
ENHANCEMENTS TO THE TIMING SIMULATOR

OF THE ENHANCED MODULAR

SIGNAL PROCESSOR

By

STEVEN CRAIG NELSON ..
Bachelor of Science in Arts and Sciences

Oklahoma State University

Stillwater, Oklahoma

1983

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1988

.~ '

Oklahoma State Univ. Library

ENHANCEMENTS TO THE TIMING SIMULATOR

OF THE ENHANCED MODULAR

SIGNAL PROCESSOR

Thesis Approved:

Thesis Advisor

ii

131835'7

ACKNOWLEDGMENTS

I wish to express my sincere appreciation and gratitude

to Dr. G. E. Hedrick and the Department of Computing and In­

formation Sciences for the many kindnesses and opportunities

extended me during my graduate study at Oklahoma state Uni­

versity. These experiences have presented many unexpected

opportunities.

I would also like to thank Dr. G. E. Hedrick, Dr. J. P.

Chandler, and Dr. K. M. George for their support and

flexibility in serving on my thesis committee.

Special thanks go to Mark Vasoll and Gregg Wonderly for

their comraderie and enthusiasm throughout our time at

Oklahoma State.

I owe a great debt to the Brothers of the Alpha Chapter

of Kappa Ka~pa Psi, the staff of the National Office of

Kappa Kappa Psi/Tau Beta Sigma, the OSU Bands, and in par­

ticular, Dr. Joseph P. Missal and Mr. William Ballenger of

the Music Department for their incredible encouragement and

trust. Without the artistry of music as a balancing force

in my life, I would never have completed this degree.

In the end, I must thank my family, especially my par­

ents for their support and many sacrifices, in spite of the

tragedies.

iii

TABLE OF CONTENTS

Chapter Page

I.

II.

III.

INTRODUCTION

Realtime Signal Processing. .
Naval Signal Processors .
Dataflow • • • • • • •
Dataflow Architectures
Dataflow as a Technique for

Signal Processing • . • • .
Signal Processing Dataflow

Architectures • . • • . • .

THE ENHANCED MODULAR SIGNAL PROCESSOR. .

ECOS ••
EMSP.

THE EMSP TIMING SIMULATOR. •

1

1
2
3
5

11

11

17

17
21

27

Node Execution cycle. • • 29
Input 30
Output ••••••• -. • • • • • . 31
Implementation of Functional Elements 32

IV. ENHANCEMENTS TO THE TIMING SIMULATOR
OF THE ENHANCED MODULAR SIGNAL PROCESSOR . 35

Simulator. Input Procedures. • • • • • . • 35
Configuration Feasibility Determination • 40
Dynamic Graph State Output Procedure. 42

v. Conclusions •••• 48

Future Work . 49

A SELECTED BIBLIOGRAPHY • 50

APPENDICES ••• 53

APPENDIX A - FIGURES 54

APPENDIX B - SAMPLE OUTPUT 64

iv

Figure

1.

2 0

3.

4.

5.

6.

LIST OF FIGURES

Simple Dataflow Graph

Fundamental Functions of Dataflow
Processing Elements • . • • . • .

Basic Dataflow Machine Structures

Diagram of the DFSP Architecture. •

Diagram of the DDSP Architecture. •

ECOS Sample Graph •

7. ECOS Node Diagram

8. Diagram of the EMSP Architecture.

9. Diagram of EMSP Node Execution Cycle. .

v

Page

55

56

57

58

59

60

61

62

63

AGV

AIS

AP

AQ

ASP

CBUS

CPP

CQ

DOC

DDMl

DDP

DDPL

DDSP

DFSP

DTN

ECOS

EMSP

FFT

GIP

GM

GV

IOP

NOMENCLATURE

Accept Graph Variable Instruction

Accept Instruction stream Instruction

Arithmetic Processor

Accept Queue Instruction

Advanced Signal Processor

Control BUs

Command Program Processor

Consume Queue Instruction

Data Driven Communication

Data-Driven Machine #1

Distributed Data Processor

Data Driven P~ogram Language

Data Driven Signal Processor

Data Flow Signal Processor

Data Transfer Network

EMSP Common Operating System

Enhanced Modular Signal Processor

Fast Fourier Transform

Graph Instantiation Parameter

Global Memory

Graph Variable

Input Output Processor

vi

,
•

~u

NEP

NOC

PIP

QOC

QOT

QUC

QUT

RFIS

RGV

RQ

SIS

WGV

WQ

langage a assignation unique

Node Execution Parameter

Number of Conditions

Primitive Interface Procedure

Queue Over Capacity Instruction

Queue over Threshold Instrtiction

Queue Under Capacity Instruction

Queue Under Threshold Instruction

Request For Instruction Stream Instruction

Request Graph Variable Instruction

Request Queue Instruction

Send Instruction Stream

Write Graph Variable Instruction

Write Queue Instruction

vii

CHAPTER I

INTRODUCTION

The purpose of this thesis is to design necessary en­

hancements to the Enhanced Modular Signal Processor Timing

Simulator originally created by Marilyn Aiken [1].

This chapter is a review of the literature-on the ma­

jor topics concerning real-time signal processors, dataflow,

and other signal processing architectures. The following

chapters deal in detail with the EMSP methodology and archi­

tecture, the EMSP Timing Simulator and the enhancements made

to it.

Realtime Signal Processing

Signal processing, in its broadest terms, is an activ­

ity of spectrum analysis with a wide variety of applications

from the low-frequency spectrum of seismology through the

acoustic spectrum of sonar, speech and music, to the video

spectrum of radar systems.

In the period leading up to and following World War II,

analog signal processing was at the forefront of the ad­

vancement. This was based not only on the level of technol­

ogy, but also on the economy of the application.

1

The formal theory of the digital signal processing of

today did not emerge until the mid-1960's. The prospect of

complete digital signal processing systems began to be real­

ized with the advent of integrated circuit technology. The

first major impetus to the science began with the release of

the Cooley-Tukey paper in 1965 on a new method of computing

the discrete Fourier transform, the basis of many signal

processing filtering techniques. The value of this new

method lies in the reduction of the computing time of the

transform by one to two orders of magnitude, from O(n2) to

O((n/2) 2).

The attraction of digital signal processing over analog

signal processing lies in the capability of digital systems

to achieve a guaranteed accuracy and essentially perfect re­

producibility [18].

Naval Signal Processors

The United States Navy began development of its

first-generation signal processing system in the 1960's.

The system was to be designed using common equipment that

could be configured for a variety of applications aboard

surface ships, submarines, helicopters and airplanes. The

Advanced Signal Processor (ASP) successfully fulfilled the

Navy's signal processing needs with one software development

system and a small number of hardware modules that were con­

figured for each application.

2

By the late 1970's, the tremendous increase in technol­

ogy created a serious increase in the signal processing

needs of the Navy. A new second-generation signal process­

ing system was necessary. This new system, the Enhanced

Modular Signal Processor (EMSP), was designed to increase

the processing density, and to correct one of the main draw­

backs of the ASP, namely, the inability to process many par­

allel channels of data at the same time. These needs led to

the development of the EMSP Common Operational support

(ECOS) dataflow methodology and its implementation on the

EMSP [4].

Dataflow

Most attempts to define 11dataflow11 , begin by describing

what it is not; namely not "von Neumann." Introduced in

1946, by John von Neumann, this concept is the familiar se­

rial method of organization that dominates computer lan­

guages and architectures to this day [12].

Characterized by a sequential one word-at-a-time in­

struction stream and an incremental instruction counter,

this organization has some drawbacks that other method­

ologies have sought to overcome. A principal area of inter­

est is in increasing the utilization of resources, thereby

increasing the system throughput. Many·times, in a von

Neumann machine, resources not needed for the currently ex­

ecuting instruction are idle.

3

One way to reduce the amount of idleness in the various

component parts of a system is to exploit the inherent par­

allelism of the an algorithm. The concept of parallelism

relies on the functionality and asynchronization of the op­

erations to be performed by the algorithm. An operation

that is functional is one, that when properly executed, does

not affect the operation of another directly. A simple ex­

ample would be the relationship between the addition and

subtraction operations. Both operations execute in a pre­

dictable manner, regardless of the operation of the other.

In other words, an operation that exhibits functionality is

one that, given the same data, will always yield the same

results whenever it is. called to be executed. Its position

in the calling sequence of an algorithm does not affect its

outcome. The asynchronization of an operation concerns the

idea that a given operation is not time depende~t: That is,

other than the normal logic flow of the algorithm, a given

operation may be performed at any time during the execution

of the algorithm, and will not be affected by the execution

of any other operation. (22]

Dataflow is a conceptual computer organization that

inherently exploits parallelism. Its basic tenet is that an

instruction should execute as soon as all of the necessary

operands are available. This type of organization has also

been described as "data-driven"· and is intended to allow the

fastest throughput. (16]

4

The easiest visualization of dataflow is through the

use of a directed graph. Each node of the graph represents

an operation to be performed. In the simplest case, a node

may be a low level operation, such as addition or subtrac­

tion. At a higher level, a node may represent a complex

function, such as a Fast Fourier Transform (FFT). The arcs

connecting the nodes represent the paths by which the data

"flows" from one node to the next. [20] Figure 1 (Appendix

A) is an example of a simple dataflow graph.

Dataflow Architectures

The many dataflow architectures proposed and imple­

mented to date, while widely varying, can be viewed as pro­

viding three basic elements. Each machine must provide a

way of executing the nodal operations, provide a way of

storing a description of the ~raph implementation, and pro­

vide a mechanism for collecting and matchi'ng the data "to­

kens" as they are made available.

A General Model

A general model of a dataflow machine, such as that

given by Veen [25], begins with descriptions of the process­

ing element and the activity template. The nodes of the da­

taflow program, in some machines, are implemented in the

form of a data structure called a template. Each template

contains a description of the node and information or

5

storage of the input tokens. The node description may ei-

ther be an operand code, in the low-level sense, or a short-

hand name for an instruction stream to be executed, in a

higher level sense. A list of destination addresses (output

arcs) would also be included.

There are three fundam~ntal functions that take place

in the processing elements (Figure 2, Appendix A). The

first is the enabling function. This function sequentially

accepts the tokens as they are made available and places

them into storage. This function also determines whether

the node for which a token is destined has received the data

required for it to execute. If a node is determined to be

ready to fire, the enabling unit creates an executable

packet containing the input data, information on the op­

eration to be executed (either the operand or the instruc-

tion stream), and the output destinations. This pack~t is .
then presented to the functional unit of the processing el-

.ement.

The functional unit executes the packet and computes

the output values. These output values are combined with

the destination addresses into new tokens that are sent back

to the enabling unit in what completes a circular pipeline.

This describes the execution cycle of most dataflow

architectures in a most general way. Many other factors in-

fluence just how a particular design is implemented. Some

of the important factors that need consideration include the

6

number of input arcs that are allowed into a node, the num­

ber of tokens that are necessary on an arc, how reentrant

code may be implemented, and how non-trivial data structures

are maintained.

A simple but important variation of this model would

include those machines that use tagged (or "colored") tokens

in allowing reentrant node execution. In such machines,

nodes are shared between different instances of a graph.

Tokens with matching tags are considered part of the same

node execution. This makes it impractical to store the to­

kens in the nodes themselves, due to finite storage for the

tokens. A solution that is often employed (Figure 2, Appen­

dix A), splits the enabling unit into two stages: a matching

function, which checks the destined node to determine

whether it is enabled; and a fetching function, which

matches the tokens and the node description into an execut­

able packet, as described above.

The literature suggests that every description of a da­

taflow machine presents a unique design. Veen (25] suggests

that most designs will actually conform to one of three ba­

sic structures (Figure 3, Appendix A). A "one-level" ma­

chine matches the general model in that there is only

pipeline concurrency within a processing element. Execution

of instructions is only within a processing element with the

output tokens being used in the same processing element or

communicated to another processing element.

7

A "two-level" machine is one in which the functional

unit of the processing element actually consists of many

"functional elements" which are capable of executing packets

concurrently. Any executable packet is allocated to any

idle functional element.

A "two-stage" machine has split processing elements

with an extra communication medium between the enabling and

functional units. This can be especially advantageous if

some of the functional elements have specialized usages.

Communication

A dataflow machine which utilizes direct communication

has adjacent nodes of the graph allocated to the same pro­

cessing element or to processing elements that are capable

of communicating directly. The important aspect of this is

that tokens are delivered through the communication medium

in the same order that they were received. This implies

that the determinancy of the graph is maintained. A design

which utilizes packet communication offers a greater oppor­

tunity for load distribution and parallelism in executing

the processing elements, since data is communicated in

packet form. Its advantages though are tempered by concerns

over contention in the data paths and the maintenance of the

determinancy of the graph execution.

8

Architectural Examples

Veen [25] presents an excellent summary of these

various architectural types. The most important example of

the direct communication machines is the Data-Driven Machine

#1 (DDM1), first described by Davis. This machine utilizes

a tree arrangement for the configuration of the processing

elements. While this is the oldest example of a working da­

taflow machine, it has a serious bottleneck problem at the

root of the tree as communication proceeds between the pro­

cessing elements.

The Distributed Data Processor (DDP), the 1angage a as­

signation unique (LAU), and the uPD7281 Dataflow Image Pro­

cessor, are all examples of static packet communication

machines. The DDP machine was constructed at Texas Instru­

ments and uses a locking method to protect reentrant graphs.

The prototype, built with four processing elements, uses a

ring-structured communication unit with a direct feedback

link for the tokens that stay within that processing el­

ement.

The LAU machine, constructed in Toulouse, France, was

designed around strong processing elements with the higher

level structure left unspecified. The #O prototype, com­

pleted in 1980, was a single processing element of a conven­

tional microprocessor with 32 functional elements. This

machine differs from other designs in that the data and

9

instruction memories are separate and utilize a multiphase

communication path between the functional elements.

10

The uPD7281 Dataflow Image Processor, developed by NEC

Electronics, is capable of being used as a small processing

element in a dataflow machine. It has a seven-stage circu­

lar pipeline in such a way that tokens that are addressed to

the same processing element never leave the chip. The de­

sign is also capable of regulating the level of parallelism.

If a processing element is underutilized, preference is

given to tokens that will increase the amount of parallel­

ism.

Another architecture that deserves note is of the

tagged token type. The Manchester Dataflow Machine, de­

scribed by Gurd and Watson, uses that tagged token idea to

increase parallelism for reentrant graphs. It is a

two-stage machine, as described earlier, and has a four unit

pipeline. The token queue, matching unit, fetching unit,

and the functional unit are each internally synchronous, but

uses asynchronous protocols to communicate externally. With

fixed packet sizes, more than 30 packets can be processed

simultaneously. Several other designs, including one for

digital signal processing (See DDSP) have been based on

these ideas.

Dataflow as a Technique for

Signal Processing

11

As an application for dataflow technology, real-time

signal processing seems well suited. The main attributes of

signal processing are: (1) a well-defined sequence of data

value independent algorithms that are (2) repeatedly applied

to signal values as they are received [13,17]. These algo­

rithms are data value independent in the sense that the val­

ues received have no effect on the sequencing of the

operations. With a continuous stream of input data pro­

cessed by a repeatedly executing set of algorithms, there is

a significant possibility to overlap executions for greater

parallelism. In an effort to reduce the complexity of the

dataflow program graphs created for these applications, the

no~es of the graph utilize the higher design methodology and

associate nodes with the complex operations to be performed

rather than the individual instructions.

Signal Processing Dataflow Architectures

A number of other dataflow architectures designed spe­

cifically for real-time signal processing exist. Two de­

scribed below, are of interest to the EMSP.

DFSP: A Data Flow Signal Processor

DFSP is an architecture presented by Hartimo, Kronlof,

Simula, and Skytta (13], with the following design goals

made to meet the special needs of signal processing.

12

(1) Reentrant code is provided by using colored to­

kens. This allows for less overhead in terms of both compu­

tations and the memory space needed for the high level

operations.

(2) Every result packet declares an activity template

as its destination. The activity templates, found in the

activity store, are temporary storage for those operations

that have received at least one operand but are not ready to

execute. A new template is created if a matching one has

not been found (i.e., this result packet represents the

first operand to be received for this operation) •

(3) The processing elements themselves have no access

to any shared data structures, as may be found in other ar­

chitectures. This lowers overhead by reducing the memory

management complications. Instead, operand data are circu­

lated as part of a double bus architecture. The thick pipes

of Figure 4 (Appendix A) represent the data path of the op­

erand data, and the thin pipes represent the paths for con­

trol flow.

The operation of the various functional units of the

DFSP architecture are described below. (Figure 4, Appendix

A)

The update unit is used to keep the status of the

various activity templates as current as possible. When a

result packet arrives from the processing elements, the

packet is hashed with the current activity templates in

search of a destination operation. A new activity template

is created if necessary. Storage may also be allocated for

operand values. The update unit then sends a transfer re-

quest to the result transfer unit.

13

The result transfer unit initiates a transfer of a re­

sult data block, upon command, and updates the trigger field

of the destination activity template. The DFSP architecture

does not count the number of operands needed for each op-

eration; rather, it calculates the total size of the accumu-

lated operands needed for that operation. The trigger field

of an activity template is set to this value. As each oper­

and arrives at its designated activity template, the trigger

field is decremented by the size of the operand. An op­

eration is deemed ready to execute when the trigger field

reaches zero. At that point, the activity template address

is placed into the queue.

The fetch unit pairs up ready to execute activity tem-

plates with an idle processing unit containing the necessary

operation code. An operation packet is sent to the

processing element and a data transfer request is placed in

the data queue.

14

The data transfer unit receives requests to transfer

operand data blocks to specified processing elements. When

completed, the unneeded activity template is marked as free.

The processing elements are the functional units that

perform the actual computations. An idle processing unit

informs the fetch unit about being idle and waits to receive

an operation packet. Once the operation packet and the op­

erand data, from the data transfer unit, are available, the

operation is performed and result packets are sent to all

the specified destinations, via the update unit.

Multiple instantiations of a given node are possible by

the use of colored tokens, reentrant code and the reliabil­

ity of the update unit to associatively manage the various

token/operand matching operations needed.

DDSP: The Data Driven Signal Processor

The DDSP system [14] is a dataflow architecture that

can be configured from 1 to 32 processors without software

modification. Designed for signal processing, the designers

state that large DDSP systems can exceed Cray-1 and CDC

STAR-100 supercomputers in processing capability.

Designed as an alternative to array processors by pro­

viding the same low cost computing power with greater system

flexibility, DDSP has some interesting characteristics.

15

(1) DDSP utilizes a skew algorithm for routing data

among processors. Each data token generated has a label

field appended to it to distinguish it from different in­

stances of the same token (i.e., dynamic graph execution

with colored tokens). These label fields are used by the

skew algorithm to route tokens to specific processors. This

offers the opportunity for a uniform distribution of pro­

cessing and localizing communication to nearby processors.

(2) A special data structure for communicating data

between procedures has been developed. Called a data driven

communication (DOC) structure, it is passed as a pointer in

procedure calls. The structure contains data, to be used in

the computations, and control information such as array siz­

ing and. return pointers.

Each DDSP processor (Figure 5, Appendix A) contains an

input queue, matching store and a processing element. The

input queue is used for temporary storage and helps in load

leveling. The matching store is an associative memory that

is used to pair up tokens with identical keys. The keys

contain an 11-bit node address and a 16-bit label field that

defines token attributes. When a match is found the token

pair and the key are sent to the processing element for ex­

ecution of the node.

The processing element contains a microprogram se­

quencer that controls both an arithmetic processor and a

label processor which for the most part are independent of

each other.

16

The interconnection network is a linear wraparound con­

nection of the DDSP processors, overlaid by a three level

tree. The linear connection of the processors is used for

short distance communication between nearby processors;

while the tree structure is for longer movement of data.

Each token contains its own network destination and routes

itself to the various processors or I/O ports in the system.

This appears to be a relatively simple architectural

model for dataflow signal processing. The inherent complex­

ity of this class of applications has been retained in the

programming. A high level language called the Data Driven

Program Language (DDPL) breaks a program into program

blocks, procedures, actions and node definitions. Proce­

dures contain node definitions which are the basic units

used. Node definitions-contain all the executable code and

are designed to be independent of other node definitions.

This will allow nodes to execute with maximum parallelism.

The generalized labelling helps manage multiple activations

of the same node.

CHAPTER II

THE ENHANCED MODULAR SIGNAL PROCESSOR

The Enhanced Modular Signal Processor (EMSP) has been

called a hybrid dataflow machine. This comes from the fact

that not only does the EMSP use graphs to describe and ex­

ecute signal processing algorithms in the dataflow manner,

it also uses additional command programs and a separate com­

mand program processor to control and manipulate the program

graphs in a control flow manner.

The first part of this chapter deals with the Enhanced

Modular Signal Processor Common Operational Support (ECOS)

methodology. This methodology is the design basis around

which the Enhanced Modular Signal Processor was developed.

The remainder of this chapter will then discuss in detail

the architecture of the EMSP itself.

EMSP Common Operational support

Methodology

The Enhanced Modular Signal Processor Common Op­

erational support (ECOS) methodology is the design environ­

ment developed for creating signal processing applications.

ECOS is not a classical dataflow methodology. While still

based on the concept of a directed graph representation of

17

the signal processing algorithm, the arcs of the graph have

been redefined as queues and thus allow more than one data

element on an arc. The various components of ECOS operate

on this basis.

Graphs

18

A signal processing graph is comprised of nodes, which

represent the specific signal processing operation

(primitive) to be executed; and, a set of queues that

represent the flow of data through the graph. A node may

also represent a subgraph, which at instantiation time would

be expanded into nodes, queues, and graph variables as if it

were a macro definition. Figure 6 (Appendix A) is an

example of a simple ECOS Graph.

Graph Variables

Graph variables represent memory elements that·contain

one data element that can be used as control variables or

algorithm coefficients to the signal processing algorithm.

Graph variables are not dataflow entities and do not affect

the execution of the node, but are available to the node

once it has started executing.

Nodes

Each node of the graph represents a specific processing

operation, called a primitive and a primitive interface

19

procedure (PIP) that provides the interface between the node

and the primitive.

Each node also requires one or more input ports and

zero or more output ports. Associated with each port is a

set of node execution parameters (NEP) that define how the

queue attached to each port is utilized. The diagram of

Figure 7 (Appendix A) illustrates the ECOS node construc­

tion.

Node Execution Parameters

The node execution parameters (NEP) associated with

input ports include the threshold, offset, read, and consume

amounts. The threshold amount is the number of data

elements that must exist in a particular queue before the

associated node is ready to execute. The offset amount is

the number of data elements to skip over at the head of the

queue before reading data from the queue. The read amount

is the number of data elements to read from that point in

the queue. The consume amount is the number of data

elements to remove from the queue once the node has finished

executing.

The node execution parameter associated with output

ports is the valve amount. The valve amount specifies how

much of the output data is placed on the output queues or

whether it be discarded.

20

While the threshold NEP must be specified at start-time

and remains fixed throughout the graph execution, the other

NEPs may be fixed or may be calculated by the node's

primitive interface procedure (PIP) prior to the'node execu­

tion.

Primitives

The basic building block of the methodology is the

primitive and it is definitely machine dependent. It

contains the code necessary to perform the defined node

function.

Primitive Interface Procedure

Primitive Interface Procedures (PIP) exist to provide

the logical connections between the various input and output

queues attached to the node ports and the inputs and outputs

of the primitive. . The PIP also has a nodal intelligence

with the ability to calculate values of NEPs. This, in

essence, allows for run-time alterations of the node

execution.

Queues

Queues provide the logical connections between the

nodes of the graph. As first-in first-out data structures

they have the ability to expand and contract as needed. The

21

same node may be both at the head and at the tail of a queue

to provide a feedback capability.

Command Programs

Command programs are written by application programmers

in a standard high order language with special signal

processing statements embedded. These command programs are

not dataflow and obey standard control flow rules. The

capabilities of command programs typically include starting

and stopping-graphs and performing exception handling when

errors are detected.

The Enhanced Modular Signal

Processor

The architecture of the Enhanced Modular Signal Proces­

sor was designed to implement the dataflow methodology of

ECOS. Bloch [4] describes it as a distributed control, mul­

tiprocessor architecture which provides runtime support of

data movement through the graph, node execution management,

queue and graph variable management, and graph reconfigura­

tion. Various types of functional elements comprise the

EMSP architecture, and are connected together by a control

bus and a data transfer network. Data and control informa­

tion is transferred between functional units by the trans­

mission of system level instructions over these

communication paths. Each functional element type has a

22

unique instruction set designed for its particular activity.

An illustration of the EMSP architecture can be found in

Figure 8 (Appendix A).

Data Transfer Network

All system level instruction containing large data

blocks are transferred over the data transfer network (DTN).

An example of an instruction which is passed over the DTN is

the Accept Queue (AQ) instruction, which is used to transfer

data from a memory to a processor. This instruction con­

sists of an operation code, a request identifier, a queue

identifier, the number of data words, and the actual queue

data. This is the defined path for the AQ instruction as

large amounts of data may transferred this way. Each DTN

can be described as a multiple path, unidirectional source

directed switching network, configurable with a varying

number of ports, depending on the application. A transfer

may be active for each port pair (source and sink) providing

there is no contention for a destination element. As new

transfers are initiated, existing transfers are not inter­

rupted. Sufficient handshaking and buffering is provided so

the asynchronous communication between functional elements

with different transfer rate capabilities can be accom­

plished (4]. Communication occurs in one direction in the

DTN with each functional unit connected to both a sink and

a source port.

Command Program Processor

The functional element in which command programs ex­

ecute is the Command Program Processor (CPP) • The CPP also

is responsible for acting on requests for graph control,

providing runtime system services and process control. The

CPP is implemented using a standard Navy computer, the

AN/UYK-44, embedded within the EMSP [4].

Global Memory

23

The main storage units of the EMSP are its Global

Memories (GM). An EMSP may be configured with one or more

independent GMs, each on a pair of DTN ports. Directly

implemented within the GMs are the queues, graph variables

and instruction streams. For this reason, the GMs are re­

sponsible for providing dynamic memory management,

allocation of storage as queue data are written and deallo­

cation of storage as queue data are consumed. As stated

above, requests for data instruction are answered with Ac­

cept instructions containing data. Global memories also

maintain information, such as the number of words in a queue

and the value of the threshold. These are used to determine

if a queue has gone over threshold. Each time a queue is

written or consumed, the relationship of the resulting num­

ber of data elements to the threshold is checked. If the

24

appropriate conditions are met, the queue is reported to the

Scheduler as Queue Over Threshold (QOT).

Input output Processor

Input and output procedures from the EMSP are initial­

ized by command programs and are executed by an Input;output

Processor {IOP). Once started, an IOP performing input will

receive data from an external channel, process the data, and

place it on one or more queues which serve as inputs to a

graph. Similarly, an IOP performing output removes data

from an output queue and transmits it over an external chan­

nel. Interface protocols associated with communication with

external devices are handled by the IOP. Internal memories

are used to help assure efficient data transfer with syn­

chronization of external devices and buffering of data.

Arithmetic Processor

The functional element that implements the primitives

is the arithmetic processor (AP). As with GMs and IOPs,

there may be many APs in an EMSP configuration, each operat­

ing independently. Primitive algorithms are implemented as

microcode programs, which execute in an AP; and all APs in

an EMSP configuration are loaded with the microcode for all

primitives to be used in the application graph. Thus, any

AP which is provided with the unique information describing

a particular node instance can be the processing resource

25

used to execute the primitive [4). An Instruction stream

(IS), stored in a GM at start time, is used to implement the

ECOS Primitive Interface Procedure. The IS is provided to

an AP by the GM at the direction of the Scheduler, when the

node is eligible for execution.

Three phases make up a node execution. The setup phase

occurs while the IS is executing in the AP's control unit to

calculate NEP amounts (if necessary), and to read control

and signal data into the local operand memories. With the

completion of the setup phase, the node execution begins

with the execution of the primitive in the node's arithmetic

unit. The last phase, the breakdown phase, begins with the

completion of the primitive execution. Here, the IS ex­

ecutes to write to output queues and consume from input

queues. The internal structure of the AP, with independent

control and arithmetic units and split local memories, al­

lows data transfers between the AP and GMs to be concurrent

with primitive execution. As a result, an AP may be servic­

ing three nodes simultaneously [4).

Scheduler

As a graph executes, the heart of the EMSP operation is

the Scheduler. Its main responsibility is to schedule the

execution of the nodes on the processing resources. Several

databases used to support the dataflow operation of the ar­

chitecture are also maintained by the Scheduler. The first

26

of these is the Queue to Node Map, which stores the topology

of all executing graphs by maintaining a list of nodes con­

nected to the head and tail of each queue. A Node Charac­

teristics Table is used to store necessary information on

each node, including the number of input queues, the type of

processor required for execution (AP or IOP), the identifi­

cation of the GM containing the node's IS, and a dynamic

count of the number of input queues which are yet to be over

threshold. A third database is the Free Functional Element

List which maintains a record of the functional elements

which are currently available. A Ready Node List is also

used to maintain a list of the nodes that are eligible for

execution, but for which no processing resource is avail­

able.

, .

CHAPTER III

THE EMSP TIMING SIMULATOR

The EMSP Timing Simulator, created by Marilyn Aiken

[1], is designed to provide a tool to evaluate the Enhanced

Modular Signal Processor architecture and any proposed

modifications. The basic premise of the simulator is to

simulate the operation of the various functional elements of

the EMSP architecture based on their individual timing re­

straints. This enables the user to experiment with various

hardware configurations for a given signal processing graph.

The timing simulator basically is an event driven pro­

gram. Each activity; i.e., graph instruction, needed to

simulate the operation of the EMSP architecture is created

with a start-time relative to a simulated clock. The timing

of each activity is calculated based on published time re­

straints that are part of the architectural design of the

EMSP. For the most part, these are static times, but for

some activities, especially those related to data transfer,

these times must be calculated.

Graph execution instructions are instructions passed

between functional elements. A Queue Over Threshold (QOT)

instruction serves as an example. When a Global Memory de­

tects that a queue has gone over threshold, it sends a QOT

27

28

instruction out over the Control Bus to the Scheduler. The

Scheduler then takes an appropriate action. Such an action

may simply be updating the dynamic queue information for the

nodes involved, or the scheduling of a node to execute if

the conditions for that node to execute have been met. If

the functional element for which a graph instruction is des­

tined is busy, or the instruction has an occurrence time

greater than the simulator clock, the instruction is placed

on the central event list. The Control Bus request table

and the Data Transfer request table contain graph instruc­

tions that are requesting action from a particular func­

tional element. Each functional element scans these tables

to determine whether another functional element is request­

ing action. The_.ready list contains a list of nodes re­

ported by the Scheduler to be ready to execute.

The node data structure records the types and identi­

fiers for each of the node inputs and outputs. The value of

each graph instantiation parameter is stored as well as the

Global Memory identification number and element size for

each graph variable and queue. The queue data structure

maintains all node execution parameters and capacity infor­

mation for each queue. Channel data rate information is

kept in the channel data structure. Taken as a whole, the

graph topology is defined across these various structures.

29

Node Execution Cycle

The graph execution process follows a defined determin­

istic method that implements the dataflow methodology. The

following explanation shows the steps that must occur for

the execution of one node. This is an ongoing asynchronous

methodology, and once commenced the operation of each func­

tional element is based on the exchange of instructions and

the availability of data. Figure 9 (Appendix A) assists in

the understanding of this process.

First, as sensor data is input to the graph, via the

Input;output Processor (IOP), it is written to the input

queues. Write Queue instructions are generated by the IOP

as needed. When the Global Memory detects that the queue

has gone over threshold, a Queue over Threshold (QOT) in­

struction is sent to the Scheduler.

When the Scheduler has received a QOT instruction, the

number of conditions necessary for the node involved is de­

cremented. When all of the conditions have been satisfied,

then the node is considered ready to execute. A Send In­

struction Stream (SIS) instruction is sent to the Global

Memory containing the instruction stream for the ready

node's primitive.

The Global Memory builds an Accept Instruction Stream

(AIS) which contains the primitive instruction stream and

sends it across the Data Transfer Network (DTN) to the

Arithmetic Processor (AP) designated by the Scheduler.

Based on the particular primitive, the AP enters the

setup phase of its operation and sends appropriate Request

Queue (RQ) or Request Graph Variable (RGV) instructions to

the Global Memory. The Global Memory responds with Accept

Queue (AQ) or Accept Graph Variable (AGV) instructions con­

taining the requested data.

30

Once all the required data have been received, the AP

enters the execution phase. A Request For Instruction

Stream (RFIS) instruction is sent to the Scheduler notifying

it that it has completed the setup phase and is free to be­

gin the setup on another node.

Finally, when the execution phase is completed, the re­

sults are written to the proper Global Memories with Write

Queue (WQ) or Write Graph Variable (WGV) instructions. Once

completed, Consume Queue (CQ) instructions are generated to

remove data from the previous input queues. It should be

noted that Write Queue instructions generated by the node

completion may make subsequent node execution possible as

queues go over threshold.

Input

Input to the simulator currently is provided either by

user entry or by two configuration files. The first file

contains the static graph topology. Each node is defined by

an identification number, an opcode mnemonic of the signal

processing primitive to be executed, and a number of graph

variables and queues which serve as inputs and outputs to

the node. Queues also are defined as part of the node

definition and include the threshold, read, consume, and

valve amounts.

31

The second file contains the information needed to de­

fine the EMSP hardware and system configuration. This in­

formation contains information to define the size and number

of data transfer networks. Each functional element is de­

fined by type (Arithmetic Processor, Scheduler, etc.) and

its connection to the data transfer network. This file also

contains information to define the channels that serve as

inputs and outputs to the simulator. This information in­

cludes the channel rates and the queue identifiers to which

it is connected. This file also contains the memory con­

figuration of the graph topology. That is, which node in­

struction streams, queues, and graph variables are stored in

which Global Memories. Graph instantiation values are also

contained in this file.

Output

output from the simulator consists of a system con­

figuration chart, a list of utilization figures for each

functional element, node execution information, channel ex-

32

ecution information and queue information. An optional run­

time execution graph can be provided.

Implementation of Functional Elements

A discussion of the implementation of each of the func­

tional elements will be helpful in understanding the func­

tionality of the simulator.

Arithmetic Processor

The procedure for implementing the Arithmetic Processor

(AP) takes into account each of the three states of node ex­

ecution: setup, execution, and breakdown. Separate timing

variables effect the three timing states. The primitive ex­

ecution time for the execution phase is calculated based on

the opcode mnemonic. Graph instructions generated by the

operation of the AP include Accept Instruction Stream (AIS),

Send Instruction stream (SIS), Request Queue (RQ), as well

as others. The timings for these instructions will ulti­

mately be accounted for as each instruction is processed.

Instructions generated by the breakdown phase, such as Write

Queue (WQ) and Consume Queue (CQ) are handled as is appro­

priate for that primitive.

Control Bus/Data Transfer Network

The procedures that implement the Control Bus (CBUS)

and Data Transfer Network (DTN) are quite similar. The ba-

33

sic purpose of these procedures is to order the list of re­

quests and to handle conflict for destination functional

elements. The important point to remember is that schedul­

ing of data transfers is based on the current clock time

with rescheduling to a future time for conflict resolution.

This applies either when concurrent instructions are seeking

the same functional element, or when a functional element is

already busy.

Global Memory

The Global Memory (GM) procedure simulates the nonin­

terruptible nature of a true Global Memory. As an instruc­

tion is received by a GM, the central event list is check~d

to determine whether that GM is currently active. If it is

active, then the instruction is rescheduled with a future

event time.

The timings to handle GM instructions involving data

transfer are functions of the number of words to be trans­

ferred. Once the timing has been calculated then the appro­

priate Accept Instruction Stream (AIS), Accept Queue (AQ),

or Accept Graph Variable (AGV) instruction is placed on the

Data Transfer Network. Updating queues is achieved by Write

Queue (WQ) or Consume Queue (CQ) instructions with the send­

ing of the appropriate Queue over Threshold (QOT), Queue

34

OVer Capacity (QOC), Queue Under Capacity (QUC), or Queue

Under Threshold (QUC) instructions to the Scheduler over the

control Bus.

Scheduler

Like the Global Memory, the Scheduler procedure

simulates the noninterruptible nature of the true Scheduler.

An instruction reaching the Scheduler while it is busy is be

rescheduled for a future event time. The Scheduler monitors

the graph status by updating the status of each node, the

number of conditions needed to execute each node, and the

connections of the external channels to the graphs. In ad­

dition, the Scheduler maintains the free processor list and

schedules nodes to execute based on the status of each node

and the arithmetic processors. The event list is maintained

as necessary.

CHAPTER IV

ENHANCEMENTS TO THE TIMING SIMULATOR OF THE

ENHANCED MODULAR SIGNAL PROCESSOR

Simulator Input Procedures

The EMSP Timing Simulator, as it was designed

originally, had only adequate input procedures with which to

configure it. Input consisted of a mixed combination of

user supplied input together with two relatively unformatted

configuration files. In the first case, the user could en­

ter all necessary input from the keyboard after which the

simulator would execute. The disadvantage of this method is

that rio configuration files were created or used by the

simulator. The second method utilizes only the two user

created configuration files. These files were to be created

by an editor with no interaction or error checking by the

simulator.

The first file contained the information necessary to

create the program graph topology for execution by the tim­

ing simulator. It contained such information as the node

identification number, the primitive mnemonic indicative of

the signal processing algorithm to be executed by that node,

and other information describing the inputs and output to

35

each node. Examination of this file by a user yielded no

useful information.

36

The second file contained hardware configuration infor­

mation necessary to define each of the functional elements

of the EMSP architecture. Other information in the file in­

cluded graph instantiation parameters, memory placement in­

formation, queue capacities and primary values for graph

variables.

In the end, this two file arrangement, while adequate

to immediate needs, did not make the timing simulator par­

ticularly easy to operate and made creation of the con­

figuration files extremely error prone.

The first part of this thesis project was to design and

implement new procedures to create the configuration files

for the simulator. This was undertaken with three goals in

mind. First, to create a more acceptable method for creat­

ing the simulator configuration files. Second, to provide a

method of interpreting the configuration files. And, fi­

nally, to implement a method to verify the connectivity of

the graph topology input to the simulator.

The first two goals were realized by the creation of

several new procedures which, while mirroring the sequences

of the original input procedures, provide a much better en­

vironment with which to work.

The UNIX System V curses library routines were used

throughout the simulator to provide split screen input.

Split in half horizontally, the top half of the screen is

used to prompt the user for the required keyboard input.

The bottom half of the screen is used to echo the input in

an interpretive way, as described above.

37

Nineteen new procedures in four files were created to

make these changes. The first file, newmain.c, contains a

new main() procedure for the simulator. In c programming,

the function main() is always the first procedure called.

This procedure replaces the main() procedure previously

found in the file main.c. This new main() procedure is re­

sponsible for defining the curses environment and creating

the split screen display. This procedure also is respon­

sible for prompting the user for the names of the configura­

tion files. This implementation alters the original design

by creating three configuration files. The first file con­

tains the graph topology information as it was originally

designed. The second file contains only the EMSP hardware

configuration information, as described above, with the

third file holding the memory configuration and instantia­

tion information. This change was made to make each file

more specific to the information that it contains.

If any of the three file names supplied by the user

does not exist, the user is given the option of reentering

38

that name, in case a typographical error occurred, or, en­

tering the routines necessary to create that file. Once the

three files exist, then the user is given the choice of ex­

ecuting the simulator with these three configuration files,

or aborting the execution of the simulator. This allows the

user the option of creating zero or more of the configura­

tion files and executing the simulator at one sitting, or

using the simulator only as a tool to create the configura­

tion files for later use.

The second file, config.c, contains three procedures:

create_top(), create_config(), and create_mem(). These pro­

cedures assist in the creation of the various configuration

files. If a user wishes to create a new configuration file,

then one of these procedures is called with the new file

name as a parameter. The create_top() procedure is called

for the creation of a new graph topology file; the

create_config() procedure is called for the creation of a

new hardware configuration file; and, the create_mem() pro­

cedure is likewise called for the creation of a new memory

configuration file. Each of these procedures makes the ap­

propriate system calls to create and open the new file with

the appropriate error checking. Once the file has been suc­

cessfully created, the appropriate querying procedure is

called to prompt the user for the required keyboard input.

Query.c, the third file, is an adapted version of the

original read.c file. This file contains the same

39

procedures as read.c, renamed and adapted for use in the

curses environment. All of the output necessary to update

the split screen display, including echoing the user input,

generating the interpretive lower screen, and performing the

file output to the configuration files, is done in these

procedures. Some preliminary initialization of the simula­

tor data structures is also done to insure that all of the

data necessary to operate the simulator is asked for.

The fourth file is emsp.c. This file contains a rou­

tine called emsp() which is another new version of the

original main(). This routine is used to start the execu­

tion of the timing simulator, taking into account the new

curses environment, and the use of three configuration

files, instead of two. Routines in the file readm.c, are

called to read the configuration files and initialize the

timing simulator.

Other changes where made throughout the simulator to

standardize its use in the curses environment. This is par­

ticularly true in the support.c file which contains all of

the output procedures. No formatting changes were made from

the original, apart from the use of appropriate function

calls for use with curses.

Two more procedures were created to determine the con­

nectivity of the graph topology. It is assumed that the

original design did not include sufficient error checking in

this area because it was not intended for the configuration

40

files to be user generated; rather, they would be provided

by some other facility. To overcome this, the procedures

matrix() and dfs() were created in the file matrix.c. These

procedures utilize simple data structure techniques to

verify the connectivity of directed graphs, such as dataflow

graphs. The procedure matrix() utilizes the ptr_queue

structure of the simulator to build an adjacency matrix.

Each queue of the simulator is examined and an entry in the

matrix is made for each node connected tail and head of each

queue. To understand this, it is important to remember that

each queue in a dataflow graph represents a directed arc.

Queues are first-in-first-out data structures with data

placed on the tail and data removed from the head of the

queue. Determining whether each node is connected to the

graph is the responsibility of the dfs() procedure. This

routine is a simple recursive depth-first-search algorithm.

Usi~g the adjacency matrix created by the matrix() routine,

each node is visited based on the entries in the matrix. If

any nodes have not been visited when the dfs() procedure

finishes, then those nodes are considered disconnected from

the graph. The simulator will abort under this condition as

this is not considered a safe condition.

Configuration Feasibility Determination

The second part of this project was to develop a means

for determining whether a particular hardware and memory

41

configuration is appropriate to execute a given graph topol­

ogy. An appropriate configuration is one in which the graph

could execute without any serious bottlenecks or loss of

data. These problems are indicated by the overflow of any

of the graph queues. If there is an insufficient number of

the appropriate functional elements, namely Global Memories

and Arithmetic Processors, then the timing dependencies in­

herent in the node primitives and data transfers reduce the

number of node executions in a given period of time. If the

processor cannot keep up with the data input data rates,

then the queues begin to go over capacity with data ar­

rival.

The detection of this Queue Over Capacity condition is

an important process and one of the purposes for the

original design of the timing simulator. Unfortunately,

this concept was overlooked in the final version of the

simulator. This oversight is corrected easily. A procedure,

called unfit(), was created to be called whenever a Queue

Over Capacity (QOC) situation is detected. Appropriate

calls are in the Global Memory procedure to detect QOC in

the internal queues, and in the Scheduler procedure to

handle QOC in the channel queues. This procedure is found

in the file unfit.c and, when called, generates output not­

ing that state of each node and queue in the simulator at

the detection time of the .Queue Over Capacity·. The normal

output procedures are also called to generate the

utilization figures for the execution of the graph up to

that point. This procedure also handles the ending of the

curses environment and the closing of the configuration

files prior to aborting the simulator.

Dynamic Graph State Table

42

The final part of this project involves the design of a

graph state table at each simulated clock time interval dur-

ing the execution of the timing simulator. In other words,

the state of each node and its queues are shown throughout

the execution of the graph. This output provides the user

more information about the nature of the signal processing

graph executing on the timing simulator. Such information

is helpful in judging the parallelism of the signal process­

ing algorithm and the efficiency of the hardware configura-

tion.

The information presented includes the current

simulated ·time, and the following information about each

node of the graph:

a. Node Identification Number.
b. Primitive mnemonic.
c. Current state of each node. (i.e. Busy, Idle)
d. current state of each input queue.

(i.e. QOT, QOC, QUT, QUC, etc.)
e. Percentage of capacity and threshold for

each queue.

In terms of the execution of dataflow graphs, a node of

the graph is considered to be idle until all of the

conditions necessary for the node to execute have been met.

This generally means that all of the input queues have gone

over threshold. At that point the node is considered to be

executing.

In terms of the EMSP architecture, a node can be busy

for a number of reasons, each related to the status of the

43

various functional elements. When a node has satisfied each

of the conditions needed to fire, the Scheduler attempts to

schedule the node for immediate execution. If no Arithmetic

Processor (AP) is available, the node is placed on a list of

ready nodes and then is schedUled on a first-come-first-

served basis on the next available AP. This occurs provided

that there are no other instances of that node currently

executing. This is a necessary condition as this simulator

was not designed to be a tagged token architecture and does

not have the capability to handle multiple instances of a

given node.

Once the.node reaches a particular AP, ·it may have

other periods of waiting related to the data transfers nec­

essary during the setup and breakdown phases of the node ex­

ecution. These waiting periods are time spent on the

servicing lists for the Control Bus (CBUS) and the Data

Transfer Network (DTN).

To avoid problems with multiple node instances, the

simulator marks a node as busy from the point at which all

, .

of the execution conditions are met, to the completion of

the breakdown of the node execution.

44

For the purposes of the dynamic state output, any node

appearing on the ready node list, the Scheduler's instruc­

tion list, the DTN waiting list, or the CBUS waiting list,

is considered to be executing. Any node not on one of these

lists is considered idle.

The design of the dynamic state output of the graph ex-

ecution would be as follows:

(1) During each simulated clock cycle, traverse
the instruction list, the ready list, the DTN
waiting list, and the CBUS waiting list, marking
in the state table each node appearing on one of
these lists. Each of these lists is maintained as
a singly linked list data structure of the following
construction:

struct instruct {
int time;
int opcode;

} ;

struct FE *sender;
struct FE *receiver;
int !_message;
int nodeid;
int message;
struct queue *queue;
struct instruct *next;

(2) For each node of the graph, determine the state
of each of the input queues. It is not necessary to
do the same for the output queues as they will be
considered as inputs to other queues or as final out­
put from the graph.

There are two different design approaches that can be

taken, based on the preexisting data structures of the

simulator. The first method involves four levels of indi-

45

rection (pointers) and fewer sequential array traversals.

The second is much simpler in its use of pointers, but would

require more searching for the same information. The advan-

tage of one over the other depends on the relative sizes of

the graph topologies used on the simulator.

The first method would utilize four interlinked c

structures. The first structure is an array of pointers

where each element points to a node of the graph. The struc-

ture is defined as follows:

struct ptr node {
int nodeid;
struct node *n_ptr;

} ptr_node[MAX_NODES];

The configuration of each node, as well as some static

and dynamic information concerning the node is given in the

node structure:

struct node {

} ;

short nodeid;
short opcode;
short num_inputs;
short NOC;
short prior;
short GM;
short type;
short suspended;
short firings;
short exec_time;
short nodesize;
struct var i_var[I_MAX];
struct var o_var[O_MAX];

For this discussion, the important part of this struc-

ture is the "struct var i_var[I_MAX]" definition. This is

an array of structures used to store information on each of

the node's inputs. Each of the inputs, whether it is a

Graph Variable (GV), a Graph Instantiation Parameter (GIP),

or a Queue, is recorded in this structure:

struct var {
short type;
short GM;
short size;
short value;
struct queue *q_ptr;

};

46

To reach the information about each queue needed by the

dynamic state output, a traversal of the i var array is nee-

essary. For each input of type QUEUE, the queue structure

pointed to by q_ptr would be accessed for the necessary in­

formation. The queue structure is defined as follows:

struct queue {

};

int queueid;
int head node;
int tail-node;
int threshold;
int consume;
int read;
int capacity;
int sizeof_data;
int GM;
il')t data_items;
int status;
int produce;

An example of the indirection needed to reference any

of this information would therefore require something of the

form:

ptr_node[i].n_ptr->i_var[j].q_ptr->capacity

with sequential traversals needed for the ptr_node and the

i_var arrays.

The second method requires simpler data structures to

end up with the same queue data arrived at above. Like the

ptr_node structure above, a ptr_queue structure exists to

give immediate access to the queue information:

struct ptr_queue {
int queueid;
struct queue *q_ptr;

} ptr_queue[MAX_NODES];

The "struct queue *q_ptr" definition gives access to

47

the same queue structure described above. The procedure for

getting the information needed for the dynamic state output

requires that for each node in the graph, a traversal of the

ptr_queue array is necessary. Each queue is checked to find

those queues defined with the current node as the head node

for that queue. Data is removed from the heads of queues,

therefore a queue is an input queue to the node at its head.

Because the q_ptr array would have to be sequentially

traversed for each node in the graph, this method may be

more time consuming than the first method. However, the in-

direction needed is much simpler:

ptr_queue.q_ptr->capacity

As information for each node is collected, the dynamic

state output would be constructed to generate the desired

output. Appendix B contains sample output of the.dynamic

state of the graph during execution.

CHAPTER V

CONCLUSIONS

The purpose of this project is to study the dataflow

architecture called the Enhanced Modular Signal Processor,

and to make enhancements to EMSP Timing Simulator created by

Marilyn Aiken [1].

The EMSP Timing Simulator is a tool for testing various

configurations of the EMSP hardware to determine its suit­

ability for particular signal processing graphs. Suitabil­

ity is determined not by any computed results of the signal

processing graph, but by the ability of the hardware con­

figuration to execute the graph within the timing restraints

of the graph operations.

The enhancement part of this project develops the pro­

cedures necessary to correct some oversights in the original

timing simulator. The first part of this three part project

created new input procedures to create the needed configura­

tion files and to test the connectivity of the input graph.

The second part enhanced the simulator by detecting the in­

ternal conditions needed to determine whether a particular

.hardware and memory configuration is insufficient of the ex­

ecuting graph. The third part of the project created the

procedure needed to generate a dynamic graph state table.

48

49

Such a table shows the state of the executing graph at each

tick of the simulated clock. The state of each node and its

input queues are shown. This information would be useful to

the application programmer to determine bottlenecks and lev­

els of parallelism in the signal processing graph.

Suggestions for Future Work

As a tool for the study of the Enhanced Modular Signal

Processor, the Timing Simulator is a good beginning. Pos­

sible future work on the simulator must address the limita­

tion on the size of the graph topologies that can be

simulated. Conclusive data on the operation of this archi­

tecture is impossible without adequate test topologies.

The configuration file concept is still not adequate

for easy use by the user. Redesigning the formats of each

of the files with a new parsing method would greatly improve

the usability of the simulator.

SELECTED BIBLIOGRAPHY

(1) Aiken, Marilyn o., Enhanced Modular Signal Processor
Timing simulator, M.S. Thesis, Oklahoma state
University, May 1987.

(2) Baer, J., Computer Systems Architecture, Computer
Science Press, Inc., 1980.

(3) Brown, N. H., "The EMSP Dataflow Computer", Proceedings
of the 17th Hawaii International Conference
System Sciences, Honolulu, Hawaii, January, 1984.

(4) Bloch, F. H., "The Enhanced Modular Signal Processor,"
Proceedings of the Seventeenth Hawaii
International Conference on System Sciences, Vol.
17, January, 1984.

(5) Davis, Alan L., and Robert M. Keller. "Data Flow
Program Graphs," Computer, February, 1982.

(6) Dennis, Jack B. "Data Flow Supercomputers," Computer,
November, 1980.

(7) Dennis, Jack B., and David P. Misunas. "A Preliminary
Architecture for a Basic Data-Flow Processor," The
2nd Annual Symposium on Computer Architecture,
January 20-22, 1975.

(8) Dennis, Jack B., Joseph Stoy, and Bhaskar Guharoy.
"VIM: An Experimental Multi-User System
Supporting Functional Programming," Proceedings
of the International Workshop on High Level
Computer Architectures, 1984.

(9) ECOS Tutorial: Preliminary, April 26, 1985.

(10) EMSP/ASP Common Operational Support Software
Methodology Specification Version 3.0, Prepared
by Analytic Disciplines, Inc. (now Evaluation
Research Corporation) under contract to the
Naval Research Laboratory, May, 1984.

50

(11) Enhanced Modular Signal Processor (EMSP) Primitive
Analysis Specification, CDRL C130, February
1985, prepared for the Naval Sea Systems
Command, PMS412 by AT&T Bell Laboratories on
behalf of AT&T Technologies N00024-81-C-7318.

(12) Gostelow, Kim P., and Robert E. Thomas. "A view of
dataflow", Proceedings of the AFIPS Conference,
1979. Vol. 48.

51

(13) Hartimo, Iiro, Klaus Kronlof, Olli Simula, and Jorma
Skytta. "DFSP: A Data Flow Signal Processor",
IEEE Transactions on Computers, Vol. C-35, No. 1,
January 1986.

(14) Hogenauer, Eugene B., Richard F. Newbold, and Yul J.
Inn. "DDSP--A Data Flow Computer for Signal
Processing," 1982 International Conference on
Parallel Processing.

(15) Hwang, K. and F. A. Briggs, Computer Architecture and
Parallel Processing, McGraw-Hill Book Company,
1984.

(16) Karp, R. M. and R. E. Miller, "Properties of a Model
for Parallel Conventions: Determinancy,
Termination, Queuing," SIAM Journal of Applied
Mathematics, Vol. 14, No. 11, November, 1966.

(17) Long, A. N., and s. A.
Enhanced Modular
State University
OSU-CIS-TR-87-05.

Thoreson, "Operation of the
Signal Processor," Oklahoma
Technical Report,

(18) Rabiner, Lawrence R. and Bernard Gold. Theorv and
Application of Digital Signal Processing.
Prentice-Hall, Inc., 1975.

(19) Requa, Joseph E., and James R. McGraw, "The Piecewise
Data Flow Architecture: Architectural Concepts",
IEEE Transactions on Computers, Vol. C-32, No. 5,
May 1983.

(20) Srini, Vason P., "A Fault-Tolerant Dataflow System,"
Computer, March 1985.

(21) Thoreson, S. A., and A. N. Long, "A Feasibility Study
of a Memory Hierarchy in a Data Flow
Environment," Oklahoma State University Technical
Report, OSU-CIS-TR-85-01.

(22) Treleaven, Philip c., "Exploiting Program Concurrency
in Computing Systems," Computer, Vol. 12, January
1975.

52

(23) Treleaven, Philip c., David R. Brownbridge, and Richard
P. Hopkins, "Data-Driven and Demand-Driven
Computer Architecture", Computing Surveys, Vol.
14, No. 1, March 1982.

(24) Treleaven Philip c., Richard P. Hopkins, and Paul W.
Rautenback, "Combining Data Flow and Control Flow
Computing," The Computer Journal, Vol. 25, No. 2,
February 1982.

(25) Veen, Arthur H. "Dataflow Machine Architectures", ACM
Computing Surveys, Vol. 18, No. 4, December 1986.

(26) Watson, Ian, and John Gurd, "A Practical Data Flow
Computer," Computer, January 1982.

(27) Wong, F. s., and M. R. Ito, "A Large-Scale Data-Flow
Computer for Parallel Signal Processing," Circuits
and Computers, 1982.

(28) wu, Y. s., "A Common Operational Software (ACOS)
Approach to a Signal Processing Development
System: u.s. Naval Research Laboratory, ICASSP83.

APPENDICES

53

APPENDIX A

FIGURES

54

55

Figure 1. Simple Dataflow Graph

' 1r

...

(a) Simple Dataflow Processing Element

·· ·····················

11f1110ry for

Tokens

(b) Tagged-token Dataflow Processing Element

Figure 2. Fundamental Functions of Dataflow
Processing Elements

56

Output

Co111111niution

Functional
Unit .

~~
ill

I
Ill
~,

r;:::::::::::-=:--=====~r IJ (I Funct~on~l ~~ Jl H Unlt ~~

I
1..-----------------1,~ ..

(a) One-level Dataflow Machine

Figure 3. Basic Dataflow Machine Structures

CoMUniution

Output

~'Wr~~ll\?.!:\\W~~MW1'f00\lt!H.Ml~rt.ii'!f~\'~-l\?'K;~m:~tlt.q.J~~

• t
I ~ I ~ W I I I
~ i
~ . I
- . I I I • •

I I Input

(b) TWo-level Dataflow Machine

CoMUnic~tion

=~~mmmmr: =~=~i:1=?:*~i=1:l:::~1r.(f:ij:j:~~?.f.~~w~~;~:m~~l&~:?~:~·

c
0

:::::

I
I

• I " I • " • I u I • " • I I
I • t

A
T
I
0

" Output :;; !(] Input

TWo-stage Dataflow Machine (c)

Ul
-...1

Figure 4. Diagram of the DFSP Architecture
(reproduced from [13.])

58

c
0
L
u II

Input ~~~~:;;;i~!: Hatching ;;;;;;~;~~i Proc.

c
0
L
u
11
N " "

B
u
s

Figure 5.

Queue Store Ele"ent

B
u
s

Diagram of the DDSP Architecture

59

SENSOR DATA

PHASE

SHIFTED DATA

BASEBAND DATA

Figure 6. ECOS Sample Graph Topology
(reproduced from [9])

60

PRIM IN

PI~ I M-OUT

Figure 7. ECOS Node Construction Diagram
(reproduced from [9])

PORTS
PIP-IN
PIP-OUT
PRIM-IN
PRIM-OUT

61

FROM CPP, IOP, AND APs

I I
I • • • I

+ •
TOSCH AND GMs

COMMUNICATION PATHS ---

Figure 8. Diagram of the EMSP Architecture
(reproduced from [17])

62

IOP
AP

.------QOT..------..

~1. SCH H. GM h CQ

SIS AIS RQ/RGV AQ/AGV I
..----'----,

WQ
QOT

GM SCH

WQ -Write Queue
WGV -Write Graph Variable
QOT- Que~over Threshold
SIS - Send Instruction Stream
AIS - Accept Instruction Stream
RQ - Read Queue
RGV - Read Graph Variable
AQ - Accept Queue
AGV - Accept Graph Variable
CQ - Consume Queue

GM

RFIS - Ready for Instruction Stream

AP GM

SCH

SIS

0
AP - Arithmetic Processor
GM - Global Memory
IOP - Input/Output Processor
SCH - Scheduler

Figure 9. Diagram of the EMSP Node Execution Cycle
(reproduced from [1])

AP

WQ/tJGif

GM

QOT

SCH

0'\
w

APPENDIX B

SAMPLE COMPUTER OUTPUT

64

EMSP Timing Simulator

Enter the name of the graph topology file
to use or create: T1

The file! T1, does not exist.
Do you wish to:

1. Create this file. 2. Reenter

How many nodes in this graph topology? 3

Enter the node identification number for node o: 1

Enter the opcode mnemonic for this node: VOR_SQR

This node requires two inputs.
Enter the input type for input #O:
(GIP=-4, GV=-3, QUEUE=-5): -3

Enter the Graph Variable Identification Number: 1

Enter the input type for input #1:
(GIP=-4, GV=-3, QUEUE=-5): -5

Enter the queue id: 1
Enter the threshold: -1
Enter the consume amount: -1
Enter the read amount: -1

This node requires one outputs.
Enter output type for output #0:
(GV=-3, QUEUE=-5): -5

Enter the queue id: 2
Enter the valve amount for output queue: -1

Sample Output for Graph Topology
Input Procedure

65

Enter the name of the EMSP configuration file
to use or create: T2

The file: T1, does not exist.
Do you wish to: 1

1. Create this file. 2. Reenter

Enter the number of data transfer networkds [1/2]:

Enter the switch size for DTN[O]: 16
Enter the switch size for DTN[1]: 8

Number of functional elements to create: 5

Enter the Functional Element ID: 1

Enter the type of Functional Element,
(APP = O, CPP = 4, GM = 1, IOP = 3, SCH = 2): 2

Enter which DTN the concentrator is on:
Enter which concentrator on DTN:
Enter which element on concentrator:
Enter which DTN the distributor is on [0/1J:
Enter which distributor on DTN:
Enter which element on distributor:

Sample Output for Hardware Configuration
Input Procedure

66

2

TIMING SIMULATOR FOR THE
ENHANCED MODULAR SIGNAL PROCESSOR

EMSP CONFIGURATION FOR SIMULATION
FEID TYPE CONCENTRATOR DISTRIBUTOR

DTN CON ELEMENT DTN DIS ELEMENT
1 SCH 0 5 0 1 3 3
2 GM 1 6 1 0 6 2
3 AP 0 7 2 1 5 1
4 IOP 1 3 3 0 4 0
5 GM 0 15 3 1 7 2

FEID
1
2
3
4
5

FUNCTIONAL ELEMENT UTILIZATION
TYPE

SCH
GM
AP

IOP
GM

NODE EXECUTION INFORMATION

UTILIZATION
55
45
32

1
15

NODEID
1

OPCODE
14
28
25

NODE FIRINGS
6

QUEUE ID
1
2
3
4
5

2 5
3 4

CHANNEL
CHANNEL ID

1

EXECUTION INFORMATION
CHANNEL FIRINGS

26
2
3

QUEUE EXECUTION
DATA ITEMS

100
10
60
14

0

11
4

INFORMATION
HEAD NODE

1
3
2
3
3

Sample Simulator Output

67

TAIL NODE
1
1
2
2
3

Node:
Status:

Queue:
Capacity:
Threshold:
Read:
Valve:

Queue:
Capacity:
Threshold:
Read:
Valve:

1
Busy

1
100
50
14
-1

3
100
50
50
1

Simulator time: 12300

Input Queues
Number of items on queue:
Percentage of capacity:
Percentage of threshold:
Consume:

Number of items on queue:
Percentage of capacity:
Percentage of threshold:
Consume:

Sample Dynamic Graph Output ',

68

27
27
54
14

49
49
98
50

VITA (J

Steven c. Nelson

Candidate for the Degree of

Master of Science

Thesis: ENHANCEMENTS TO THE TIMING SIMULATOR OF THE
ENHANCED MODULAR SIGNAL PROCESSOR

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Hobbs, New Mexico, February 25,
1961 the son of Philip E. and Mary M. Nelson

Education: Graduated from Hobbs High School, Hobbs, New
Mexico, in May 1979; received Bachelor of Science
Degree in Geology from the Oklahoma State
University in December, 1983; completed
requirements for the Master of Science degree at
the Oklahoma State University in December, 1988.

Professional Experience! Lecturer, System Administrator,
and Teaching Assistant, Department of Computing and
Information Science, Oklahoma State University,
August 1984 to August 1988. Consultant, The
National Office of Kappa Kappa Psi/Tau Beta Sigma,
Stillwater, Oklahoma, December 1984 to August 1988.

