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PREFACE 

This study is concerned with the expansion of the Statements 

Evaluation System which evaluates the functional equivalence of program 

segments. Program segments are input by the student user and compared 

to a set of expected responses (templates) developed by the instructor. 

It is believed that such a system will aid the student user in gaining 

knowledge through hands-on experience, and trial and error situations. 

The motivation for this study was provided by my committee 

members: Dr. Donald D. Fisher, Dr. K. M. George, Dr. Michael Folk. 

The idea originated with Dr. Donald D. Fisher, who is my major advisor. 

I would like to express my appreciation to each member for the guidance 

he gave throughout this study. Finally, I would like to express my 

gratitude to my family members and my current employers for their 

support and encouragement. 
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CHAPI'ER I 

INI'R:>DUCTIOO 

This paper investigates use of the computer to determine the 

correctness of a program segment designed to perform a specific task 

designated by a given set of instructions. The idea is to present the 

user with a problem statement and evaluate his/her response against a 

series of correct and incorrect templates. As opposed to requiring a 

direct match to an existing template, this system attempts to determine 

the functional equivalence of the program segnent. Determining 

functional equivalence is a many faceted problem and is, in general, 

unsolvable. Using such an approach, however, provides freedom for 

expansion and enhancement of the user's current logical thinking 

patterns while developing a program to perform the given task. This is 

a definite advantage over conventional computer-based instructional 

techniques which lnnit the user to choosing or developing a single 

response as an exact match to a given answer. Soould a system such as 

this be paired with the capabilities of artificial intelligence, a 

powerful instructional tool could be developed for use in and out of the 

conventional classroom setting. While the current system makes no use 

of artificial intelligence responses to the user, it provides an 

excellent base for such expansion. In addition to informing the user 

that his/her program was found to be functionally equivalent to a 

correct or incorrect response, the computer could detect errors in the 
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program segment, point these out to the user, and offer suggestions for 

correction. 

The current system, hereafter referred to as the Statements 

Evaluation System (SES), is implemented to respond to the mini-language 

CORE, developed by Ledgard and Marcotty (12). Specifications of this 

language are provided in the appendix. The mini-language allows the 

three basic classes of statements (assignment, iteration, selection), 

but reduces the membership of the iteration class to one member, that of 

the while loop. The language also restricts the usage of types to the 

type integer. It does allow interactive progranming through the use of 

the input/output statements, and allows nesting of if statements and 

while loops. 

The system in this project is an expansion of the original SES 

developed by Tsang (3). There are a number of differences, including 

the approach taken to solve the problem, and the addition of the while 

loop to the system. The original system detennined equivalence for 

assignment, declaration, and selection statements only. 

As an example of the complexity of the problem of trying to 

determine the correctness of a program segment, consider the problem of 

summing the integers from one to ten. A number of different correct 

segments exist which satisfy this problem. One correct segment which 

might be used as a template against which responses are compared 

follows. 

program 
declare x,y; 
bag in 

X := 0; 
y := 0; 
while x < 10 do 

X := X + 1; 
y := y + x; 
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end; 
end; 

Two other program segnents that might be generated to form the sum 

are given below. 

1) program 
declare x,y; 
begin 

2) program 

X := 1; 
y := 0; 
while x <= 9 loop 

y := y + x; 
X := X + 1; 

end; 
y := y + x; 

end; 

declare a,b,c,d; 
begin 

input a; 
b := 10; 
c := 1; 
d := 0; 
while (b >= a) loop 

d := d + a; 
a := a + c; 

end; 
end; 

The above program segments are only two of the many variations that 

could be presented as correct responses. The problem is to determine 

whether a response program segnent is "correct" or "incorrect". The 

student program segment is compared against a series of stored 

comparison templates. Multiple correct and multiple anticipated 

incorrect comparison templates are entered into the SES by an 

instructor. A student response segment is compared with correct 

comparison templates and if no match occurs, the response is compared 

with any anticipated incorrect templates. 

When considering the functional equivalence of loops, major factors 

that must be considered are: 

a) the initial value of variables, 
b) the conditional operator, 
c) the value of the condition variable, 
d) the body of the loop, 
e) any assignment statements preceeding 

and/or succeeding the loop, 
f) the number of iterations of the loop. 
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CHAPI'ER II 

LITERATURE REVIEW 

Functional Equivalence 

In recent years interest and research in the areas of equivalence 

and functional equivalence have increased. The equivalence problem is, 

given two programs, to decide whether or not they produce the same 

outputs for identical inputs (1). It has been shown that equivalence is 

decidable for {x <- 1, x<- x + y, x <- x * y, x <- x/y J-programs 

(straight-line programs) with one input variable (2). Work has also 

been done to determine the equivalence of conditional statements and 

loop statements. It has been stated that the equivalence problem for 

loops is unsolvable (1). This paper deals with the topic of functional 

equivalence, in particular with relation to the loop construct. 

Throughout this study, the problem of functional equivalence will be to 

decide whether two syntactically and semantically correct program 

segments, written in the same language to perform the same task, produce 

the same results. 

Review of the Original SES 

The original statements evaluation system was developed by Peter Yu 

Yee Tsang. The idea itself originated with Dr. Donald D. Fisher and the 

intent is to continually expand upon the system until it becanes one 

that can be used as a teaching aid in both academic and industrial 

4 



fields. The initial SES, develoi;ed to run on an IBM PC, tests the 

equivalence of the mini-language CORE declaration, assignment, and 

selection statements. The system contains a lexical analyzer and 

recursive descent parser written in the Pascal language. Expression 

tables are used to determine functional equivalence. The stages of the 

SES are as follows: 

Input > lexical > token > parse 
analyzer stream tree 

> translator > declaration, 
assigrrnent, 
expression 
tables 

Figure 1. Flow of Control in Original SES 

For example, to test the equivalence of the following two program 

segments, the translator would build three tables, A, B, and c. 

l) declare x,y; 
x := y + z * w; 

(for program 1) : 

A. Declaration 
Table 

X 

y 
integer 
integer 

(for program 2): 

A. Declaration 
Table 

y 
X 

integer 
integer 

B. Assignment 
Table 

X 

B. Ass ignroent 
Table 

X 

2) declare y; 
declare x; 
X := W * Z + y; 

c. Expression 
Table 

y 

0 

z 
w 
0 

c. Expression 
Table 

w 

0 

y 
z 
0 

The rows of the expression table represent addition while the 

columns represent multiplication. The last row is a sign bit for each 

column. This bit is set to zero if the column value is positive, and 
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set to one if the column value is negative. TWo declaration tables are 

equivalent if they have the same variables in their tables, regardless 

of their order. Two expression tables are equivalent if they have·the 

same elements, regardless of the order of the columns or order of the 

rows of each individual column. If given the template: 

program 
declare x, y, z; 
begin 

X := Z + Yi 
if x > y then 

X:= Z * (y + 1); 
else 

X:= Z * (y- 1); 
end if; 

end; 

the original SES would be able to determine that the following program 

segments were equivalent to the template: 

1) program 2) program 
declare x,z,y; declare y,x,z; 
begin begin 

X := z + y; X := y + z; 
if X > y then if x < y then 

X := (y + 1) * z; X := z * (y- 1); 
else else 

X := y * z - 1 * z; X := (y + 1) * z; 
end if; end if; 

end; end; 

The next segment would not be evaluated as equivalent to the template. 

3) program 
declare x,y. 
begin 

x := y + z; 
if x > y then 

X := Z * (y + 1); 
else 

X:= Z * (y- 1); 
end if; 

end; 

The problem with segment number three (above) is that there is a 

syntax error on the declaration line, that is, there is a period 

terminating that line instead of a semi-colon. The original SES was 
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integrated with the compiler so that syntax errors and/or detectable 

logic errors were output after a single pass through the program. The 

current SES is designed to allow the user to debug his/her program by 

sending it through a CORE compiler. When the program is syntactically 

correct, the user must request the computer to compare the program 

segment with the available templates. 

Computer-Based Instruction (CBI) 

Just as the widespread use of automobiles, telephones, airplanes, 

and television changed the face of society and education, so too will 

the computer revolution alter (at least indirectly) the nature of 

instruction. Computer-Aided Instruction (CAI) offers many advantages 

over the conventional methods of teaching while maintaining equivalent 

levels of student performance. Currently, we may break down the areas 

computers are affecting education into five major categories. The first 

and most oammon is that of drill and practice. This technique starts 

the student at a particular skill level and presents a set of problems 

(sbnilar to that of a workbook). The student types in his/her response, 

and the computer infonns the student if the correct answer was received. 

If the answer was wrong, the camputer generally instructs the student to 

try again. The second method of CAl is that of the tutorial. In this 

situation, the computer instructs the student in some area of knowledge, 

much in the same way an instructor would in a one-on-one situation. Of 

course, the programmer must anticipate most of the potential responses 

that the student might make in order to create a meaningful dialogue. 

This is extemely difficult to do, requires more memory than is available 

in most small computer systems, and takes a lot of field testing. The 
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third method, demonstration, makes use of one of the main features of 

traditional teaching. Utilizing the color, graphics, and sound 

potential of most small computers, software manufacturers are rapidly 

developing demonstration packages that will soon make the overhead 

projector obsolete. The fourth area is simulation. A simulation model 

imitates a real or imaginary system based on the theory of the operation 

of that system. Simulations focus the student's attention on certain 

aspects of the process under investigation. The design and programming 

of good computer simulations is very difficult. The last major 

category is that of instructional games. These games are designed to be 

'fun' for students and thereby increase the chance of their learning the 

embedded concept. 

The concept of using the computer as an aid to teaching is not new 

to the industrial community. Its emergence in the field of education, 

however, is relatively new. It is affecting the way students learn from 

kindergarden to college. This is important as society is becoming 

increasingly dependent upon computers. There is a growing need to 

produce computer-literate students that will be able to function in such 

a society. 

Consider the use of computers in teaching computer programming. 

This is a new area of educational computer use that is drawing interest 

and research. There is evidence to suggest that students learn their 

cognitive network for a programming language through experience rather 

than actual classroom instruction. (8). This knowledge network is not 

only syntax and semantics, but also involves constructs and concepts 

which are not limited to a single programming language. Debugging 

skills are also difficult to teach in a classroom. Most instructors 
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provide a few sbnple exercises and then hope that the students discover 

the art of debugging on their own. It is a fact that much error 

diagnosing with beginning computer science students occurs on a 

one-to-one basis. It is not unoonmon to find a student who feels 

completely inadequate until an experienced student or instructor 

volunteers their expertise. Such assistance requires an enormous amount 

of tbne. As sho.vn in a study by Farrell, Anderson, and Reiser (9), 

however, a student who is working directly with the machine learns both 

more quickly and more deeply than students in classrooms. Therefore, a 

major goal of CAI in the field of oomputer science would be to capture 

the instructor's expertise by oonstructing an intelligent computer-based 

tutor that could help students. Such a program would give students the 

hands-on experience they need, the individual attention they require, 

and the encouragement to develop the proper knowledge network that is 

demanded. Such is the goal of the SES. While yet in its early stages 

of development, it already offers the student the ability to work 

directly with the computer and gives feedback on the correctness or 

incorectness of the submitted response. A major advantage over current 

CAI packages is that the student does not have to give a specific 

predetermined response. The SES is flexible in that: 

a) it provides multiple templates that may be directly matched to the 
students response, and 

b) it does not require a direct match to any stored template, but is 
able to determine if the response is functionally equivalent to 
any stored templates. 

Such a system will allow a student to develop his/her own style and 

logical constructs. The student may submit multiple correct but 

different responses to the same problem. Such flexibility is needed in 

teaching the fundamentals of programming. 
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CHAPTER III 

STATFNENI' OF THE PROBLEM 

The purpose of this study is to develop a.portable program that 

will detennine whether two input seg:nents, written in the mini-language 

CORE and designed to perform the same task, will produce the same 

results. 
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CHAPTER N 

DESI~ AND IMPLEMENI'ATIOO 

The CORE Program Segnent 

Figure 2 presents a broad overview of the current SES design. 

CORE program -> 
segnent 

CORE canpiler -> Equivalence -> Analysis of 
Determination Program Segnent 

Figure 2. OVerview of the Current SES 

The input to the system is a program segnent written in the Legard 

and Marcotty mini-language CORE. Specifications of the CORE syntax are 

in Appendix C. The general design of a CORE program is as follows: 

program 
declare ... ; 
begin 
CORE statanents ~ 
end~ 

The program must be written in lowercase letters and all variables 

must be declared in the 'declare' statanent. The maxlinum length of a 

variable name is ten characters. The variable name may be canposed of 

any canbination of letters, digits, and underscores (_), as long as the 

first character is a letter. variable names may include capital letters 

but the programmer must ranain consistent with the original name 

throughout the program, i.e. the compiler will not make a distinction 

between upper- and lower-case letters. The body of a CORE program may 
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consist of any combination of if, while, and assignment statements. 

Each statement must be terminated with a semi-colon. There are no 

procedures allowed. Nesting of if and while statements is allowed. 

The CORE Compiler 

The CORE compiler operates in the given manner: 

CORE 
SOURCE 
CODE 

The Lexical Analyzer 

LEXICAL 
ANALYZER 

REGULAR 
EXPRESSION 
RECOGNIZER 

INSTALL 
TABLE 

Figure 3. The CORE Compiler 

ERROR 
LISTING 

12 

The lexical analyzer is implemented using LEX, an automatic lexical 

analyzer generator. LEX generates a program which recognizes regular 

expressions. The LEX source (consisting of the user's regular 

expressions and actions) is passed through the LEX compiler which 

produces the lexical analyzer written in the C language (lex.yy.c). 

LEX 
SOURCE 

LEX 
COMPILER 

LEXICAL 
~------~~ ANALYZER 

(lex.yy.c) 

Figure 4. Creating the Lexical Analyzer with LEX 
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The input text (CORE program) is then passed through the lexical 

analy~r and a sequence of tokens is produced. 

I CORE l 
>I i I SOURCE lex.yy.c TOKENS 

CODE I 
Figure 5. Generation of Token Sequence 

Each regular expression in the LEX source file has an associated 

action which is to be executed when a token specified by that regular 

expression is recognized. Execution occurs in the following manner. 

The input is read, one character at a time, until it has found a match 

to a regular expression (a token). Once a token has been found, the 

analyzer executes the associated action. After completion of the 

action, control returns to the parser where the next input characters 

are read (5). In the case of the current SES, each action specified 

passes a numerical indication of the token found to the parser and makes 

an entry in the symbol table when appropriate. For example, the 

following is a regular expression and associated action sequence 

contained in the LEX source of the SES. 

[a-zA-Z] (_? [a-zA-Z0-9] ) * inbuf (yytext); 
yylval = install(yytext,lOl,declr, 

stmtctr,linectr); 
return(ll4); l 

The regular expression defined above will recogni~ any string of input 

symbols that begins with an upper- or lower-case letter of the alphabet. 

The character must be followed by zero or more instances of the 

sequence: one (optional) underscore character followed by an upper- or 
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lower-case character or a digit. The associated action sequence places 

the recognized token (yytext) into the input buffer, makes an entry in 

the symbol table (install table), and returns the value of 114. This 

value (114) is the numerical representation of an identifier name. A 

complete listing of all recognzed tokens and their numerical 

representations is given in Table 1. 

TABLE 1 

NUMERICAL REPRESENrATICN OF 'IDKEN SEQUENCE 

'IDKEN NUMERICAL 
NAME REPRESENrATICN 

BEGIN 101 
DECIARE 102 
EISE 103 
END 104 
ENDIF 105 
ENDLCX>P 106 
IF 107 
INPUT 108 
LOOP 109 
OUTPUT 110 
PROGRAM 111 
THEN 112 
WIILE 113 
ID 114 
OJNST 115 
OPEN 116 
CLOSE 117 
MULT 118 
PLUS 119 
MINUS 120 
DIV 121 
LT 122 
LE 123 
NE 124 
GE 125 
GI' 126 
EQ 127 
CEQ 128 
SCOLCN 129 
OJMMA 130 
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The symbol table, hereafter referred to as the install table, keeps 

a separate record for each identifier name and constant that is used in 

the program. Each record consists of four fields: name, value, stmtnum, 

and linenum. A description of the content of each field follows. 

Name holds the name of an identifier or constant. The maximum 
length of an identifier is ten characters. In the case of 
an identifier, this field contains the actual identifier 
name, in the case of a constant, it holds the character 
equivalent of the constant, such as '10'. 

Value Gives the index position in the install table of the first 
occurrence of the constant or variable. Entry is a -1 if the 
current entry is the first entry. 

Stmtnum - Gives the statement nunber in the source program that 
contains the current variable or constant reference. 

Linenum -- Gives the line number in the source program that contains 
the current variable or constant reference. 

As an example, given the program statements below, the 

corresponding entries would be made in the install table. 

progran 
declare x; 
begin 

X := 0; 
X :=X + 1; 

end; 

( Index Name Value Stmtnum Linenum 
Position) 

0 X -1 1 4 
1 0 -1 1 4 
2 X 0 2 5 
3 X 0 2 5 
4 1 -1 2 5 

The data stored in the install table is used in the equivalence 

determination section of the system. Therefore, its contents are output 

to an external file. The name of the student's file is 'install.stud'. 

Because the instructor may enter many templates, each template file's 
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prefix is appended to an extension of '.nst'. For example, if the 

instructor entered a template stored in the file 'templatel.cor' then 

the name of the corresponding install table data file would be 

'templatel.nst'. 

YACC - Input Parsing 

In order to complete the CORE compiler, the tool YACC was used. 

YACC is an automatic parser generator and is an acronym for 11 Yet Another 

Compiler Compiler11 • YACC controls the parsing of the input. It makes 

successive calls to the lexical analyzer, obtaining a token as the 

result of each call. These tokens are organized according to the 

grammar rules supplied by the programmer. When a rule has been 

recognized, an associated programmer-defined action takes place. YACC 

requires that every specification file consist of three sections: the 

declarations, grammar rules, and programs. The sections are separated 

by double percent (%%) marks. An overview of a full specification file 

would look like (6): 

declarations 
%% 
gramnar rules 
%% 
programs 

The declaration section may be left empty. However, YACC requires 

token names to be declared as such. This is done by sbnply specifying: 

%token namel name2 ••• 

For example, the token PROGREAM is specified as: 

%token PROGRAM 

As was stated earlier, the lexical analyzer returns a numerical 

indication of the recognized token. For this reason, the specification 
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of tokens as they appear in the CORE compiler are slinilar to: 

%token PROGRAM 123 

where 123 is the numerical indication passed by the lexical analyzer. 

When specifying the grarrmar rules, each rule has the form: 

A : BODY ; 

where A represents a nonterminal name, and BODY represents a sequence of 

names and literals. The names represent terminals or nonterminals, and 

may be composed of letters, periods, underscores, and digits. A literal 

is a character enclosed in single quotes. In general, a grammar 

involves four quantities: terminals, nonterminals, a start symbol, and 

productions. The productions define the ways in which the nonterminals 

may be built up from the terminals and other nonterminals. The start 

symbol denotes the language of interest and is presurnmed to be the left 

hand side of the first grammar rule in the rules section. The central 

idea in defining a language is to repeatedly apply the productions to 

expand the nonterminals into a string of nonterminals and terminals. 

For example, consider the following specification: 

(l) A-> X 
(2) X -> a b 

The symbol'->' is read as 'derives'. Therefore, production number one 

(above) tells us that A derives X. This means that we can replace one 

instance of X with any string that X derives. For example, we might 

replace X in production number one with the 'a' from production number 

two. A sequence of such replacements is termed a derivation. In the 

YACC specification, the '->' symbol is replaced by the colon. The ' I' 

symbol separates string that may be derived from a single nonterminal. 

The following specification appears at the beginning of the grammar 

rules section in the CORE compiler. 



prog 

program 

program 
decseq 
reg in 
stmtseq 
end SCOLrn 
empty 

PROGRAM 
f quadgen(quadnum++,l,O,O,O,O);l 

The start symbol is 'prog'. It is defined as being the derivation of 

each of the nonterminals: program, decseq, regin, stmtseq, and end, and 
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the tenninal SCOLON. Alternately it may be empty, which means it has no 

program body and is therefore deemed an error. The nonterminal 

'program' derives the tenninal PROGRAM which would be matched by a token 

sent from the lexical analyzer (identified in the example by capital 

letters). In each grammar rule, associated actions are specified in 

brackets f 1. In the above example, there is an action associated with 

the nontenninal 'program'. It is a temporary transfer of control to the 

procedure 'quadgen' • This procedure is cxxied in the 'programs' section 

of the YACC specification file. Its purpose is to generate the 

intermediate cxxie and is discussed subsequently in this paper. 

If at any point the parser is not able to complete its derivation 

sequence, this indicates that a token has been found for which there is 

no corresponding match. This indicates an error. All errors are passed 

to the error routine with a number indicating the type of error. An 

appropriate error message will be generated to the user. 

In addition to the install table data, the compiler also produces a 

file of intermediate code in the fonn of quadruples. The student 

quadruples appear in the file 'outquad.stud'. The instructor's 

quadruples appear in the file with the original program's prefix and the 

extension '.oq'. For example, if the original program were stored in 
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the file 'templatel.oor' then the corresponding quadruples would be 

stored in the file 'teriplatel.oq'. Each quadruple is linplemented as a 

record with four fields: operator, argument one, argument two, and 

result. 

Quadruples are a form of three-address code which is a sequence of 

statements, generally in the form of A := B op C. A, B, and C are 

either user-defined names, constants, or compiler-generated temporary 

names. 'Op' is any operator or logical operator. In the statement 'A 

: = B + C' , B would be stored in argument one, C would be stored in 

argument two, A would be stored in the result field, and the appropriate 

representation of addition would be stored in the op field. In the 

current CORE compiler, what is actually stored in the quadruple record 

is the install table index of the current operand. That is, in the last 

example, the install table index of B would be stored in argument one. 

Each operation also has its own numerical representation. For example, 

the representation of'+', or addition, is '11'. A complete listing of 

11 possible quadruple statement and operation representations is given 

in Table 2. 

TABLE 2 

QUADRUPLE NUMERICAL STATEMENT IIENI'IFIERS 

IIENI'IFIER 

1 
2 
3 
4 
5 

STATEMENT 
REPRESENI'ATIOO 

'Program• 
'Begin' 
'End Loop' 
Assignment 

'If/Then' 



TABLE 2 (continued) 

IIENTIFIER 

6 
7 
8 
9 

10 
11 
12 
13 
15 
16 
17 
18 
19 
20 

STATEMENT 
REPRESENTATIOO 

Greater Than 
Equal 
Not Equal 
Less Than 
Multiplication 
Addition 
Subtraction 
While Loop 

'Else• 
'Input • 
•output• 
Less Than/Equal 
Grtr Than/Equal 
End 

Equivalence Detennination 

While the above section, that of the CORE canpiler, was completed 

in the C language, the system section that determines functional 

equivalence is written in AU\. It consists of twelve separately 
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compiled packages, and a main program (this does not include the student 

or instructor menus). The first package, package type_definitions, 

consists of all the user-defined types needed to complete the system. 

The system is supported entirely by arrays, that is, there are no 

dynamic variables. In all, eight arrays are implemented. The program 

reads in the quadruples produced by the compiler and converts them into 

expression tables. The process of transformation is shown in Figure 6. 



QUADRUPLES ~ BASIC BLOCKS ~ DAGS ~ EXPRESSION 
TABLES 

Figure 6. Program Transfonnation in the SES 

The type_definitions package is followed by an initialization 

package which initializes each element in many of the arrays. Also, a 

utility package exists which holds various utility programs that are 

helpful such as char_to_integer which converts a character string to an 

integer value. The actual equivalence determination begins with the 

reading of each external file that holds the quadruples. Each file is 

read into an array of type 'quadprog'. Each entry in the array is a 

record which contains the following fields: 

op 
argl 
arg2 
rslt 
martr 

integer 
integer 
integer 
integer 
integer 

The fields 'op', 'argl', 'arg2', and 'rslt' each hold the install 

table index of their corresponding operands. All fields are initially 
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set to zero. The 'markr' field will be used at a later time to mark the 

leaders of basic blocks. After the quadprog has been successfully 

filled, the quadruples are optimized and decomposed into basic blocks. 

Package quadruple_transformer contains the procedures and functions 

necessary to make these transformations. This is best explained with an 

example. Consider the following CORE program and its corresponding set 

of quadruples. 



CORE Program 

program 
declare a,b,c; 
begin 

(1) a := 5; 
( 2) b := 5; 
(3) c :=a + b; 

end; 

Install Table 

Index Name 
1 a 
2 5 
3 b 
4 5 
5 c 
6 a 
7 b 
8 #1 

Value 
-1 
-1 
-1 

2 
-1 

1 
3 

-1 

Statement number one in 

( 1) 

( 2) 
( 3) 
( 4) 
( 5) 
( 6) 
( 7) 

the 

22 

Quadprog Array (Quadruples) 

Op Argl Arg2 Rslt Markr 

1 0 0 0 0 
no quadruple for 'declare• 

2 0 0 0 0 
4 2 0 1 0 
4 2 0 3 0 
4 1 3 8 0 
4 8 0 5 0 

16 0 0 0 0 

Stmtnun Linen urn 
1 4 
1 4 
2 5 
2 5 
3 6 
3 6 
3 6 
0 0 

above program (a := 5) corresponds to 

quadruple number three. The •op• field contains the value of four which 

indicates an assignment. 'Argl' contains the value two. Index position 

two of the install table contains data on the constant five. The •rslt' 

field contains the value of one which refers to index position one of 

the install table which holds data about variable •a•. 

The first optimization routine removes the •trivial' quadruples. 

These are the first two and the last quadruple of every set. These 

represent the •program•, 'begin', and •end' statements respectively. 

The second optimization technique handles the situation that occurs as a 

result of an assignment such as the one in statement number three of the 

program. If one assignment statanent has two (or more) operands, there 

is an extra quadruple produced. In statement number three, • c : = a + 

b', •a• and 1 b 1 are added together and stored in a compiler-generated 

tanporary position. These tanporary positions are designated in the 



install table by a '# 1 character prefix. After the sum of •a• and 'b' 

is stored in temporary '#1 1 , an additional quadruple is generated that 

places the value in temporary '#1 1 into the original result •c• (or 

index position five in this case). Optimization takes place by 

eliminating this extra quadruple. The temporary reference (in the 

•rslt' field of quadruple number five) is replaced by the •rslt' field 

of quadruple number six. The resulting set of quadruples appears as: 

Op 

4 
4 
4 

Arg1 

2 
2 
1 

Arg2 

0 
0 
3 

Rslt 

1 
3 
5 

Markr 

0 
0 
0 

After the quadruples are optimized, they are divided into basic 
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blocks. A basic block is a sequence of statements which is entered only 

fran the beginning, that is, there is no possibility of branching within 

the block. In order to partition a set of quadruples into basic blocks, 

the leaders (first statement of each basic block) must be determined. 

The rules for determining leaders are as follows ( 4): 

a) the first statement of a set of quadruples is a leader; 

b) any statement which is the target of a conditional or unconditional 
goto is a leader; 

c) any statement which bronediately follows a conditional goto is a 
leader. 

Each leader is found and marked with a one in its 'markr' field. 

After all have been found, they are entered into an array called 

'leaders •. 

The next step was to represent each basic block with a directed 

acyclic graph (~G). ~Gs are useful data structures for analyzing 

basic blocks. They reveal corrmon subex.pressions within a block, the 

names that are used inside the block but evaluated outside the block, 



and which statements of the block could have their value used outside 

the block. A nAG is constructed as follows: 

a) leaves are labeled by unique identifiers, either variable names or 
constants; 

b) interior nodes are labeled by operator symbols 

c) nodes are assigned a set of identifiers as labels. 

As an example, consider the following two expressions: 

a := x + y; 
b := X + y; 

The expression for 'b' is a duplicate of the expression for 'a' 

(assuming for the sake of the example that the statements are 

consecutive and the values of 'x' and 'y' remain constant). The 

attached identifier list for the expression 'x + y' would consist of 

roth identifiers 'a' and 'b' • The expression would only be represented 

once within the nAG. 

The nAG's were conStructed using algorithm 9. 2 of Aho, Sethi, and 

Ullman ( 4). Procedures and functions used to create the nAGs are 

contained in the create_DAGS package. As a result two arrays, 

'identifiers' and 'nodes', are filled with data aoout the basic block. 

Both arrays contain records, the contents of each are explained below. 

Identifier Array 
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nndx an index into the node array which represents the node to who's 
list this identifier belongs; 

name 

block 

the name of the identifier (represented as an index into the 
install table) ; 
the nunber of the current basic block. 

Node Array 

nname 
left 
right 
block 

. . 
the name of the node (represented as an integer, see table 3); 
the left child of the node; 
the right child of the node; 
the number of the current basic block. 

Continuing with the previous example, the contents of the arrays 
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"WOuld be: 

Identifier Array Node Array 

Nndx Nmre Block Index Nnaire left Right Block 

l 1 1 1 -4 2 0 1 
l 3 l 2 -11 1 3 1 
2 5 l 

Recall that the contents of the 1 name 1 field in the identifier 

array is actually an index into the install table, likewise with the 

1 left 1 and 1 right 1 fields of the node array. The negative four and 

negative eleven in the 1 nname 1 fields of entries one and tw::> in the node 

array represent operators. "As shown in Table 3, they stand for 

assignment and addition respectively. 

TABLE 3 

INTERNAL NUMERICAL REPRESENTATION OF OPERATORS 

OPERA'IDR 

- 4 
- 6 
- 7 
- 8 
- 9 
-10 
-11 
-12 
-16 
-17 
-18 
-19 

OPERATION 

"Assignment 
Greater Than 
Equal 
Not Equal 
less Than 
Hultiplication 
Addition 
Subtraction 
Input 
Output 
less Than/Equal 
Greater Than/Equal 

Since the program "WOrks exclusively with integers as oprx:>sed to actual 

names (such as the identifier 'a 1 ) there arose a need to distinguish 

between constants and identifiers whose integers represented install 

table indices, and the integers which represent operators. The logical 
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solution to this was to make the operator representatives negative 

nunbers, since an index can never be negative. In order to demonstrate, 

shewn below is the oontents of the arrays as they would appear if the 

actual identifier, constant, and operator names were used. 

Identifier Arra:L Node Array 

Nndx Name Block Index Nname Left Right Block 

1 a l l := 5 0 l 
1 b l 2 + a b 1 
2 c 1 

The information represents the following nAGs (in pictorial form): 

c 

Figure 7. Pictorial DAG Representation of Array Information 

From this new information we are able to construct expression 

tables for both the instructor and student programs. Functional 

equivalence is determined through a comparison of these two tables. An 

expression table is actually an updated version of the quadruples that 

were read previously. Once again, the expression table is an array of 

reoords, each of which has the following structure: 

id 

left 

right 

op 

block 

holds the install table index value of the resultant 
identifier (in the statement 'a := b + c', 'a' would be 
represented by this field); 

the left operand corresponding to the 'id' field; 

the right operand oorresponding to the 'id' field; 

the statement operator; 

the block number in which this statement appears; 



match this field tells if a match has been found for this statement 
(explained subsequently in this document). 

In addition to install table indices, the 1 id 1 field also 

designates the beginning and end of control staterrents (if and while 

statements). '!he 1 id 1 field appears as a negative three (-3) at the 
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beginning of a while staterrent and a negative thirteen (-13) at the end 

of the loop. Likewise, the beginning of an if staterrent is marked by a 

negative five (-5) and the end is signalled by a negative fifteen (-15). 

The 1 op 1 field is a type character field which holds a single character. 

Therefore, for operands such as 1 () 1 , 1 : = 1 , 1 (= 1 , 1 ) = 1 , a single character 

representation was required. Table 4 shows the representations of each 

existing operator used in this program. 

TABLE 4 

SlliGLE CHARACTER REPRFSENI'ATION 
OF CORE OPERA'IDRS 

OPERA'IDR REPRFSEI:\JTATION 

+ + 

* * 
:= .... 

< < 
) ) 

<> I 
<= ( 
)= ) 

Continuing with our example, the contents of the expression table w:Juld 

become: 

Id left 

a 5 
b 5 
c a 

Right Op 

0 := 
0 := 
b + 

Block 

1 
1 
1 

Match 

0 
0 
0 



Or Equivalently (actual internal represent at ion) : 

Id Left Right Op Block Match 

1 2 0 l 0 
3 2 0 l 0 
5 l 3 + l 0 

After the expression tables have been filled, equivalence determination 

can oogin. In all, the program makes three distinct passes through the 

data in an effort to determine equivalence: 

expression 
tables 

preliminary 
> matching 

basic 
> matching 

functional 
> equivalence > 

Figure 8. Phases of Equivalence Determination 

Preliminary Matching 

results 

The procedure responsible for the preliminary matching is one 
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called 'mark_matches', found in the match_maker package. It attempts to 

match those expressions that are 'direct' matches, that is, they need 

little checking. In this and all succeeding determination attempts, 

expressions with the operator of,~, (or':=') are not compared. This 

is because this operator only appears with direct assignment statements 

such as 'a:= 5'. To require a direct match would exclude statements 

such as 'a := 3 + 2' which is equivalent. There are points in the 

determination process when the knowledge of an initial value of a 

variable needs to be known, but this can be determined by the 

combination of two functions, find_index and compute, to be discussed 

later. In order for a match to occur at this point in the process, two 

expressions must have the same operators and have the same corresponding 

basic block nunber. Throughout the remaining examples, the operand 'x' 
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will be assigned as the instructor's variable and the operand 'y' will 

appear as the student's variable. The operand 'z' will appear as an 

universal identifier. 

The first check that is made is one that determines if the 

identifier being calculated also appears as an operand in the same 

statement. For example, 'x := x + z'. If so, the student statement 

must also conform to this rule as in 'y := y + z'. Assuming for the 

moment that both statements fall into this category, the following 

possible operand combinations must be considered. 

X := X + z; y := z + y; -GR-
X := X + z; y := y + z; -GR-
X := z + x; y := z + y; -GR-
X := z + x; y := y + z; 

This is, of course, assuming the operator is that of addition or 

multiplication which allows the operands to be in any order because of 

the commutative property of both operators. In the case of subtraction, 

corresponding operands must be in corresponding positions. 

X := X - z; 
x := z - x; 

y := y - z; 
y := z x; 

Also, since the CORE language allows for run-tDne assignment of 

variables through the 'input' statement, the possibility that x, y, or z 

may be input by the user also must be considered. Given that the 

variable 'z' has a direct assignment of ten in the instructor's program 

and the student's variable 'z' is input during run-time, the benefit of 

the doubt is given to the student. That is, it is possible to input ten 

when prompted. Therefore, any input variable is considered to be 

equivalent to a directly assigned variable throughout the program. 

When checking contDJl statements during this phase, the conditional 

variables must be the same. 



while (x < z) loop 
while (x < z) loop 
while (z > x) loop 
while (z > x) loop 
if (x < z) then 
if (x < z) then 
if (z > x) then 
if (z > x) then 

while (y < z) loop 
while (z > y) loop 
while (y < z) loop 
while (z > y) loop 
if (y < z) then 
if (z > y) then 
if (y < z) then 
if ( z > y) then 

For any of the above statements to be oonsidered equivalent, the last 
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assignment into the variable 'x' must match the last assignment into the 

variable 'y' and the last assignments into both variables 'z' must 

match. That is, the programs in segnent 'A' below would be considered 

equivalent, while the programs in segnent 'B' would not. 

(A) 

(B) 

program (instructor's) 
declare x, z; 
begin 

X := 1; 
z := 10; 
while (x < z) loop 

X := X + 1; 
end loop; 

end; 

program (instructor's) 
declare x, z; 
begin 

X := 1; 
z := 10; 
while (x < z) loop 

X := X + 1; 
end loop; 

end; 

program (student's) 
declare y, z; 
begin 

y := 1; 
input z; 
while (z > y) loop 

y := 1 + y; 
end loop; 

end; 

program (student's) 
declare y,z; 
begin 

y := 1; 
z : = 11; 
while (z > y) loop 

y := y + 1; 
end loop; 

end; 

The function that aids in detennining the current variable at a 

given point in the program is called find_index. It performs a search 

of the expression table and returns one of the values given below. 

A positive number 

-10 

-16 

indicates an index in the install table (meaning 
the variable has a direct assignment as in 'x := 
5 I) i 

indicates the value is computed, as in the case 
of 'x' in the expression 'x := 5 + z'; 

indicates the value of the variable is input 
during run time as in the statement 'input x'; 
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-1 indicates that the value of the variable is 
computed within a control statement as is 'x' in: 
while (z < 10) loop 

z := z + 1; 
x := z + x; 

end loop; 

During this prellininary phase, all values must have direct assignments 

in order to be considered equivalent. In other words, find_index must 

return a positive number for each variable. To illustrate, the 

folla.ving programs would not be considered equivalent (at this point): 

program (instructor's) 
declare x, z; 
begin 

X := 1; 
z := 10 
while (x < z) loop 

X := X + 1; 
end loop; 

end; 

program (student's) 
declare y,z; 
begin 

y := 1; 
z : = 5 + 5; 
while (y < z) loop 

y := y + 1; 
end loop 

end; 

If a match between two statements is found, then the 'match' field 

of the student's expression table is set to one. The 'match' field of 

the instructor's expression table is set to the index position of the 

statement in the student's expression table that it matches. 

Basic Matching 

The second attempt at matching the two program segments is driven 

by the procedure campare_tables in the program_evaluator package. The 

matching that occurs in this section of the program is an extension of 

that done in the prellininary matching. It passes through each 

instructor statement that has a zero in its 'match' field (thereby 

indicating that this statement has no match) and attempts to locate a 

slinilar statement in the student's program. In order to do this, it 

calls a function find_an_expr_to~atch which returns an index into the 

student's expression table of a possible statement. If the instructor 
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student's expression table of a possible statement. If the instructor 

statement in question is located within a control statement, then an 

attempt is made to find a snnilar statement within the corresponding 

student's control statement. (Obviously if the student has no control 

statement no statement is suggested for matching). If the instructor's 

statement is not within a control statement, the functon first checks 

the corresponding block number for a match possibility. If none is 

found, the function returns any statement (that is not within a control 

block) that is slinilar. If a student statement is located and an 

unsuccessful attempt is made at matching, the program continues down the 

student's available candidates and the process is repeated until a match 

is found or all possibilities have been exhausted. 

The matching at this phase is more complex than that of the 

previous phase due, in part, to the capabilities of the function 

canpute. If the find_ index function returns a negative ten, canpute 

makes an attempt to detennine the value computed for a particular 

variable. Take the following two segments as examples. 

(A) program (B) program 
declare x,y,z; declare x,y,z; 
begin begin 

X := 5; input x; 
y := X + 3; y := X + 3; 
z := y + x; .z := Y + x; 

end; end; 

The compute function would be able to determine that the variable 'z' in 

segment 'A' had a value of thirteen, and the variable 'z' in segment B 

could have any possible value. Compute returns an actual value as 

opposed to an index. The problem that arises with this is that it 

needed to return a value that would properly indicate an unsuccessful 

attempt to locate an actual value. In segment 'B' above, the value 



returned by compute is negative sixteen, which indicates the value was 

input at some point and may hold any integer. The problem lies in 

determining whether negative sixteen indicates an input variable or is 

the actual value assigned to same variable. The problem was solved 

through the use of a boolean status flag. This flag holds a single 

character with the following meanings: 

IRI 

I I I 

INI 

•x• 

returning a value assigned to a variable: 
value was input from the user at some point: 
last value assigned was inside a control block therefore 
is not computable: 
value can not te determined. 

Canpute would return an 1 I 1 for cases such as the last example, and an 

•x• for situations such as the one presented below. 

program 
declare x,y,z; 
tegin 

X := 1; 
input y; 
while (x < y) loop 

X := X + l: 
end loop: 
z := x; <--- (a) 

end; 
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In statement •a• above, neither the value of •x• nor the value of •z• is 

canputable. 

Another factor that gives power to this phase of determination is 

that involved with finding the last reference to a variable. Consider 

the follooing two segments: 

(A) program (instructor•s) {B) program (student • s) 
declare x, z: declare y, z; 
tegin begin 

X := l; y := l: 
while (x < 10) loop while (10 > y) loop 

(a) z := z + x; (b) z := z + y; 
X := X + 1; y := y + 1; 

end loop: end loop: 
output z; output z; 

end; end; 
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When trying to match the output statements, the value of 'z' is not 

directly computable. If, however, it can be found that the last 

reference to 'z' in the instructor's program was a match to the last 

reference of 'z' in the student's program, then it can be assumed that 

the current 'z's are equivalent. Since the 'match' field of the 

instructor's expression table holds the index of the statement it 

matches in the student's expression table, the best way to determine the 

last reference is to search the instructor's expression table to see if 

the last reference to 'z' had a student statement match. That is, if 

statement 'a' in the above instructor's program was already matched to 

statement 'b' in the student's program, then it can be assumed that the 

output statements work with the same variable. 

The ability to continue a search aids in the comparison of control 

statements, as shown: 

(A) program (instructor's) 
declare w,x,y,z; 
begin 

X := l; 
y := 0; 
z := 0; 

(1) while (x < 10) loop 
y := y + x; 
X := X + 1; 

end loop; 
w := 10; 

( 2) while (w < 20) loop 
w := w + l; 
z := z + w; 

end loop; 
end; 

(B) program (student's) 
declare a,b,c,d; 
begin 

a := 10; 
b := 0; 
c := 0; 

( 1) while (a < 20) loop 
a := a + 1; 
b := b + a; 

end loop; 
c := 1; 

( 2) while (c < 10) loop 
d := d + c; 
c := c + 1; 

end loop; 
end; 

The above program segments are equivalent. The SES is able to decide 

this by matching loop number one of the instructor's program to loop 

number two of the student's program, and vice versa. 
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Functional Equivalence 

The third and final phase of equivalence determination attempts to 

match any instructor's statement that has not been previously matched. 

There are separate attempts at matching the expression, select, and 

iteration statements. The idea at this step is to allow for different 

thought patterns in the design of the program segments. The package 

that contains the functions and procedures for this phase is the 

equiv_chk package. It considers variations that may occur in the if, 

while, and expression statements. For example, when considering a loop, 

the following variation may occur: 

program ( instructor' s) 
declare x,y,z; 
reg in 

X := 0; 
y := 0; 
z := 10; 
while (x < 10) loop 

X := X + 1; 
y := Y + z; 

end loop; 
end; 

program (student's) 
declare a,b,c; 
reg in 

a := 1; 
b := 0; 
c := 10; 
while (a < 10) loop 

a := a + 1; 
b := c + b; 

end loop; 
b := c + b; 

end; 

In the above example, the student's loop executes one less time than the 

instructor's. The program is equivalent, however, because the pertinent 

statements in the loop body have been executed outside the loop to make 

up the difference. In order to determine equivalence, the nunber of 

times each loop executes is evaluated. Then data on the loop control 

variable must be gathered. Among other things, it must be determined if 

the loop control variable is used in the calculations of other 

statements within the body. If so, its position relative to the other 

statements must be considered. For example, consider the template 

segment that follows. 
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X := 0; 
while (x < 10) 
loop 

X := X + 1; 
y := y + 1; 

end loop; 

The two following segments are equivalent variations: 

a) X := 1; b) X := 0; 
while (x < 10) while (x <= 10) 
loop loop 

y := y + x; X := X + 1; 
X := X + 1; y := y + x; 

end loop; end loop; 
y := y - x; 

The number of iterations of the student and instructor loops must be 

determined. If the student's loop executes more times than the 

instructor's, there must be statements outside the loop that will negate 

the action(s) that occurred within the loop. If the student's loop 

executes fewer times than the instructor's, there must be statements 

outside the loop that complete the actions of the body. 

When questioning the equivalence of expression statements at this 

phase, the different ways of writing the same expression must be 

considered. In the preceeding phases, the equivalence of operands and 

operators were considered. The sequence 'x := 10; y := 5; z := x + y;' 

was considered equivalent to 'y := 5;, x:= y + y; z := x + y;' because 

the values of 'x', 'y', and 'z' were equivalent, as was the operator of 

the expression evaluation into 'z'. When evaluating the following two 

statements: 'x := y + y' and 'x := y * 2', the values of the 'x' 

variables must be evaluated. Before evaluation, it must be confirmed 

that the last references to the resultant identifiers were matched. If 

this can be determined and the evaluation of the expressions are the 

same, it may be assumed that the statements are equivalent. 

The factor to be considered when determining the functional 
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equivalence of the •if/else• statement is that of the reverse 

positioning of the condition operands. If the operator is the same but 

the operands have reversed positions, then the expressions that occur 

within the body of the statement must be reversed respective to the 

operands. As an example, consider the follCMing: 

a) if (x > y) then . b) if (y > x) then 
z := z + x; z := z + y; 

else else 
z := z + y; z := z + x; 

end if; end if; 

It should be injected at this point that there may be numerous 

distinct correct answers to a programming problem. It is not realistic 

to expect the SES to recognize all correct solutions. Many common (and 

same uncammon) variations that may occur in student responses were 

studied previous to the developnent of the current SES. As a result, it 

is aole to detect and accept many functional equivalences. A factor 

that aids its detection capabilities is the capacity to store many 

templates. This significantly raises the probability that a match 

(between a student response and a stored template, whether correct or 

incorrect) may be found. Consider the stored templates that follow. 

Each is designed to compute the product of the numbers one to ten. 

Correct: 

a) X := 1; b) X := 2; 
y := 1; y := 1; 
while (X < 11) loop while (X < 11) loop 

y := y * x; y := X * y; 
X := X + 1; X := X + 1; 

end loop; end loop; 

c) X := 1; d) X := 2; 
y := 1; y := x; 
while (x <= 10) loop while (x <= 10) loop 

X := X + 1; X := X + 1; 
y := y * x; y := y * x; 

end loop; end loop; 



Incorrect: 

e) X := 0; f) X := 1; 
y := 0; y := 1; 
while (x < 11) loop while (x <= 11) loop 

X := X + 1; X := X + 1; 
y := y * x; y := y * x; 

end loop; end loop; 

The following program segment, which is a correct response to the 

problem, would not be correctly matched to templates a, b, or c. It 

would, however, be matched to ta:nplate d. As a result, the student 

would be informed that he/she had submitted a correct answer to the 

given problem. 

X := 2; y := 2; 
while (x < 11) loop 

X := X + 1; 
y := y * x; 

end loop; 

The next segment is an example of a response which would be matched to 

an incorrect response. The segment would match template e and the 

student would be informed that the submitted response was not a correct 

solution to the given problem. 

X := 0; y := 0; 
while (x <= 10) loop 

y := y + x; 
X := X + 1; 

end loop; 
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CHAPTER V 

RESULTS OF THE STUDY 

Equivalent and Nonequivalent Programs 

Given are some examples of programs that are determined to be 

equivalent to their corresponding templates. In the samples that 

follow, each instructor's program is considered to be a correct 

template. It should be stated that the instructor is also allowed to 

sutmit an incorrect tenplate for comparison. If a student • s input 

program segnent is equivalent to a correct template, a message informing 

him/her of a correct response is displayed along with the point value of 

a match to the template. If an incorrect response is sutmitted and 

matched, a message informing the student that his/her response is 

incorrect is displayed along with any points that may be available for 

the match. 

Instructor's Template 

a) program 
declare x,y; 
begin 

X := 0; 
while (x < 10) 
loop 

X := X + 1; 
input y; 
if (y < 0) then 

output y; 
end if; 

end loop; 
end; 
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Student's Program 

program 
declare x, y; 
begin 

X := 1; 
while (x <= 10) 
loop 

X := X + 1; 
input y; 
if (0 > y) then 

output y; 
end if; 

end loop; 
end; 



b) program 
declare x,y; 
begin 

X : = 0; 
y : = 5; 
while (x < 10) 
loop 

X := X + 1; 
y := y * 2; 

end loop; 
output y; 

end; 

c) program 
declare x,y,z; 
begin 

X := 2; 
y := 5; 
z := 5 * (x + y); 
output z; 

end; 

d) program 
declare x,y,z; 
begin 

X := 10; 
z := 5; 
y := X + z; 
if (y > x) then 

z := 20 + x; 
else 

z := 20 + z; 
end if; 

end; 

e) program 
declare w,x,y,z; 
begin 

w := 1; 
X := 0; 
y := 1; 
z := 2; 
while (x < 10) 
loop 

X := X + l; 
y := y + x; 

end loop; 
while (w < 5) 
loop 

w := w + 1; 
z := z * 2; 

end loop; 
end; 

program 
declare a,b; 
begin 

a := 5; 
b := 0; 
while (b < 10) 
loop 

a := a + a; 
b := b + 1; 

end loop; 
output a; 

end; 

program 
declare a,b,c; 
oogin 

a := 2; 
b := 5; 
c := (5 *a) + (5 *b); 
output c; 

end; 

program 
declare x,y,z; 
begin 

z := 5; 
X := Z * 2; 
y := x + z; 
if (x > y) then 

z := 20 + z; 
else 

z := 20 + x; 
end if; 

end; 

program 
declare a,b,c,d; 
begin 

a := 1; 
b := 2; 
while (a < 5) 
loop 

b := b + b; 
a := a + 1; 

end loop; 
c := 0; 
d := 1; 
while (c < 10) 
loop 

c := c + 1; 
d := c + d; 

end loop; 
end; 

40 



41 

While the SES is capable of matching many general program segments, 

it is not reasonable to expect perfection. The determination of 

functional equivalence is, in general, unsolvable. The SES assumes that 

the instructor will provide a variety of program templates, both correct 

and inoorrect, of expected resfX)nses. It is also assumed that the 

student will put thought and consideration into the design of his/her 

program segment. 

Given belo.Y are sane examples of the types of program segments that 

the SES will not compute as matches. 

program (instructor's) 
declare x; 
begin 

X := 0; 
while (x < 5) loop 

X := X + 1; 
end loop; 

end; 

program 
declare a; 
begin 

a := 0; 
a := a + 1; 
a := a + 1; 
a := a + 1; 
a := a + 1; 
a := a + 1; 

end; 

The program will not extend the body of a loop to match a sequence of 

expressions. 

program (instructor's) 
declare x, y, z; 
begin 

X := 1; 
y := 5; 
z := 5; 
while (x < 10) 
loop 

X := X + 1; 
y := y + z; 

end loop; 
end; 

<--a 
<-- b 

program 
declare x, y, z; 
begin 

X := 1; 
input y; 
input z; 
while (x < 10) 
loop 

y := y + z; 
X := X + 1; 

end loop; 
end; 

<-- c 
<- d 

The problem with the above samples is that caused by the assumption 

placed on input variables. It must be assumed that the user will input 

the correct values for the identifiers, therefore, an input variable is 

an automatic match to any value. Since the program attempts to match 
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expressions in the order in which they are presented, statement 'a' is 

first paired with statement 'c'. This produces a match because both the 

variables in expression 'c' have their values input. It is possible 

that these statements match. As a consequence, however, the statements 

'b' and 'd' are not matched because they are not equivalent. 

As another precaution, it should be noted that the nesting of if 

and while statements will produce unpredictable results. The nesting of 

a single if statement within a single while statement is permitted. 

Depending on the arrangement of statements, however, the combination and 

nesting of these statements causes inconsistencies in the progam. 

Suggestions for Future Study 

It is highly reoammended that development of the SES continue. 

This project has much potential. When deciding whether two program 

segments will produce the same output values no matter their design, the 

question canes to mind "Is that not the purpose of a canpiler"? 

Perhaps, but the compiler fails in many ways when compared to the 

possibilities of the SES. A compiler may aid in the development of 

basic debugging skills, but it offers no help to the student who is 

struggling to develop the knowledge network required for efficient 

structured programming. In srort, it is not a teacher. The SES on the 

other hand allows the user to read a problem instruction and toy with 

the many solutions to it. This will encourage exploration and 

development of basic thought patterns as well as the knowledge of basic 

constructs (such as condition and iteration statements). It is 

suggested that the next step in development is the incorporation of the 

current SES into an expert system. The program developed in this study 



will provide an excellent base for such a system. Due to the design of 

the current SES, logic errors may easily be detected during the 

evaluation of the program segment. It is suggested that an appropriate 

dialogue be developed that will inform the student of his/her error and 

suggest methods of correction •. It would be advantageous to the student 

if the SES were interactive and would alla.v changes to be made as the 

errors were detected. 

Surmnary 
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The purpose of this study is to expand the original Statements 

Evaluation System to include the evaluation of the 'while loop' 

statement. The system alla.vs an instructor to enter multiple questions 

and template answers. These templates may be (logically) either correct 

or incorrect. The syntax, ha.vever, srould be consistent with that of 

the mini-language CORE. These templates are compiled into intermediate 

code and stored for use later as a functional equivalence evaluation 

factor. The student user is presented a menu (as developed by the 

instructor) fran which he/she can choose one of a maxbnum of twenty 

available options. Once an option is selected, the student is presented 

a set of instructions to follow in developing a program. Once the 

student has developed a syntactically correct program segment, he/she 

may sutmit it for evaluaion. An appropriate response informing the 

student of a match to a correct template, a match to an incorrect 

template, or the inability to match to either a correct or incorrect 

template is displayed. 
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APPENDIX A 

SES INSTRUCI'OR 1 S OPERATICN MANUAL 

Purpose 

The purpose of this manual is to guide the instructor in 

developing a menu and set of templates for the OSU Statements 

Evaluation System. 
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PREFACE 

Developing the SES 

There are three distinct steps that must be taken when developing 

templates for comparison. The instructor must: 

a) write and debug the CORE source code of the template; 

b) develop a menu option and instructions that will describe for the 
user the program he/she must write; 

c) give a brief description of the template to the computer. 

Each step is fully documented in this manual. 
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CHAPTER I 

THE CORE TEMPlATE 

Format and Content 

The template may be developed by using any standard editor. The 

syntax of the source code must be in acoordance with the standards set 

forth for the Legard and Marootty mini-language CORE. The CORE 

language is designed for sbnple data manipulation. It is not a 

powerful language and soould not be expected to perform large 

canputational problans. It will perfo:rm best when used with its 

purpose and abilities in mind. 

The following guidelines should be observed when developing the 

CORE template. 

1) CORE allows only one data ty:pe, that of INTEGER. All variable 
names must be declared and the length soould not exceed ten 
characters. 

2) The source code should be written in lowercase letters. Identifier 
names may contain a canbination of letters, digits, and 
underscores. The compiler, however, does not distinguish between 
upper and lowercase letters. Therefore, if an identifier ncrne of 
'Tax' is declared, the user must not use 'TAX' or 'tax' wihin the 
program body. The canpiler sees these as three separate variables, 
the last two of which are undeclared. 

3) There are three mathematical operators, those being addition (+), 
subtraction(-), and multiplication(*). Division is not allowed. 

4) There are six logical operators: equal, not equal, less than, 
greater then, less than or equal, and greater than or equal. 

5) All statements must be terminated with a sani-colon. 
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6) •rf• statements may be embedded. Each statement should be 
terminated with a corresponding •end if•. 

7) 1 While/loop• statements may be embedded. Each statement must be 
terminated with an •end loop•. 

8) The use of parentheses is allowed to manipulate the order of 
operation in expression (assignment) statements. 

Compiling the Template 

Once the template has been written and saved, it may be compiled 

by typing: 

$!CORE filename 

where •filename• is the name of the source code. The length of the 

•filename• should not exceed ten characters (this includes the file 

extension). The CORE compiler may generate any of nine error codes. 

Following is a list of the codes and their descriptions. 

Code Problem 

1 Illegal Variable Name 

2 IF/END IF statements not sequenced 

3 BEGIN/END statements not sequenced 

4 WHILE/END LOOP statements not sequenced 

5 Missing PROGRAM statement 

6 Variable already declared 

7 Undeclared variable name 

8 variable name exceeds maxbnum length 

9 Syntax Error: •;• , 1 ( 1 , 1 ) 1 expected 

10 No Errors or Warnings 

Definitions are as follows: 
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Code Definition 

1 Illegal character(s) in the variable name. 

2 An 'IF' statement was found with no corresponding 'END IF' 
statement. 

3 A 'BEGIN' statement was found with no corresponding 'END' 
statement. 
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4 A 'WHILE' statement was found with no corresponding 'END LOOP' 
statement. 

5 Either the wrong file was submitted for oompilation, or the 
source code is missing the 'PROGRAM' statement. 

6 The same variable name appears twice in a declaration 
sequence. 

7 A variable name has been found in the program body that was 
not found in the declaration sequence. 

8 An identifier name exceeds the length (in characters) of the 
maximum length ( 10 characters). 

9 Check the given line number for missing parentheses, 
semicolons, etc. 

10 The program is syntactically correct. 

After the template has been successfully compiled, the instructor 

should retain the name of the file for input into the menu. 



CHAPTER II 

DEVEIDPING THE SES MAIN MENU 

This chapter details haw to set up the SES main menu. This is the 

menu that will be displayed to the student. When the student chases an 

option, a set of instructions will be given on the development of a 

program. The student soould write a program that meets the 

specifications given in the instructions, compile his/her program 

segment, and submit it for comparison against the menu option's 

templates. 

To begin the SES Development Menu, type: 

$ IMENU 

The following menu will appear: 

* STATEMENT 1 S EVALUATICN SYSTEM * 

*** Instructor Menu *** 

1) Modify Menu 

2) Develop Templates 

3) Exit Systan 

Option # ? _ 

Before inserting the templates, the instructor should add the menu 

option. Therefore, option number two soould be selected from this 

menu. This will produce the following menu: 

*** MENU MAINTENANCE *** 

l) Add New Menu Options 
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2) View Existing Menu Options 

3) Modify Existing Menu Options 

4) Delete Existing Menu Options 

5) Return To Main Menu 

Option # ? __ 

Option number one should be selected at this point. A description of 

it and the other options is following. 

Adding Menu Options 

When adding menu options, two things need to be input. The first 

is the menu 'title', or the entry that will appear on the actual menu 

screen when displayed to the user. The second is the accompanying 

instructions. If a student should pick a particular option from the 

menu (based on the •title' above), he/she should receive same 

instructions giving specifications for a CORE segment that is to be 

written. 
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The computer will prompt the instructor for the menu's title and 

instructions. The menu option number (number one for the first entry) 

is generated automatically. THERE IS AN UPPER LIMIT OF 20 AVAILABLE 

MENU OPTIONS. Also, the instructions given to the student may not 

exceed 240 characters (three eighty-character lines). When the 

instructor has completed the typing of his/her instructions into the 

computer, he/she soould terminate them with an ampersand • & • • This 

signals the end of the instructions to the computer. A sample dialogue 

between machine and instructor is given for example. Capital letters 

indicate instructor input. 

Menu Option Number => l 



Enter Menu Title - 30 character 1 :i.rnit => SUMMATICN OF NUMBERS 1 TO 10 

Enter student instructions, there is a 3 line (240 character) limit 
Enter a '&' to tenninate the instructions: 

YOU ARE TO WRITE A PROORAM THAT WILL SUM THE NUMBERS FROM ONE TO TEN. 
THE USE OF A 'WHILE I.OOP' IS RECOMMENDED FOR SOLVING THIS PROBLEM. & 

The computer will then display the information received for the 

instructor's verification. Corrections are allowed if necessary. 

After the data is verified it is saved to a file for future reference. 

The computer will then return to the 'MENU MAINTENANCE' menu and await 

further input. 

Viewing Existing Menu Options 

When option nunber two is selection from the 'MENU MAINTENANCE' 

menu, the instructor is allowed to view the menu options and 

accompanying instructions that are currently available to the user. 

The instructor is first shown the full selection of student menu 

options as displayed to the student. There are two methods of viewing 

these options. The instructor may either automatically view all 

student menu options, or he/she may view selected options. If the 

instructor chooses to view all the available options, the computer 
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begins with student option number one, displays it and its accompanying 

instructions, and continues with each successive student menu option 

until all have been displayed for viewing. Should the instructor 

choose only to view selected options, the computer prompts for the 

desired option and complies by displaying it for view. After the 

viewing has been canpleted, the computer returns to the 'MENU 

MAINTENANCE' menu. 



Modifying Menu Options 

~~ know that instructors do not make mistakes, but they may 

occasionally change their minds. For this reason, the instructor is 

allowed to modify the title and/or accompanying instructions of any 

student menu option. To begin, the student menu, as displayed to the 

student, is displayed for the instructor. The computer then prompts 

for the menu option number that he/she wishes to modify. When the 

correct option is received, the computer displays the current 

infonnation in the following fonnat: 

l) Menu Option 

2) Menu Title 

=> l 

=> SUMMATICN OF NUMBERS 
1 TO 10 

3) Instructions => 
YOU ARE TO WRITE A P:RCX;RAM THAT WILL SUM 
THE NUMBERS FROM ONE TO TEN. THE USE OF 
A 1 WHILE LCX)p 1 IS RECOW4ENDED FOR SOLVING 
THIS PROBLEM. 

Modify Which Number ? => 
- Enter 0 (zero) to Quit -

The instructor may then enter a one, two, or three, depending on the 

data he/she wishes to modify. IT IS RECOMt-tENDED THAT THE INSTRUCTOR 

NOT CHANGE THE MENU OPTICN NUMBER. This number is generated 

automatically, a change may disrupt the sequence. 

If the instructor decides not to modify the existing data, a zero 

may be entered and control will pass back to the 1 MENU MAINTENANCE 1 

menu. 

Deleting Menu Options 

The instructor is also allowed the opportunity to delete any 

existing student menu option from the SES. Before deletion, the 

54 



student menu is displayed for the instructor. The computer then 

pDDmpts for the number to be deleted. The instructor may enter a zero 

at this point to return to the 'MENU MAINI'EN..l\NCE' menu and avoid 

deleting any options. Should the instructor wish to proceed, however, 

he/she is offered oo seoond chance. The instructor soould type in the 

menu option number of the data to be deleted and press return. This 

marks the reoord, in effect allowing a new reoord to be written over 

the old. 
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CHAPTER III 

DEVEIDPING THE SES TEMPlATES 

After the instructor has entered the student's menu option(s) 

he/she is now ready to attach the template references. Option number 

one soould be coosen fran the main menu (figure#?). The follo.ving 

menu will be displayed to the instructor. 

** TEMPlATE MAINTENANCE ** 

1) Add New Templates 

2) View Existing Templates 

3) Modify Existing Templates 

4) Delete Existing Templates 

5) Return to Main Menu 

Option # ? 

The instructor is allowed to enter any number of templates, correct or 

incorrect, for any existing student menu option. Following are the 

details of each above option. 

Adding New Templates 

In order to add new templates to the system, select option number 

one from the templates menu. When adding a template, the instructor is 

prompted for the student menu option with which the template should be 

associted, the external filename that contains the source code of the 

template, the point value that is assigned for a correct match to this 
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template, and information stating whether the template is a correct or 

incorrect response. A sample dialogue follows. Data in capital 

letters represents instructor responses. Before the interaction 

begins, the student menu is displayed for the instructor's viewing. 

Enter Menu Option Number to 
which this template belongs => 1 

Enter Full Name of Template file, 
10 Characters Maximum Length => TEMPl.COR 

Is the Template Correct or 
Incorrect? (Cor I) · => C 

How Many Points are Available for 
a Match to this Template ? => 25 

The information that was received from the instructor is then displayed 

for verification. The instructor is allowed to make changes and/or 

corrections. After the data is verified, it is stored in an external 

file for future reference, and control is passed back to the Templates 

Menu. 

Viewing Existing Templates 

In order to view any or all of the existing templates, the 

instructor should select option number two fDDm the Templates Menu. 

The program allows the user to view all the currently existing 

templates that are stored in the system, or to view only the templates 

associated with a given student menu option. The student menu is 

displayed to the instructor and the computer asks if the instructor 

wishes to view all or selected templates. Should the user wish to view 

all the system templates, the program begins with student option number 

one, displays all information regarding each associated template, and 

continues to do so until the last student option templates have been 
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displayed. On the other hand, should the user desire to view only 

selected template(s), the aamputer requests the student menu option 

number to which the template(s) belong and displays infonnation 

concerning the related template(s). Control is then returned to the 

Template Menu. 

Modifying the Templates 

In order to correct infonnation stored on a particular template, 

the instructor should select the third option from the Template Menu. 

The student menu is displayed for the instructor's view, and the 

oanputer requests that the user enter the student menu option that is 

associated with the template to be modified. A screen will then appear 

that displays each template that is associated with the given student 

option. The computer requests the instructor to indicate which 

template he/she wishes to modify. The information is then displayed as 

follavs: 

l) Menu Option => 1 

2) Filename => TEMPl.COR 

3) Template is => CORRECT 

4) Point Value => 25 

Modify Which Number? 
Enter 0 (zero) to Quit => 

The instructor is given a chance to return to the Templates Menu 

without making any modifications by entering a zero. If, hcwever, 

changes need to be made, the corresponding number should be entered 

(for example, to change the file name, enter number two) and the 

computer will prompt for the correct information. When all changes 

have been made, the instructor should enter a zero to return to the 
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Templates Menu. 

Deleting Existing Templates 

Templates may be deleted from the system by choosing option number 

four fDDm the Templates Menu. The oomputer will display the student's 

menu for the instructor and prompt for the student option to which the 

template belongs. After the instructor has entered the correct option 

number, the computer will display a numbered list of all the templates 

associated with the given option. The instructor is then allowed to 

enter the number of the template to be deleted. There is no turning 

back at this mint. Once the nunber has been entered, the template is 

deleted. Control will then return to the Templates Menu. 

Throughout the design of these menus, care has been taken to 

preserve the integrity of the data entered. For example, if the 

computer is expecting a numerical resr:onse (as in the selection of a 

menu option) and the user inputs a character, the computer displays an 

appropriate error message and allows the user to re-enter his/her 

resr:onse. The same is true if the computer is expecting a particular 

character or character string response (as in 'Y' or 'N'). It is 

believed that the instructor's menu is user friendly and will present 

no obstacles to the user. 



APPENDIX B 

SES STUDEm' USER' S MANUAL 

Purtx=>se 

The puri_X)se of this manual is to guide the student user in the 

evaluation of program segments using the OSU Statements Evaluation 

System. 
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PREFACE 

Evaluating a Program Segment 

There are three steps that must be completed 1n order to evaluate 

a program segment. The user must: 

a) choose an option from the Student Menu to obtain instructions for 
the development of a program segment; 

b) code and debug the CORE source code program that will meet the 
specifications given in step one (above); 

c) submit the program segment for evaluation against the stored 
expected responses. 

Each step is fully documented in this manual. 
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CHAPI'ER I 

THE STUf.ENI' MENU 

The student menu contains a maxbnurn of twenty options that are 

developed by an instructor to challenge a student user. To access the 

menu, type the following at the VAX/VMS prompt (do not type the '$' 

prcrnpt): 

$ SMENU 

The menu will appear and the student will be requested to choose 

an option that is of interest. An invalid response will be ignored, 

and the ccrnputer will continually prompt until a valid response is 

received. Once a correct input is obtained, the computer will display 

for the student the instructions that accompany his/her menu choice. 

Assuming the student chooses option six from the Student Menu, a screen 

snnilar to the sample below will be presented. 

Menu Option Number => 6 

Instructions: You are to write a program that will sum the 
numbers from one to ten. It is recamnended 
that you use a 'WHILE' loop to :implement 
your solution. 

The student is then given the opportunity to continue with this 

request, return to the menu and make another choice, or exit the 

system. If the student elects to proceed, the following screen will 

appear (continuing with the previous example, menu option number six 

has been chosen): 

INSTRUCTICNS TO PROCEED ••• 
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1) Your menu coo ice is number => 6 
REMEMBER this number. 

2) Write a program using the mini-language CORE that will 
fulfill the given instructions. Compile and debug your 
program. To compile your program, type: 

CORE filename 

where 'filename' is the name of your source file. 

3) When your progam is working properly, type: 

COMPARE 

The computer will compare your program segment to various 
correct and incorrect templates that have been prepared 
for the menu option chosen. The comparison program will 
prompt you for the menu option that you erose. When it 
does, enter the number given the step one (1) above. 

At this point, control will return to the VMS operating system, 

and the student should begin developing a program segment that will 
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confonn to the specifications set forth by the instructor. The program 

should be written the the Legard and Marcotty mini-language CORE. The 

syntax specifications for this language are provided. Instructions on 

developing and compiling a CORE program are given in the next section. 



CHAPTER II 

DEVELOPING AND COMPILING A CORE PROGRAM 

Format and Content 

The template may be developed by using any standard editor. The 

syntax of the source cxx:ie must be in accordance with the standards set 

forth for the Legard and Marcotty mini-language CORE. The CORE 

language is designed for simple data manipulation. It is not a 

powerful language and should not be expected to perform large 

computational problems. It will perform best when used with its 

purpose and abilities in mind. 

The following guidelines should be observed when developing the 

CORE program. 

1) CORE allows only one data type, that of INTEGER. All variable 
names must be declared and the length should not exceed ten 
characters. 

2) The source code should be written in lowercase letters. Identifier 
names may contain a combination of letters, digits, and 
underscores. The compiler, however, does not distinguish between 
upper and lowercase letters. Therefore, if an identifier name of 
'Tax' is declared, the user must not use 'TAX' or 'tax' wihin the 
program body. The compiler sees these as three separate variables, 
the last two of which are undeclared. 

3) There are three mathematical operators, those being addition(+), 
subtraction (-),and multiplication(*). Division is not allowed. 

4) There are six logical operators: equal, not equal, less than, 
greater than, less than or equal, and greater than or equal. 

5) All statements must be terminated with a semi-colon. 
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6) ' If' statements may be embedded. Each statement soould be 
terminated with a corresponding 'end if'. 

7) 'While/loop' statements may l::e eml::edded. Each statement must be 
terminated with an 'end loop'. 

8) The use of parentheses is allowed to manipulate the order of 
operation in expression (assignment) statements. 

Canpil ing the Program 
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Once the program has teen written and saved, it may be compiled by 

typing: 

$!CORE filename 

where 'filename' is the name of the source code. The length of the 

'filename' should not exceed ten characters (this includes the file 

extension). The CORE compiler may generate any of nine error codes. 

Following is a list of the codes and their descriptions. 

Code Problem 

1 Illegal Variable Name 

2 IF/END IF statements not sequenced 

3 BEGIN/END statements not sequenced 

4 WHILE/END LOOP statements not sequenced 

5 Missing PROGRAM statement 

6 Variable already declared 

7 Undeclared variable name 

8 Variable name exceeds maxbnum length 

9 Syntax Error: ';' ,'(',')' expected 

10 No Errors or Warnings 

Definitions are as follows: 



Code 

1 

2 

3 

Definition 

Illegal character(s) in the variable name. 

An • IF' statement was found with oo corres:rnnding 'END IF' 
statement. 

A 'BEGIN' statement was found with no corres:rnnding 'END' 
statement. 
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4 A 'NIILE' statement was found with no corres:rnnding 'END LCOP' 
statement. 

5 Either the wrong file was submitted for compilation, or the 
source code is missing the 'PROGRAM' statement. 

6 The same variable name appears twice in a declaration 
sequence. 

7 A variable name has been found in the program body that was 
not found in the declaration sequence. 

8 An identifier name exceeds the length (in characters) of the 
maxlinum length (10 characters). 

9 Check the given line number for missing parentheses, 
semicolons, etc. 

10 The program is syntactically correct. 

After the program has been successfully compiled, the student may 

submit the program for evaluation. Instructions for the last step are 

in the next section. 



CHAPTER III 

SUBMITTING A PROGRAM FOR EVALUATION 

After the student has carefully designed, edited, and canpiled 

his/her program, it may be subnitted for comparison by typing: 

$COMPARE 

at the VAX/VMS prompt (again, do not by the '$' shown, it is the VMS 

pranpt). TheSES will ask for the menu option number to which the 

student has responded. Continuing with the above example, the student 

would enter a six in response. If the student has input the correct 

option mnnber, the computer will proceed with its comparison. If the 

student input the wrong option number, he/she is given the opportunity 

to correct the entry. 

The computer will compare the program segment against all existing 

templates that are stored with the given option number. The program 

may be matched to either an expected correct or incorrect template, or 

it may be that the program can not be matched to any template. In any 

case, the user will be informed of the outcome of the comparison. One 

of the following responses will be given: 

1) Your program has been SUCCESSFULLY MATCHED TO A CORRECT template 

2) Your program has been matched to an expected INCORRECT ternplate, 
Please reconsider your approach and try again ••• 

3) Your program can not be matched to either a CORRECT or an 
INCORRECT template. Program Correctness can not be determined 
at this time ••• 

The student may change or correct his/her program and resubnit it 

67 



68 

at any tline. When resubmitting a program for evaluation against the 

same menu option number, it is not necessary to oamplete step one 

(displaying the student menu). The student slinply may repeat steps two 

and three (compiling and submitting the program for oamparison) as many 

times as desired. 



APPENDIX C 

MINI-LANGUAGE CORE SYNTACTIC CATEGORIES 

program ::= 

declaration : := 

statement ::= 

assignment-statement ::= 

if-statement ::= 

loop-statement ::= 

input-statement 

output-statement 

a::xnparison 

expression 

factor 

operand 

: := 

. ·.. -
: := 

::= 

::= 

: := 

comparison-operator ::= 

program 
declaration ••• 
begin 
statement ••• 
end; 

DECLARE identifier [ ,identifier ] . 
• • • I 

assignment-statement 
if-statement 
loop-statement 
input-statement 
output-statement 

identifier := expression 

IF canparison THEN 
statement ••• 

[ EISE 
statement ••• ] 

END IF ; 

WHILE campar ison LOOP 
statement ••• 

END LOOP ; 

INPUT identifier [ , identifier] . ... , 
OUTPUT identifier [ , identifier] ••• ; 

operand comparison-operator operand ) 

expression + 
expression -

factor 
factor 

factor * ] operand 

integer 
identifier 
( express ion 

< <= 
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> >= = <> 



identifier 

integer 

: := 

: := 

letter ( ( 

digit ••• 

letter ] ••. 
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