. In statement number three, • c : = a +

b', •a• and 1 b 1 are added together and stored in a compiler-generated

tanporary position. These tanporary positions are designated in the

install table by a '# 1 character prefix. After the sum of •a• and 'b'

is stored in temporary '#1 1 , an additional quadruple is generated that

places the value in temporary '#1 1 into the original result •c• (or

index position five in this case). Optimization takes place by

eliminating this extra quadruple. The temporary reference (in the

•rslt' field of quadruple number five) is replaced by the •rslt' field

of quadruple number six. The resulting set of quadruples appears as:

Op

4
4
4

Arg1

2
2
1

Arg2

0
0
3

Rslt

1
3
5

Markr

0
0
0

After the quadruples are optimized, they are divided into basic

23

blocks. A basic block is a sequence of statements which is entered only

fran the beginning, that is, there is no possibility of branching within

the block. In order to partition a set of quadruples into basic blocks,

the leaders (first statement of each basic block) must be determined.

The rules for determining leaders are as follows (4):

a) the first statement of a set of quadruples is a leader;

b) any statement which is the target of a conditional or unconditional
goto is a leader;

c) any statement which bronediately follows a conditional goto is a
leader.

Each leader is found and marked with a one in its 'markr' field.

After all have been found, they are entered into an array called

'leaders •.

The next step was to represent each basic block with a directed

acyclic graph (~G). ~Gs are useful data structures for analyzing

basic blocks. They reveal corrmon subex.pressions within a block, the

names that are used inside the block but evaluated outside the block,

and which statements of the block could have their value used outside

the block. A nAG is constructed as follows:

a) leaves are labeled by unique identifiers, either variable names or
constants;

b) interior nodes are labeled by operator symbols

c) nodes are assigned a set of identifiers as labels.

As an example, consider the following two expressions:

a := x + y;
b := X + y;

The expression for 'b' is a duplicate of the expression for 'a'

(assuming for the sake of the example that the statements are

consecutive and the values of 'x' and 'y' remain constant). The

attached identifier list for the expression 'x + y' would consist of

roth identifiers 'a' and 'b' • The expression would only be represented

once within the nAG.

The nAG's were conStructed using algorithm 9. 2 of Aho, Sethi, and

Ullman (4). Procedures and functions used to create the nAGs are

contained in the create_DAGS package. As a result two arrays,

'identifiers' and 'nodes', are filled with data aoout the basic block.

Both arrays contain records, the contents of each are explained below.

Identifier Array

24

nndx an index into the node array which represents the node to who's
list this identifier belongs;

name

block

the name of the identifier (represented as an index into the
install table) ;
the nunber of the current basic block.

Node Array

nname
left
right
block

. .
the name of the node (represented as an integer, see table 3);
the left child of the node;
the right child of the node;
the number of the current basic block.

Continuing with the previous example, the contents of the arrays

25

"WOuld be:

Identifier Array Node Array

Nndx Nmre Block Index Nnaire left Right Block

l 1 1 1 -4 2 0 1
l 3 l 2 -11 1 3 1
2 5 l

Recall that the contents of the 1 name 1 field in the identifier

array is actually an index into the install table, likewise with the

1 left 1 and 1 right 1 fields of the node array. The negative four and

negative eleven in the 1 nname 1 fields of entries one and tw::> in the node

array represent operators. "As shown in Table 3, they stand for

assignment and addition respectively.

TABLE 3

INTERNAL NUMERICAL REPRESENTATION OF OPERATORS

OPERA'IDR

- 4
- 6
- 7
- 8
- 9
-10
-11
-12
-16
-17
-18
-19

OPERATION

"Assignment
Greater Than
Equal
Not Equal
less Than
Hultiplication
Addition
Subtraction
Input
Output
less Than/Equal
Greater Than/Equal

Since the program "WOrks exclusively with integers as oprx:>sed to actual

names (such as the identifier 'a 1) there arose a need to distinguish

between constants and identifiers whose integers represented install

table indices, and the integers which represent operators. The logical

26

solution to this was to make the operator representatives negative

nunbers, since an index can never be negative. In order to demonstrate,

shewn below is the oontents of the arrays as they would appear if the

actual identifier, constant, and operator names were used.

Identifier Arra:L Node Array

Nndx Name Block Index Nname Left Right Block

1 a l l := 5 0 l
1 b l 2 + a b 1
2 c 1

The information represents the following nAGs (in pictorial form):

c

Figure 7. Pictorial DAG Representation of Array Information

From this new information we are able to construct expression

tables for both the instructor and student programs. Functional

equivalence is determined through a comparison of these two tables. An

expression table is actually an updated version of the quadruples that

were read previously. Once again, the expression table is an array of

reoords, each of which has the following structure:

id

left

right

op

block

holds the install table index value of the resultant
identifier (in the statement 'a := b + c', 'a' would be
represented by this field);

the left operand corresponding to the 'id' field;

the right operand oorresponding to the 'id' field;

the statement operator;

the block number in which this statement appears;

match this field tells if a match has been found for this statement
(explained subsequently in this document).

In addition to install table indices, the 1 id 1 field also

designates the beginning and end of control staterrents (if and while

statements). '!he 1 id 1 field appears as a negative three (-3) at the

27

beginning of a while staterrent and a negative thirteen (-13) at the end

of the loop. Likewise, the beginning of an if staterrent is marked by a

negative five (-5) and the end is signalled by a negative fifteen (-15).

The 1 op 1 field is a type character field which holds a single character.

Therefore, for operands such as 1 () 1 , 1 : = 1 , 1 (= 1 , 1) = 1 , a single character

representation was required. Table 4 shows the representations of each

existing operator used in this program.

TABLE 4

SlliGLE CHARACTER REPRFSENI'ATION
OF CORE OPERA'IDRS

OPERA'IDR REPRFSEI:\JTATION

+ +

* *
:=

< <
))

<> I
<= (
)=)

Continuing with our example, the contents of the expression table w:Juld

become:

Id left

a 5
b 5
c a

Right Op

0 :=
0 :=
b +

Block

1
1
1

Match

0
0
0

Or Equivalently (actual internal represent at ion) :

Id Left Right Op Block Match

1 2 0 l 0
3 2 0 l 0
5 l 3 + l 0

After the expression tables have been filled, equivalence determination

can oogin. In all, the program makes three distinct passes through the

data in an effort to determine equivalence:

expression
tables

preliminary
> matching

basic
> matching

functional
> equivalence >

Figure 8. Phases of Equivalence Determination

Preliminary Matching

results

The procedure responsible for the preliminary matching is one

28

called 'mark_matches', found in the match_maker package. It attempts to

match those expressions that are 'direct' matches, that is, they need

little checking. In this and all succeeding determination attempts,

expressions with the operator of,~, (or':=') are not compared. This

is because this operator only appears with direct assignment statements

such as 'a:= 5'. To require a direct match would exclude statements

such as 'a := 3 + 2' which is equivalent. There are points in the

determination process when the knowledge of an initial value of a

variable needs to be known, but this can be determined by the

combination of two functions, find_index and compute, to be discussed

later. In order for a match to occur at this point in the process, two

expressions must have the same operators and have the same corresponding

basic block nunber. Throughout the remaining examples, the operand 'x'

29

will be assigned as the instructor's variable and the operand 'y' will

appear as the student's variable. The operand 'z' will appear as an

universal identifier.

The first check that is made is one that determines if the

identifier being calculated also appears as an operand in the same

statement. For example, 'x := x + z'. If so, the student statement

must also conform to this rule as in 'y := y + z'. Assuming for the

moment that both statements fall into this category, the following

possible operand combinations must be considered.

X := X + z; y := z + y; -GR-
X := X + z; y := y + z; -GR-
X := z + x; y := z + y; -GR-
X := z + x; y := y + z;

This is, of course, assuming the operator is that of addition or

multiplication which allows the operands to be in any order because of

the commutative property of both operators. In the case of subtraction,

corresponding operands must be in corresponding positions.

X := X - z;
x := z - x;

y := y - z;
y := z x;

Also, since the CORE language allows for run-tDne assignment of

variables through the 'input' statement, the possibility that x, y, or z

may be input by the user also must be considered. Given that the

variable 'z' has a direct assignment of ten in the instructor's program

and the student's variable 'z' is input during run-time, the benefit of

the doubt is given to the student. That is, it is possible to input ten

when prompted. Therefore, any input variable is considered to be

equivalent to a directly assigned variable throughout the program.

When checking contDJl statements during this phase, the conditional

variables must be the same.

while (x < z) loop
while (x < z) loop
while (z > x) loop
while (z > x) loop
if (x < z) then
if (x < z) then
if (z > x) then
if (z > x) then

while (y < z) loop
while (z > y) loop
while (y < z) loop
while (z > y) loop
if (y < z) then
if (z > y) then
if (y < z) then
if (z > y) then

For any of the above statements to be oonsidered equivalent, the last

30

assignment into the variable 'x' must match the last assignment into the

variable 'y' and the last assignments into both variables 'z' must

match. That is, the programs in segnent 'A' below would be considered

equivalent, while the programs in segnent 'B' would not.

(A)

(B)

program (instructor's)
declare x, z;
begin

X := 1;
z := 10;
while (x < z) loop

X := X + 1;
end loop;

end;

program (instructor's)
declare x, z;
begin

X := 1;
z := 10;
while (x < z) loop

X := X + 1;
end loop;

end;

program (student's)
declare y, z;
begin

y := 1;
input z;
while (z > y) loop

y := 1 + y;
end loop;

end;

program (student's)
declare y,z;
begin

y := 1;
z : = 11;
while (z > y) loop

y := y + 1;
end loop;

end;

The function that aids in detennining the current variable at a

given point in the program is called find_index. It performs a search

of the expression table and returns one of the values given below.

A positive number

-10

-16

indicates an index in the install table (meaning
the variable has a direct assignment as in 'x :=
5 I) i

indicates the value is computed, as in the case
of 'x' in the expression 'x := 5 + z';

indicates the value of the variable is input
during run time as in the statement 'input x';

31

-1 indicates that the value of the variable is
computed within a control statement as is 'x' in:
while (z < 10) loop

z := z + 1;
x := z + x;

end loop;

During this prellininary phase, all values must have direct assignments

in order to be considered equivalent. In other words, find_index must

return a positive number for each variable. To illustrate, the

folla.ving programs would not be considered equivalent (at this point):

program (instructor's)
declare x, z;
begin

X := 1;
z := 10
while (x < z) loop

X := X + 1;
end loop;

end;

program (student's)
declare y,z;
begin

y := 1;
z : = 5 + 5;
while (y < z) loop

y := y + 1;
end loop

end;

If a match between two statements is found, then the 'match' field

of the student's expression table is set to one. The 'match' field of

the instructor's expression table is set to the index position of the

statement in the student's expression table that it matches.

Basic Matching

The second attempt at matching the two program segments is driven

by the procedure campare_tables in the program_evaluator package. The

matching that occurs in this section of the program is an extension of

that done in the prellininary matching. It passes through each

instructor statement that has a zero in its 'match' field (thereby

indicating that this statement has no match) and attempts to locate a

slinilar statement in the student's program. In order to do this, it

calls a function find_an_expr_to~atch which returns an index into the

student's expression table of a possible statement. If the instructor

32

student's expression table of a possible statement. If the instructor

statement in question is located within a control statement, then an

attempt is made to find a snnilar statement within the corresponding

student's control statement. (Obviously if the student has no control

statement no statement is suggested for matching). If the instructor's

statement is not within a control statement, the functon first checks

the corresponding block number for a match possibility. If none is

found, the function returns any statement (that is not within a control

block) that is slinilar. If a student statement is located and an

unsuccessful attempt is made at matching, the program continues down the

student's available candidates and the process is repeated until a match

is found or all possibilities have been exhausted.

The matching at this phase is more complex than that of the

previous phase due, in part, to the capabilities of the function

canpute. If the find_ index function returns a negative ten, canpute

makes an attempt to detennine the value computed for a particular

variable. Take the following two segments as examples.

(A) program (B) program
declare x,y,z; declare x,y,z;
begin begin

X := 5; input x;
y := X + 3; y := X + 3;
z := y + x; .z := Y + x;

end; end;

The compute function would be able to determine that the variable 'z' in

segment 'A' had a value of thirteen, and the variable 'z' in segment B

could have any possible value. Compute returns an actual value as

opposed to an index. The problem that arises with this is that it

needed to return a value that would properly indicate an unsuccessful

attempt to locate an actual value. In segment 'B' above, the value

returned by compute is negative sixteen, which indicates the value was

input at some point and may hold any integer. The problem lies in

determining whether negative sixteen indicates an input variable or is

the actual value assigned to same variable. The problem was solved

through the use of a boolean status flag. This flag holds a single

character with the following meanings:

IRI

I I I

INI

•x•

returning a value assigned to a variable:
value was input from the user at some point:
last value assigned was inside a control block therefore
is not computable:
value can not te determined.

Canpute would return an 1 I 1 for cases such as the last example, and an

•x• for situations such as the one presented below.

program
declare x,y,z;
tegin

X := 1;
input y;
while (x < y) loop

X := X + l:
end loop:
z := x; <--- (a)

end;

33

In statement •a• above, neither the value of •x• nor the value of •z• is

canputable.

Another factor that gives power to this phase of determination is

that involved with finding the last reference to a variable. Consider

the follooing two segments:

(A) program (instructor•s) {B) program (student • s)
declare x, z: declare y, z;
tegin begin

X := l; y := l:
while (x < 10) loop while (10 > y) loop

(a) z := z + x; (b) z := z + y;
X := X + 1; y := y + 1;

end loop: end loop:
output z; output z;

end; end;

34

When trying to match the output statements, the value of 'z' is not

directly computable. If, however, it can be found that the last

reference to 'z' in the instructor's program was a match to the last

reference of 'z' in the student's program, then it can be assumed that

the current 'z's are equivalent. Since the 'match' field of the

instructor's expression table holds the index of the statement it

matches in the student's expression table, the best way to determine the

last reference is to search the instructor's expression table to see if

the last reference to 'z' had a student statement match. That is, if

statement 'a' in the above instructor's program was already matched to

statement 'b' in the student's program, then it can be assumed that the

output statements work with the same variable.

The ability to continue a search aids in the comparison of control

statements, as shown:

(A) program (instructor's)
declare w,x,y,z;
begin

X := l;
y := 0;
z := 0;

(1) while (x < 10) loop
y := y + x;
X := X + 1;

end loop;
w := 10;

(2) while (w < 20) loop
w := w + l;
z := z + w;

end loop;
end;

(B) program (student's)
declare a,b,c,d;
begin

a := 10;
b := 0;
c := 0;

(1) while (a < 20) loop
a := a + 1;
b := b + a;

end loop;
c := 1;

(2) while (c < 10) loop
d := d + c;
c := c + 1;

end loop;
end;

The above program segments are equivalent. The SES is able to decide

this by matching loop number one of the instructor's program to loop

number two of the student's program, and vice versa.

35

Functional Equivalence

The third and final phase of equivalence determination attempts to

match any instructor's statement that has not been previously matched.

There are separate attempts at matching the expression, select, and

iteration statements. The idea at this step is to allow for different

thought patterns in the design of the program segments. The package

that contains the functions and procedures for this phase is the

equiv_chk package. It considers variations that may occur in the if,

while, and expression statements. For example, when considering a loop,

the following variation may occur:

program (instructor' s)
declare x,y,z;
reg in

X := 0;
y := 0;
z := 10;
while (x < 10) loop

X := X + 1;
y := Y + z;

end loop;
end;

program (student's)
declare a,b,c;
reg in

a := 1;
b := 0;
c := 10;
while (a < 10) loop

a := a + 1;
b := c + b;

end loop;
b := c + b;

end;

In the above example, the student's loop executes one less time than the

instructor's. The program is equivalent, however, because the pertinent

statements in the loop body have been executed outside the loop to make

up the difference. In order to determine equivalence, the nunber of

times each loop executes is evaluated. Then data on the loop control

variable must be gathered. Among other things, it must be determined if

the loop control variable is used in the calculations of other

statements within the body. If so, its position relative to the other

statements must be considered. For example, consider the template

segment that follows.

36

X := 0;
while (x < 10)
loop

X := X + 1;
y := y + 1;

end loop;

The two following segments are equivalent variations:

a) X := 1; b) X := 0;
while (x < 10) while (x <= 10)
loop loop

y := y + x; X := X + 1;
X := X + 1; y := y + x;

end loop; end loop;
y := y - x;

The number of iterations of the student and instructor loops must be

determined. If the student's loop executes more times than the

instructor's, there must be statements outside the loop that will negate

the action(s) that occurred within the loop. If the student's loop

executes fewer times than the instructor's, there must be statements

outside the loop that complete the actions of the body.

When questioning the equivalence of expression statements at this

phase, the different ways of writing the same expression must be

considered. In the preceeding phases, the equivalence of operands and

operators were considered. The sequence 'x := 10; y := 5; z := x + y;'

was considered equivalent to 'y := 5;, x:= y + y; z := x + y;' because

the values of 'x', 'y', and 'z' were equivalent, as was the operator of

the expression evaluation into 'z'. When evaluating the following two

statements: 'x := y + y' and 'x := y * 2', the values of the 'x'

variables must be evaluated. Before evaluation, it must be confirmed

that the last references to the resultant identifiers were matched. If

this can be determined and the evaluation of the expressions are the

same, it may be assumed that the statements are equivalent.

The factor to be considered when determining the functional

37

equivalence of the •if/else• statement is that of the reverse

positioning of the condition operands. If the operator is the same but

the operands have reversed positions, then the expressions that occur

within the body of the statement must be reversed respective to the

operands. As an example, consider the follCMing:

a) if (x > y) then . b) if (y > x) then
z := z + x; z := z + y;

else else
z := z + y; z := z + x;

end if; end if;

It should be injected at this point that there may be numerous

distinct correct answers to a programming problem. It is not realistic

to expect the SES to recognize all correct solutions. Many common (and

same uncammon) variations that may occur in student responses were

studied previous to the developnent of the current SES. As a result, it

is aole to detect and accept many functional equivalences. A factor

that aids its detection capabilities is the capacity to store many

templates. This significantly raises the probability that a match

(between a student response and a stored template, whether correct or

incorrect) may be found. Consider the stored templates that follow.

Each is designed to compute the product of the numbers one to ten.

Correct:

a) X := 1; b) X := 2;
y := 1; y := 1;
while (X < 11) loop while (X < 11) loop

y := y * x; y := X * y;
X := X + 1; X := X + 1;

end loop; end loop;

c) X := 1; d) X := 2;
y := 1; y := x;
while (x <= 10) loop while (x <= 10) loop

X := X + 1; X := X + 1;
y := y * x; y := y * x;

end loop; end loop;

Incorrect:

e) X := 0; f) X := 1;
y := 0; y := 1;
while (x < 11) loop while (x <= 11) loop

X := X + 1; X := X + 1;
y := y * x; y := y * x;

end loop; end loop;

The following program segment, which is a correct response to the

problem, would not be correctly matched to templates a, b, or c. It

would, however, be matched to ta:nplate d. As a result, the student

would be informed that he/she had submitted a correct answer to the

given problem.

X := 2; y := 2;
while (x < 11) loop

X := X + 1;
y := y * x;

end loop;

The next segment is an example of a response which would be matched to

an incorrect response. The segment would match template e and the

student would be informed that the submitted response was not a correct

solution to the given problem.

X := 0; y := 0;
while (x <= 10) loop

y := y + x;
X := X + 1;

end loop;

38

CHAPTER V

RESULTS OF THE STUDY

Equivalent and Nonequivalent Programs

Given are some examples of programs that are determined to be

equivalent to their corresponding templates. In the samples that

follow, each instructor's program is considered to be a correct

template. It should be stated that the instructor is also allowed to

sutmit an incorrect tenplate for comparison. If a student • s input

program segnent is equivalent to a correct template, a message informing

him/her of a correct response is displayed along with the point value of

a match to the template. If an incorrect response is sutmitted and

matched, a message informing the student that his/her response is

incorrect is displayed along with any points that may be available for

the match.

Instructor's Template

a) program
declare x,y;
begin

X := 0;
while (x < 10)
loop

X := X + 1;
input y;
if (y < 0) then

output y;
end if;

end loop;
end;

39

Student's Program

program
declare x, y;
begin

X := 1;
while (x <= 10)
loop

X := X + 1;
input y;
if (0 > y) then

output y;
end if;

end loop;
end;

b) program
declare x,y;
begin

X : = 0;
y : = 5;
while (x < 10)
loop

X := X + 1;
y := y * 2;

end loop;
output y;

end;

c) program
declare x,y,z;
begin

X := 2;
y := 5;
z := 5 * (x + y);
output z;

end;

d) program
declare x,y,z;
begin

X := 10;
z := 5;
y := X + z;
if (y > x) then

z := 20 + x;
else

z := 20 + z;
end if;

end;

e) program
declare w,x,y,z;
begin

w := 1;
X := 0;
y := 1;
z := 2;
while (x < 10)
loop

X := X + l;
y := y + x;

end loop;
while (w < 5)
loop

w := w + 1;
z := z * 2;

end loop;
end;

program
declare a,b;
begin

a := 5;
b := 0;
while (b < 10)
loop

a := a + a;
b := b + 1;

end loop;
output a;

end;

program
declare a,b,c;
oogin

a := 2;
b := 5;
c := (5 *a) + (5 *b);
output c;

end;

program
declare x,y,z;
begin

z := 5;
X := Z * 2;
y := x + z;
if (x > y) then

z := 20 + z;
else

z := 20 + x;
end if;

end;

program
declare a,b,c,d;
begin

a := 1;
b := 2;
while (a < 5)
loop

b := b + b;
a := a + 1;

end loop;
c := 0;
d := 1;
while (c < 10)
loop

c := c + 1;
d := c + d;

end loop;
end;

40

41

While the SES is capable of matching many general program segments,

it is not reasonable to expect perfection. The determination of

functional equivalence is, in general, unsolvable. The SES assumes that

the instructor will provide a variety of program templates, both correct

and inoorrect, of expected resfX)nses. It is also assumed that the

student will put thought and consideration into the design of his/her

program segment.

Given belo.Y are sane examples of the types of program segments that

the SES will not compute as matches.

program (instructor's)
declare x;
begin

X := 0;
while (x < 5) loop

X := X + 1;
end loop;

end;

program
declare a;
begin

a := 0;
a := a + 1;
a := a + 1;
a := a + 1;
a := a + 1;
a := a + 1;

end;

The program will not extend the body of a loop to match a sequence of

expressions.

program (instructor's)
declare x, y, z;
begin

X := 1;
y := 5;
z := 5;
while (x < 10)
loop

X := X + 1;
y := y + z;

end loop;
end;

<--a
<-- b

program
declare x, y, z;
begin

X := 1;
input y;
input z;
while (x < 10)
loop

y := y + z;
X := X + 1;

end loop;
end;

<-- c
<- d

The problem with the above samples is that caused by the assumption

placed on input variables. It must be assumed that the user will input

the correct values for the identifiers, therefore, an input variable is

an automatic match to any value. Since the program attempts to match

42

expressions in the order in which they are presented, statement 'a' is

first paired with statement 'c'. This produces a match because both the

variables in expression 'c' have their values input. It is possible

that these statements match. As a consequence, however, the statements

'b' and 'd' are not matched because they are not equivalent.

As another precaution, it should be noted that the nesting of if

and while statements will produce unpredictable results. The nesting of

a single if statement within a single while statement is permitted.

Depending on the arrangement of statements, however, the combination and

nesting of these statements causes inconsistencies in the progam.

Suggestions for Future Study

It is highly reoammended that development of the SES continue.

This project has much potential. When deciding whether two program

segments will produce the same output values no matter their design, the

question canes to mind "Is that not the purpose of a canpiler"?

Perhaps, but the compiler fails in many ways when compared to the

possibilities of the SES. A compiler may aid in the development of

basic debugging skills, but it offers no help to the student who is

struggling to develop the knowledge network required for efficient

structured programming. In srort, it is not a teacher. The SES on the

other hand allows the user to read a problem instruction and toy with

the many solutions to it. This will encourage exploration and

development of basic thought patterns as well as the knowledge of basic

constructs (such as condition and iteration statements). It is

suggested that the next step in development is the incorporation of the

current SES into an expert system. The program developed in this study

will provide an excellent base for such a system. Due to the design of

the current SES, logic errors may easily be detected during the

evaluation of the program segment. It is suggested that an appropriate

dialogue be developed that will inform the student of his/her error and

suggest methods of correction •. It would be advantageous to the student

if the SES were interactive and would alla.v changes to be made as the

errors were detected.

Surmnary

43

The purpose of this study is to expand the original Statements

Evaluation System to include the evaluation of the 'while loop'

statement. The system alla.vs an instructor to enter multiple questions

and template answers. These templates may be (logically) either correct

or incorrect. The syntax, ha.vever, srould be consistent with that of

the mini-language CORE. These templates are compiled into intermediate

code and stored for use later as a functional equivalence evaluation

factor. The student user is presented a menu (as developed by the

instructor) fran which he/she can choose one of a maxbnum of twenty

available options. Once an option is selected, the student is presented

a set of instructions to follow in developing a program. Once the

student has developed a syntactically correct program segment, he/she

may sutmit it for evaluaion. An appropriate response informing the

student of a match to a correct template, a match to an incorrect

template, or the inability to match to either a correct or incorrect

template is displayed.

BIBLIOGRAPHY

1) Ibarra, Oscar H., and Rosier, Louis E., "The Equivalence Problem
and Correctness Fonnulas for a Simple Class of Programs", Univ. of
Texas at Austin, Dept. of Computer Science, Tech. Rep. No. 83-23
(1983).

2) Ibarra, Oscar H., and Leininger, Brian s., On the Simplification
and Equivalence Problens for Straight-1 ine Progrcms, J. ACM 30, 3
(July 1983), pp. 641-656.

3) Tsang, Peter Yu Yee, A Statenents Evaluation System for
Functionally Equivalent Responses, Okla. State Univ~, Dept. of
Computer Science (1984).

4) Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D., Canpilers -
Principles, Techniques, and Tools , Addison-Wesley, Reading,
Mass., 1985.

5) Lesk, M. E. and Schmidt, E., "Lex - A Lexical Analyzer Generator",
Bell Laboratories, Murray Hill, N.J., (1978).

6) Johnson, s. c., "Yacc: Yet Another Compiler Compiler", Computing
Science Tech. Rep. No. 32, Bell Laboratories, Murray Hill, N.J.,
(1978).

7) Baker, Louis, "AD!\ & AI Join Forces", AI Expert, (Apr. 1987) pp.
38-43.

8) Swigger, Dr. Kathleen M. , and Evans, Donald, "A Computer-Based
Tutor for Assembly Language", Journal of Computer-Based
Instruction, (Winter 1987), Vol. 14, No. 1, pp. 35-38.

9) Jarvis, Mildred D., "Computer Based Training: Lessons Learned",
Proceedings of the Human Factors Society, 28th Annual Meeting,
(1984), pp. 515-519.

10) Swigger, Kathleen, and Wallace, Layne, "Use of Appropriate Looping
Structures: Expert vs. Novice", Proceedings of the Hunan Factors
Society, 26th Annual Meeting, (1982), pp. 999-1003.

11) United States Department of Defense, Reference Manual for the AQ\

Programming Language , Springer-Verlag, New York, 2nd Ed., 1984.

12) Ledgard, Henry, and Marcotty, Michael, The Programming Language
Landscape , SRA Inc., Chicago, Ill., (1981).

44

45

13) Coburn, Peter, Kebnan, Peter, et al., Practical Guide to
Computers in Education, Addison-Wesley Publ., Reading, Mass., 2nd
ed., (1985).

APPENDIX A

SES INSTRUCI'OR 1 S OPERATICN MANUAL

Purpose

The purpose of this manual is to guide the instructor in

developing a menu and set of templates for the OSU Statements

Evaluation System.

46

PREFACE

Developing the SES

There are three distinct steps that must be taken when developing

templates for comparison. The instructor must:

a) write and debug the CORE source code of the template;

b) develop a menu option and instructions that will describe for the
user the program he/she must write;

c) give a brief description of the template to the computer.

Each step is fully documented in this manual.

47

CHAPTER I

THE CORE TEMPlATE

Format and Content

The template may be developed by using any standard editor. The

syntax of the source code must be in acoordance with the standards set

forth for the Legard and Marootty mini-language CORE. The CORE

language is designed for sbnple data manipulation. It is not a

powerful language and soould not be expected to perform large

canputational problans. It will perfo:rm best when used with its

purpose and abilities in mind.

The following guidelines should be observed when developing the

CORE template.

1) CORE allows only one data ty:pe, that of INTEGER. All variable
names must be declared and the length soould not exceed ten
characters.

2) The source code should be written in lowercase letters. Identifier
names may contain a canbination of letters, digits, and
underscores. The compiler, however, does not distinguish between
upper and lowercase letters. Therefore, if an identifier ncrne of
'Tax' is declared, the user must not use 'TAX' or 'tax' wihin the
program body. The canpiler sees these as three separate variables,
the last two of which are undeclared.

3) There are three mathematical operators, those being addition (+),
subtraction(-), and multiplication(*). Division is not allowed.

4) There are six logical operators: equal, not equal, less than,
greater then, less than or equal, and greater than or equal.

5) All statements must be terminated with a sani-colon.

48

6) •rf• statements may be embedded. Each statement should be
terminated with a corresponding •end if•.

7) 1 While/loop• statements may be embedded. Each statement must be
terminated with an •end loop•.

8) The use of parentheses is allowed to manipulate the order of
operation in expression (assignment) statements.

Compiling the Template

Once the template has been written and saved, it may be compiled

by typing:

$!CORE filename

where •filename• is the name of the source code. The length of the

•filename• should not exceed ten characters (this includes the file

extension). The CORE compiler may generate any of nine error codes.

Following is a list of the codes and their descriptions.

Code Problem

1 Illegal Variable Name

2 IF/END IF statements not sequenced

3 BEGIN/END statements not sequenced

4 WHILE/END LOOP statements not sequenced

5 Missing PROGRAM statement

6 Variable already declared

7 Undeclared variable name

8 variable name exceeds maxbnum length

9 Syntax Error: •;• , 1 (1 , 1) 1 expected

10 No Errors or Warnings

Definitions are as follows:

49

Code Definition

1 Illegal character(s) in the variable name.

2 An 'IF' statement was found with no corresponding 'END IF'
statement.

3 A 'BEGIN' statement was found with no corresponding 'END'
statement.

50

4 A 'WHILE' statement was found with no corresponding 'END LOOP'
statement.

5 Either the wrong file was submitted for oompilation, or the
source code is missing the 'PROGRAM' statement.

6 The same variable name appears twice in a declaration
sequence.

7 A variable name has been found in the program body that was
not found in the declaration sequence.

8 An identifier name exceeds the length (in characters) of the
maximum length (10 characters).

9 Check the given line number for missing parentheses,
semicolons, etc.

10 The program is syntactically correct.

After the template has been successfully compiled, the instructor

should retain the name of the file for input into the menu.

CHAPTER II

DEVEIDPING THE SES MAIN MENU

This chapter details haw to set up the SES main menu. This is the

menu that will be displayed to the student. When the student chases an

option, a set of instructions will be given on the development of a

program. The student soould write a program that meets the

specifications given in the instructions, compile his/her program

segment, and submit it for comparison against the menu option's

templates.

To begin the SES Development Menu, type:

$ IMENU

The following menu will appear:

* STATEMENT 1 S EVALUATICN SYSTEM *

*** Instructor Menu ***

1) Modify Menu

2) Develop Templates

3) Exit Systan

Option # ? _

Before inserting the templates, the instructor should add the menu

option. Therefore, option number two soould be selected from this

menu. This will produce the following menu:

*** MENU MAINTENANCE ***

l) Add New Menu Options

51

2) View Existing Menu Options

3) Modify Existing Menu Options

4) Delete Existing Menu Options

5) Return To Main Menu

Option # ? __

Option number one should be selected at this point. A description of

it and the other options is following.

Adding Menu Options

When adding menu options, two things need to be input. The first

is the menu 'title', or the entry that will appear on the actual menu

screen when displayed to the user. The second is the accompanying

instructions. If a student should pick a particular option from the

menu (based on the •title' above), he/she should receive same

instructions giving specifications for a CORE segment that is to be

written.

52

The computer will prompt the instructor for the menu's title and

instructions. The menu option number (number one for the first entry)

is generated automatically. THERE IS AN UPPER LIMIT OF 20 AVAILABLE

MENU OPTIONS. Also, the instructions given to the student may not

exceed 240 characters (three eighty-character lines). When the

instructor has completed the typing of his/her instructions into the

computer, he/she soould terminate them with an ampersand • & • • This

signals the end of the instructions to the computer. A sample dialogue

between machine and instructor is given for example. Capital letters

indicate instructor input.

Menu Option Number => l

Enter Menu Title - 30 character 1 :i.rnit => SUMMATICN OF NUMBERS 1 TO 10

Enter student instructions, there is a 3 line (240 character) limit
Enter a '&' to tenninate the instructions:

YOU ARE TO WRITE A PROORAM THAT WILL SUM THE NUMBERS FROM ONE TO TEN.
THE USE OF A 'WHILE I.OOP' IS RECOMMENDED FOR SOLVING THIS PROBLEM. &

The computer will then display the information received for the

instructor's verification. Corrections are allowed if necessary.

After the data is verified it is saved to a file for future reference.

The computer will then return to the 'MENU MAINTENANCE' menu and await

further input.

Viewing Existing Menu Options

When option nunber two is selection from the 'MENU MAINTENANCE'

menu, the instructor is allowed to view the menu options and

accompanying instructions that are currently available to the user.

The instructor is first shown the full selection of student menu

options as displayed to the student. There are two methods of viewing

these options. The instructor may either automatically view all

student menu options, or he/she may view selected options. If the

instructor chooses to view all the available options, the computer

53

begins with student option number one, displays it and its accompanying

instructions, and continues with each successive student menu option

until all have been displayed for viewing. Should the instructor

choose only to view selected options, the computer prompts for the

desired option and complies by displaying it for view. After the

viewing has been canpleted, the computer returns to the 'MENU

MAINTENANCE' menu.

Modifying Menu Options

~~ know that instructors do not make mistakes, but they may

occasionally change their minds. For this reason, the instructor is

allowed to modify the title and/or accompanying instructions of any

student menu option. To begin, the student menu, as displayed to the

student, is displayed for the instructor. The computer then prompts

for the menu option number that he/she wishes to modify. When the

correct option is received, the computer displays the current

infonnation in the following fonnat:

l) Menu Option

2) Menu Title

=> l

=> SUMMATICN OF NUMBERS
1 TO 10

3) Instructions =>
YOU ARE TO WRITE A P:RCX;RAM THAT WILL SUM
THE NUMBERS FROM ONE TO TEN. THE USE OF
A 1 WHILE LCX)p 1 IS RECOW4ENDED FOR SOLVING
THIS PROBLEM.

Modify Which Number ? =>
- Enter 0 (zero) to Quit -

The instructor may then enter a one, two, or three, depending on the

data he/she wishes to modify. IT IS RECOMt-tENDED THAT THE INSTRUCTOR

NOT CHANGE THE MENU OPTICN NUMBER. This number is generated

automatically, a change may disrupt the sequence.

If the instructor decides not to modify the existing data, a zero

may be entered and control will pass back to the 1 MENU MAINTENANCE 1

menu.

Deleting Menu Options

The instructor is also allowed the opportunity to delete any

existing student menu option from the SES. Before deletion, the

54

student menu is displayed for the instructor. The computer then

pDDmpts for the number to be deleted. The instructor may enter a zero

at this point to return to the 'MENU MAINI'EN..l\NCE' menu and avoid

deleting any options. Should the instructor wish to proceed, however,

he/she is offered oo seoond chance. The instructor soould type in the

menu option number of the data to be deleted and press return. This

marks the reoord, in effect allowing a new reoord to be written over

the old.

55

CHAPTER III

DEVEIDPING THE SES TEMPlATES

After the instructor has entered the student's menu option(s)

he/she is now ready to attach the template references. Option number

one soould be coosen fran the main menu (figure#?). The follo.ving

menu will be displayed to the instructor.

** TEMPlATE MAINTENANCE **

1) Add New Templates

2) View Existing Templates

3) Modify Existing Templates

4) Delete Existing Templates

5) Return to Main Menu

Option # ?

The instructor is allowed to enter any number of templates, correct or

incorrect, for any existing student menu option. Following are the

details of each above option.

Adding New Templates

In order to add new templates to the system, select option number

one from the templates menu. When adding a template, the instructor is

prompted for the student menu option with which the template should be

associted, the external filename that contains the source code of the

template, the point value that is assigned for a correct match to this

56

57

template, and information stating whether the template is a correct or

incorrect response. A sample dialogue follows. Data in capital

letters represents instructor responses. Before the interaction

begins, the student menu is displayed for the instructor's viewing.

Enter Menu Option Number to
which this template belongs => 1

Enter Full Name of Template file,
10 Characters Maximum Length => TEMPl.COR

Is the Template Correct or
Incorrect? (Cor I) · => C

How Many Points are Available for
a Match to this Template ? => 25

The information that was received from the instructor is then displayed

for verification. The instructor is allowed to make changes and/or

corrections. After the data is verified, it is stored in an external

file for future reference, and control is passed back to the Templates

Menu.

Viewing Existing Templates

In order to view any or all of the existing templates, the

instructor should select option number two fDDm the Templates Menu.

The program allows the user to view all the currently existing

templates that are stored in the system, or to view only the templates

associated with a given student menu option. The student menu is

displayed to the instructor and the computer asks if the instructor

wishes to view all or selected templates. Should the user wish to view

all the system templates, the program begins with student option number

one, displays all information regarding each associated template, and

continues to do so until the last student option templates have been

58

displayed. On the other hand, should the user desire to view only

selected template(s), the aamputer requests the student menu option

number to which the template(s) belong and displays infonnation

concerning the related template(s). Control is then returned to the

Template Menu.

Modifying the Templates

In order to correct infonnation stored on a particular template,

the instructor should select the third option from the Template Menu.

The student menu is displayed for the instructor's view, and the

oanputer requests that the user enter the student menu option that is

associated with the template to be modified. A screen will then appear

that displays each template that is associated with the given student

option. The computer requests the instructor to indicate which

template he/she wishes to modify. The information is then displayed as

follavs:

l) Menu Option => 1

2) Filename => TEMPl.COR

3) Template is => CORRECT

4) Point Value => 25

Modify Which Number?
Enter 0 (zero) to Quit =>

The instructor is given a chance to return to the Templates Menu

without making any modifications by entering a zero. If, hcwever,

changes need to be made, the corresponding number should be entered

(for example, to change the file name, enter number two) and the

computer will prompt for the correct information. When all changes

have been made, the instructor should enter a zero to return to the

59

Templates Menu.

Deleting Existing Templates

Templates may be deleted from the system by choosing option number

four fDDm the Templates Menu. The oomputer will display the student's

menu for the instructor and prompt for the student option to which the

template belongs. After the instructor has entered the correct option

number, the computer will display a numbered list of all the templates

associated with the given option. The instructor is then allowed to

enter the number of the template to be deleted. There is no turning

back at this mint. Once the nunber has been entered, the template is

deleted. Control will then return to the Templates Menu.

Throughout the design of these menus, care has been taken to

preserve the integrity of the data entered. For example, if the

computer is expecting a numerical resr:onse (as in the selection of a

menu option) and the user inputs a character, the computer displays an

appropriate error message and allows the user to re-enter his/her

resr:onse. The same is true if the computer is expecting a particular

character or character string response (as in 'Y' or 'N'). It is

believed that the instructor's menu is user friendly and will present

no obstacles to the user.

APPENDIX B

SES STUDEm' USER' S MANUAL

Purtx=>se

The puri_X)se of this manual is to guide the student user in the

evaluation of program segments using the OSU Statements Evaluation

System.

60

PREFACE

Evaluating a Program Segment

There are three steps that must be completed 1n order to evaluate

a program segment. The user must:

a) choose an option from the Student Menu to obtain instructions for
the development of a program segment;

b) code and debug the CORE source code program that will meet the
specifications given in step one (above);

c) submit the program segment for evaluation against the stored
expected responses.

Each step is fully documented in this manual.

61

CHAPI'ER I

THE STUf.ENI' MENU

The student menu contains a maxbnurn of twenty options that are

developed by an instructor to challenge a student user. To access the

menu, type the following at the VAX/VMS prompt (do not type the '$'

prcrnpt):

$ SMENU

The menu will appear and the student will be requested to choose

an option that is of interest. An invalid response will be ignored,

and the ccrnputer will continually prompt until a valid response is

received. Once a correct input is obtained, the computer will display

for the student the instructions that accompany his/her menu choice.

Assuming the student chooses option six from the Student Menu, a screen

snnilar to the sample below will be presented.

Menu Option Number => 6

Instructions: You are to write a program that will sum the
numbers from one to ten. It is recamnended
that you use a 'WHILE' loop to :implement
your solution.

The student is then given the opportunity to continue with this

request, return to the menu and make another choice, or exit the

system. If the student elects to proceed, the following screen will

appear (continuing with the previous example, menu option number six

has been chosen):

INSTRUCTICNS TO PROCEED •••

62

1) Your menu coo ice is number => 6
REMEMBER this number.

2) Write a program using the mini-language CORE that will
fulfill the given instructions. Compile and debug your
program. To compile your program, type:

CORE filename

where 'filename' is the name of your source file.

3) When your progam is working properly, type:

COMPARE

The computer will compare your program segment to various
correct and incorrect templates that have been prepared
for the menu option chosen. The comparison program will
prompt you for the menu option that you erose. When it
does, enter the number given the step one (1) above.

At this point, control will return to the VMS operating system,

and the student should begin developing a program segment that will

63

confonn to the specifications set forth by the instructor. The program

should be written the the Legard and Marcotty mini-language CORE. The

syntax specifications for this language are provided. Instructions on

developing and compiling a CORE program are given in the next section.

CHAPTER II

DEVELOPING AND COMPILING A CORE PROGRAM

Format and Content

The template may be developed by using any standard editor. The

syntax of the source cxx:ie must be in accordance with the standards set

forth for the Legard and Marcotty mini-language CORE. The CORE

language is designed for simple data manipulation. It is not a

powerful language and should not be expected to perform large

computational problems. It will perform best when used with its

purpose and abilities in mind.

The following guidelines should be observed when developing the

CORE program.

1) CORE allows only one data type, that of INTEGER. All variable
names must be declared and the length should not exceed ten
characters.

2) The source code should be written in lowercase letters. Identifier
names may contain a combination of letters, digits, and
underscores. The compiler, however, does not distinguish between
upper and lowercase letters. Therefore, if an identifier name of
'Tax' is declared, the user must not use 'TAX' or 'tax' wihin the
program body. The compiler sees these as three separate variables,
the last two of which are undeclared.

3) There are three mathematical operators, those being addition(+),
subtraction (-),and multiplication(*). Division is not allowed.

4) There are six logical operators: equal, not equal, less than,
greater than, less than or equal, and greater than or equal.

5) All statements must be terminated with a semi-colon.

64

6) ' If' statements may be embedded. Each statement soould be
terminated with a corresponding 'end if'.

7) 'While/loop' statements may l::e eml::edded. Each statement must be
terminated with an 'end loop'.

8) The use of parentheses is allowed to manipulate the order of
operation in expression (assignment) statements.

Canpil ing the Program

65

Once the program has teen written and saved, it may be compiled by

typing:

$!CORE filename

where 'filename' is the name of the source code. The length of the

'filename' should not exceed ten characters (this includes the file

extension). The CORE compiler may generate any of nine error codes.

Following is a list of the codes and their descriptions.

Code Problem

1 Illegal Variable Name

2 IF/END IF statements not sequenced

3 BEGIN/END statements not sequenced

4 WHILE/END LOOP statements not sequenced

5 Missing PROGRAM statement

6 Variable already declared

7 Undeclared variable name

8 Variable name exceeds maxbnum length

9 Syntax Error: ';' ,'(',')' expected

10 No Errors or Warnings

Definitions are as follows:

Code

1

2

3

Definition

Illegal character(s) in the variable name.

An • IF' statement was found with oo corres:rnnding 'END IF'
statement.

A 'BEGIN' statement was found with no corres:rnnding 'END'
statement.

66

4 A 'NIILE' statement was found with no corres:rnnding 'END LCOP'
statement.

5 Either the wrong file was submitted for compilation, or the
source code is missing the 'PROGRAM' statement.

6 The same variable name appears twice in a declaration
sequence.

7 A variable name has been found in the program body that was
not found in the declaration sequence.

8 An identifier name exceeds the length (in characters) of the
maxlinum length (10 characters).

9 Check the given line number for missing parentheses,
semicolons, etc.

10 The program is syntactically correct.

After the program has been successfully compiled, the student may

submit the program for evaluation. Instructions for the last step are

in the next section.

CHAPTER III

SUBMITTING A PROGRAM FOR EVALUATION

After the student has carefully designed, edited, and canpiled

his/her program, it may be subnitted for comparison by typing:

$COMPARE

at the VAX/VMS prompt (again, do not by the '$' shown, it is the VMS

pranpt). TheSES will ask for the menu option number to which the

student has responded. Continuing with the above example, the student

would enter a six in response. If the student has input the correct

option mnnber, the computer will proceed with its comparison. If the

student input the wrong option number, he/she is given the opportunity

to correct the entry.

The computer will compare the program segment against all existing

templates that are stored with the given option number. The program

may be matched to either an expected correct or incorrect template, or

it may be that the program can not be matched to any template. In any

case, the user will be informed of the outcome of the comparison. One

of the following responses will be given:

1) Your program has been SUCCESSFULLY MATCHED TO A CORRECT template

2) Your program has been matched to an expected INCORRECT ternplate,
Please reconsider your approach and try again •••

3) Your program can not be matched to either a CORRECT or an
INCORRECT template. Program Correctness can not be determined
at this time •••

The student may change or correct his/her program and resubnit it

67

68

at any tline. When resubmitting a program for evaluation against the

same menu option number, it is not necessary to oamplete step one

(displaying the student menu). The student slinply may repeat steps two

and three (compiling and submitting the program for oamparison) as many

times as desired.

APPENDIX C

MINI-LANGUAGE CORE SYNTACTIC CATEGORIES

program ::=

declaration : :=

statement ::=

assignment-statement ::=

if-statement ::=

loop-statement ::=

input-statement

output-statement

a::xnparison

expression

factor

operand

: :=

. ·.. -
: :=

::=

::=

: :=

comparison-operator ::=

program
declaration •••
begin
statement •••
end;

DECLARE identifier [,identifier] .
• • • I

assignment-statement
if-statement
loop-statement
input-statement
output-statement

identifier := expression

IF canparison THEN
statement •••

[EISE
statement •••]

END IF ;

WHILE campar ison LOOP
statement •••

END LOOP ;

INPUT identifier [, identifier] ,
OUTPUT identifier [, identifier] ••• ;

operand comparison-operator operand)

expression +
expression -

factor
factor

factor *] operand

integer
identifier
(express ion

< <=

69

> >= = <>

identifier

integer

: :=

: :=

letter ((

digit •••

letter] ••.

70

VITA

Kay Ellen Slack

Candidate for the Degree of

Master of Science

Thesis: CORRECTNESS AND LEVEL OF INCORRECTNESS DETERMINATICNS OF
PROGRAM SEGMENTS; FUNCTIONAL ECUNALENCE OF w-:IILE-I:O
STATEMENTS

Major Field: Computing and Information Sciences

Biographical:

Personal: Born in Ardmore, Oklahoma, December 6, 1961, the
daughter of Dr. Harold W. and Mary A. Slack.

Education: Graduated f~ Madill High School, Madill, Oklahoma,
in May 1980; received Bachelor of Science Degree with double
major in Business Management and Computer Information Systems
from East Central Oklahoma State University in May, 1984;
completed requirements for the Master of Science degree at
Oklahoma State University in December, 1988.

Professional Experience: Prograrrnner/Analyst, University Computer
Center, Oklahoma State University, January, 1985 to August,
198 7; Canputer Science/I nforrnat ion Systems Instructor,
Southeastern Oklahoma State University, August, 1987, to
August, 1988.

