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CHAPTER I 

INTRODUCTION 

As the construction of large multiprocessor systems 

becomes feasible, parallel asynchronous algorithms appear 

more and more in different applications such as concurrent 

databases, operating systems, and distributed systems. 

Multiprocessor systems might be used to service the needs 

of a large number of users simultaneously, or to reduce the 

time necessary for a single complex job. Therefore, it is 

important to investigate data structures that support 

efficient concurrent operations. 

In this thesis we present a system that can support a 

number of concurrent processes which perform search, 

insertion, and deletion in persistent search trees without 

causing deadlock and without destroying the integrity of 

the data structure. A persistent search tree is a search 

tree which retains both the topology and the items at each 

update time. Initially the search structure is empty, then 

at each update time operations are performed on the data 

structure to create a new version of the search tree. 

These versions are linearly ordered by the creation time. 

Generally, queries are allowed in all versions of the 

persistent search tree, but updates can only be made in the 



current version. Persistent search trees are useful in 

computational geometry C16,17J, version management for 

databases C21J, and text editing C13,14J. 

We can make an ordinary search tree persistent by 

copying the entire current tree at each update time. 

However, this method is very undesirable because it takes 

O<n> time and O<n> space per insertion or deletion in the 

worst case, where n is the number of nodes in the current 

version of the tree. Myers C13,14J, Krijnen and Meertens 

C8J, Reps, Teitelbaum, and Demers C15J, and Swart C17J 

independently propose a technique, called path copying, 

that has an O<log n> time bound per operation and O<log n) 

space bound per update. Path copying requires any node 

that contains a pointer to a node that is copied must 

itself be copied. This means that copying one node 

requires copying the entire path to the node frooo the root 

of the tree. The effect of this ooethod is to create a set 

2 

of search trees, one per update, having different roots but 

sharing common subtrees. Sarnak and Tarjan [16] improve on 

the path copying method by introducing a more space 

efficient method called limited node copying. Searching an 

item in the resulting data structure takes O<log n> tiooe in 

the worst case and an update <insertion or deletion> takes 

0(1) space in the amortized case. Limited node copying 

requires each node to provide extra space for a small 

nuoober of auxiliary pointers in addition to the existing 

left and right pointers. A node is copied with its latest 



left and right children only if there is no empty slot for 

a new pointer to be added to the node in an update. 

We further improve on Sarnak and Tarjan solution by 

providing a facility for concurrent access to the persist­

ent search trees. We use a simple and yet efficient tree 

locking protocol similar to [5] for process synchroniza­

tion. The underlying structure for our system is a 

collection of red-black trees. We choose red-black trees 

because an insertion or deletion can be efficiently 

performed in a single top-down pass. The existence of the 

top-down algorithms provides us a way to predict the 

portion of the data structure that may be affected by a 

particular operation in just one top-down pass. Therefore 

appropriate actions can be taken to block out other tasks 

from this small portion of the data structure in order to 

maximize the concurrency. <Throughout this thesis we will 

use the terms "process" and ••task" interchangeably). 

Literature Survey 

In this section we shall look at some recent studies 

on concurrent access to binary search trees. In the past 

decade, data structures that support concurrent search 

trees have been studied extensively. Kung and Lehman [9] 

present a set of concurrent algorithms to manipulate the 

binary search trees using only the exclusive locks. Even 

though search, insert, and rotate operations are fast and 

easy, deletion is quite lengthy because deleting an 

3 



internal node is done by first moving the node to the 

bottom of the tree, using successive rotations, and then 

deleting it. The deletion algorithm is improved by Manber 
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and Ladner C12J who introduce the notion of maintenance 

processes that relieve the deleting process from the job of 

restructuring the tree. Furthermore, both shared and 

exclusive locks are used to minimize the interference 

between readers and writers, thus the level of concurrency 

is increased substantially. A reader is a process which is 

searching through the tree, whereas a writer is a process 

which is attempting to do an insertion or deletion opera-

tion. The deletion algorithm is further improved by Manber 

C11J who presents a system that manipulates the external 

binary search trees. Since the data always reside on the 

leaf nodes, the deletion algorithm is easy to implement 

because swapping or rotation is never needed. The major 

draw back of all these implementations is that none of the 

above solutions uses balanced search trees for the underly­

ing structures. As a result, inefficient data structures 

can occur after a sequence of updates and thus lead to poor 

performance. 

Ellis presents a set of algorithms for concurrent 

search and insert in AVL trees C5J and 2-3 trees C6J. 

These algorithms are more complicated because the balanced 

properties of the AVL and 2-3 trees are maintained by 

rotations and splitting nodes respectively. Ellis also 

uses both the shared and exclusive locks for different 



actions to minimize the interference among tasks. Since 

these search trees are more compact and the interference 

among tasks is minimized, these algorithms are more 

efficient than previous algorithms. 

Outline of The Thesis 

In chapter 2, we present a set of sequential algo­

rithms for manipulating persistent red-black trees. In 

chapter 3, we present a model that can support concurrent 

access to persistent red-black trees by employing an 

efficient tree locking protocol for concurrency control. 

In chapter 4, implementation issues and simulation results 

are discussed. Conclusions are given in chapter 5. 
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CHAPTER II 

SEQUENTIAL OPERATIONS IN PERSISTENT 

RED-BLACK TREES 

Red-Black Trees 

An external binary search tree is a tree structure 

that can be used to represent a set of items selected from 

a totally ordered universe. It consists of a binary tree 

containing the items of the set in its external nodes, one 

item per external node, with the items arranged in ascend-

ing order from left to right in the tree. In addition, 

each internal node contains an item in the universe, called 

a key, such that all items in the left subtree of the node 

are less than or equal to the key and all items in the 

right subtree are greater than the key. An item in the 

tree can be accessed in time proportional to the depth of 

the tree by starting at the root and searching down along 

the search path. When arriving at an internal node, the 

key is compared with the desired item to decide whether to 

branch left or right. If the item is less than or equal to 

the key, we branch to the left child; otherwise, we branch 

to the right child. Eventually an external node is 

reached; either this node contains the desired item or it 

is not in the set. 

6 
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A red-black tree is an external binary search tree in 

which each node is colored red or black in a way satisfying 

the following constraints: 

(1) All external nodes are black. 

(2) All paths from the root to an external node 

contain the same number of black nodes <black 

constraint). 

<3> Any red node, if it is not a root node, has a 

black parent <red constraint). 

An example of a red-black tree is shown in Figure 1. Note 

that the square nodes are external nodes and the letter on 

the right of an internal node denotes the color, 'r' for 

red and ' ' for black. 

Figure 1. A Red-Black Tree. 



Bayer [1] first introduced these trees, calling them 

binary B-trees. The balance properties of the red-black 

trees are maintained by color changes or a combination of 

color and pointer changes <Figures 8 and 10). Rebalancing 

the tree after an update (insertion or deletion) operation 

takes 0(1) rotations in the worst case and 0<1) color 

changes in the amortized case [20]. Another nice feature 

of the red-black tree is that an update operation can be 

done in a single top-down pass [19]. This is, of course, 

the main reason why we choose red-black trees as the 

underlying search structure for our concurrent model. 

Persistent Red-Black Trees 

8 

There are basically two ways of making a search tree 

persistent, namely by employing path copying or limited 

node copying method. Now, we shall use a simple example to 

illustrate the pros and cons associated with these methods. 

As a simple example, suppose we want to insert. an item 9 

into the red-black tree in Figure 2Ca) at <current) time 1, 

and the initial tree is created at time 0. In order to 

make the red-black tree persistent with th~ path copying 

method, that is to create a new version of the search tree 

for time 1 having different root but sharing the co~on 

subtrees, every node encountered on the search path must be 

copied. The persistent red-black tree in Figure 2(b) is 

the resulting structure after the insertion. Note that if 

we traverse the persistent red-black tree in Figure 2(b) at 



time O, we will find all the items in the initial tree and 

nothing else; if we traverse at time 1, we will find all 

the items in the initial tree plus item 9. An item in the 

resulting tree can be accessed in time proportional to the 

depth of the tree, that is O<log n>. The space per update 

<insertion or deletion) is also O<log n> since such an 

operation only copies nodes along the search path. 

For the same example, if we use the limited node 

copying method instead of path copying, the resulting tree 

is shown in Figure 3. With node copying, an update 

operation only takes 0<1) space in the amortize case and 

O<log n) time in the worst case. 

9 

By just looking at these examples, it is quite obvious 

that path copying offers a faster search time on the 

resulting structure since it only needs to examine the key 

at each internal node to decide whether to branch left or 

right. However, searching the persistent red-black tree in 

Figure 3 is quite complicated and we shall discuss it in 

detail in the next section. Limited node copying seems to 

be more space efficient than path copying since fewer new 

nodes are created in an update. If all things are consid­

ered, limited node copying is probably much more difficult 

to implement than path copying. The foregoing comments 

will make more sense when we discuss the search, insertion, 

and deletion algorithms in the following sections. 

In a sequential environment, it is hard to say which 

method is better. However, in a concurrent environment we 
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Header 

(a) A Red-Black Tree Created at Time 0. 

Headers 

(b) The Resulting Tree. 

Figure 2. A Persistent Red-Black Tree with Path Copying. 



·Headers 

Figure 3. A Persistent Red-Black Tree With Limited 
Node Copying. The initial tree is as 
in Figure 2(a). The edges are labeled 
with their time of creation. 

11 
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do know that limited node copying usually provides a higher 

degree of concurrency. It is the copying of the entire 

search path that makes path copying undesirable. During 

this lengthy copying process, none o~ the other tasks are 

allowed to update the tree in order to avoid the interfer-

ence and thus no concurrency is possible. One possible 

solution is to copy nodes as they are encountered during 

the search phase. However, this solution may create a 

large number of redundant copying operations when tasks 

attempt to insert items that are already on the tree or 

delete items that are not in the tree. On the contrary, 

limited node copying method usually copies nodes located 

near the bottom of the tree; moreover, it only copies a 

small number of nodes at a time. Since the copying process 

usually occurs near the bottom of the tree, it is possible 

to allow other tasks to update the portion of the current 

tree that is not involved in the copying simultaneously. 

Therefore limited node copying is clearly the better choice 

for the concurrent environment. 

Now, we shall describe the sequential algorithms for 

persistent red-black trees with limited node copying in 

order to establish the terminology and because an under­

standing of these algorithms is necessary to understand the 

concurrent algorithms. In order tb implement the limited 

node copying method, a number of extra fields are needed in 

each node and header. Figures 4(a), 4(b), and 4(c) show 

the structure of a header, internal node, and external 



node, respectively. 

TIME 

ROOT 

<a> Header Structure. 

KEY 

TIME 

COLOR 

LEFT 

RIGHT 

AUX_ TIME 

AUX_PTR 

(b) Internal Node Structure. 

~ 
~ 

(c) External Node Structure. 

Figure 4. Record Structures for 
Header and Nodes. 
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TIME is the creation time of a header or an internal 

node. ROOT is a pointer to the root which is associated 

with the header. KEY is a key field. COLOR is a flag 

indicating whether the color of a node is red or black. 

LEFT and RIGHT are pointers to the left and right children 

respectively. AUX_PTR is an auxiliary pointer that can be 

used to point to a left or right child. We shall say a 

node has a free or empty slot for a new pointer if AUX_PTR 

.contains the 'NULL' value. AUX_TIME is the time associated 

with the AUX_PTR. DATA is a data field. The extra fields 

needed with the limited node copying are TIME, AUX_TIME, 

and AUX_PTR for each internal node, and TIME for each 

header. Note that each internal node can contain more than 

one extra pointer and its associated time stamp, but we 

shall use only one auxiliary pointer throughout this thesis 

for simplicity. 

Sequential Search Algorithm 

Searching is the process of locating an item associ­

ated with a particular time stamp. Searching a persistent 

red-black tree with limited node copying is more compli­

cated than searching a persistent red-black tree with path 

copying or an ordinary search tree. The search proceeds 

from a header associated with the search time down along 

the search path. When arriving at an internal node, we not 

only must examine the key to decide whether to branch left 

or right, but the multiple left or right pointers as well. 
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We follow the pointer which points to the desired direction 

and has greatest time stamp no greater than search time. 

Eventually the search reaches an external node; either this 

node contains the item or it is not in the tree. Regard­

less of the result, the pointer to the parent of the 

external node is returned so that both the insertion and 

deletion algorithms can utilize this search procedure to 

locate the appropriate location for updating. 

Sequential Updating Algorithms 

An update <insertion or deletion) operation is 

complicated by the fact that nodes encountered during the 

pointer changes may not have enough free slots for the new 

pointers to be added to them. Whenever we attempt to add a 

pointer to a node X which has no free slot for the new 

pointer, a new copy of X, say X', is created with the 

latest values of the left and right pointers of X. Then 

the pointer to X' must be stored in its latest parent as 

well. If the parent has no free slot, it too is copied; 

this copying process is repeated up along the access path 

until a node with a free slot is found or the root node is 

copied. 

Once a node has been copied, it becomes a dead node. 

The dead nodes are those not reachable from the current 

tree root by following the latest pointers, whereas the 

live nodes are those reachable from the current root. An 

update operation only affects the live nodes but not the 
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dead nodes, so information stored in the dead nodes is not 

destroyed by the succeeding update operations. As the 

current time increases, the live nodes can become dead but 

not vice versa. 

Sequential Insertion Algorithm 

An insertion is the process of adding a new item to 

the current tree. If the new item is not already in the 

tree, it is inserted. 

follows : 

The insertion algorithm proceeds as 

<1) Use the above search procedure to locate the parent of 

the new node, say V. 

(2) Create a new external node containing the new item and 

a new red internal node, say K, containing the minimum 

key of the new external node and the child of V which 

lies on the access path. 

(3) Store the pointer to node K in its parent. Since node 

V may not have an empty slot for the new pointer or it 

may be created at the current time unit, we should 

examine the current state of node V before storing the 

new pointer so that it can be stored in the appropri­

ate field and node. The three possible states of an 

internal node and the required actions are as follows: 

(a) If node V is created at current time t <Figure 

5(a)), the child of node V which lies on the 

access path is replaced by node K <Figure 5(b)). 

(b) If node V is not created at the current time t 
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<Figure 6(a)) but has a free slot, the pointer to 

node K and time t are stored in AUX_PTR and 

AUX_TIME of node V respectively <Figure 6(b)). 

<c> If none of the above is true <Figure 7<a>>, then 

a copy of node V, say V', is created with the 

latest left and right pointers of node V <Figure 

7(b)). Note that one of the pointers of node V' 

is pointed to node K. A pointer to node V' must 

also be stored in the latest parent of node V' if 

it is possible; otherwise, this copying process is 

repeated until a node with a free slot is reached 

or the root is copied. 

(4) If V is a red node, then the red constraint is 

violated. To eliminate the violation, we let node K be 

the current node S and proceed with the following 

steps: 

(a) If a red node S has a black parent P<S>, go to 

step (5). 

(b) If P<S> is a root node, color P<S> black and go 

to step <5). 

(c) If P<S> has a red sibling, apply the transforma­

tion in Figure 8(a) and let the parent of P<S>, 

be the new current node S and go to step (a). 

(d) If S is the left child of P<S> whose sibling is a 

black node <or symmetric variant), apply the 

transformation in Figure 8<c> and go to step 

<5>. Note that this transformation requires both 
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the color and the pointer changes, thus we need to 

make sure that nodes involved in pointer changes 

have free slots for the new pointers to be added 

to them. For a single rotation, we need to copy 

the promoted node, which is S, if it is not 

created at the current time and the grandparent of 

the promoted node, which is P<P<S>>, if it has no 

empty slot and its auxiliary pointer is not 

pointed to the parent of the promoted node, which 

is P<S>, at the current time. 

<e> If node S is the right child of P<S> whose sibling 

is a black node <or symmetric variant), apply the 

transformation in Figure 8<d> and go to step 

< 5) End. 

<5>. Since this transformation requires a double 

rotation, we need to copy the promoted node, which 

is the child of S which lies on the access path, 

if it is not created at the current time, P<S> if 

it has no empty slot and its auxiliary pointer is 

not pointed to node S at the current time, and 

P<P<S)) if it has no free slot and its auxiliary 

pointer is not pointed to P<S> at the current 

time. 

Notice that Figure 8(a) is the only nonterminal case. 

Thus, it is possible to apply this transformation a number 

of times, then followed by one application of transforma­

tions in Figure 8<b>, 8<c>, or 8(d) if necessary. The 
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maximum number of rotations is two -- that is one applica-

tion of transformation in figure 8(d), so rebalancing after 

an insertion can be done in 0(1) rotations. 

Header 

(a) Node V is created at current time unit. 
The dotted line between two nodes means 
that they are separated by zero or more 
nodes. The triangular nodes are subtrees. 

(b) The pointer to node K is inserted in the 
LEFT of node V. 

Figure 5. An Internal Node Created 
in Current Time Unit. 



Headers 

<a> Node V is created at time t-1. "t-1" is 
read as "<= t-1 ." The dotted line between 
two nodes means that they are separated by 
zero or more nodes. The triangular nodes 
are subtrees. 

Headers 

(b) The pointer to node K is inserted in 
the AUX_PTR of node V. The letter •r• 
denotes a red node. 

Figure 6. An Internal Node with a Free Slot. 
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(a) Node V has no free slot for the new pointer. 
"t-2" is read as "<= t-2 and < t-1". 
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(b) A copy of V, node v•, is created with pointers 
pointing to node K and W. 

Figure 7. An Internal Node without a Free Slot. 
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(0) 

j)ROOT _ 
(b) cf 

(C) 

(d) 

OR 

Figure 8. The Rebalancing Transformations in Red­
Black Tree Insertion. Symmetric cases 
are omitted. Solid nodes are black; 
hollow nodes are red. All unshown 
children of red nodes are black. In 
cases (c) and (d) the bottommost black 
node can be missing. 

22 
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Sequential Deletion Algorithm 

Deletion is the process of removing an item from the 

current tree. If the item to be deleted is found in an 

external node, it is deleted from the tree. Although the 

deleted item is no longer accessible in the current tree 

and the trees created in the future, it is still accessible 

in the trees created prior to the deletion time. Deletion 

is usually more complicated than insertion because deleting 

a node with two children from a binary search tree is done 

by first moving the node to the bottom of the tree, by 

swapping the item with its inorder predecessor or successor 

which has only one child, and then deleting it. 

Fortunately, with our implementation of the red-black 

tree the items (data) are always stored in external nodes, 

so deleting an item from a red-black tree is much easier 

than deleting an item from binary search trees which do not 

use external nodes. To delete an item I from a red-black 

tree <Figure 9(a)), we first find the external node 

containing the item, then delete the item from the tree by 

replacing its parent with its sibling <Figure 9(b)). Note 

that if the parent contains the key I, then the internal 

and external nodes containing I are deleted; otherwise, the 

internal node containing I may still remain in the tree. 

This kind of deletion is called external deletion. 

Our deletion algorithm for the persistent red-black 

trees is based on this external deletion technique. The 

deletion algorithm proceeds as follows : 
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<1) Use the above search procedure to locate the parent of 

the desired item I. 

<2> Replace P<I>, the parent of node I, by S<I>, the 

sibling of node I. In other words, we store the 

pointer to S<I> in P<P<I>>, the grandparent of I. We 

should examine the current state of node P<P<I>> so 

that the pointer to S<I> can be stored in the appro­

priate field and node. The three possible states for 

P<P<I>> and the appropriate actions are the same as 

node V in step <3> of the insertion algorithm, so we 

shall not repeat them here. 

(3) If the replaced node P<I> is a red node, go to step 

( 4). If the replacing node S<I> is a red node, then 

change its color to black and go to step (4). 

Otherwise, the black constraint is violated and 

appropriate actions are required to bring the tree 

back to balance. To eliminate the black constraint, 

we let the replacing node S<I> be the short node X 

and proceed with the following steps 

(a) If X has a black parent P<X> and a black sibling 

S<X> with two black children, then apply the 

transformation in Figure 10(a) and let node 

P<S> be the <new) short node X, and repeat step 

<a) • 

(b) If X has a red sibling S<X> <or symmetric 

variants>, apply the transformation in Figure 

10(b). Note that this transformation requires 
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a single rotation, so nodes involved in the 

pointer changes need to be copied if they do not 

have free slots for the new pointers. <See step 

4(d) of insertion algorithm for more copying 

requirements). 

(c) If the right child of S<X) is a red node <or 

symmetric variant), apply the transformation in 

Figure 10(d) and go to step <4>. Note that 

this transformation also requires a single 

rotation, so see step 4(d) of insertion algorithm 

for more copying requirements. 

(d) If the left child of S<X> is a black node <or 

symmetric variant), apply the transformation in 

Figure 10(e); otherwise, apply the transforma­

tion in Figure 10(c). Note that transformation 

10(e) requires a double rotation, so see step 

4(e) of insertion algorithm for more copying 

requirements. 

< 4) End. 

Note that transformations in Figure 10(a) and (b) are 

the only two nonterminal cases. The transformation in 

Figure 10(a) is used to move the shortness up the tree, one 

level at a time, until it no longer holds. Then we perform 

the transformation in Figure 10(b) if it applies, followed 

if necessary by one application of Figure 10(c), <d), or 

(e). The maximum number of rotations needed is three, that 

is, one application of transformation in Figure 10(b) 
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followed by one application of Figure 10Cel. Thus, 

rebalancing after a deletion can be done in 0<1) rotations. 

<a> Initial red-black tree. 

(b) The resulting tree. 

Figure 9. An Example of External Deletion. 



(0) 

(b) / 
(C) 

(d) 

Figure 10. The Rebalancing Transformation in Red-Black 
Tree Deletion. The two ambiguous (half­
solid) nodes in (d) have the same color, 
as do the two in (e). Minus signs denote 
short nodes. In (a), the top node after 
the transformation is short unless it is 
the root. 
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CHAPTER III 

CONCURRENT OPERATIONS IN PERSISTENT 

RED-BLACK TREES 

In this chapter, we present a concurrent system that 

can support multiple independent tasks concurrently 

accessing and updating the shared persistent red-black 

tree. A simple and yet efficient tree locking protocol is 

used for synchronizing the concurrently executing tasks. A 

top-down updating approach is utilized to enhance the 

system performance. 

Computational Model 

Our system is designed for implementations on multi­

processor systems with a shared global memory to which an 

unbounded number of tasks have access. However, it can 

also be implemented on uniprocessor systems that support 

multiprogramming without any modification. In addition, 

each task should have access to a local memory for its 

local processing. 

We make no assumptions concerning the absolute or 

relative speeds at which the tasks are executed. It is 

possible that some tasks are much "slower" than others or 

that a task "goes to sleep" for a period of time and "wake 

28 



up" later. The reason for ignoring timing is that time­

dependent bugs are extremely difficult to identify and 
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correct. However, we assume that the tasks are reliable so 

that no task ever fails in the middle of the computation. 

In order to maintain the overall correctness, concur­

rently executing tasks must communicate. Communication 

allows execution of one task to influence execution of 

another. We use shared global memory for interprocess 

communication. In our system, we allow tasks to set 

certain bits <or a bit) of a shared variable so that others 

can detect and then react accordingly. The effect of the 

interprocess communication will be much clearer when we 

discuss the implementation of our tree locking protocol in 

chapter 4. 

Concurrency Control Mechanism 

In a concurrent environment, it is essential to allow 

as many users to run their programs in parallel as possible 

to enhance the throughput. Unfortunately, if we allow many 

tasks to have unrestricted access to a shared structure, 

then it is impossible to guarantee the integrity of the 

data structure. Thus, the system must monitor, synchro-

nize, and control the concurrently executing tasks so that 

overall correctness can be maintained. 

called concurrency control. 

This process is 

We use locks for concurrency control. Other concur-

rency mechanisms include optimistic [10J and timestamping 
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C2J methods; however, locking is by far the most commonly 

used mechanism in practice. The basic idea is quite 

simple. When a task needs an assurance that some node that 

it is interested in will remain in a stable state during an 

operation, it places a lock on that node. The effect of 

the lock is to block other tasks out of the locked node, 

and thus in particular to prevent them from modifying it. 

Thus, the holder of a lock is able to carry out its 

processing with the certain knowledge that the node in 

question will not change in some unpredictable manner. 

Tree Locking Protocol 

Our tree locking protocol is similar to C5J. We use 

three types of locks : <i> read locks for readers to 

prevent writers from doing rotations; <ii> write-exclusion 

locks for writers to exclude other writers along the access 

path from the starred node, the highest node that may be 

modified in an update (insertion or deletion>, to the place 

of update; and <iii) exclusive locks for writers to exclude 

readers from nodes modified during rotations. All locks 

only apply to internal nodes, since the access to an 

external node is controlled by its parent, which is an 

internal node. The relationships among these three types 

of locks can be summarized by means of a compatibility 

graph <Figure 11 ). An edge between any two nodes means 

that two different tasks may simultaneously hold these 

locks on the same node of a tree. Thus, a node may be read 
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locked by a number of readers while it is write-exclusion 

locked by a writer. However, if a writer holds an 

exclusive lock on a node, then no other tasks can hold any 

types of locks on the same node. 

EXCLUSIVE 
LOCK 

READ 
LOCK 

Figure 11. Compatibility Graph for Locks. 

The following is a more detailed discussion on how 

these locks actually work together : 

(1) A request from task T~ for a read lock on node X 

will be granted if no task holds the exclusive 

lock on X. If T~ fails, it will be put to 

"sleep" for a short period of time so that other 

tasks can use the CPU for some useful work. 

After waking up, T~ will be put back to a ready 

list for another try. 

(2) A request from task T~ for a write-exclusion lock 

on node X will be granted if no task holds the 
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write-exclusion lock on X. If T~ fails, it too 

will be put on a sleep list for a short period of 

time. After waking up, it will be placed on a 

ready list for another try. 

(3) A request from task T~ for an exclusive lock on 

node X will be granted if T~ already holds the 

write-exclusion lock on node X and no other task 

holds any read locks on X. Similarly, if T~ 

fails, it has to try later. 

In the next chapter, we will discuss how a tree 

locking protocol is actually implemented on a UNIX system. 

For now we shall assume that a locking or unlocking 

operation is done in one indivisible step. That is, when a 

task is performing a lock~operation, no other task is able 

to interfere with its processing. 

Deadlocks 

Locks have been widely used for synchronizing concur­

rently executing tasks, but not all locking protocols are 

free of deadlocks. A task is said to be in the state of 

deadlock if it is waiting fo~ a particular event that will 

not occur. Figure 12 shows a deadlock involving two tasks 

T1 and T2. An arrow from a node X to a task T means that 

node X has been locked by task T, and an arrow from a task 

T to a node X means that task T is waiting to lock node X. 

This locks allocation graph <Figure 12) illustrates a 

deadlocked system : T1 has a lock on node X1 and needs a 
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Task Task 
T1 T2 

Figure 12. A Locks Allocation Graph. 

lock on node X2 to continue, T2, on the other hand, has a 

lock on node X2 and needs a lock on node X1 to continue. 

Each task is waiting for the other to release the lock 

before it can proceed. This circular wait is the charac-

teristic of a deadlocked system. 

One way to prevent deadlocks from occurring is to deny 

the possibility of a circular wait. Our tree locking 

protocol does exactly that by enforcing the following 

rules : 

<1) If a node X is not a header of a tree, then a 



task T can lock node X only if it already has a 

lock on the parent of X. 
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(2) Once a task T releases a lock on a node X, it 

cannot subsequently obtain the same type of lock 

on node X again on the same access. 

These rules imply that a task T can release a lock on 

a node X only after it has obtained the locks it needed on 

the descendants of X. This handshake between locking 

children and unlocking their parent is called lock coup­

ling. Note that lock coupling implies that locks are 

obtained in header-to-leaf order. This leads to the key 

fact about our tree locking protocol : If task T1 locks a 

node X before task T2, then for every descendent V of X in 

the tree, if both T1 and T2 lock V, then T1 locks V before 

T2. 

Now we want to show that our tree locking protocol is 

free of deadlocks by the following informal arguments. 

First, note that if a task T1 is waiting for a header, it 

cannot be involved in a deadlock since it holds no locks 

and thus no tasks could be waiting for it. Now, suppose 

task T1 is waiting for a lock currently held by task T2 on 

node X other than the header. Since T2 must release the 

lock on node X before T1 can lock it and T2 is not allowed 

to lock node X again on the same access, no circular wait 

can ever exist. Thus our tree locking protocol is not 

prone to deadlocks. 
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Data Structure 

The data structure consists of a forest (a collection 

of red-black trees), a list of free headers, a list of free 

internal nodes, and a list of free external nodes. In 

order to implement our tree locking protocol, a number of 

lock and flag fields are added to each header and node. 

Figures 13(a), (b), and (c) show the new structures for the 

header, internal node, and external node, re~pectively. 

STATUS is a flag indicating whether a header or 

internal node is free or in use. WLOCK, XLOCK, and RLOCK 

are fields for write-exclusion, exclusive, and read locks, 

respectively. All other fields are defined as in chapter 

II. In the next chapter we will discuss how some of these 

locks can be combined into a single field for efficient 

implementation. 

Concurrent Search Algorithm 

Searching is the process of locating an item associ­

ated with a particular time stamp. Although we use the 

same definition as the sequential search algorithm, this 

algorithm is not utilized by concurrent insertion and 

deletion for locating'the place of update because different 

sets of rules are required for top-down insertion and 

deletion. Furthermore, the result returned by this search 

may be outdated before it has actually been used. Thus, 

this search algorithm is also called a weak search. Weak 

search should not be used if up-to-date information is 
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(a) Header Structure 
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Figure 13. Record Structures for 
Header and Nodes. 
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essential. 

Although search tasks do not modify the shared data 

structure, the sequential search algorithm described in the 

previous chapter may not work consistently in a concurrent 

environment. When many types of operations such as 

insertions and deletions are allowed to work on the tree 

simultaneously with searching, the result returned by a 

search operation may not be correct if nodes on the search 

path have been modified. To see this, consider the 

following example : Task T1 wants to search for item 80 in 

the red-black tree in Figure 14(a) and it is currently at 

node 50, and task T2 has ·just inserted node 70 into the 

tree <Figure 14(b)) and it is about to do a rotation. For 

simplicity, we shall assume that the initial tree is 

created in the current time unit and all the above opera-

tions are to perform at current time. <Figure 14<c> shows 

the resulting tree after a single left rotation). 

The following is one of the possible interleaved 

execution sequences for T1 and T2. 

Steps Task T1 

1 current_'ptr = b 
2 
3 
4 80 > current_ptr->key 
5 current_ptr = e 
6 
7 80 != current_ptr->KEY 
8 "node not found" 

Task T2 

b->RIGHT = e 
d->LEFT = b 

a->left = d 

According to the above search sequence, the item 80 is 



/80 
/50~ 

c ~ 'd 60 r 

e 60 ~ 
(a) A red-black tree. The letter on the left 

of a node denotes the address and the 
letter on the right denotes the color, 'r' 
for red and ' ' for black. The triangular 
node denotes a subtree and the square nodes 
are external nodes. 

/80 
/50~ 

c ~ d 60'\ 

eri'g 70 r 

h 70 ~ 
<b> After inserting node 70. 

(c) After a single left rotation. 

Figure 14. An Example of Incorrect Branching. 
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not in the red-black tree, but there is indeed an external 

node containing the item 80 in the tree. This incorrect 

result is obviously caused by the actions of T2. More 

precisely, it is caused by the pointer changes during the 

rotation. To prevent other writers such as T2 from 

interfering, readers need to place a read lock on each node 

on the access path before doing anything else. Since 

search tasks do not modify the shared data structure, we 

can therefore allow many readers to share a node with a 

writer, which is not doing a rotation, at the same time. 

The concurrent search algorithm is basically an 

enhanced version of the sequential search. The only thing 

that is added to the concurrent version is the placement of 

the read locks on the header and the nodes which lie on the 

search path. The concurrent search proceeds as follows. 

Initially, we place a read lock on the header associated 

with the search time, then a read lock is placed on the 

root of the tree and the read lock on the header is then 

released. Note that a read lock can be released only after 

a read lock has been placed on one of its children. This 

locking and unlocking process is repeated down along the 

access path until an external node is reached. The 

external node either contains the item or something else. 

The read lock on the parent of the external node is 

eventually released. <C code for the concurrent search 

algorithm is listed in the Appendix). 

Searching can be performed in all versions of the 
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persistent search tree. If the queries are done in trees 

which contain only the dead nodes, then readers can never 

be blocked. If, on the other hand, readers are searching 

in the current tree, the only time they can ever be blocked 

is when they are trying to lock nodes involved in rota-

tions. As we stated earlier, rebalancing a red-black tree 

after an update only takes 0(1) rotations, so readers in 

our system are rarely blocked. 

Concurrent Updating Algorithms 

In a sequential environment, an updating algorithm can 

be done in either bottom-up or top-down fashion. A bottom-

up algorithm is usually preferred because it is easier to 

implement and the lengthy bottom-up pass cannot interfere 

with or hold up any other tasks since the executing task is 

the only task operating in the tree. However, in a 

concurrent environment, many tasks need to operate in the 

shared data structure simultaneously, so a bottom-up 

updating algorithm can no longer be used. Top-down 

updating, on the other hand, is able to eliminate the 

lengthy bottom-up pass by identifying the highest node, say 

H, that may be modified in an update in just one top-down 

pass. Once node H is determined, a simple locking protocol 

can be used to block out other tasks from the subtree 

rooted at node H and free the rest of the tree to any other 

updating tasks. This isolation of one updating operation 

from the effects of all other updating operations in the 



tree structure ensures the overall correctness of the 

system. 
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As we stated in previous chapters, one way to make an 

ephemeral search tree persistent is by employing the path 

copying method. Path copying requires the entire access 

path to be copied at each update time, so it is difficult 

to achieve a high degree of concurrency even if we incorpo­

rate the top-down updating algorithm into the path copying. 

Node copying, on the other hand, is specially designed to 

avoid copying the entire access path at each time an update 

occurs. In particular, most of the copying occurs near the 

bottom of the tree and at each time only a small number of 

nodes is copied. Thus, top-down updating of a persistent 

red-black tree with limited node copying should provide a 

high degree of concurrency. 

Concurrent Insertion Algorithm 

Insertion is the process of adding an item to the 

shared persistent red-black tree in the current time unit. 

Now, we shall use a simple example to illustrate why the 

sequential insertion algorithm may not work consistently in 

a concurrent environment. To see this, consider the 

following example : Suppose task T1 wants to insert node 60 

and task T2 wants to insert node 70 into the tree in Figure 

15(a) at the same. For simplicity, we shall assume that 

the tree in Figure 15(a) is created in the current time 

unit. If the sequential insertion algorithm described in 



the previous chapter is used, the resulting tree could be 

in Figure 15<a), 15(b), or 15(c) depending on the 

interleaved executions of T1 and T2. 

However, we can make some minor changes to the 

sequential insertion algorithm in such a way that it will 
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work correctly in a concurrent environment. Similar to the 

search task, an insertion task needs to place locks of some 

kind on nodes that it is interested in so that no other 

tasks can modify them. For an insertion, write-exclusion 

locks should be used on nodes along the access path since 

we are only interested in blocking out other writers but 

not the readers. After inserting a new item, rotations may 

be necessary to bring the search tree back to balance. In 

order to prevent readers from getting confused during 

rotations and branching to the incorrect children, a small 

number of exclusive locks should be used in nodes involved 

in the rotations. 

The concurrent insertion algorithm proceeds as 

follows. Initially we let the current header be the 

starred node, the highest node that may be modified during 

an insertion, and place a write-exclusion lock on it, then 

we place another write-exclusion lock on the root node and 

proceed from the root node down along the access path. 

Note that write-exclusion locks are placed from the header 

to the parent of an external node, but some of these locks 

can be released early if the following conditions are met. 

When arriving at a black node, say X, that has a black 
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-------80 

~50~ 
(a) A red-black tree. 

(b) After inserting items 60 and 70. 

~80 

/50"' 
~ 70"\.. 

rz£ ~ 
(c) After inserting items 60 and 70. 

(d) After inserting items 60 and 70. 

Figure 15. An Example of Incorrect Insertions. 



child, we release the write-exclusion locks from the 

starred node down to the lowest node, say Y, which is not 

lower than the parent of X and has a free slot for a new 

pointer, and then let Y be the <new) starred node. This 
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process is repeated until an external node is reached. If 

the external node does not contain the new item, let V be 

the parent of the external node and continue from step (2) 

to step (5) of the sequential insertion algorithm in 

chapter II; otherwise, the insertion fails. 

Note that in the cases <Figures 8<c) and (d)) where a 

rotation is necessary, we need to convert some write­

exclusion locks to exclusive locks before performing the 

rotation to prevent readers from branching to the incorrect 

children. More precisely, a single rotation requires 

exclusive locks on the critical node <node P<S> in step(4) 

of the sequential algorithm) and its parent <node P<P<S))) 

and a double rotation requires an additional exclusive lock 

on the child of the critical node which lies on the search 

path <node S>. All locks are released after the update. 

<C code for the concurrent insertion algorithm is listed in 

the Appendix). 

Concurrent Deletion Algorithm 

Deletion is the process of removing an existing item 

from the shared persistent search tree. If an item is 

removed from the persistent search tree, it is inaccessible 

from the current tree and the trees created in the future, 



but it is still accessible from the trees created before 

the deletion time. 
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Concurrent deletion is similar to concurrent insertion 

but slightly more complicated. It also requires the 

placement of write-exclusion locks along the search path to 

block out other writers. The concurrent deletion algorithm 

proceeds as follows. Initially, we let the current header 

be the starred node, the highest node that may be modified 

during a deletion, and place a write-exclusion lock on it, 

then place another write-exclusion lock on the root node 

and proceed from the root node down along the search path. 

When we arrive at a red node X that has a red child, we 

release the write-exclusion lock from the starred node to 

the lowest node, say Y, which is not lower than the parent 

of X and has a free slot for a new pointer, and then let Y 

be the (new) starred node. This process is repeated down 

along the access path until an external node is reached. 

If the external node contains the item to be deleted, let 

node P<I> be the parent of the external node and continue 

from step (2) to step (4) of the sequential deletion 

algorithm in chapter II; otherwise, the deletion fails. 

Similarly, in the cases <Figures 1 0( c), <d). and <e)) 

where rotation is necessary, we need to convert a small 

number of write-exclusion locks to exclusive locks. These 

nodes are the same as in the previous section and we shall 

not repeat them here. All locks are released after the 

update. <C code for the concurrent deletion algorithm is 
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listed in the Appendix). 



CHAPTER IV 

THE IMPLEMENTATION OF A TREE LOCKING 

PROTOCOL AND SIMULATION RESULTS 

As stated in the previous chapter, our tree locking 

protocol uses three types of locks for different actions to 

maximize the concurrency. In this chapter we shall discuss 

how these three types of locks can be implemented on a 

Perkin Elmer 3230 running under UNIX System V operating 

system. The problem associated with uncontrolled access to 

shared resources and its solutions are presented. 

The Implementation of a 

Tree Locking Protocol 

Since a write-exclusion lock is used by only one 

writer to block out all other writers from a header or 

internal node, we can conveniently use a binary integer, 

say WLOCK, to represent a write-exclusion lock. If the 

WLOCK contains a value of 0, it is not locked; otherwise, 

it is locked. 

The read and exclusive locks can be represented by a 

counter called RXLOCK, since a number of readers may 

simultaneously read lock a header or internal node and the 

read locks are not compatible with the exclusive lock. The 
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counter is incremented by 1 when a read lock has been 

granted and it is decremented by 1 when a read lock has 

been released. A positive count, say n, of the counter 
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means that n read locks have been issued; a.negative count 

means that an exclusive. lock has been issued; a zero count 

means that no task has held any read or exclusive lock on 

the node. Alternatively, we can also use a field with n+1 

bits, say NRXLOCK, to denote the read and exclusive locks, 

where n is the number of tasks allowed to operate on the 

shared structure. The ith bit of NRXLOCK is set if task T~ 

holds a read lock and the most significant bit is set if 

the exclusive lock has been locked. Although the latter 

uses more space, it has the advantage of maintaining the 

information of the holders of read locks and thus it can 

prevent tasks from releasing read locks that they have 

never locked. Therefore, we shall use the latter for our 

implementation. 

With the above implementation, a read lock clearly has 

a higher priority than an exclusive lock. We can, of 

course, use an extra field, say XFLAG, to indicate whether 

a request for an exclusive lock has been issued so that a 

request for a read lock will not jump ahead of the waiting 

request for the exclusive lock. Although this method is 

quite fair, we shall not use it because it is quite 

difficult to implement efficiently and cleanly in a 

concurrent environment. 
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Mutual Exclusion and Critical Section 

In the previous chapter, we assumed all the "lock" and 

••unlock .. operations are atomic actions -- that is, these 

operations are performed in one indivisible step. This 

assumption is essential in a concurrent environment because 

interference from any other task may corrupt the integrity 

of the shared variables. To see this, consider the 

following example : Suppose initially that the RXLOCK of 

header x is equal to one, written as x.RXLOCK = 1, that 

both task T~ and TJ attempt to read lock header x concur­

rently. The codes which implement the locking for both 

tasks can be written as follows: 

T~: x.RXLOCK = x.RXLOCK + 1; TJ: x.RXLOCK = x.RXLOCK + 1; 

It would seem reasonable to expect the final value of 

x.RXLOCK, after T~ and TJ have executed concurrently, to be 

3. Unfortunately, this will not always be the case because 

assignment statements are not generally implemented as 

indivisible operations. It is possible that the above 

assignment statements might be implemented as a sequence of 

the following three instructions: 

(1) Load a register with the value of x.RXLOCK. 

(2) Add a value to x.RXLOCK. 

<3> Store the result in x.RXLOCK. 

Now, suppose T~ executes the load and add instructions, 

thus leaving 2 in an accumulator. Then T~ loses the CPU 



50 

<through a quantum expiration) to TJ. TJ now executes all 

three instructions, thus setting x.RXLOCK to 2. TJ loses 

the CPU to T~ which then continues by executing the store 

instruction, that is, storing 2 into x.RXLOCK. Because of 

uncontrolled access to the shared variable x.RXLOCK, the 

final value of x.RXLOCK = 2 is obviously incorrect. 

The key to preventing such a problem is to find some 

way to prohibit more than one task from reading and writing 

the shared variable at the same time. In other words, we 

need to give each task exclusive access to x.RXLOCK. While 

one task increments the shared variable, all other tasks 

desiring to do so at the same mome.nt should be kept 

waiting; when that task is finished accessing the shared 

variable, one of the tasks waiting to do so should be 

allowed to proceed. In this fashion, each process access-

ing the shared data excludes all others from doing so 

simultaneously. This is called mutual exclusion. 

So for the same example, we can rewrite it as follows: 

T~: enter_mutual_exclusion; 
x.RXLOCK = x.RXLOCK + 1; 
exit_mutual_exclusion; 

TJ: enter_mutual_exclusion; 
x.RXLOCK = x.RXLOCK + 1; 
exit_mutual_exclusion; 

The codes between the statements enter_mutual_exclusion and 

exit_mutual_exclusion are called the critical sections. In 

other words, a critical section is a piece of code that 

performs the actual accessing or updating of a shared 

variable. While one task is in the critical section, the 
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other tasks attempting to enter the same critical section 

have to wait and other tasks may continue their executions 

outside the critical section. Enforcing mutual exclusion 

is one of the keys in maintaining the overall correctness 

of a concurrent system. Many solutions have been propos~d, 

but we shall discuss only those related to our implementa-

tion. 

Semaphores 

The concept of a semaphore was first introduced by 

Dijkstra C4J. A semaphore S is a protected variable that, 

apart from initialization, can be accessed only by the 

atomic operations P and V. The classic P and V operations 

on S, written as P<S> and V<S>, respectively, are as 

follows: 

P<S> 

V< S > 

if <S > 0) 
s = s- 1; 

else 
/* it is safe to enter crit. sect.*/ 

"append the requesting task to a waiting queue" 

if <"the waiting queue is not empty''> 
"let one of the waiting tasks enter crit. sect." 

else 
s = s + 1; 

P and V operations are commonly implemented in the 

kernel where the process state switching is controlled so 

that each P<S> or V<S> can be done in one indivisible 

operation. Rather than discussing the implementation of 
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P<S> and V<S>, let us show how a semaphore Sx can be used 

to ensure the exclusive access to the RXLOCK of header x. 

<We assume Sx has a value of 1 initially). 

T~: P<Sx>; TJ: P<Sx>; 
x.RXLOCK = x.RXLOCK + 1; 
V<Sx>; 

x.RXLOCK = x.RXLOCK +1; 
V<Sx>; 

With the semaphore Sx and its P and V operations, the 

x.RXLOCK can no longer be corrupted in any circumstances. 

If we use the same scenario as before, even though T~ loses 

the CPU to TJ and leaving the value 2 in the accumulator, 

TJ will not be able to pass the operation P<Sx> since the 

Sx has a value of 0. Thus once T~ regains the service of 

CPU, it can save the value of 2 in x.RXLOCK and then 

execute V<Sx> to allow TJ to continue. Note that a 

semaphore count of zero means that there is a task current-

ly accessing the shared variable; a semaphore count of 1, 

on the other hand, means that no task is accessing the 

shared variable and thus it is safe to enter the critical 

section. The kind of semaphore is called a binary sema-

phore. 

Test-and-Set Instruction 

Many machines, especially those designed with multiple 

processors in mind, provide special hardware instructions 

that allow one to test and modify the content of a variable 

in one memory cycle. This kind of instructions, often 

called test-and-set, once initialed will complete all of 
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these functions without interruption. 

Our working machine, Perkin Elmer 3230, has a similar 

instruction called TS that performs the following functions 

on a halfword operand in just one memory cycle : 

<1) Read the halfword operand from the memory. 

(2) Set the condition code to the value of the most 

significant bit <MSB> of the operand. <Note that 

the condition code reflects the state of the MSB 

at the time of the memory read). 

(3) Set the MSB to 1 and store the operand in memory 

with no change to all other bits. 

Figures 16 and 17 are two examples showing the effects 

of the TS instruction. 

EJLl 
CE 

Condition Code 

MSB LSB 

fof····················.J.J 
15 0 

Halfword Operand 

(a) Before executing TS instruction. 

MSB LSB 

r:lil 
CE 

( 1 l··oo••oo•oo•••······1·1 
15 0 

Condition Code Halfword Operand 

Cb) After executing TS instruction. 

Figure 16. Executing TS instruction with the MSB 
of the operand equal to a. 
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Halfword Operand 

Ca) Before executing TS instruction. 

MSB LSB 

~ 
EEJ 

111·.····················1·1 
15 0 

Condition Code Halfword Operand 

(b) After executing TS instruction. 

Figure 17. Executing TS instruction with the MSB 
of the operand equal to 1 . 
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Now, we want to show how TS instruction can be used to 

enforce mutual exclusion. First, we need a function, 

written in assembly language, which executes the TS 

instruction with a halfword operand and returns the 

condition code to the caller. We shall call this function 

tas() and it can be invoked from a C program as follow: 

condition_code = tas<&halfword_variable); 

The complete listing of this function is given in the 

Appendix and we shall not repeat it here. Next, we need to 

define the lock fields with halfword in length and no sign 



stored in the most significant bits. All these can be 

accomplished by the following C declaration: 

unsigned short wlock, 
rxlock; 

On the PE 3230, an unsigned short is stored in two bytes 

without sign. 

Now, we want to show how tas<) can be used to imple-

ment a write-exclusion lock. Consider the following C 

code: 

while ( tas( &wlock ) ) 
sleep( 1 ) ; 
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Note that the address of wlock is passed to function tas< ). 

A value of 0 is returned from function tas() if wlock has 

not been locked by another task and it is now locked by the 

caller. The caller can then proceed with its processing on 

the locked node. A value of 1 is returned by tas( ) if 

wlock has been locked by another task and thus the caller 

has to try until it has the lock. In order to prevent the 

caller from continuously calling tas( >, we have decided to 

put the calling task to sleep so that another task can use 

the CPU service for some useful work. Continuously testing 

a variable waiting for some value to appear is called busy 

waiting. 

Unlocking a write-exclusion lock can be done by 

storing a value of 0 in wlock. No special instruction is 



needed. 

The implementation of read and exclusive locks is 

slightly more complicated than the above implementation. 

The following C code illustrates the implementation of 

exclusive lock: 

while < ! done > < 
while < tas( &rxlock ) > 

sleep< 1 >; 
if < rxlock == Ox8000 ) 

done = 1 ; 
else 

/* initially done = 0 */ 

/* any read locks ? */ 
/* No -- succeed */ 
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rxlock = rxlock & Ox7fff; /* Yes -- try again */ 
} 

Note that an exclusive lock is obtained by first setting 

the MSB of rxlock and then checking for the presence of the 

read lock. If any reader holds a read lock on the node 

<Figure 18<a>>, the task fails to secure the exclusive lock 

on the node and it has to try again later; otherwise 

<Figure 18(b)), it succeeds in acquiring the exclusive 

lock. 

Unlocking an exclusive lock can be done by storing a 

value of 0 in rxlock. No special instruction is necessary. 

Finally, we want to show the implementation of read 

locks by employing the function tas< ). Consider the 

following C code: 

while ( tas( &rxlock ) ) 
sleep( 1 >; 

rxlock = rxlock Ox0001 ; 
rxlock = rxlock & Ox7fff; 

/* assume lst task */ 
/* reset MSB to 0 */ 
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A read lock is obtained by first setting the MSB of rxlock 

and then setting the taskth bit of rxlock. Eventually, the 

MSB is reset so that other readers may subsequently read 

lock the same node. With this implementation, a read lock 

has a higher priority than an exclusive lock, since a 

request for an exclusive lock is denied whenever there is a 

read lock on the node and a request for a read lock, on the 

other hand, is granted even if there is an appending 

request for an exclusive lock. 

Unlocking a read lock is similar to locking it. The C 

code is as follows: 

while < tas< &rxlock ) ) 
sleep( 1 ) ; 

rxlock = rxlock & Oxfffe; 
rxlock = rxlock & Ox7fff; 

/* assume 1st task */ 
/* reset MSB to 0 */ 

Note that when an exclusive lock has been placed on a 

node, the MSB of rxlock is always set until the exclusive 

lock has been released. Thus, the conflicting relationship 

between read and exclusive locks can be maintained. Also 

note that the above C codes are simplified versions of the 

actual codes. The simplified versions are used to enhance 

the readability and convey a few important ideas. The 

complete listing of these codes can be found in the 

Appendix. 

Enforcing mutual exclusion by the test-and-set instruc-

tion can suffer from starvation. However, it is not likely 



rxlock 

rxlock 

Figure 18. 

MSB LSB 

11 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 

<a> An unsuccessful attempt. 

MSB LSB 

!1 o o o o o o o o o o o o o o of 

(b) A successful attempt. 

An Example of a Request for Exclusive Lock. 
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to occur on the multiprocessor systems. Furthermore, with 

persistent search structure, we can limit the maximum 

number of attempts (by any task) to n times by maintaining 

a counter for the number of transactions in a particular 

time stamp, where n is the number of transactions in a 

particular time unit. The counter is incremented by 1 when 

a transaction is added to the system in the current time 

unit; it is decremented by 1 when a task finishes its 

transaction. The current time is not allowed to increase 

if there are unfinished transactions in the current time 

unit. Of course, no transaction is allowed to be added to 

the system while the system is waiting to increase the 

current time stamp. 

Simulation Results 

The concurrent algorithms described in chapter III 

have been implemented in a simulation program, and several 
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experiments have been carried out. Analyzing the behavior 

of concurrent algorithms is quite difficult because there 

are many possible execution sequences or interleavings. 

Thus even with a fixed input, there are a great number of 

possible interleavings and consequently a number of 

different behaviors. The approach taken here is to run the 

simulator a number of times and then compute averages. 

Overall, we found that our algorithms support a fairly 

high degree of concurrency. For example, given a tree of 

500 nodes and four independent tasks, each executing 10 

operations (4 searches, 3 insertions, and 3 deletions) per 

time stamp with random keys for a total of 10 time stamps, 

about 0.23 percent (1.76/750) of the total requests for 

write-exclusion locks and 0.033 percent (0.13/400) of the 

total requests for read locks were delayed. 

requests for exclusive locks were blocked. 

None of the 

When the number of operations per time stamp increases 

from 10 to 20 <7 searches, 7 insertions, and 6 deletions) 

and everything else remains the same, only about 0.15 

percent (2.50/1650) and 0.028 percent <0.20/705) of the 

total requests for write-exclusion and read locks were 

delayed, respectively. 

When the size of the tree increases to about 1000 

nodes, the numbers do not fluctuate too much from the 

above. We also found that most of the delays occurs at the 

header and root levels. This finding is not surprising 

since locks are obtained in header-to-leaf order and thus 



all tasks accessing the tree must first hold the locks to 

the header and then the root node before they can proceed 

down along the access path. 
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CHAPTER V 

CONCLUSIONS 

In this thesis, we present a concurrent system that 

can support multiple independent tasks concurrently 

accessing and updating shared persistent red-black trees 

without destroying the integrity of the shared structure 

and without causing deadlocks. The high level of concur-

rency is achieved by using three types of locks, namely 

read lock, write-exclusion lock, and exclusive lock, to 

guard against different actions. Locks are used whenever a 

task needs assurance that nodes which are accessed will not 

change in some unpredictable manner. With our tree locking 

protocol some locks can be released before the holder 

finishes its operation and subsequently other tasks can 

acquire these locks and proceed with their executions. As 

a result, many tasks can be operating in the shared-search 

tree at the same time. 

The limited node copying method is used because it is 

suitable for concurrent implementations. Unlike the path 

copying method, limited node copying requires a node to be 

copied only if it has no free slot for a new pointer to be 

added to it; moreover, most of the copying occurs near the 

bottom of the tree. Thus, we can easily incorporate the 
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limited node copying method into a top-down updating 

algorithm. A top-down updating algorithm eliminates the 

lengthy bottom-up pass of a bottom-up algorithm by identi­

fying the highest node H, which may be modified in an 

update, during the top-down pass. Once node H is deter­

mined, a simple locking protocol can be used to protect the 

subtree rooted at node H and free the rest of the tree to 

other tasks. Thus, our implementation provides a high 

degree of concurrency. 

Since our tests are conducted on a uniprocessor system 

which supports multiprogramming, we have no way of 

predicting the performance of our concurrent algorithms on 

the multiprocessor systems. Thus, the performance of our 

algorithms on multiprocessor systems requires further 

study. 

The major draw back of our updating algorithms is 

blocking out too many updating tasks from the current 

header and root. Thus, developing a method that allows 

many writers to share a header or a root can be a 

challenging topic. It is left for future study. 
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/t----------------------------------------------------------------------------il 
/t pstdef.h - definitions for concurrent persistent red-black trees. *' lt----------------------------------------------------------------------------·1 

Ide fine ERROR -1 /t standard return values t/ 
ldefine OK 1 
ldefine FAIL 0 
#define NO 0 
tdefine YES 1 

ldefine NULL 0 /t initial values t/ 
tdefine NULLKEY -1 
ide fine NULLTIHE OxH 
tdefine NULLID -1 
#define INTERVAL I 

#define STK_QVFL 100 It flags for error handlert/ 
tdefine OUT_NODE 101 
idefine OUT_HDR 102 

tdefine RED Ox BOO! /t node colors t/ 
ldefine BLACK Ox8002 
tdefine FREE OxOOOO /t node/header status if 
ldefine USED OxBOOO 
tdefine UNLOCK OxOOOO /t lock and unlock t/ 
idefine LOCK OxBOOO 
ldefine X LOCK OxBOOO 

idefine STACK _siZE 50 /t size of stack il 

tdefine HAX_NODE 4600 /t t of nodes in shared tetory t/ 
idefine 11AX_USER 10 /t max. I of tasks t/ 
tdefine HAX_KEY OxfffH li 11ax. key t/ 
ldefine MAX_HEADER 30 /t max. I of header nodes i/ 
ldefine SHI1KEV1 Ox 1111 li shared tetory key t/ 
ldefine SHHKEV2 Ox2222 /t shared header key t/ 
ldefine SHI'IKEY3 Ox3333 It shared syste11 info. block key t/ 

lt----------------------------------------------------------------------------·1 
li pstext.h - header file contains external variables. il 

It----------------------------------------------------------------------------t/ 

extern HDR_PTR 
extern short 
extern unsigned short 

header; 
ttime; 
task, 
flag; 

It header pointer t/ 
li transaction time if 
/i current task id i/ 
/t a flag if 
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1·----------------------------------------------------------------------------•t 
It pstmac.h - macros for concurrent persistent red-black tree. tl 

ll----------------------------------------------------------------------------·1 

It is p points to an internal node ? t/ 
ldefine IS_INTERNALtpl ( ( ( p != NULL I && ( p->left != NULL l && \ 

( p->right != NULL l ) ? ( 1 ) 1 ( 0 ) l 

/t is p points to an external node ? tl 
ldefine IS_EXTERNALtpl t ( ( p != NULL l && ( p->left == NULL l && \ 

( p-)right == NULL l l ? ( 1 l : ( 0 I l 

It is p points to a red node ? *' 
ldefine IS_REDlpl ( ( ( p != NULL l U ( p->color == RED l l \ 

? ( 1 l : ( 0 ) ) 

I* is p points to a black node ? tl 
#define IS_BLKtpl ( ( ( p !=NULL l U ( p->color == BLACK l l \ 

?(1) I (011 

I* is p points to a node that has 1 or more red sons ? tl 
ldefine HAS_l_RED_SONtpl ( ( ( IS_RED( p->left l l I I ! IS_RED( p->right l I l\ 

?(11 I (011 

It is p points to a node that has 2 black sons ? tl 
ldefine HASJJLK_SONlpl ( t ( IS_BLK( p->left l I && ( IS_BLK( p->right l I l \ 

?t1l: tOll 

'* is p points to a node that uses its auxiliary pointer ? il 
tdefine AUX_USEDtpl ( t ( p != NULL l U (p->aux_ptr != NULL l I 

? ( 1 ) : ( 0 l ) 

It is p points to a node that does not use its auxiliary pointer ? t/ 
ldefine AUX_FREEtpl ( ( ( p != NULL l && ( p->aux_ptr == NULL l l \ 

? ( 1 I : ( 0 l l 

/t are these two given keys different ? *' 
*define KEYDIFtp,nkeyl ( ( p->key != nkey I ? ( 1 l ( 0 l l 
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lt----------------------------------------------------------------------------·1 
li pstrec.h -declarations of record structures far node, header, and system tl 
It table. tl 
Ii----------------------------------------------------------------------------i! 

typedef int KEY _TYPE; 
LOCK _TYPE; 
COLOR_ TYPE; 
TIME_ TYPE; 

typedef unsigned short 
typedef unsigned short 
typedef short 

struct node{ 
KEY_TYPE key; 

It record structure far tree node l/ 
It search key or offset to next free slot il 
It ( far I st node on! y ) tl 

} ; 

COLOR_ TYPE 
LOCK_ TYPE 
LOCK_ TYPE 
struct node 
struct node 
TII'IE_TVPE 
TIHE_TVPE 
struct node 

color; 
whck; 
RXlock; 

, Ueft; 
iright; 

It color also indicates the usage of a node l/ 
It write-exclusion, read, and exclusive lacks tl 

It left and right painters t/ 

tiae; /t node creation tiae tl 
aux_tiae; It extra pointer and ti~e stamp tl 
hux_ptr; 

typedef struct node 
typedef NODE.TVPE 

NODE_ TYPE; 
tNODE.PTR; 

typedef struct ( It record structure far tree header tl 
LOCK_TVPE status; /t the state USED or FREE t/ 
LOCK_TVPE Whlock; It write-exclusion lock tl 
LOCK_TYPE RXhlock; /t read and exclusive lacks tl 
NODE_PTR root; It painter to a root tl 

} HDR.TYPE, tHDR_PTR; 

typedef struct { It record structure for systea table if 
LOCK_TYPE tiaelock; /t lock to protect current_time tl 
TIKE_TYPE current_tiae; /t tiae unit relative to base_time if 
lang base_time; It ti~e at the first time() call t/ 
LOCK_TYPE userlack; It lock to protect user field if 
LDCK_TYPE user; /t nuaber of users at current tiae ll 

} SVSINFO_TYPE, tSYSINFO_PTR; 
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1·----------------------------------------------------------------------------&l 
ll rbcll l/ 
/t a driver for processing transactions from twa concurrently executed l/ 
/i tasks. This driver first creates a shared global aeaary t/ 
/t containing "MAX_NODE" nuaber of nodes, a shared header table t/ 
/l containing "MAX_HEADER" number of entries, and a system table it 
ll containing base time, current time, and a few other things. Then t/ 
It it builds an initial red-black tree with time stamp = 0 from an ll 
/t input file called "infile", Next, it invokes forkll system call t/ 
li to create a child process, and from this point onward each task goes l/ 
/t on to execute its transactions independently. t/ 

lt-------------------------------------------------------------~--------------·1 

tinclude <stdio.h> 
#include "pstdef.h" 
linclude •pstrec.h" 

HDR_PTR 
TIME_ TYPE 
unsigned short 

1ainll 
{ 

header; 
tti~e; 

task, flag; 

li pointer to a header ll 
It transaction ti~e l/ 
It task id. and a flag l/ 

FILE tfpO, /t input file containing numerical keys for l/ 
It the initial tree l/ 

tfp1, &fp2, /t transaction files ll 
tafpO, lofp1, tafp2,/t output files t/ 
tfclasell, lfapenll;/l standard file functions t/ 

TIME_TYPE gettime!J; /t fun. to find the current tile staap it 

li create a shared 1emory, header, and syste• table 1/ 
if I I creatshl(l l ==FAIL l l I creathdrll l ==FAIL :: 

I creatsysinfo(l l == FAIL l 

printfl"pragram stop !\nNJ; 
exit! 1 l; 

if I I fpO = fapenl •infile", "r" l 
( ofpO = fapenl "outfile", Mw• l 

task = 1; 

!= NULL ~~ 

!= NULL l 

buildtreel fpO, afpO l; 
fclasel fpO l; 

It build an initial red-black tree l/ 

fclosel ofpO l; 

else 
( 

printfl"file opening error -- pragra• stop !\n"l; 
exit11l; 
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setti11el 0 I; 
while ( gettimell < I I 

sleep( 1 I; 

fl reset current ti11e stamp to 0 if 
fi do not process transactions current time = 1 lf 

/t use fork() syste1 call to spawn a child process if 
if ( fork() == 0 I li fork() returns an zero pid to the child, *I 
( li so the child continues from here il 

if I ( fp2 = fopenl "trans2•, "r" I I != NULL ~& 

( ofp2 = fopenl "out2", "w" I I != NULL I 

task = 2; 
transact! fp2, ofp2 l; li process transactions by task #2 if 
fr::losel fp2 I; 
fcl ose I ofp2 I; 

else 
{ 

printfi"Can't open file 'trans2' -- progra11 stop !\n"l; 
exit I 1 I; 

else /t forkll returns a nonzero pid to calling process, tf 
( li so the parent l1aainO I continues fro111 here il 

H I fpl = fopenl "trans!", "r• I I !=NULL U 
( ofpl = fopen! •out!", •w• I I !=NULL l 

task = 1; 
transact! fpl, ofpl I; /t process transactions by task t1 if 
fr::losel fpl I; 
fr::losel ofp1 I; 

else 
( 

printfi"Can't open file 'trans!' -- prograe stop !\n"l; 
exit I 1 ) ; 
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Ii----------------------------------------------------------------------------i! 
It transactll t/ 
li function to process transactions (search, insertion, and deletion!. t/ 

It----------------------------------------------------------------------------t/ 

linclude <stdio.h> 
tinclude •pstdef.n" 
iinclude "pstrec.h" 
tinclude 'pstext.h" 

transact! fp, ofp l 
FILE ifp, tofp; li input and output files t/ 
( 

HDR_PTR gethdrll; /i fun. to find a header t/ 
TIKE_TYPE gettieell; li fun. to get the current time t/ 
int tcode1 tkey, stiae 1/t transaction code, key, and time t/ 

ctime; /t current tiae staap t/ 

li process transactions ••• if 
while ( ( fscanf( fp, 'tdXd%d', Ltcode, Ltkey, &stime l l != EOF l 
( 

fprintfl ofp, "1sg: tralc=Xd1k=Xd,t=Xdl\n" 1tcode,tkey,stime l; 
switch I tcode l 
( 

case 0 /i search if 
while I getti1ell < stiae l 

sleep! 1 l; 
header= gethdr( tti1e = stiae, task l; 
conc_searchl tkey, ttime, ofp l; 
subuser( task l; li adduser(l is perforaed in gethdr(J t/ 
break; 

case 1 li insertion t/ 
header= gethdr( ttiae=gettime() 1 task l; 
conc_insert( tkey, ofp l; 
subuser( task l; 
break; 

case 2 li deletion if 
header= gethdr( ttiee=gettimell, task I; 
conc_delete( tkey, ofp l; 
subuser( task l; 
break; 

case 7 
while I I ctiae=gettimell l < stime I 

sleep( 1 l; 
fprintfl ofp 1"msg: current tiee = Xd\n\n",ctime l; 
break; 

default : 
fprintflofp,"error : invalid transaction code IXdl\n\n",tcodel; 
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Ja----------------------------------------------------------------------------•1 
li buildtree(l il 
Ia function to build an initill persistent red-black tret 11ith tile il 
I* sta1p = 0. *' 
t•----------------------------------------------------------------------------·1 

linclude <stdio.h> 
linclude •pstdef.h• 
linclude •pstrec.h• 
linclude •pst1ac.h• 
linclude •pstext.h• 

buildtree( fp, ofp l 
FILE afp, aofp; 
{ 

HDR.PTR gethdrll; 
int nellkiYI 

header = gtthdr( tti1e=O, task l; 

I* input and output files *' 
I* fun. to find a header *' 
I* input key ll 

I* create a header 11ith tile sta1p = 0 tl 

11hile ! ! fscanf! fp, •xd•, 'ne11key I l != EDF l 
( 

conc_insertl ne11key, ofp l; I* build ini t. persistent RB tree *I 

subuserl hsk I; 
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Ii----------------------------------------------------------------------------i/ '* c:onc:_deleteO ll 
/t function to delete an item from a shared persistent red-black tree t/ 
/i in a concurrent environment. t/ 
/i----------------------------------------------------------------------------t/ 

tinclude <stdio.h> 
linclude "pstdef.hH 
tinclude 'pstrec.h" 
linclude "pstuc.h" 
linclude 'pstext.h" 

conc_delete( dkey, ofp l 
int dkey; li item to be deleted il 

/t output file t/ FILE tofp; 
{ 

NODE_PTR stacktSTACK_SIZEl, li stack to store an access path t/ 
sibptr, dptr, parent, repptr,/i node pointers i/ 
d_searchO, Ia fun. to find dkey tl 
sibling(); /i fun. to find a sibling i/ 

int top = -1, bottom=O; /$ indexes to the stack if 

initstac:k( stack, STACK_SIZE l; /i initialize stack i/ 

/i search for the itea to be deleted i/ 
dptr = d_search( dkey, stack, &top, •bottoa, ofp l; 
if ( dptr == NULL l /i ite1 not found i/ 
{ 

unWlockalll stack, top, bottaa, ofp l; /t release all Nlocks i/ 
fprintf(afp,N~sg: ite• not found at %d --deletion failed\n',dkey,ttimel; 
return; 

sibptr =sibling( repptr = stack[topl, dptr, ttiae l; 
if ( top > 0 l /t tree with 1ore than 1 internal node i/ 
{ 

parent = stack[top-1l; 
if I AUX_FREEI parent l 

update_parent! parent, sibptr, ttime l; 
else /i copy one or 11ore nodes t/ 
{ 

top--; 
morec:opy! sibptr, stack, &top, &botto• l; 
top++; 

} 

if ( IS_RED! sibptr l l 
sibptr->c:olor = BLACK; 

else if I IS_BLK( repptr l 
( 

unWloc:knodel repptr, ofp l; 
stackttopl = sibptr; 

It rebalance persistent RB tree t/ 

d_transform( stack, Hop, &bottoa, ofp l; 
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else /t tree ~ith only 1 internal node t/ 
header->root = sibptr; /t it becotes an e1pty tree t/ 

unNlockalJ( stack, top, bottom, ofp l; 
fprintf(ofp,"msg: item Xd deleted at Xd\n",dkey,ttiae); 



/t----------------------------------------------------------------------------il 
I* conc_inserto i/ 
li function to add an ite~ to a shared persistent red-black tree in a t/ 
/t concurrent environaent. ll 

li----------------------------------------------------------------------------·1 

linclude <stdio.h> 
#include "pstdef.h" 
tinclude 'pstrec.h" 
linclude "pst1ac.hv 
linclude "pstext.h" 

conc_insert( insert_key, ofp l 
int insert_key; /t insertion key t/ 

/t output file t/ FILE tofp; 
( 

NODE_PTR stackCSTACK_SIZEl, 
extptr, parent, newnode, 
i _search(), 

/t stack to store the access path il 
/t node pointers t/ 

at tachnode () ; 
int top = -1, bottom=O; 

/t fun. to locate the place of Ins. t/ 
/t fun. to create two new nodes t/ 
/t indexes to the stack t/ 

initstack( stack, STACK_SIZE l; /t initialize stack t/ 

li search for a proper location for the new node t/ 
if ( ( extptr = i_search( insert_key,stack,~top,~bottoa,ofp I I == NULL I 
{ I* new key is already in the tree t/ 

unWlockalll stack, top, bottoa, ofp l; 
fprintf(ofp,"•sg: itea Xd already in the tree= Xd\n",insert_key,ttiael; 
return; 

li insert new item t/ 
It attach an internal and an external nodes to the tree if 
newnode = attachnode( insert_key, extptr, ofp l; 
if I top > -1 l 
( li not an eapty tree il 

if ( AUX_FREEI stack[topl l l /t parent of new node has a free slot t/ 
update_parent! stack[topl, newnode l; 

else /t copy 1 or 11ore nodes t/ 
morecopy( newnode,_stack, &top, &bottoa l; 

if I IS_REDI stack[topl l l 
{ 

Wlocknode ( newnode, ofp l; 
/t rebalance the persistent RB tree t/ 

push( stack, &top, &bottoa, nawnode, ofp l; 
i_transform( stack, &top, &bottom, ofp l; 

else /t empty tree il 
header->root = newnode; 

unWlockalll stack, top, bottoa, ofp l; 
fprintf(ofp,"ISg: itea Xd inserted at Xd\n",insert_key,ttimel; 
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1·----------------------------------------------------------------------------tl 
li conc_search(l t/ 
It function to find an item in a shared persistent red-black tree in a if 
li concurrent environment. tl 
li----------------------------------------------------------------------------t/ 

tinclude <stdio.h> 
#include "pstdef.h• 
linclude •pstrec.h" 
linclude "pstaac.h" 
tinclude •pstext.h" 

conc_search( skey, stiee, ofp l 
int skey, sti1e; 
FILE tofp; 
( 

NODE_PTR cur, son, 
nextsontl; 

Rlockhdr( header, ofp l; 
cur = header->root; 
if ( IS_EXTERNALI cur l l 
( 

unRlockhdr( header, ofp l; 

/i search key and tile t/ 
/t output file t/ 

/a current and next pointers t/ 
li fun. to find the desired next ptr t/ 

li put a read lock on the header t/ 

/t empty tree t/ 

fprintf( ofp, "esg : search(~dl : not found at ~d\n\n",skey,stiael; 

else 
( 

Rlocknode( cur, ofp l; 
unRlockhdrl header, ofp l; 

li search through the tree t/ 

son = nextson( cur, skey, stime l; 
while ( IS_INTERNAL( son l l 
( 

Rlocknode( son, ofp l; 
unRlocknode( cur, ofp l; 
cur = son; 
son= nextson( cur, skey, stile l; 

if l son->key == skey l 
fprintf( ofp, ·~sg: searchlldl found at Xd\n\n",skey,stimel; 

else 
fprintfl ofp, ••sg : searchl7.dl not found at ~d\n\n•,skey,stimel; 

unRlockncde( cur, ofp l; 
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/t----------------------------------------------------------------------------tl 
ll copyfun.c - module containing node copying functions : attachnode(l &/ 
li copynode () *I '* 11orecopy () *I 
li----------------------------------------------------------------------------·1 

tinclude <stdio.h> 
linclude "pstdef.h" 
linclude "pstrec.h" 
linclude "pst1ac.h" 
tinclude •pstext.h" 

/i----------------------------------------------------------------------------tt 
It attachnode(l t/ 
/t function to create an external node containing the new item and an l/ 
/l internal node containing the mini11um key of its two children. l/ 

li----------------------------------------------------------------------------·1 

NDDE_PTR 
int 
NODE_PTR 
FILE 

attachnode( i_key, e_ptr, ofp I 
i_key; li new item l/ 
e_ptr; It pointer to a chi 1 d of the neN i nt. node ll 
iofp; It output file tl 

{ 

NODE_PTR getnodell, 
in, ex; 

li fun. to allocate a new node tl 
It pointers to new int. and ext. nodes t/ 

if ( ( ex = getnode( ofp I I != FAIL && It create a new ext. node t/ 
I in = getnode( ofp l I != FAIL I /t create a neN int. node ll 

It fill in the co1ponents t/ 
ex->color = BLACK; 
ex- >key = i _key; 
ex->tille = in->time = ttime; 
in->color = RED; 
if ( i_key < e_ptr->key I 
( 

in->key = i_key; 
in->left = ex; 
in->right = e_ptr; 

else 
( 

in->key = e_ptr->key; 
in->left = e_ptr; 
in->right = ex; 

return ( in I; 

return I FAIL l; 
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li---------------------------------~------------------------------------------il 
li copynode(l if 
li function to create a new node from some internal node. The new node if 
fi contains the latest left and right pointers of the original node, and i/ 
li the write-exclusion lock on the original node is released. if 

ta----------------------------------------------------------------------------•1 

NODE_PTR copynode( origin, son) 
NODE_PTR origin, son; li original node and its child which *' 

It lies on access path il 

NODE_PTR n, getnodeO, li fun. to allocate a new node if 
leftsonll, rightsonll;/l fun. to find left and right children if 

if I ( n = getnode() ) != FAIL l 
{ 

n->key = origin->key; 
n->color = origin->color; 
n->Wlock = origin->Wlock; 
n·>ti11e = ttiu; 

li get a new node *I 

n->left = leftsonl origin, tti11e I; 
n-)right = rightsonl origin, ttime l; 
if I son != NULL l 
( 

if I son->key <= origin->key l 
n->left = son; 

else 
n->right = son; 

origin->Nlock = UNLOCK; 
return( n ) ; 

return( FAIL l; 
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li---------------------------------------------------------------------------~·1 
li morecopy!l l/ 
I* function to copy node(s) starting fro1 the top of stack if necessary. il 
Ii----------------------------------------------------------------------------i/ 

morecopy! c, stack, top, bottom l 
NODE_PTR c, stack[J; /i node pointer and stack containing an access path il 
int itop, ibottoa; li indexes to the stack l/ 
( 

int i, done = NO; 

for ( i = atop; i >= lbottol ~& !done; i-- ) 
{ 

if ! AUX_USED! stack[iJ l && 
( stack[iJ->aux_time < tti1e i: stack[iJ->aux_ptr->key != c->key l 
stackril = c = copynode( stack[il, cl; 

else 
{ 

update_parent( stackCiJ, c l; 
done = YES; 

iT ( !done l 
header->root = c; 
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/t----------------------------------------------------------------------------t/ 
li d_searchll t/ 
/t function to locate the item to be deleted, Nodes encountered on the t/ 
/t search path are placed with write-exclusion locks, A NULL value is t/ 
/t returned if the item is not found. t/ 
/1----------------------------------------------------------------------------t/ 

#include <stdio.h> 
linclude •pstdef.h" 
#include "pstrec.h" 
tinclude •pstmac.h" 
*include "pstext.h" 

NODE_PTR d_searchl dkey, 
NODE_PTR stackCl; 

stack, top, bottom, ofp l 
It stack to store the access path t/ 

int dkey, ttop, tbottom; li deletion key and indexes to the stack t/ 
/t output file t/ FILE lofp; 

{ 

NODE_PTR ls, rs, cur, son, li node pointers 1/ 
leftsonll, rightsonll; /t fun. to find the latest children t/ 

int i 1 j; 

Wlockhdr( header, ofp l; /t place a write-exclusion lock on header t/ 
flag = 1; 
if ( IS_EXTERNALI header->root l l /t e1pty tree il 

return! NULL l; 

Wloeknodt( cur • htldtr->root, ofp, ttop l; /t put a Wlock on the root t/ 
push! stack, top, botto11 cur, ofp l; 
ls = leftsonl cur, tti1e l; 
rs = rightsonl cur, tti1e l; 
if I IS_BLK( cur l ~& HAS_2_BLK_SONI cur l 

cur->color = RED; 
son = ( I dkey <= cur->key l ? ( Is l : ( rs l l; 

while I IS_INTERNALI son l l 
{ 

Wlocknodel son, ofp 1 ttop l; 

li search through the tree t/ 

push( stack, top, bottoe, son, ofp l; It save the acc_ess path t/ 
ls = leftson( son, ttiae l; 
rs = rightsonl son, ttiae l; 
if ( IS_REDI son l II HAS_1_RED_SONI son l 
{ 

for I j=O,i = ibotto11; i < Hop; i++ l 
{ /t a node has a free slot, or its aux_ptr is pointed to a node t/ 

li on the search path at the current time il 
if ( AUX_FREEI stacktil l I I I stack[il->aux_time == ttime 

&& stack[il->aux_ptr == stack[i+ll l l 

if ( f1 ag l 
( 

unWlockhdrl header, ofp l; 
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flag = 0; 

j = i; 

~hile ( ibotto~ < j ) li release Wlocks from the old starred node to il 
unWlocknode( stackCibotto•++l l;/i the parent of ne~ starred node t/ 

cur = son; 
son = ( ( dkey <= cur->key ) ? ( ls ) 

if ( son->key == dkey l 
return( son l; 

else 
return( NULL l; 

( rs ) ) ; 
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/t----------------------------------------------------------------------------tl 
It d_transform 0 t/ 
li function to rebalance a persistent red-black tree after a deletion. t/ 
/t The balance properties of the red-black tree are maintained by color if 
li changes or a combination of color and pointer changes. if 

Ii----------------------------------------------------------------------------i! 

#include <stdio.h> 
linclude •pstdef.h" 
iinclude "pstrec.h" 
linclude •pstmac.h" 
iinclude "pstext.h" 

d_transform( stack, top, bottom, ofp l 
NODE_PTR stackCl; /t stack containing the access path *I 
int ttop, tbottom; /t indexes to the stack t/ 
FILE *ofp; I* output file t/ 
{ 

NODE_PTR cptr, sptr, gptr, nptr, shortptr~ saveptr, p, 
pop!l, /t fun. to remove an item from the stack t/ 
leftson!l, rightson!l;/t fun. to find left and right children l/ 

COLOR_TVPE savecolor; 
int done = NO; 

gptr = nptr = shortptr = saveptr = p = NULL; 
shortptr =pop( stack, top, bottom I; 
cptr =pop! stack, top, botto1 l; 

while ( !done && IS_BLK! shortptr l && cptr != NULL I 
{ 

savecolor = cptr->color; /t save color for ambiguous node t/ 
if ( shortptr->key <= cptr->key l 
{ 

sptr = rightson( cptr, ttiae I; 
Wlocknode( sptr , ofp l; 
if I IS_RED! sptr l I /t case b -- nonterminating case t/ 
{ /t single left rotation t/ 

p = NULL; 
pre_rotation( &cptr,&sptr,&p,stack,top,boHom,ofp l; 
single_L! cptr, sptr, stack, top, bottom, ofp I; 
push( stack, top, bottom, sptr, ofp I; 

else 
{ 

gptr = rightson! sptr, ttiae I; 
if ( IS_RED! gptr I l /t case d -- single left rotation t/ 
{ 

p = NULL; 
pre_rotation! &cptr,&sptr,&p,stack,top,bottom,ofp l; 
single_L( cptr, sptr, stack, top, bottom, ofp I; 
sptr->color = savecolor; 
cptr->color = gptr->color = BLACK; 
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done= unWlockx( shortptr, cptr, sptr, NULL, ofp I; 

else 
( 

gptr = leftson( sptr, tti~e I; 
if ( ( WI ocknode ( gptr, ofp I l == NULL ll IS_BLK ( gptr I l 
{ 

if ( IS_RED! cptr l l /t case c -- change color only t/ 
( 

cptr->color = BLACK; 
done= unNlockx( shortptr, cptr, sptr, gptr, ofp l; 

else 
( 

t• case a -- nonterminating case *' 
unWlockx! shortptr, NULL, sptr, gptr, ofp l; 
shortptr = cptr; 
cptr =pop( stack, top, bottot l; 

sptr->color = RED; 

else 
( 

li case e -- double left rotation t/ 

pre_rotation( &cptr,~sptr,&gptr,stack,top,botto•, ofp l; 
double_L( cptr,sptr,gptr,stack,top,bottom, ofp l; 
gptr->color = savecolor; 
cptr->color = sptr->color = BLACK; 
done= unWlockx( shortptr, cptr, sptr, gptr, ofp l; 

else /t •irror i1ages of the above cases t/ 
( 

sptr = leftson( cptr, ttime l; 
Wlocknode( sptr, ofp l; 
if ! rs_RED! sptr l l It case b -- nonter~inating case t/ 
( It single right rotaion l/ 

p = NULL; 
pre_rotation( &cptr,&sptr,&p,stack,top,bottom, ofp l; 
single_R( cptr, sptr, stack, top, botto•, ofp l; 
push( stack, top, bottom, sptr, ofp l; 

else 
( 

gptr = leftson( sptr, tti1e l; 
if ( IS_RED( gptr l l /l case t -- single right rotation l/ 
{ 

p :: NULL; 
pre_rotation( &cptr,&sptr,&p,stack,top,bottom, ofp l; 
single_R( cptr, sptr, stack, top, bottom, ofp l; 
sptr->color = savecolor; 
cptr->color = gptr->color = BLACK; 
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done= unWlockx( shortptr, cptr, sptr, NULL, ofp l; 

else 
{ 

gptr = rightson( sptr, ttime l; 
if ( WI ocknode ( gptr, ofp l == NULL II IS_BLK ( gptr l l 
{ 

if ( IS_RED! cptr l l /l case c -- change color only l/ 
( 

cptr->color = BLACK; 
done= unWlockx( shortptr, cptr, sptr, gptr, ofp l; 

else 
{ 

/$ case a -- nonterminating case *' 
unWlockx( shortptr, NULL, sptr, gptr, ofp l; 
shortptr = cptr; 
cptr = pop ( stack, top, bot to• l; 

sptr->color = RED; 

else 
( 

It case e -- double right rotation t/ 

pre_rotation( &cptr,&sptr,~gptr,stack,top,bottom, ofp l; 
double_R( cptr,sptr,gptr,stack,top,botto~,ofp l; 
gptr·>color = savecolor; 
cptr·>color = sptr->color = BLACK; 
done= unWlockx( shortptr, cptr, sptr, gptr, ofp l; 
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/i----------------------------------------------------------------------------tt 
ll err_handlerO t/ 
/t function to handle a few error conditions. t/ 
/i----------------------------------------------------------------------------t/ 

linclude <stdio.h> 
linclude •pstdef.h" 
linclude "pstrec.h" 
linclude •pstaac.h" 

err_handlerl err_msg, stack, top, bottoa, ofp I 
int err_asg, tap, battoa; It error aessage and indexes to the stack t/ 
NODE_PTR stack[]; /t stack containing the access path i/ 
FILE tafp; /t output file t/ 
{ 

switch ( err_asg I 
c 

} 

case OUT_HDR : 
fprintf( afp, "Error : Out of Header Nodes !\n" I; 
break; 

case OUT_NODE : 
fprintf( ofp, "Error : Out of Shared Heaary !\n" I; 
break; 

case STK_OVFL : 
fprintf( afp, "Error : Stack Overflow !W I; 
break; 

default 
fprintfl ofp, "Error : Nothing Wrong !\n• I; 

unWlockalll stack, top, bottaa I; /t release all locks on the access path t/ 
fprintfl ofp, 'Prograa Stopped Abnor1ally !\n'l; 
exit! 1 I; 

85 



li----------------------------------------------------------------------------·1 
/t hdrfun.c - module contains header processing functions : creathdr() l/ 
li gethdr () ll 

/t----------------------------------------------------------------------------t/ 

linclude <sys/types.h> 
linclude <sys/ipc.h> 
tinclude <sys/sha.h> 
linclude <stdio.h> 
linclude "pstdef.h" 
tinclude •pstrec.h" 

int sid2; /t shared memory id fl 
HDR_PTR hdrtab; /l pointer to header table t/ 

/i----------------------------------------------------------------------------t/ 
/t creathdr () i/ 
li create a shared memory Nith MAX_HEADER nu~ber of entries by·shmget(l t/ 
/t Unix system call. t/ 

li----------------------------------------------------------------------------t/ 

creathdr() 
{ 

extern char ishaat!l; /t attach the shared header to its virtual aemory t/ 
HDR_PTR haddr; /t header pointer t/ 
int i, j; 

/t create a shared header table t/ 
sid2 = shaget( SHMKEY2, MAX_HEADER t sizeof(HDR_TYPEl, 0777:1PC_CREATl; 
if ( sid2 != ERROR l 
( 

haddr = hdrtab = ( HDR_PTR l shmat( sid2, 0, 0 l; 
for ( i=O; i < MAX_HEADER; i++ l /l initialize table t/ 
{ 

haddr->status = FREE; 
haddr->RXhlock = haddr->Whlock = UNLOCK; 
haddr->root = NULL; 
haddr++; 

printf("\nA Header Table of i.d entry has been created :\n',MAX_HEADER l; 
printf!"Sid2 = Xd\thdrtab = 'l.x\tlastaddr = Xx\n 1 1sid2,hdrtab,--haddr l; 
return( OK l; 

pri nH ( u \nError : Cannot create shared header tab! e 1 \n 11 l; 
return( ERROR l; 
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/i----------------------------------------------------------------------------ll 
li gethdr(l t/ 
/i function to find a header associated with a given time stamp. If the i/ 
/i given time sta~p is greater than the current tine stamp, one or eore t/ 
/i new headers are created. ll 

li----------------------------------------------------------------------------·1 

HDR_PTR gethdr( ttime, task, ofp l 
TIME_TYPE ttime; li transaction time sta1p i/ 
unsigned short task; /i current task id; i/ 
FILE iofp; /i output file i/ 
{ 

extern SYSINFO_PTR sysinfo; /i pointer to systea table &I 
NODE_PTR p, li node pointer tl 

getnodell; /i fun. to allocate a new node i/ 
int i, t; 

if ( ttime > ( t = sysinfo->current_time l 
( 

. } 

if ( tti1e < MAX_HEADER l 
{ 

locktime(l; /i enter critical sect. --allow 1 task to modify time i/ 
if ( tas( ~hdrtabrttiael.status l == 0 ) 
{ 

for ( i=t+l; i < ttime; i++ l /i create headers fro• the last i/ 
{ /i current_tiu to tti111e i/ 

if ( tas( &hdrtabCil.status l == 0 l 
hdrtab(il.root = hdrtab(i-1l.root; 

if ( tt i 11e == 0 l 
( /1 create a dummy node for init. tree i/ 

p = hdrtab(ttimel.roat = getnode( ofp l; 
p·>ti11e = 0; 
p->key = MAX_KEY; 
p·>color = BLACK; 

else 
{ 

hdrtabCttimeJ.root = hdrtabCtl.root; 
Nhile ( sysinfo->user > 0 l/i wait for tasks in current time i/ 

sleep( 1 l; /t stamp to complete their jobs i/ 

sysinfo->current_time = ttime; '* set the new current time staap *' 
unlocktimell; /i exit froa the critical section t/ 

else 
err_handler( OUT_HDR l; /i out of header nodes -- PROGRAM STOP ! i/ 

adduser( hsk l; /i incre1ent user count i/ 
return( &hdrtabCttimel l; 
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lt----------------------------------------------------------------------------·1 
ll i_searchO *' 
/t function to search for a proper location for the new item. Write- l/ 
/t exclusion locks are placed on nodes encountered on the access path. t/ 
li A NULL value is returned if the new item is already in the tree. t/ 

/t----------------------------------------------------------------------------il 

linclude <stdio.h> 
tinclude "pstdef.h" 
iinclude "pstrec.h" 
linclude •pstmac.h" 
*include "pstext.h" 

NODE_PTR i_search< ne11key, stack, top, bottoa, ofp l 
NODE_PTR stack[l; /t stack to store the access path t/ 
int newkey, ttop, ibotto•; /t new iteM and indexes to the stack il 
FILE iofp; li output file il 
{ 

NODE_PTR Is, rs, cur, son, 
leftsonll, rightsonll; li fun. to find left and right children t/ 

int i, j; 

Wlockhdr( header, ofp l; /t Wlock header t/ 
f 1 .ag = 1; 
if ( IS_EXTERNALI he.ader->root l l /t e1pty tree t/ 

return( header->root l; 

Wlocknode( cur = he.ader->root, ofp, ltop l; li Wlock root t/ 
push( st.ack, top, bottoM, cur, ofp l; 
Is = leftsonl cur, tti1e l; 
rs = rightsonl cur, tti1e l; 
if I IS.REDI cur I I 

cur·>coior = BLACK; 
else if I !S_REDI Is I &~ IS_REDI rs l l 

ls->color = rs·>color = BLACK; 
son= I ( newkey <= cur->key l ? ( Is l : ( rs l l; 

while I IS.INTERNALI son l l 
( 

Wlocknode( son, ofp, ttop l; 
push( stack, top, bottoa, son, ofp I; 
ls = leftson( son, ttiae l; 
rs = rightson( son, ttiae l; 
if I IS_BLKI san I l 
{ 

if ( IS.BLKI Is I II IS_BLKI rs I II IS_BLKI cur l 
{ 

for ( j=O,i = tbatto11; i < itop; i++ l 
( 

if ( AUX_FREEI stack[il l II ( stack[il->aux_time == ttite 
~~ stack[il->aux_ptr == stack[i+ll I l 
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if ( flag l 
{ 

unWlockhdr( header, ofp l; 
flag = 0; 

j = i; 

while ( lbottom < j /l re1ove Wlocks fro~ the old starred node l/ 
unWlocknode( stackttbottoa++J, ofp l; /l to the parent of new if 

/t starred node t/ 

cur = son; 
son = ( ( newkey <= cur·>key l ? ( Is l 

if ( son->key != newkey l 
return( son l; 

else 
return( NULL l; 

( rs l l; 
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lt----------------------------------------------------------------------------·1 '* i_transfor1110 if 
li function to rebalance a persistent red-black tree after an insertion. il 
li The balance properties of the red-balck tree are maintained by t/ 
/t color changes or a coabination of color and pointer changes. Nhen a il 
/t rotation is necessary, some nodes may be copied, and a fe~ ~rite- it 
/t exclusion locks are converted to exclusive lacks. t/ 

Ii----------------------------------------------------------------------------i/ 

linclude <stdio.h> 
linclude 'pstdef.hu 
linclude "pstrec.h" 
linclude •pstaac.h' 
linclude "pstext.h" 

i_transfor•( stack, top, bottom, afp l 
NDDE_PTR stackCJ; /t stack containing access path t/ 
int itop, tbottoa; /t indexes to the stack *' 
FILE tofp; /t output file t/ 
( 

NODE_PTR gptr, sptr, cptr,ls1 1ls2, rsl, rs2, /t node pointers if 
pop(), '* fun. to re11ove an ite11 fro• a stack t/ 
leftson(l 1 rightsantl; /t fun. to find left and right children t/ 

int done = NO; 

gptr =pap( stack, tap, bottoa l; 
sptr = pop( stack, top, bottoa l; 
cptr =pop( stack, top, botto1 l; 

~hile ( cptr != NULL && !done l 
{ 

if ( IS_BLK( cptr l && IS_RED( sptr l && IS_REDt gptr l 
( 

if ( ( lsl = leftson( cptr, ttiae ) l == sptr l 
( 

rsl = rightson( cptr, tti1e l; 
if ( IS_BLK! rsl l l 
{ 

if ( ( rs2 = rightson( sptr, ttiae l l == gptr ) 
{ li case d -- double right rotation t/ 

pre_rotation( &cptr,&sptr,&gptr,stack,top,bottoa,ofpl; 
double_R( cptr,sptr,gptr,stack,top,bottoll,ofpl; 

else 
{ 

rs2 = NULL; 
/t case c -- single right rotation t/ 

pre_ratation( &cptr,Lsptr,&rs2,stack,top,bottom,ofp l; 
single_R( cptr,sptr,stack,tap,bottall,ofpl; 

done = YES; 

else li case a -- nonter1inating case t/ 
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} 

sptr->color = rs1->color = BLACK; 
cptr->color = RED; 

else 
{ 

li Dirror iaages of the above cases t/ 

} 

if ( IS_BLK! ls! J l 
( 

if ( ( ls2 = leftson( sptr, ttiae J l == gptr l 
{ /i case d -- double left rotation if 

pre_rotation!,cptr,&sptr,&gptr,stack,top,bottoa,ofpl; 
double_L( cptr,sptr,gptr,stack,top,bottotl,ofpl; 

} 

else 
{ 

li case c -- single left rotation il 

ls2 = NULL; 
pre_rotation!&cptr,&sptr,&rs2,stack,top,bottoa,ofpl; 
single_L( cptr,sptr,stack,top,botto•,ofpl; 

done = YES; 

ehe 
{ 

li case a -- nonterminating case il 

sptr->color = lsl->color = BLACK; 
cptr->color = RED; 

if ( ! done l 
c 

unWlocknode( gptr, ofp l; /i release Wlock on the lowest node of the *' 
gptr = sptr; li three and move up the access path il 
sptr = cptr; 
cptr =pop( stack, top, bottoe l; 

if ( !done && IS_RED( gptr l 
sptr->color = BLACK; 

unWlocknode( gptr, ofp l; 
unWlocknode( sptr, ofp l; 
unNlocknode( cptr, ofp l; 

~~ IS_RED! sptr J l li case b if 

li release Wlocks on nodes that have been i/ 
li reaoved fro• the stack il 
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/t----------------------------------------------------------------------------t/ 
/l lockfun.c - eodule containing 'lock' and 'unlock' functions: Wlockhdr(l l/ 
/t Wlocknode() l/ 
It Rlockhdr(l l/ 
/t Rlocknodell t/ 
It Xlockhdr() t/ 
It Xlocknode(l if 
'* lockti~~e() tl 
/t lockuser() *' 
It unWlockx(l t/ 
It unNlockall () t/ 
It unWlockhdr () t/ 
/t unNlocknode(l t/ 
ll llnRl ockhdr () t/ 
/t unRlocknodell t/ 
It unXlockhdr(l t/ 
/t unXlocknodeO l/ 
It unlocktile(l t/ 
It unlockuser(l t/ 
/t----------------------------------------------------------------------------t/ 

linclude <stdio.h> 
linclude "pstdef.h" 
linclude "pstrec.h" 
linclude •pst•ac.h" 
linclude "pstext.h" 

extern SYSINFO_PTR sysinfo; /t pointer to syste1 table t/ 
unsigned short •ask[] = ( OxOOOO, OxOOOl, Ox0002, Ox0004, Ox0008 }; 
unsigned short un~ask(J = ( Ox7fff, Oxfffe, Oxfffd, Oxfffb, Oxfff7 }; 

/t----------------------------------------------------------------------------l/ 
/t WI ockhdr () " 
/t function to place a write-exclusion lock on a header by setting the t/ 
/t ~ost significant bit of Whlock field to !. If the HSB is already set t/ 
/t by another task, the caller has to try again later. The setting of l/ 
li the HSB is done by the indivisible test-and-set instruction. t/ 

It----------------------------------------------------------------------------t/ 

Wlockhdrl header ) 
HDR_PTR header; /t header pointer t/ 
{ 

while ( tas( &header->Whlock ) 
sleep( 1 l; 

It tasll returns 0 if Wlock is granted, t/ 
/t 1 if Wlock is held by another task t/ 
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lt----------------------------------------------------------------------------·1 
It Wlocknode(l t/ 
/t function to place a write-exclusion lock on a node by setting the *' 
It most significant bit of Wlock field to 1. If the MSB is already set t/ 
/t by another task, the caller has to try again later. The setting of if 
li the MSB is done by indivisible test-and-set instruction. t/ 
It----------------------------------------------------------------------------t/ 

Wlocknode( nodeptr l 
NODE_PTR nodeptr; /t node pointer t/ . 
{ 

if ( nodeptr != NULL l 
{ 

while ( tas( &nodeptr->Nlock l l/t tas(l returns 0 if Wlock is granted, t/ 
sleep( 1 l; /t 1 if Wlock is held by another task t/ 

return( OK !; 

return( NULL l; 

!t----------------------------------------------------------------------------il 
/t Rl ockhdr () t/ 
It function to place a read lock on a header by urking the taskth bit t/ 
/t of RXhlock. t/ 

It----------------------------------------------------------------------------if 

Rlockhdr( header l 
HDR_PTR header; 
{ 

/t header pointer t/ 

while ( tas( &header->RXhlock l 
sleep( 1 l; 

header->RXhlock I= aaskttaskl; 
header->RXhlock &= unaask[Ol; 

It try to enter a critical section if 
It busy -- sleep for 1 sec. t/ 
It aark taskth bit of RXhlock t/ 
!i exit fro1 critical section t/ 
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li-------------------------------------------------------------------------~--·1 
/t Rlocknode(l t/ 
It function to put a read lock on a node by marking the taskth bit of t/ 
/t RXlock field. t/ 

It----------------------------------------------------------------------------t/ 

Rlocknode( nodeptr l 
NODE_PTR nodeptr; 
{ 

/t node pointer i/ 

while ( tas( &nodeptr->RXlock l 
sleep( 1 l; 

nodeptr->RXlock I= •ask[taskl; 
nodeptr->RXlock &= unaaskCOl; 

It try to enter a critical section t/ 
/t busy -- sleep for 1 sec. t/ 
/t 1ark taskth bit of RXlock t/ 
/t exit froa critical section t/ 

/i----------------------------------------------------------------------------t/ 
/t Xlockhdr(l t/ 
/i function to place an exclusive lock on a header by setting the KSB t/ 
/t of RXhlock to 1. il 

It----------------------------------------------------------------------------if 

Xlockhdr( header, ofp l 
HDR_PTR header; 
{ 

int done = NO; 

while ( !dane l 
( 

while ( tas( &header·>RXhlock l 
sleep(1l; 

if ( header->RXhlock == XLOCK l 
dane = YES; 

else 
header->RXhlock &= un~ask[Ol; 

/t try to enter a critical section t/ 
It busy -- Nait far 1 sec. t/ 

/i succeed ! i/ 

/i fail -- try again ! t/ 
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lt----------------------------------------------------------------------------·1 
It Xlocknode(l t/ 
It iunction to place an eMclusive lock on a node by setting the most t/ 
It significant bit of RXlock to 1. t/ 
It----------------------------------------------------------------------------t/ 

Xlocknode( nodeptr ) 
NODE_PTR nodeptr; 
{ 

/t node pointer t/ 

int done = NO; 

11hile ( !done l 
{ 

while ( tas( &nodeptr->RXlock l 
sleep (1); 

ii ( nodeptr->RXlock == XLOCK l 
done = YES; 

else 
nodeptr->RXlock &= unmasktOJ; 

li try to entry a critical section t/ 
/t busy -- wait for 1 sec. tl 

It succeed ! t/ 

It fail -- try again ! t/ 

lt----------------------------------------------------------------------------·1 
It lockti11eO t/ 
/t function to place ar\ exclusive lock on the current_tiu field of t/ 
/t syste1 inforaation block. t/ 

li----------------------------------------------------------------------------t/ 

locktileO 
{ 

while ( tas( lsysinfo->tiaelock l 
sleep( 1 l; 

/t----------------------------------------------------------------------------tl 
ll lockuser () t/ 
It function to place an exclusive lock on the user field of system t/ 
/t information block. t/ 

li----------------------------------------------------------------------------t! 

lockuser () 
( 

while ( tas( lsysinfo->userlock l 
sleep ( 1 l; 
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It----------------------------------------------------------------------------t/ 
ll unWlockx () ll 
I* function to release a number of write-exclusion locks. t/ 
ft----------------------------------------------------------------------------ll 

unWlockxl shptr, cptr, sptr, gptr ) 
NODE_PTR shptr, cptr, sptr, gptr; It node pointers t/ 
{ 

unWlacknade( shptr l; 
unWlacknode( cptr l; 
unNlocknode( sptr l; 
unWlacknade( gptr l; 
return( OK l; 

1·----------------------------------------------------------------------------il 
/t unWlockall() t/ 
ll function to release write-exclusion locks on nodes in the stack and, t/ 
ll if necessary, on the current header. t/ 

It----------------------------------------------------------------------------t/ 

unWlockall( stack, top, battoa l 
NODE_PTR stackCl; /t stack containing access path il 
int tap, bottaa~; It indexes to the stack t/ 
{ 

int i; 

if ( flag l 
( 

unWlockhdr( header l; 
flag = o; 

for ( i=bottom; i <= top; i++ l 
unWlocknode( stackCil l; 
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/t----------------------------------------------------------------------------il 
li unWlockhdr(l if 
li function to release the write-exclusion lock on a header. ll 

li----------------------------------------------------------------------------·1 
unWlockhdr( header l 
HDR_PTR header; li header pointer t/ 
{ 

if ( header != NULL l 
header·>Whlock = UNLOCK; 

It----------------------------------------------------------------------------t/ 
ll unWlocknode(l t/ 
/t function to release the write-exclusion lock on a node. t/ 

Ii----------------------------------------------------------------------------i! 

unWlocknode( nodeptr l 
NODE_PTR nodeptrJ ft node pointer t/ 
{ 

if ( nodeptr != NULL l 
nodeptr->Wlock = UNLOCK; 

/t----------------------------------------------------------------------------il 
li unRlockhdr(l l/ 
/t function to release a read lock on a header by un1arking the taskth il 
li bit of RXhlock field. t/ 

li----------------------------------------------------------------------------t! 

unRlockhdr( header l 
HDR_PTR header; /t header pointer t/ 
( 

if ( header != NULL l 
{ 

Mhile ( tas( &header->RXhlock l 
sleep( 1 l; 

header->RXhlock ~= unaaskttaskl; 
header->RXhlock &= unaasktOl; 

li try to enter a critical section t/ 
/t busy -- sleep for 1 sec. t/ 
li un~ark taskth bit of RXhlock if 
/t exit froa critical section if 
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li----------------------------------------------------------------------------t/ 
li unRlocknodeO ll 
li function to release a read lock on a node by unmarking the taskth bit t/ 
li of RX!ock field. if 
li----------------------------------------------------------------------------11 

unRlocknodel nodeptr l 
NODE_PTR nodeptr; /t node pointer t/ 
{ 

if ( nodeptr != NULL l 
{ 

Khile ( tas( &nodeptr->RXlock l 
sleep ( 1 l; 

nodeptr->RXlock &= unmaskCtaskl; 
nodeptr->RXlock &= unmask[Ol; 

li try to enter a critical section l/ 
/t busy -- sleep for 1 sec. t/ 
li reset taskth bit of RXlock l/ 
/t exit fro• critical section t/ 

li----------------------------------------------------------------------------11 
It unXlackhdrll t/ 
li function to release an exclusive lock an a header by resetting the il 
It MSB of RXhlack. t/ 

/t----------------------------------------------------------------------------1/ 

unXlackhdrl header l 
HDR.PTR header; /t header pointer t/ 
( 

if ( header != NULL l 
header->RXhlock = UNLOCK; 

/t----------------------------------------------------------------------------t/ 
/i unXlocknodell il 
/t function to release an eMclusive lock on a node by resetting the HSB l/ 
li of RXlock. t/ 

li----------------------------------------------------------------------------11 

unXlacknode( nodeptr l 
NODE_PTR nadeptr; li node pointer i/ 
{ 

if ( nodeptr != NULL l 
nodeptr->RXlock = UNLOCK; 
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/t----------------------------------------------------------------------------t/ 
/t unlocktime() tl 
It function to release an exclusive lock on the current_tiae field of ll 
Ia syste• inforaation block. t/ 

li----------------------------------------------------------------------------t! 

unlocktime() 
{ 

sysinfo->tiaelock = UNLOCK; 

It----------------------------------------------------------------------------t/ 
It unlockuser() t/ 
/t function to release an exclusive lock on the user field of system tl 
/t inforaation block. t/ 

/t----------------------------------------------------------------------------t/ 

unlockuser() 
{ 

sysinfo->userlock = UNLOCK; 
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1·~~--------------------------------------------------------------------------il 
ll nextfun.c - module contains next pointer functions: leftson() l/ 
ll rightsonO t/ 
ll nextson() t/ 
ll sibling!l tl 

ll----------------------------------------------------------------------------·1 

*include "pstdef.h" 
tinclude "pstrec.h" 
*include "pstmac.h" 

lt----------------------------------------------------------------------------·1 
ll leftson!l · ll 
/t function to find a left child pointer Nith the biggest time stamp t/ 
It that is less than or equal to search tiee. il 

/l----------------------------------------------------------------------------it 

NODE_PTR leftson( nodeptr, sti~e I 
NODE_PTR nodeptr; li node pointer if 
TIHE_TYPE sti•e; ft·search tile t/ 
{ 

if ( AUX_USED! nodeptr I && nodeptr->aux_tiae <= stime && 
!nodeptr->aux_ptrl->key <= nodeptr->key I 
return( nodeptr->aux_ptr I; It return aux. pointer t/ 

return( nodeptr·>left l; 

1·-------------------------~--------------------------------------------------il 
It rightson!l *' 
It function to find a right child pointer Nith the biggest time stamp l/ 
ll that is less than or equal to search time. if 

l·----------------------------------------------------------------------------·1 

NODE_PTR rightson! nodeptr, stile I 
NODE_PTR nodeptr; /t node pointer l/ 
TIME_TYPE stime; /l search tile l/ 
< 

if ( AUX_USED! nodeptr l && nodeptr->aux_time <= stime && 
(nodeptr->aux_ptrl->key > nodeptr->key ) 
return! nodeptr->aux_ptr l; /t return aux. pointer l/ 

return! nodeptr->right l; 
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/t----------------------------------------------------------------------------il 
li nextsonll if 
/t function to find a next pointer on the access path. t/ 

!t----------------------------------------------------------------------------il 

NODE_PTR nextson( pptr, skey, stime l 
NODE_PTR pptr; It node pointer t/ 
TIME_TYPE skey, stime; /t search key and ti~e t/ 
( 

NODE_PTR leftsonll, rightsonll; 

if ( skey <= pptr->key l 
return! leftson( pptr, sti11e l l; 

else 
return( rightson( pptr, stime l l; 

li----------------------------------------------------------------------------&1 
/t sibling() t/ 
/t function to find the sibling of a node. if 
It----------------------------------------------------------------------------t/ 

NODE_PTR sibling( pptr, ptr, stime ) 
NODE_PTR pptr, ptr; /t ptr is a child pointer of pptr t/ 
TIME_TVPE stiae; /t search tile t/ 
( 

NODE_PTR leftsonll, rightsonll; 

if ( ptr->key <= pptr->key l 
return! rightson( pptr, sti11e l l; 

else 
return ( 1 eft son ( pptr, stime l l; 
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Ii----------------------------------------------------------------------------i! 
li nodefun.c - aodule contains node processing functions: creatshft() l/ 
I i getnode () *' 
ll freenode () i I 

/i----------------------------------------------------------------------------ll 

tinclude <stdio.h> 
linclude <sys/types.h> 
tinclude <sys/ipc.h> 
linclude <sys/sha.h> 
tinclude •pstdef.h" 
linclude "pstrec.h" 

int 
NODE_PTR 

sidl; li shared meaory id ll 
sh1addr; /l pointer to shared 1e1ary -- don't modify at 

Ii----------------------------------------------------------------------------i! 
li creatshm!l if 
li function to create and initialize a shared 1e1ary with MAX_NODE numbert/ 
It of nodes. This function is called only once at the beginning of the l/ 
/l driver pragraa, if 

1&----------------------------------------------------------------------------il 

creatshl! () 
( 

extern char tsh1at!l; /t fun. to attach a shared 11eao. to its vir. memo. if 
NODE_PTR saddr; li pointer to share 1e1ory il 
int i. 

' 
li create a shared 1e11ory with "KAX_NODE" nuaber of nodes i/ 
sidl = sh11get! SHMKEYI, ( MAX_NODE+l l l sizeof!NODE_TYPEl, 0777liPC_CREAT l; 
if ( sidl != ERROR l 
{ 

saddr = shftaddr = ! NODE_PTR sh11at! sidl, o, 0 l; 
far( i=O; i < MAX_NODE+I; i++ l /t init. nodes &/ 
{ 

saddr->key = NULLKEY; 
saddr->color = FREE; 
saddr->RXlock = saddr->Wlock = UNLOCK; 
saddr->tile = saddr->aux_tille = NULLTIKE; 
saddr->left = saddr->right = saddr->aux_ptr = NULL; 
saddr++; 

printf!"\nA Shared Memory'with Xd nodes has been created :\n",MAX_NODEl; 
printf(•sidl = Xd\tshaaddr = Xx\tlastaddr = Xx\n",sidl,shladdr,--saddrl; 
shlladdr->key = 1; /l NOTE : first "key" field contains the offset to t/ 
return( OK l; /t the next free node t/ 

printf("\nCannot create shared me11ory !\n"l; 
return( FAIL l; 
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/i----------------------------------------------------------------------------ll 
It getnodell tl 
li function to allocate a new node from the shared memory. t/ 

/t----------------------------------------------------------------------------tl 

NODE_PTR getnodell 
( 

NODE_PTR naddr; /i node pointer t/ 
i nt i, offset; 

offset = shmaddr->key; It get the offset to the next free node t/ 
for I i=O; i < MAX_NODE; i++ l 
( 

naddr = shmaddr + offset++; 
if I offset > MAX_NODE+t l 

offset = 1; 
if ( tas( &naddr->color l == 0 l 
{ 

Wlocknode( sh1addr l; 
shtaddr->key = offset; 
unWlocknode( sh1addr l; 
return( naddr I; 

return< FAIL l; 

ll check if this node is free ? II 
/i yes l/ 
It enter critical section t/ 
It update offset to next free node 1/ 
li exit from critical section t/ 
li return new node pointer *' 

li----------------------------------------------------------------------------·1 
li freenode () ll 
li function to reclaita a deleted node and put it on the free 1 ist. t/ 

Il----------------------------------------------------------------------------l! 

freenodel nodeptr l 
NODE_PTR nodeptr; It pointer to a deleted node tl 
( 

if ( nodeptr != NULL && nodeptr != shaaddr l 
( 

nodeptr->color = FREE; It color also indicates the usage of a node tl 
nodeptr->key = NULLKEY; 
nodeptr->Wlock = nodeptr->RXlock = UNLOCK; 
nodeptr->time = nodeptr->aux_time = NULLTIME; 
nodeptr->left = nodeptr->right = nodeptr->aux_ptr = NULL; 
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Ii----------------------------------------------------------------------------i! 
li rctatefun.c - aodule contains nodes rotating functions: pre_rctaticn(l t/ 
/1 single_L() t/ 
/t single_R() if 
It double_L() t/ 
/I dcuble_R(l 1/ 
It update_pptr(J t/ 

li----------------------------------------------------------------------------t/ 

linclude <stdic.h> 
linclude •pstdef.h" 
ttncludt "pltrec.h" 
linclude "pstaac.h" 
iinclude "pstext.h" 

!t----------------------------------------------------------------------------il 
/t pre_rctaticn(l t/ 
/t function to prepare nodes fer a single or double rotation by first il 
/t making sure that certain nodes have enough free slots for the new t/ 
/t pointers to be added to thea. Next, convert tNo or three write- t/ 
/t exclusive locks to exclusive locks depending on the type of rotation. t/ 

Ii----------------------------------------------------------------------------i! 

pre_rotation( cptr, sptr, gptr, stack1 top, bottom l 
NODE_PTR tcptr, tsptr, igptr, /t pointers to node pointer if 

stack[J; li stack containing an iccess path t/ 
int ttop, tbottoa; /I indexes to the stack if 
( 

NODE_PTR g, s, c, pptr, 
copynode!l; 

g = s = NULL; 
c = tcptr; 
pptr = stack[ttapl; 

/t node pointers t/ 
/t fun. to create a new node t/ 

if ( lgptr != NULL && (tgptrl->tiae != ttiae l /i double rotation t/ 
{ /1 need 2 free slots in the promoted node -- gptr if 

tgptr = g = copyncde( tgptr, NULL l; 
if ( ( (lsptrl-)aux_ptr ==NULL J II li has a free slot t/ 

( (tsptrl->aux_time == ttime && (tsptrl->aux_ptr->key == (tgptrl->keyll 
update_parent! isptr, tgptr l; 

else 
tsptr = s = copynode( tsptr, tgptr l; It create a new node t/ 

else if ( tgptr == NULL && (lsptrl->time != ttime l /t single rotation t/ 
tsptr = s = copynode( lsptr, tgptr l; 

if ( ( (tcptrl->aux_ptr == NULL l I I 
( !tcptrl->aux_time == ttime &L (icptrl->aux_ptr->key == (lsptrl->key l 

if ( s != NULL l 
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update_parent( tcptr, tsptr l; 
if ( ! ttop > -1 ~~ AUX_USED! pptr l l ~~ 

( pptr->aux_time < ttime I I KEYDIF( pptr->aux_ptr,c->keyl l J 

aorecopy( c, stack, top, bette; l; /t copy 1 or more nodes t/ 

else 
{ 

tcptr = c = copynode( icptr, isptr l; 
•orecopy( c, stack, top, bottoa l; 

if ( ttop > -1 l /t convert Wlocks to Xlocks t/ 
Xlocknode( stack[ttopl l; 

else 
Xlockhdr( header l; 

Xlocknode( tcptr l; 
if ( tgptr != NULL l 

Xlocknode( tsptr l; 

li single rotation needs Xlocks on pptr and cptr l/ 
It double rotation needs additional Xlock on sptr t/ 

Ii----------------------------------------------------------------------------i! 
It single_L(J t/ 
li function to perform a single left rotation. if 

ta----------------------------------------------------------------------------•r 

single_L( cptr, sptr, stack, top, botto1 l 
NODE_PTR cptr, sptr, /l node pointers t/ 

stack[l; li stack containing an access path t/ 
int ttop, tbottoa; /t inde~es to the stack l/ 
{ 

if ( cptr->time < ttime l '* change 2 pointers t/ 
update_aux( cptr, sptr->leftl; 

else 
cptr->right = sptr->left; 

sptr->left = cptr; 

cptr->color = RED; 
sptr->color = BLACK; 

ll change 2 colors l/ 

It link promoted node to its new parent if 
update_pptr( sptr, stack, top, bottoe l; 
unXlocknode( cptr l; li release Xlock t/ 
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li----------------------------------------------------------------------------11 
/t single_R(l t/ 
Ji function to perform a single right rotation. t/ 

li----------------------------------------------------------------------------·1 

single_RI cptr, sptr, stack, top, bottom l 
NODE_PTR cptr, sptr, /t node pointers t/ 

stackCl; li stack containing an access path t/ 
int ttop, tbotto•; li indexes to the stack il 
{ 

if ( cptr->time < ttime l /i update 2 pointers il 
update_aux( cptr, sptr->right l; 

else 
cptr->left = sptr->right; 

sptr->right = cptr; 

cptr->color = RED; 
sptr->color = BLACK; 

li change colors il 

li link the pro1oted node to its new parent il 
update_pptr( sptr, stack, top, bottoa l; 
unXlocknode( cptr l; /t release Xlock t/ 
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Ji----------------------------------------------------------------------------·1 
li double_L(l l/ 
li function to perform a double left rotation. if 

Ii----------------------------------------------------------------------------i! 

double_L( cptr, sptr, gptr, stack, top, bottoa l 
NODE_PTR cptr, sptr, gptr, /t node pointers l/ 

stacktl; /l stack containing an access path t/ 
int ttop, lbotto•; /i indexes to the stack l/ 
( 

if ( cptr->time < ttime l /t change 4 pointers it 
update_auxl cptr, gptr->left l; 

else 
cptr->right = gptr->left; 

if I sptr->time < ttime l 
update_aux( sptr, gptr->right l; 

else 
sptr->left = gptr->right; 

gptr->left = cptr; 
gptr->right = sptr; 

gptr->color = BLACK; 
cptr->color = RED; 

li change 2 colors t/ 

li link the proaoted node to its new parent t/ 
update_pptrl gptr, stack, top, botto1 l; 
unXlocknode( cptr l; /i release Xlocks il 
unXlocknode( sptr l; 
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1$----------------------------------------------------------------------------ll 
/l doubla.Ril l/ 
li function to perform a double right rotation. ll 

/t----------------------------------------------------------------------------l/ 

double_RI cptr, sptr, gptr, stack, top, bottoa l 
NODE_PTR cptr, sptr, gptr, It node pointers l/ 

stackCl; I* stack containing an access path t/ 
int ttop, lbattaa; It indexes to the stack l/ 
{ 

if I cptr->time < ttime l /t change 4 painters t/ 
update_auxl cptr, gptr->right l; 

else 
cptr->left = gptr->right; 

if I sptr->tite < ttite l 
update_au~( sptr, gptr->left l; 

else 
sptr->right = gptr->left; 

gptr->left = sptr; 
gptr->right = cptr; 

gptr->calor = BLACK; 
cptr->calar = RED; 

/i change colors t/ 

It link the promoted node to its ne• parent t/ 
update_pptrl gptr, stack, tap, battat l; 
unXlacknadel cptr l; /i release Xlacks il 
unXlacknodel sptr l; 
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lt----------------------------------------------------------------------------$1 
It update_pptr(l t/ 
/t function to link the promoted node to its new parent. i/ 

fi----------------------------------------------------------------------------ll 

update_pptr( ptr, stack, top, bottom l 
NODE_PTR ptr, stackCl; li promoted node and stack containing an access path t/ 
int ttop, tbottoe; /t indexes to the stack t/ 
{ 

NODE_PTR pptr; 

if ( ttop < lbotto1 ) 
{ 

header->root = ptr; 

/t the new parent of the promoted node t/ 

unXlockhdr( header l; It release Xlock t/ 

else 
{ 

pptr = stack[ttopl; /l pptr is on top of the stack t/ 
if ( pptr->ti~e < ttime l/t pptr is created at pr~vious time t/ 

update_aux( pptr, ptr l; 
else /t pptr is created at current time t/ 
( 

if ( ptr->key > pptr->key l 
pptr->right = ptr; 

else 
pptr->left = ptr; 

unXlocknode( pptr I; /t release Xlock t/ 
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li----------------------------------------------------------------------------t/ 
/l stackfun.c - aodule contains stack processing functions: initstack() t/ '* push() l/ 
ll pop() l/ 

Ii----------------------------------------------------------------------------i/ 

linclude <stdio.h> 
tinclude "pstdef.h" 
linclude 'pstrec.h" 

/l----------------------------------------------------------------------------t/ 
/l initstack() t/ 
/t function to initialize a stack. t/ 

li----------------------------------------------------------------------------·1 

initstack( stack, size l 
NODE_PTR stackCl; li a stack *I 
int size; /i size of the stack t/ 
( 

int i; 
for ( i=O; i < size; i++l 

stack [ i l = NULL; 

li----------------------------------------------------------------------------t/ 
/l push() t/ 
/1 function to push a node pointer onto a given stack. l/ 

/l----------------------------------------------------------------------------t/ 

push( stack, top, bottom, nodeptr, ofp l 
NODE_PTR stackCl, nodeptr; /l stack and node pointer l/ 
int itop, ibotto•; /l pointers to the top and botto• indexes l/ 
FILE tofp; /l output file ll 
{ 

if ( atop > STACK_5IZE-2 l /i full ll 
err_handler( STK_OVFL, stack, ttop, ibottoa, ofp l; /t PBM STOP ! t/ 

else 
{ 

stackCltop += !l = nodeptr; 
return ( itop ) ; 
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Ii----------------------------------------------------------------------------i! 
ll pop(l il 
/i function to renove a node pointer from the top of a given stack. t/ 

Ii----------------------------------------------------------------------------i/ 

NODE_PTR pop! stack, top, bottom l 
NODE_PTR stack[l; /t stack containg the access path il 
int ttop, tbottoa; /t pointers to top •bottom indexes t/ 
( 

int i = ttop; 

if I ttop < ibottom l 
return(NULLl; 

itop -= 1; 
return(stack[iJl; 

/t empty il 
li return a NULL ptr t/ 
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1$----------------------------~-----------------------------------------------il 
/t sysfun.c - ~odule contains tile manipulation functions: creatsysinfo(l i/ 
1r settime!l *' 
Ia gettiaeO *I 
It add user 0 t/ '* subuser 0 *I 
/i----------------------------------------------------------------------------t/ 

linclude <stdio.h> 
iinclude <sys/types.h> 
linclude <sys/ipc.h> 
iinclude <sys/sha.h> 
tinclude •pstdef.h 11 

iinclude "pstrec.h" 

extern unsigned short aaskCJ; 
extern unsigned short un1askCJ; 
long time!l; /t a UNIX syste• call to get the system time t/ 
SYSINFO_PTR sysinfo; /i pointer to syste1 table t/ 
int sid3; li shared ae1ory key II 

11----------------------------------------------------------------------------il 
/t creatsysinfo() J/ 
li function to create a systemwide table containing systea tiaes. i/ 

/i----------------------------------------------------------------------------t/ 

creatsysinfo() 
{ 

extern char tshaat!l; 

/t create a-systeawide table that contains systea tiaes t/ 
sid3 = shmget( SHHKEY3, sizeof! SYSINFO_PTR I, 0777 I IPC_CREAT I; 
if ( sid3 != ERROR I 
{ 

sysinfo = ( SYSINFO_PTR l shmat! sid3, O, 0 I; 
sysinfo->tiaelock = sysinfo->userlock = UNLOCK; 
sysinfo->current_tiJe = -1; 
sysinfo->base_tiae = time( 0 I >> INTERVAL; 
sysinfo->user = 0; 
printf("\nA Sys. Info. Block containing systea tiaes has been created\n"l; 
printf("Current_tiae = 0\t Base_time = Xd\n",sysinfo->base_timel; 
return( OK I; 

printf("\nError : Cannot create Sys. Info. Block !\n"l; 
return( FAIL I; 
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li----------------------------------------------------------------------------·1 
I i setti 11e () *' 
/i function to set syste• times, namely base and current times. i/ 

li----------------------------------------------------------------------------·1 
settise( t l 
TIHE. TYPE t; 

sysinfo->current_ti•e = t; 
sysinfo->base_tiae = time! 0 l >> INTERVAL; 

/i----------------------------------------------------------------------------$1 
li gettile() _ if 
/i function to get the current tiDe stamp. i/ 

li----------------------------------------------------------------------------·1 

TIHE_TYPE gettime() 
( 

t = tiae( 0 l >> INTERVAL; 
return( I TIHE_TYPE l I t - sysinfo·)base_ti•e l l; 

li----------------------------------------------------------------------------·1 
/i adduserll i/ 
/i function to add a task to the syste1 in the current tiae staap. i/ 

li----------------------------------------------------------------------------·1 

adduser( task l 
unsigned short task; 
{ 

lockuser 0; 
sysinfo->user i= liskttAskl; 
unlockuser (); 
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1·----------------------------------------------------------------------------tl 
/t subuser(l t/ 
IS ~unction to subtract a task from the system in the current time stamp.i/ 
/t----------------------------------------------------------------------------t/ 

subuser( task l 
unsigned short task; 
{ 

lockuserll; 
sysinfo->user ~= unlask[taskl; 
unlockuserll; 
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·-----------------------------------------------------------------------------· 
i tas() t 
i function to provide an interface for high-level routines to access i 
i indivisible test_and_set instruction. Test_and_set is a special i 
t hardware instruction that can be used to synchronize multiple tasks t 
i in a concurrent environment. t 
·-----------------------------------------------------------------------------· 
* .sp equ 12 
• fp equ 13 
.ap equ 14 

i11pur 
pure 
align 
entry 

_ tas equ 
.FL1 equ 
.AL1 equ 
.RLl equ 
.FP1 equ 
.AP1 equ 
.RPl equ 
.F1 equ 
.DAP1 equ 

• 
i 

* 

lr 
ai 

ts 

btl 

1 i 
br 

L13 equ 

* li 
br 

L12 equ 
br 
impur 
end 

4 
_tas 

• 0 
00000000 
40 
0 
.FP1+.FL1 
.APl+.AL1 
• FL1+.AL1+. RL1 
0 
• sp,. fp 
.fp,.F1 

2,.DAP1+4-4(.apl 
0(2) 

L13 

o,o 
15 

0,1 
15 
t 
15 

i Note : R2, R3 are index Regs. 
I R2 = addr of lst arg 
i testandset MSB of the halfword arg 

* L == ? (Is it a locked node ?I 
t 0 -- it is not a locked node. Caller 
i succeeds in locking the node. 
t RO = 0 (return value stores in ROI 
i return to caller. 

i 1 -- it is a locked node. Caller 
i fails to lock the node. 
* RO = 1 (return value stores in ROl 
t return to caller. 
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