
ADAPTATION OF A SIMPLE FRAME-BASED

SYSTEM TO ACCOMMODATE COMPLEX

INTERACTION AMONG

FRAMES

BY

V. R. REDDY SABBELLA

Bachelor of Technology

Nagarjuna University

Guntur, India

1983

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1988

~e."S>·\~")
\~~t

S\ \~o..
C..c~. ;;L

ADAPTATION OF A SIMPLE FRAME-BASED

SYSTEM TO ACCOMMODATE COMPLEX

INTERACTION AMONG

FRAMES

Thesis Approved:

~;J u£-

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I wish to express sincere appreciation to Dr. Michael

Folk for his encouragement and excellent guidance throughout

my thesis. Profound thanks to Dr. Gerrit Cuperus for his

suggestions and invaluable help in many ways throughout my

graduate program. Many thanks to Dr. George for his advice

and serving on my graduate committee.

Thanks go to Mr. Alan Stark for his cooperation and

suggestions. Also thanks to Dr. Berberet, Dr. Stritzke, Dr.

Young, Dr. Criswell, and Dr. Pinkston for their help in

bringing this thesis.

Finally, I would like to thank the staff and the

secretaries of Entomology department for their cooperation

and help.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

Expert systems • • • • . • • . • • • .
Tools for building expert systems

Programming languages
Expert system shells . • • • . • • .

Criteria for selecting an expert
system shell . • . . • . . • • .

Overview of the problem . •

II. SIMPLE FRAME-BASED SYSTEMS

1
5
5
7

9
12

16

Introduction . . . • . • • 16
VP Expert • . . . • . • • . . • • 17
Advantages and Limitations . • • . 20
Some Solutions • • • . • • . . . • . • • . 25

III. TOOLS FOR EXTENDING A SIMPLE FRAME-BASED SYSTEM 28

Introduction . • • • • . • . . • . 28
Calling Frames . . . • . . • . . • 28
Range Restrictions For Numeric Variables • 35

IV. SUMMARY AND CONCLUSIONS

Summary
Conclusions

BIBLIOGRAPHY .

APPENDIX • . .

iv

37

37
39

40

42

CHAPTER I

INTRODUCTION

Expert systems

Artificial intelligence is a growing branch of computer

science that studies ways of enabling computers to do tasks

that seem to require human intelligence. These tasks include

expert problem solving, theorem proving, game playing,

natural language understanding, speech recognition, and

image processing. out of these areas of AI the expert

problem solving is well understood and has a wide range of

practical applications. The programs used for solving the

problems which require human expertise are known as expert

systems. Expert systems are also sometimes called

knowledge-based systems or rule-based systems.

Expert systems differ from conventional programs in the

way they:

. separate the search mechanism from data and knowledge

representation

. easily deal with symbolic data

• allow incorporation of uncertain or incomplete

information

explain the reasoning of a conclusion to the user

1

2

. allow easy addition of knowledge without requiring

changes in the logic of the program

Ramamoorthy et al [13] give an interesting comparison

of what makes AI programs different. Below is presented the

table of comparison:

Feature

. Processing type

• Technique

. Definition of

solution steps

. Answers sought

. Control/Data

separation

• Knowledge

. Modification

Expert systems

Symbolic

'Heuristic search

Not explicit

Satisfactory

Separate

Imprecise

Frequent

Conventional
Programming

Numeric

Algorithmic

Precise

Optimal

Intermingled

Precise

Rare

Every expert system consists of two parts: an inference

engine and a knowledge base. The knowledge base is unique to

a particular domain, but the inference engine may be common

to a number of domains that have similar characteristics.

The knowledge base contains the facts and the rules or

knowledge relationships that embody an expert's knowledge.

The facts, sometimes known as working memory, contain

declarative knowledge about the particular problem being

solved and the current state of affairs in the attempt to

solve the problem. There are several different ways to

represent these facts: first order predicate logic, frames,

and semantic networks [13]. In predicate logic the

declaration "Richard gave Jean a rose" might be represented

in the form "Give(Richard, Jean, rose)". A frame for the

same information might be

name of the frame: F1

type of frame: transfer of possession

source: Richard

destination: Jean

agent: Richard

object: rose

3

In the semantic network, each node contains an object

and the lines between the nodes represent the relationships.

The semantic network representation for the same example is

shown in Figure 1.

gave-rose

Figure 1.

The rules in a knowledge-base contain the formulas

showing the relationship among several pieces of

information. A typical rule looks like this:

"If it is clear and hot and muggy, then it is summer."

Here we have the three antecedents "clear", "hot", and

"muggy" connected by logical AND, which, when satisfied,

lead to the consequence that it is "summer".

The inference engine may use forward chaining or

backward chaining to infer the rules and the facts in the

knowledge base and give conclusions to the user. The

inference engine should also be able to explain the

reasoning of its conclusions.

In forward chaining the antecedents of each rule are

evaluated and if they succeed the consequents of that rule

are fired or evaluated. Reasoning in a forward chaining

system is described as a "recognize-act" cycle [10]. First,

the rules that can succeed, given the contents of working

memory, are recognized. One rule is selected and then the

action or conclusion is asserted into working memory. Then

the system proceeds to the next cycle and checks again to

see what rules succeed. It terminates when a desired result

or conclusion is reached or when all the relevant rules are

exhausted.

In backward chaining the system looks for the rule

containing the required goal parameter and then sees if the

antecedents of that rule succeed. If one or more of the

parameters in the antecedent part are unknown it tries to

find the values of those parameters in the same way as that

of the goal parameter. Once the rule succeeds the goal

parameter is assigned a value according to the consequent

4

part of the rule. If this rule does not succeed the system

looks for another rule which contains the goal parameter in

its consequent part and repeats the above procedure with

that rule. This process continues until the goal parameter

is assigned some value or there are no more rules to try.

This is the most common form of reasoning used in many

expert systems(6].

Combinations of forward chaining and backward chaining

are also used in some situations.

In the following sections we consider various

approaches available for developing expert systems and the

criteria to be used for selecting an expert system

development tool. An overview of the problem being

considered is also presented.

Tools for Building Expert Systems

There are primarily two different approaches for

building an expert system. A programming language such as

Lisp, Prolog, C etc. or some kind of a shell can be used.

Below, we discuss the merits of using these languages and

various shells.

5

Lisp: Traditionally, Lisp has been the language of expert

systems. Most of the early expert systems were written using

Lisp. Its principal data structure is the list, which is

very useful in representing much of the knowledge used in

expert systems. Storage space is allocated dynamically,

6

enabling programs to be larger than they would otherwise be.

The fact that both data and procedures are represented as

lists makes it possible to integrate declarative and

procedural knowledge into a single structure such as

property list. It also makes it possible for a program to

construct a procedure and then execute it. Most Lisp systems

run interactively. This facilitates the development of all

kinds of programs. It also makes it possible to write truly

interactive programs. There exist many dialects of Lisp,

varying on everything from the names of standard functions

and the order of their arguments to the kinds of features

provided. Common Lisp and Franz Lisp are popular versions of

Lisp. MacLisp, developed at MIT, is noted for its

efficiency. InterLisp of Xerox Corporation has a very

sophisticated program development environment.

We can build large and highly complex knowledge-based

systems using Lisp. The major disadvantage is that not many

people can write programs well in Lisp. It requires

drastically different way of thinking from conventional

programs.

Prolog: Prolog is a recent competitor for Lisp. This is a

logic programming language. This was originally developed

for theorem proving. An appealing characteristic of Prolog,

which adds to its increasing popularity, is that the

emphasis in writing a Prolog program is on specifying or

describing the nature of the problem, rather than on

7

spelling out the steps the computer should take to solve the

problem, as one is required to do in conventional languages

like Pascal, Fortran, c. For this reason Prolog is

considered to be a declarative or assertional language, as

contrasted with conventional languages, which are usually

called imperative.

A Prolog program may be viewed as a collection of

logical formulas in propositional logic with a theorem

(query) to be proved. Prolog provides a database facility to

store facts and rules for efficient manipulation. A Prolog

interpreter uses a pattern matching technique called

unification to select relevant rules from the database to

answer a particular query. Unification refers to

substitutions of variables performed in such a way as to

make two items match identically.

c: Though most expert systems have been written using either

Lisp or Prolog, in recent years c is becoming more and more

popular. The primary advantages of using C are its speed,

low memory requirements and portability. The present trend

is to use expert systems on personal computers. Since all

the advantages of C mentioned above are very important for

knowledge-based systems running on PCs, the usage of C is

further enhanced.

Others: There is no restriction on the language to be used

for developing an expert system. There are expert systems

written in Fortran, Pascal, Assembler, Smalltalk, Forth etc

8

[10].

Expert system shells: A shell is a common program which can

be adapted to any expert system of a certain type by

adapting the general structure to the specifics of that

system[lO]. There are different varieties of commercial

shells available. The capabilities and the prices of these

shells vary considerably. Simple knowledge-based systems can

be developed by a non-programmer using these shells. Below,

a brief review of some commercially available shells

follows. In the next section, the criteria to be used in

selecting an expert system shell are given.

ART: ART, Automated Reasoning Tool, is a versatile tool that

incorporates a sophisticated programming workbench[6]. It

runs on advanced computers and workstations such as those

produced by Symbolics, LMI, TI, Apollo, and VAX. ART's

strong point is viewpoints, a technique that allows

hypothetical nonmonotonic reasoning: in non-monotonic

reasoning, multiple solutions are carried along in parallel

until constraints are violated or better solutions are

found. At such points, inappropriate solutions are

discarded. ART is primarily a forward-chaining system with

sophisticated user-defined pattern matching. ART has a

flexible graphics workbench with which to create graphical

interfaces and graphical simulations. ART was designed for a

real-time performance. To achieve this performance, ART

compiles its frame-base as well as its relational knowledge

9

into logic-like assertions. Applications particularly suited

for ART are planning/scheduling, simulation, configuration

generation, and design. It is written in Lisp as well as in

c. It is a product of the Los Angeles based Inference

Corporation.

KEE: KEE runs on advanced AI computers. It is the most

widely used programming environment for building

sophisticated expert systems[6]. KEE supports windows,

menus, and graphics. It contains a sophisticated frame

system that allows the hierachical modeling of objects and

permits multiple forms of inheritance. It supports object­

oriented programming, forward-chaining, backward-chaining

and hypothetical reasoning. KEE has been used for

applications in diagnosis, monitoring, real-time process

control, planning, design, and simulation. This is developed

by California-based IntelliCorp.

Knowledge Craft: Knowledge Craft is an integration of the

Carnegie Mellon version of OPS5 and of Prolog and the SRL

frame-representation language. It is meant for experienced

knowledge engineers and AI system builders. Knowledge Craft

is capable of hypothetical reasoning. It can also support

graphics-based simulation. It is used for planning,

scheduling and process control. It is a product of Carnegie

Group of Pittsburgh.

PC+: PC+ is an attempt to provide on a personal computer

many of the advanced features found in more sophisticated

10

tools such as KEE. Thus PC+ utilizes frames with attribute

inheritance, and rules. PC+ supports both backward-chaining

and forward-chaining. It is written in Lisp and incorporates

user-friendly interfaces. It supports graphics and access to

the popular dbase II and III database packages. It is a

product of Texas Instruments, Inc ..

VP Expert: VP expert is designed for personal computers. It

is very simple, low cost(less than $150) and easy to use. It

is written in C and can interface with the database package

dbase III+ and supports windows and a limited amount of

graphics. It can also access spread sheet files in the form

of Lotus 123 and any executable file. VP Expert uses frames

which contain rules and goals. It does not directly support

attribute inheritance from frame to frame. It provides a

mechanism for storing the facts to a data file and

retrieving the facts from a data file. This facility can be

intelligently used to inherit attributes from one frame to

another frame. It uses backward-chaining as its reasoning

process. It is a product of Paperback Software

International.

Criteria for Selecting an Expert System Shell

Gevarter(6] identifies the following attributes to

consider for selecting an expert system shell: cost, rule or

size limit, function capabilities, speed, ease of learning,

interfaces to other software, portability, documentation,

11

training, company support and user satisfaction. Below, we

present a review of the major function capabilities. Not all

the tools are good for all kinds of functions. Each one is

best suited for a particular kind of application.

Classification: This is the function most commonly addressed

by expert systems. Classification refers to selecting an

answer from a fixed set of alternatives on the basis of

information that has been input. Below are some

subcategories of classification •

• Interpretation of measurements •

• Diagnosis.

Debugging, treatment, or repair. These functions refer

to taking actions or recommending measures to correct an

adverse situation that has been diagnosed .

. Use adviser. These systems depend both on the goals of

the user and the current situation in suggesting what to

do next. Use advisors are helpful in guiding users

through procedures in other domains such as auto repair

and piloting aircraft.

Design and synthesis: Design and synthesis refers to

configuring a system on the basis of a set of alternative

possibilities. The expert system incorporates constraints

that the system must meet as well as guidance for steps the

system must take to meet the user's objectives.

Intelligent assistant: Here the emphasis is on having a

system that, depending on user needs, can give advice,

12

furnish information, or perform various subtasks.

Prediction: Prediction refers to forecasting what will

happen in the future on the basis of current information.

This forecasting may depend upon experience alone, or it may

involve the use of models and formulas.

Scheduling: Scheduling refers to time ordering a given set

of tasks so that they can be done with the resources

available and without interfering with each other.

Planning: Planning is the selection of a series of actions

from a complex set of alternatives to meet a user's goals.

It is more complex than scheduling in that tasks are chosen,

not given. In many cases, time and resource constraints do

not permit all goals to be met. In these cases, the most

desirable outcome is sought.

Monitoring: Monitoring refers to observing an ongoing

situation for its predicted or intended progress and

alerting the user or system if there is a departure from the

expected or usual.

Control: Control is a combination of monitoring a system and

taking appropriate actions in response to the monitoring to

achieve goals.

Digest of information: A system performing this function may

take in information and return a new organization or

synthesis. One application is the assessment of military or

stock market situations on the basis of input data and

corollary information.

13

Discovery: Discovery is similar to digest of information

except that the emphasis is on finding new relations, order,

or concepts. This is still a research area.

Function applications can be considered to be of two

types: "surface reasoning" and "deep reasoning". In surface

reasoning, no model of the system is employed; the approach

taken is to write a collection of rules, each rule asserting

that a certain situation warrants a certain response or

conclusion. In deep reasoning, the system draws upon causal

or structural models of the domain of interest to help

arrive at the conclusion.

Overview of the Problem

In this thesis the focus is on simple frame-based

systems having the following capabilities:

• A frame is the basic data structure for knowledge

representation

• Each frame has certain goal-parameters and some if-then

rules for inferencing data

. Only one frame can be active in memory at any time

• Information can be inherited to a frame is through a data

file

No predefined hierachical structure is associated with the

frames

Backward-chaining is the reasoning process used

. It can interface with a database software such as dbase

14

• A frame can call any executable file from anywhere within

the frame

. A frame can be loaded into memory by another frame which

is currently in memory or directly by the user. The new

frame replaces the old one in memory.

In this thesis we take a low cost simple frame-based

system such as VP Expert and analyze it thoroughly about the

function capabilities that can be obtained using such

system. The necessary tools to overcome some of the

deficiencies of such a system will be developed.

The objective is to use an inexpensive simple frame­

based system to build a reasonably complex system with

several frames and complex interactions among them. A

reasonably complex practical problem related to agricultural

planning, more specifically alfalfa management, is taken to

demonstrate how the tools being developed can be used with a

simple frame-based system, VP Expert.

The crop alfalfa is a perennial crop with several

cuttings each year. Its life span, yield, quality of yield

and profit depend on several factors and the decisions made

by the farmer [17]. Important factors are site selection,

fertilization, seed selection, insect control and weed

control decisions for short term and long term. The

management problems are compounded by the fact that the

effects of these factors interact with one another.

Treatment of weeds may effect insect levels and vice versa

15

[1]. Also, most of the decisions will have multi-year impact

on yield and profit. It requires expert knowledge to make

cost effective decisions. As there are a number of factors

involved multiple frames are required with strong

interaction among them when an expert system for such a

problem is developed.

In chapter II, we present the advantages and

limitations of a simple frame-based system and look at

solutions to overcome some of the limitations. In chapter

III, we give some tools to overcome some of the

deficiencies. Finally, in chapter IV, we summarize what we

have done and look at further scope of work possible.

15

CHAPTER II

SIMPLE FRAME-BASED SYSTEMS

Introduction

In the last chapter, a simple frame-based system was

defined as having the following capabilities:

. A frame is the basic data structure for knowledge

representation

. Each frame has certain goal-parameters and some if-then

rules for inferencing data

. Only one frame can be active in memory at any time

• Information can be inherited to a frame through a data

file

No predefined hierachical structure is associated with the

frames

Backward-chaining is the reasoning process used

. It can interface with a database software such as dbase

• A frame can call any executable file from anywhere within

the frame

• A frame can be loaded into memory by another frame which

is currently in memory or directly by the user. The new

frame replaces the old one in memory.

A simple frame-based system differs from a frame-based

16

17

shell in the sense that it does not support any hierachical

structuring of the knowledge base and alternative search

strategies.

In this chapter a subjective assessment of the function

capabilities that can be obtained using such a simple frame­

based system is given. The commercial shell VP Expert fits

very well into this definition of a simple frame-based

system. VP Expert also has been selected as the development

tool for the agricultural planning problem being considered.

Therefore, a brief review of how VP Expert operates is given

in the next section. The advantages and limitations of such

a simple shell and some possible solutions to overcome some

of its deficiencies are discussed in the subsequent

sections.

VP Expert

The way VP Expert operates is as follows. The basic

data structure for knowledge representation is a frame. A

typical frame in VP Expert looks as shown in Figure 2. The

words written using capital letters are VP Expert reserved

words. This frame consists of an ACTIONS block, some RULEs

with an IF part and a THEN part, the "statements" ASK and

CHOICES and the "clauses" MENU, FIND, WHILEKNOWN, GET, RESET

and DISPLAY. The keyword UNKNOWN is used to indicate

whether a given variable is assigned some value. VP Expert

statements generally contain information pertinent to the

ACTIONS

MENU the_wine, ALL, wines, wine

FIND the wine

MENU the_price, the wine = wine, wines, price

FIND the_price

WHILEKNOWN wine

18

GET the wine = wine AND the_price = price, wines,ALL

RESET message

FIND message

END

FIND option;

RULE 1

IF wine <> UNKNOWN

THEN

message = displayed

DISPLAY II

Your choice, a {wine}, is priced at ${price}.

It has a rating of {rating}.~"

ELSE

message = none;

ASK the wine: "For which wine do you want information?";

ASK the_price: "For the selected wine, which price do you

choose?";

ASK option: "Do you want anything else ?"

CHOICES option: Yes, No

Figure 2.

(\

consultation. They are independent of the knowledge-base.

Clauses, on the other hand, are not independent of the

knowledge-base. They always occur as a part of the ACTIONS

block or the conclusion of a rule.

19

The ACTIONS block consists of the keyword ACTIONS

followed by one or more clauses and ends with a semicolon.

This is a required element of a knowledge-base. It defines

the "goals" of the consultation and the sequence of their

solution. In other words, the actions block tells the

inference engine what it needs to find out, and in what

order. This is accomplished with the FIND clauses that

instruct VP-Expert to find the value or values of one or

more "goal variables". Whenever the VP Expert encounters a

FIND clause it tries to find the value of the goal variable

from the rules in the same frame by using backward­

chaining. If none of the rules can assign a value to the

goal variable, then it sees if there is any ASK statement

associated with that variable. If there is an ASK statement

for that variable, it then prompts the user for the value of

the variable with the prompt given in the ASK statement. If

the variable has a CHOICES statement, the choices in the

CHOICES statement are displayed and the user can select from

only those choices in that case. It also supports assigning

confidence factors to the variable's values.

In addition to FIND clauses, the ACTIONS block may

also contain other clauses specifying database operations,

spreadsheet operations, arithmetic calculations and a

variety of other tasks.

20

The MENU clause is used to give a menu of choices

from a database file to the user. The first MENU clause in

Figure 2 displays all the different names in "wine" field in

"all" the records of the dbase III+ file "wines.dbf" as a

menu to the user. The wine that the user selects is made the

value of the variable "the_wine". Every thing inside the

WHILEKNOWN .. END loop is executed as long as the value of the

variable following WHILEKNOWN is known. The RESET clause

makes the value of the variable following it UNKNOWN. The

DISPLAY clause displays the text inside the double quotes

following it. The curly parenthesis are used to display the

value of a variable.

Each RULE must have a unique label following the

keyword RULE. The IF part of a RULE contains the antecedent

rules using the logical operators AND and OR and the

relational operators =, >, >=, <, <=, and <>. The THEN part

of a RULE contains the consequents which may include any

statement or clause.

VP Expert supports several other statements and clauses

not shown in Figure 2. It has the clauses SAVEFACTS, and

LOADFACTS, respectively for saving all the known facts

during a consultation into a data file and for loading all

the facts from a data file. It also provides a clause,

CHAIN, to call any other frame by the frame currently in

memory. Only one frame can be in memory at any given time.

When frame i calls frame j, frame j is loaded into memory

and frame i will be no longer in memory.

Advantages and Limitations

21

There are several advantages of using such a simple

frame-based system. (1) It is inexpensive (less than $150) .

(2) It is very easy to learn and use for non-programmers as

it does not have any complicated data-structures and

multiple paradigms. With the system that supports several

inferencing paradigms, it is difficult to present a user

interface that is as easy to understand and use as a system

whose design is based upon a single approach [11].(3) A

simple frame-based system does not require any programming

in a complicated language such as Lisp that is difficult for

novices to learn. (4) Any computationally oriented modules

can be separately written using a language such as C to

enhance the speed of consultation time of the expert system.

(5) Interfacing with the popular software packages such as

dbase and Lotus is extremely simple. Therefore, it can be

used as a front end of a database to intelligently update

and search the database as needed.

Another major advantage is that a frame can be used by

several frames as there is no hierachical structure imposed

on the frames. Therefore, it offers more flexibility in

terms of the interaction that may be made possible among

22

different frames when compared to systems that use

hierachical structuring of frames. Associated with this

freedom and flexibility is some price. The developer of the

expert system must explicitly take care of calling a frame

when required and returning from the called frame to the

proper place in the calling frame. Since a frame may be used

as a subframe by more than one frame, it avoids any

necessity for creating duplicate frames. This results in

greater consistency of the knowledge-base and less storage

requirements. Thus, this kind of a simple frame-based system

is very desirable when some of the frames need to be shared

by several frames. This is very much the case in the crop

alfalfa management problem.

Shown in Figure 3 are some of the different frames

needed for the alfalfa management expert system. The names

with no extension are knowledge-bases. The names with a .dbf

and .exe extension are the dbase and executable files

respectively. An arrow from frame i to frame j indicates

that frame i may need to call frame j zero or more times

when frame i is consulted. Some of the frames may be

combined into a single frame at the cost of

understandability and efficiency. Dividing a large problem

into several small frames has advantages. Notable among them

are speedy development as more than one person can start

working on different frames, less memory requirements, and

easy maintainability. It can be observed from Figure 3 that

·~

'~~.
'·,

···"...,

' '

I !~----~
I I ~~--~~

Ll_.
LONG TERM

L-INSECTS L-WEEDS

23

. ----J-·--·---··· ··-...

ESTABLISH

FERT

ESTIMATE.EXE

WEEDS

DDCALC.E~l

COMBINED

Figure 3.

24

the frame INS may be called from three different sources

SHORTERM, YR, and DD. Similarly, the frame FERT needs to be

shared by the frames ESTABLISH and AW. In order to make the

interaction among different frames easier and error-free

some solutions are suggested in the next section.

There are some major limitations of this kind of a

simple frame-based system. There are two levels of

knowledge: meta-level and object-level. Meta-level knowledge

consists of meta-rules. This knowledge permits a higher

degree of intelligence by allowing the system to make

deductions about itself. Meta-level knowledge also

determines the most efficient strategy of operation the

object-level can take. Object-level knowledge is the

expertise that a knowledge base contains in the form of

rules, frames, and variables. Without meta-level knowledge,

the object-level knowledge has a fixed strategy of

operation. When knowledge bases are small, a fixed strategy

of operation poses no efficiency or performance problems. VP

Expert does not provide any meta-level control as to which

rules have to be tried before others. Therefore, when

knowledge bases are large and several rules qualify for the

given facts VP Expert can not work efficiently.

VP Expert does not support any clauses that can impose

a desired range restriction on a numeric variable. Another

limitation is that it is not easy to solve even a simple

recursive problem such as finding whether person X is an

25

ancestor of person Y using VP Expert.

It is also extremely difficult to support hypothetical

reasoning. Hypothetical reasoning, in effect, requires

creating and maintaining multiple knowledge bases during a

consultation. When a situation suggests several

interpretations or outcomes, virtual copies of the knowledge

base are to be generated to pursue subsequent reasoning

about the possibilities.

The alfalfa management problem does not require any

recursive or hypothetical reasoning. It needs several frames

of moderate size, usually less than 100 rules per frame.

Hence meta-level rules are not of great value in this type

of problem. Some of the frames need to be shared by more

than one frame. Thus this kind of agricultural planning

problems can exploit the simplicity and cost effectiveness

of the simple frame-based systems.

Some Solutions

The afore-mentioned problem of a frame having to call

several other frames can be solved by using two flags with

each frame and one global data file. Solution to this

problem is described briefly here and covered in detail in

chapter III.

The basic idea being used is very similar to what a

compiler does when a program makes a subroutine call. The

called frame is analogous to a subroutine. The calling frame

26

is analogous to the main program or calling routine.

The two flags being used are called the parent flag and

the returns flag. Frame X is called the parent of frame Y

iff frame X calls frame Y. The parent relationship between

frames is defined only during the consultation time. There

is no static relationship among the frames. Let us assume

that the frame currently under consideration is X and Y is

the parent frame of X. The flag parent-X is assigned the

frame name "Y". This flag has to be set by the calling frame

and should be saved in a data file just before it calls the

frame X. Once the goal parameters in the frame X are

assigned some values, frame X utilizes the parent-X flag to

determine its parent.

The second flag returns-X, contains the number of times

frame X called other frames after it was called by frame Y.

It is equal to zero or UNKNOWN when frame X is called and is

incremented by 1 every time frame X calls another frame. It

becomes UNKNOWN when all the goals of the frame X are

achieved. This flag is required to be able to return the

control back to the point of calling. This is very much

similar to saving the instruction pointer and other

information before calling a subroutine and restoring the

instruction pointer and rest of the information before

returning to proper place in a conventional program.

The problem of restricting the values a numeric

variable can take to a desired range can be solved by using

27

two additional rules and one variable for each numeric

variable. This is illustrated with the help of an example in

Chapter III.

CHAPTER III

Tools For Extending a Simple Frame-based System

Introduction

In this chapter, we provide some tools to enhance the

capabilities of a simple frame-based system, specifically

the shell VP Expert. In the next section, we discuss some

potential problems when a frame calls several other frames

and how they should be tackled.

Calling Frames

VP Expert does not automatically call the required

frames and return to the proper place in the calling frame.

The expert system developer needs to explicitly take care of

these functions. A possible solution, which uses two flags,

the parent flag and the returns flag with each frame, was

suggested in chapter II. Now we illustrate how this method

can be successfully used with the help of an example.

Consider a hypothetical situation consisting of 6

frames A, B, C, D, X, and Y as shown in Figure 4. Here frame

A has two potential parents X and Y, and it needs to call

three other frames B, c, and D. Let us assume that frame A

has a goal parameter goal_A that should be inferred as shown

28

29

in Figure 5. The goal parameter goal_A depends on the

parameters x1, x2, and x3. The parameter x1 depends on the

values of the parameters in frame A before calling the

frames B, c, or D. The parameters x2 and x3 have to be

inferred after calling the frame B, and the frames c and D

respectively. One possible solution to perform the function

in Figure 5 using VP Expert is shown in Figure 6.

The following changes and additions can be observed in

Figure 6. The additions are eight rules, one data file

"file_x", and two flags for each of the six frames X, Y, A,

B, C, and D. The returns flags of the frames X, Y, B, c, and

D do not appear in Figure 6. The equations for the

parameters x1, x2, and x3 in RULE 1 of Figure 6 are replaced

by the three FIND clauses in RULE 1 of Figure 6. It works in

the following way. The first time that frame A is consulted

or called by an other frame it loads all the facts in the

data file "file_x" (which may be null) and then looks for

the consequent parts of the rules that assign a value to the

goal parameter goal A. It finds goal_A in rule 1. Now it

determines whether all the conditions of rule 1 are

satisfied. Assuming that they are satisfied, it proceeds

further as described below.

Now the subgoal of frame A becomes x1. The system finds

x1 in rule 2 and the antecedent Returns A = UNKNOWN is true

and therefore the value of x1 is inferred according to rule

2. The equation for x1 in rule 2 should be the same as that

30

in rule 1 of Figure 6. Once x1 is inferred, it tries to find

x2 and fires rule 3. Since frame B needs to be called to

find out x2, the parent flag of the frame B, parent_B, is

set to A. Because it is the first time frame A is calling

any other frame the returns flag of frame A, Returns_A, is

set to 1. Now, after setting the flags, the facts must be

saved in the data file "file x" and then frame B has to be

called. Observe that the parameter x2 has not been assigned

any value at this stage. Frame B infers all its goals,

resets its parent to UNKNOWN and saves the facts in "file x"

and transfers control back to frame A. Frame A starts

execution all over again beginning at the ACTIONS block. It

loads the facts from the file "file x" and tries to find its

goal parameter goal_A. Rule 1 is fired again. Since the

value of xl is already known, the clause FIND xl is

ineffective. Now, it infers the value of x2 by firing rule 4

and comes back to rule 1 and tries to infer the value of x3.

At this stage, the first rule whose antecedents are

satisfied and can assign some value to the parameter x3 is

rule 5. Therefore rule 5 is fired. The frame C is called in

the same way that frame B was called after setting the flags

parent_c to A and Returns A to 2. When control comes back to

frame A, it starts execution all over again beginning from

the ACTIONS block and fires rule 1. Since x1 and x2 are

known, the clauses FIND x1 and FIND x2 are not effective at

this stage. Now rule 6 is fired and frame D is called after

31

setting the appropriate flags and saving the facts. When

control returns to frame A, it first infers the value of the

parameter x3 and then the value of the goal parameter goal_A

using the rules 7 and 1.

Once all the goals of the frame A are inferred, it has

to pass the control back to its parent. Passing the control

back to the parent is achieved through the clause FIND

parent in ACTIONS block and the rules 100 and 101.

X y

D

Figure 4.

ACTIONS

FIND goal_A;

RULE 1

IF <conditions>

THEN

32

x1 = f(parameters before invoking frames B, c and D)

x2 = f(parameters after invoking frame B)

xJ = f(parameters after invoking frames C and D)

goal_A = f(x1,x2,x3);

Figure 5.

ACTIONS

LOADFACTS file x

FIND goal A

FIND parent;

RULE 1

IF

<conditions>

THEN

FIND x1

FIND x2

FIND x3

goal_A = f(x1,x2,x3);

RULE 2

IF

Returns A = UNKNOWN

THEN

x1 = f(current parameters);

RULE 3

IF

THEN

Returns A = UNKNOWN

parent_B = A

Returns A = 1

SAVEFACTS file x

CHAIN B

x2 = something;

RULE 4

IF

Returns A = 1

THEN

x2 = f(current parameters);

RULE 5

33

IF

THEN

Returns_A = 1

parent_c = A

Returns A = 2

SAVEFACTS file x

CHAIN C

x3 = something;

RULE 6

IF

THEN

Returns A = 2

parent_D = A

Returns A = 3

SAVEFACTS file X

CHAIN D

x3 = something;

RULE 7

IF

Returns A = 3

THEN

x3 = f(current parameters);

RULE 100

34

IF parent_A = X

THEN RESET parent_A

SAVEFACTS file x

CHAIN X

parent = null;

RULE 101

IF parent_A = y

THEN RESET parent_A

SAVEFACTS file X

CHAIN Y

parent = null;

Figure 6.

Range Restriction For Numeric Variables

35

VP Expert currently does not support any statement for

restricting the range of values a numeric variable may be

allowed to take. This can be achieved using one addtional

variable and two additional rules. Shown in Figure 7 is

an example to restrict the range of values the variable sl

can take to 0 to 30.

Observe that we need to create an extra variable sl1

and two addtional rules to impose range restriction on sl.

ACTIONS

FIND info;

RULE 1

IF sl <= 10 AND sd < 5

THEN .

info = found;

RULE 2

IF sl = UNKNOWN

THEN

WHILEKNOWN range_sl

RESET range_sl

RESET sl1

FIND sl1

FIND range_sl

END

sl = (sl1)

RESET sl1;

RULE 3

IF sl1 < 0 OR sl1 > 30

THEN range_sl = not_okay

DISPLAY "Error in stem length value. Please enter

again.";

ASK sl1: "What is the stem length in inches

ASK sd: "What is the stem density

Figure 7.

?II•
• I

?llo
• I

36

CHAPTER IV

SUMMARY AND CONCLUSIONS

Summary

In chapter I, a brief overview of expert systems was

presented. The key differences between an expert system and

a conventional program were outlined. Then, various tools

that can be used for the development of expert systems and

the criteria to be used in selecting an expert system

development tool were discussed. It was observed that cost,

rule or size limit, function capabilities, speed, ease of

learning, interfaces to other software, portability,

documentation, training, company support, and user

satisfaction are important criteria to be used.

A simple frame-based system was defined and the

commercial shell VP Expert was found to fall into this

definition of a simple frame-based system. It was observed

that simple frame-based systems are inexpensive and easy to

use for non-programmers. The objective was to develop some

tools to help novices to build reasonably complex systems

with a simple frame-based system. A reasonably complex

practical problem related to agricultural planning, more

specifically alfalfa management, was taken and implemented

37

38

using VP Expert.

In chapter II, a brief review of how VP Expert operates

was presented. The advantages and limitations of such a

simple frame-based system were discussed in detail. The

primary advantages are that it has low cost, is easy to use,

does not require programming in a difficult to learn·

language, provides flexibility for sharing frames, and is

easy to interface with the database packages DBASE III+ and

LOTUS. One major disadvantage is that it does not support

any hierachical structuring of knowledge bases and therefore

the user must explicitly take care of calling a required

frame and returning to the calling frame to the proper

place. It also does not support imposing range restriction

for numerical variables. Another limitation is that it does

not support meta-level control and therefore when knowledge

bases are large it can not work efficiently. It was also

observed that it can not easily support problems requiring

recursive reasoning. It was further observed that the

alfalfa crop management problem being considered in this

thesis does not require any meta-level control or recursive

reasoning. Some solutions for calling frames and imposing

range restrictions on numeric variables were presented.

In chapter III, the implementation details of the

proposed solutions were explained with the help of examples.

The alfalfa management problem is successfully implemented

using the tools that are developed. Three frames shortterm,

39

dd, and ins are enclosed in the appendix.

Conclusions

The capabilities of the shell VP Expert in combination

with the tools that were developed were found adequate for

the alfalfa management problem considered in this thesis.

When knowledge bases are large some kind of meta-level

control is needed to make the functioning of the system

efficient. VP Expert does not support any meta-level

control. Providing meta-level control to VP Expert enhances

its usability. Though some tools are developed to make

complex interaction among frames possible, it would be a lot

easier if the shell itself can take care of returning from

the called frame to the calling frame to the point of

calling.

BIBLIOGRAPHY

1. Berberet, R., OSU Alfalfa Teleconference Biology And

Control Of The Alfalfa Weevil, Proceedings of Alfalfa

Satellite Teleconference II and III, January 20 and 27,

1987

2. Bobrow, D.G., Mittal, s., Stefik, M.J., Expert Systems:

Perils and Promise, CACM 29, 9(1986), 880-894.

3. Charniak, E., McDermott, D., Introduction to Artificial

Intelligence, Addison-Wesley Publishing Company, 1985.

4. Denning, P.J., Towards a Science of Expert Systems, IEEE

Expert 1, 2(1986), 80-83.

5. Genesereth, M.R., Ginsberg, M.L., Logic Programming,

CACM 28, 9(1985), 933-941.

6. Gevarter, W.B., The Nature and Evaluation of Commercial

Expert System Building Tools, Computer 20, 5(1987), 24-

41.

7. Fikes, R., Kehler, T., The Role of Frame-Based

Representation in Reasoning, CACM 28, 9(1985), 904-920.

8. Hartley, R.T., CRIB: Computer Fault-finding Through

Knowledge Engineering, Computer 17, 3(1984), 76-83.

9. Hayes-Roth, F., Rule-Based systems, CACM 28, 9(1985),

921-932.

10. Harmon, P., King, D., Expert Systems, John Wiley & Sons,

40

1985.

11. Mettrey, W., An assessment of tools for building KB

systems, AI Magazine 8, 4(1987), 81~88.

41

12. O'keefe, R.M., Balci, 0., Smith, E.P., Validating expert

System Performance, IEEE Expert 2, 4(1987), 81-89.

13. Ramamoorthy, c. v., Shekhar, s., Garg, V., Software

Development Support for AI Programs, Computer 20,

1(1987) 1 30-40.

14. Rich, E., The Gradual Expansion of Artificial

Intelligence, Computer 17, 5(1984), 4-12.

15. Rich, E., Artificial Intelligence, Mcgraw-Hill Book

company, 1983.

16. Williams, C., Expert Systems, Knowledge Engineering, and

AI Tools- An overview, IEEE Expert 1, 4(1986), 66-70.

17. Ward, C. E., Economics Of Alfalfa Production,

Proceedings Alfalfa Management Satellite Teleconference

II and III, January 20 and 27, 1987.

18. , VP-Expert Rule-Based Expert System Development

Tool, Paperback Software International, 1987.

19. , Personal Consultant Plus, Texas Instruments

Incorporated, 1986.

20. , Peter Hart talks about Expert Systems, IEEE

Expert 1, 1(1986), 96-99.

APPENDIX

SOFTWARE IMPLEMENTATION OF

ALFALFA MANAGEMENT PROBLEM

42

EXECUTE;
RUNTIME;
ENDOFF;
ACTIONS

APPENDIX

FRAME: SHORTTERM

LOADFACTS awdatal
FIND the name
CLOSE userdd
GET the name = lname,userdd,ALL
old_date = ((lyear)*lOOOO + (lmonth)*lOO + (lday))
FIND new date
SAVEFACTS awdatal
FIND the choice
FIND frame
CHAIN shortterm;

RULE 0
IF new date = UNKNOWN
THEN WHILEKNOWN range date

RESET range=date
RESET year
RESET month
RESET day

END

FIND year
FIND month
FIND day
new_datel = ((year)*lOOOO + (month)*lOO + (day))
FIND range_date

new date = (new datel) ;

RULE 1
IF the choice = dd based recommend
THEN choice = dd

parent dd = shortterm
CLOSE userdd
WHILEKNOWN dd_flag

RESET dd_flag
RESET dd_option
FIND dd_option

43

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

FIND dd_flag
END
FIND cnl
FIND sl
FIND nl
SAVEFACTS awdata
CHAIN dd
frame = dd;

2
the choice = yld based recommend
choice = yr - -
parent_yr = shortterm
FIND sl
FIND nl
SAVEFACTS awdata
CHAIN yr
frame = yr;

3
the choice = insecticide select
choice = ins
parent_ins = shortterm
SAVEFACTS awdata
CHAIN ins
frame = ins;

4
the choice = Weed recommend
frame = weeds
choice = weeds
parent_weeds = shortterm
SAVEFACTS awdata
CHAIN weeds;

5
the_choice = calc_day_degrees
call ddcalc
frame = none;

6
the_choice = yield_estimate
call estimate
frame = none;

7
the choice = Exit
RESET the choice
CHAIN aw
frame = aw
parent = aw;

44

45

RULE 8
IF dd < 0 OR dd > 1200 OR dd < (old_dd)
THEN DISPLAY "Error in day degree information. Please enter
again. "

RULE
IF
THEN

range_dd = not_okay;

9
old_date > ((new_date1))
range_date = not_okay
DISPLAY "Invalid date. Please enter again.";

RULE 10
IF month < 0 OR month > 5 OR day < 0 OR day > 31

OR year < 88 OR year > 99
THEN range date = not okay

DISPLAY "Error in date. Please enter again.";

RULE
IF
THEN

11
dd_option = calc_individual_dd
call ddcalc
dd_flag = known;

RULE 12
IF dd_option = get_dd_from_file
THEN CLOSE userdd

GET the name = lname, userdd,ALL
dd = (old_dd)
DISPLAY " Your day degrees

{lmonth}/{lday}/{lyear} are : {old_dd} "

RULE
IF
THEN

RULE
IF
THEN

dd_flag = known;

13
dd_option = update_dd_in_file
WHILEKNOWN range_dd

RESET range dd
RESET dd -
FIND dd
FIND range_dd

END
GET the_name = lname, userdd, ALL
FIND update
dd_flag = known;

14
lname = UNKNOWN
lname = (the name)
lyear = (year)
lmonth = (month)
lday = (day)
old dd = (dd)
APPEND userdd
update = done

as of

ELSE

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

lyear = (year)
lmonth = (month)
lday = (day)
old_dd = (dd)
PUT userdd
update = done;

16
dd > 540 AND cnl
cnl = -10;

17

text

dd > 540 AND cnl text
cnl = 0;

18
dd > 540 AND cnl text
cnl = 10;

19
sl1 < 0 OR sl1 > 30
range_sl = not_okay

= decreased 10 or more

= within 10

= increased 10 or more

DISPLAY "Error in stem length. Please enter again.";

RULE 20
IF nl1 < 0 OR nl1 >75
THEN range_nl = not_okay

46

DISPLAY "Error in number of larvae. Please enter
again. 11 ;

RULE
IF
THEN

RULE
IF
THEN

21
sl = UNKNOWN
WHILEKNOWN range_sl

END

RESET range_sl
RESET sl1
FIND sl1
FIND range_sl

sl = (sl1)
RESET sl1;

22
nl = UNKNOWN
WHILEKNOWN range_nl

END

RESET range_nl
RESET nl1
FIND nl1
FIND range_nl

nl = (nl1)
RESET nl1;

ASK the_narne:"Enter your last name please
ASK year :"Enter the year (Eg:88):";
ASK rnonth:"Enter the month (Eg:4):";
ASK day:"Enter the day (Eg:15):";

ASK the_choice: "What would you like ?";

• II •
• I

47

CHOICES the_choice:Calc_Day_degrees, DD_based_recornrnend,
Yld based recommend,
Yield_estirnate, Insecticide_select, Weed_recomrnend, Exit;

ASK dd_option: "Enter your option:";
CHOICES dd_option:Calc_individual_DD, Get_DD_frorn_file,
Update_DD_in_file, Enter_DD[not_saved], Continue;

ASK cnl text: "What is the change in number of larvae since
last sample ?";
CHOICES cnl text:
Increased_lO_or_rnore;

Decreased_lO_or_rnore,

ASK dd:"Enter the day degrees :";
ASK sll: "Enter the stern length in inches:";

Within_lO,

ASK nll: "Enter the number of larvae per 30 sterns:";

ENDOFF;
EXECUTE;
RUNTIME;
ACTIONS

RULE
IF
THEN

RULE
IF
THEN

LOADFACTS awdata
FIND goal_dd
RESET Returns dd
SAVEFACTS awdata
FIND parent;

0.0
Returns dd = UNKNOWN
FIND Recommendation
Returns dd = 1
FIND dd=flag1
FIND dd flag2
FIND Insecticide
goal dd = achieved;

0.1
Returns dd = 1
goal dd-= achieved
RESET goal_dd;

0.2

FRAME: DD

RULE
IF
THEN

Recommendation = Spraying
Insecticide = needed
parent ins = dd
SAVEFACTS awdata
CHAIN ins;

RULE 0. 3
IF Recommendation = Spray_or_harvest and

dd >= 540
THEN Insecticide = Needed

parent_ins = dd
SAVEFACTS awdata
CHAIN ins;

RULE
IF
THEN

0.4
parent dd = shortterm
SAVEFACTS awdata
CHAIN shortterm

48

parent = shortterm;

RULE 0. 5
IF dd < 150
THEN Recommendation = Resampling_in_7_days;

RULE 1
IF dd >= 150 AND dd < 240 AND

sl <= 2 AND nl >= 13
THEN

Recommendation = Spraying;

RULE 2
IF dd >=150 AND dd < 240 AND

sl =3 AND nl >=20
THEN

Recommendation = Spraying;

RULE 3
IF dd >=150 AND dd < 240 AND

sl = 4 AND nl >=30
THEN

Recommendation=Spraying;

RULE 4
IF dd >=150 AND dd < 240 AND

sl = 5 AND nl >=35
THEN

Recommendation=Spraying;

RULE 5
IF dd >=150 AND dd < 240 AND

sl >= 6 AND sl <= 8 AND nl >=40
THEN

Recommendation=Spraying;

RULE 6
IF dd >=150 AND

dd < 240 AND
sl =3 AND nl >=20

THEN
Recommendation=Spraying;

RULE 7
IF dd >=150 AND dd < 240 and

sl <= 2 and nl < 13
THEN Recommendation = Resampling_in_5_to_7_days;

RULE 8
IF dd >=150 AND dd < 240 and

sl = 3 and nl < 20
THEN Recommendation = Resampling_in_5_to_7_days

49

RULE 9
IF dd >=150 AND dd < 240 and

sl = 4 and nl < 30
THEN Recommendation = Resampling_in_5_to_7_days ;

RULE 10
IF dd >=150 AND dd < 240 and

sl = 5 and nl < 35
THEN Recommendation = Resampling_in_5_to_7_days ;

RULE 11
IF dd >=150 AND dd < 240 and

sl <= 8 and nl < 40
THEN Recommendation = Resampling_in_5_to_7_days;

RULE 12
IF dd >= 240 AND dd < 290 AND

sl <= 3 AND nl >= 10
THEN Recommendation = Spraying;

RULE 13
IF dd >= 240 AND dd < 290 AND

sl >= 4 AND SL<=6 AND nl >= 15
THEN Recommendation = Spraying;

RULE 14
IF dd >= 240 AND dd < 290 AND

sl >= 7 AND SL<=8 AND nl >= 20
THEN Recommendation = Spraying;

RULE 15
IF dd >= 240 AND dd < 290 AND

sl >= 9 AND SL<= 11 AND nl >= 25
THEN Recommendation = Spraying;

RULE 16
IF dd >= 240 AND dd < 290 AND

sl <= 3 AND nl < 10
THEN Recommendation = Resampling_in_5_to_7_days;

RULE 17
IF dd >= 240 AND dd < 290 AND

sl >= 4 AND sl <=6 AND nl < 15
THEN Recommendation = Resampling_in_5_to_7_days;

RULE 18
IF dd >= 240 AND dd < 290 AND

sl >= 7 AND sl <= 8 AND nl < 20
THEN Recommendation = Resampling_in_5_to_7_days;

50

RULE 19
IF dd >= 240 AND dd < 290 AND

sl >= 9 AND sl <= 11 AND nl < 25
THEN Recommendation = Resampling_in_5_to_7_days;

RULE 20
IF dd >= 290 AND dd < 340 AND

sl <= 3 AND nl >= 10
THEN Recommendation = Spraying;

RULE 21
IF dd >= 290 AND dd < 340 AND

sl = 4 AND nl >= 18
THEN Recommendation = Spraying;

RULE 22
IF dd >= 290 AND dd < 340 AND

sl >= 5 AND sl <= 7 AND nl >= 25
THEN Recommendation = Spraying;

RULE 23
IF dd >= 290 AND dd < 340 AND

sl >= 8 AND sl <= 14 AND nl >= 30
THEN Recommendation = Spraying;

RULE 24
IF dd >= 290 AND dd < 340 AND

sl <= 3 AND nl < 10
THEN Recommendation = Resampling_in_5_to_7_days;

RULE 25
IF dd >= 290 AND dd < 340 AND

sl = 4 AND nl < 18
THEN Recommendation = Resampling_in_5_to_7_days;

RULE 26
IF dd >= 290 AND dd < 340 AND

sl >= 5 AND sl <= 7 AND nl < 25
THEN Recommendation = Resampling_in_5_to_7_days;

RULE 27
IF dd >= 290 AND dd < 340 AND

sl >= 8 AND sl <= 14 AND nl < 30
THEN Recommendation = Resampling_in_5_to_7_days;

RULE 28
IF dd >=340 AND dd < 389 AND

SL >=6 and sl <=7 and nl >=25
THEN Recommendation = Spraying;

51

RULE 29
IF dd >=340 AND dd < 389 AND

SL >=8 and sl <=10 and nl >=30
THEN Recommendation = Spraying;

RULE 30
IF dd >=340 AND dd < 389 AND

SL >=11 and sl <=16 and nl >=35
THEN Recommendation = Spraying;

RULE 31
IF dd >=340 AND dd < 389 AND

SL >=17 and sl <=17 and nl >=25
THEN Recommendation = Spraying;

RULE 32
IF dd >=340 AND dd < 389 AND

SL >=6 and sl <=7 and nl >=14 and nl <=24
THEN Recommendation = Resampling_in_3_to_5_days;

RULE 33
IF dd >=340 AND dd < 389 AND

SL >=8 and sl <=10 and nl >=14 and nl <=29
THEN Recommendation = Resampling_in_3_to_5_days;

RULE 34
IF dd >=340 AND dd < 389 AND

SL >=11 and sl <=11 and nl >=14 and nl <=34
THEN Recommendation = Resampling_in_3_to_5_days;

RULE 35
IF dd >=340 AND dd < 389 AND

SL >=12 and sl <=16 and nl >=17 and nl <= 34
THEN Recommendation = Resampling_in_3_to_5_days;

RULE 36
IF dd >=340 AND dd < 389 AND

SL >=17 and sl <=17 and nl >=18 and nl <= 39
THEN Recommendation = Resampling_in_3_to_5_days;

RULE 37
IF dd >= 340 and dd <389 and

sl >= 6 and sl <= 11 and ni <= 13
THEN Recommendation = Resampling_in_s_to_7_days;

RULE 38
IF dd >= 340 and dd <389 and

sl >= 12 and sl <= 16 and nl <= 16
THEN Recommendation = Resampling_in_5_to_7_days;

52

RULE 39
IF dd >= 340 and dd <389 and

sl >= 17 and sl <= 17 and nl <= 17
THEN Recommendation = Resampling_in_5_to_7_days;

RULE
IF

THEN

40
DD >= 390 AND DD <= 539 AND
SL >= 11 AND SL <= 12 AND NL
RECOMMENDATION = Spraying;

RULE 41
IF DD >= 390 AND DD <= 539 AND

SL >= 12 AND NL >= 25
THEN RECOMMENDATION Spraying;

RULE 42
IF DD >= 390 AND DD <= 539 AND

>= 20

SL >= 14 AND SL <= 15 AND NL >= 30
THEN RECOMMENDATION = Spraying;

RULE 43
IF DD >= 390 AND DD <= 539 AND

SL >= 16 AND SL <= 17 AND NL >= 35
THEN RECOMMENDATION = Spraying;

RULE 44
IF DD >= 390 AND DD <= 539 AND

SL >= 18 AND NL >= 40
THEN RECOMMENDATION = Spraying;

,RULE 45
IF DD >= 390 AND DD <=539 AND

SL >= 11 AND SL <=12 AND NL >= 8 AND NL <= 19
THEN RECOMMENDATION = Resampling_in_3_to_5_days;

RULE 46
IF DD >= 390 AND DD <=539 AND

SL = 13 AND NL >= 8 AND NL <= 24
THEN RECOMMENDATION = Resampling_in_3_to_5_days;

RULE 47
IF DD >= 390 AND DD <=539 AND

SL >= 14 AND SL <=15 AND NL >= 14 AND NL <= 29
THEN RECOMMENDATION = Resampling_in_3_to_5_days;

RULE 48
IF DD >= 390 AND DD <=539 AND

SL = 16 AND NL >= 14 AND NL <= 34
THEN RECOMMENDATION = Resarnpling_in_3_to_5_days;

53

54

RULE 49
IF DD >= 390 AND DD <=539 AND

SL = 17 AND NL >=18 AND NL <= 34
THEN RECOMMENDATION = Resampling_in_3_to_5_days;

RULE 50
IF DD >= 390 AND DD <=539 AND

SL = 18 AND NL >= 18 AND NL <= 39
THEN RECOMMENDATION = Resampling_in_3_to_5_days;

RULE 51
IF DD >= 390 AND DD <= 539 AND

SL >= 11 AND SL <=13 AND NL <=7
THEN RECOMMENDATION Resampling_in_5_to_7_days;

RULE 52
IF DD >= 390 AND DD <= 539 AND

SL >= 14 AND SL <=16 AND NL <=13
THEN RECOMMENDATION = Resampling_in_5_to_7_days;

RULE 53
IF DD > 750
THEN RECOMMENDATION = Stop_sampling;

RULE 54
IF DD >= 540 AND DD <= 750 AND

SL > 15 AND NL > 35 AND CNL = -10
THEN RECOMMENDATION = Spray_or_harvest;
RULE 55
IF DD >= 540 AND DD <= 750 AND

SL > 15 AND NL > 30 AND CNL > -10 and CNL < 10
THEN RECOMMENDATION = Spray_or_harvest;

RULE 56
IF DD >= 540 AND DD <= 750 AND

SL > 15 AND NL > 25 AND CNL = 10
THEN RECOMMENDATION = Spray_or_harvest;

RULE 57
IF DD >= 540 AND DD <= 750 AND

SL > 15 AND NL >=18 AND NL <= 34 AND CNL <= -10
THEN RECOMMENDATION = Resampling_in_3_to_5_days;

RULE 58
IF DD >= 540 AND DD <= 750 AND

SL > 15 AND NL >=14 AND NL <= 29 AND CNL > -10 and CNL
< 10
THEN RECOMMENDATION = Resampling_in_3_to_5_days;

RULE 59
IF DD >= 540 AND DD <= 750 AND

SL > 15 AND NL >=8 AND NL <= 24 AND CNL >= 10

THEN RECOMMENDATION = Resampling_in_3_to_5_days;

RULE 60
IF DD >= 540 AND DD <=750 AND

SL > 15 AND NL >=0 AND NL <=17 AND CNL <= -10
THEN RECOMMENDATION = Resampling_in_5_to_7_days;

RULE 61
IF DD >= 540 AND DD <=750 AND

55

SL > 15 AND NL >=0 AND NL <=13 AND CNL >= -10 AND CNL
<= 10
THEN RECOMMENDATION = Resampling_in_5_to_7_days;

RULE 62
IF DD >= 540 AND DD <=750 AND

SL > 15 AND NL >=0 AND NL <=7 AND CNL >= 10
THEN RECOMMENDATION = Resampling_in_5_to_7_days
ELSE

RULE
IF
THEN

DISPLAY II II

DISPLAY "Your input does not make sense."
RECOMMENDATION = NOTHING;

63
DD >= 540 AND Recommendation = spray_or_harvest
dd_flag1 =1
CLS
DISPLAY "The recommendation is to spray or harvest."
WOPEN 1, 3,1,17,44,2
WOPEN 2, 3,45,17,30,2
WOPEN 3, 20,1,3,70,2
ACTIVE 1
DISPLAY "CUT EARLY"
DISPLAY "Advantages: Tall alfalfa is VERY tolerant of

defoliating insects like alfalfa weevils.
If you cut early you will :

1. Save insecticide costs
2. Increase probability beneficial organisms such as

fungi and parasites."
DISPLAY "Drawbacks:

1. Your samples only indicate large larvae. There maybe
a substantial number of smaller larvae present.

2. Substantial damage to regrowth under the windrow is
possible.

3. There will be a yield reduction of up to 20 percent
simply due to cutting"'G early."

ACTIVE 2
DISPLAY 11 APPLY INSECTICIDE"
DISPLAY "Advantages:

1. Risks due to weevils feedings under the windrow are
reduced.

2. cutting on time will increase yield by up to 20
percent."

56

DISPLAY II II

DISPLAY "Disadvantages:
1. Costs of insecticide application.
2. Potential benefit from beneficial insects is

eliminated.
3. Fungus may have taken care of weevil problems."

ACTIVE 3
FIND SPRAY OPTION
WCLOSE 1
WCLOSE 2
WCLOSE 3

ELSE dd_flag1 = 2
DISPLAY "Based on day degrees, stem height, and the

number of larvae present,"
DISPLAY "We recommend {Recommendation}. "
LOCATE 10,0
DISPLAY "press any key to continue •. -";

RULE 64
IF dd_flag1=1 AND SPRAY_OPTION = Harvest_early
THEN DISPLAY "Be careful. Make sure that you have
understood the situation well."

LOCATE 15,0
DISPLAY "press any key to continue •• - ..
dd_flag2 = 1;

ASK spray_option: "Do you want to spray or harvest early
?II• . ,
CHOICES spray_option: Spray, Harvest_early;

EXECUTE;
RUNTIME;
ENDOFF;
ACTIONS

LOADFACTS awdata
FIND goal ins
RESET Returns ins
SAVEFACTS awdata
FIND parent;

RULE 0.0

FRAME: INS

IF Returns ins = UNKNOWN
THEN WHILEKNOWN range days

RESET range_days
RESET days_to_harvest
FIND days_to_harvest
FIND range_days

END
FIND days to harvest
FIND dd_days=okay
CLS
RESET ins choice
FIND ins_choice
CLS
RESET insecticide
FIND insecticide
CLS
DISPLAY "Recommended insecticides are:"

57

DISPLAY "(R means restricted use. N means no
restriction on the use of insecticide"

DISPLAY "-----------------------------------
-----------------------------------"

DISPLAY " Insecticide Restr.- quantity --
wait cost"

DISPLAY 11 R - restr. (AI/ acre)
period per"

DISPLAY II N - none
(days) acre ($)"

DISPLAY II --
II

I = 1
J = 0
WHILEKNOWN insecticid

FIND ins_flag
RESET ins_flag
I = {I+1)

END

58

DISPLAY II --

---------------------- II

RULE
IF
THEN

ELSE

RULE
IF
THEN

ELSE

FIND ins_flag2
RESET ins_flag2
goal_ins = achieved
RESET goal_ins;

0.01
parent_ins = yr
ins_flag2 = 1
FIND ins_flag3
RESET ins flag3
RESET cost option

ins flag2 = 1
DISPLAY"press any key to continue •• -";

0.02
cost option = own cost
WHILEKNOWN range_cost

END

RESET range_cost
RESET cost
FIND cost
FIND range_cost

ins flag3 = something

ins flag3 = something
RESET ins choice
FIND ins choice
CLOSE awins
I=O
WHILEKNOWN ins_flag1

RESET ins_flag1
FIND ins_flag1
I = (I+l)

END;

RULE 0.1
IF J < 10
THEN GET days_to_harvest >= minwait AND days_to_harvest <=
maxwait AND the_insect = insect,awins, ALL

CLOSE INSCOSTS
the_insecticide = (insecticid)
GET the_insecticide = insname, inscosts, ALL

cost= ((cost_perlb)*(quantity))
FORMAT cost, 5.2
DISPLAY 11 {I} • { PRINTTEXT} {cost} 11

ins_flag = 1
J = (J+1)

59

ELSE DISPLAY "press any key to display more insecticides.· -..
GET days_to_harvest >= minwait AND days_to_harvest <=

maxwait AND the insect = insect,awins, ALL
CLOSE INSCOSTS

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

the insecticide = (insecticid)
GET-the insecticide = insname, inscosts, ALL
cost= ((cost_perlb)*(quantity))
FORMAT cost, 5.2
DISPLAY " { i} . { PRINTTEXT} {cost} "
J = 0
ins_flag = 1;

0.2
parent_ins = yr
FIND i cost
SAVEFACTS awdata
CHAIN yr
parent = yr;

0.3
parent_ins = shortterm
SAVEFACTS awdata
CHAIN shortterm
parent = shortterm;

0.4
parent_ins = dd
SAVEFACTS awdata
CHAIN dd
parent = dd;

RULE 0. 5
IF i < (ins choice)
THEN GET days~to_harvest >= minwait AND days_to_harvest <=
maxwait AND the_insect = insect,awins, ALL

CLOSE INSCOSTS
the_insecticide = (insecticid)
GET the insecticide = insname, inscosts, ALL
cost= ((cost_perlb)*(quantity))
FORMAT cost, 5.2
ins_flag1 = 1;

RULE 0. 6

60

IF days_to_harvest < 0 OR days_to_harvest > 75
THEN range days = not okay

DISPLAY "Error -in days to harvest. Please enter
again.";

RULE 0. 7
IF cost <=0 OR cost > 20
THEN range_cost = not_okay

DISPLAY "Error in insecticide cost. PLease enter
again.";

RULE 0.8
IF parent ins = dd AND days_to_harvest <= 7 AND dd < 450

THEN DISPLAY "Something is wrong in your input. You can not
have your day"Gdegrees less than 450 if you are going to
harvest in less than a week time."

RULE
IF
THEN

LOCATE 20,0
DISPLAY "Press any key to continue .. ~"
CHAIN aw
dd_days_okay = no;

1
CHOICE = dd OR CHOICE = yr
THE INSECT = ALFALFA WEEVIL
ins-choice = something ;

RULE 2
IF CHOICE = ins
THEN

MENU the insect,ALL,awins,insect
FIND the-insect
ins_choice = something;

RULE 3
IF days_to_harvest >=15 and days_to_harvest <= 28 and

the insect = alfalfa weevil
THEN insecticide = parathion

DISPLAY "We recommend a short residual compound such
as PARATHION, or MALATHION
or a reduced rate of LORSBAN or FURADAN because:

1. In most years, Weevil egg lay is over by this
point in the year.

2. With good application, most small and large
larvae will be killed

and this application should give 2 weeks of
protection."

LOCATE 15,0
DISPLAY "press any key to display possible

insecticides ~";
RULE 4

IF days_to_harvest >=29 and days_to_harvest <=45 and
the insect = alfalfa weevil

THEN insecticide = Furadan or Lorsban

61

DISPLAY "We recommend-a Tong residual compound such as
FURADAN or LORSBAN. 11

DISPLAY " II

DISPLAY "Your other option is to use a short residual
compound such as parathion.
If you choose this option, remember that this will only
give 2-3 weeks of protection.
Since there may still be egg lay you will probably need two
applications of a short residual compound."

LOCATE 15,0
DISPLAY "press any key to display possible recommended

insecticides -n;

RULE
IF
THEN

5
days_to_harvest > 45 and the insect = alfalfa weevil
insecticide = Parathion
DISPLAY "We recommend a short residual compound such

as PARATHION because:
1. There may still be a late freeze that could damage

alfalfa and greatly
reduce weevil populations.

2. There may still be substantial egg lay after the
next 2 weeks, and

3. A long residual compound may expire before end of
egg lay. ·

After using a short residual pesticide, check carefully in
2-3 weeks."

LOCATE 15,1
DISPLAY "press any key to display possible recommended

insecticides ..• -";

ASK the insect: "Which insect are you interested in
controling? ";
ASK days to harvest: "Enter the days till harvest
(approximate) :n;
ASK ins choice: "Enter the number of your insecticide
choice";-
ASK cost_option: "Do you want to give your own insecticide
cost or you want to pick one from the table ?";
CHOICES cost_option: own_cost, pick_from_table;
ASK cost: "What is the cost of insecticide per acre in
dollars ? ";

VITA

v. R. Reddy Sabbella

Candidate for the Degree of

Master of Science

Thesis: ADAPTATION OF A SIMPLE FRAME-BASED SYSTEM TO ACCOMMODATE
COMPLEX INTERACTION AMONG FRAMES

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Anaparty, India, March 15, 1961, the
son of China Veerreddy and Bulli Ammaye Sabbella.
Married to Madhavi Sabbella on May 29, 1985.

Education: Graduated from the Board of Intermediate
Education, Hyderabad, India, in May 1978; received
Bachelor of Technology Degree in Mechanical Engineering
from Nagarjuna University, Guntur, India, in May, 1983;
received Master of Technology Degree in Industrial and
Management Engineering from Indian Institute of
Technology, Kanpur, India, in March, 1985; completed
requirements for the Master of Science degree at
Oklahoma State University in July, 1988.

Professional Experience: Computer Programmer, Entomology
Department, Oklahoma State University, October, 1986,
to July, 1988.

