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CHAPTER I 

INTRODUCTION 

The purpose of this thesis is to design necessary en­

hancements to the Enhanced Modular Signal Processor Timing 

Simulator originally created by Marilyn Aiken [1]. 

This chapter is a review of the literature-on the ma­

jor topics concerning real-time signal processors, dataflow, 

and other signal processing architectures. The following 

chapters deal in detail with the EMSP methodology and archi­

tecture, the EMSP Timing Simulator and the enhancements made 

to it. 

Realtime Signal Processing 

Signal processing, in its broadest terms, is an activ­

ity of spectrum analysis with a wide variety of applications 

from the low-frequency spectrum of seismology through the 

acoustic spectrum of sonar, speech and music, to the video 

spectrum of radar systems. 

In the period leading up to and following World War II, 

analog signal processing was at the forefront of the ad­

vancement. This was based not only on the level of technol­

ogy, but also on the economy of the application. 
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The formal theory of the digital signal processing of 

today did not emerge until the mid-1960's. The prospect of 

complete digital signal processing systems began to be real­

ized with the advent of integrated circuit technology. The 

first major impetus to the science began with the release of 

the Cooley-Tukey paper in 1965 on a new method of computing 

the discrete Fourier transform, the basis of many signal 

processing filtering techniques. The value of this new 

method lies in the reduction of the computing time of the 

transform by one to two orders of magnitude, from O(n2 ) to 

O((n/2) 2). 

The attraction of digital signal processing over analog 

signal processing lies in the capability of digital systems 

to achieve a guaranteed accuracy and essentially perfect re­

producibility [18]. 

Naval Signal Processors 

The United States Navy began development of its 

first-generation signal processing system in the 1960's. 

The system was to be designed using common equipment that 

could be configured for a variety of applications aboard 

surface ships, submarines, helicopters and airplanes. The 

Advanced Signal Processor (ASP) successfully fulfilled the 

Navy's signal processing needs with one software development 

system and a small number of hardware modules that were con­

figured for each application. 
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By the late 1970's, the tremendous increase in technol­

ogy created a serious increase in the signal processing 

needs of the Navy. A new second-generation signal process­

ing system was necessary. This new system, the Enhanced 

Modular Signal Processor (EMSP), was designed to increase 

the processing density, and to correct one of the main draw­

backs of the ASP, namely, the inability to process many par­

allel channels of data at the same time. These needs led to 

the development of the EMSP Common Operational support 

(ECOS) dataflow methodology and its implementation on the 

EMSP [4]. 

Dataflow 

Most attempts to define 11dataflow11 , begin by describing 

what it is not; namely not "von Neumann." Introduced in 

1946, by John von Neumann, this concept is the familiar se­

rial method of organization that dominates computer lan­

guages and architectures to this day [12]. 

Characterized by a sequential one word-at-a-time in­

struction stream and an incremental instruction counter, 

this organization has some drawbacks that other method­

ologies have sought to overcome. A principal area of inter­

est is in increasing the utilization of resources, thereby 

increasing the system throughput. Many·times, in a von 

Neumann machine, resources not needed for the currently ex­

ecuting instruction are idle. 
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One way to reduce the amount of idleness in the various 

component parts of a system is to exploit the inherent par­

allelism of the an algorithm. The concept of parallelism 

relies on the functionality and asynchronization of the op­

erations to be performed by the algorithm. An operation 

that is functional is one, that when properly executed, does 

not affect the operation of another directly. A simple ex­

ample would be the relationship between the addition and 

subtraction operations. Both operations execute in a pre­

dictable manner, regardless of the operation of the other. 

In other words, an operation that exhibits functionality is 

one that, given the same data, will always yield the same 

results whenever it is. called to be executed. Its position 

in the calling sequence of an algorithm does not affect its 

outcome. The asynchronization of an operation concerns the 

idea that a given operation is not time depende~t: That is, 

other than the normal logic flow of the algorithm, a given 

operation may be performed at any time during the execution 

of the algorithm, and will not be affected by the execution 

of any other operation. (22] 

Dataflow is a conceptual computer organization that 

inherently exploits parallelism. Its basic tenet is that an 

instruction should execute as soon as all of the necessary 

operands are available. This type of organization has also 

been described as "data-driven"· and is intended to allow the 

fastest throughput. (16] 
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The easiest visualization of dataflow is through the 

use of a directed graph. Each node of the graph represents 

an operation to be performed. In the simplest case, a node 

may be a low level operation, such as addition or subtrac­

tion. At a higher level, a node may represent a complex 

function, such as a Fast Fourier Transform (FFT). The arcs 

connecting the nodes represent the paths by which the data 

"flows" from one node to the next. [20] Figure 1 (Appendix 

A) is an example of a simple dataflow graph. 

Dataflow Architectures 

The many dataflow architectures proposed and imple­

mented to date, while widely varying, can be viewed as pro­

viding three basic elements. Each machine must provide a 

way of executing the nodal operations, provide a way of 

storing a description of the ~raph implementation, and pro­

vide a mechanism for collecting and matchi'ng the data "to­

kens" as they are made available. 

A General Model 

A general model of a dataflow machine, such as that 

given by Veen [25], begins with descriptions of the process­

ing element and the activity template. The nodes of the da­

taflow program, in some machines, are implemented in the 

form of a data structure called a template. Each template 

contains a description of the node and information or 
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storage of the input tokens. The node description may ei-

ther be an operand code, in the low-level sense, or a short-

hand name for an instruction stream to be executed, in a 

higher level sense. A list of destination addresses (output 

arcs) would also be included. 

There are three fundam~ntal functions that take place 

in the processing elements (Figure 2, Appendix A). The 

first is the enabling function. This function sequentially 

accepts the tokens as they are made available and places 

them into storage. This function also determines whether 

the node for which a token is destined has received the data 

required for it to execute. If a node is determined to be 

ready to fire, the enabling unit creates an executable 

packet containing the input data, information on the op­

eration to be executed (either the operand or the instruc-

tion stream), and the output destinations. This pack~t is . 
then presented to the functional unit of the processing el-

.ement. 

The functional unit executes the packet and computes 

the output values. These output values are combined with 

the destination addresses into new tokens that are sent back 

to the enabling unit in what completes a circular pipeline. 

This describes the execution cycle of most dataflow 

architectures in a most general way. Many other factors in-

fluence just how a particular design is implemented. Some 

of the important factors that need consideration include the 
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number of input arcs that are allowed into a node, the num­

ber of tokens that are necessary on an arc, how reentrant 

code may be implemented, and how non-trivial data structures 

are maintained. 

A simple but important variation of this model would 

include those machines that use tagged (or "colored") tokens 

in allowing reentrant node execution. In such machines, 

nodes are shared between different instances of a graph. 

Tokens with matching tags are considered part of the same 

node execution. This makes it impractical to store the to­

kens in the nodes themselves, due to finite storage for the 

tokens. A solution that is often employed (Figure 2, Appen­

dix A), splits the enabling unit into two stages: a matching 

function, which checks the destined node to determine 

whether it is enabled; and a fetching function, which 

matches the tokens and the node description into an execut­

able packet, as described above. 

The literature suggests that every description of a da­

taflow machine presents a unique design. Veen (25] suggests 

that most designs will actually conform to one of three ba­

sic structures (Figure 3, Appendix A). A "one-level" ma­

chine matches the general model in that there is only 

pipeline concurrency within a processing element. Execution 

of instructions is only within a processing element with the 

output tokens being used in the same processing element or 

communicated to another processing element. 
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A "two-level" machine is one in which the functional 

unit of the processing element actually consists of many 

"functional elements" which are capable of executing packets 

concurrently. Any executable packet is allocated to any 

idle functional element. 

A "two-stage" machine has split processing elements 

with an extra communication medium between the enabling and 

functional units. This can be especially advantageous if 

some of the functional elements have specialized usages. 

Communication 

A dataflow machine which utilizes direct communication 

has adjacent nodes of the graph allocated to the same pro­

cessing element or to processing elements that are capable 

of communicating directly. The important aspect of this is 

that tokens are delivered through the communication medium 

in the same order that they were received. This implies 

that the determinancy of the graph is maintained. A design 

which utilizes packet communication offers a greater oppor­

tunity for load distribution and parallelism in executing 

the processing elements, since data is communicated in 

packet form. Its advantages though are tempered by concerns 

over contention in the data paths and the maintenance of the 

determinancy of the graph execution. 
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Architectural Examples 

Veen [25] presents an excellent summary of these 

various architectural types. The most important example of 

the direct communication machines is the Data-Driven Machine 

#1 (DDM1), first described by Davis. This machine utilizes 

a tree arrangement for the configuration of the processing 

elements. While this is the oldest example of a working da­

taflow machine, it has a serious bottleneck problem at the 

root of the tree as communication proceeds between the pro­

cessing elements. 

The Distributed Data Processor (DDP), the 1angage a as­

signation unique (LAU), and the uPD7281 Dataflow Image Pro­

cessor, are all examples of static packet communication 

machines. The DDP machine was constructed at Texas Instru­

ments and uses a locking method to protect reentrant graphs. 

The prototype, built with four processing elements, uses a 

ring-structured communication unit with a direct feedback 

link for the tokens that stay within that processing el­

ement. 

The LAU machine, constructed in Toulouse, France, was 

designed around strong processing elements with the higher 

level structure left unspecified. The #O prototype, com­

pleted in 1980, was a single processing element of a conven­

tional microprocessor with 32 functional elements. This 

machine differs from other designs in that the data and 
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instruction memories are separate and utilize a multiphase 

communication path between the functional elements. 

10 

The uPD7281 Dataflow Image Processor, developed by NEC 

Electronics, is capable of being used as a small processing 

element in a dataflow machine. It has a seven-stage circu­

lar pipeline in such a way that tokens that are addressed to 

the same processing element never leave the chip. The de­

sign is also capable of regulating the level of parallelism. 

If a processing element is underutilized, preference is 

given to tokens that will increase the amount of parallel­

ism. 

Another architecture that deserves note is of the 

tagged token type. The Manchester Dataflow Machine, de­

scribed by Gurd and Watson, uses that tagged token idea to 

increase parallelism for reentrant graphs. It is a 

two-stage machine, as described earlier, and has a four unit 

pipeline. The token queue, matching unit, fetching unit, 

and the functional unit are each internally synchronous, but 

uses asynchronous protocols to communicate externally. With 

fixed packet sizes, more than 30 packets can be processed 

simultaneously. Several other designs, including one for 

digital signal processing (See DDSP) have been based on 

these ideas. 



Dataflow as a Technique for 

Signal Processing 

11 

As an application for dataflow technology, real-time 

signal processing seems well suited. The main attributes of 

signal processing are: (1) a well-defined sequence of data 

value independent algorithms that are (2) repeatedly applied 

to signal values as they are received [13,17]. These algo­

rithms are data value independent in the sense that the val­

ues received have no effect on the sequencing of the 

operations. With a continuous stream of input data pro­

cessed by a repeatedly executing set of algorithms, there is 

a significant possibility to overlap executions for greater 

parallelism. In an effort to reduce the complexity of the 

dataflow program graphs created for these applications, the 

no~es of the graph utilize the higher design methodology and 

associate nodes with the complex operations to be performed 

rather than the individual instructions. 

Signal Processing Dataflow Architectures 

A number of other dataflow architectures designed spe­

cifically for real-time signal processing exist. Two de­

scribed below, are of interest to the EMSP. 



DFSP: A Data Flow Signal Processor 

DFSP is an architecture presented by Hartimo, Kronlof, 

Simula, and Skytta (13], with the following design goals 

made to meet the special needs of signal processing. 

12 

(1) Reentrant code is provided by using colored to­

kens. This allows for less overhead in terms of both compu­

tations and the memory space needed for the high level 

operations. 

(2) Every result packet declares an activity template 

as its destination. The activity templates, found in the 

activity store, are temporary storage for those operations 

that have received at least one operand but are not ready to 

execute. A new template is created if a matching one has 

not been found (i.e., this result packet represents the 

first operand to be received for this operation) • 

(3) The processing elements themselves have no access 

to any shared data structures, as may be found in other ar­

chitectures. This lowers overhead by reducing the memory 

management complications. Instead, operand data are circu­

lated as part of a double bus architecture. The thick pipes 

of Figure 4 (Appendix A) represent the data path of the op­

erand data, and the thin pipes represent the paths for con­

trol flow. 



The operation of the various functional units of the 

DFSP architecture are described below. (Figure 4, Appendix 

A) 

The update unit is used to keep the status of the 

various activity templates as current as possible. When a 

result packet arrives from the processing elements, the 

packet is hashed with the current activity templates in 

search of a destination operation. A new activity template 

is created if necessary. Storage may also be allocated for 

operand values. The update unit then sends a transfer re-

quest to the result transfer unit. 
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The result transfer unit initiates a transfer of a re­

sult data block, upon command, and updates the trigger field 

of the destination activity template. The DFSP architecture 

does not count the number of operands needed for each op-

eration; rather, it calculates the total size of the accumu-

lated operands needed for that operation. The trigger field 

of an activity template is set to this value. As each oper­

and arrives at its designated activity template, the trigger 

field is decremented by the size of the operand. An op­

eration is deemed ready to execute when the trigger field 

reaches zero. At that point, the activity template address 

is placed into the queue. 

The fetch unit pairs up ready to execute activity tem-

plates with an idle processing unit containing the necessary 

operation code. An operation packet is sent to the 



processing element and a data transfer request is placed in 

the data queue. 
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The data transfer unit receives requests to transfer 

operand data blocks to specified processing elements. When 

completed, the unneeded activity template is marked as free. 

The processing elements are the functional units that 

perform the actual computations. An idle processing unit 

informs the fetch unit about being idle and waits to receive 

an operation packet. Once the operation packet and the op­

erand data, from the data transfer unit, are available, the 

operation is performed and result packets are sent to all 

the specified destinations, via the update unit. 

Multiple instantiations of a given node are possible by 

the use of colored tokens, reentrant code and the reliabil­

ity of the update unit to associatively manage the various 

token/operand matching operations needed. 

DDSP: The Data Driven Signal Processor 

The DDSP system [14] is a dataflow architecture that 

can be configured from 1 to 32 processors without software 

modification. Designed for signal processing, the designers 

state that large DDSP systems can exceed Cray-1 and CDC 

STAR-100 supercomputers in processing capability. 

Designed as an alternative to array processors by pro­

viding the same low cost computing power with greater system 

flexibility, DDSP has some interesting characteristics. 
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(1) DDSP utilizes a skew algorithm for routing data 

among processors. Each data token generated has a label 

field appended to it to distinguish it from different in­

stances of the same token (i.e., dynamic graph execution 

with colored tokens). These label fields are used by the 

skew algorithm to route tokens to specific processors. This 

offers the opportunity for a uniform distribution of pro­

cessing and localizing communication to nearby processors. 

(2) A special data structure for communicating data 

between procedures has been developed. Called a data driven 

communication (DOC) structure, it is passed as a pointer in 

procedure calls. The structure contains data, to be used in 

the computations, and control information such as array siz­

ing and. return pointers. 

Each DDSP processor (Figure 5, Appendix A) contains an 

input queue, matching store and a processing element. The 

input queue is used for temporary storage and helps in load 

leveling. The matching store is an associative memory that 

is used to pair up tokens with identical keys. The keys 

contain an 11-bit node address and a 16-bit label field that 

defines token attributes. When a match is found the token 

pair and the key are sent to the processing element for ex­

ecution of the node. 

The processing element contains a microprogram se­

quencer that controls both an arithmetic processor and a 



label processor which for the most part are independent of 

each other. 
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The interconnection network is a linear wraparound con­

nection of the DDSP processors, overlaid by a three level 

tree. The linear connection of the processors is used for 

short distance communication between nearby processors; 

while the tree structure is for longer movement of data. 

Each token contains its own network destination and routes 

itself to the various processors or I/O ports in the system. 

This appears to be a relatively simple architectural 

model for dataflow signal processing. The inherent complex­

ity of this class of applications has been retained in the 

programming. A high level language called the Data Driven 

Program Language (DDPL) breaks a program into program 

blocks, procedures, actions and node definitions. Proce­

dures contain node definitions which are the basic units 

used. Node definitions-contain all the executable code and 

are designed to be independent of other node definitions. 

This will allow nodes to execute with maximum parallelism. 

The generalized labelling helps manage multiple activations 

of the same node. 



CHAPTER II 

THE ENHANCED MODULAR SIGNAL PROCESSOR 

The Enhanced Modular Signal Processor (EMSP) has been 

called a hybrid dataflow machine. This comes from the fact 

that not only does the EMSP use graphs to describe and ex­

ecute signal processing algorithms in the dataflow manner, 

it also uses additional command programs and a separate com­

mand program processor to control and manipulate the program 

graphs in a control flow manner. 

The first part of this chapter deals with the Enhanced 

Modular Signal Processor Common Operational Support (ECOS) 

methodology. This methodology is the design basis around 

which the Enhanced Modular Signal Processor was developed. 

The remainder of this chapter will then discuss in detail 

the architecture of the EMSP itself. 

EMSP Common Operational support 

Methodology 

The Enhanced Modular Signal Processor Common Op­

erational support (ECOS) methodology is the design environ­

ment developed for creating signal processing applications. 

ECOS is not a classical dataflow methodology. While still 

based on the concept of a directed graph representation of 
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the signal processing algorithm, the arcs of the graph have 

been redefined as queues and thus allow more than one data 

element on an arc. The various components of ECOS operate 

on this basis. 

Graphs 

18 

A signal processing graph is comprised of nodes, which 

represent the specific signal processing operation 

(primitive) to be executed; and, a set of queues that 

represent the flow of data through the graph. A node may 

also represent a subgraph, which at instantiation time would 

be expanded into nodes, queues, and graph variables as if it 

were a macro definition. Figure 6 (Appendix A) is an 

example of a simple ECOS Graph. 

Graph Variables 

Graph variables represent memory elements that·contain 

one data element that can be used as control variables or 

algorithm coefficients to the signal processing algorithm. 

Graph variables are not dataflow entities and do not affect 

the execution of the node, but are available to the node 

once it has started executing. 

Nodes 

Each node of the graph represents a specific processing 

operation, called a primitive and a primitive interface 
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procedure (PIP) that provides the interface between the node 

and the primitive. 

Each node also requires one or more input ports and 

zero or more output ports. Associated with each port is a 

set of node execution parameters (NEP) that define how the 

queue attached to each port is utilized. The diagram of 

Figure 7 (Appendix A) illustrates the ECOS node construc­

tion. 

Node Execution Parameters 

The node execution parameters (NEP) associated with 

input ports include the threshold, offset, read, and consume 

amounts. The threshold amount is the number of data 

elements that must exist in a particular queue before the 

associated node is ready to execute. The offset amount is 

the number of data elements to skip over at the head of the 

queue before reading data from the queue. The read amount 

is the number of data elements to read from that point in 

the queue. The consume amount is the number of data 

elements to remove from the queue once the node has finished 

executing. 

The node execution parameter associated with output 

ports is the valve amount. The valve amount specifies how 

much of the output data is placed on the output queues or 

whether it be discarded. 
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While the threshold NEP must be specified at start-time 

and remains fixed throughout the graph execution, the other 

NEPs may be fixed or may be calculated by the node's 

primitive interface procedure (PIP) prior to the'node execu­

tion. 

Primitives 

The basic building block of the methodology is the 

primitive and it is definitely machine dependent. It 

contains the code necessary to perform the defined node 

function. 

Primitive Interface Procedure 

Primitive Interface Procedures (PIP) exist to provide 

the logical connections between the various input and output 

queues attached to the node ports and the inputs and outputs 

of the primitive. . The PIP also has a nodal intelligence 

with the ability to calculate values of NEPs. This, in 

essence, allows for run-time alterations of the node 

execution. 

Queues 

Queues provide the logical connections between the 

nodes of the graph. As first-in first-out data structures 

they have the ability to expand and contract as needed. The 
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same node may be both at the head and at the tail of a queue 

to provide a feedback capability. 

Command Programs 

Command programs are written by application programmers 

in a standard high order language with special signal 

processing statements embedded. These command programs are 

not dataflow and obey standard control flow rules. The 

capabilities of command programs typically include starting 

and stopping-graphs and performing exception handling when 

errors are detected. 

The Enhanced Modular Signal 

Processor 

The architecture of the Enhanced Modular Signal Proces­

sor was designed to implement the dataflow methodology of 

ECOS. Bloch [4] describes it as a distributed control, mul­

tiprocessor architecture which provides runtime support of 

data movement through the graph, node execution management, 

queue and graph variable management, and graph reconfigura­

tion. Various types of functional elements comprise the 

EMSP architecture, and are connected together by a control 

bus and a data transfer network. Data and control informa­

tion is transferred between functional units by the trans­

mission of system level instructions over these 

communication paths. Each functional element type has a 
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unique instruction set designed for its particular activity. 

An illustration of the EMSP architecture can be found in 

Figure 8 (Appendix A). 

Data Transfer Network 

All system level instruction containing large data 

blocks are transferred over the data transfer network (DTN). 

An example of an instruction which is passed over the DTN is 

the Accept Queue (AQ) instruction, which is used to transfer 

data from a memory to a processor. This instruction con­

sists of an operation code, a request identifier, a queue 

identifier, the number of data words, and the actual queue 

data. This is the defined path for the AQ instruction as 

large amounts of data may transferred this way. Each DTN 

can be described as a multiple path, unidirectional source 

directed switching network, configurable with a varying 

number of ports, depending on the application. A transfer 

may be active for each port pair (source and sink) providing 

there is no contention for a destination element. As new 

transfers are initiated, existing transfers are not inter­

rupted. Sufficient handshaking and buffering is provided so 

the asynchronous communication between functional elements 

with different transfer rate capabilities can be accom­

plished (4]. Communication occurs in one direction in the 

DTN with each functional unit connected to both a sink and 

a source port. 



Command Program Processor 

The functional element in which command programs ex­

ecute is the Command Program Processor (CPP) • The CPP also 

is responsible for acting on requests for graph control, 

providing runtime system services and process control. The 

CPP is implemented using a standard Navy computer, the 

AN/UYK-44, embedded within the EMSP [4]. 

Global Memory 
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The main storage units of the EMSP are its Global 

Memories (GM). An EMSP may be configured with one or more 

independent GMs, each on a pair of DTN ports. Directly 

implemented within the GMs are the queues, graph variables 

and instruction streams. For this reason, the GMs are re­

sponsible for providing dynamic memory management, 

allocation of storage as queue data are written and deallo­

cation of storage as queue data are consumed. As stated 

above, requests for data instruction are answered with Ac­

cept instructions containing data. Global memories also 

maintain information, such as the number of words in a queue 

and the value of the threshold. These are used to determine 

if a queue has gone over threshold. Each time a queue is 

written or consumed, the relationship of the resulting num­

ber of data elements to the threshold is checked. If the 
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appropriate conditions are met, the queue is reported to the 

Scheduler as Queue Over Threshold (QOT). 

Input output Processor 

Input and output procedures from the EMSP are initial­

ized by command programs and are executed by an Input;output 

Processor {IOP). Once started, an IOP performing input will 

receive data from an external channel, process the data, and 

place it on one or more queues which serve as inputs to a 

graph. Similarly, an IOP performing output removes data 

from an output queue and transmits it over an external chan­

nel. Interface protocols associated with communication with 

external devices are handled by the IOP. Internal memories 

are used to help assure efficient data transfer with syn­

chronization of external devices and buffering of data. 

Arithmetic Processor 

The functional element that implements the primitives 

is the arithmetic processor (AP). As with GMs and IOPs, 

there may be many APs in an EMSP configuration, each operat­

ing independently. Primitive algorithms are implemented as 

microcode programs, which execute in an AP; and all APs in 

an EMSP configuration are loaded with the microcode for all 

primitives to be used in the application graph. Thus, any 

AP which is provided with the unique information describing 

a particular node instance can be the processing resource 
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used to execute the primitive [4). An Instruction stream 

(IS), stored in a GM at start time, is used to implement the 

ECOS Primitive Interface Procedure. The IS is provided to 

an AP by the GM at the direction of the Scheduler, when the 

node is eligible for execution. 

Three phases make up a node execution. The setup phase 

occurs while the IS is executing in the AP's control unit to 

calculate NEP amounts (if necessary), and to read control 

and signal data into the local operand memories. With the 

completion of the setup phase, the node execution begins 

with the execution of the primitive in the node's arithmetic 

unit. The last phase, the breakdown phase, begins with the 

completion of the primitive execution. Here, the IS ex­

ecutes to write to output queues and consume from input 

queues. The internal structure of the AP, with independent 

control and arithmetic units and split local memories, al­

lows data transfers between the AP and GMs to be concurrent 

with primitive execution. As a result, an AP may be servic­

ing three nodes simultaneously [4). 

Scheduler 

As a graph executes, the heart of the EMSP operation is 

the Scheduler. Its main responsibility is to schedule the 

execution of the nodes on the processing resources. Several 

databases used to support the dataflow operation of the ar­

chitecture are also maintained by the Scheduler. The first 
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of these is the Queue to Node Map, which stores the topology 

of all executing graphs by maintaining a list of nodes con­

nected to the head and tail of each queue. A Node Charac­

teristics Table is used to store necessary information on 

each node, including the number of input queues, the type of 

processor required for execution (AP or IOP), the identifi­

cation of the GM containing the node's IS, and a dynamic 

count of the number of input queues which are yet to be over 

threshold. A third database is the Free Functional Element 

List which maintains a record of the functional elements 

which are currently available. A Ready Node List is also 

used to maintain a list of the nodes that are eligible for 

execution, but for which no processing resource is avail­

able. 

, . 



CHAPTER III 

THE EMSP TIMING SIMULATOR 

The EMSP Timing Simulator, created by Marilyn Aiken 

[1], is designed to provide a tool to evaluate the Enhanced 

Modular Signal Processor architecture and any proposed 

modifications. The basic premise of the simulator is to 

simulate the operation of the various functional elements of 

the EMSP architecture based on their individual timing re­

straints. This enables the user to experiment with various 

hardware configurations for a given signal processing graph. 

The timing simulator basically is an event driven pro­

gram. Each activity; i.e., graph instruction, needed to 

simulate the operation of the EMSP architecture is created 

with a start-time relative to a simulated clock. The timing 

of each activity is calculated based on published time re­

straints that are part of the architectural design of the 

EMSP. For the most part, these are static times, but for 

some activities, especially those related to data transfer, 

these times must be calculated. 

Graph execution instructions are instructions passed 

between functional elements. A Queue Over Threshold (QOT) 

instruction serves as an example. When a Global Memory de­

tects that a queue has gone over threshold, it sends a QOT 
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instruction out over the Control Bus to the Scheduler. The 

Scheduler then takes an appropriate action. Such an action 

may simply be updating the dynamic queue information for the 

nodes involved, or the scheduling of a node to execute if 

the conditions for that node to execute have been met. If 

the functional element for which a graph instruction is des­

tined is busy, or the instruction has an occurrence time 

greater than the simulator clock, the instruction is placed 

on the central event list. The Control Bus request table 

and the Data Transfer request table contain graph instruc­

tions that are requesting action from a particular func­

tional element. Each functional element scans these tables 

to determine whether another functional element is request­

ing action. The_.ready list contains a list of nodes re­

ported by the Scheduler to be ready to execute. 

The node data structure records the types and identi­

fiers for each of the node inputs and outputs. The value of 

each graph instantiation parameter is stored as well as the 

Global Memory identification number and element size for 

each graph variable and queue. The queue data structure 

maintains all node execution parameters and capacity infor­

mation for each queue. Channel data rate information is 

kept in the channel data structure. Taken as a whole, the 

graph topology is defined across these various structures. 
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Node Execution Cycle 

The graph execution process follows a defined determin­

istic method that implements the dataflow methodology. The 

following explanation shows the steps that must occur for 

the execution of one node. This is an ongoing asynchronous 

methodology, and once commenced the operation of each func­

tional element is based on the exchange of instructions and 

the availability of data. Figure 9 (Appendix A) assists in 

the understanding of this process. 

First, as sensor data is input to the graph, via the 

Input;output Processor (IOP), it is written to the input 

queues. Write Queue instructions are generated by the IOP 

as needed. When the Global Memory detects that the queue 

has gone over threshold, a Queue over Threshold (QOT) in­

struction is sent to the Scheduler. 

When the Scheduler has received a QOT instruction, the 

number of conditions necessary for the node involved is de­

cremented. When all of the conditions have been satisfied, 

then the node is considered ready to execute. A Send In­

struction Stream (SIS) instruction is sent to the Global 

Memory containing the instruction stream for the ready 

node's primitive. 

The Global Memory builds an Accept Instruction Stream 

(AIS) which contains the primitive instruction stream and 



sends it across the Data Transfer Network (DTN) to the 

Arithmetic Processor (AP) designated by the Scheduler. 

Based on the particular primitive, the AP enters the 

setup phase of its operation and sends appropriate Request 

Queue (RQ) or Request Graph Variable (RGV) instructions to 

the Global Memory. The Global Memory responds with Accept 

Queue (AQ) or Accept Graph Variable (AGV) instructions con­

taining the requested data. 

30 

Once all the required data have been received, the AP 

enters the execution phase. A Request For Instruction 

Stream (RFIS) instruction is sent to the Scheduler notifying 

it that it has completed the setup phase and is free to be­

gin the setup on another node. 

Finally, when the execution phase is completed, the re­

sults are written to the proper Global Memories with Write 

Queue (WQ) or Write Graph Variable (WGV) instructions. Once 

completed, Consume Queue (CQ) instructions are generated to 

remove data from the previous input queues. It should be 

noted that Write Queue instructions generated by the node 

completion may make subsequent node execution possible as 

queues go over threshold. 

Input 

Input to the simulator currently is provided either by 

user entry or by two configuration files. The first file 

contains the static graph topology. Each node is defined by 



an identification number, an opcode mnemonic of the signal 

processing primitive to be executed, and a number of graph 

variables and queues which serve as inputs and outputs to 

the node. Queues also are defined as part of the node 

definition and include the threshold, read, consume, and 

valve amounts. 
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The second file contains the information needed to de­

fine the EMSP hardware and system configuration. This in­

formation contains information to define the size and number 

of data transfer networks. Each functional element is de­

fined by type (Arithmetic Processor, Scheduler, etc.) and 

its connection to the data transfer network. This file also 

contains information to define the channels that serve as 

inputs and outputs to the simulator. This information in­

cludes the channel rates and the queue identifiers to which 

it is connected. This file also contains the memory con­

figuration of the graph topology. That is, which node in­

struction streams, queues, and graph variables are stored in 

which Global Memories. Graph instantiation values are also 

contained in this file. 

Output 

output from the simulator consists of a system con­

figuration chart, a list of utilization figures for each 

functional element, node execution information, channel ex-
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ecution information and queue information. An optional run­

time execution graph can be provided. 

Implementation of Functional Elements 

A discussion of the implementation of each of the func­

tional elements will be helpful in understanding the func­

tionality of the simulator. 

Arithmetic Processor 

The procedure for implementing the Arithmetic Processor 

(AP) takes into account each of the three states of node ex­

ecution: setup, execution, and breakdown. Separate timing 

variables effect the three timing states. The primitive ex­

ecution time for the execution phase is calculated based on 

the opcode mnemonic. Graph instructions generated by the 

operation of the AP include Accept Instruction Stream (AIS), 

Send Instruction stream (SIS), Request Queue (RQ), as well 

as others. The timings for these instructions will ulti­

mately be accounted for as each instruction is processed. 

Instructions generated by the breakdown phase, such as Write 

Queue (WQ) and Consume Queue (CQ) are handled as is appro­

priate for that primitive. 

Control Bus/Data Transfer Network 

The procedures that implement the Control Bus (CBUS) 

and Data Transfer Network (DTN) are quite similar. The ba-
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sic purpose of these procedures is to order the list of re­

quests and to handle conflict for destination functional 

elements. The important point to remember is that schedul­

ing of data transfers is based on the current clock time 

with rescheduling to a future time for conflict resolution. 

This applies either when concurrent instructions are seeking 

the same functional element, or when a functional element is 

already busy. 

Global Memory 

The Global Memory (GM) procedure simulates the nonin­

terruptible nature of a true Global Memory. As an instruc­

tion is received by a GM, the central event list is check~d 

to determine whether that GM is currently active. If it is 

active, then the instruction is rescheduled with a future 

event time. 

The timings to handle GM instructions involving data 

transfer are functions of the number of words to be trans­

ferred. Once the timing has been calculated then the appro­

priate Accept Instruction Stream (AIS), Accept Queue (AQ), 

or Accept Graph Variable (AGV) instruction is placed on the 

Data Transfer Network. Updating queues is achieved by Write 

Queue (WQ) or Consume Queue (CQ) instructions with the send­

ing of the appropriate Queue over Threshold (QOT), Queue 
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OVer Capacity (QOC), Queue Under Capacity (QUC), or Queue 

Under Threshold (QUC) instructions to the Scheduler over the 

control Bus. 

Scheduler 

Like the Global Memory, the Scheduler procedure 

simulates the noninterruptible nature of the true Scheduler. 

An instruction reaching the Scheduler while it is busy is be 

rescheduled for a future event time. The Scheduler monitors 

the graph status by updating the status of each node, the 

number of conditions needed to execute each node, and the 

connections of the external channels to the graphs. In ad­

dition, the Scheduler maintains the free processor list and 

schedules nodes to execute based on the status of each node 

and the arithmetic processors. The event list is maintained 

as necessary. 



CHAPTER IV 

ENHANCEMENTS TO THE TIMING SIMULATOR OF THE 

ENHANCED MODULAR SIGNAL PROCESSOR 

Simulator Input Procedures 

The EMSP Timing Simulator, as it was designed 

originally, had only adequate input procedures with which to 

configure it. Input consisted of a mixed combination of 

user supplied input together with two relatively unformatted 

configuration files. In the first case, the user could en­

ter all necessary input from the keyboard after which the 

simulator would execute. The disadvantage of this method is 

that rio configuration files were created or used by the 

simulator. The second method utilizes only the two user 

created configuration files. These files were to be created 

by an editor with no interaction or error checking by the 

simulator. 

The first file contained the information necessary to 

create the program graph topology for execution by the tim­

ing simulator. It contained such information as the node 

identification number, the primitive mnemonic indicative of 

the signal processing algorithm to be executed by that node, 

and other information describing the inputs and output to 
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each node. Examination of this file by a user yielded no 

useful information. 
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The second file contained hardware configuration infor­

mation necessary to define each of the functional elements 

of the EMSP architecture. Other information in the file in­

cluded graph instantiation parameters, memory placement in­

formation, queue capacities and primary values for graph 

variables. 

In the end, this two file arrangement, while adequate 

to immediate needs, did not make the timing simulator par­

ticularly easy to operate and made creation of the con­

figuration files extremely error prone. 

The first part of this thesis project was to design and 

implement new procedures to create the configuration files 

for the simulator. This was undertaken with three goals in 

mind. First, to create a more acceptable method for creat­

ing the simulator configuration files. Second, to provide a 

method of interpreting the configuration files. And, fi­

nally, to implement a method to verify the connectivity of 

the graph topology input to the simulator. 

The first two goals were realized by the creation of 

several new procedures which, while mirroring the sequences 

of the original input procedures, provide a much better en­

vironment with which to work. 



The UNIX System V curses library routines were used 

throughout the simulator to provide split screen input. 

Split in half horizontally, the top half of the screen is 

used to prompt the user for the required keyboard input. 

The bottom half of the screen is used to echo the input in 

an interpretive way, as described above. 
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Nineteen new procedures in four files were created to 

make these changes. The first file, newmain.c, contains a 

new main() procedure for the simulator. In c programming, 

the function main() is always the first procedure called. 

This procedure replaces the main() procedure previously 

found in the file main.c. This new main() procedure is re­

sponsible for defining the curses environment and creating 

the split screen display. This procedure also is respon­

sible for prompting the user for the names of the configura­

tion files. This implementation alters the original design 

by creating three configuration files. The first file con­

tains the graph topology information as it was originally 

designed. The second file contains only the EMSP hardware 

configuration information, as described above, with the 

third file holding the memory configuration and instantia­

tion information. This change was made to make each file 

more specific to the information that it contains. 

If any of the three file names supplied by the user 

does not exist, the user is given the option of reentering 
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that name, in case a typographical error occurred, or, en­

tering the routines necessary to create that file. Once the 

three files exist, then the user is given the choice of ex­

ecuting the simulator with these three configuration files, 

or aborting the execution of the simulator. This allows the 

user the option of creating zero or more of the configura­

tion files and executing the simulator at one sitting, or 

using the simulator only as a tool to create the configura­

tion files for later use. 

The second file, config.c, contains three procedures: 

create_top(), create_config(), and create_mem(). These pro­

cedures assist in the creation of the various configuration 

files. If a user wishes to create a new configuration file, 

then one of these procedures is called with the new file 

name as a parameter. The create_top() procedure is called 

for the creation of a new graph topology file; the 

create_config() procedure is called for the creation of a 

new hardware configuration file; and, the create_mem() pro­

cedure is likewise called for the creation of a new memory 

configuration file. Each of these procedures makes the ap­

propriate system calls to create and open the new file with 

the appropriate error checking. Once the file has been suc­

cessfully created, the appropriate querying procedure is 

called to prompt the user for the required keyboard input. 

Query.c, the third file, is an adapted version of the 

original read.c file. This file contains the same 
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procedures as read.c, renamed and adapted for use in the 

curses environment. All of the output necessary to update 

the split screen display, including echoing the user input, 

generating the interpretive lower screen, and performing the 

file output to the configuration files, is done in these 

procedures. Some preliminary initialization of the simula­

tor data structures is also done to insure that all of the 

data necessary to operate the simulator is asked for. 

The fourth file is emsp.c. This file contains a rou­

tine called emsp() which is another new version of the 

original main(). This routine is used to start the execu­

tion of the timing simulator, taking into account the new 

curses environment, and the use of three configuration 

files, instead of two. Routines in the file readm.c, are 

called to read the configuration files and initialize the 

timing simulator. 

Other changes where made throughout the simulator to 

standardize its use in the curses environment. This is par­

ticularly true in the support.c file which contains all of 

the output procedures. No formatting changes were made from 

the original, apart from the use of appropriate function 

calls for use with curses. 

Two more procedures were created to determine the con­

nectivity of the graph topology. It is assumed that the 

original design did not include sufficient error checking in 

this area because it was not intended for the configuration 
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files to be user generated; rather, they would be provided 

by some other facility. To overcome this, the procedures 

matrix() and dfs() were created in the file matrix.c. These 

procedures utilize simple data structure techniques to 

verify the connectivity of directed graphs, such as dataflow 

graphs. The procedure matrix() utilizes the ptr_queue 

structure of the simulator to build an adjacency matrix. 

Each queue of the simulator is examined and an entry in the 

matrix is made for each node connected tail and head of each 

queue. To understand this, it is important to remember that 

each queue in a dataflow graph represents a directed arc. 

Queues are first-in-first-out data structures with data 

placed on the tail and data removed from the head of the 

queue. Determining whether each node is connected to the 

graph is the responsibility of the dfs() procedure. This 

routine is a simple recursive depth-first-search algorithm. 

Usi~g the adjacency matrix created by the matrix() routine, 

each node is visited based on the entries in the matrix. If 

any nodes have not been visited when the dfs() procedure 

finishes, then those nodes are considered disconnected from 

the graph. The simulator will abort under this condition as 

this is not considered a safe condition. 

Configuration Feasibility Determination 

The second part of this project was to develop a means 

for determining whether a particular hardware and memory 
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configuration is appropriate to execute a given graph topol­

ogy. An appropriate configuration is one in which the graph 

could execute without any serious bottlenecks or loss of 

data. These problems are indicated by the overflow of any 

of the graph queues. If there is an insufficient number of 

the appropriate functional elements, namely Global Memories 

and Arithmetic Processors, then the timing dependencies in­

herent in the node primitives and data transfers reduce the 

number of node executions in a given period of time. If the 

processor cannot keep up with the data input data rates, 

then the queues begin to go over capacity with data ar­

rival. 

The detection of this Queue Over Capacity condition is 

an important process and one of the purposes for the 

original design of the timing simulator. Unfortunately, 

this concept was overlooked in the final version of the 

simulator. This oversight is corrected easily. A procedure, 

called unfit(), was created to be called whenever a Queue 

Over Capacity (QOC) situation is detected. Appropriate 

calls are in the Global Memory procedure to detect QOC in 

the internal queues, and in the Scheduler procedure to 

handle QOC in the channel queues. This procedure is found 

in the file unfit.c and, when called, generates output not­

ing that state of each node and queue in the simulator at 

the detection time of the .Queue Over Capacity·. The normal 

output procedures are also called to generate the 



utilization figures for the execution of the graph up to 

that point. This procedure also handles the ending of the 

curses environment and the closing of the configuration 

files prior to aborting the simulator. 

Dynamic Graph State Table 
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The final part of this project involves the design of a 

graph state table at each simulated clock time interval dur-

ing the execution of the timing simulator. In other words, 

the state of each node and its queues are shown throughout 

the execution of the graph. This output provides the user 

more information about the nature of the signal processing 

graph executing on the timing simulator. Such information 

is helpful in judging the parallelism of the signal process­

ing algorithm and the efficiency of the hardware configura-

tion. 

The information presented includes the current 

simulated ·time, and the following information about each 

node of the graph: 

a. Node Identification Number. 
b. Primitive mnemonic. 
c. Current state of each node. (i.e. Busy, Idle) 
d. current state of each input queue. 

(i.e. QOT, QOC, QUT, QUC, etc.) 
e. Percentage of capacity and threshold for 

each queue. 

In terms of the execution of dataflow graphs, a node of 

the graph is considered to be idle until all of the 



conditions necessary for the node to execute have been met. 

This generally means that all of the input queues have gone 

over threshold. At that point the node is considered to be 

executing. 

In terms of the EMSP architecture, a node can be busy 

for a number of reasons, each related to the status of the 
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various functional elements. When a node has satisfied each 

of the conditions needed to fire, the Scheduler attempts to 

schedule the node for immediate execution. If no Arithmetic 

Processor (AP) is available, the node is placed on a list of 

ready nodes and then is schedUled on a first-come-first-

served basis on the next available AP. This occurs provided 

that there are no other instances of that node currently 

executing. This is a necessary condition as this simulator 

was not designed to be a tagged token architecture and does 

not have the capability to handle multiple instances of a 

given node. 

Once the.node reaches a particular AP, ·it may have 

other periods of waiting related to the data transfers nec­

essary during the setup and breakdown phases of the node ex­

ecution. These waiting periods are time spent on the 

servicing lists for the Control Bus (CBUS) and the Data 

Transfer Network (DTN). 

To avoid problems with multiple node instances, the 

simulator marks a node as busy from the point at which all 

, . 



of the execution conditions are met, to the completion of 

the breakdown of the node execution. 
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For the purposes of the dynamic state output, any node 

appearing on the ready node list, the Scheduler's instruc­

tion list, the DTN waiting list, or the CBUS waiting list, 

is considered to be executing. Any node not on one of these 

lists is considered idle. 

The design of the dynamic state output of the graph ex-

ecution would be as follows: 

(1) During each simulated clock cycle, traverse 
the instruction list, the ready list, the DTN 
waiting list, and the CBUS waiting list, marking 
in the state table each node appearing on one of 
these lists. Each of these lists is maintained as 
a singly linked list data structure of the following 
construction: 

struct instruct { 
int time; 
int opcode; 

} ; 

struct FE *sender; 
struct FE *receiver; 
int !_message; 
int nodeid; 
int message; 
struct queue *queue; 
struct instruct *next; 

(2) For each node of the graph, determine the state 
of each of the input queues. It is not necessary to 
do the same for the output queues as they will be 
considered as inputs to other queues or as final out­
put from the graph. 

There are two different design approaches that can be 

taken, based on the preexisting data structures of the 

simulator. The first method involves four levels of indi-
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rection (pointers) and fewer sequential array traversals. 

The second is much simpler in its use of pointers, but would 

require more searching for the same information. The advan-

tage of one over the other depends on the relative sizes of 

the graph topologies used on the simulator. 

The first method would utilize four interlinked c 

structures. The first structure is an array of pointers 

where each element points to a node of the graph. The struc-

ture is defined as follows: 

struct ptr node { 
int nodeid; 
struct node *n_ptr; 

} ptr_node[MAX_NODES]; 

The configuration of each node, as well as some static 

and dynamic information concerning the node is given in the 

node structure: 

struct node { 

} ; 

short nodeid; 
short opcode; 
short num_inputs; 
short NOC; 
short prior; 
short GM; 
short type; 
short suspended; 
short firings; 
short exec_time; 
short nodesize; 
struct var i_var[I_MAX]; 
struct var o_var[O_MAX]; 

For this discussion, the important part of this struc-

ture is the "struct var i_var[I_MAX]" definition. This is 



an array of structures used to store information on each of 

the node's inputs. Each of the inputs, whether it is a 

Graph Variable (GV), a Graph Instantiation Parameter (GIP), 

or a Queue, is recorded in this structure: 

struct var { 
short type; 
short GM; 
short size; 
short value; 
struct queue *q_ptr; 

}; 

46 

To reach the information about each queue needed by the 

dynamic state output, a traversal of the i var array is nee-

essary. For each input of type QUEUE, the queue structure 

pointed to by q_ptr would be accessed for the necessary in­

formation. The queue structure is defined as follows: 

struct queue { 

}; 

int queueid; 
int head node; 
int tail-node; 
int threshold; 
int consume; 
int read; 
int capacity; 
int sizeof_data; 
int GM; 
il')t data_items; 
int status; 
int produce; 

An example of the indirection needed to reference any 

of this information would therefore require something of the 

form: 

ptr_node[i].n_ptr->i_var[j].q_ptr->capacity 



with sequential traversals needed for the ptr_node and the 

i_var arrays. 

The second method requires simpler data structures to 

end up with the same queue data arrived at above. Like the 

ptr_node structure above, a ptr_queue structure exists to 

give immediate access to the queue information: 

struct ptr_queue { 
int queueid; 
struct queue *q_ptr; 

} ptr_queue[MAX_NODES]; 

The "struct queue *q_ptr" definition gives access to 
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the same queue structure described above. The procedure for 

getting the information needed for the dynamic state output 

requires that for each node in the graph, a traversal of the 

ptr_queue array is necessary. Each queue is checked to find 

those queues defined with the current node as the head node 

for that queue. Data is removed from the heads of queues, 

therefore a queue is an input queue to the node at its head. 

Because the q_ptr array would have to be sequentially 

traversed for each node in the graph, this method may be 

more time consuming than the first method. However, the in-

direction needed is much simpler: 

ptr_queue.q_ptr->capacity 

As information for each node is collected, the dynamic 

state output would be constructed to generate the desired 

output. Appendix B contains sample output of the.dynamic 

state of the graph during execution. 



CHAPTER V 

CONCLUSIONS 

The purpose of this project is to study the dataflow 

architecture called the Enhanced Modular Signal Processor, 

and to make enhancements to EMSP Timing Simulator created by 

Marilyn Aiken [1]. 

The EMSP Timing Simulator is a tool for testing various 

configurations of the EMSP hardware to determine its suit­

ability for particular signal processing graphs. Suitabil­

ity is determined not by any computed results of the signal 

processing graph, but by the ability of the hardware con­

figuration to execute the graph within the timing restraints 

of the graph operations. 

The enhancement part of this project develops the pro­

cedures necessary to correct some oversights in the original 

timing simulator. The first part of this three part project 

created new input procedures to create the needed configura­

tion files and to test the connectivity of the input graph. 

The second part enhanced the simulator by detecting the in­

ternal conditions needed to determine whether a particular 

.hardware and memory configuration is insufficient of the ex­

ecuting graph. The third part of the project created the 

procedure needed to generate a dynamic graph state table. 
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Such a table shows the state of the executing graph at each 

tick of the simulated clock. The state of each node and its 

input queues are shown. This information would be useful to 

the application programmer to determine bottlenecks and lev­

els of parallelism in the signal processing graph. 

Suggestions for Future Work 

As a tool for the study of the Enhanced Modular Signal 

Processor, the Timing Simulator is a good beginning. Pos­

sible future work on the simulator must address the limita­

tion on the size of the graph topologies that can be 

simulated. Conclusive data on the operation of this archi­

tecture is impossible without adequate test topologies. 

The configuration file concept is still not adequate 

for easy use by the user. Redesigning the formats of each 

of the files with a new parsing method would greatly improve 

the usability of the simulator. 
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Figure 1. Simple Dataflow Graph 
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(a) Simple Dataflow Processing Element 
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11f1110ry for 

Tokens 

(b) Tagged-token Dataflow Processing Element 

Figure 2. Fundamental Functions of Dataflow 
Processing Elements 
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Figure 4. Diagram of the DFSP Architecture 
(reproduced from [13.]) 
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Figure 6. ECOS Sample Graph Topology 
(reproduced from [9]) 
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Figure 7. ECOS Node Construction Diagram 
(reproduced from [9]) 
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Figure 8. Diagram of the EMSP Architecture 
(reproduced from [17]) 
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EMSP Timing Simulator 

Enter the name of the graph topology file 
to use or create: T1 

The file! T1, does not exist. 
Do you wish to: 

1. Create this file. 2. Reenter 

How many nodes in this graph topology? 3 

Enter the node identification number for node o: 1 

Enter the opcode mnemonic for this node: VOR_SQR 

This node requires two inputs. 
Enter the input type for input #O: 
(GIP=-4, GV=-3, QUEUE=-5): -3 

Enter the Graph Variable Identification Number: 1 

Enter the input type for input #1: 
(GIP=-4, GV=-3, QUEUE=-5): -5 

Enter the queue id: 1 
Enter the threshold: -1 
Enter the consume amount: -1 
Enter the read amount: -1 

This node requires one outputs. 
Enter output type for output #0: 
(GV=-3, QUEUE=-5): -5 

Enter the queue id: 2 
Enter the valve amount for output queue: -1 

Sample Output for Graph Topology 
Input Procedure 
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Enter the name of the EMSP configuration file 
to use or create: T2 

The file: T1, does not exist. 
Do you wish to: 1 

1. Create this file. 2. Reenter 

Enter the number of data transfer networkds [1/2]: 

Enter the switch size for DTN[O]: 16 
Enter the switch size for DTN[1]: 8 

Number of functional elements to create: 5 

Enter the Functional Element ID: 1 

Enter the type of Functional Element, 
(APP = O, CPP = 4, GM = 1, IOP = 3, SCH = 2): 2 

Enter which DTN the concentrator is on: 
Enter which concentrator on DTN: 
Enter which element on concentrator: 
Enter which DTN the distributor is on [0/1J: 
Enter which distributor on DTN: 
Enter which element on distributor: 

Sample Output for Hardware Configuration 
Input Procedure 
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TIMING SIMULATOR FOR THE 
ENHANCED MODULAR SIGNAL PROCESSOR 

EMSP CONFIGURATION FOR SIMULATION 
FEID TYPE CONCENTRATOR DISTRIBUTOR 

DTN CON ELEMENT DTN DIS ELEMENT 
1 SCH 0 5 0 1 3 3 
2 GM 1 6 1 0 6 2 
3 AP 0 7 2 1 5 1 
4 IOP 1 3 3 0 4 0 
5 GM 0 15 3 1 7 2 

FEID 
1 
2 
3 
4 
5 

FUNCTIONAL ELEMENT UTILIZATION 
TYPE 

SCH 
GM 
AP 

IOP 
GM 

NODE EXECUTION INFORMATION 

UTILIZATION 
55 
45 
32 

1 
15 

NODEID 
1 

OPCODE 
14 
28 
25 

NODE FIRINGS 
6 

QUEUE ID 
1 
2 
3 
4 
5 

2 5 
3 4 

CHANNEL 
CHANNEL ID 

1 

EXECUTION INFORMATION 
CHANNEL FIRINGS 

26 
2 
3 

QUEUE EXECUTION 
DATA ITEMS 

100 
10 
60 
14 

0 

11 
4 

INFORMATION 
HEAD NODE 

1 
3 
2 
3 
3 

Sample Simulator Output 
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TAIL NODE 
1 
1 
2 
2 
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Node: 
Status: 

Queue: 
Capacity: 
Threshold: 
Read: 
Valve: 

Queue: 
Capacity: 
Threshold: 
Read: 
Valve: 

1 
Busy 

1 
100 
50 
14 
-1 

3 
100 
50 
50 
1 

Simulator time: 12300 

Input Queues 
Number of items on queue: 
Percentage of capacity: 
Percentage of threshold: 
Consume: 

Number of items on queue: 
Percentage of capacity: 
Percentage of threshold: 
Consume: 

Sample Dynamic Graph Output ', 

68 

27 
27 
54 
14 

49 
49 
98 
50 
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