
DESIGN OF A META-ASSEMBLER

By

SHARADCHANDRA R. MURTHY
J/

Bachelor of Engineering

Bangalore University

Bangalore, India

1984

Submitted to the faculty of the
Graduate college of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1988

-y \,~:: s\~
\'\1:;'6
M'\'6£..\d
~a~.;),.

DESIGN OF A META-ASSEMBLER

Thesis Approved:

Dean of the Graduate college ·

ii

ACKNWOLEDGMENTS

I wish to express my sincere appreciation to Dr.

L.G.Johnson for his encouragement and advise throughout my

graduate program. Thanks also to Dr. H.R.Bilger and Dr.

R.L.Cummins and Dr. C.D.Latino for serving on my graduate

committee.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION •....•..•....•.....•.................. 1

II. WHAT IS MICROPROGRAMMING?••............ 3

III. DESIGN OF A META-ASSEMBLER•................ ?

Problem specification•............. ?
Design 8
Data structures ..••....•.••...•.•....••.• 11
Search strategy 23
Modularity 25

IV. CONCLUSION ..•....•.••...••....••.•...••.....•... 28

APPENDIX A MANUAL 29

APPENDIX B - SYNTAX 32

APPENDIX C- ERROR MESSAGES••......•.... 38

APPENDIX D- SAMPLE MICROPROGRAM •......•............. 42

APPENDIX E META-ASSEMBLER LISTINGS ..••...••••..... 45

APPENDIX F- SOURCE PROGRAM LISTING ...•...•..•....•. 53

iv

LIST OF FIGURES

Figure Page

1. Data structure for address table•.•.... 14

2. Data structure for field table••..••...•. 16

3. Data structure for format table .•....•.•..•.•..•• 19

4. Data structure for the microword •....•.•.......•. 21

v

CHAPTER I

INTRODUCTION

A significant trend in computer design in recent years

has been the replacement of the conventional transistor

logic control section of a digital computer with "stored

logic" or microprogrammed control, stored in high speed,

nondestructive read only storage.

The main reason for this shift in computer control

implementation is the economic superiority of microprogram

ming over conventional logic control. Microprogramming has

made it economically feasible, for example, to have the

same comprehensive instruction set built into a whole line

of new computers, even the smallest ones. Thus we have com

puter lines that have compatible instruction sets, yet

their internal hardware, organization, and structure are

drastically different. Microprogrammed control offers many

other advantages besides the much publicized upwards and

downwards compatibility. Among these being inherent flexi

bility of a microprogrammed system to permit architectural

extensions and modifications that will make the system per

form a specific data processing function with maximum effi

ciency.

All present indicators point to an almost explosive

increase in microprogramming activity by system engineers

1

2

and users. The biggest factor that will lead to the pro

jected increased exploitation of microprogrammed control is

the inclusion of a non-destructive writable control

storage. This would remove the restriction of permanent

fixed operation codes locked in to the system architecture,

and it would lead to a number of fascinating possibilities.

Thus microprogrammed control provides a straightforward way

to correct errors or provide enhanced capabilities in the

instruction set.

CHAPTER II

WHAT IS MICROPROGRAMMING ?

A modern digital computer can be partitioned into five

distinct functional units viz, input, storage, arithmetic

and logic unit, output and control. These five units com

municate with each other through electronic signals that

represent data, instructions and control signals. The order

timing and direction in which this information flows within

and between the five principal functional sections in a

computer are effected by the control unit, which in turn is

directed by the sequence of machine instructions.

The control section of a computer directs the opera

tion of the entire computer. It receives units of informa

tion from the storage section which tell it.what operations

are to be performed and where the data to be operated upon

are located in the storage section. After the control sec

tion determines the exact instruction to be executed, it

then issues control signals to open and close the specific

gates throughout the system, thus permitting the necessary

data in the form of electrical signals to flow from one

functional unit to another in the execution of that opera

tion. Once the ALU has finished with its part, the control

section may issue the necessary control to permit the

results to be transmitted back into the storage unit or

3

4

some output unit.

The general nature of the control unit is fourfold:

the first two consisting of fetching and decoding of the

sequence of machine instructions; the third function is the

gating of the data paths to perform operations on the data

fields; and the fourth is changing the state of the com

puter so as to allow the next required operation to be per

formed.

Thus a digital computer may simply be described as an

elaborate array of logic network called data paths, which

consist of static functions like adders, shifters, indica

tors, registers, parity circuits, mask circuits and other

boolean functions. These static functions are intercon

nected by data busses which permit the information flow

from one functional unit to another. All these data paths

are static in nature and can be activated by the enabling

and disabling signals which emanate from the control sec

tion. The control signals are made up of clock pulses for

timing, decoding, sequencing, and decision logic and they

direct and control the operation of the total system over

any number of consecutive clock cycles.

Traditionally this information was permanently built

into the system by connecting a set of decoders and flip

flops in an ad hoc manner which can be viewed as a tree of

storage elements and signal wires tied together in an

unsystematic way. A decision to make the slightest modifi

cation to the instruction set could entail a major modifi-

5

cation to the whole structure of the tree.

Microprogramming was originally conceived as an alter

native design procedure to the ad hoc procedure applied to

conventional hardware. It has eventually become an alter

nate design and implementation tool for the control sec

tion, where the hardware control is replaced by a stored

logic section, or "microprogram control" section, stored in

a high speed, nondestructive read only storage. The infor

mation stored therein is designed to control each function

for each consecutive machine cycle.

Microprogramming, interpreted as implementing control

logic, primarily by read only storage, cuts across the

specialities of electronic module design, mechanical

languages, programming, and systems architecture. It is

therefore a promising means for designing integrated

hardware-software systems. This method of control from the

programmers point of view, is similar to writing a program

in which a given arithmetic or logic operation is executed

by giving the cpu or the system a step-by-step description

of the job to be done. This program, then, is a series of

subcommands for the functions built into the system.

Microprogramming is analogous to conventional program

ming. The user programmer tells the system what to do by

placing instructions in the high speed main storage. The

microprogrammer tells the system how to do it by control

ling which storage and logic elements are used and how they

are used for each operation. Thus the machine instruction

6

which the programmer considered to be the lowest level of

communication with the system can now be viewed as a closed

subroutine broken down into a sequence of more elementary

functions called microinstructions. Each microinstruction

is designed to specify the control gates that are opened at

a particular point during the machine cycle.

Thus the microprogrammer essentially writes microcode

in terms of logical l's and O's, which is a very error

prone and tedious process. This makes programming very dif

ficult at such low levels especially when the microwords

are very long. It is a lot easier to code in a symbolic

language rather than l's and O's of microcode just as pro

grammers find it easier to code in a symbolic assembly

language rather than the l's and O's of machine language.

This symbolic language for microprogramming is called a

"meta-assembler".

CHAPTER III

DESIGN OF A META-ASSEMBLER

The design of the meta-assembler will be discussed

through a detailed presentation of the following topics to

be covered in this chapter:

1. Problem specification

2. Design

3. Data structure

4. Search strategy and

5. Modularity

Problem Specification

The problem was essentially to develop a highly gen

eric assembler which would allow the user to assemble

microprograms with word lengths varying from 1 to 256 bits.

A special syntax was to be developed for the user to com

municate with the assembler. This syntax would contain cer

tain pseudo instructions unique to the meta-assembler. The

meta-assembler would be capable of recognizing the design

format (Horizontal or Vertical) and would be as user

friendly as possible and would be highly portable which

7

means the program would be capable of running on different

hardware. The meta-assembler would run both in the MSDOS

and UNIX environments.

Design

8

Since the program was to be highly portable, the C

programming language was adopted to develop the assembler.

The other reason for choosing C was the flexibility pro

vided by C in allowing the programmer to define hisjher own

data structures. Also modular programming and top down

design strategies were kept in mind for which c is so very

conducive.

Since the microinstructions can be specified in single

format or multiple formats, the program had to be capable

of recognizing the format specification. For this a pseu

doinstruction "FORMAT" has been used to tell the assembler

that a particular statement in the microprogram is a state

ment specifying the format the user has adopted in his

design methodology. A counter keeps track of the number of

format statements and based on the number of format state

ments, the program creates format tables, containing the

names of the fields present in each format statement. In

addition to the names the table also contains information

regarding the bit positions occupied by the respective

fields in the microword. Not more than five format state

ments are allowed because of memory limitations.

After reading the format statements the assembler

9

expects the microprogrammer to define the symbols

representing values in each field. For the assembler to

recognize that the following data are the symbol names and

their respective definitions, a pseudoinstruction "DEF"

must precede the define statements. Once this pseudoin

struction is encountered, the assembler will know that the

following text defines the symbols. The format in which the

symbols are to be specified can be understood by looking up

the section on syntax. The symbols are stored in tables to

be referred to as field tables. The field tables are organ

ized in such a manner that they contain the symbol names,

their definitions, their position of origin in the micro

word and their size in bits. A more detailed picture of

the field tables can be had in the section on data struc

tures. The assembler keeps reading the symbols till it

encounters a pseudoinstruction called "ENDEF" which tells

the assembler that the definitions of symbols are over.

This meta-assembler has been designed to be a two pass

assembler. The first pass is an address generation phase,

where the assembler scans through the entire microprogram

and locates address labels and assigns address values to

these labels and in the process stores both these data in a

table referred to as the address table.

In the second pass the meta-assembler scans through

the entire microprogram to read the microinstructions. As

each symbol specifying code for a particular field is

encountered while scanning a microinstruction a check is

10

first made to see if the symbol is a field name, for exam

ple a branch address field. The assembler does this by

looking for a reserved symbol '=' . All characters to the

left of this symbol are grouped together to form a string

which is supposed to be one of the field names. All the

characters to the right of the '=' symbol must be a number

or are assumed to represent the field value or an address

label. If the string to the right of the '=' symbol is a

number, then all the bits in the number are examined and

the bits in the field space are assembled one after the

other. If not a number, then a check of the address table

is made to find the address value of the address label

encountered. When a match is found the address value is

read into a buffer and every bit in the two byte address

value is checked and accordingly a bit in the address space

of the microword is set. If not an address label, a check

is made to see if it is a field symbol value by checking

the field table. Then the field symbol value is.examined

bit by bit and accordingly assembled by setting the bits in

the field space of the microword.

If the symbol does not specify a field name, then the

meta-assembler searches for the field value symbol in the

field table. A detailed description of the search tech

nique can be found in the section on search strategy. Once

the symbol is located in the field table, the assembler

reads the position of origin of the symbol in the micro

word, the size of the symbol and the definition of the sym-

11

bol from the field table. Next the meta-assembler proceeds

with the assembly process by examining the symbol defini

tion bit by bit and correspondingly sets the bits in the

microword starting from the position of origin of the sym

bol in the microword. This process is repeated till all the

bits belonging to a particular symbol have been examined

and accordingly assembled. The same process repeats for all

symbols in all the microinstructions. The assembler ter

minates the assembly process on encountering a pseudo

instruction called "END" which indicates the end of the

microprogram or on encountering the end of file character.

Data Structures

Before getting into a discussion on the data struc

tures designed for the meta-assembler, it is important to

discuss about the structure that c permits according to

Kernighan and Ritchie. A structure is a collection of one

or more variables, possibly of different types, grouped

together under a single name for convenient handling. The

following example shows how a structure is declared in c

and is the same structure that has been used to define the

format table to be discussed later.

struct formatb {

char formnam[SJ;

int bitsize,posn;

12

}formatab[40];

This example declares an array formatab which is a

structure of type formatb. This structure contains informa

tion pertaining to the fields in a format statement. The

elements or variables mentioned in a structure are called

members. In the example above formnam[8], bitsize and posn

are all members of the structure formatb. The array con

tains 40 such structures. A member of a particular struc

ture is referred to in an expression by a construction of

the form

struct-name.member

The structure member operator "·" connects the struc

ture name and the member name. For the example under con

sideration, the following expression can be used for exam

ple to refer to the member formnam[j]

formatab[k].formnam[j]

There are a lot of data structures that have been spe

cially designed for use in this program. These data struc

tures have been organized for faster execution of the pro

gram. The organization of the data structures used will be

discussed in detail in this section.

As discussed in the previous section the address

labels and their corresponding values are stored in a table

referred to as the address table. This table is a data

structure with name tag "addrtable" • This structure has

been defined as shown below.

struct addrtable {

char addrname[7];

int contents;

}adtab[200];

13

As can be seen an array adtab has been declared to be

of type addrtable. The members of the structure are

addrname[7] where the names of the address label will be

stored, and contents, where the absolute value assigned to

that address value will be stored. Thus in order to find

the adress value of a particular address label, one needs

to search through the array and try to find a match with

one of the addrname variables in the array. and when a

match is found the contents variable pointed to by the same

index gives the absolute address of that address label. A

good picture of the organization of this data structure is

shown in Fig 1. This data structure occupies two Kbytes of

memory.

There is another table referred to as field table

which holds the symbol names and related information like

symbol definition, symbol size in bits and position of ori

gin of the symbol in the microword. This table is a data

structure with name tag "fieldtable". This structure has

been defined as shown below.

ADDRESS TABLE

ADDRESS NAME ADDRESS VALUE

1
2
3

200

Figure 1. Data structure for address table.

_.
+::>

15

struct fieldtable {

struct symtable symtab[30);

int tab count;

}fieldtab[26);

struct symtable {

char name[6],def[9);

int bitlength,position;

} ;

This particular data structure is a little complex as

a structure has been declared within a structure. The idea

is to group all the information pertaining to a symbol in

the field in a structure referred to as symtable. The

members of this structure are the variables name[6] which

holds the name of the symbol in the field, def[9] which

holds the symbol value, bitlength which holds the size of

the symbol in the field which is also the field size, and

position which holds information regarding the position of

origin of the symbol in the microword. Thus all the infor

mation pertaining to a particular symbol in a field can be

retrieved from this structure. The array symtab[30] has

been declared to be of type symtable, which means that 30

such structures can be stored in the array symtab. Now this

data structure which will henceforth be called symbol table

BITLENGTH

POSITION

FIELD TAm..E SYMBOL I'R'E

SYMBa.. I:EFINITION

2
3

5YMB(X_ TABl£ -1
4 30

5YMBCL TAII...E -2
e

26

Figure 2. Data structure for field table.

---'
(J)

17

is a member of another structure to be referred to as

fieldtable. The other member of the fieldtable is tab count

which maintains a count of the locations occupied in the

array symtab. The array fieldtab(26] has been declared to

be of type fieldtable. Thus this data structure forms 26

symbol tables. Each symbol table can hold information about

30 symbols. This data structure was designed with the idea

that each symbol table will contain symbols that have their

names beginning with a particular English alphabetic char

acter which has to be a capital letter. Thus the 26 symbol

tables correspond to the 26 English alphabetic characters.

A good picture of this data structure can be had by looking

at Fig 2. This data structure occupies 15.6 Kbytes of

memory. It will be a lot easier to appreciate the use of

this data structure after looking at the section on search

strategy where a detailed explanation of how this data

structure aids in reducing the search time has been dis

cussed. As can be seen the current data structure limits

the number of symbols with symbol names having their first

character corresponding to a particular capital letter to

30. In the future should a need arise to make room for more

than 30 symbols the size of the symtab array must be

increased from 30 to the desired value.

There is another table referred to as format table

which holds the field names in every format statement and

in addition to this also holds information regarding the

position of origin of the field in the rnicroword and the

18

size of each field in bits. The organization of this data

structure can be seen in Fig 3. The structure with name tag

forms defines this data structure. This structure is as

shown below.

struct forms {

struct formatb formatab[40];

}tab[5];

struct formatb {

char formnam[8];

int bitsize,posn;

}formatab[40];

The array formatab[40] has been declared to be of type

formatb. Formatb is a structure which has 3 members viz,

formnam[8] which holds the field name, bitsize which holds

the size of the field and posn which holds the position of

origin of the field in the microword. Thus this structure

contains all the information pertaining to a field in a

format statement. The array formatab contains 40 such

structures. This means that information regarding 40 fields

can be stored in this array. Now this data structure is a

member of another structure with name tag forms. The array

tab has been declared to be of type forms. This array is of

size 5 which means that each element of this array

FIELD NAME

FIELD SIZE
FORMAT TABLE

POSITION OF ORIGIN

2

3 2 40

4

5

11 2
40

Figure 3. Data structure for format table.

~

20

corresponds to a format statement which can contain up to

40 fields. The five elements correspond to the five format

statements thus limiting the number of format statements to

five at present. This has been done because of memory limi

tations on the IBM pc. In the future, if one wants to make

room for more than 5 format statements, all that needs to

be done is to increase the size of the array tab to the

desired value. This can be done only when the program runs

in an UNIX environment. This data structure helps in iden

tifying overlapping bitfields in a format statement. This

data structure occupies two Kbytes of memory space.

The last data structure to be discussed in this sec

tion is a kind of data structure unique to the c language.

A thorough understanding of this data structure will help a

great deal in understanding the working of the meta

assembler. As the microwords have sizes varying from 1 to

256 bits which means a microword can span from 1 byte to 32

bytes. As the assembly process involves assembling bit

fields whose sizes vary from 1 to 256 bits, it might be

necessary that the assembler gain access to individual bits

in the microword or gain access to one of the bytes that

form the microword. The microwords are formed by chaining

byte words. The chain has 1 to 32 bytes chained in series

depending on the length of the microword. In the structure

defined in the program which is also shown below, a union

of a character variable over a data structure consisting of

8 bits is achieved.

Data structure for microword

1

2

3

32

Figure 4. Data structure for microword.

N _,

union format {

unsigned char all;

struct {

unsigned

unsigned

unsigned

unsigned

unsigned

unsigned

unsigned

unsigned

} part;

}flag[32];

22

bitO:l;

bitl:l;

bit2:1;

bit3:1;

bit4:1;

bit5:1;

bit6:1;

bit7:1;

This kind of data structure is unique to the C

language. This allows the byte to be accessed fully as a

character or individual bits in the byte could be accessed

and operations performed on the bits. Most of the opera

tions involve setting the bits to either 1 or 0. The value

1 32' refers to the size of the microword in bytes. For the

current problem it was desired that the maximum size of the

microword be 256 bits which is 32 bytes. A microword of

bigger size can be performed by simply changing this value

from 32 to the desired value. No other alterations in the

program are required. This shows how flexible the assembler

becomes because of this data structure. Fig 4. shows the

organization of this data structure. As can be seen the

structure consists of a table of 32 pointers. Each pointer

23

points to a character variable which is a byte long. The

pointer also points to each individual bit in this byte. To

access a particular bit, the bit needs to be addressed.

This is done as follows :

flag(lO].part.bitO

This statement shows how the first bit of the lOth

byte in the microword can be accessed. This data structure

occupies 32 bytes of memory space.

Search Strategy

The meta-assembler spends seventy percent of its time

in searching through the address, field and format tables.

Most of the search involves the field table where the sym

bols and their related information are stored.

There were a lot of search methodologies that were

considered before settling for the current technique. The

linear search was considered first with a kind of data

structure much different from the one shown in the earlier

section on data structures. The binary search technique was

considered next. Both these techniques did make programming

very convenient but at the same time slowed down the execu

tion time of the program considerably. This was highly

unsuitable for the kind of problem in hand.

The other option was to go in for a hash table search

which is a proven technique and is extremely fast. For the

problem in hand, it was found that the currently designed

24

data structure with the search technique to be discussed in

this section, formed a powerful combination in increasing

the speed of execution of the program.

The current technique is very similar to the hashing

approach. This technique led to the development of the

data structure with name tag the fieldtable. The idea was

to organize data in such a manner that the data base to be

searched was cut in size considerably. As was already dis

cussed in the section on data structures, the field table

has twenty six pointers, the pointer values ranging from

one to twenty six. Each of these twenty six pointers point

to a separate table containing thirty pointers and each of

these thirty pointers point to four variables simultane

ously.

During the process of searching, if information about

a particular symbol is to be retrieved, the first character

of the symbol name which is supposed to be a capital letter

is read into a character buffer and the three most signifi

cant bits of this byte (ASCII representation of a charac

ter) are masked off. As the syntax does not allow symbol

names to begin with any other character except capital

letters, the resultant integer value then ranges from one

to twenty six. This value is then used to address the

field table where there are twenty six pointers. Thus one

of the twenty six pointers is selected, which in turn

selects one of the twenty six tables. Now the search is

restricted to just thirty symbols. This part of the search

25

is just a simple linear search. Once the symbol is located,

this very pointer can be used to gain access to the

corresponding information regarding that particular symbol.

In a linear search, on the average, one needs to lookup at

least half the number of elements in the table, which in

this case turns out to be fifteen. Thus a search which

would have involved a maximum possible lookup of seven hun

dred and eighty symbols has now been reduced to just fif

teen symbols. This is more than a justification for having

adopted the current search technique and the data struc

tures discussed in the earlier section.

An improvement of a factor of seven in the execution

speed of the program was observed by switching the search

strategy from binary search to the current technique which

is a mix of both the hashing approach and the linear

approach.

Modularity

Top down design strategy has been adopted for the

design of the meta-assembler. The problem in hand can be

broken down into five main modules which are as listed

below.

1. Initialization of all tables

2. Loading of symbol tables

3. Checking of overlapping bitfields

26

4. Pass one of the meta-assembler

5. Pass two of the meta-assembler

The program basically consists of these five principal

modules which in turn refer to some smaller modules. The

main program calls these five modules in the same sequence

as shown above.

During the initialization phase, a pattern "eos" is

written into the symbol name variables of all the tables in

the field table, into all the address name variables in the

address table and into all the field name variables in the

format table. Also all bits in the microword are set to

zero.

In the second module, all the define statements are

read from the text file and the symbol names and their

corresponding definitions are read and copied into the

field tables. Also in this process the size of the symbol

in bits is computed and entered into the field table along

with the location of the symbol in the microword. Before

making entries into the field table, the format statements

are read first and the field names in the format statements

are copied into the format tables corresponding to the for

mat statements. When the define statements are being read,

the location of the field in the microword and the size of

the field in bits are entered into the format table. Thus

before this module completes execution, the format tables

and the field tables are setup in memory.

27

The third module checks for overlapping bitfields in

any format statement. It accesses the format tables and

makes use of the information about the location of the

fields in the microword and their size in bits. If an over

lap is found, an error message is flashed on the screen and

the program is terminated.

The fourth module is the first pass of the meta

assembler which is also the address generation phase. It is

in this phase that all the address labels are assigned

absolute values and this data is entered into the address

table.

The fifth module is the second pass of the meta

assembler and it is in this phase that the assembly of the

microcode takes place. This module reads the microprogram

from the text file and then refers to the field and address

tables to read the symbol definitions and the absolute

values of the address labels respectively to assemble the

microcode bit by bit. The assembled microcode is stored in

a user specified file. Also the microword can be separated

into n slices with each slice being a byte wide. Each byte

wide slice is stored in different files specified by the

user. This is done to down load the assembled microcode

into the memory simulator which is part of a logic simula

tor currently under development at osu or a PROM program

mer.

CHAPTER IV

CONCLUSION

METASM has turned out to be a highly generic and a

highly portable meta-assembler. It has been tested in both

the MSDOS and UNIX environments and has been found to be

executing without any problems. The program has been

designed so that the assembled output is stored in a format

which is the desired input format for a logic simulator

under development at osu. This provides the designer the

facility of immediately testing his/her microprogram by

down loading the assembled microprogram into a memory

module in the simulator.

Though the meta-assembler has shown satisfactory

results, there is a possibility that bugs might show up at

a later stage when more users start using the assembler.

The source program has been adequately documented and

because of the modularity of the program patching bugs is

not seen as a difficult proposition.

28

APPENDIX A

MANUAL

29

STARTUP

To invoke the meta-assembler type "METASM" <CR>.

This causes the operating system to load the meta

assembler program and the current working directory is

displayed on the screen. This allows the user to view all

the file names in the current working directory. Next the

program prompts the user to type the input file name by

displaying the message "SPECIFY INPUT FILE NAME :" to

which the user is supposed to respond by typing the file

name where the microprogram resides. Next the program

prompts the user to type the output file name where the

assembled microprogram is supposed to be stored by

displaying the message "SPECIFY OUTPUT FILE NAME :" to

which the user is supposed to respond by typing the file

name where he wants the assembled microprogram to be

stored. While typing the output file name the user can

specify a list option by typing '-1' after the file name.

The following example will make this clear.

Specify output file name

desired.

Specify output file name

desired.

progl if listing not

progl-1 if listing

If the user desires a debug listing then the user

needs to type

Specify output file name progl-ld

30

Once this procedure is completed, the program

displays the following messages in case there are no

errors in the microprogram :

"Please wait! creation of tables in progress.

Please wait! checking for overlapping bitfields.

Good you have no overlapping bitfields.

Next depending on the number of bytes in the micro

word, the program prompts the user that many times with

the following message.

"Specify name of output file number #n :"

Thus if the microword contains 4 bytes, the program

will prompt the user to provide four different file names

one after the other.

If a meta-assembler listing is desired, then a list

file by the name "METASM.LST" will be generated. If only

the list option is specified then this file will contain

only the listing without any debug messages. If a debug

option is specified, then debug messages are inserted

into the list file.

31

APPENDIX 8

SYNTAX

32

33

As in any assembler this meta-assembler has its own

syntax. The program is accepted by the meta-assembler in a

particular format to be explained in this section and the

program should contain certain pseudo instructions which

are unique to the meta-assembler.

The following are the reserved words and symbols which

the user is not supposed to use as symbol names or part of

symbol names in his microprogram:

FIELD, END, FORMAT, ENDEF, DEF, eos, lol lol
• I I I

I
I I

'='

It is recommended that the user use only capital

letters whenever an English alphabet is used in specifying

field names or symbol names. The microprogram always

starts with a format statement as shown below :

"FORMAT CC,BRA,ALU,DBSRC,DBST,AMUX,MDMUX;"

As can be seen the word "FORMAT" must be followed by a

space and then by the field names. The field names must be

separated by a comma. The end of format statement is indi-

cated by a semicolon. No two fields in the same format

statement can have the same bit positions in the microword.

There might be occasions when a format statement might be

very long and might span a few lines as shown below :

"FORMAT CC,BRA,DFERT,JHYDT,KJHSGY,FDGT,

GHDTY,GBDF,DGEYD,KHDHD,BHDH;"

The field names can not be more than 9 characters

34

long. The program is allowed a maximum of five format

statements. The format statement must be followed by the

"DEF" statement. It is this statement that tells the

meta-assembler that the data following this statement are

symbol definitions. The "DEF" statement is followed by a

series of "FIELD" statements depending on the number of

fields desired. Each field statement is followed by a

series of symbol names and their corresponding definitions.

The format for the field statements is as shown below.

"FIELD ALU 19,17;

ENALU=011;

AIJW=110;

FIELD BRA 27,20;

ADRSS=1111111111;"

The field statement must contain the pseudo instruc

tion FIELD followed by a space and then the field name.

The field names can contain any ASCII characters excluding

the reserved words and symbols with the condition that the

field name contains not more than 9 characters. The field

name must be followed by a space and this must be followed

by the bit position indicators. As can be seen the end

position must be specified first followed by a separator

which must be a comma followed by start position. This

statement must be terminated by a semicolon as shown. The

field statement is followed by one or more symbol defini

tion statements. Each symbol definition statement must con

tain the field symbol name followed by a '=' character fol-

35

lowed by the field symbol value. The field symbol name must

have one of the capital letters as the first character.

The remaining characters can be any ASCII character. The

field symbol names cannot be more than 9 characters long.

The field symbol value cannot have more than 9 bits. Every

field symbol definition statement must be terminated by a

1 ; 1 character.

In the example shown above the field "ALU" occupies

bits 17 to 19, that is a space of three bits. "ENALU" and

"AIJW" are the two field symbols in the field "ALU".

The field statements must be followed by an ENDEF

statement. This statement tells the assembler that all

symbol definitions are complete and that the following text

is the microprogram. The microprogram contains several

lines of microinstructions. Each line of microinstruction

may contain several field symbol names. All field symbol

names must be separated by a 1 , 1 character. If there is an

address label associated with that particular microinstruc

tion, the label must precede the microinstruction. The

address label must be terminated by a 1 : 1 character which

is then followed by all the field symbol names belonging to

that microinstruction. This is as shown below.

GETC: FUNC,ALKJ,BHGTY;

In the example shown above, GETC is the address label

and the three field symbol names are FUNC, ALKJ, BHGTY. All

field symbols are defined to be in the field in which they

36

are defined in the DEF section. If it is desired that a

particular field symbol be used in more than one field, the

1 = 1 operator can be used to override the field definition

by writing

FIELD NAME = FIELD SYMBOL NAME;

This can be used only if the size of the field to

which the field symbol is being assigned is same as that of

the field in which the field symbol has already been

defined in the DEF section. For example

PUTC: EHJK,ALU=SMJK,HJYE;

In this example ALU is the field name to which the

field symbol SMJK defined for another field, is being

assigned. The 1 = 1 operator is also used to assign address

label values or numbers to the field. To specify a branch

address for example, the field name must be specified first

followed by a 1 = 1 character followed by a numeric value or

an address label. The syntax for specifying branch address

is as shown below.

GETC: FUNC,BRA=PUTC;

REST:ENALU,BRA=09;

]?tJ~C:: • • • • • • I • • • • • j

Each microinstruction must be terminated by a I • I ,

character. This character is recognized as the end of a

microinstruction. The microprogram must end with an END

statement. The syntax for specifying branch address is as

shown below.

37

A very good picture of the format for writing a

microprogram can be had by looking at the sample micropro

gram attached to this report.

APPENDIX C

ERROR MESSAGES

38

39

1. When "FORMAT" statement is missing the following error
message is displayed on the screen and the assembly
process is terminated.

"error : FORMAT statement missing "

The likely cause of this can either be a spelling mis
take or the characters might not be capital letters or
the statement might be really missing.

2. If a space character does not follow the word "FORMAT"
the following error message is displayed on the
screen, but the meta-assembler can recover from this
error. The user is advised to correct the error for
proper documentation.

"error: Type space after FORMAT"

3. When DEF statement is missing the following error mes
sage is displayed on the screen.

"error: DEF statement missing"

The cause of this might be a spelling mistake or the
characters might not be capital letters or the state
ment might be really missing

4. When a space character is missing after the word
"FIELD" in the field statement, the following message
is displayed on the screen.

"error: enter a space after FIELD"

On seeing this message on the screen the user is
advised to check all the field statements in his pro
gram.

5. When a field name is more than 9 characters long, the
following error message is displayed and the assembly
process is terminated.

"error: field name more than 9 characters long"

To locate the field name in error the user is advised
to take a listing in which the field name will be
visible. The cause of this error is a missing',' or
';' in the format statements. Check your format
statements.

6. When the first character of a symbol name does not
start with a capital letter, the following error mes
sage is displayed.

"error: symbol name does not begin with a capital

40

letter"

"symbol :xxxxx"

Following the statement containing the error message
is a statement containing the symbol which is in error

7. When any two fields in the same format statement over
lap, the following error message is displayed on the
screen.

"error: You have overlapping bitfields in your defini
tion"

"FIELD:xxxxx overlaps FIELD:yyyyy"

The user can identify the two overlapping bitfields by
reading their names on the screen.

8. When a field is assigned a field symbol belonging to
some other field, if the sizes of the two fields are
not same, the following error message is displayed.

"error: Field size does not match field symbol size"

"Field :xxxxx"

"Field symbol :yyyyy"

" in -microinstruction 11

9. When END statement is missing the following message is
displayed.

"error: END statement missing"

The assembler can recover from this error.

10. When an address label is more than 6 characters long,
the following message is displayed.

"error: address label more than 6 characters long"

Next the assembly process is terminated.

11. When the jump address specified in the microprogram
does not match the address labels specified the fol
lowing message is displayed.

"error: address label xxxxxx not found"

Next the program is terminated.

12. When a symbol encountered in the microinstruction does

not exist according to the symbol definition state
ments, the following message is displayed

"error: symbol not found"

"symbol :xxxx in"

"microinstruction"

The user can easily locate the error.

41

13. When reading the definition statements, if the defini
tion part contains any character other than a 1 or 0
an error message is flashed along with the text in the
microprogram where the error occurred.

14. When ENDEF statement is missing the following error
message is displayed on the screen.

"error: field name too long "

APPENDIX D

SAMPLE MICROPROGRAM

42

FORMAT CC,BRA,ALU,DBSRC,DBDST,AMUX,BMUX,MDMUX,FLAG;
FORMAT CC,BRA,ALUSRC,ALUOP,ALUDST,DBSRC,DBDST 1 AMUX 1

BMUX I MDMUX I FLAG;
FORMAT CC 1 VAL 1 ALU 1 DBSRC,DBDST 1 AMUX,BMUX 1 MDMUX 1 FLAG;
FORMAT CC 1 A,B,ALUSRC,ALUOP 1 ALUDST,DBSRC,DBDST 1 AMUX,

BMUX,MDMUX 1 FLAG;
DEF
FIELD CC 31,28;
CONT=OOOO;
JUMP'=0001;
JSUB=0010;
RET=0011;
LDC=0100;
JIR=0101;
JAM=0110;
JN=0111;
JZ=1000;
JC=1001;
JRUN=1010;
JBOT=1011;
JRES=1100;
FIELD BRA 27,20;
FIELD VAL 27 1 20;
FIELD A 27,24;
APC=1111;
EA=1110;
OPAND=1101;
DIVISOR=1100;
RINDEX=0111;
FIELD B 23,20;
BPC=1111;
BEA=1110;
BOPAND=1101;
BDIVISOR=1100;
FIELD ALU 19,12;
ALNOP=OOOOOOOO;
FIELD ALUSRC 19 1 17;
BA=001;
Q0=010;
B0=011;
A0=100;
OD=111;
FIELD ALUOP 16,14;
PLUS=OOO;
MINUS=001;
COMP=010;
OR=011;
AND=100;
INC=101;
COMP1=110;
FIELD ALUDST 13,12;
TO_Q=OO;
TO_B=01;
RSHBQ=10;

43

LSHBQ=11;
FIELD DBSRC 11,10;
ENALU=01;
MMRD=10;
IPRD=11;
FIELD DBDST 09,07;
LDAR=001;
LDIR=010;
OPWR=011;
MMWR=100;
FIELD AMUX 06,06;
A<-IR=1;
FIELD BMUX 05,04;
B<-IR=01;
B<-IREVEN=10;
B<-IRODD=11;
FIELD MDMUX 03,02;
MUL=01;
DIV=10;
FIELD FLAG 01,00;
LDFL=Ol;
CLFL=lO;
ENDEF
START
REST: JRUN,BRA=FETC,ALNOP;

BPC,BO,AND,TO_B;
STAR: JRUN,BRA=FETC,ALNOP;

JRES,BRA=REST,ALNOP;
JBOT,BRA=BOOT,ALNOP;
JUMP,BRA=STAR,ALNOP;

BOOT: BPC,BO,OR,TO_B,ENALU,LDAR;
BPC,BO,INC,TO_B,IPRD,MMWR;
JUMP,BRA=STAR,ALNOP;

FETC: BPC,BO,OR,TO_B,MMRD,LDIR;
BPC,BO,INC,TO_B,MMRD,LDIR;
JIR,ALNOP;

TRA: JUMP,BRA=STAR,A<-IR,B<-IR,AO,OR,TO_B;
END

44

APPENDIX E

META-ASSEMBLER LISTINGS

45

META-ASSEMBLER LISTING WITH DEBUG OPTION

This meta-assembler has been designed by
SHARAD MURTHY

under the guidance of
Dr. L. G. JOHNSON

M E T A - A S S E M B L E R L I S T I N G

INPUT FILENAME :johnson.c
OUTPUT FILENAME :sam
FORMAT CC,BRA,ALU,DBSRC,DBDST,AMUX,BMUX,MDMUX,FLAG;

cc
BRA
ALU
DBSRC
DBDST
AMUX
BMUX
MDMUX
FLAG
FORMAT CC,BRA,ALUSRC,ALUOP,ALUDST,DBSRC,DBDST,AMUX,

BMUX,MDMUX,FLAG;

cc
BRA
ALUSRC
ALUOP
ALUDST
DBSRC
DBDST
AMUX
BMUX
MDMUX
FLAG
FORMAT CC,VAL,ALU,DBSRC,DBDST,AMUX,BMUX,MDMUX,FLAG;

cc
VAL
ALU
DBSRC
DBDST
AMUX
BMUX
MDMUX
FLAG
FORMAT CC,A,B,ALUSRC,ALUOP,ALUDST,DBSRC,DBDST,AMUX,

BMUX, MDMUX, FLAG;

cc
A
B

46

ALUSRC
ALUOP
ALUDST
DBSRC
DBDST
AMUX
BMUX
MDMUX
FLAG
DEF

FIELD CC 31,28;
CONT=OOOO;
JUMP=0001;
JSUB=0010;
RET=0011;
LDC=0100;
JIR=0101;
JAM=0110;
JN=0111;
JZ=1000;
JC=1001;
JRUN=1010;
JBOT=1011;
JRES=1100;
FIELD BRA 27,20 ;.
FIELD VAL 27,20;
FIELD A 27,24;
APC=1111;
EA=1110;
OPAND=1101;
DIVISOR=1100;
FIELD B 23,20;
BPC=1111;
BEA=1110;
BOPAND=1101;
BDIVISOR=1100;
FIELD ALU 19,12;
ALNOP=OOOOOOOO;
FIELD ALUSRC 19,17;
BA=001;
Q0=010;
B0=011;
A0=100;
OD=111;
FIELD ALUOP 16,14;
PLUS=OOO;
MINUS=001;
COMP=010;
OR=011;
AND=100;
INC=101;
COMP1=110;
FIELD ALUDST 13,12;

47

TO_Q=OO;
TO B=Ol;
RSHBQ=lO;
LSHBQ=11;
FIELD DBSRC 11,10;
ENALU=01;
MMRD=lO;
IPRD=ll;
FIELD DBDST 09,07;
LDAR=001;
LDIR=010;
OPWR=011;
MMWR=100;
FIELD AMUX 06,06;
A<-IR=l;
FIELD BMUX 05,04;
B<-IR=01;
B<-IREVEN=lO;
B<-IRODD=11;
FIELD MDMUX 03,02;
MUL=Ol;
DIV=lO;
FIELD FLAG 01,00;
LDFL=Ol;
CLFL=10;
ENDEF

48

word length=4 Please wait, checking for overlapping bit
fields FORMAT CC,BRA,ALU,DBSRC,DBDST,AMUX,BMUX,MDMUX,FLAG;

START

REST = 0
BPC,BO,AND,TO_B;

STAR: JRUN,BRA=FETC,ALNOP;

STAR = 2
JRES,BRA=REST,ALNOP;

JBOT,BRA=BOOT,ALNOP;

JUMP,BRA=STAR,ALNOP;

BOOT: BPC,BO,OR,TO_B,ENALU,LDAR;

BOOT = 6
BPC,BO,INC,TO_B,IPRD,MMWR;

JUMP,BRA=STAR,ALNOP;

FETC: BPC,BO,OR,TO_B,MMRD,LDIR;

FETC = 9
BPC,BO,INC,TO_B,MMRD,LDIR;

JIR,ALNOP;

TRA: JUMP,BRA=STAR,A<-IR,B<-IR,AO,OR,TO_B;

TRA = c END

PASS-1 complete PASS-2 BEGINS ===> Assembly in progress

REST: JRUN,BRA=FETC,ALNOP; 0 : aO 90 0 0

BPC,BO,AND,TO_B; 1 : 0 f7 10 0

STAR: JRUN,BRA=FETC,ALNOP; 2 ao 90 o o

JRES,BRA=REST,ALNOP; 3 co 0 0 0

JBOT,BRA=BOOT,ALNOP; 4 bO 60 0 0

JUMP I BRA=STAR, ALNOP; 5 10 20 0 0

BOOT: BPC,BO,OR,TO_B,ENALU,LDAR; 6 0 f6 d4 80

BPC,BO,INC,TO_B,IPRD,MMWR; 7 o f7 5e o

JUMP,BRA=STAR,ALNOP; 8 : 10 20 0 0

FETC: BPC,BO,OR,TO_B,MMRD,LDIR; 9 : 0 f6 d9 0

BPC,BO,INC,TO_B,MMRD,LDIR; a : 0 f7 59 0

JIR,ALNOP; b : 50 0 0 0

49

TRA: JUMP,BRA=STAR,A<-IR,B<-IR,AO,OR,TO_B; c 10 28 dO 50

END
Symbol table status :

number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character
number of symbols starting with character

A = 5
B = 9
c = 4
D = 2
E = 2
F = 0
G = 0
H = 0
I = 2
J = 10
K = 0
L = 5
M = 4
N = 0
0 = 4
p = 1
Q = 1
R = 3

50

number of symbols starting with character s = 0
number of symbols starting with character T = 2
number of symbols starting with character u = 0
number of symbols starting with character v = 0
number of symbols starting with character w = 0
number of symbols starting with character X = 0
number of symbols starting with character y = 0
number of symbols starting with character z = 0

Total number of symbols used = 54

META-ASSEMBLER LISTING WITHOUT DEBUG OPTION

This meta-assembler has been designed by
SHARAD MURTHY

under the guidance of
Dr. L. G. JOHNSON

META-A SSEMBLER L I S T I N G

INPUT FILENAME :johnson.c
OUTPUT FILENAME :samn
word length=4
Please wait, checking for overlapping bitfields
PASS-1 complete
PASS-2 BEGINS ===> Assembly in progress

REST: JRUN,BRA=FETC,ALNOP; 0 . ao 90 0 0 .
BPC,BO,AND,TO_B; 1 . 0 f7 10 0 .

STAR: JRUN,BRA=FETC,ALNOP; 2 ao 90 0 0

JRES,BRA=REST,ALNOP; 3 co 0 0 0

JBOT,BRA=BOOT,ALNOP; 4 bO 60 0 0

JUMP,BRA=STAR,ALNOP; 5 10 20 0 0

BOOT: BPC,BO,OR,TO_B,ENALU,LDAR; 6 0 f6 d4 80

BPC,BO,INC,TO_B,IPRD,MMWR; 7 0 f7 5e 0

JUMP,BRA=STAR,ALNOP; 8 . 10 20 0 0 .
FETC: BPC,BO,OR,TO_B,MMRD,LDIR; 9 . 0 f6 d9 0 .

BPC,BO,INC,TO_B,MMRD,LDIR; a . 0 f7 59 0 .
JIR,ALNOP; b . 50 0 0 0 .

TRA: JUMP,BRA=STAR,A<-IR,B<-IR,AO,OR,TO_B; c 10

END Symbol table status . .
number of symbols starting with character A =
number of symbols starting with character B =
number of symbols starting with character c =
number of symbols starting with character D =
number of symbols starting with character E =
number of symbols starting with character F =
number of symbols starting with character G =
number of symbols starting with character H =
number of symbols starting with character I
number of symbols starting with character J =
number of symbols starting with character K =

28

5
9
4
2
2
0
0
0
2
10
0

51

dO 50

52

number of symbols starting with character L = 5
number of symbols starting with character M = 4
number of symbols starting with character N = 0
number of symbols starting with character 0 = 4
number of symbols starting with character p = 1
number of symbols starting with character Q = 1
number of symbols starting with character R = 3
number of symbols starting with character s 0
number of symbols starting with character T = 2
number of symbols starting with character u = 0
number of symbols starting with character v = 0
number of symbols starting with character w = 0
number of symbols. starting with character X = 0
number of symbols starting with character y = 0
number of symbols starting with character z = 0

Total number of symbols used = 54

APPENDIX F

SOURCE CODE LISTING

53

'*****************~***'
I* *I

H E T A S M - d7

designed

by

Shara~ ~ ~urthy

Advisor : Dr L.G.Johnson

METASM is a meta-assembler designed to assemble
mieroroyrams of wordlengths varying from 1 to
256 bits. The program has been written in C
language & is hignly portable. The program can
be executed botn in ~S•DOS ~ UNIX environm~nts.

~ETASM nas oeen design•d to be a two uass ass
embler. Tne pro~ram is cauaole of findinq the
micro word lenqth on its own. The program reads
a text tile containiny the program to be assem
bled ~ then proceeds to assemole the microprogram
and stores the a~sembled data in an output file
specified by the user. The prooram yenerates a
listing with 2 options viz. '-l' and '-ld'. Yith
the '-l' option an ordinary listino is generated

With the '-ld' option a complete trace of the
assemoler can be obtained. The listiny is storec

in a file called "metasm.lstN. The program reserves
20 Koytes of memory for the taoles. The program
calls 6 main procedures. The microword is sliced

into 8 bit slices and these slices are stored in
separate files.

#I
*I
#I

*' #I

*' #I
#I

*' *I

*' *I

*' #I
*I
*I
*I
*I
*I

*' •I

*' *I

*' *' *I
•I
#I
#I

*' *' *' *I
*I

*I
*I

*' *I
*I

'***'

~include <stdio.h>
ffdefine filenaml "metasm.lst"

'**'
The tollowiny variables are all glbbal ~ariaoles.
The variable address is the address counter, form
keeps count of the format statement, wordlength
keeps track of tne word L~ngth in oytes, eof keeps

54

track of en~ of file.
'******~****~**'

i~t w,i,j,k,m,n,address=O,aq,Jj,te~p?,aorlr~en,daf~trueo,debug=li

int pp,tt,temp3,temp4,y,[,fd.null=O,tieLd,x,form•list=l,symooL=Oi
int a.woralengtn.eot=lOO,oitten=O,true,isnum=l•ismem=l•temoli
cnar local[l0u].temp[l5J,tem~q[l5J,status.toc[1UO],Loct[256Ji

cnar pos[5J,see[l5J,c,outnam[2~6]i
float wl~ngth,worasizei

Fllf •fooen(),*fo,*outfile,•lsti

The structure with name tag adartaole is a data
structure wnicn forms a taole of tne aadress names
an~ their corresponding arlaress~s allocated by the
assembler.

struct ad~rtaole {

} ;

char aadrname[7);
int contents;

'**' '* The structure with name tag symtable is a data *'
I• structure whicn forms a symbol tabl~ containing *'
I* information about the name ot the symbol, its *'
I* aefinition, as 1~fined by the user, lenqth of the *'
I• symbol and tne cit position tram where the symool #/
I* is located. This table can halo 30 symools. *'
'************************~*******************************~*****'

struct symtahle {

} ;

char name[lOJ,aef(9);
int oitlengtn.~ositioni

'*******~***************~:*************************************'
I*
I*

The structure ~ith name tag tormatb is a data
structure which forms a table containing the
fiela names in a particular format statem~nt. 40
such structures are stored in an array called
formatab. This means that a sinole format statement
can contain a maximum of 40 field names. To make
room for more fiela names in a format statement
the size of the tormatab ~rray has to oe increased

*I

*' *I

'***~**~********'

struct tormatt:l {
char tormnam[RJ;
int oitsize,posn;

)formatab[40]; ·

55

'~*********************~*********************~****************' '* Tne tollowiny statement is unique to tne C language O/ '* Here a union of a ovte over ~ uits of data was *I
I~ oesired. Tnis particular data structure allo~s 0/

'* access to all o oits of the ~orrl in which case the *'
I* word can be read as a oyte or allows access to *'
t• inoivioual bits in the word. This allows manioulationO/
I* of bits in the word. 32 such ~ bit woros make a 0/
to 25c oit word. *I
'***~*******'

union format {
unsiyned char all:
struct {

}nart:
}tlag[32];

unsiynei bitO:l;
unsigned bitl:l;
unsigned bit2:1;
unsiyned nit3:1;
unsiyned bit4:1;
unsiynen bit5:1;
unsi~ned bit6:1;
unsigned bit7:1;

!~********************************~*****#***~***************'
to The data structure with name tag fiPldtable *I
/0 symbol tables. Tne structure can hold 26 symool *'
I• taules. All tne elements ot a particular sy~ool ,*I
/o taole have tne first charActer of their names *I
/o ueing a capital Letter. The member tah_count keeps *I '* trdck of the locdtions used in the symool table. *I
I* The maximum number of symbols in a symool taule *I
/O is currently restricted to 30. To make room for *I
/O more symools tne size of the array symtao has to #/
I* increaseo from 3U to the desi.red value. *I
'*****~********************~****~***************************'

struct tieldtable {

};

struct symtaole symtab[30];
int tao_count:

'***********~**•***'
/~

I*

'* /¥

'* '* '*

The structure torms contains data of type
svmtable. The array forms contains 5 such
structures. Each element of this ~rray
corresoonds to a format statement. Tnus only
five torm~t statements are allowed at this
time. To make room for more tormat statements
increase tne size of tne array tab.

*' *' *' *' *' *' *I
'*************~=**'

struct forms {

56

struct formate formatao[30J;
}tao[SJ:

'*******~**'
The following two data structures are designed
to hola the file names and tne corresponaina
file oointers associate~ witn these tile names
It is in tnese files that the sliced output
is stored.

'**********~************~***=*********~*********~**********'

struct names {
char lot[;?;,.c,];

} flndme[32J:

struct pointers {
F!Lf >:<outpi

}tlpoint[32Ji
struct tielatable fieldtao[26J:
struct symtablP sy~tao[30Ji

struct anjrtaule a1dtah[2UO]i
union format flaa[32J:
struct part:
struct forms tao[SJ:

1***********************************•·····················•1
I* *I
I*
I*
I*
1*-
1*
I•

'*
I*
I•=

'* I>"

'* "' '* '* 1,;,

9 I*
I *
I *
I .•
I

main()
{

The main orogram first displays the current
working dirPctory on tne screen and then prompts
the user to soecify the input file name where
the microprogram to oe assemoled is stored.
Then it specifies the user to snecify the outPut
file name ~here the assembled microprogram is to
oe stored. It tne user wants a listing he appends
the option command to the output file name.

Procedures callea: 1. initC>
2. creat_table()
3. cnk_ovrlo()
4. gettnam()
5. passl ()
6. pass2(l

integer variables used: i •

string variaDles usea: outna~[2~6J,loct[256J.

; n t i ;
system("ls -x");
printf("Ol;

I* Print working directory *I

57

orintt("Ol;
or1ntfC"Soecify inout filename :");
S (ant (If~~ S II, l Q C t) ;

pnntfC"Ol;
printf("Oli
printf("CJutput filename:");
scant (.. !;s",outnam);
printf("Q)i
i=v:
JhileCoutnarn[iJ!=' '> { , .. ;
}

; --:
if(outnam[iJ=='cJ') {

oeoug=O:
I* if '•ld' ootion then set deoug=O *'
I* and list==O. 'i</

}

i--;
if(outnam[iJ=='l') {

>

. . , __ ,
itCoutnam[iJ==•-•>

list=O:
out nam[i J=' ..

'

if(outnam(iJ===• l'l { I* it '-l' option the list=O. *'

}

i--;
if(outnam[iJ=='-'l

list=O;
outnam[i)=' •;

if<list==OH
lst=topenlfilenaml,"w•">;

}

init(l;

forintf(lst," This metH-assembler has been designed byO>:
torinttllst," SHARAD MURTHY O>:
fori n t f (l s t , " u nd !' r the g u i dance of 0) ;
torintf(lst," [Jr. L. G. JOHNSON o>;
torintfllst," M ETA- A S S F M R L E R L I S T I N GO>;
forintfllst," ~---0>;
forintf(lst,"O>:
torintfllst,"!NPUT F!LENA~E ::sO,loctli
forintfllst,"OUTPUT FILFN~MF :;sQ,autnam):

I* call initialize orocedur~. *I

creat_taole()i I* call procedure to fill taoles. *I

chk_ovrlolli I* call procedure to ch~ck f~r overlapping *I
I* hit fields. *I
I* call the first pass of the assembler *'

getfnamC~ordlenqthli I* call oroc to get file names where *I
I* sliced cutout is to be stored. *'

pass;<!(); I* call pass2 of the assembler *I

58

}

I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

init()
{

This oroc initializes all the taules in the
program containing names. The initialization
process consists of writing the pattern "eos"
in aLl tn~ locations of the taoles. All oits of
the microworo are set to zero.

proce~ures call~a: None.

integer variables used: jj,i,qq,m,adaress.

string variaules used: ~one.

I* initialize tiela ta~le *I

orintfl"Please wait!creation of taoles in proqressO);
torC;j=O;jj(26;jj++l {

)

tor<4o=O:ao<30:oq++l {
i=u:
fieldtah[jjJ.symtao[qaJ.nnm~[iJ=•e•;
i++i
tieldtah[jj].symtao[qa].name(iJ=•o•;
i++;
fieldtah[jj].symtab[qaJ.name(iJ=•s•;
i++i
tieldta~[jj].symtab[qo].name(i]=•

}
fieldtab[jjJ.tab_count=O;

.. ,

I* initialize adoress table *I

for(jj=O;jJ(200:jj++) {

)

i=v:
adotao[jjJ.aadrname[iJ='e';
i••=
adotah[jjJ.addrname[iJ=•o•;
i++;
adOtab[j;J.aadrname[iJ=•s•;
i++;
addtab[jJ].addrname[iJ=' •;

I* initialize format table *I

59

}

torl~o=n;aq<~;qq++l {
toriJj=O;jjC40;jJ++) {

}

i=O;
tao[qo).formatab[jj].tormnam[i)='e';
i++;
tao(qqJ.formatab[j;J.tormnam[iJ=•o•;
i++;
tau[oa].tormatah[jj].formnam[i)•'s';
i++;
tao.[qaJ.tormatah[jjJ.tormnam[i)=' •;

I* set all oits of ~icroword to zero *I

torlm=u:m<32:m++) {
flaq[m).all=OxOO;

)

I* set aodress counter to zero. O/

ciduress=iJxJO;

'***I
I• *I

The tollowin3 procedure reads the format state
m~nts ~nd enters all the field names in the
format table correspondin~ to the format state
ment. ~ext all the symoals in the fiela define
statements are read and their names and definition

are cooieo into the the field table alone with
their size and oosition of origin in the micro
word. In tnis process the wordlen9th is also
determined.

procedures called

integer variables used

1. skip()
2. Leave()
3. member (I
4. is_number()
5. chk_ovfw()

oq,i,j,~,temo3,temp4,

field,true,wordlength,
List,deoug,torm.

floatina ooint variables : worosize ana wlength

string variaoles used: Loc[luOJ, temp[15],
pos[3J, Loct[256),
SE'dlSJ.

*I
*I

*' *I
*I
•I

*I
*-I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

*' *I
*I
*I
*I

*' *I

60

cr~at_table(}

{

fp=tonen<loct,''r''};
ifCfp==Ol {

I* op~n input tile *I

pr1ntf<"Error: ~:stile not found",loct>:
exit <ll;

}

eof=foets(loc,lOO,fp);
"n i l e < s t r len < l o c l == 1 l

tqets(loc,lOQ,fp);
if<debug==vl

torinttCl·st,''=sO,loc>:

i=O,torm=worolengtn=o:
trul'=li
qo=+orm=j=i=u:
skio<l:
I* check for psuedo instruction format *I
if<strncmo(loc,"FO.-<MAT",c,) !=null> {

}

printf("error:FOMHAT statement missinoOl;
exit<lli

I* it psuedo instruction 1 F0RMAT 1 present copy all *I
I* field ndmes into format tabl~ *I

whi le(strncmp(Loc,"FOPMAT",6l==nulll {
tru!"=l,i=6:
it<loc(iJ'=' '> {

printf("error:Type space after FUPMATOJ;
}

if<loc(iJ==• ')
i++:

while<true != Ol {
if(eof==Ol

oreaki
.;hi le<Cloc(i]'='Oh&<loc(i] !=•; ')l {

it(eof==Ol
oreak:

whileCLoc(iJ==• 'l
i++:

~o~hileCCloc(i]!=','lP.&Cloc(iJ!=';'ll {
if<Cloc[iJ==• •>: :cloc(iJ=='Oll

oreak:
temo(jJ=loc[i];
j++,i++;
if<j)PJ{

61

printf("error : field name too long inO);
printf<"=so,Locl:
exit<>;

}

}

while(loc[iJ==• ')

; ++:
i f ((l 0 ((' i) ! ~I ' I) : : (.l 0 C (i) ! a I : I))

iftto(;(i)•a 1 Q) {

while <s t r l ~n< L oc >••1>
tg~ts<Lo,,loo,tol;

skioO;
i•Oi
iHlocCiJ!a•,•)

Lt•vrt•,•,to,>i

print'f<"error: •,• oo•r•tor •issing in ~sO,loc)i
~lid tO:

u·•oCjl•' •: I• array t••o conteins •I
I* fit!'Ld nAoMe •I

;s•t!'••chk~rsvd.sye(te~o>:

I* if ~·s then is~e••O. •I

H(islft•M••Ol {
if Cl; st••O>

ftlrintftlst,"trror: rf!served sy•ool in field n••• inOH
forint f Ctst ,"~sO .. toe>;

orintf(''eorror: I"I!'S~rveocr sy•bol in held na•e in O)i
print1<"=su,toc);
f Kit (1';

j j•O:
I• check if field naMt is reoaet;ned e/

wtd l•<strncmp(tab('fort~~).toriUitiJb(jjJ.for"mniJ!n,''eos .. ,J) !a null) (
iftstr'~~<tauCtormJ.tor~at•bCjjl.tormn•m,temo>••nutl> {

if(list••O> {

j j ++;

if(debuo•cO)

forinttCLst,"trror: fi~ld ~s redefined in o,teNo);
fDrintffltt,h~sO,toc>:

pf'intf<"•rrof'! fitld ~s rl!'dtfin~d in O,te'ftol:
grintfCh~so,toc);

e Jo:i t ();

forint1 <tu-,"~sO,temol;
strcuyCtabCformJ.form~tlbCQo).1ormnam,temo)i
lf (l 0 C C i J ~c' ; ')

creoak:

62

}

skip();

}

o.la=O;
form++;

i++,qq++,j=O;

i f(l 0 c [i) == • ; •)
tru<'=O;

eof=f9ets<Loc,lOO,tol:
while<strlen<LocJ==ll {

tqets(loc.lOO,toJ:
}

skioO;
if<d<'buo==o>

torintf<Lst•"=sO,locJ:
i=j=o;

I* cn!'ck it psu~ao instruction ·~EF' or<'S<'nt *'
if<strncmo<loc,"uEF",3>!=nulll {

}

ifCList==Ol {

els!' {

}

tprintf(lst,"Error:DEF stat!'m!'nt missingOJ;

printf<"error:DEF statement missingOJ;
exit(!);

eot=toets<loc.lOO,foJ:
whil!'lstrlen(loc>==ll

fget s< loc,lOO,tol;
if(d!'huo==O)

torinttClst,"=so,LocJ:
qq=j=O,wordsiz<'=wl<'ngth=O.o:
skio<J:

I* as long as not "ENDEF" copy field symbol name and *I
I* definition along with size and position ot origin into *'
I* tn .. field table. *I

whilellstrncmo(loc,"FIELO",SJ==nulli'&Cstrncmn(loc,"ENDEF",SJ!=nulll){
i=S·<=O;
ifCloc[iJ!=' 'I {

ifllist==OI {

forintf(lst,"error:enter a space after ~IELDOJ;
}

else {
printf("error:enter a space after F!ELOOJ;

}

if(loc[iJ==' 'J

63

i++:
while(loc[i)!=' ') {

if((loc[iJ==' •>::cLoc[iJ=='Oll/#cneck to*/
I* se~ it line overflo~s *I
oreaK:

see[kJ=loc[iJ;
K++,i++;

if(k>P.) {
ifClist==O> {

64

torintf(lst,"error: fieldname mor~ than 8 characters LongO);

}

}

}

elsP {

}

printf("error: fieldname more than 8 characters longQ);
exit (ll;

~hile(loc(iJ==• 'l
i ++;

if<loc[iJ=='Ol {
tgets<loc.lOu,tn>:
~hile<strlen<locl==l>

tqets<loc.lOO,fol:

}

skip();
.. i =0;

ifC(loc(tJ==•,•>::ctoc(iJ==•;•>>
l<"ave(•,•,tocl:

if((loc(iJ==•=•>::<toc[i)==':'>>
leav~<·=•,tocl;

see[k]=' •;
k=O:
while<<Loc[iJ!='•'>t&<loc[iJ!=';')) {

}

if<<loc(iJ==• •>::ctoc[iJ==•u>>
ore ale.;

posCkJ=loc[i);
k.++,i++:

if(k)2){

}

printf("error: •,• seoarator missing or number > 2560);
printf(" in ;so.toc);
exit();

while<Loc[iJ==' ')
i ++;

if<<LocCiJ!='•'>: :ctoc[iJ!=•;•>>
if(loc[iJ=='Ol {

fgets<loc.lOu,tn>:
~hile<strl~n(loc>==ll

fqets<Loc.lOQ,fp);
skip () ;
i=Oi
if(loc[i)!='•'>

leavec•,•,Loc>:

POS(k)=' •;
if(locCiJ==','l

true<=l:
i++i
"hi l e < l o c [i J == • • l

i ++:
if< Loc[iJ==•O) {

tgets<loc,l0J,fpJ;
.-hi leCstrlenCloc>==l>

tgets<loc.lOQ,tp);

}

sHp();
i=O;

temo4=atoi(pos>~ '* t~mo4 cont~ins position of most *' '* significant oit of tne symool *'
I* in th~ micro .. ord *I

ifCCtemo4 > 256>: :ctemp£ < 0>> {

)

•=v:

printf("error: bit pos1tion out of rang~ in Ol;
printf<"=so.tocl;

while<Cloc[iJ!=•;•) 1011. Ctru,.==ll> {
iiCCloc[iJ==• •>:!<loc[iJ=='O>l

}

tHea~;

pos(k]=loc[iJ;
l<,++,i++:
if(k)2) {

}

print f ("error
printf(":;soJ;
exit<>:

·~· sep~rator missing or numoer > 256 inOl;

while<loc[iJ==• ')
i++i

ifCloc[iJ!=•;•)
ifCloc[iJ=='U) {

tgets<loc,lOu,tol:

;JOS[<]=' •;

true=Oi
t!"mr>3=atoi Coos);

w hi l e (s t r len (l o c > == 1 >
fgets<loc.lOQ,fp);

skioO;
i =0:
if(LocCiJ !='; '>

leave('; •,loc)i

I~ temp3 contains the position of *'
I* the le~st si9niticant bit of the O/
I~ symool in the microword. *I

65

iftCt~nc3 > 25o>:Hteolllp:3 < 0)) {

fi•la••:

print'fc··~l"l"or: b'it Position out of riingeO)i
prlnt1(.. in :;so,toc.l;
e .. , t ():

I• field cont~ins the size of *'
I* t rt• 1)'11100l •J

J •qq•t rue•O:
trve1.1•li

I* •nte,. tnis infor~ation ;n tfte for•at taole also •J
•hH~(trueQ!•O) (

while(strc•oCse•,t•DCjl.fo,.•atab(aaJ.fo,.•na•l!•O)
if(strnc•~CtabCjl.to,.•atab(QQ).to,.•nae,"eos",3>••null)

orl'ak:

tAll (j J • foraat ID(QO) ebi t S i ZP•'f i•ldf
taoCjJ.for•ataoCoaJ.posn•te~p3;
J••IQG•Oi
1f(j) Cfora-l))

trutoQ•O:

eot•tqrtsCLoc,lno,t~Jt
•hi le<strlen(loc)••1)

fqetsCloc,lOu,f~);

skioO:
ifCdetlug••Ol

tp,. int 1 c l st , .. ~so, toe l;
l•k•i•Oi
whileCtstl"ncmcCLoc,"FIELO",S)!•null)~~Cstrnc•o<loc,"ENOEF•,s)!•nulllJ(

ifCloc(iJCOa41 :: loc(i) > Oa5•l (

}

if(list••Ol (
torintf(lst,"se.rious er~orO);
for1ntf(Lst,"error:Symoot na•• do~s not b~9in ~ith caPital l~tt!rOl:

fodnt t (l st ,"Sy•bol :'a0, loc);
fclos•Clst):

printf(''error:~y~bol n•M• does not be9in with c~oital l~tt•rOl:

printfC'"Symbol:-=.sn,tocl;
exit(l);

Jzloc(i).Oalf: '*get the hash v~lue to hash •I
I* into the fiela t•oLP •I

ctlk_ovtw(j);
true•li
.,hi ~e(loc('i) !• •z') {

if(locCiJ•.,' ')
.,n·HeCloc(i'Jzz' 'l

if<locCiJ!•'•'l
leave<'•',loc);

66

i--;
true=O;

}

see[LJ=loc[i];
i++,L++i
if(l)9){

}

printf("error: symbol name more than 9 charact~rs Ol:
grintf("in ~sO.loc);
edt();

j

if(true==O>
L--;

see[L]=' •;
ismem=chk_rsvrl_sym(sePI:
if(isme"'==OI {

}

i f (l i s t == 0) {

}

forinttllst,"Prror: rPserved symbol in symbol nam~ inO);
forintt(Lst."~sO.Loc>:

printf("error: reserved symbol in symbol name inO>:
printf(";sO,Loc>:
exit();

k=U,L=o;
~hile<strnc!T'p(fieldtab[jJ.symtah[kJ.nam~,"eos",3l!=nulll{

if(strcmp(tielcttah[j).symtab[k).name.seel==null> {
if<list==OI {

}

I(++;

}

tprintf(lst."error : symbol =s redefined in o.see>:
forintfllst.":sO.loc>:

printf("error: symool ;s redefined in o.see);
orintf(";so.Loc);
exit();

}

iieldtab[j).symtab[k].name[lJ=see[LJ:
L=O:
~hile(see[LJ!=' '> {

fielotab[j).symtab[kJ.name[LJ=see[LJ:
l++;

}

tielatab[jJ.symtab[kJ.name[lJ=' •;
L=O,i++;
~hi lelloc[i] != •;•){

~hile<loc(iJ==' ')
i++i

if(loc[iJ=='Ul {
taets<Loc.lnO,fol:
while<strlenClocl==ll

toets(loc.lOO,tol:
skin();

67

qa•wo rd leng t ft•O:

)

i•o;
if(loc(iJ!•'i'>

te:aveoP :•~LocH

lf (l oc C i)•z •; •)
crtakf

iftloctil < •o• :: loc:Cil > '1') ('

)

printfC''otrr"or: Pit val~.o~ot Olhtr th•n 1 or 0 inQ)i
Pl"1ntf (""~so, Loc);
tor.ltCl)i

1; eoldtJb(j l. sy•t ~b(lr.l • .lll!'i CL i•loc(i):

if(l)q){

printf<"•rror= can not bandlt syMbols •ith ~ort than 9 bitsO):
Pr"intf C"''~aO.doc>:
t•lt()i

fitlat•~CjJ.sy•t•btkl.~•fCLJ•' •;
tit lot Jb [j l .sy111t •bllt l.oi t l~tnyt n•'t it- ldi

titldtaDC!J.sy•tab(kJ.posit;on•t••o3i

•of•fgttsCloc,lOO,f~l:

whi l«<st rlenC loc>••l>
f9!tsCtoc,lOO,fD)i

sir ion;

fttr int1 C lst ,"~so, locl;

1• cornputto '"licroword l~ngttl •I
~hile(strnc•o<taD(Ol.for••taotqaJ.for•n••,"ll!'os",3)!•nult>

wordl~tngth•wordleongtn+taDCUJ.for~atao(QOJ.o;ts;ze;
QCJ••i

~ords i ze•vord leon; t n;
wl~ngtn•wordslzP/8.0;

wrHd ~ ~ncu h•w l enQt hi
wordsize•wlf'nqth- 1110rdlen9th;
i 1 < w o 1"'0 s; z e > o. o 1

wo,.d l Pngt h•wo rd l tngt n•l;
if(list••O)

fprintf(lstr''woralengtn•:dOrwordLPngth):
felOS@'(fp)f

l•=~~•••#=~=$===*•u~=*~=••*•••~~=$~=·~=~•=••~==u•••=•~=•••==••••t*l

/11. *'

68

I• The tollow;n·:~ oro~edure eheew.s for over"l~oDinq b;tfiet.ds *I
I• ln th!' Sli!lllf tor'll•t st.Jtem•nt. I'f an ov~rlao ;, found *'
I• then an error ~t~ess.t~l)eo ls printed on the screen •nd the *I
I* groqraa h .IDOr"tea .. Else h l)rints an .afHrM•t;ve •I

Non~.

., ., ., .,
/« 1ntttgt'r v•r;•DI.C'5 YSI'd: 'olljl~q,M,n,te•pZ,tt!IIP3,ti'"'P'"£ *I
t• tt,trye,crueq,.torlll.,daf. *I ,. .,
'* strin9 v•riaclt'S useu : tlfi!IP(lSJ. •1 ,. .,
, ••••••••••••••••••••••••••••• * ••• .,. ••••••••••••••••••••••••••••••• ,

if(liH••O)
fl'r; nt t C l sc ,·•rt eo.ue ••; t,c:neclc ;n,. fa.- ov~trlAGD; nqbi tf i ltlds0);

pr"intf<"Pl•<~Sif w•dt,c,ecw.inq tor overl.aop;nq ~tt fiel<SsO>:
w• J •qq•O, t rue•t ruetJ*L;

... iiHe<truet•\1) <
vl'l t le(t ruf'Q! •0 J

1 f (s t rnclftD(tar.C j l • for~~tat •DCwJ. 1 orMnt•" "eos•• ,]) t •O)
s r ~coy< tt"l3" r: •cC j l. for•u aaC11l.fo~•n••l;

qa••;

t ~·o .S• t •u C j J. fur,.,.t eoCif l.oosn;
ti!'IIIC)4•t .10(j ') • fQ .. IIUita;a(.. J .tJi t Si .If;
Qff•te,.g.S•Cte,.o4•1);

.. n1l• < st rnc111o(t •oC j l. fo,.••t aaC~:~ol. for,.n••,'"•os",J) t •Ol

t I!'IIIO.!•t •o C J J. f Or'I'I.U .aD (llal.cosn;
••t ao(1] .. f or•ut aoCacl .. a i tsl z~;
tt•Te-~'~'~PZ•<a-l>f
n•te.,oz;
lll•t II!' ill OJ i
if C <n~••nJ:: ((n)•J t' Cn<•cl.1fl) l: < (n<•J&,C'I(•tt)))

ifllist••O) (

69

faP"int1(lst,."~rror;You hav• ov•rlfODing oit fieoi.ds in your df'finitionO);:
forint t C l s t "'"F t EL.O: ~~ ov•r l•os F I F.:L.D: :':sl),. t I!' fiG, t .aoC j '). f or••r.~o(qcll. tormn••>;
t close(ls t J;

..... ;

J •••
... o,. t ,.u•q•1;

PI" ntf<"ti"I"'Or:YC')u n.1ve overl.apoinq bH fie-lds ;n your deofinit;onO);
or ntf<"F!ELu:;s is o-v~r"l•poing FIELO::so ... u••o .. r.ab(jJ.foi"M~t•bC:aaJ .. for!ln.Jal:
pr" nt'ft"Pt•,.se corr~ct tneo •rrof' C. tr)' to •sseo•bleo •g•lnOl;
•• t(l)f

, ... , ,. .,
I•
IO

I•
IO

I•
lo
lo
lo
I•
I•
I•
IO

I•
lo
IO
IO
lo

Tht tollowlng Ql"oc•dur~ i~ t-n., f;rst o••• of tn•
a'lseoaDL•r. Tr~• 'tllcroaroor•• ,, 5-Cinn•d fro• st .. rt

Ol
Ol

to tntf •nd .IS .ana """'"" lddl"f''SS lo~tu•ls .,.. eonc('Juntf't'f'd •I
olft IDSOlutt \16lUI' ;s .ISSiQftf'CI tO tf'l.- ldCII"PSS l.lt'ltl. Ill/

An aadr•ss count•,. "'''" count of th• tna of ...,;c,.o• •I
inttructlon cf'lar•ct•r which hlorttons to b' •:'. Rotn *'
th• eddr•ss tac•L •nd its corl"tSPOndin~ lb'Jolut• •t
valut o~rto stored in tP'It •dar~ss t.aolr for 1'utur"eo •I
r~ftorenctt.

1ntfl._~,. v•ri•DLf'S usrd: J,gg,~;,ll, .. adress,drbuQ,
true" t ru•q,•of .. stat us.

Ol
Ol
•I
•I
ol
Ol

•I
Ol
ol

'*************************************"'***•••••••••••••••••••**'

fo•iooeon (lac t , .. ,.,.,;
fqetsCtoc,lOO,to);
wt'llle(st rlenCloc:):aal)

70

skio();
if(deoug==Ol

forintfiLst•"~sO.LocJ:

"hilelstrncmJJiloc,"ENDEF",Sl!=nulll (
ifleof==Ol {

if<list==Ol {
torintfllSt• 0 error: ENOEF statement missingOJ;

}

printf("error: fNrEF statement missingOI;
exit();

}

eot=tqetslloc.lOO,fol:
w hi l e (s t r len (l o c J == 1 l

eof=tqetslloc.lOO,tp);
skioO;

t ru@':l;
adaress=O•OO;

eot=foets<Loc.lOO,foJ:
while 1st rlen I loC)==ll

tgets<loc.lOQ,tpJ;
skioO:
if(deouq==Ol

torintf(lst•"=sO,LocJ:
j=qo=i=x=O;
"hi l e < s t r n c m IJ (l o c, "E ~ 11", 3l ! = 0 l (

if(Pof==Ol {
if< list==O){

tprintfllst,"Error:END statement missinqOJ;
}

printfi"Error: ENO stat@'ment missingOJ;

}

ifleof==Ol
oreak;

trueq=Q;
j=o:
while<Loc[iJ!=':'l

)

it<<Loc(iJ==• •J::ctoc[iJ==•OJl
oreak:

if((i)lOl!&lloc(iJ!=':'ll
ore a k:

temr(j)=loc[i);
j++,i++;

"'hile<loc[iJ==• ')
i--t:+;

if(loc(iJ=='O> {
foetsllocolOO,foJ:
whilelstrlen<Locl==ll

71

sit; o ():
;ao:

t••o(j J•• •:
J•O:
iftlocLil!•':'>

t r'I.U'G*l i
;f(truta••oJ> <

llllhlle(tP•D(jJ !a I I) (

ulat •DLQqJ. adrtrn••r C j J•t eo•P[j J;
ifCj)t,) (

d<llsr••O) <
forintf<lst,"•rronaodroeost l•Del •orf than 6 cttaractprs LongO);
ftlOIP<lstJi

pr;ntfC"error:adar•ts Laoel •or• tnan 0 c"ar1c:t•rs Lon~Q);
e•h <lli

, .. ,.' .. :
)

aaclt abtOQ].aGdr"niMe[J 1•• ';
I dOt UI{Qq] • c ont _.nt s•addrt11;

; t c denu~··o >
farintf(lat .. "

while<tr1olt •• OJ (
;fceof••OJ

O·l"t'ollt:

wlti Le((loctil '*'D>~t. (loctil !•'; '))
; ...

if(loctiJ•••:•J <
t ru••O;
addrpss••;

tot•fau s c toe: ,100, to):
whi Le(st rlpn(loc>•:.l)

fgets c loc,lOO,tol:
sldp();
; f (diPbuq••O l

· torintf(lst,"~sO,Loc>:

status•fc:los•<tol i
H(S"tatus!,.OJ <

pdntf("unsucc:essful file closur•::a:I/0 ~rrorO ... loct);

72

fc lose (tel;
)

I'# *I
I* This oro~edure is the SPcond oass of the assemoler *I
I* In this procedure the microorogram is actually •I
I* assembl~d dn~ stored in a separate file. For *I
I* assemoling this procedure rPfers to the tiela table •I
I* the adaress taole and the format table. For sear- *I
I* ching the format and tne address table, linear *I
I• search techniaue has been adooted. For searching •I
I• the fiela taole, a technioue similar to hashing *I
I* has oeen usea. The microorooram is scanned *I
I* microinstruction by microinstruction till END *I
I* statement or end of til~ is encounterea. For every *I
I" microinstruction, the field symbols are read one *I
I* after the other and a check is made of the field *I
1• taole ano wnen ~ match is founu, the fi~ld symool *I
I* size and tn" position of oriyin of tne •I
I* in the microword are read into a buffer. Next the *I
I* value of tne field symool is read and the value *I
I• is examined oi by bit and the field symbol is asse- *I
I* mleb by setting the the aPpropriate oits in the *I
I• microword. After the microword has been assembled *I
I* completely, it sliced into P bit slices and these *I
I* sl1ces are stereo in files wnose names ArP Obtained *I
I• tram tne user interactively ibefore this procedure. *I
I• *I
I* procedures called: l. stat() "-/
I• 2. dump() *I
I* 3. member() *I
I* 4. i s_numbtH (> *I
I* 5. chk_rsvo_symCl *I
I* 6. leave() *I
I• *I
10 inteyer variables usea: i,j,~,(,m,n,jj,tt,y,po,x, *I
I* temol•temo2.temp3,temo4, "-I
I* address,eot,list,debuq, *I
I* sym~ol, wlength• daf,trueo *I
I* addrgen.ismem,isnum.true. *I
I*
I•
I•
I*

oass2Cl

{

strino vari~oles us~d: temp[lSJ, see[15], pos[3],
locClvOJ.

address=Oxun;

*I
*I
~'I

*I

73

out f i lt'=top~n(outnam,•'w+");

fo=fopen(loct,"r">:
eof=tgets(loc,lOv,fol:/* it eof=O then end of file encountered#/
~ h i l e { s t r len (l o c l == 1 l

fgetsCLoc,lno,tol:
skip();
if(l1st==Ol {

forintf(lst,"PA~S-1 complete 01:
}

while<strncmp(Loc,"<:•:f'EF",Sl!=nulll {
eot=fgets<Loc,l00,fol:
while<strlen<locl==ll

tgets(loc.l~u.tol:

skio();
}

i==k=m=n=Q;
ent=fqets<Loc:.lOO,fp);
while(strlen(loc>==ll

fgets(loc.lOU,fp);
skioCl:
i1Clist==O> {

}

fprintf(Lst,"PASS-2 ~EGINS ===> Assembly in proqressOI:
forintf(lst,"ls".toc>:

i=Oi
while<Loc(iJ!=':'I {

}

if<<LocCiJ==• 'l::ctoc[iJ=='Oil
oreaki

i f((i > 5 l & R < l o c [i) ! =' : ' l I
oreak:

i++:

w hi l e < l o c C i J == • • >
i++;

i f (l 0 c: (i] == • u) {
foetsCloc.lOO,tr>:

}

w h i l e (s t r l e n < l o c > == 1 l
taets<Loc.lOU,fpl;

skioO:
i=O;

if(loc[i]!=':'l
i=o:

elsE>
i++;

dat=Q,addrgen=l:l* if oaf=u thE>n fiPld symool to be #/
I* assemoled. if addrgE>n=l tnen value #/
I* to oe assemoled is E>ither a dE>cimal*/
I* numbE>r or an adoress laoel. *I

while<loc:CiJ==• 'l
i++:

74

I* str.art r•ading •icroinstructions •I

lllhllr(strnclllp(Lot,•EN!' .. ,J>!•null> <
wlengtn•Oi

if<-"ot••Ot
ore elL;

whll•<tocCiJ••' ')
i++i

o~l"'i lf'C C locti J !•'O>&C.C loc.CiJ ~··; 1 >)

n•O;
; tC•ot••U>

ore air.;

wraH•<loeCil••• '>
, ...

wh\ le(C loctiJ t••, •)I&.C locti Jt•• i 1))

it <•ot••cJ>

}

ar.alr.:
H<ClocriJ••' 'liiCLocCiJ•••O>>

or•••:
t••otnJ•locCili

111hi L•<loctil••• I)

, .. :
if<locC.iJ••'O)

t1atsC loc,lOQ, to);

whi leC st r l•n< loc >••1)
i Clf't 1 (l oc,lOO,fD):

1kiDO i

tf'aoCnl•' t; /a read all characterl up to •I

I• •, • chatacttr into 1rray te•o •I

i~•••••e•Der(•a•,t
e•o>; I• cn•ck it syabol •I

1• '•' or•s•nt in te•P •I

itC <n>9>,~Cis•••!•O)) <

n•O:

ifClist••O> (
torintfClst,"f'rror: syabol na•• •or• than 9 chlracters in O>i

tor; nt t c lst ,"=so, lac>:

tclos•<lstJ I

orintf("•rror: syMbOl na•eo •ore than 9 crul"acter1 i~ O>;

orintf("':sol;

edtO:

QQ•jJ•n•Of

/'Cl it '•' sv111bol t-rl!'sent tneon ~"••d all cnar11cters to tneo •I

I* left of 's' 5)1'11\00l in to .an arr.ay 1el!' *I

; t <; slll~>~··o > <
n•Oi
.,hi le < t~>Mo(nJ! • '•')

see Cn)•t utp [n);

75

}

s!te CnJ• • ';
w•Q,.n+•:
while(tto•D(I'I]!•' 1) {

t ••PQ (•) •te•oCnJ;
v•••n••:

tC'fiDQ(_,]a• 1 i I* r"l'ld Ill C:hlr"ICt@'r"l *I
I* to tne right of '•' sy•ool *'
I* into ~,.,.,,. t ••oQ. •1

I* ctu•c'r it t"t fh•la ne•• ;, sf'e 'is a v1Lid flel.d n•••· •I
I* by cl'lecld nq tn• for•at taolt. •1

.to,.q•o:;<tor•tj••J C
~t•Ui

"" i l• Cst rnc1110ft ab(j J. to,.••t ID(IC l. for•na•,. .. •os•,.]) ! •null)
if(n rc•o <t 1aC j.J. for•atao(kl.for•na• .. •••)••nuL l)

! ••:o2•t ao(j l. for•at •oO.J .bits i ze:
t ••ol• tao(j J. foraat ab(kJ. oosn;
t rue•o;

if(true••G)

tf(tr"u•••ft)
oroea•;

if t t ru~••Ll (
tf(list••I')J C

t ru••l;

for"intf<Lst,"er"ror": t·htd =.s not foundO .. see);
fC,OSt!'(lit) i

orintf("trror: field =.s not toundO,.steJ:
t•ltCll

'snu••; s.,nuo~~oer (t ••oq J:

1• check it the 'ontll!nts ot •rray Cf•OQ it a oositive inc"q•r •I
1• H nu•btf' cnen Sil!'t isnu••U •1

if<isn ... a••O) {
til!'ln04•-itoi<t•lfiDO):
iHtemu4 > 32000) (

iHlist••O)
fprintfCLsc .. "error: v•luif > 32000 inOH
torintt < L st ,.••=so, loc>:
fc\.ot.•(Lst):

pr-intfC"error: valu~) 32000 in0)0
printfC":O.sO .. Loc;);

76

I* if not nu•ber cnec~ it the contents of teaoa *'
1• is • fhla syaboi by ctlecr.inQ tne fit!'ld tablt' •1

else (
qa•t e•oaCOJ 10•1 f:
Jj•n•I)"•Ool•Oi
"'"HefJJ < 301 <

; flIt rncaoC f i el dt ID[QQJ. ,.,., •DC j j J. nute•"•os" •3) ••nu l L)
syabol•U

iftsyaaoL••lJ
orealti

; t (st reap C f iel dt abCaaJ.syat"IID[j j J •"••••teaDQ) ••null)
artalr.i

J j••i

;fh:J'IIIDOt••O) (
t ••Dl•t ielat ab[aal ••Y•t aaC j J J .D it lengt hi
iHteaplt•t••a2J (

ucl'ist••OJ <

77

torintf(lu,•error:Field size does not •atch field syabol si
fDrintfCLu,"Field ::;so,.aee)i
tprinttUu,."Field u•aool : =•O,.teaoalf

)
orintfC"error:Field size does not aatch field syabol siztOJi
orintfC"Field: :ao,see)i
Df'i ntf c•f=·h lG IY•DOl ::;,sQ,t f'MDQ) i
orintfC~i" !:sO,.loeH
e•itO ;"

1• if the contents of teiiiDQ is neither 1 nu111oer nor •I
1• 1 field sy•aot. check i1 it is an 1ctar•ss laatl •I
I* by chec•in9 tne ldctreoss table. •t

;f((Syllbol••ll&&Chnu•f•O)) (
aa•O;

,>··

..,h; ltCst rcmoCactctt ID(aal.lddrn•••,teoiiiiDG) !•null)
if C st: rnc•D(I ddt: att[QQJ. •ctdrn•••" "eoos''" 3 >••nu ll)

lfllist:••O)(
for;nt:f(lst:,"l'rror:actdreossllbel ~;s not founct.O,te•oa>;
fcloseoCfp)i

pr;ntfC''error:lddr•ssL•ttel =s not tound.O,tempQ)i
l'ld·t ():

}

}

true=l:

}

qQ+ +i

temo4=addtab(ooJ.contents:
adorgen=Q,aat=l:

78

I* it the array temp ~oes not contain the character '•' #/
/# tnat means temp cont~ins tielo symhol. Check field •I
/# table and set oaf=O *I

else {

}

tt=O:

oo=i;=o:
n=o:
QQ=temp(n]~Oxlt:

while(;j < ~01 {
if(strncmolfi~ldtab(qq].sYmtab[jjJ.name,"eos",3l==nulll {

}

j t (l j 5 t == 0) {

}

fprintf(lst,"error:symool not founoOJ:
tprintfClst,"symooL:=s inO,temp);
forintf(Lst•"=so,tocJ:
tcloseo<lst>:

printfC"error:symbol not foundO>:
printfC"Symbol:=s inO,temp);
printfC"=so,locl:
exit<U;

ifCstrcmp(tieldtab(qq].symtao(jjJ.name,temp)==null) {

t rue=O:

}

if(true==O>
break:

jj++:

temo2=fielatab[qq].symtao(jj].oitlengtn:

temo3=tieldtab[qq].symtab[jj].position:

I* locate the position of origin of the field symbol #/
I* in the uyte and the byte where the symbol originates •I

I* t~mo3 contains th~ pOsition of origin ana tt the •I
I* byte numoer. 'i;./

if((temo3 > 7ll&Ctemp3<=15)) {
tt>mo3= temp3-8i

)

if((temp3 > l5>R~(temo3 <=23>> {
t~mo3= temp3-lci
t t =2;

}

if((temo3 > ~3l~~(t~mo3 <= 31)) {
temo3=tPmo3-<14:
t t=3;

}

if((t~mp3 > 3ll&~Ct!!mo3 <= 39)) {
temo3=t~mo3-32:
tt=4i

}

if((t~mo3 > 39)P.~(temo3 <=47)) {
t~mo3=temo3-40i
tt=S; .

.I
if((temo3 > 47lF,<temo3 <= 55>> {

temo3=temo3-4!li
tt=6:

}

if((tl'mo3 > 5S>R&Ctt>mo3 <= 63>> {
temo3=temo3-;6;
t t•= 7;

}

if((temo3 > o3lR~(tt>mo3 <= 71)) {
temo3=temo3-64i
t t =8:

}

it(Ctt>mp3 > 71>&~Ct!'mD3 <= 79)) {
temo3=t!'mo3-72i
tt=9i

}

if((t!'mp3) 7C)P~Ct!'mD3 <=87l) {
temo3=temp3-80:
tt=lu:

}

if((tt>mo3 > o7lR~Ctemo3 <= 95ll {
temo3=tPmo3-8~.;

tt=l1:
}

if((temo3 > 95lR~Ctemo3 <= 103>> {
temo.5=temo3-96i
tt=12:

}

if((temo3 > l03l~P.(temp3 <= llll) {
temt'3=temo3-l04i
tt=l3i

79

}

if<Ctemo3 > 111l!.&Ctemp3 <= 119)) {
temo3=temo3-112:
t t = 14;

}

if((temo3 > 119>&&<temp3 <= 127» {
temo3=temo3-120:
tt=15:

}

if((temo3 > l27>~~(temo3 <=135>> <
tl'mo3=t~>mo3-l?~;

tt=1o:
}

if((temo3 > 135l,R(temo3 <=143)) {
t~mo3=te-mo3-13o:
tt=17:

}

if<<temo3 > 143l~~<temo3 <=151>> {
t~mr>3=t~mn3-l44:

tt=li:S:
}

if((te-mo3 > 15l>~~(temp3 <= 159ll {
t~mo3=temo3-1~2:

tt=l9:
}

if((temo3 > 159>~&<tem 0 3 <= 167>> {
temo3=temo3-l<'>u:
tt=?u:

)

if((temp3) 167)~~(temp3 <= 175ll {
temo.3=temo3-1<'>t>:
tt=2l:

}

if((temo3 > 17Sl6P.<temo3 <= 1R3ll {
temo3=te-mo3-l76:
tt=n:

}

if((temo3 > 133l6P.Ctemo3 <= 191)) {
temo3=temc3-1P4:
tt=23:

}

if((temp3 > 19l>~&(temp3 <= 199)) {
temo3=te-mo.3-192;
tt=24:

)

if((temo3 > 199)~R<temo3 <=207ll <
temo3=temo3-20o:
tt=2S:

}

if((temp3 > 207li>i\(temp3 <= 215» {
temo3=tPmo3-20il:
tt=?6:

}

if((temo3 >215l&~(temo3 <= 223>> {

80

}

temo3=temo3-2lbi
tt=27:

if((temo3 >223l&61temo3 <= 231ll {
temo3=temo3-224:
tt=28:

}

if((temo3 > 23ll~~(temp3 <= 239)) {
temo3=t,.mo3-2~2:

tt=?9:
}

if((temo3 > 2!9l~~(te~~3 <= 247)) {
terno3=temo3-240:
tt=3u:

}

if<<t~mo3 > 247l,<em~3 <= 255>> {
t<"mo3=temo3-24lS:

)

y=O:
y=temo3:

tt=3l:

/# start assemoling •I
oo=strlen(fieldtah(aq].sym~ao[jj].def)i

pp--;
if (daf==Ol {

"hileltf.'mo2) 0) {
y=temo3:

81

"hi le<temo3 (!I) {

if(fieldtao(qq).symtab(jjJ.def[ppJ=='l'l {
switch (y) {
cast" O:

case 1:

case 2:

case 3:

case 4:

case 5:

case 6:

case 7:

flag[ttJ.oart.bitO=l:
ore aU

flaq(ttJ.oart.oitl=l:
oreaki

flaq[ttl.oart.oit2=1:
break:

tlag[ttl.oart.oit3=1:
break:

flag[ttl.oart.oit4=1:
break:

flag[tt].part.bit5=1i
creak:

flag[tt].part.oit6=1:
creak;

flag[ttJ.oart.oit7=1:
oreak;

}

}

daf=l:

}

aeotault:

}

}

teomo2--;
if<temo2==0>

oreak:
po--,temp3++;
y=temo3;

temo3=u,tt++;

printf("sharadOl;
break;

I* it address laoel to he assemble~ then examine all *I
I* the bits of tne inte9er rePresenting adoress value *I

if(a•Jdrqen==0> {
whi le(tt>mo2 > u> {

whi le<temo.S <=d> {

switch(x) {
case O:

case 1:

case 2:

case 3:

case> 4:

case 5:

case 6:

case 7:

case> ~:

case 9:

m=temp4~0x000000Ull

oreakl

m=temp4~0x00UOU002;

ore a k;

m=temp4~0x000000041

break I

m=temo4~0xonoooooR;

oreal<.;

m=temo4~o.onoooOlO;

creak:

m=temo4~0x00000020;
break;

m=temo4~0x000000401

breaki

m=temp4&0x00000080;
break:

m=temo4~Qx00000100;

brea~;

m=temo4~0x00000200;

82

case 10:
m=temo4&0x00000400:
break:

cas~ 11:

case 12:

case 13:

cas~ 14:

m=temo4~0xOOOOOROO;
break:

m=temo4&0x0000l000i
breaKi

m=temp4~0x00002000i

break:

m=temo4&0x00008000;
break:

case 16:
m=temo4~0x000100QO;
creak:

case 17:
m=temo4&0x000200QO;
tJr~aki

case 18:
m=temp4&0x000400QO;
oreaki

case 19:

case 20:

m=temo4~0xOOOROOOO:
t>reaki

m=temo4~0x00lOOOOO:

break;
case 21:

m=temo4~0x0020UOOO;
ore.:Jki

case 22:

cilse 23:

m=temo4~0xU04000QO;

break:

m=temo4&0x008000QO;
break:

case 24:
m=temo4&0x010000QO;
break;

case 25:

case 26:

case 2?:

m=temo4&0x02000000;
creak;

m=temp4~0x0400UOU0i
creak.;

m=temo4?.0xO~oooooo;

83

}

creak:
case 2o:

m=temo4~0x10000000;
break;

case 29:

cas<" 30:

case ~1:

d~fault:

)

m=temp4~0x20000000;

break:

m=t~mn4&0x40000000:
oreak;

m=temo4&0x80000000;
creak:

printf<~vasantOl:

break:

; f < m! =o l {
switch(y) {
cas~ 0:

case 1:

case 2:

cast' 3:

case 4:

case 5:

case 6:

case 7:

default:

)

)

temo2--:
if<temo2==0>

flaq(ttl.part.oitO=l:
break:

flag[ttJ.oart.bit1=1:
creak:

flaQ[ttJ.oart.bit2=1:
break:

flag(ttl.oart.bit3=1:
creak:

flag[tt].part.bit4=1:
break:

flaq(ttJ.oart.bitS=l:
break:

tlag[tt].part.oit6=1:
break:

flag(tt].oart.bit7=1:
break:

printf<~ramao>;

oreak;
pn++,temp3++,x++;
y=t emo3;

84

)

••O,dif•1.li
if<toc(iJ••'i')

or• a•;

it(locCil•••:•J
if<li~t••ll)

fortntf<l.st,'"~':a : .. ,,ddr•ssJ:

iddre~s••:

J i•woralengtn-l:
1• j j h the wordll'nqth in bytes •t

.. nite(jj >• UJ C

torintf <outfi le,"~a .. ,fli~Cj j]. 1LU;

lf < ll st••OJ
forintt<lst," ~ .. ",.fllq(jj].illJi

dUIIIO(t t.-q(j ll.•ll, r tn•••CJ J).lot .. .t looint Cij l .outp) i

J j--·
for intt <out f; te,''":c", '0);

tor<,.•Oill<l2i•••J (.
tl•II'IC~ttl.•tt•Oa>JOi

•o f • tents <to c, l 0 0, f o) :
'llh1ll'(1trltn(luc:J••t)

tql' tS(loc,lO\J, tO) i

Sill 0 ();

Htlist••nJ
fCir i ntt < tst , •• ,, •• ,.toe);

i •U;
whHI'<lOC(11 !•':') (

; f < t i st••OJ
Stit () i

tclos•<outti le)i
tclose< foJi
if(list••OJ

it(<; >Slit:.~(\.Qc(i]!•': • J J

, .. :

i••:

tclose(lstl:

85

The following procedure checks tne space useo
in tne symool taole whose hash value is passed
as an aryument to this function. If the sapce
used is greater than 29 then an error messaoe is
flasned indicatin9 an overflow and a statistics
of tne space useo in all tne tables is orinted
on tne screen.

Proce~ures callea: 1. print_err(num)

int~g~rs us~d : count, num.

string variaoles used : None.

Cl'lk_ovfw(num)
int num;

{

}

int count:

fieldtab(j).tao_count++:
count=tielatab(jJ.tao_count:
if<count > 29H.

}

print_err(num>:
exit(l);

'****************~*****«***********~*******"**********#******'

'* *' I* This nrocedure orints the comolete statistics of *'
I* usa9e of tne tables along with tne error message *I '* inaicating which particular symbol table overflowed*/

'* *' I* Procedures called None *I
'* .,
I* Integer variables used: charctr.cnt,xy,sym. *I

'* *' '* character variable : character *I

'* '**********~*****~********************~*********************'

orint_err<cnarctr>
int charctr;

{

char character=Ox41:
int sym=Q,cnt=4l,xy:

86

charact~r = charact~r + charctr:
printfl"error : you nav~ used more than 29 symool names begininq"l;
printfC" witn the character ;c /n",cnaracter);
printt(" St~tus of symool taole : /n"l;
if(list==Ol \

87

torinttllst."error : you have used more than 29 symbol names begining"l:
torintfllst."witn the character ;c /n",cnaracterl:

}

torintf(Lst," Status o~ symbol table :In");
}

while(sym(2?l {

j

printf("Numoer of symbol names beoinin~ with character">;
printf(";c = :a /n".character.tielotab[symJ.tab_countl:
itllist==Ol {

}

forintf(lst,"Numoer of symool names begining with character">:
fprintf(lst.":c = ;d /n",character.fieldtao(syml.tab_countl:
tclosP<Lstl;

sym++;
charact~r=sym:o.eo:

'***'
'* .,
/o This oroc~dure writes the character passed to it as O/ '* an argument into a file whose tile name and tile oointer *'
/o are also oassed as arguments to this function. O/

'* *' /O procedures called NonP. *I

'* *' /o integer variaoles used : None *I

'* .,
/#~*******************~~***'

dumo(c,fnam.spl

c n a r c, f n a"' L 1 S J ;
FILE *so:
{

}

so=fopen(fnam,''a••);
toutcCc.sol:
outc(1 Q,sp);
fclose(spl;

'* *' I* The following procedure oro~pts the us~r to specify *' '* tne filename and gets a string ~nich is supposed *'
I* to be a file name and stores it in the structure called *I
I* names. The function gets as many file names as is soecified*/
I* oy tne argu~ent ~assed to it. *I

gettnam(wlen)
int wlen:
{

int x=O;
whi le<x<=wl~n-1>

}

}

printf(" Specify name of output tile =a :",x+lli
scan t ("•; s", f l name (, J • lot l ;
x+•i

'**~****~****************~******~*****~****************************'
I* *I '* The following procedure returns zero it the character *I

passed to it gS an ar~ument is a memher ot the string
passed t.o it as dn araument, ~lse returns 1.

memot>r(c,array)
cnar C•*array;
{

}

int i=O.true=li
while(array[iJ!=' ')

if(array(iJ=='•'>
t rue=O:

if<true==O>
oreaki

}

return(truel;

The following procedure returns zt>ro if all the membt>rs
of tne string passed to it as an aroument happen to be
Ot>tween u and 9, else returns 1.

is_number(arrayl
char t.tarray;
{

int true=O,~=O;
whi le(array(k.) !=' ') {

if((array[K] ('O'lll(array[k]
true=li

o<;l'))

*I

*' *I

88

}

if(true==l>
oreaki

}

r~turn(true);

'* #/
/# This procPour~ reffioves all tne space cnaracters at *'
I* the oe~ininq of the string toe which is a global variable*/
/'If. and whicn contains the text Line in the source file *I '* whicn contains tnP microproaram to be assem~led. *I
I* *I
'***'

skip()
{

}

char arrdy[2:;.6];
1nt i=O•J=\l:
whi leCLoc(iJ==• ')

i++:
whileClac(iJ!=' 1) {

array(J J=loc (i J;
j++,i*l"+;

orray(j]=' ';
i=J=O;
while(array[jJ!=' ') {

}

loc[iJ=array(j];
i++,j•+i

loc[iJ=• •;

'**'

This Proc~dure returns zero if the string pass~d to
it as an aroument contains any of the res~rved symbols
viz.'=', •:•, •,•, •:•; ~lse returns 1.

#/
'If./ .,.,
*' *I

'**~*****~***************************************~~***************'

chk_rsvd_symCarrayl
char *array;
{

int truP=l,i:O;
char valray[SJ;
valray[OJ=•: •;
valray[lJ=', ';
valray[2J=•:•;
valray[3]=•=•;

89

~hile(i<4l {
true=me~oer(valrayCiJ,arrayl;

if(true==O>
oreak;

return(truel;

'~*******~*~*****~****~~******~*******~******~#~$****~******~*/
I* *I

Th1s orocedure orints an ~rror m~ssage statinq
thdt tne cnaracter oassed to it as an ar~ument
is missing from the strino passed to it as an
ar~ument and tnen exits the prooram.

*'
*'
*I

*' *'
leavrHc,arrayl
char c,tt.array;
{

if<List==O>
forintf(lst,"~rror: •=c• op~rator missing in =so,c,array);

printf("~rror •=c• operator missing in =so,c,arrayl;
exit();

}

'***I

'* *' '* '* '* '*

This procedure orints an ~rror message followed oy
a comolete statistics of the usage ot the taole
1n tne list tile called metasm.lst,

*' *' *' *' !***'

stat()
{

}

int yy:O,addrcnt=O;
char cnaracter=Ox41;

while (yy < 26> {

}

forintf(lst,"numoer of symools starting ~ith character">;
forintf(lst," =c = =dO,cnaracter,fieldtab(yy].tao_countJ;
character++;
addrcnt=addrcnt+ fieldtao[yy].tab_count:
yy++i

fprintf(lst,"total numoPr of symools useo :: rl 0 , add r c n t I ;

90

BIBLIOGRAPHY

[1] Samir S Husson (1970). Microprogrammed principles and
practices, IBM Systems Research Institute, New York:
Prentice Hall, Inc.

[2] John J Donovan (1972). Systems Programming, New York:
McGraw Hill.

[3] Robert M Graham (1975). Principles of systems
programming, John Willey and Sons, Inc.

[4] Brian W Kernighan and Dennis M Ritchie (1978). The C
programming language, Englewood Cliffs, NJ: Prentice
Hall.

[5] Borland Turbo C reference manual (1987).
Borland Corporation, CA.

VITA

Sharadchandra R. Murthy

Candidate for the degree of

Master of Science

Thesis: DESIGN OF A META-ASSEMBLER

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Mysore, India, December 27,
1962, the son of T.G.R.Murthy and Chaya Murthy.

Education: Received Bachelor of
Electronics from Bangalore
December, 1984; completed
Master of Science degree
University in July, 1988.

Engineering in
University, India in
requirements for the
at Oklahoma state

Professional Experience: Customer Support
Engineer, PSI Data Systems, India, January,
1985 to June, 1986; Research Assistant, Depart
ment of Entomology, Oklahoma State University,
October 1986, to May, 1987; Teaching Assistant,
Department of Electrical and Computer Engineer
ing, Oklahoma State University, August, 1987 to
May, 1988.

