DESIGN OF A META-ASSEMBLER

By
SHARADCHANDRA R. %URTHY
Bachelor of Engineering

Bangalore University
Bangalore, India

1984

Submitted to the faculty of the
Graduate college of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
July, 1988

__Y \\‘-f'i 3‘\‘;:;
VAR
MIAZA

Qo{). o}

DESIGN OF A META-ASSEMBLER

Thesis Approved:

Tqééis Adviser

2 R 73,627

O oy ZF

/éi7&H%b%@¢t /#7- /5§h%%4éﬁ;2%t

Dean of the Graduate college

ii
1334850

-~

ACKNWOLEDGMENTS

I wish to express my sincere appreciation to Dr.
L.G.Johnson for his encouragement and advise throughout my
graduate program. Thanks also to Dr. H.R.Bilger and Dr.
R.L.Cummins and Dr. C.D.Latino for serving on my graduate

committee.

iii

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION ..cccceecececcsccscccsccccsoscsccscsasocscsccocsscaos 1
II. WHAT IS MICROPROGRAMMING ? ..ccceceececcacns ceecesse 3
ITI. DESIGN OF A META-ASSEMBLER ..ccccccecececcccscccasn 7
Problem specificationcc0ieeeieccesn 7

DEeSign .ciceeececsecccsnsacscnnns P -

Data structurescccetieieieeenns. .11

Search strategy ..cceceeccccecscsccsccssccses 23

Modularity ccceeeececececccoonnanonss ceeenn 25

IV. CONCLUSIONc.c.. et eoeccereessssseserecesssn e 28
APPENDIX A - MANUAL T 29
APPENDIX B - SYNTAX 32
APPENDIX C ~ ERROR MESSAGES .:ccccceocecccsoscasse eeee. 38
APPENDIX D - SAMPLE MICROPROGRAM. .¢ccccsesecccancccss 42
APPENDIX E - META-ASSEMBLER LISTINGS ..¢cectoesccacsaans 45
APPENDIX F - SOURCE PROGRAM LISTING ..:.ccceececccsccs 53

iv

Figure
1. Data
2. Data
3. Data
4. Data

structure

structure

structure

structure

LIST OF FIGURES

Page
for address tableccc0ceeeencnn 14
for field tablecieiieieeneennn 16
for format table ceecsens 19
for the microwordceeceeeeees 21

CHAPTER I
INTRODUCTION

A significant trend in computer design in recent years
has been the replacement of the conventional transistor
logic control section of a digital computer with "stored
logic" or microprogrammed control, stored in high speed,
nondestructive read only storage.

The main reason for this shift in computer control
implementation is the economic superiority of microprogram-
ming over conventional logic control. Microprogramming has
made it economically feasible, for example, to have the
same comprehensive instruction set built into a whole line
of new computers, even the smallest ones. Thus we have com-
puter lines that have compatible instruction sets, yet
their internal hardware, organization, and structure are
drastically different. Microprogrammed control offers many
other advantages besides the much publicized upwards and
downwards compatibility. Among these being inherent flexi-
bility of a microprogrammed system to permit architectural
extensions and modifications that will make the system per-
form a specific data processing function with maximum effi-
ciency. |

All present indicators point to an almost explosive

increase in microprogramming activity by system engineers

and users. The biggest factor that will lead to the pro-
jected increased exploitation of microprogrammed control is
the inclusion of a non-destructive writable control
storage. This would remove the restriction of permanent
fixed operation codes locked in to the system architecture,
and it would lead to a number of fascinating possibilities.
Thus microprogrammed control provides a straightforward way
to correct errors or provide enhanced capabilities in the

instruction set.

CHAPTER IT
WHAT IS MICROPROGRAMMING ?

A modern digital computer can be partitioned into five
distinct functional units viz, input, storage, arithmetic
and logic unit, output and control. These five units com-
municate with each other through electronic signals that
represent data, instructions and control signals. The order
timing and direction in which this information flows within
and between the five principal functional sections in a
computer are effected by the control unit, which in turn is
directed by the sequence of machine instructions.

The control section of a computer directs the opera-
tion of the entire computer. It receives units of informa-
tion from the storage section which tell it what operations
are to be performed and where the data to be operated upon
are located in the storage section. After the control sec-
tion determines the exact instruction to be executed, it
then issues control signals to open and close the specific
gates throughout the system, thus permitting the necessary
data in the form of electrical signals to flow from one
functional unit to another in the execution of that opera-
tion. Once the ALU has finished with its part, the control
section may issue the necessary control to permit the

results to be transmitted back into the storage unit or

some output unit.

The general nature of the control unit is fourfold:
the first two consisting of fetching and decoding of the
sequence of machine instructions; the third function is the
gating of the data paths to perform operations on the data
fields; and the fourth is changing the state of the com-
puter so as to allow the next required operation to be per-
formed.

Thus a digital computer may simply be described as an
elaborate array of logic network called data paths, which
consist of static functions like adders, shifters, indica-
tors, registers, parity circuits, mask circuits and other
boolean functions. These static functions are intercon-
nected by data busses which permit the information flow
from one functional unit to another. All these data paths
are static in nature and can be activated by the enabling
and disabling signals which emanate from the control sec-
tion. The control signals are made up of clock pulses for
timing, decoding, sequencing, and decision logic and they
direct and control the operation of the total system over
any number of consecutive clock cycles.

Traditionally this information was permanently built
into the system by connecting a set of decoders and flip
flops in an ad hoc manner which can be viewed as a tree of
storage elements and signal wires tied together in an
unsystematic way. A decision to make the slightest modifi-

cation to the instruction set could entail a major modifi-

cation to the whole structure of the tree.

Microprogramming was originally conceived as an alter-
native design procedure to the ad hoc procedure applied to
conventional hardware. It has eventually become an alter-
nate design and implementation tool for the control sec-
tion, where the hardware control is replaced by a stored
logic section, or "microprogram control" section, stored in
a high speed, nondestructive read only storage. The infor-
mation stored therein is designed to control each function
for each consecutive machine cycle.

Microprogramming, interpreted as implementing control
logic, primarily by read only storage, cuts across the
specialities of electronic module design, mechanical
languages, programming, and systems architecture. It is
therefore a promising means for designing integrated
hardware-software systems. This method of control from the
programmers point of view, is similar to writing a program
in which a given arithmetic or logic operation is executed
by giving the cpu or the system a step-by-step description
of the job to be done. This program, then, is a series of
subcommands for the functions built into the system.

Microprogramming is analogous to conventional program-
ming. The user programmer tells the system what to do by
placing instructions in the high speed main storage. The
microprogrammer tells the system how to do it by control-
ling which storage and logic elements are used and how they

are used for each operation. Thus the machine instruction

which the programmer considered to be the lowest level of
communication with the system can now be viewed as a closed
subroutine broken down into a sequence of more elementary
functions called microinstructions. Each microinstruction
is designed to specify the control gates that are opened at
a particular point during the machine cycle.

Thus the microprogrammer essentially writes microcode
in terms of logical 1's and 0's, which is a very error
prone and tedious process. This makes programming very dif-
ficult at such low levels especially when the microwords
are very long. It is a lot easier to code in a symbolic
language rather than 1's and 0's of microcode just as pro-
grammers find it easier to code in a symbolic assembly
language rather than the 1's and 0's of machine language.
This symbolic language for microprogramming is called a

"meta-assembler".

CHAPTER IIT

DESIGN OF A META~-ASSEMBLER

The design of the meta-assembler will be discussed
through a detailed presentation of the following topics to

be covered in this chapter:

1. Problem specification
2. Design

3. Data structure

4. Search strategy and

5. Modularity

Problem Specification

The problem was essentially to develop a highly gen-
eric assembler which would allow the user to assemble
microprograms with word lengths varying from 1 to 256 bits.
A special syntax was to be developed for the user to com-
municate with the assembler. This syntax would contain cer-
tain pseudo instructions unique to the meta-assembler. The
meta-assembler would be capable of recognizing the design
format (Horizontal or Vertical) and would be as user

friendly as possible and would be highly portable which

means the program would be capable of running on different
hardware. The meta-assembler would run both in the MSDOS

and UNIX environments.
Design

Since the program was to be highly portable, the C
programming language was adopted to develop the assembler.
The other reason for choosing C was the flexibility pro-
vided by C in allowing the programmer to define his/her own
data structures. Also modular programming and top down
design strategies were kept in mind for which C is so very
conducive.

Since the microinstructions can be specified in single
format or multiple formats, the program had to be capable
of recognizing the format specification. For this a pseu-
doinstruction "FORMAT" has been used to tell the assembler
that a particular statement in the microprogram is a state-
ment specifying the format the user has adopted in his
design methodology. A counter keeps track of the number of
format statements and based on the number of format state-
ments, the program creates format tables, containing the
names of the fields present in each format statement. In
addition to the names the table also contains information
regarding the bit positions occupied by the respective
fields in the microword. Not more than five format state-
ments are allowed because of memory limitations.

After reading the format statements the assembler

expects the microprogrammer to define the symbols
representing values in each field. For the assembler to
recognize that the following data are the symbol names and
their respective definitions, a pseudoinstruction "DEF"
must precede the define statements. Once this pseudoin-
struction is encountered, the assembler will know that the
following text defines the symbols. The format in which the
symbols are to be specified can be understood by looking up
the section on syntax. The symbols are stored in tables to
be referred to as field tables. The field tables are organ-
ized in such a manner that they contain the symbol names,
their definitions, their position of origin in the micro-
word and their size in bits. A more detailed picture of
the field tables can be had in the section on data struc-
tures. The assembler keeps reading the symbols till it
encounters a pseudoinstruction called "ENDEF" which tells
the assembler that the definitions of symbols are over.

This meta-assembler has been designed to be a two pass
assembler. The first pass is an address generation phase,
where the assembler scans through the entire microprogram
and locates address labels and assigns address values to
these labels and in the process stores both these data in a
table referred to as the address table.

In the second pass the meta-assembler scans through
the entire microprogram to read the microinstructions. As
each symbol specifying code for a particular field is

encountered while scanning a microinstruction a check is

10

first made to see if the symbol is a field name, for exam-
ple a branch address field. The assembler does this by
looking for a reserved symbol '=' . All characters to the
left of this symbol are grouped together to form a string
which is supposed to be one of the field names. All the
characters to the right of the '=' symbol must be a number
or are assumed to represent the field value or an address
label. If the string to the right of the '=' symbol is a
number, then all the bits in the number are examined and
the bits in the field space are assembled one after the
other. If not a number, then a check of the address table
is made to find the address value of the address label
encountered. When a match is found the address value is
read into a buffer and every bit in the two byte address
value is checked and accordingly a bit in the address space
of the microword is set. If not an address label, a check
is made to see if it is a field symbol value by checking
the field table. Then the field symbol value is examined
bit by bit and accordingly assembled by setting the bits in
the field space of the microword.

If the symbol does not specify a field name, then the
meta-assembler searches for the field value symbol in the
field table. A detailed description of the search tech-
nique can be found in the section on search strategy. Once
the symbol is located in the field table, the assembler
reads the position of origin of the symbol in the micro-

word, the size of the symbol and the definition of the sym-

11

bol from the field table. Next the meta-assembler proceeds
with the assembly process by examining the symbol defini-
tion bit by bit and correspondingly sets the bits in the
microword starting from the position of origin of the sym-
bol in the microword. This process is repeated till all the
bits belonging to a particular symbol have been examined
and accordingly assembled. The same process repeats for all
symbols in all the microinstructions. The assembler ter-
minates the assembly process on encountering a pseudo
instruction called "END" which indicates the end of the

microprogram or on encountering the end of file character.
Data Structures

Before getting into a discussion on the data struc-
tures designed for the meta-assembler, it is important to
discuss about the structure that C permits according to
Kernighan and Ritchie. A structure is a collection of one
or more variables, possibly of different types, grouped
together under a single name for convenient handling. The
following example shows how a structure is declared in C
and is the same structure that has been used to define the

format table to be discussed later.
struct formatb {
char formnam[8];

int bitsize,posn;

12

}formatab[40];

This example declares an array formatab which is a
structure of type formatb. This structure contains informa-
tion pertaining to the fields in a format statement. The
elements or variables mentioned in a structure are called
members. In the example above formnam[8], bitsize and posn
are all members of the structure formatb. The array con-
tains 40 such structures. A member of a particular struc-
ture is referred to in an expression by a construction of

the form
struct-name.member

The structure member operator "." connects the struc-
ture name and the member name. For the example under con-
sideration, the following expression can be used for exam-

ple to refer to the member formnam([j]

formatab[k].formnam([j]

There are a lot of data structures that have been spe-
cially designed for use in this program. These data struc-
tures have been organized for faster execution of the pro-
gram. The organization of the data structures used will be
discussed in detail in this section.

As discussed in fhe previous section the address
labels and their corresponding values are stored in a table

referred to as the address table. This table is a data

13

structure with name tag "addrtable" . This structure has

been defined as shown below.

struct addrtable {

char addrname[7];

int contents;

yadtab[200];

As can be seen an array adtab has been declared to be
of type addrtable. The members of the structure are
addrname[7] where the names of the address label will be
stored, and contents, where the absolute value assigned to
that address value will be stored. Thus in order to find
the adress value of a particular address label, one needs
to search through the array and try to find a match with
one of the addrname variables in the array. and when a
match is found the contents variable pointed to by the same
index gives the absolute address of that address label. A
good picture of the organization of this data structure is
shown in Fig 1. This data structure occupies two Kbytes of
memory.

There is another table referred to as field table
which holds the symbol names and related information like
symbol definition, symbol size in bits and position of ori-
gin of the symbol in the microword. This table is a data
structure with name tag "fieldtable". This structure has

been defined as shown below.

ADDRESS TABLE

ADDORESS NAME ADDRESS VALUE

l
c
3
T L

Figure 1. Data structure for address table.

vl

15

struct fieldtable {

struct symtable symtab[30];

int tab_count;

yfieldtab[26]:;

struct symtable {

char name[6],def[9];

int bitlength,position;

This particular data structure is a little complex as
a structure has been declared within a structure. The idea
is to group all the information pertaining to a symbol in
the field in a structure referred to as symtable. The
members of this structure are the variables name[6] which
holds the name of the symbol in the field, def[9] which
holds the symbol value, bitlength which holds the size of
the symbol in the field which is also the field size, and
position which holds information regarding the position of
origin of the symbol in the microword. Thus all the infor-
mation pertaining to a particular symbol in a field can be
retrieved from this structure. The array symtab[30] has
been declared to be of type symtable, which means that 30
such structures can be stored in the array symtab. Now this

data structure which will henceforth be called symbol table

[i BITLENGTH
l POSITION
FIELD TABLE _;l SMBOL NRE
MBOL DEFINITION
1 L] e L] L] L] L] L]
2° \\\\\§§ //j/z. R
3 SYMBOL TABLE-1
4 \ 1]2|3] ¢« e« « « « « |38

—
n
w

. B3O

= :

Figure 2. Data structure for field table.

91

17

is a member of another structure to be referred to as
fieldtable. The other member of the fieldtable is tab_count
which maintains a count of the locations occupied in the
array symtab. The array fieldtab[26] has been declared to
be of type fieldtable. Thus this data structure forms 26
symbol tables. Each symbol table can hold information about
30 symbols. This data structure was designed with the idea
that each symbol table will contain symbols that have their
names beginning with a particular English alphabetic char-
acter which has to be a capital letter. Thus the 26 symbol
tables correspond to the 26 English alphabetic characters.
A good picture of this data structure can be had by looking
at Fig 2. This data structure occupies 15.6 Kbytes of
memory. It will be a lot easier to appreciate the use of
this data structure after looking at the section on search
strategy where a detailed explanation of how this data
structure aids in reducing the search time has been dis-
cussed. As can be seen the current data structure limits
the number of symbols with symbol names having their first
character corresponding to a particular capital letter to
30. In the future should a need arise to make room for more
than 30 symbols the size of the symtab array must be
increased from 30 to the desired value.

There is another table referred to as format table
which holds the field names in every format statement and
in addition to this also holds information regarding the

position of origin of the field in the microword and the

18

size of each field in bits. The organization of this data
structure can be seen in Fig 3. The structure with name tag

forms defines this data structure. This structure is as

shown below.
struct forms {
struct formatb formatab[40]:;
}tab[5]:
struct formatb {
char formnam[8];
int bitsize,posn;
}formatab{40];

The array formatab[40] has been declared to be of type
formatb. Formatb is a structure which has 3 members viz,
formnam[8] which holds the field name, bitsize which holds
the size of the field and posn which holds the position of
origin of the field in the microword. Thus this structure
contains all the information pertaining to a field in a
format statement. The array formatab contains 40 such
structures. This means that information regarding 40 fields
can be stored in this array. Now this data structure is a
member of another structure with name tag forms. The array
tab has been declared to be of type forms. This array is of

size 5 which means that each element of this array

FORMART TRBLE

FIELD SIZE

. . .« M3

POSITION OF ORIGIN

Wil

40

//r
—E
38

40

Figure 3. Data

structure for format table.

6l

20

corresponds to a format statement which can contain up to
40 fields. The five elements correspond to the five format
statements thus limiting the number of format statements to
five at present. This has been done because of memory limi-
tations on the IBM pc. In the future, if one wants to make
room for more than 5 format statements, all that needs to
be done is to increase the size of the array tab to the
desired value. This can be done only when the program runs
in an UNIX environment. This data structure helps in iden-
tifying overlapping bitfields in a format statement. This
data structure occupies two Kbytes of memory space.

The last data structure to be discussed in this sec-
tion is a kind of data structure unique to the C language.
A thorough understanding of this data structure will help a
great deal in understanding the working of the meta-
assembler. As the microwords have sizes varying from 1 to
256 bits which means a microword can span from 1 byte to 32
bytes. As the assembly process involves assembling bit-
fields whose sizes vary from 1 to 256 bits, it might be
necessary that the assembler gain access to individual bits
in the microword or gain access to one of the bytes that
form the microword. The microwords are formed by chaining
byte words. The chain has 1 to 32 bytes chained in series
depending on the length of the microword. In the structure
defined in the program which is also shown below, a union
of a character variable over a data structure consisting of

8 bits is achieved.

Data structure for microword

1 2|l alalslslzlea

32

Figure 4. Data structure for microword.

Le

22

union format ({
unsigned char all;
struct {
unsigned bito0:1;
unsigned bitl:1;
unsigned bit2:1;
unsigned bit3:1;
unsigned bit4:1;
unsigned bit5:1;
unsigned bité6:1;
unsigned bit7:1;
} part;
yflag([32];

This kind of data structure is unique to the C
language. This allows the byte to be accessed fully as a
character or individual bits in the byte could be accessed
and operations performed on the bits. Most of the opera-
tions involve setting the bits to either 1 or 0. The value
'32' refers to the size of the microword in bytes. For the
current problem it was desired that the maximum size of the
microword be 256 bits which is 32 bytes. A microword of
bigger size can be performed by simply changing this wvalue
from 32 to the desired value. No other alterations in the
program are required. This shows how flexible the assembler
becomes because of this data structure. Fig 4. shows the
organization of this data structure. As can be seen the

structure consists of a table of 32 pointers. Each pointer

23

points to a character variable which is a byte long. The
pointer also points to each individual bit in this byte. To
access a particular bit, the bit needs to be addressed.

This is done as follows :
flag[l0].part.bito

This statement shows how the first bit of the 10th
byte in the microword can be accessed. This data structure

occupies 32 bytes of memory space.
Search Strategy

The meta-assembler spends seventy percent of its time
in searching through the address, field and format tables.
Most of the search involves the field table where the sym-
bols and their related information are stored.

There were a lot of search methodologies that were
considered before settling for the current technique. The
linear éearch was considered first with a kind of data
structure much different from the one shown in the earlier
section on data structures. The binary search technique was
considered next. Both these techniques did make programming
very convenient but at the same time slowed down the execu-
tion time of the program considerably. This was highly
unsuitable for the kind of problem in hand.

The other option was to go in for a hash table search
which is a proven technique and is extremely fast. For the

problem in hand, it was found that the currently designed

24
data structure with the search technique to be discussed in
this section, formed a powerful combination in increasing
the speed of execution of the program.

The current technique is very similar to the hashing
approach. This technique led to the development of the
data structure with name tag the fieldtable. The idea was
to organize data in such a manner that the data base to be
searched was cut in size considerably. As was already dis-
cussed in the section on data structures, the field table
has twenty six pointers, the pointer values ranging from
one to twenty six. Each of these twenty six pointers point
to a separate table containing thirty pointers and each of
these thirty pointers point to four variables simultane-
ously.

During the process of searching, if information about
a particular symbol is to be retrieved, the first character
of the symbol name which is supposed to be a capital letter
is read into a character buffer and the three most signifi-
cant bits of this byte (ASCII representation of a charac-
ter) are masked off. As the syntax does not allow symbol
names to begin with any other character except capital
letters, the resultant integer value then ranges from one
to twenty six. This value is then used to address the
field table where there are twenty six pointers. Thus one
of the twenty six pointers is selected, which in turn
selects one of the twenty six tables. Now the search is

restricted to just thirty symbols. This part of the search

25

is just a simple linear search. Once the symbol is located,
this very pointer can be used to gain access to the
corresponding information regarding that particular symbol.
In a linear search, on the average, one needs to lookup at
least half the number of elements in the table, which in
this case turns out to be fifteen. Thus a search which
would have involved a maximum possible lookup of seven hun-
dred and eighty symbols has now been reduced to just fif-
teen symbols. This is more than a justification for having
adopted the current search technique and the data struc-
tures discussed in the earlier section.

An improvement of a factor of seven in the execution
speed of the program was observed by switching the search
strategy from binary search to the current technique which
is a mix of both the hashing approach and the linear

approach.
Modularity

Top down design strategy has been adopted for the
design of the meta-assembler. The problem in hand can be

broken down into five main modules which are as listed

below.
1. Initialization of all tables
2. Loading of symbol tables

3. Checking of overlapping bitfields

26

4, Pass one of the meta-assembler

5. Pass two of the meta-assembler

The program basically consists of these five principal
modules which in turn refer to some smaller modules. The
main program calls these five modules in the same sequence
as shown above.

During the initialization phase, a pattern "eos" is
written into the symbol name variables of all the tables in
the field table, into all the address name variables in the
address table and into all the field name variables in the
format table. Also all bits in the microword are set to
zero.

In the second module, all the define statements are
read from the text file and the symbol names and their
corresponding definitions are read and copied into the
field tables. Also in this process the size of the symbol
in bits is computed and entered into the field table along
with the location of the symbol in the microword. Before
making entries into the field table, the format statements
are read first and the field names in the format statements
are copied into the format tables corresponding to the for-
mat statements. When the define statements are being read,
the location of the field in the microword and the size of
the field in bits are entered into the format table. Thus
before this module completes execution, the format tables

and the field tables are setup in memory.

27

The third module checks for overlapping bitfields in
any format statement. It accesses the format tables and
makes use of the information about the location of the
fields in the microword and their size in bits. If an over-
lap is found, an error message is flashed on the screen and
the program is terminated.

The fourth module is the first pass of the meta-
assembler which is also the address generation phase. It is
in this phase that all the address labels are assigned
absolute values and this data is entered into the address
table.

The fifth module is the second pass of the meta-
assembler and it is in this phase that the assembly of the
microcode takes place. This module reads the microprogram
from the text file and then refers to the field and address
tables to read the symbol definitions and the absolute
values of the address labels respectively to assemble the
microcode bit by bit. The assembled microcode is stored in
a user specified file. Also the microword can be separated
into n slices with each slice being a byte wide. Each byte
wide slice is stored in different files specified by the
user. This is done to down load the assembled microcode
into the memory simulator which is part of a logic simula-
tor currently under development at OSU or a PROM program-

mer.

CHAPTER IV

CONCLUSION

METASM has turned out to be a highly generic and a
highly portable meta-assembler. It has been tested in both
the MSDOS and UNIX environments and has been found to be
executing without any problems. The program has been
designed so that the assembled output is stored in a format
which is the desired input format for a logic simulator
under development at OSU. This provides the designer the
facility of immediately testing his/her microprogram by
down loading the assembled microprogram into a memory
module in the simulator.

Though the meta-assembler has shown satisfactory
results, there is a possibility that bugs might show up at
a later stage when more users start using the assembler.
The source program has been adequately documented and
because of the modularity of the program patching bugs is

not seen as a difficult proposition.

28

APPENDIX A

MANUAL

30
STARTUP :

To invoke the meta-assembler type "METASM" <CR>.

This causes the operating system to load the meta-
assembler program and the current working directory is
displayed on the screen. This allows the user to view all
the file names in the current working directory. Next the
program prompts the user to type the input file name by
displaying the message "SPECIFY INPUT FILE NAME :" to
which the user is supposed to respond by typing the file
name where the microprogram resides. Next the program
prompts the user to type the output file name where the
assembled microprogram is supposed to be stored by
displaying the message "SPECIFY OUTPUT FILE NAME :" to
which the user is supposed to respond by typing the file
name where he wants the assembled microprogram to be
stored. While typing the output file name the user can
specify a list option by typing '-1' after the file name.

The following example will make this clear.

Specify output file name : progl if listing not
desired.

Specify output file name : progl-l if listing
desired.

If the user desires a debug listing then the user

needs to type

Specify output file name : progl-1ld

Once this procedure is completed, the program
displays the following messages in case there are no

errors in the microprogram :
"Please wait! creation of tables in progress.
Please wait! checking for overlapping bitfields.

Good you have no overlapping bitfields.
Next depending on the number of bytes in the micro-
word, the program prompts the user that many times with

the following message.

"Specify name of output file number #n :"

Thus if the microword contains 4 bytes, the program
will prompt the user to provide four different file names
one after the other.

If a meta-assembler listing is desired, then a list
file by the name "METASM.LST" will be generated. If only
the list option is specified then this file will contain
only the listing without any debug messages. If a debug
option is specified, then debug messages are inserted

into the list file.

31

APPENDIX B

SYNTAX

32

33

As in any assembler this meta-assembler has its own
syntax. The program is accepted by the meta-assembler in a
particular format to be explained in this section and the
program should contain certain pseudo instructions which
are unique to the meta-assembler.

The following are the reserved words and symbols which
the user is not supposed to use as symbol names or part of

symbol names in his microprogram:

FIELD, END, FORMAT, ENDEF, DEF, eos, ':', ';', ',',

)

It is recommended that the user use only capital
letters whenever an English alphabet is used in specifying
field names or symbol names. The microprogram always

starts with a format statement as shown below :

"FORMAT CC,BRA,ALU,DBSRC,DBST,AMUX,MDMUX ;"

As can be seen the word "FORMAT" must be followed by a
space and then by the field names. The field names must be
separated by a comma. The end of format statement is indi-
cated by a semicolon. No two fields in the same format
statement can have the same bit positions in the microword.
There might be occasions when a format statement might be

very long and might span a few lines as shown below :
"FORMAT CC,BRA,DFERT,JHYDT,KJHSGY, FDGT,

GHDTY, GBDF, DGEYD, KHDHD, BHDH; "

The field names can not be more than 9 characters

34

long. The program is allowed a maximum of five format
statements. The format statement must be followed by the
"DEF" statement. It is this statement that tells the
meta-assembler that the data following this statement are
symbol definitions. The "DEF" statement is followed by a
series of "FIELD" statements depending on the number of
fields desired. Each field statement is followed by a
series of symbol names and their corresponding definitions.
The format for the field statements is as shown below.

"FIELD ALU 19,17;

ENALU=011;

ALJW=110;

FIELD BRA 27,20;

ADRSS=1111111111;"

The field statement must contain the pseudo instruc-
tion FIELD followed by a space and then the field name.
The field names can contain any ASCII characters excluding
the reserved words and symbols with the condition that the
field name contains not more than 9 characters. The field
name must be followed by a space and this must be followed
by the bit position indicators. As can be seen the end
position must be specified first followed by a separator
which must be a comma followed by start position. This
statement must be terminated by a semicolon as shown. The
field statement is followed by one or more symbol defini-
tion statements. Each symbol definition statement must con-

tain the field symbol name followed by a '=' character fol-

35

lowed by the field symbol value. The field symbol name must
have one of the capital letters as the first character.

The remaining characters can be any ASCII character. The
field symbol names cannot be more than 9 characters long.
The field symbol value cannot have more than 9 bits. Every
field symbol definition statement must be terminated by a
';' character.

In the example shown above the field "ALU" occupies
bits 17 to 19, that is a space of three bits. "ENALU" and
"ALJW" are the two field symbols in the field "ALU".

The field statements must be followed by an ENDEF
statement. This statement tells the assembler that all
symbol definitions are complete and that the following text
is the microprogram. The microprogram contains several
lines of microinstructions. Each line of microinstruction
may contain several field symbol names. All field symbol
names must be separated by a ',' character. If there is an
address label associated with that particular microinstruc-
tion, the label must precede the microinstruction. The
address label must be terminated by a ':' character which
is then followed by all the field symbol names belonging to

that microinstruction. This is as shown below.
GETC: FUNC,ALKJ,BHGTY:;

In the example shown above, GETC is the address label
and the three field symbol names are FUNC, ALKJ, BHGTY. All

field symbols are defined to be in the field in which they

36

are defined in the DEF section. If it is desired that a
particular field symbol be used in more than one field, the
'=' operator can be used to override the field definition

by writing
FIELD NAME = FIELD SYMBOL NAME;

This can be used only if the size of the field to
which the field symbol is being assigned is same as that of
the field in which the field symbol has already been

defined in the DEF section. For example
PUTC: EHJK,ALU=SMJK,HJYE;

In this example ALU is the field name to which the
field symbol SMJIK defined for another field, is being
assigned. The '=' operator is also used to assign address
label values or numbers to the field. To specify a branch
address for example, the field name must be specified first
followed by a '¥' character followed by a numeric value or

an address label. The syntax for specifying branch address

is as shown below.
GETC: FUNC,BRA=PUTC;

REST:ENALU, BRA=09;

PUTC:......,.....;
Each microinstruction must be terminated by a ';'
character. This character is recognized as the end of a

microinstruction. The microprogram must end with an END

37

statement. The syntax for specifying branch address is as

shown below.

A very good picture of the format for writing a
microprogram can be had by looking at the sample micropro-

gram attached to this report.

APPENDIX C

ERROR MESSAGES

38

39

When "FORMAT" statement is missing the following error
message is displayed on the screen and the assembly
process is terminated.

"error : FORMAT statement missing "

The likely cause of this can either be a spelling mis-
take or the characters might not be capital letters or
the statement might be really missing.

If a space character does not follow the word "FORMAT"
the following error message is displayed on the
screen, but the meta-assembler can recover from this
error. The user is advised to correct the error for
proper documentation.

"error: Type space after FORMAT"

When DEF statement is missing the following error mes-
sage is displayed on the screen.

"error: DEF statement missing"

The cause of this might be a spelling mistake or the
characters might not be capital letters or the state-
ment might be really missing

When a space character is missing after the word
"FIELD" in the field statement, the following message
is displayed on the screen.

"error: enter a space after FIELD"

On seeing this message on the screen the user is
advised to check all the field statements in his pro-
gram.

When a field name is more than 9 characters long, the
following error message is displayed and the assembly
process is terminated.

"error: field name more than 9 characters long"

To locate the field name in error the user is advised
to take a listing in which the field name will be
visible. The cause of this error is a missing ',' or
';' in the format statements. Check your format
statements.

When the first character of a symbol name does not
start with a capital letter, the following error mes-
sage is displayed.

"error: symbol name does not begin with a capital

10.

11.

12.

40

letter"®
"symbol :xxxxx"

Following the statement containing the error message
is a statement containing the symbol which is in error

When any two fields in the same format statement over-
lap, the following error message is displayed on the
screen.

"error: You have overlapping bitfields in your defini-
tion"

"FIELD:xxxxX overlaps FIELD:yyyyy"

The user can identify the two overlapping bitfields by
reading their names on the screen.

When a field is assigned a field symbol belonging to
some other field, if the sizes of the two fields are
not same, the following error message is displayed.
"error: Field size does not match field symbol size"
"Field :xxxxx"

"Field symbol :yyyyy"

" in -microinstruction "

When END statement is missing the following message is
displayed.

"error: END statement missing"
The assembler can recover from this error.

When an address label is more than 6 characters long,
the following message is displayed.

"error: address label more than 6 characters long"
Next the assembly process is terminated.

When the jump address specified in the microprogram
does not match the address labels specified the fol-
lowing message is displayed.

"error: address label xxxxxx not found"

Next the program is terminated.

When a symbol encountered in the microinstruction does

13.

14.

41
not exist according to the symbol definition state-
ments, the following message is displayed
"error: symbol not found"

"symbol :xxxx in"

"microinstruction"

The user can easily locate the error.

When reading the definition statements, if the defini-
tion part contains any character other than a 1 or 0
an error message is flashed along with the text in the

microprogram where the error occurred.

When ENDEF statement is missing the following error
message is displayed on the screen.

"error: field name too long "

APPENDIX D

SAMPLE MICROPROGRAM

42

FORMAT CC,BRA,ALU,DBSRC,DBDST,AMUX, BMUX,MDMUX, FLAG;
FORMAT CC,BRA,ALUSRC,ALUOP,ALUDST,DBSRC,DBDST, AMUX,

BMUX, MDMUX, FLAG;

FORMAT CC,VAL,ALU,DBSRC,DBDST,AMUX, BMUX, MDMUX, FLAG ;
FORMAT CC,A,B,ALUSRC,ALUOP,ALUDST, DBSRC, DBDST, AMUX,

DEF

FIELD CC 31,28;
CONT=0000;
JUMP=0001;
JSUB=0010;
RET=0011;
LDC=0100;
JIR=0101;
JAM=0110;
JN=0111;
JZ=1000;
JC=1001;
JRUN=1010;
JBOT=1011;
JRES=1100;

FIELD BRA 27,20;
FIELD VAL 27,20;
FIELD A 27,24;
APC=1111;
EA=1110;
OPAND=1101;
DIVISOR=1100;
RINDEX=0111;
FIELD B 23,20;
BPC=1111;
BEA=1110;
BOPAND=1101;
BDIVISOR=1100;
FIELD ALU 19,12;
ALNOP=00000000;

FIELD ALUSRC 19,17;

BA=001;
Q0=010;
BO=011;
A0=100;
OD=111;

FIELD ALUOP 16,14;

PLUS=000;
MINUS=001;
COMP=010;
OR=011;
AND=100;
INC=101;
COMP1=110;

FIELD ALUDST 13,12;

TO_Q=00;
TO_B=01;
RSHBQ=10;

BMUX , MDMUX, FLAG ;

43

LSHBQ=11;

FIELD DBSRC 11,10;

ENALU=01;

MMRD=10;

IPRD=11;

FIELD DBDST 09,07;

LDAR=001;

LDIR=010;

OPWR=011;

MMWR=100;

FIELD AMUX 06,06;

A<-IR=1;

FIELD BMUX 05,04;

B<-IR=01;

B<-IREVEN=10;

B<-IRODD=11;

FIELD MDMUX 03,02;

MUL=01;

DIV=10;

FIELD FLAG 01,00;

LDFL~=01;

CLFL=10;

ENDEF

START

REST: JRUN, BRA=FETC,ALNOP;
BPC,BO,AND,TO_B;

STAR: JRUN, BRA=FETC,ALNOP;
JRES , BRA=REST,ALNOP;
JBOT, BRA=BOOT, ALNOP;
JUMP, BRA=STAR,ALNOP;

BOOT: BPC,BO,OR,TO_B,ENALU,LDAR;
BPC,BO, INC,TO_B,IPRD,MMWR;
JUMP, BRA=STAR,ALNOP;

FETC: BPC,BO,OR,TO_B,MMRD,LDIR;
BPC,BO, INC,TO_B,MMRD,LDIR;
JIR,ALNOP;

TRA: JUMP,BRA=STAR,A<-IR,B<-IR,AO,OR,TO B;

END

44

APPENDIX E

META-ASSEMBLER LISTINGS

45

META-ASSEMBLER LISTING WITH DEBUG OPTION

This meta-assembler has been designed by
SHARAD MURTHY
under the guidance of
Dr. L. G. JOHNSON
META-ASSEMBLER LISTING

INPUT FILENAME :johnson.c
OUTPUT FILENAME :sam
FORMAT CC,BRA,ALU,DBSRC,DBDST, AMUX, BMUX,MDMUX, FLAG;

ccC

BRA

ALU

DBSRC

DBDST

AMUX

BMUX

MDMUX

FLAG

FORMAT CC,BRA,ALUSRC,ALUOP,ALUDST,DBSRC,DBDST, AMUX,
BMUX, MDMUX, FLAG;

ccC

BRA
ALUSRC
ALUOP
ALUDST
DBSRC
DBDST
AMUX
BMUX
MDMUX
FLAG
FORMAT CC,VAL,ALU,DBSRC,DBDST,AMUX, BMUX,MDMUX, FLAG;

ccC

VAL

ALU

DBSRC

DBDST

AMUX

BMUX

MDMUX

FLAG

FORMAT CC,A,B,ALUSRC,ALUOP,ALUDST,DBSRC,DBDST, AMUX,
BMUX,MDMUX , FLAG;

ccC
A
B

46

ALUSRC
ALUOP
ALUDST
DBSRC
DBDST
AMUX
BMUX
MDMUX
FLAG
DEF

FIELD CC 31,28;
CONT=0000;
JUMP=0001;
JSUB=0010;
RET=0011;
LDC=0100;
JIR=0101;
JAM=0110;
JN=0111;
JZ=1000;
JC=1001;
JRUN=1010;
JBOT=1011;
JRES=1100;

FIELD BRA 27,20;.
FIELD VAL 27,20;
FIELD A 27,24;
APC=1111;
EA=1110;
OPAND=1101;
DIVISOR=1100;
FIELD B 23,20;
BPC=1111;
BEA=1110;
BOPAND=1101;
BDIVISOR=1100;
FIELD ALU 19,12;
ALNOP=00000000;
FIELD ALUSRC 19,17;
BA=001;

Q0=010;

BO=011;

AO=100;

OD=111;

FIELD ALUOP 16,14;
PLUS=000;
MINUS=001;
COMP=010;
OR=011;

AND=100;
INC=101;
COMP1=110;

FIELD ALUDST 13,12;

47

TO Q=00;

TO_B=01;

RSHBQ=10;
LSHBQ=11;

FIELD DBSRC 11,10;
ENALU=01;

MMRD=10;

IPRD=11;

FIELD DBDST 09,07;
LDAR=001;
LDIR=010;
OPWR=011;
MMWR=100 ;

FIELD AMUX 06,06;
A<-IR=1;

FIELD BMUX 05,04;
B<-IR=01;
B<-IREVEN=10;
B<-IRODD=11;

FIELD MDMUX 03,02;
MUL=01;

DIV=10;

FIELD FLAG 01,00;
LDFL=01;

CLFL=10;

ENDEF

word length=4 Please wait, checking for overlapping bit-

48

fields FORMAT CC,BRA,ALU,DBSRC,DBDST,AMUX, BMUX,MDMUX, FLAG;

START

REST = O
BPC,BO,AND,TO_B;

STAR: JRUN, BRA=FETC,ALNOP;

STAR = 2
JRES , BRA=REST,ALNOP;

JBOT, BRA=BOOT ,ALNOP;
JUMP, BRA=STAR,ALNOP;
BOOT: BPC,BO,OR,TO_B,ENALU,LDAR;

BOOT = 6
BPC,BO, INC,TO_ B, IPRD,MMWR;

JUMP, BRA=STAR, ALNOP;
FETC: BPC,BO,OR,TO B,MMRD,LDIR;

FETC = 9
BPC, BO, INC,TO_B,MMRD, LDIR;

49

JIR,ALNOP;
TRA: JUMP, BRA=STAR,A<-IR,B<-IR,AO0,OR,TO B;

TRA = c END

PASS-1 complete PASS-2 BEGINS ===> Assembly in progress

a0 90 0 O

REST: JRUN, BRA=FETC,ALNOP; 0 :

BPC,BO,AND,TO B; 1 : 0 £7 10 0

STAR: JRUN,BRA=FETC,ALNOP; 2 : a0 90 0 O

JRES , BRA=REST ,ALNOP; 3 : c0 0 0 O

JBOT, BRA=BOOT ,ALNOP; 4 : b0 60 0 O

JUMP, BRA=STAR,ALNOP; 5 : 10 20 0 O

BOOT: BPC,BO,OR,TO_B,ENALU,LDAR; 6 0 £f6 d4 80

0 £f7 5e 0

BPC,BO,INC,TO_B,IPRD,MMWR; 7

JUMP, BRA=STAR,ALNOP; 8 : 10 20 0 O

FETC: BPC,BO,OR,TO_B,MMRD,LDIR; 9 : 0 £6 d9 O

BPC,BO,INC,TO_B,MMRD,LDIR; a : 0 £7 59 0
JIR,ALNOP; b ¢ 50 0 0 O
TRA: JUMP,BRA=STAR,A<-IR,B<-IR,AO,O0R,TO B; c : 10 28 dO 50

END
Symbol table status :

number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols

starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting

with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with

character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character

Jow"mozEHERUHIEOHEHOD O WP

WHRRMPODPUIORPNOOONNALOWOM
o

number
number
number
number
number
number
number
number

Total number of symbols used = 54

of
of
of
of
of
of
of
of

symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols

starting
starting
starting
starting
starting
starting
starting
starting

with
with
with
with
with
with
with
with

character
character
character
character
character
character
character
character

NKXI{Ad ®n

OO0 O0OO0OO0OONO

50

META-ASSEMBLER LISTING WITHOUT DEBUG OPTION

This meta-assembler has been designed by
SHARAD MURTHY
under the guidance of

Dr. L.

INPUT FILENAME :johnson.c

OUTPUT FILENAME

word length=4
Please wait, checking for overlapping bitfields
PASS-1 complete

PASS-2 BEGINS

REST:

===>

s samn

Assembly

JRUN, BRA=FETC,ALNOP; O

BPC,BO,AND,TO B; 1 : O

STAR:

JRUN, BRA=FETC, ALNOP; 2

JRES, BRA=REST,ALNOP; 3

JBOT, BRA=BOOT ,ALNOP; 4

JUMP, BRA=STAR,ALNOP; 5

BOOT:

BPC,BO,INC,TO_B,IPRD,MMWR; 7 :

BPC, BO,OR,TO B,ENALU,

JUMP, BRA=STAR,ALNOP; 8

FETC:

BPC, BO, INC,TO_B,MMRD,LDIR; a

JIR,ALNOP; b

TRA: JUMP, BRA=STAR,A<-IR,B<-IR,AO,OR,TO B; cC

50 00O

END Symbol table status :

number
number
numbeq
number
number
number
number
number
number
number
number

of
of
of
of
of
of
of
of
of
of
of

symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols

starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting

G. JOHNSON
META-ASSEMBLER

in progress

a0 90 0 O

£7 10 0O

LDAR;

a0 90 0 O

co 00O

b0 60 0 O

10 20 0 O

6 :

10 20 0 O

BPC,BO,OR, TO_B,MMRD, LDIR; 9

with
with
with
with
with
with
with
with
with
with
with

: 0 f6 d9 O

0 £f6 d4 80

0 £f7 5e 0

: 0 £7 59 0

character
character
character
character
character
character
character
character
character
character
character

RUHZQOHEHOQ P
1 | | 1 | | Y1 R [O

ORPNOOONMNMAMOOV

51

10 28 doO0 50

number
number
number
number
number
number
number
number
number
number
number
number
number
number
number

Total number of symbols used = 54

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols
symbols

starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting

with
with
with
with
with
with
with
with
with
with
with
with
with
with
with

character
character
character
character
character
character
character
character
character
character
character
character
character
character
character

NKXEI<dHnmowozlat
| T | 1 | | Y I 1

OO O0OO0OO0OONOWRRMd»OMdL

52

APPENDIX F

SOURCE CODE LISTING

53

/5 % 3 s e e s s e e sl st e e s iz e sl e e it e i 290 e S e e e e e e o e ek e e sl e e ek oo s sk e s ek
/%

/% METASM-= 87

/% -

/=

/% A

/%

/% “eta-assembler

V&S

= designed

/*

/% by

/% Sharad R Murthy

/=

*® Advisor ¢ Dr L.GeJohnson

/%

/% e et e e e e e s s o

/%

/% METASM is a meta=-assemhler designed to assemble

/% micrproyrams of wordlengths varying from 1 to

/% 256 bitse The program has been written in C

/= Language & is highly portable. The program can

ES be executed both in MS<D0S & UNIX environments.

/% METASM has been designed to be a two pass ass=

* embler. Tne program is capavle of finding the

/% micro word length on its owne. The program reads

/% a text tile containing the proaram to be assem~

/% bled & then proceeds to assemple the microprogram

/% and stores the assembled data in an output file

/% specified by the user. The program yenerates a

/% listing with 2 options vize '=Ll' and *=~ld'., With

/% the *'=Ll' option an ordinary Llistina is generated

* With the '=Ld' option a complete trace of the *
® assempler can be obtained. The Listing is storea

* in a file called "metasmo.lst"”. The program reserves =
* 20 Koytes of memory for the taoles. The program 3
/% calls 6 main procedures. The microword is slticed

/% into 8 bit slices and these slices are stored in *
/% separate files. *

/ 3% s e e e e sy il e e s s sk sl e slesie e e siesle afesle siesie e sie slesie Sl sede sk e she e ek SRR ek e ke sk

#include <stdio«h>
#define filenaml "metasma.lst”

ste5e s i sl o e s e e e e e e s ool e e e i sesie skt e aesiesie e ke e sie sk il ki sesie e e stedk sk ek e e ook ok
The following variables are all global variapolese.
The variable address is the address counter, form
keeps count of the format statement, wordlength
keeps track of tne word lLength in bytes, eof keeps

NN N NN
% 3 3 3

*/
*=/
*/
*/
*/
%/
*/
*=/
*/
*/
%/
*/
*/
*®/
*/
*/
*®/
*=/

Y

*/
%/
*/
®/
*®/
*/
*/
x/

it 3¢ 3 3 3t

NN N N

~

54

of end of file
: xesie e e s sesk s sk ok gk koo o s st S ek sk st sk e sk e e e ke kR sk ok ke sk ok /
int wsisjsksmsn,address=0raqsjjrtemp2s,aadroen,daf, truea,debug=1;
int pprttsotemp3,stempbryslofdonuil=0,fieldsx,formelist=1l,symool=07
int a,woralengtn,eot=100,0itlen=0,truer,isnum=l,ismem=l,templ’
cnar localll0ul,templ1lS3,tempgl1l5]sstatus,tocl1003,L0ctl256];
¢nar posl3],seell5],c,outnaml2567;

float wiength,wordsize:

FILE =fooen(),*to,*outfile,xlst;

/ %2 33 s s sk g sk s o e o 30 s sk K a0 e o e oK sk sl vk ol s ek de sk ok e ek ik ke sk sk sk sk el sle e ek /)
/% The structure with name tag adortaole is a data w®/
/% structure which forms a taple of tne aaddress names */
/% and their correspondinyg addresses allocated by the */
/% assembler, */

/ 3 % e 2 2 s o 3 ek e o o g e oo o s e e ook e sl A vk s e sk s e e e sk ek sk A ke b ok ok ok /)
struct adurtaole {

char aadrnamel71;
int contents;

/<t ¥r s e o e e e s o i 24 3 30 o e e 3k e s e e o 56 e i o e o 3 0 0 e s e ok o 3 X e o e e e e oo ok oo koo e Sk ax ek /

/% The structure with name tag symtable is a data */
/= structure which forms a symbol table containing *®/
/% information about the name of the symbol, its %/
/3 gefinition, as deéfined by the user, lLength of the %/
/= symbol and tne bit position from where the sympol */
/% is located. This table can holug 30 symbols. *=/

/ 3 e 2 s e o Mo 3 e o 20 e e ke K iR SR e xe e e e vieaie sk s e e e e M vk e o sk vk sk vk BRIk ok R kA Kok A Ak /

struct symtable {
char namel10],0ef(91];
int pitlengtn,position;

()
-

3t
*

~

e 3¢ e 3¢ sk it s S e i e e e e e sl sk sk s ek sieie s sl o s s s sk et sk s ok s e sl e kR e e e e e
The structure with name tag formatb i a
structure which forms a table containing the
fiela names in a particular format statement., 40
such structures are stored in an array called
formatab. This means that a sinale format statement
can contain a maximum of 40 field names. To make
room for more field names in a format statement
the size of the formatab array has to be increased

1o s e e e 3 she i sie s st e 3 s 3 3 3 3 e 30 s s s 3 s s 3 B e e e e e 2 sl e A St ke e 3 e o e e o e e ok sk 2
te 3¢ T 3 sl 3 3k e 3 sk sl v 3 s e e e 2K e 3 e e ie e e S sk i e el vie s e e kot ok e e e ek sk

36 3t 3 36 3 3t 3t 3
36 3t 36 36 3t 3t 3t

* 3

3N NN NN NN N

~

NN N NN NN NN N
3

i
it
3t
St

struct formato {
char formnam(81;
int pitsize,posn;
Ytormatab[403];

55

3¢ 3% 3 3 3¢ s 3 3k 323 e 2028 s 03¢ vt v e v e s e e e e e g o o e e e s e e Beck ke ook desdeskn /
tollowinyg statement is unique to tnhe C language %/
/3 Here a union of a oyte over 8 bLits of data was */
5 gesired. This particular data structure allows %/
= access to all o pits of the word in which case the */
/% word can be read as a byte or allows access to */
/% ingividual bits in the word. This allows manioulationx/
/= of bits in tne word. 32 such 8 bit woras make a */
x 256 pit word. *=/

E s 3k %o 3ie 3¢ e ste e shenc e o st s v se e it s e sk el esie Mo e sl e s sk e ste e gz e sk skl Xesie e sk de ek ko /

union format {

unsigned char all;

struct

rpart;
Yftaql323;

{
unsigned
unsigned
unsigned
unsigned
unsiyned
unsiyned
unsigned
unsigned

bit0sl;
bitlsls
pit2:1;
bit3sl:
bitésls
bit5:1l:
bité6:ls
pit7:1/

/3 2k 0 e % v s e 2 s e e 3 32 20 0 3 e S e vk X ol g e e sz sl el dle s ol A e ke vk ook e sesie e sk ok e e ek /

»/
Y

L%/

/= The data structure with name tag fieldtable
/% symbol tables. The structure can hold 26 sympol
/% tavles, AlL the elements of a particular symvol
/% tavle have tne first character of their names
/3 veing a capital Letter. The member tah_count keeps
/3 track of the locations used in the sympbol table.
VA The maximum number of symbols in a symbol taole
/% is currently restricted to 30. To make room for
/% more sympbols the size of the array symtaop has to
/% increased from 30 to the desired value,
/3 sl s s 7 sk sk o ¢ v sl o ot s i SR i 23 i e e sl e sleste e v e ok s sfesie s e e sk e s gt skl sk et sk ek
struct fieldtabte {

struct symtaole symtab[301];

int taop_count;:
}:

e it it 36 2 o o e 5k it i s ke e st s el st e i i sl o e s ok S sk e e e e e e e sk skl e sk koRoR
/3% The structure torms contains data of type *
/% symtable. The array forms contains 5 such *
% structures. £ach element of this array =
/= corresponds to a format statement. Thus only ®
% five format statements are allowed at this £
/= time. To make room for more tormat statements ®
B increase tne size of tne array tab.
/ 3¢ e e 2 sie e e 2t S s s sle skl o sl sk siesie e ke sk e sestone Sk stk

struct forms {

=/
Y

e
W

56

N NN N

struct formato formatao(30]:
YtaolS1]:

s e 3R B T o Ak e e Xe Ne sk Ao sk ko o ko sk skak ok sk ek gk Rk ok Aok ek kR R ke R /
%= The foltou1ng two datas structures are uvesigned */
* to hola the file names and tne corresponding =/
/% file pointers associated with these file names */
£ It is in tnese files that the sliced output =/
® is stored. =/
/ 3z ne ey sk e e on s x e Aok e e Rk e/

struct names {
char Lot(25%1];:
} flnamel321];

struct pointers {

FILE =outp:
Ytilpoint[321;
struct tieldtable fieldtanl[263];
struct symtable symtap[3Ci;
struct andartaole addtabl200];
union format ftlaal3231;
struct part;
struct forms tabl(5];

3% 3 32 e 3 s AR 3k S e s e e e e ol e e g ol e dlesie slene ey slene 3 e o e e e e e oo e e e sk ek kg ke gk e 3k /

3
3

x/
The main proyram first displays the current x/
working directory on the screen and then prompts %/
the user to specify the input file name where */
the microproygram to pe assemoled is stored. *®

Then it specifies the user to specify the output =/
file name where the assembled microprogram is to %/
be stored. If tne user wants a listing he appends =/

NN N N NN NN N
336 3t 3¢ 3 3t % %

3

* the option command to the output file name. */
/= Procedures callea: l. init Q) ®
£ 2. creat_tabte() %
/% 3. chk_ovrio() *=/
* 4. getfnam() =/
* 5. passl() =/
= 6. pass2() *
= *=/
integer variables used: 1. ®
string variaoles usea: outnam[250],loct(2561]. S

main()

{
int 7
system("ls =x"); /% print working directory */
printf("0);

printt("0);

printf("Specify input filename :");
scant ("%s",loct);

printf("0);

printf("0);

printf("Output filename :"):
scant("%s",outnam);

printf("0);

i=vs
“hile(outnamijt=* *) {
14+
}
AN
if(outnamfil=="q3') { /% if '=ld* option then set debug=0 %/
cevug=03: /% and Llist=0. *®/
1==7
if(outnamlid=='1") (
A
it(outnam(il=='=")
list=0;
outnam(il=* *;
b
2}
if(outnamCil=='1') { /% if '=L' option the list=0, x/
==
if(outnamlil=='=")
List=0;
outnam(il="' *;
>

if(list==0)(
Lst=topen(filenaml,"w+");

forintf(ist," This meta-assembler has been designed by0);
torintfllst," SHARAD MURTHY 0):
forintf(lst," under the gquidance of 0):
torintfllst," Lr. Le Go JOHNSON 0);
forintf(lst,"” META-ASSEMRBRLETFR LI STINGO;
forintt(lst," e ccccee— ,ecceccsccacnee cccccae ceccccccann= -==0):

fprintf(ilst,"0)s
forintf(lst,"INPUT FILENAME :%s0,loct);
forintf(lst,"OUTPUT FILFNAMF :%sO,outnam);
b
init(); /% call initialize procedure. %/

creat_taole(); /* call procedure to fill taoles. =/

chk_ovrip(); /% call procedure to check for overlapping */
/% bit fields. */

passl () /% call the first pass of the assembler =x/

getfnam(wordlength); /% call proc to get file names where %/

/% sliced output is to be stored. =

passd () /% call pass2 of the assembler */

58

/7 sredeshakae sk sk ok kst ok e ok s e e sk s ek sk s ek g ol sk ks ek e sk ks ok /
/% %/
/% This proc initializes all the tavles in the */
/% program containing names. The initialization %=/
/% process consists of writing the pattern "eos" x/
/® in all tne locations of the tavles. AlL pits of */
/% the microword are set to zero. =/
/*® =/
/% procedures calleg: HNone, x/
/= =/
/% integer variables used: jjrisrqqromsaddress, */
/% ®=/
/% string varjavles used: Mone. %/
/% £
/32 s 3o e s siowe o sk s e e o e sk e e s e s e e le o e skl e e s SR o o ok ek ek e kR sk ok /
init()

{

/% initialize fielo table %/

printf("Please wait!creation of tavles in progress0);
tor(jj=0:;jj<26:3j++) (
for(ga=0,aq<30iaqg++) {
i=0;
fieldtab(jjlasymtanlgalenamelil=te";
it
fieldtab{jjl.symtanlqgal.namelil='o";
IR
fieldtabljjl.symtablqql.namelil="s"';
14+
fieldtab(jjl.symtablqal.namelil=" *;
}
fieldtabljjlatab_count=0;
b

/% initialize address table =/

for(jj=0;jj<2005ji++) <
i=vs
addtabljjl.aodrnamelil=te";
i++d
addtabljjl.addrnamelil='0";
T++y
addtabljjl.addrnamelil="'s";
ites
addtabljjl.addrnamelil=" *;

initialize format table :x/

for(aa=0;0q¢5:ga++) {
for()j=0:jj<40:;j3++) (

i=0;
tablgal.formatabljjl.formnamCil=‘e’;
14+
taolqgal.formatabljjl.formnam{il=‘0";
i++;
tavlqai.formatabljjl.formnam{il="s";
i+
taolqal.formatabljjleformnam{il=" *;

)
/% set all pits of microword to zero =/

for(m=0:m<32:m++) {
flagiml.alt=0x00;

)

/% set aodress counter to zero. =/

adaress=0xv0;

/33t s s s s s sk e e v g e s e e 3k ok e 36 s s e ok oo e e s s s sk e sk i e o e oo ol sk e ok 2 3 /

/% */
/% The following procedure reads the format state= *®/
/% ments and enters all tne field names in the */
/% tormat table corresponding to the format state= *=/
/% ment. Next all the sympols in the field define */
/= statements are read and their names and definition %/
/% are copied into the the field table along with */
* their size and position of origin in the micro */
/® word. In tnis process the wordlength is also */
/x determined. *®/
/% */
/x procedures called : l. skip() x=/
/% 2. leave() */
/% 3. member() */
/% L. is_number () =/
/% Se chk_ovfw() */
/% */
/% integer variables used : aqrirjskstemp3,tempb., *®/
/% field,true,wordlength, x/
/% list,depbug.,form, *
% */
/3% floatina point variables : wordsize anc wlength *
/3% *
* string variapoles used: locl100], temp[15]., *
/% pos(3], loctl256], *
/% seel15]. x/

/% */

32 3% sl ol we sl
3 3 334

creat_table()

{

fp=fopen(loct,"r")i /% open input file =/
if(fp==0) (
printf("trror: %s file not found",lLoct):
exit(l):
}
eot=faets(loc,100,fp):
while(strlen(loc)==1)
faets(Lloc,100-,1tp);
if(debug==V)
torintt(lst,"%s0,l0c):

i=0,torm=worclenytn=0;

true=1;

ga=form=j=i1=y;

skip()i

/% check for psuedo instruction format */

if(strnemo(loc, "FORMAT",6) '=nul l) {
printf("error:FORMAT statement missinad);
exit(l):

}

/% it psuedo instruction *'FORMAT® present copy all %/
/% field names into format table ¥/

while(strncmp(loc,"FORMAT",6)==null) (
if(loclil!="' ") (
printf("error:Type space after FORMATO0).
>
if(loclil=="' ")
AR 2N
while(true '= 0) (
if(eof==0)
oreaks
while((loclil!'='0)a8(loclidt="7")) (
if(eof==0)

opreak:
while(loclil=="' ")
AR A
while(ClocCild'=',")Rx(Lloclil!=":")) (
jf((loclil==* ")ii(loclil=="'0))

preaks
templjl=toclili
SRAFRRL N
if¢i > 2 <
printf("error : field name too
printf("%s0,loc);
exit();
b
}
while(loclil=="' ")

long

61

in0);

Pee]
if(lloelilt=*,")iiCtloclidt=";")) (
itCloclil==*0). {
taets(loc,100,f0):
while(strien(loc)==1)
tgets(loc,100,t0);
skip()s
1=Q;
iftlocliltm®,*)
Leavel',',l0c):

)

b2

else (
printf(“error: ', operator missing in %s0,lo0c):
exit();

)

templjl=® '; /= array temp contains »/
/% field name ®/

/% ¢cneck it the tield name contains any reserved sympbols */

ismemmchx_rsvd_sym(temp);
/% it yes then ismemsn(, =/

1f(ismemang) {
if(liste=m0) (
torintf(lst,"error: reserved sympol in field name
torintf(ist,"%s0,l0c)i
)
printf(“error: reserved symbol in tield name in 0);
printf(“Ssusloc)i
exit(l)$
)
ji=0;
/* cneck it field name is regefined »/

while(strnecmp(tabCtorml.tormatab(jjl.formnam,"eo0s”,3) != nutl) (
if(strcmp(tav(forml.formatabl(jjl.formnam,templ==null) (
if(list==0) (
forintf(lst,"error: tiela Xs redefined in
forintf(lst,“Ss0,lo0c);
>
printf("error: field %s redefined in O,temp);
printf("%s0,lo0c):
exit()i
}
Jives

bl

if(debuo==Q)

torintt(ilst,"%s0,temo);
strcoy(tablforml.formataolqal.formnam,temp);
if(loclid=="';")

preak:

in0)i

Ostemp);

62

63

i++,qq++,j=0;
}
if(loclil==";")
true=0;
eof=foets(loc,100,1fp);
whilel{strlen(loc)==1) {
fgets(loc,100,%f0)3
>
skip(),)
if(debua==0)
forintf(lst,"%s0,loc);
i=j=03:

4a=0;
form++;

>
skip();

/% cneck it psueao instruction 'DEF' present x/
if(strancmp(loc,"DEF",3)'=null) {
if(list==0) (
tprintf(lst,"Error:DEF statement missing0);

X

else {
printf{"error:DEF statement missingN);
exit(1)s

M

}

eot=fgets(loc,L00,f0);

while(strlen(loc)==1)
fgets(loc,100,fp);¢

if{debua==0)
torintt(lst,"%s0,Lloc);

qa=j=0,wordsize=wlength=0.0:

skip():

/* as long as not "ENDEF"™ copy field symool name and */
/* definition along with size and position of origin into %/
/% the field table. */

while((strnemo(loc,"FIELD",S)==null)&&(strncmp(loc,"ENDEF",5)!'=nuli)){
1=5,k=0;
ifCloclilt=" *) {
1f(list==0) {

forintf(ist,"error:enter a space after FIELDO);
>
else {
printf("errorzenter a space after FIELDO):
>
>
if(locCij==" ")

i+
whitleCloclilt=* *) (

if(Cloclil==* ")ii(loclil=='0))/*check tox/

/% see if Line overfilows */
preaks;

seelk]=locli];

K*++ i+,

if(k>2) {
if(list==0) (

printf("“error: fieldname more than 8 characters

b
etse (
exit(l);
>
>
b,
while(loclil=="')
i+

if(toclil=='0) {
tgets{toc,100,fp)i
while(strlen(loc)==1)
fgets(loc,100,fp) s
skip();
v i=0,
if(Cloclil==',")ii(loclil==";"))
Leave(',*,lo0c);
if((loclils='=*)ii(loclil=="':"))
teave('=',lo0c)i
>
seelk]=" *;
k=0, .
while({loclilt=',")85(loclil!="7i"))
if((loclil=="r *)ilt(loclil=="y))
preak;
posCkl=toclils
K++,144+;

if¢ k> 2) {

printf("error: ',' separator missing or number > 2560);

printf(" in %sO0,loc)i

exit();
>
Y
while(loclil=="* ")
i+

ifCClocCid!=*,") i1 (loclilt=";"))
if¢(loclil=="Q) (

fagets(loc,100,1tp0);

white(strlen(loc)==1)
fgets(loc,100,fp):

skip()i

i=0;

if(loclil!=",")
Leave(',',loc):

Long0):

64

forintf{lst,"error: fieldname more than 8 characters long0);

ri

posCkl=* *;

if(loclil=="',")
true=1;

1+45

while(loclil=="
AR 2 2

ifCloclil=='0) (
fegets(lo
while(st
skip()s:
i=03¢

}

temo4=atoi(pos);

if((temos > 256)

printf(”
printf(”

>

k=V7

while((locCil!="
it(Clocl
posCkl=L
K*+,1++,;
if(k>2)
b

}

while(locl[il=="
RS 2

if(loclilt=";"
ifClocli
X

vosCxl="' *;
true=0;
temn3=atoi(pos);

')

cs100,10) 0
rlen{loc)==1)
fgets(loc,100,1tp):

/% temp4 contsins position of most =/
/% significant bpit of the sympbol %/
/% in the microword */

iiCtempsd ¢ 0)) (
error: bit position out of range in 0);
%s0,Llo0c)i

;') 88 (true==1)) (
il==* ") {i(loc(il=="'0))
break:

oclil?

{

printf("error : ',' separator missing or numper > 256
printf("%s0);
exit()s

")

1=='9) (.

fgets(loc,100,1t0) 7

while(strlen(loc)==1)
fgets(loc,100,fp);

skio();

i=0,

if(loclil!=*':;")
Leave(*';',loc):

/* temp3 contains the position of %/
/% the least significant pit of the =/
/%= sympol in the microword. %*/

in0);

65

if({temo3 > 25¢)ii(temp3 ¢ 0)) (
printf(“error: bit position out of rangel).;
printf(" in SsU,lo0c);

exit();
>
fielo=tempt~temo3; /% tiela contains the size of »/
/% the symbol =/
fielaes;
)1®qastruesQ;
trueus=l;

/% enter tnis information in tne format taole also */

while(trueq!=0) (
whilel(strcmo(see,tab(jl.formatablaql.tormnam)'=0) (
ittstrncmo(tabljl.tormatablaql.formnaa,"eos",3)==nyll)
oreak;
eise
4qes;
)
tavl(jl.formatanlual.pitsizestield;
taoljl.formataolaal.posnstemp3;
)**sqa=0;
11(§> (form=1))
trueqed;
>
eot=tqets(loc,100,tp);
while(strien(loc)s=}l)
taets(loc,10u,tp)i
skiod):
it(debugm=0)
tprintt(lst,"%s0,loc)i
imkmizg;
whilel(strncmo(loc, "FIELD",S) '=null)el(strnemp(loc, "ENDEF*,5) '=nul L)) {
if(locl(il<0x4l i tocCil > 0xS5a) (
if(liste=0) (
torintt(lst,"serious error0);
forintf(lst,"error:Symbol name does not begin with capital
forintt(lst,"Symbol :5s0,loc):
fclose(lst):
b
printf("error:Symbol name does not begin with capital letter0);
printf("Symbol:RsN,loc)
exit(l);

b4
j®locliJi0x1f: /% get the hash value to hash */
/% into the tiela table =/
chk_ovtw(j):
true=l;
whilellocfil !'= =) {
ifCloclil==? *) (
whileCloclil==" *)
ies;
ifC(locli)t='=")
Leave('=',l0c);

letter0);

66

67

==

true=N;

b

seelll=loc(il;

i+, L++]

ifC Lt > 9
printf("error: symbol name more than 9 characters 0);
printf("in %s0,loc):

exit (),
>
’
if(true==0)
l==7

seel(ll=" *;
ismem=chk_rsvd_sym(see).:
if(ismem==0) <{
if(list==0)
forintt(lst,"error: reserved symbol in symbol name in0);
forintt(lst,"%s0,lo0c)?
}
printf("error: reserved symbol in symbol name inQ);
printf("%s0,loc);
exit();
b
k=0,Ll=0;
while(strnecmp(fieldtabljlesymtablklename,"eos",3)t'=nult){
it(stremp(fieldtabljl.symtablkl.name,seed)==null) (
if(list==0) {
torintf(lst,"error t sympol %s redefined in O,see);
forintf(lst,"%s0,lo0c)s
)
printf("error: symbol %s redefined in 0O,see);
printf("%s0,L0c);

exit (),
>
kK++;
>
tieldtabljlesymtablkl.namelll=seell]:
L=0:

while(seelllt=" ") {
fielatab(jl.symtablkl.namelll=seell];
L+
X
fieldtabljlesymtablkl.namell]=* '3
L=0,i++;
while(loclil '= *;")(
while(loclil==" ')
it
if(loclil=="'0) (
taets(loc,100,fp)
while(strlen(loc)==1)
faets(loc,100,fp);
skin();

i=0;
iftloclilt=*;")
Leave(*;*,lo0c):

)
it(loclil==" ")
oreak:
ifCloelil ¢ *0* ! locCid > 1)

printf(“error: Pit value other than 1 or 0 in0):

printf("Xs0,l0¢c);
exit(l);

>
tieldrtabljl.symtablkl.get(tl]mtoc(ili
iee, e, .

iteL > 9 (¢

printf(“errar: can not handle symbols with more than

printf (“%s0,1l0c)i
exit();
>
}
tietatab(jlesymtablkl.get(L)=* ¢;
tielotab(jl.symtablkl.oitlenytnutield;

tietdtab(!le.symtab(kl.positionstemp3;

eotsfgets(loc,100,¢p);
while(strien(loc)mss])
foets(loc,100,10) 7
skip()§ .
if(debuos=0)
forintf(ist,"%s0,l0c):
(=imke(]
b
temoS=tempb=0;
bJ
qa=wordlengtn=Q;
/% compute microword length =/
while(strncmo(tao(0l.formataolqal.formnam,"eos”,3)=nul L) (
wordlengthswordlengtn+etanlul.formataolqal.oitsize;
qae+;
>
wordsizeswordlengtni
wlengtnswordsize/8,0:
wordlengthswienath;
wordsizeswlength= wordlenath;
if(worasized0.0)
wordiengthswordlengtn=+ls
if(list==0)
torintt(lst,"worclengtn=3dl,wordlength) s
fclose(fp);

®/

9 bits0):

68

69

/= The followiny procedure checxs for overlaoping bitfielas =/
/= in the same tormat statement. If an overlap is found */
/= then an error message is printed on the screen and the =/
/= proaram is aportea. Zlse it prints an affirmative =/
/= messaqe. */
/= =/
/% Procedures callea : None. : »/
/= . */
/% integer variables used: w,),aQ,m,n,temp2,temp3,tempbox =/
/= ttstruestrueqstormsdats */
/= ./
/= string variaoles useu : temp(lSl. -/
/% */
4 /

chk_ovrlp()
<

tf(listm=0)

tprintt(lst,"Please vait,checking for overtappingbittieldsQ);
printf("Please vait,checking for overlapping bit tieldsd):
ws)sqgud,truestrueq®l;

while(truel=y) {
whilel(trueq!=0) (

it(strncmo(tanCjletormatablwl.formnam,"e0s",3)120) (
strcoy(tempstanljl.tornstaolul.fornnam);

temosmtauljl.formataolwl.0nsn;
temo4mtaol(jl.formataoCul bitsize;
dat=temole(tempi=1);

3
ittstrncmo(tabCjlotormatablul.formnam,“eos”,3)a=n0)

trueu=0;
yamw;
qa*e;
while(strnecmp(tao(jl.formataclaql.fornnam,"eas",3)120) (

temold=taol()l.formatanlaual.cosn;
xmtaoljl.formatanlaal.oitsize;

ttatempela=1);

n=temol;

mmtemo3’
if((m=an)iiC(ndm)&(n<adat))il ((n<m)Be(acatt))) (

if(lists=0) (
torintf(lst,"2rror:You have overlapoing bit tields in your definition0);
forintt(lst,"FIELD:%s overlaps FIFLD:%NsO0,temostaoljl.formatanCqal.formnam);
tclose(lse):

printf(“error:You nave overlapping bit fields in your definition0);
printf("FIELD:%s is overlapping FIELD:NsO,temo,tabljl.formatablaal.formnam);
printf(“Please correct the error & try to assemble again0);

exit(l):
bd
qd++;
bl
if(trueqs=0)
breaw:
e

3
it(i>Ctorm=1))

truea(;
jows
weG,trueqsl;
b
printf(”“Good, you have no overlapoing dit tieldsu):
)
/ 4
/= =/
VAl The tollowing procedure ts tne first nass of the =/
/n assempler. The microproaram 1s scanned from start ./
/= to end and as and when address labels are encouyntered =/
A4 an apsolute value i3 assigned to tne address label. ./
/= An aadress counter keeos count of the ena of micro= s/
/e instryction character which naprens to be ':'. flotn ./
L the address L(apel and its corresponding absolute ./
/= value are stored in the adaress taole for tuture »/
e reterences. ./
/= =/
/= procedures called: Mone. -/
/= «/
/% inteyer variables used:),qasisx,aadress,debua, =/
/= truestrueqseof,status. ./
/8) =/
/= string varisoles used: locLlv0l,toct(256], -/
/= =/
Y, /
passlit)
<

foxtopen(lact,"r"):
tgets(loc,100,¢p) s
white(strien(loc)==l)

fgets(loc,100,tp) ¢
skip().
1f(debug==0)
forintf(ilst,"%s0,l0c)s
while(strnecmp(loc,"ENDEF”",5)!'=null) {
if(eof==0) {
if(list==0) (

torintf(lst,"error: ENDEF statement missing0)i

}
printf("error: FNNEF statement missing0).
exit();
>
eot=tqets(loc,100,fp);
while(strien(loc)==1)
eof=fqets(loc,100,1tp):
skio():
)
true=1l;
address=0x00;

eot=fqgets(loc,100,f0)

while(strlen(loci)==1)
fgets(loc,100,fp)?¢

skip()i

if(debug==y)
fprintf(ilst,"%s0,Lloc)’

j=qa=i=x=0;

while(strnecmop(toc,"END",3)1=0) (
if(eof==0) (

if(list==0)¢

tprintf(lst,"Error:END statement
>
printf("Error: END statement missinqg0);

}
if(eot==0)
preaks
trueq=0;
j=0.:
while(loclil!'=':") {
if(Cloclil==' "Yii(loclil=="0))
break;
ifCCid>10)88CLloclilt=rz"))
oreak:
templjl=loc(il;
Jr+i++;
>
while(loclil==" ")
14+
if(loclil=="'0)
faets(loc,100,f0)3;
while(strlen(loc)==1)

missing0);

71

toets(loc,100,10);
skip();
i=Q;

teso(jl=t *;
1m0
itCloeli)tmeey)
trueq=l;
if(trueassy) (
while(temo(jl '= * *) (
aaggtablagl.acdrnameCjIistemp(jli
ifC§26)
if(listmm0) {
torintt(lst,"error:address Label more than & characters itong0):
teloseist);
b
printt(“errorzadoress Label more tnan 6 characters longl):
exit(l);}
b2
Jeesiee]
)
acgrahlagl.acdrnamel;In’
adotadlagl.contentssadare

it(debyes=0)
forintt(tst,” %3 @ Xx0,ad0taplqaql.addrnsme,addtablaql.contents);
qges;

>
while(true '= 0) {
it(eotsald)
oresk;
while((loc{il!m*0)altlocCidm*;")) (
iee]

>
itCloc{ilw=) {
true=0;
addressees;
>
eof=taets(loc,100,¢0);
white(strien(loc)==]l)
tgets(loc,100,1tp);
skip():
it(debug==0)
torintf(ist,"%s0,l0c):
j=i=Q;
3
truesl;
>
status=fclose(to);
if(status?!=0) {
printf("unsuccessful file closure:ss:I/0 error0,loct);
3}
j=0;

72

fclose(fp);

b
/ % sk de e okl 3 e s sl R ok e o Sk e e ek ke ek ke ook ko ke ik sk sk Rk ok Rk ke ok /
/% */
/% This procedure is the second pass of the assembler w/
/% In this procedure the microprogram is actually ®/
/% assembled ang stored in a separate file. For =/
* assembling this procecdure refers to the tiela table =%/
/% the adaress taole and the format tabte, For sear- =/
/% ching the format and tne address table, linear */
/% search technique has been adooted. For searching =/
/% the fiela taole, a techniaue similar to hashing */
/% has been used. The microproaram is scanned */
/% microinstruction by microinstruction till END */
/% statement or end of file is encountered. For every *®/
/% microinstruction, the field symbols are read one */
/% after the other and a check 1s made of the field *x/
/% tavle ana wnen a match is found, the fisld symool */
/% size and tne position of origin of the */
/% in the microword are read into a buffer. Next the */
/% value ot the field sympol is read and the value x®/
/% is examined pi by bit and the field symbol is asse= %/
/% mleb by setting the the appropriate pits in the */
/% microword. After the microword has been assembled */
/% completely, it sliced into R bit slices and these */
/% slices are storeo in files wnose names are obtained */
/% trom the user interactively ibefore this procedure. */
/% */
/% procedures called: l. stat() */
/% 2. dump() */
/% 3. member() x/
/% be is_number() x/
/% Se chk_rsvd_sym() */
® 6. leave() */
* */
* integer variables used: i,jskrlomonsjjrttsry,pPsxs */
/% templ,temo2,temp3,temoé, */
* addresss,eof,list,debug, %*/
/% symbol, wlength, daf,trueaq */
/% addrgen,ismemsisnumstrue. =/
* *
* strinag variaoles used: temp(15], seel15], pos[33, *
/% toc[1v0]. </
e st 3z 3¢ 3 i o siese e s e e e o oesie e e e e siask el sk /

passZ()

€
address=0x00;

73

outfile=topen(outnam,"w+");

fo=fopen(loct,"r"):
eof=fgets(loc,10u,fp):/% it eof=0 then end of file encountered*/
while(strlen(loc)==1)
fgets(loc,100,tp):
skip();
ifllist==0) (
forintf(lst,"PASS=1 complete 0);
>
while(strncmp(loc,"ENDEF",5)=null) {
eof=fgets(loc,100,fp);
while(strlen(loc)==1)
tgets(loc,10U,tpD);
skio();
>
i=k=m=n=0;
eot=fqgets(loc,100,fp):
while(strlen(loc)==1)
fgets(loc,100,1%0:) 7
skin(),
it(list==0) (
tprintf(lst,"PASS=2 HEGINS ===)> Assembly in progress0);
fporintflilst,"1s",l0c)’
>
i=0s
while(loclilt=":") (
if(Cloclil==* ")ii(loclil=="'0))

oreak;
ifCCi>5)8R(Lloclidt="2"))
vreak;
ite;
>
while(loclil==" ')
AR 2

if(loclil=='0)¢(
taets(loc,100,tp):
while(strlen(loc)==1)
faets(loc,100,fp);

skio()
1=04
X
if(loclilt="2")
i=07
else
LR A

gat=0,addrgen=1;/% if gaf=0 then field symool to be x/
/% assempled, if addrgen=1 tnen value =/
/% to ve assemoled is either a decimalx/
/% number or an adaress label. */

white(loclil=="' ')
AR L

/% strart reading microinstructions =/
-hile(s!rn:ma(\oc;’iﬂF";})!-nulk) <
wlengtn=0i
it(eot==0)

oreak;
white(locCi)
e
-nile((Lu:[i]?-'u)ll(\o:[i]!
n=0;
jt(eotm=0)
oresk:
white(locCidmmt)
1e3

unile((loc(i]!-';')ls(lo:tijlt';‘)) <
it(eot=s=Q)
or H
f1fcCLoelil vyittioclilmnr0))
oreak:
remolnl=toclidi
neesieei

)

while(locCidma® ')
jees

itCloclilem0) «
toetslloc,100,t003
while(strientloc)=sl)

'qe!u(\oc:loo-?u):

skip()i
im0}

templnls® ': /% read all characters up to ./
/e %, chatacter into array tenp ®/
izne---o-ber("‘-t--a); /e cneck it symbol =/
1mt present in temp */
iﬁ((n)?)ll(islel‘io)) <
it¢listmm0) (
tprintt(lst,"errors symbol name more than 9 characters
fnrintt(tst:“:to'loc):
teclose(ist)i

printt("error: symbol name more than 9 characters in 0)3
printf("%xs0);
exit()i
>
n=0;
qq®=jj=n=0:

/= it '=' symbol present then read all cnaracters to the */
/% lett of '=' symool in to an acrray see ®/

itCismenma=0) (
n=0

H
Jhile(templnli='=") <
seefnl=temolnli

in 0

75

nes;
b
seelnlm'
wa0,nee;
whilel(temoln]t=*) (
tempqlulstemplnl;
wee nee;

tempqlwl=s® *; /% read all characters »/
/% to the right of '=' sympol =/
/% into array temoq. =/

/% check it the fiela name in see is 3 valid field name. ®/
/® by checking the format taole. */

.tor(j=0:j<torm;jee) (
k=g
while(strncmp(tanljl.tormatanlkl.formnan 0s”,3) tenyll)
it(stremp(tanljl.tormatanlkl.foran see)mmnyll)
temp2wcan(jl.formatanlkl.bitsize:
teap3=taoljl.tormatadlkl.posni

trues(;
bl
1f(truees0)
break;
Kee]

{f(trye=so)
oreak;
>
if(tryesnl) (
itClistmnn) (
torintf(lst,"error: ftield Xs not foundl,see);
tclosellst):

3
orintf("error: field 33 not foundO,see);
exit()}

}

truesl;

Tsnum=is_numoer(tempq);

/8 check if the contents ot array tempq is a positive integer x/
/% it number tnen set isnum=y =/

it(isnuma=ng) (
temp4=atoi(tempal;
if(tempd > 32000)
itClist==0) (
tforintf(lst, "error: value > 32000 in0):
torintt(lst,"%s0,0¢):
fclose(lst):

printf(“error: value > 32000 in0):
printf(“Is0,loc):

76

exit();

b
adargen=0,gat=l;
b

/% if not number check it the contents of temoq %/
/*¢ is 3 tielo symvol by checxina tne field table %/
else ¢
qostempa(0)80x1f:
Jimf,symoot =0}
whilelyj < 303 ¢
ittstrnecmp(fieldtanlagl.symtabljjl.name,"eos",3)msunull)
symbol®=l;}
if(symspol==]l)
oreak:
it(strcmp(tieldtablaal.symtaoljjl.name,tenpq)=anull)
breask;
Ve
}
if(sympotwm0) (
temolwtielatablaqle.symtanljjlenitiengthi
if(templi=tenmp?)
it(listem0) (
torintf(lst,“error:Field size does not match field symool
torint?t(lst,"Field :5s0,3¢e);
tprintt(lst,"Field sympol : %sO,tempali

printf("error:Field size does not match field symbol size0):
printt(“Field : SsO,see)’
printf(“Fiela symbol :Xs0,temoqQ);
printf(”in %s0,l0¢):
exit():
b
addrgen=1l,0at=0;

b

/* it the contents of tempq is neither 3 numoer nor =/
/% a tield symool check it it is an adoress lLaoel =/
/% by checking the address table. a/

if((symbole=))gR(isnumi=0)) {
qa=0;

while(strcmn(addtaolaal.addrname,tempa) t=nut l) (
if(strncmptaddtablqal.addrname, "eos”,3)=anull) {

if(list==0){
forintf(ist,"error:addresslabel %s not found.0,tempa);
fclose(fp):

b

printf("error:addresslabel %s not found.0-temoq);

exit():

s

77

78

>

qa++;
b4
temp4=addtablagl.contents:
addrgen=0,daf=1;

}
true=1l;

}
/% if the array temp does not contain the character °'=' %x/
/% tnat means temp contains tield symbol. Check field %/
/% table and set dafs0 %/

else
qQa=j)=0:
n=0;
ga=temp{nl&Ox1t;
while(jj € 20) ¢
if(strncmp(fimldtablgal.symtabljjl.name,"eo0s",3)==null)
if(list==0) <(
tprintf(lst,"error:sympol not founal);
tprintf(lst,"sympol:%s in0,temp);
torintf(lst,"%s0,l0c);
tclose(lst):
)
printf(”error:symbol not found0);
printf("Symbol:%s inl0,temp);
printf("%s0,loc¢);
exit(l);
e
if(stremp{(tieldtablaql.symtapl{jjl.name,temp)==null) {
true=0;
>
if(true==0)
breaks
ji++s
}
true=1l;
temn2=fielatablaql.symtabljjl.oitlengtn;
temp3=fielatablaqlesymtabljjleposition:
b
tt=0s

/* locate the position of origin of the field symbol %/
/* in the vyte and the byte where the symbhol originates */

<

1%
/%

temp3 contains tnhe position of origin and tt the =/

byte numoer.

*/

if(C(temp3 > 7)a8(temp3<=15)) (
temp3= templ3=8;
tt=1;

>

if((temp3 > 15)R&(temn3 <=23)) {
temp3= temp3~lo;
tt=2;

}

if((temp3 > 23)R&(temp3 <= 31)) {
temp3=temp3=24;
tt=3;

)} .

if((temp3 > 31)8&(temp3 <= 39)) (
temp3=temp3-32;
tt=4,

}

it((temp3 > 39)R&(temp3 <=47)) {
temp3=temp3=40;
tt=5; 4

X

if((temp3 > 47)R&(temp3 <= 55)) (
temp3=temp3=48;
tt=6;

>

if((temp3 > 55)Rs(temp3 <= 63)) (
temp3=temo3=56;
tt=7;

}

if((temp3 > 63)R¢(temo3 <= 71)) (
temp3=temp3=64;
tt=8;

>

if((temp3 > 71188 (temp3 <= 79)) {
temo3=temo3=72;
tt=9;

>

if((temp3 > 79)fx(temp3 <=§7)) {
temp3=temp3=-80;
tt=10;

>

if((temp3 > 37)R&(temp3 <= 95)) (
tempi=temo3=8%;
tt=11;

}

if(Ctemp3 > 95)R8(temp3 <= 103)) (
tempS=temp3=96;
tt=12;

>

if(Ctemp3 > 103)6R(temp3 <= 111)) (
temp3=temp3=1047
tt=13;

79

>
if(Ctemp3 > 111)s8%(temp3
temp3=tempo3=-112;
tt=147
>
if((temp3 > 119)4&(temp3
temp3=temp3=120¢;
tt=15:
}
if((temp3 > 127)a%(temp3
temp3=temp3=12¥;
tt=16,
}
if(Ctemp3 > 135)4R(temp3
temp3=temp3~136;
tt=17:
g
if((temp3 > 143)4R(temp3
temp3=temn3=144;
tr=1y;
b
if((temp3 > 151)%R(templ
temp3=temp3~-152;:
tt=19y;
>
if((temp3 > 159)%R(temp3
temp3=temp3=164U:
tt=20;
2}
it((temp3 > 167)%R(temp3
temp3=temp3=168;
tt=21;
>
if((temp3 > 175)¢&(temp3
temp3=temp3=-1763;
tt=22;
3
if((temp3 > 183)g8%(temp3
temp3=temo3=~184;
) tt=23;
3
if((temp3 > 191)4R(temp3
temp3=temp3=192;
tt=24:
>
if(l{temp3 > 199)48(temp3
temp3=temp3=2003;
tt=25:
>
if((temp3 > 207)x8(temp3
temp3=temn3=20&;
tt=26
}

<= 119)) g
= 127 <
(=135))
(=143)) (
(=151))
(= 159)) (
(= 167)) {
<= 175))
<= 183)) {
<= 191)) {
<= 199)) (
<=207)) {
(= 215)) (

if((temp3 >215)%3(temn3 (= 223)) (

80

temp3=temp3=216;
tt=27:
>

if((temp3 >223)8&s(temn3 <= 231)) (

temp3=temp3=224:
tt=28:
>

if((temp3 > 231)s%(temp3 <= 239)) {

temp3=temo3=232;
tt=29;
>

if((temp3 > 2I9)44(temp3 &= 247)) (

temp3=temn3-2407
tt=3u:
>

if((temp3 > 247)4&(temp3 <= 255)) {

temn3=temp3=24Yi
tt=31:
}
y=0:
y=temp3;
/% start assemoling %/

pp=strlen(fieldtablagl.symtanljjl.gef):

pp==;
if(daf==0) {
while(temp2 > 0) {
y=temo3:
while(temp3 <2)

{

81

if(fieldtanlgqlasymtab({jjl.deflppl=='1') (
switch(y) {

case

case

case

case

case

case

case

case

0:

1:

2:

flaglttl.part.bit0=1;
breaks

flagfttlepartebitl=l;
breaks

flaalttl.part.pit2=1;
break:

flagfttl.part.bit3=1;
break:

flaglttl.part.bité=1;
breaki

flagfttl.partebitsS=1;
oreaks

flaglttl.part.pité=1;
break:

flagfttl.part.bit?=1;
preaks

82

default:
printf("sharad0);
breaks

}
templ==;
if(temp2==0)
breaks
po==,temp3++;
y=temo3;
X
' temp3=U,tt++;
¥
daf=1;:
s

/% if address Llapel to be assembled then examine all =/
/% the bits of the inteaer representing address value %/

if(aadrgen==0) {
white(temo2 > U) (
while(temp3 <=3) (

switch(x) {

case 0:
m=temp4R0x00000N001;
break,

case 1l:
m=temp4R0x00000N02;
preak.

case 2:
m=temp4R0x00000004;
break.

case 3:
m=temp4l0x0N000008;
preak.q

case 43
m=tempsl0x00000010;
preak:

case S:
m=temp4&0x00000020;
break:

case H:
m=temp4ROx00000040;
break;

case 7:
m=temp4&0x00000080;
break.

case 3:
m=temp4R0x00000100:
break;

case 9z
m=temp4’0x00000200;

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

oreak:

10:
m=temp4&0x0000Q0400;
break;

11:

m=temp4%0x0000Q0800;

breaks

‘12

m=temp4&0x00001000;
breax; :

13:
m=temp4R0x00002000;
break:

14:
m=temp4R0x00004000;
break:

15:
m=temp4&0x00008000;
break.

16
m=temp4R0x00010000;
preaks

17:
m=temp4R0x00020000;
break:

132
m=temp4R0x00040000;
break,

19:
m=temo4R0x000R0000;
breaks

20
m=temp4R0x00100000;
break:

21
m=temp&®20x0N200000;
vreak;

22:
m=temp4al0x004600000;
break:

23:
m=temp4l0x00800000;
break:

242
m=temps&&0x01000000;
break;

251
n=temp4%0x02000000;
break;

26:
m=temp4R0x04000000;,
oreak.

27:
m=temp&l0x0R00N0000;

83

break:

case 28:
m=temp4&0x10000000;
breaks:

case 29:
m=temp&4%0x20000000;
break:

case 30:
m=temp4&0x40000000;
break;

case 31:
m=temp4&0x80000000;
breaki:

default:
printf("vasant0);
break,

X

if(mt=0)
switch(y) {
case 0:
flaglttl.part.pit0=1;
vbreak:
case 1:
flaglttl.part.bitl=1;
oreak:
‘case 2:
flaqlttl.part.pit2=1;
break:
case 3:
flaglttle.part.pit3=1;
opreaks
case 43
flaglttl.part.bité=1;
break:s
case 53
flaglttl.part.bitS5=1;
break:s
case 62
flaglttl.part.bité=1;
break;
case 73
flaglttlepartabit?7=1;
break:s
default:
printf("“rama);
X
X
templ==:
if(temp2==0)
breakes
po++,temp3++, x++;
y=temp3;

84

temp3=0,Tte*i
}
adargen=L;

}
x=0,dat=0; /% set dat tlag to zero */
itc¢loclils=*:")
oreak:
iees

}
itCloeCil=ari®) (
it(list==0)
forintt(ist,"%x :",aadress):
address**:
jjmworalengtn=1; /e jj is the
while(jj >= 0) <

fnriﬂ!f(ou!'ilt;"%l":fllq(jj!.ltl):
iftlista=0)

forinttClst,"” sx",tlaaCijleatldd
aumn(fl»q(j1].ckl;llnnn!tjj].ta:;lLocin!tij].au!u);
yi==i

torinttCoutfile,"%c",'0):
tor(m=Q:mC32;imees) (

tlaaCml.ali=0x00:
>

b

eotstqets(loc,100,1023

whilelstrienlloc)a=l)
tqets(loc,l0ustodd

skio():

if(Llistas0)
torintt(lst,"2s",loc);

isg;

whiletlocCilt=es®) <
PtCCidSIEeClocCilr=rz®))

preax;
1000
>
iftloclil!=
i=Qi
else
ieesd
while(loclil==")
e

>
ifClistas0)
stat():
tcloselouttileds
tclose(to)di
it(lisct==0)
tclose(lst) s

wordlength in bytes &/

85

/iR Ran kR RRE kRt Rk Rk e etk ook sk ks e ke ek ok /
/% x/
/% The tollowing procedure checks tne space usea */
/% in the symopot taole whose nash value is passed */
* as an argument to this function. If the sapce x/
/% used is greater than 29 then an error message is *
/% flashed indicatina an overflow and a statistics =
* of tne space usea in all tne tables is orinted *
® on the screena */
/% B
/% Procedures calliea: l. print_err(num) *
/% */
/% inteyers used ! count, num. *®/
% ®/
/% string variaoles used : None, */
/% %/

/R R R R R R A AR AR SRR ARG R R R R R R R e e R T /)

chnk_ovfwl(num)
int num;

{
int count;

fielatabljl.tab_count++;

count=fieldtabl{jl.tao_count:

if(count > 294
print_err(num);
exit(l);

/ %8sl s e e e s s o ool e ek 3o 2 30 ek R e ok e e o e gk s ok s e o o ek e e e e s e o /

/= *=/
/% This procedure orints the complete statistics of *
/% usaage of tne tables along with the error message */
/% ingicating which particular symbol table overflowedx/
/% =/
/% Procedures called : None */
/% =/
/% Integer variables used: charctrsocnt,xy,sym. =/
/% */
/% character variable : character */
* */

sie st

2 =
MIRFTRIRINMRRIRS

print_err{(cnarctr)
int charctr;

{
char character=0x4l17
int sym=0s,cnt=41l,xy;

87

character = character + charctr:
printf("error : you nave used more than 29 symool names begining");
printf(” witn the character %c /n",cnaracter):
printt(" Status of sympol taole : /n");
if(list==0) {
forintf(lst,"error ¢ you have used more than 29 symbol names begining");
forintf(lst,"witn the character %c /n",character);
tprintf(lst," Status of symbol table :/n");
>
while(sym < 24) (
printf("Number of symbol names beaining with character”);
printf("%¢c = %a /n",character,tielotablsyml.tab_count);
if(list==0) (
ferintf(ilst,"Numper of sympol names begining with character"):
fprintfllst,"%¢c = %d /n",character,fieldtablsyml.tab_count);
tfclose(lst):

>
sym++;
character=symi(Uxe0;

/3¢ 3 3 v 0 v e o e e e e s e e e 2 s 2 sk e i 2k e 3 2 e X 2 i ek o e Xk o ok e e e e e o e e o e e ook ek N e e ek ek ek /

/% */
/% This procedure writes the character passed to it as *x/
/% an argument into a file whose file name and file pointer */
/#® are also passed as arguments to this function. */
/% */
/% procedures called : None. */
/% */
/% integer variables used ¢ None */
/% */

/% 33 e e 2 ae e st s o e e e ks s e e o e s e e e et S e s e e e ke s v e s e s ok s ofe e el el e ek ek sk s ek xR ok /
dump(cr,fnam,sp)

char co,fnamC151;
FILE #*spi

<
sp=fopen(fnam,"a");
tputc(crsp)s
putc('0,sp):
fclose(sp):

b

* The following procedure prompts the user to specify %*/
B the filename and gets a string wnich is supposed #=/
* to be a file name and stores it in the structure called */
* names. The function gets as many file names as is specified*/

/% by the argument passec to ita */

88

/% *®/
/3t et e e e e S e AR o o e o ek s sk e e e s el s kg e ook ek A e et e fe e ko de e /

getfnam(wlen)
int wleny

{
int x=0;
while(x<{=wlen=1) {
printf(" Specify name of output tile "o x+l)
scant("%s",flnamelxl.lot):
x+e;
bl
}

ALttt e e e L e e 3 2

/% *x/
/% The following procedure returns zero it the character %/
/% passed to it as an aryument is a memher 0ot the string *x/
/%n passed to it as an araument, else returns 1. */
/% */

/ %% i 3 2 X e 2 3 ok e X 20 X R K 2R 3R o0 K 2 e e e e e e e e e v Re el e o X % ek e o 2 e Ao Yeode e e e de e g A ek ¥ /

memoer(cr,array)
char co¥array;

{
int i=0,true=1;
while(arrayCilt=' *) (
ifCarray(il=='=")
true=0;
if(true==0)
oreak.
it
X
return(true);
3
/% 33 3n e X0 2 e e i ok e e 7 S s o e sl e e o o e s s e e e sl sie s ok sk e Ne sk ok e e e kR e A R KR AR A/
/% : %/
/= The following procedure returns zero if all the members */
/% of the string passed to it as an arqument happen to be */
/% between 0 and 9, else returns 1l. =/
/% %/
/) 3o s xe i s sk ooz e s ke i sl e i sl sk sl s o sk sk e e g sk sk kst sfok skt g ok ok S ek kR ke ek ok /

is_number(array)
char :=xarray;
<
int true=0,k=0;
whileCarraylk]l!=*' ') (
if(Carraylk] <*0')iiCarraylk]l > '9'))
true=1;

if(true==1)

oreak:
k++:

b

return(true).
}
/3Rt s e stole e s oo R sk e e skoR xR sk ek e o R kR R de e R e e ek s e ek X ke /
/% */
/% This procedure removes all tne space cnaracters at x®/
/% the pegining of the string loc which is a global variaclex/
/% and whicn contains the text Line in the source file *
® whicnh contains tne microproaram to be assembled. */
/% */
/3 3 s 3k o s sk e e e e e 3 s e e e e s s S s e o o s e s s e e ke e e e R X ok e e g ook ek v deor MK ok ek /
skip()
{

char arrayf£2561;
int 1i=0,3=0/
whilel(loc(il=="')
i+
whileCloc[ilt'=* ') (
arrayljl=tloclil;
IEA A EX
}
crrayljl=* *;
i=y3=0;
whileCarrayCjlt'=' *) (
Ltoclil=arrayljls
IR L FBELH

>

LocCil=" *;
>
/3 s e e e e e e e i 3 e e e Ao 6 o e 3 o e s s ofe e e e sl o e i sl o i ok e sk e s sk ok ok s ek okl e g sk sk e Atk /
/% =/
/x This procedure returns zero if tne string passed to */
/% it as an araument contains any of the reserved symbols %/
/% vize "=', 'i', ',', ':'; else returns 1l. */

/% */

chk_rsva_sym(array)
char =array:
{
int true=1l,i=
char valray(5
valray(0l=';"'
valray(l]=',"
valray(2l=':"
valray(3]='=

0
]

while(i<s) €
true=memper(valraylil,array):
if(true==0)
break:
AR E N
>

return(true);

/ %o sk3pde de i vk o X R0 3k A0 ek 32 %o o 20 3 e Nowe Sk R e e ek ek Sk n AR xe A SR R e A ek Bk exp ek 3R w2

/% *
/% This procedure prints an error message stating */
/% that the cnaracter passeg to it as an argument *®/
/% is missing from the string passed to it as an */
/% argument and tnhen exits the proaram, ®/
/% */

/ % sin e o 2 o ge 2 o e e e 2k e A0 e 30 X S AR S A e s o e e vk e e e v 2k At R e X o e e ne Ao e ek Yeg eap de ok ke ak /)

Lteave(csarray)
char ce.*array;

{
if(list==0)
forintf(lst,"error: *%c' operator missing in %NsO,c,array);
printf("error : '%¢' operator missing in %sO,c,array);
exit();
>
/3% e e 3n st e 2exe % %2 2w A0 et e o st SN g a e e o 7 ok oSk o % e e e e ok o e e e o 3 e e ek sl oo ek ek %/
/% */
/% This procedure orints an error message followed DYy */
/% a complete statistics of the usage ot the taple */
/% in tne List file called metasm.lst. */
/% x/

/% 3¢k ok s ke sk s e o e aje o sip e aie e e e e o s ool e s e e e e e e e e e e s ek el ke e s ke e e el ek e e sk k% /

stat()

<
int yy=Q0,addrcnt=0;
char cnaracter=0x417

while(yy < 26) {
forintf(lst,"numper of sympols starting with character”);
forintf(lst," %c = %d0,cnaracter,fieldtablyyl.tab_count);
character++;
addrcnt=addrcnt+ fieldtaolyyl.tab_count;
yy++;

>

fprintf(lsts"total numpoer of sympols usea = %d0,addrcnt);

(1]

(2]

(3]

(4]

(5]

BIBLIOGRAPHY

Samir S Husson (1970). Microprogrammed principles and
practices, IBM Systems Research Institute, New York:
Prentice Hall, Inc.

John J Donovan (1972). Systems Programming, New York:
McGraw Hill.

Robert M Graham (1975). Principles of systems
programming, John Willey and Sons, Inc.

Brian W Kernighan and Dennis M Ritchie (1978). The C
programming language, Englewood Cliffs, NJ: Prentice
Hall.

Borland Turbo C reference manual (1987).
Borland Corporation, CA.

7

VITA
Sharadchandra R. Murthy
Candidate for the degree of

Master of Science

Thesis: DESIGN OF A META-ASSEMBLER
Major Field: Electrical Engineering
Biographical:

Personal Data: Born in Mysore, India, December 27,
1962, the son of T.G.R.Murthy and Chaya Murthy.

Education: Received Bachelor of Engineering in
Electronics from Bangalore University, India in
December, 1984; completed requirements for the
Master of Science degree at Oklahoma State
University in July, 1988.

Professional Experience: Customer Support

Engineer, PSI Data Systems, India, January,
1985 to June, 1986; Research Assistant, Depart-
ment of Entomology, Oklahoma State University,
October 1986, to May, 1987; Teaching Assistant,
Department of Electrical and Computer Engineer-
ing, Oklahoma State University, August, 1987 to
May, 1988.

