By
URS THOMAS MOEKER "
Bachelor of Science
in Mechanical Engineering
Oklahoma State University
Stillwater, Oklahoma
1985

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the Requirements for the Degree of MASTER OF SCIENCE May, 1988

Thesi.

$$
1988
$$

$$
M 693 x
$$

$$
\operatorname{cop} 2
$$

Thesis Approved:

An interactive computer aided analysis program is developed to assist in the rating of large diameter, special configuration, case hardened, four point contact ball bearings. The rating equations are developed from the results of two models. The finite element method is used for one model. The second model will consist of equations that are developed assuming the bearing race remain rigid when loaded. With dimensional parameters from several bearings, moment, radial, and thrust loads will be applied to both models. As needed, relationships between the two models will be obtained for the rating equations.

I would like to express my gratitude to the individuals who assisted me in my thesis and during course work at Oklahoma State University. I am very grateful to my major advisor, Mr. Thomas A. Cook, for his help, guidance and support. I would also like to thank the other committee members, Dr. Ing T. Hong, Dr. James K. Good, and Dr. Peter M. Moretti, for their help and advisement during the course of this work.

I would like to extend my thanks and gratitude to Gear Products, Inc. for funding this project, and providing bearing drawings and information used in this study. A special thanks are due to Debra Garrett for her expert typing skills.

I would like to express my thanks to my parents and family for their constant love and support.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Objectives 6
Literature Survey 7
Organization 8
II. RATING CRITERIA 9
Fatigue Spalling 9
Static Capacity 10
Surface Failure 12
Core Crushing 12
Dynamic Capacity 18
III. DISCUSSION OF MODELS 20
Rigid Model 24
Moment 24
Radial 30
Thrust 33
Finite Element Model 35
Inner Race and Supporting Structure 36
Inner Race Bolts 41
Ball-Race Interface 43
Outer Race 46
Loading 52
IV. MODEL RESULTS 56
Moment 56
Radial 67
Thrust 78
V. BEARING RATING 89
Rating Algorithm. 89
Example Rating. 91
Comparison With Established Ratings 92
Rating Limitations. 95
Chapter Page
VI. CONCLUSIONS AND RECOMMENDATIONS 96
Conclusions 96
Recommendations 96
REFERENCES 98
APPENDICES 99
APPENDIX A - RIGID MODEL: MOMENT LOAD PROGRAM LISTING 100
APPENDIX B - RIGID MODEL: RADIAL LOAD PROGRAM LISTING. 108
APPENDIX C - RIGID MODEL: THRUST LOAD PROGRAM LISTING 118
APPENDIX D - FINITE ELEMENT MODEL: MOMENT LOAD INPUT COMMANDS 125
APPENDIX E - FINITE ELEMENT MODEL: RADIAL LOAD INPUT
COMMANDS 133
APPENDIX F - FINITE ELEMENT MODEL: THRUST LOAD INPUT COMMANDS 141APPENDIX G - BEARING 非 $1-6$ FINITE ELEMENT AND RIGIDMODEL RACE FORCES FOR MOMENT, RADIAL,AND THRUST LOADS. 149
APPENDIX H - RATING PROGRAM LISTING. 156
Table Page
I．（A）Bearing Parameters and Dimensional Constants Corresponding to Figure 7 22
（B）Bearing Parameters and Dimensional Constants Corresponding to Figure 7 23
II．Rigid Model Slopes，Finite Element Model Slopes，and Slope Differences for Race Force vs．Moment Load．．．． 65
III．Rigid Model Slopes，Finite Element Model Slopes，and Slope Differences for Race Force vs．Radial Load． 76
IV．Rigid Model Slopes，Finite Element Model Slopes，Slope Differences，and Race Force Percent Differences for Race Force vs．Thrust Load 87
V．Established and Calculated Moment Ratings for Bearing 非1－6． 94
VI．Bearing 非 1 Finite Element and Rigid Model Race Forces for Moment，Radial and Thrust Loads 150
VII．Bearing \＃2 Finite Element and Rigid Model Race Forces for Moment，Radial and Thrust Loads 151
VIII．Bearing \＃3 Finite Element and Rigid Model Race Forces for Moment，Radial and Thrust Loads 152
IX．Bearing \＃4 Finite Element and Rigid Model Race Forces for Moment，Radial and Thrust Loads 153
X．Bearing $⿰ ⿰ 三 丨 ⿰ 丨 三 5$ Finite Element and Rigid Model Race Forces for Moment，Radial and Thrust Loads 154
XI．Bearing \＃6 Finite Element and Rigid Model Race Forces for Moment，Radial and Thrust Loads 155

LIST OF FIGURES

Figure Page

1. Four-Point Contact Raceway Cross Section 2
2. Theoretical Load Distribution under Combined Moment and Thrust Loading 3
3. Polar Plot of Theoretical Load Distribution 4
4. Contact Angle in Four Point Contact Raceway 5
5. Hardness Traverse of Bearing Raceway 13
6. Normal Stresses Occurring on an Element on the Z-Axis Below the Contact Surface 15
7. Typical Bearing Cross Section and Dimensional Constants Corresponding to Table I 21
8. Partial Top View of Ball Locations in a Bearing. 25
9. Bearing Cross Section Showing Race Forces due to Moment Loading 26
10. Bearing Cross Section Showing Race Force Moment Arms 28
11. Bearing Cross Section Showing Race Forces due to Radial Loading. 31
12. Bearing Cross Section Showing Race Forces due to Thrust Loading. 34
13. Side View of Finite Element Inner Race and Ring Model 37
14. Top View of Finite Element Inner Race and Ring Model 38
15. Isometric View of Finite Element Inner Race and Ring Model. 39
16. Cross Section of Finite Element Inner Race and Ring Model. 40
17. Locations of Interface Elements in a Finite Element Inner Race and Ring Model Cross Section. 42
Figure
Page
18. Location of Spar Elements in a Finite Element Inner Race and Ring Model Cross Section 44
19. Force-Deflection Curve Generated From Equation (26). 45
20. Locations of Force-Deflection Elements in a Finite Element Inner Race and Ring Model Cross Section. 47
21. Locations of Spring Elements in a Finite Element Inner Race and Ring Model Cross Section 48
22. Isometric View of Finite Element Outer Race Model. 49
23. Location of Spar Elements in a Finite Element Outer Race Model Cross Section 50
24. Location of Applied Force in a Finite Element Outer Race Model Cross Section 51
25. Moment Load Simulation on the Finite Element Inner Race and Ring Model 53
26. Radial Load Simulation on the Finite Element Inner Race and Ring Model 54
27. Thrust Load Simulation on the Finite Element Inner Race and Ring Model 55
28. Polar Plot of Moment Load Distribution from Finite Element and Rigid Model Results 57
29. Finite Element and Rigid Model Plot of Race Force vs. Moment Load for Bearing \#1. 58
30. Finite Element and Rigid Model Plot of Race Force vs. Moment Load for Bearing \#2 59
31. Finite Element and Rigid Model Plot of Race Force vs. Moment Load for Bearing \#3. 60
32. Finite Element and Rigid Model Plot of Race Force vs. Moment Load for Bearing \#4. 61
33. Finite Element and Rigid Model Plot of Race Force vs. Moment Load for Bearing \#5. 62
34. Finite Element and Rigid Model Plot of Race Force vs. Moment Load for Bearing \#6. 63
Figure Page
35. Plot of Moment Finite Element Model Slopes vs. Number of Balls Times Ball Path Diameter and Curve Generated from Equation (43). 66
36. Polar Plot of Radial Load Distribution from Finite Element and Rigid Model Results 68
37. Finite Element and Rigid Model Plot of Race Force vs. Radial Load for Bearing \#1 69
38. Finite Element and Rigid Model Plot of Race Force vs. Radial Load for Bearing \#2 70
39. Finite Element and Rigid Model Plot of Race Force vs. Radial Load for Bearing \#3 71
40. Finite Element and Rigid Model Plot of Race Force vs. Radial Load for Bearing \#4 72
41. Finite Element and Rigid Model Plot of Race Force vs. Radial Load for Bearing \#5 73
42. Finite Element and Rigid Model Plot of Race Force vs. Radial Load for Bearing \#6 74
43. Plot of Radial Finite Element Model Slopes vs. Number of Balls Times Ball Path Diameter and Curve Generated from Equation (44) 77
44. Polar Plot of Thrust Load Distribution from Finite Element and Rigid Model Results 79
45. Finite Element and Rigid Model Plot of Race Force vs. Thrust Load for Bearing \#1 81
46. Finite Element and Rigid Model Plot of Race Force vs. Thrust Load for Bearing 非2 82
47. Finite Element and Rigid Model Plot of Race Force vs. Thrust Load for Bearing \#3 83
48. Finite Element and Rigid Model Plot of Race Force vs. Thrust Load for Bearing \#4 84
49. Finite Element and Rigid Model Plot of Race Force vs. Thrust Load for Bearing \#5 85
50. Finite Element and Rigid Model Plot of Race Force vs. Thrust Load for Bearing \#6 86
51. Sample Output of the Rating Program. 93

NOMENCLATURE

A	bolt cross sectional area
a	semimajor axis of ellipse of contact
BF	Brinell factor
b	semiminor axis of ellipse of contact
c	conformity
D	ball diameter
DC	diametral clearance
d_{m}	ball path diameter
E	modulus of elasticity
F	normal force
F_{c}	basic load rating
F_{D}	dynamic race force
F_{i}	race force at θ_{i}
$\Sigma \mathrm{F}_{\mathrm{p}}$	bolt preload force sum
F_{S}	static race force
f_{p}	bolt preload force
f_{1}	rigid model race force for $D C=0$
f_{2}	rigid model race force for $D C>0$
$\Sigma \mathrm{K}_{\mathrm{B}}$	bolt stiffness sum
$\Sigma \mathrm{K}_{\mathrm{I}}$	interface stiffness sum
k_{B}	bolt stiffness
k_{c}	clearance adjustment factor
k_{I}	interface element stiffness

${ }^{\text {k }}$ S	spring constant
L	fatigue life
1	bolt length
M	moment load
M ${ }_{\text {D }}$	dynamic moment load
M_{S}	static moment load
N	number of balls
$\mathrm{N}_{\text {B }}$	number of bolts
$\mathrm{N}_{\text {I }}$	number of interface elements
PR	ball path radius
R	radial load
R_{D}	dynamic radial load
R_{i}	race force moment arm at θ_{i}
R_{S}	static radial load
r	raceway minor radius
r^{\prime}	raceway major radius
r_{b}	ball radius
S'	von Mises stress
S_{F}	finite element model slope
$S_{\text {FM }}$	finite element model slope relating race force and moment load
$S_{\text {FR }}$	finite element model slope relating race force and radial load
$S_{\text {R }}$	rigid model slope
S_{x}	x -axis normal stress
S_{y}	y-axis normal stress
S_{z}	z-axis normal stress
S_{1}	maximum normal stress
S_{2}	middle normal stress

S_{3}	minimum normal stress
T	thrust load
T_{D}	dynamic thrust load
T_{S}	static thrust load
X_{B}	number of balls x ball path diameter
z	depth into raceway
α	contact angle
Δ	difference between spar element length and zero strain length
δ	permanent deformation
δ_{i}	race deformation at θ_{i}
δ_{0}	maximum race deformation
θ_{i}	location of ball i
θ_{ℓ}	load zone
ν	Poisson's ratio

CHAPTER I

INTRODUCTION

Large diameter bearings carry heavy rotating loads in applications as diverse as mobile cranes and offshore drilling rigs. Most large diameter bearings are of the four-point contact type as shown in the cross sectional view illustrated in Figure 1, where the balls contact the inner and outer raceways at four points and can accommodate combinations of moment, radial, and thrust loads, which are the rule in large bearing applications. From Pritts and Myers (1976) and Pritts (1973), Figure 2 illustrates the classical, theoretical load distribution under combined moment and thrust loading. Radial force is relatively insignificant in most applications. The front portion of the bearing carries the heaviest loading in a compressive direction, while the rear portion of the bearing transmits a lesser tensile force. Plotted in polar coordinates, this load distribution appears as a figure eight as shown in Figure 3. Advantages of four-point contact ball bearings include low cost, light weight and compact design. The contact angle, α, is formed by a line through the point of contact with the raceway and the ball center and the major plane of the bearing as illustrated in Figure 4. Larger contact angles increase a bearing's thrust capacity and decrease its radial capacity. For high thrust and/or moment loads, bearings are usually designed with a 60- to 70-degree contact angle.

Figure 1. Four-Point Contact Raceway Cross Section

Figure 2. Theoretical Load Distribution under Combined Moment and Thrust Loading

Figure 3. Polar Plot of Theoretical Load

Figure 4. Contact Angle in Four Point Contact Raceway

Several key features distinguish these bearings from their smaller high-speed counterparts. First, large diameter bearings have significantly higher values of conformity, which is the ratio of raceway minor diameter to ball diameter. Second, large diameter bearings usually are supplied with integral gearing on either the inner or the outer race. Third, the raceways are case hardened whereas they are through-hardened in small bearings. The case hardening is done by local heating through electrical induction. Finally, the procedure for determining operating loads and corresponding capacity ratings for large diameter bearings is not as straightforward as the procedure for small bearings. In the past, large bearings were generally overdesigned. The conservative design approach helped to offset some of the uncertainties involved in predicting the performance of large diameter bearings. A more reliable and less conservative rating method is needed in order to reduce cost and weight while, at the same time, improving bearing performance.

Objective

The objective of this study is to develop an interactive computeraided analysis program to assist in the rating of large diameter, special configuration, case hardened, four point contact ball bearings. The program will be developed for use on any personal computer with an MS-DOS or PC-DOS operating system. Inputs for the program are bearing geometry, number and size of balls, and race material properties. Output will consist of static and dynamic capacity rating for moment, radial, and thrust applications, life of bearing due to static load, table of von Mises stress vs depth into raceway, and
required depth of hardened case.

Literature Survey

A review of the available literature uncovered a large amount of material available under the general subject of bearings. Concentrating on large diameter rotation bearings drastically reduced the available material. There is a broad variety of topics including; history of large diameter bearing development, manufacturing methods, optimizing mounting structures, mounting methods, fastener forces, bearing capacity and life, subsurface stresses and failure modes. Only a limited portion of this information is pertinent to this investigation.

Pritt and Jones (1967) discuss the use of large diameter bearings, with special reference to application in power cranes and shovels, gun turrets, aerial basket devices, and utility derricks. Also discussed are the features of various style bearings and guideposts for selecting bearings and for designing suitable bearing mountings. Sague and Rumbarger (1977) present the identification and illustration of core crushing in large diameter, special configuration, case hardened ball and roller bearings. Case depth and core hardness are described and a design criteria is presented to avoid core crushing failure. Pritts (1973) discusses how mounting structures, bearings, and fastners should be considered as an interdependent system to determine design requirements and applications limitations. Also, different bearing types and methods for calculating their capacity are presented. A test procedure is outlined which is used to gain additional knowledge of optimum swing bearing system design. Sague (1978) presents guidelines on how to recognize core crushing failures and their causes. Also, a
technique that determines safe operating loads based on case depth and core hardness is described. Pritts and Myers (1976) discuss a practical guide for evaluating large bearings, machine structures and fasteners with prototype testing. The AFBMA Standard (1978) presents load ratings and fatigue life calculations for ball bearings in order to estimate the suitability of a particular bearing for a given application. Several reference texts were useful to this investigation including; Harris (1966), Shigley and Mitchell (1983), Roark and Young (1975), and Boresi, et. al. (1978). These texts provide equations for calculating raceway forces, deformations, and stresses, and information on material parameters.

Organization

The rating criteria, based on the failure modes obtained from the literature survey, are discussed in Chapter II. The two bearing models that are used to describe the relationship between the race forces and the applied moment, radial and thrust loads that create them, are described in Chapter III. Chapter IV presents the results obtained from the two models and describes how the equations that represent the relationships between the race force and the applied moment, radial and thrust loads for all the bearings are determined. Chapter V describes how the interactive rating program is developed using the rating criteria from Chapter II and equations from Chapter IV. Also included in this chapter is an example of program input and output, comparison of ratings with established standards, and limitations of the program. Conclusions and recommendations for improvement are presented in Chapter VI.

RATING CRITERIA

In order to properly rate the bearings, a set of rating criteria must be established. From the literature survey it was determined that there are four failure modes that compete to cause failure of a large diameter rotation bearing. From AFBMA (1978), Sague (1978), Sague and Rumbarger (1977), Pritts and Myers (1976), Pritts (1973), and Pritts and Jones (1967) the failure modes are; 1) fatigue spalling, 2) static capacity, 3) surface failure, and 4) core crushing. The load that a bearing can withstand for an extended period of time is also of interest. Therefore, from AFBMA (1978) and Pritts and Jones (1967) the dynamic capacity of a bearing will also be included as a rating criteria. The rating criteria, how they are determined and how they relate to the performance of a bearing will be discussed in the following sections.

Fatigue Spalling

This failure mode is created by cyclic stressing of the rolling elements and racepaths causing the metal to eventually fatigue. The fatigue failure usually occurs in the raceway since the ball axis of rotation tends to change with each orbit. Furthermore, since stress is usually higher at the inner raceway contact than at the outer raceway contact, failure generally occurs on the inner raceway first. Fatigue spalling can be surface or subsurface initiated and can result from soft
spots in the racepath, grinding burns, or other manufacturing irregularities. Service life of large bearings is not ended when the first evidence of pitting occurs. Progression of pitting failure into actual service or operational failure may require many months. Fatigue life, L, is defined as the total operating life until the first microscopic evidence of pitting is seen and is expressed in millions of revolutions. Harris (1966) and AFBMA (1978) express fatigue life of a ball-raceway point contact, subjected to a normal force, F, as

$$
\begin{equation*}
L=\left(\frac{F_{c}}{F}\right)^{3} \tag{1}
\end{equation*}
$$

in which

$$
\begin{equation*}
F_{c}=7450\left(\frac{2 f}{2 f-1}\right)^{0.41} \frac{(1-\gamma)^{1.39}}{(1+\gamma)^{1 / 3}}\left(\frac{\gamma}{\cos \alpha}\right)^{0.3} \mathrm{D}^{1.8} \mathrm{~N}^{-1 / 3} \tag{2}
\end{equation*}
$$

where: $\quad F_{c}=$ basic load rating

$$
f=r / D
$$

$\gamma=D \cos \alpha / d_{m}$
D = ball diameter
$\mathrm{N}=$ number of balls
$r=$ raceway minor radius
$d_{m}=$ ball path diameter

Static Capacity

The static failure mode is characterized by Brinell marks. These marks occur when an overload is applied to a bearing resulting in plastic indentions of the rolling elements and raceways. AFBMA (1978) defines the limit for static loading of bearings as the point at which
permanent deformation equals 0.0001 of the rolling element diameter. However, because large diameter bearings are not subjected to the high rotational velocities or the continuous operation common to small bearings, this amount of deformation is not a critical problem. Pritt \& Jones (1967) and Pritt \& Myers (1976) suggest a deformation limit of 0.0003 of the rolling element diameter as a more realistic value. From Harris (1966) the following equation is obtained for describing permanent deformation, δ, measured normal to the surface, in ballraceway point contact.

$$
\begin{equation*}
\delta=2.5 \times 10^{-11} \frac{\mathrm{~F}_{\mathrm{S}}^{2}}{\mathrm{D}^{3}}\left[1+\frac{\gamma}{(1-\gamma)}\right]\left(1-\frac{1}{2 \mathrm{f}}\right) \tag{3}
\end{equation*}
$$

where F_{S} is the limiting static raceway force. As previously defined, for large diameter bearings subjected to slow and/or intermittent operation the permanent deformation limit is

$$
\begin{equation*}
\delta=B F(D) \tag{4}
\end{equation*}
$$

where, $B F$ is the Brinell factor. The Brinell factor represents the deformation limit that is multiplied by the ball diameter to obtain the amount of permanent deformation. Substituting equation (4) into equation (3) and solving for the limiting static raceway force gives

$$
\begin{equation*}
F_{S}=\sqrt{\frac{4.0 \times 10^{10} \mathrm{BF} \mathrm{D}}{} \frac{D^{4}}{\left(1+\frac{\gamma}{(1-\gamma)}\right]\left(1-\frac{1}{2 f}\right)}} \tag{5}
\end{equation*}
$$

Surface Failure

This mode of failure is caused by deterioration of the surface due to inadequate lubrication, excessive sliding effects, and contamination by foreign materials. Adequate seal and proper lubrication are required to prevent this mode of failure. Fretting corrosion of non-rotating bearings is also a form of surface failure. Since this failure mode is preventable with proper maintenance it will not be considered in this investigation.

Core Crushing

As previously described, large diameter bearings have a case-core boundary which is defined as the depth at which the hardness in the raceway reduces to Rockwell C50. An example of this decrease in hardness as a function of depth into the raceway is shown in Figure 5. Application of concentrated ball loading upon a hardened case will produce significant subsurface stresses which extend down into the core material. If these subsurface stresses exceed the yield strength of the core material, then deterioration of the core will result. This deterioration will reduce the support for the hardened case material. Two types of failure may then occur. The core can be crushed by physically pressing the hardened case material into the core or, the lack of core support may cause the case to crack and disintegrate. In order to prevent this type of failure it is necessary to extend the case to the depth where the subsurface stresses produced from the maximum loaded ball will not exceed the yield strength of the core material. The distortion-energy theory is used to calculate the von Mises stress for increasing depth into the bearing raceway. The stress values are

Figure 5. Hardness Traverse of Bearing Raceway
compared to the yield strength of the core material to determine the minimum case depth. From Shigley and Mitchell (1983) the equation to determine the von Mises stress, S^{\prime}, for a triaxial stress state is

$$
\begin{equation*}
S^{\prime}=\sqrt{\frac{\left(S_{1}-S_{2}\right)^{2}+\left(S_{2}-S_{3}\right)^{2}+\left(S_{3}-S_{1}\right)^{2}}{2}} \tag{6}
\end{equation*}
$$

The three stresses S_{1}, S_{2} and S_{3}, that represent the normal stresses S_{x}, S_{y} and S_{z}, are arranged so that $S_{1}>S_{2}>S_{3}$. The following equations, obtained from Boresi, et. al. (1978), express the normal stresses at a point on the z-axis. The point is at the distance z from the origin, which lies in the surface of contact of the ball and raceway as shown in Figure 6. The stresses act on orthogonal planes perpendicular to the $\mathrm{x}-, \mathrm{y}-$, and z -axis respectively. The normal stresses are

$$
\begin{align*}
& S_{x}=\left[m\left(\Omega_{x}+v \Omega_{x}^{\prime}\right)\right] \frac{b}{p} \\
& S_{y}=\left[m\left(\Omega_{y}+v \Omega_{y}^{\prime}\right)\right] \frac{b}{p} \tag{7}\\
& S_{z}=-\left[\frac{m}{2}\left(\frac{1}{n}-n\right)\right] \frac{b}{p}
\end{align*}
$$

in which

$$
\begin{align*}
& m=\frac{2 k}{k^{\prime 2} G\left(k^{\prime}\right)} \\
& n=\sqrt{\frac{k^{2}+k^{2}(z / b)^{2}}{1+k^{2}(z / b)^{2}}} \tag{8a}\\
& p=\frac{1}{A+B}\left(\frac{1-v_{1}^{2}}{E_{1}}+\frac{1-v_{2}^{2}}{E_{2}}\right)
\end{align*}
$$

Figure 6. Normal Stresses Occuring on an Element on the Z -Axis Below the Contact Surface

$$
\begin{align*}
& b=\sqrt[3]{\frac{3 k G\left(k^{\prime}\right)}{2 \pi}(p F)}=k a \\
& \Omega_{x}=-\frac{1-n}{z}+k \frac{z}{b}\left[F\left(\phi, k^{\prime}\right)-H\left(\phi, k^{\prime}\right)\right] \\
& \Omega_{\mathrm{x}}^{\prime}=-\frac{\mathrm{n}}{\mathrm{k}^{2}}+1+\mathrm{k} \frac{\mathrm{z}}{\mathrm{~b}}\left[\left(\frac{1}{\mathrm{k}^{2}}\right) \mathrm{H}\left(\phi, \mathrm{k}^{\prime}\right)-\mathrm{F}\left(\phi, \mathrm{k}^{\prime}\right)\right] \\
& \Omega_{y}=\frac{1}{2 n}+\frac{1}{2}-\frac{n}{k^{2}}+k \frac{z}{b}\left[\left(\frac{1}{k^{2}}\right) H\left(\phi, k^{\prime}\right)-F\left(\phi, k^{\prime}\right)\right] \\
& \Omega_{y}^{\prime}=-1+n+k \frac{z}{b}\left[F\left(\phi, k^{\prime}\right)-H\left(\phi, k^{\prime}\right)\right] \\
& \phi=\tan ^{-1}\left(\frac{\mathrm{~b}}{\mathrm{kz}}\right) \\
& A=\frac{1}{2}\left(\frac{1}{r_{b}}-\frac{1}{r^{\prime}}\right) \\
& B=\frac{1}{2}\left(\frac{1}{r_{b}}-\frac{1}{r}\right) \\
& k^{\prime}=1-k^{2} \tag{9}\\
& k=\sqrt{\frac{G\left(k^{\prime}\right)}{\frac{B}{A}\left[K\left(k^{\prime}\right)-G\left(k^{\prime}\right)\right]+K\left(k^{\prime}\right)}} \tag{10}
\end{align*}
$$

and
a = semimajor axis of ellipse of contact
$b=$ semiminor axis of ellipse of contact
$z=$ depth into raceway
$r_{b}=$ ball radius
$r=$ raceway minor radius
$r^{\prime}=$ raceway major radius
$\mathrm{E}=$ modulus of elasticity

$$
v=\text { Poisson's ratio }
$$

$F\left(\phi, k^{\prime}\right)$ and $H\left(\phi, k^{\prime}\right)$ are incomplete elliptic integrals of the first and second kind and are expressed as,

$$
\begin{gathered}
F\left(\phi, k^{\prime}\right)=\int_{0}^{\phi} \frac{d \theta}{\sqrt{1-k^{\prime 2} \sin ^{2} \theta}} \\
H\left(\phi, k^{\prime}\right)=\int_{0}^{\phi} \sqrt{1-\mathrm{k}^{\prime 2} \sin ^{2} \theta \quad \mathrm{~d} \theta}
\end{gathered}
$$

From Sokolnikoff (1939) these equations are evaluated with the use of infinite series as shown below

$$
\begin{align*}
\mathrm{F}\left(\phi, \mathrm{k}^{\prime}\right)= & \phi+\frac{1}{2} \mathrm{k}^{\prime 2} \int_{0}^{\phi} \sin ^{2} \theta \mathrm{~d} \theta+\frac{1 \cdot 3}{2 \cdot 4} \mathrm{k}^{\prime 4} \int_{0}^{\phi} \sin ^{4} \theta \mathrm{~d} \theta+\ldots \\
& \ldots+\frac{1 \cdot 3 \cdot 5 \ldots(2 \mathrm{n}-1)}{2 \cdot 4 \cdot 6 \ldots 2 \mathrm{n}} \mathrm{k}^{\prime 2 n} \int_{0}^{\phi} \sin ^{2 n} \theta \mathrm{~d} \theta \tag{11}\\
H\left(\phi, \mathrm{k}^{\prime}\right)= & \phi-\frac{1}{2} \mathrm{k}^{\prime 2} \int_{0}^{\phi} \sin ^{2} \theta \mathrm{~d} \theta-\frac{1}{2 \cdot 4} \mathrm{k}^{\prime 4} \int_{0}^{\phi} \sin ^{4} \theta \mathrm{~d} \theta-\ldots \\
& \ldots-\frac{1 \cdot 3 \cdot 5 \ldots(2 n-3)}{2 \cdot 4 \cdot 6 \ldots 2 n} \mathrm{k}^{\prime 2 n} \int_{0}^{\phi} \sin ^{2 n} \theta \mathrm{~d} \theta
\end{align*}
$$

$K\left(k^{\prime}\right)$ and $E\left(k^{\prime}\right)$ are complete elliptic integrals of the first and second kind and are expressed as

$$
K\left(k^{\prime}\right)=\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1-k^{\prime 2} \sin ^{2} \theta}}
$$

$$
G\left(k^{\prime}\right)=\int_{0}^{\pi / 2} \sqrt{1-k^{\prime 2} \sin ^{2} \theta d \theta}
$$

From Sokolnikoff (1939) these equations are evaluated with the use of infinite series as shown below

$$
\begin{align*}
K\left(k^{\prime}\right)= & \frac{\pi}{2}\left[1+\left(\frac{1}{2}\right)^{2} k^{\prime 2}+\left(\frac{1 \cdot 3}{2 \cdot 4}\right)^{2} k^{\prime 4}+\ldots+\right. \\
& \left(\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} k^{\prime 2 n} \\
G\left(k^{\prime}\right)= & \frac{\pi}{2}\left[1-\left(\frac{1}{2}\right)^{2} k^{\prime 2}-\left(\frac{1 \cdot 3}{2 \cdot 4}\right)^{2} k^{\prime 2} \frac{k^{\prime}}{2^{3}}\right. \tag{12}\\
& \left(\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} \frac{k^{\prime}}{(2 n-1)}
\end{align*}
$$

These equations are solved by method of iteration. The variable k, is given an initial value and k^{\prime} is calculated using equation (9). The complete and incomplete elliptic integrals of the first and second kind can then be found using equations (11) and (12). With the given bearing parameters and normal force, equations (8a) and (8b) are solved. Equation (10) is used to determine a new value of k and the process is repeated until the solution converges. Then the normal stresses are calculated from equations (7) and equation (6) is used to determine the von Mises stress.

Dynamic Capacity

Dynamic capacity is a measure of the loading which a bearing can withstand for a stated number of revolutions, resulting in a stated probability of breakdown of the raceway or ball surfaces from rolling fatigue (Pritts and Jones, 1967). Dynamic capacity is usually expressed as the loading which a bearing can withstand to provide a 90% chance of
survival for 1,000,000 revolutions. The fatigue life equation presented earlier is used to find the limiting dynamic race force. Solving equation (1) for the normal force gives.

$$
\begin{equation*}
F=\frac{F_{\mathrm{c}}}{\mathrm{~L}^{1 / 3}} \tag{13}
\end{equation*}
$$

The limiting dynamic race force, F_{D}, is obtained by substituting a value of one million revolutions for the life in equation (13).

$$
\begin{equation*}
F_{D}=F_{C} \tag{14}
\end{equation*}
$$

DISCUSSION OF MODELS

Abstract

Detailed drawings for several different sizes of bearings were obtained from a manufacturer of large diameter bearings. The ball diameters for these bearings range from 1.0 to 1.75 inches with ball path diameters ranging from 16.562 to 37.0 inches. All of the bearings have a contact angle of 60 degrees and a conformity of 1.08. A typical bearing cross section is shown in Figure 7. The dimensional constants correspond to the specific bearing values listed in Table I. Using the rating criteria described in the previous section, the race force corresponding to the maximum loaded ball can be found. A relationship between this force and the moment, radial, and thrust load that create it needs to be determined for all the bearings. In order to obtain the moment, radial, and thrust loads that create the race force, at the maximum loaded ball, two models are used. In an actual bearing application the raceways bend and flex when loaded. Therefore, one model will use the finite element method which is an ideal way to realistically and accurately model a flexible bearing. However, because of the complexity of this method, computer computation time is lengthy, which makes it impractical for repeated use. This model will be referred to as the finite element model in future discussion.

For a second model, in which we assume that the races remain rigid when loaded, a set of equations are developed to describe the race forces due to applied moment, radial and thrust loads. Because of their

Figure 7. Typical Bearing Cross Section and Dimensional Constants Corresponding to Table I (A) \& (B)

TABLE I (A)
BEARING PARAMETERS AND DIMENSIONAL CONSTANTS CORRESPONDING TO FIGURE 7

Bearing Number	$\begin{gathered} D_{1} \\ (\mathrm{in}) \end{gathered}$	$\begin{gathered} \mathrm{D}_{2} \\ (\mathrm{in}) \end{gathered}$	$\begin{gathered} D_{3} \\ (\mathrm{in}) \end{gathered}$	$\begin{gathered} D_{4} \\ (\mathrm{in}) \end{gathered}$	$\begin{gathered} \mathrm{D}_{5} \\ (\mathrm{in}) \end{gathered}$	$\begin{gathered} \mathrm{D}_{6} \\ (\mathrm{in}) \end{gathered}$	$\begin{gathered} D_{7} \\ (\mathrm{in}) \end{gathered}$	$\begin{gathered} D_{8} \\ (\mathrm{in}) \end{gathered}$	$\begin{gathered} \mathrm{D}_{9} \\ (\mathrm{in}) \end{gathered}$	$\begin{gathered} \mathrm{D}_{10} \\ \text { (in) } \end{gathered}$
1	20.06	16.625	16.47	13.75	12.56	19.16	2.66	1.25	1.25	2.66
2	22.5	17.562	17.38	14.62	13.0	20.37	3.13	1.375	1.375	3.13
3	28.0	22.125	21.875	18.62	17.0	25.38	3.18	1.4375	1.4375	3.18
4	26.0	22.11	21.91	19.5	18.312	24.5	2.13	1.0	1.0	2.13
5	43.43	37.05	36.95	32.75	30.5	40.75	3.62	1.812	1.562	3.62
6	39.0	35.34	35.28	33.46	31.43	37.17	3.38	1.125	1.312	3.56

TABLE I (B)
bearing parameters and dimensional constants corresponding to figure 7

Bearing Number	Number of Balls	Ball Diameter (in)	Ball Path Diameter (in)	Inner Number of Bolts	Race Bolt Diameter (in)	Outer Number of Bolts	Race Bolt Diameter (in)
1	34	1.5	16.652	17	0.75	16	0.75
2	36	1.5	17.5	18	0.78125	18	0.78125
3	38	1.75	22.0	19	0.875	18	0.75
4	65	1.0	22.06	13	0.625	18	0.625
5	64	1.75	37.0	32	1.0625	30	1.0625
6	72	1.5	35.312	36	0.75	30	0.75

simplicity, these equations do not require the lengthy computer computation time required by the finite element model and are practical for repeated usage. In further discussion this model will be referred to as the rigid model. As needed, a set of relationships between the two models will be determined so as to combine the speed of the rigid model with the accuracy of the finite element model. These relationships will describe the moment, radial, and thrust loads that create the race force determined from the rating criteria.

Rigid Model

Assuming a rigid body displacement of the inner race with respect to the fixed outer race, due to a moment, radial, or thrust load, equations for the determination of the maximum force on the race, due to ball contact, are developed. Figure 8 illustrates a partial top view of the ball locations in the bearing. The position of each ball is designated by θ_{i}. The ball path radius, $P R$, is the distance from the center of the bearing to the center of a ball.

Moment

Applying a moment load, M, to the inner race, the forces, F_{i}, that are produced from the contact of the balls and the races act along the contact angle, α, as shown in the bearing cross section illustrated in Figure 9. The sum of these forces acting on a race at each ball location multiplied by their respective moment arms, R_{i}, is equal to the applied moment and is expressed as

$$
\begin{equation*}
M=\sum_{i=1}^{N} F_{i} R_{i} \tag{15}
\end{equation*}
$$

Figure 8. Partial Top View of Ball Locations in a Bearing

Figure 9. Bearing Cross Section Showing Race Forces due to Moment Loading
where N is the number of balls in the bearing. From Figure 10 we see that

$$
\begin{equation*}
R_{i}=P R \sin \alpha \cos \theta_{i} \tag{16}
\end{equation*}
$$

Substituting equation (16) into equation (15) and rearranging yield

$$
\begin{equation*}
M=P R \sin \alpha \sum_{i=1}^{N} F_{i} \cos \theta_{i} \tag{17}
\end{equation*}
$$

An expression for the force, F_{i}, on the race at θ_{i} needs to be determined. From Roark and Young (1975) the following equation, based on Hertzian contact theory is obtained,

$$
\begin{equation*}
\delta_{i}=1.04 \sqrt[3]{\frac{\mathrm{F}_{i}^{2} C_{E}}{K_{D}^{2}}} \tag{18}
\end{equation*}
$$

where, δ_{i} is the deformation of the race at θ_{i} due to F_{i}, and

$$
\begin{gather*}
C_{E}=\frac{1-v_{1}^{2}}{E_{1}}+\frac{1-v_{2}^{2}}{E_{2}} \tag{19}\\
K_{D}=\frac{2 r_{b} r}{r-r_{b}} \tag{20}
\end{gather*}
$$

Defining conformity as

$$
\begin{equation*}
c=\frac{r}{r_{b}} \tag{21}
\end{equation*}
$$

Solving equation (21) for r and substituting into equation (20) yields

$$
\begin{equation*}
K_{D}=\frac{2 c r_{b}}{c-1} \tag{22}
\end{equation*}
$$

Figure 10. Bearing Cross Section Showing Race Force Moment Arms

The values for Poisson's ratio and modulus of elasticity for steel are obtained from Shigley and Mitchell (1983)

$$
\begin{gathered}
E_{1}=E_{2}=30 \mathrm{Mpsi} \\
v_{1}=v_{2}=0.3
\end{gathered}
$$

Substituting these values into equation (19) and combining with equation (22) and equation (18) yields

$$
\begin{equation*}
\delta_{i}=1.274 \times 10^{-5} \sqrt[3]{\frac{F_{i}^{2}(c-1)}{c r_{b}}} \tag{23}
\end{equation*}
$$

Solving equation (23) for F_{i} gives

$$
\begin{equation*}
F_{i}=2.198 \times 10^{7} \sqrt{\frac{\delta_{i}^{3} \mathrm{cr}_{b}}{(c-1)}} \tag{24}
\end{equation*}
$$

Letting

$$
\begin{equation*}
c_{1}=2.198 \times 10^{7} \sqrt{\frac{c r_{b}}{(c-1)}} \tag{25}
\end{equation*}
$$

we have,

$$
\begin{equation*}
F_{i}=c_{1} \delta_{i}^{3 / 2} \tag{26}
\end{equation*}
$$

Assuming a rigid body displacement of the inner race with respect to the fixed outer race, the deformation of the race along the contact angle, at each ball position is

$$
\begin{equation*}
\delta_{i}=\delta_{o} \cos \theta_{i} \tag{27}
\end{equation*}
$$

where, δ_{0} is the maximum race deformation due to the maximum loaded ball. Combining equation (26) and equation (27) gives

$$
\begin{equation*}
F_{i}=c_{1} \delta_{0}^{3 / 2} \cos ^{3 / 2} \theta_{i} \tag{28}
\end{equation*}
$$

Substituting equation (28) into equation (17) yields

$$
\begin{equation*}
M=P R c_{1} \delta_{0}^{3 / 2} \sin \alpha \sum_{i=1}^{N} \cos 5 / 2 \theta_{i} \tag{29}
\end{equation*}
$$

Solving equation (29) for δ_{0} yields

Using equation (30) the maximum deformation of the race can be determined, then using equation (26) the maximum force on a race due to an applied moment load is calculated. An interactive computer program is developed utilizing these equations. The inputs for the program are; moment load, ball path diameter, conformity, contact angle, ball diameter, and number of balls. The outputs include the location of each ball and the race force and deformation at each of these locations. The program listing is given in Appendix A.

Radial

Applying a radial load, R , to the inner race, the forces produced from the contact of the balls and the races act along the contact angle as shown in the bearing cross section illustrated in Figure 11. Unlike the moment load application, the number of balls that carry the load is a function of the diametral clearance, DC. The equation for determining the load zone, θ_{ℓ}, which is obtained from Harris (1966), is

Figure 11. Bearing Cross Section Showing Race Forces due to Radial Loading

$$
\begin{equation*}
\theta_{\ell}=\cos ^{-1}\left[\frac{D C}{2 \delta_{0}}\right] \tag{31}
\end{equation*}
$$

The sum of the forces acting on a race at all the ball locations within the load zone is equivalent to the radial load and is expressed as

$$
\begin{equation*}
R=\sum_{i=1}^{N} 2 F_{i} \cos \alpha \cos \theta_{i} \tag{32}
\end{equation*}
$$

where N is the number of balls in the load zone. Substituting equation (28) into equation (32) and rearranging gives

$$
\begin{equation*}
R=2 c_{1} \delta_{0}^{3 / 2} \cos \alpha \sum_{i=1}^{N} \cos ^{5 / 2} \theta_{i} \tag{33}
\end{equation*}
$$

Solving equation (33) for δ_{o} yields

$$
\begin{equation*}
\delta_{0}=\left[\frac{R}{2 c_{1} \cos \alpha \sum_{i=1}^{N} \cos ^{5 / 2} \theta_{i}}\right]^{2 / 3} \tag{34}
\end{equation*}
$$

Using equation (34) the maximum deformation of the race can be determined, then using equation (26) the maximum force on a race due to an applied radial load is calculated. An interactive computer program is developed utilizing these equations. The inputs for the program are; radial load, ball path diameter, diametral clearance, conformity, contact angle, ball diameter, and number of balls. The outputs include the location of each ball and the race force and deformation at each of these locations. The program listing is given in Appendix B.

Thrust

Applying a thrust load, T , to the inner race, the forces produced from the contact of the balls and the races act along the contact angles as shown in the bearing cross section illustrated in Figure 12. The sum of these forces acting at all the ball locations is equivalent to the thrust force and is expressed as

$$
\begin{equation*}
T=\sum_{i=1}^{N} F_{i} \sin \alpha \tag{35}
\end{equation*}
$$

Where N is the number of balls in the bearing. All of the individual forces are equal and equation (35) reduces to

$$
\begin{equation*}
T=N F_{i} \sin \alpha \tag{36}
\end{equation*}
$$

Solving equation (36) for F_{i} yields

$$
\begin{equation*}
F_{i}=\frac{T}{N \sin \alpha} \tag{37}
\end{equation*}
$$

which is the maximum force on a race due to an applied thrust load. The deformation of the race due to this load can be found by solving equation (26) for the deformation

$$
\begin{equation*}
\delta_{i}=\left[\frac{F_{i}}{c_{1}}\right]^{2 / 3} \tag{38}
\end{equation*}
$$

An interactive computer program is developed utilizing these equations. The inputs for the program are; thrust load, contact angle, conformity, ball diameter, and number of balls. The outputs include the ball spacing and the race force and deformation for a ball. The program

Figure 12. Bearing Cross Section Showing Race Forces due to Thrust Loading
listing is given in Appendix C.

Finite Element Model

ANSYS, a general purpose, proprietary finite element computer program, was used to model the bearing. From DeSalvo and Swanson (1985), ANSYS employs the matrix displacement method of structural analysis. The deformations of a structure are represented by the motions of a predefined number of node points. These motions are referred to as degrees of freedom. In any ANSYS linear static problem, there may be up to six degrees of freedom per node. The degree of freedom set at a given node depends upon the type of elements attached to that node. Elements are simple building blocks providing the response of pieces of the structure formulated as beams, plates, shells, solids, or springs. Most elements require the definition of material properties such as modulus of elasticity, Poisson's ratio, and density. Some elements also require real constants for geometric properties. From the element information and node definitions, ANSYS will indirectly form a set of simultaneous equations. After the displacements are obtained from the simultaneous equations, by a variation of Gaussian elimination, the stresses and reaction forces can be computed in the structure. For this analysis an academic version of ANSYS Revision 4.2 B was used. The academic version has a wave front limit of 200. The wave front is determined by the size and/or the complexity of the model.

Inner Race and Supporting Structure

The inner race of the bearing is modeled since this is where the greater forces occur. In an actual bearing application the inner race is bolted to a relatively rigid plate or structure. In order to model the inner race as realistically as possible, a "rigid" plate in the form of a flat ring, and the connecting bolts are included in the model. The external moment, radial, and thrust forces are applied to this ring. The race and the rigid ring are modeled using a three-dimensional isoparametric solid element. The element is defined by eight nodal points, having three degrees of freedom at each node, and orthotropic material properties. The modulus of elasticity, E, for the steel race, obtained from Shigley and Mitchell (1983), is 30 Mpsi . A modulus of elasticity of 3000 Mpsi is used for the rigid ring. Side, top, and isometric views of the race and ring models are shown in Figures 13, 14, and 15 , respectively. A cross section of the race and the ring is shown in Figure 16. The race dimensions for each bearing are obtained from Table 1, and the ring dimensions are generated from this information. In order to realistically translate the applied forces from the ring to the race, three dimensional interface elements are used between the race and the ring. The interface element is defined by two nodal points, having three degrees of freedom at each node, an interface stiffness, and an interface coefficient of friction. The elements represent two surfaces which may maintain or break physical contact and may slide relative to each other. They are capable of supporting only compression in the direction normal to the surfaces and Coulomb friction in the tangential direction. The interface stiffness is given a value of 10000 $l b /$ in and the interface friction coefficient, which is obtained from

Figure 13. Side View of Finite Element Inner Race and Ring Model

Figure 14. Top View of Finite Element Inner Race and Ring Model

Figure 15. Isometric View of Finite Element Inner Race and Ring Model

Figure 16. Cross Section of Finite Element Inner Race and Ring Model

Shigley and Mischke (1986), is 0.45. The interface elements are positioned between the race and the ring as shown in the cross sectional view illustrated in Figure 17.

Inner Race Bolts

The bolts connecting the race and the ring are SAE grade 8 and are torqued to 70% of yield strength. They are modeled using a three dimensional, tension-only, spar element. The element is defined by two nodal points, having three degrees of freedom at each node, the cross sectional area, an initial strain, and isotropic material properties. The cross sectional area, A, is calculated from the bolt diameter. For steel bolts a modulus of elasticity of 30 Mpsi is used. The initial strain for the element is given by Δ / l, where Δ is the difference between the element length, l, as defined by the two node locations, and the zero strain length. For this application Δ is expressed as

$$
\begin{equation*}
\Delta=\Sigma \mathrm{F}_{\mathrm{p}}\left(\frac{1}{\Sigma K_{\mathrm{B}}}+\frac{1}{\Sigma K_{\mathrm{I}}}\right) \tag{39}
\end{equation*}
$$

where

$$
\begin{aligned}
\Sigma F_{p} & =N_{B} f_{p} \\
\Sigma K_{B} & =N_{B} k_{B} \\
\Sigma K_{I} & =N_{I} k_{I} \\
N_{B} & =\text { number of bolts } \\
N_{I} & =\text { number of interface elements } \\
f_{p} & =\text { bolt preload force } \\
k_{B} & =\text { bolt stiffness } \\
k_{I} & =\text { interface stiffness }
\end{aligned}
$$

Figure 17. Locations of Interface Elements in a Finite Element Inner Race and Ring Model Cross Section

To calculate the preload force, f_{p}, the bolt yield strength and cross sectional area are needed. From Shigley and Mitchell (1983) the yield strength of SAE grade 8 bolts is 130 kpsi . Recalling that the bolts are torqued to 70% of their yield strength, the equation for the bolt preload force is

$$
\begin{equation*}
f_{p}=(0.7)(130 \mathrm{kpsi})(\mathrm{A}) \tag{40}
\end{equation*}
$$

From Shigley and Mitchell (1983) an equation for calculating bolt stiffness is obtained,

$$
\begin{equation*}
k_{B}=\frac{A E}{\ell} \tag{41}
\end{equation*}
$$

The interface stiffness as noted previously, is $10000 \mathrm{lb} / \mathrm{in}$. The bolt holes in the bearing are drilled and tapped to the middle of the race. Therefore, one node of the spar element is attached to the top of the ring and the other to the middle of the bearing race as shown in the cross section illustrated in Figure 18. The number and spacing of the bolts is given in the bearing specifications.

Ball-Race Interface

The ball contacts the inner race at two points, one at each contact angle. A nonlinear force-deflection element is used to represent these ball-race contact points. This element is a unidirectional element with a nonlinear generalized force-deflection capability. The element is defined by two node points, with one degree of freedom at each node, and a generalized force- deflection curve. The points on this curve represent force versus relative translation. The curve is generated using equation (26), which was described in the previous section. An

Figure 18. Location of Spar Elements in a Finite Element Inner Race and Ring Model Cross Section

Figure 19. Force-Deflection Curve Generated From Equation (26)
example of the resulting curve is shown in Figure 19. The element's two nodal points are placed coincident at each of the two contact points and are shown as short lines for clarity in the cross section illustrated in Figure 20.

Outer Race

The ball also contacts the outer race at two points, one at each contact angle. A spring element is used to simulate the effect of the outer race. The element is defined by two nodal points, with one degree of freedom at each node, and a spring constant. As shown in Figure 21, one node of the element is attached to the nonlinear force- deflection element, representing the ball-inner race contact point, and the other node is fixed. To determine the spring constant, k_{S}, the outer race was modeled separately using the three dimensional isoparametric solid elements described previously. An isometric view of the outer race model is shown in Figure 22. In an actual application the outer race is bolted to a rigid structure. Therefore, the bolts need to be included in the model. Using the three dimensional, tension only, spar elements described previously, one end of the element is connected to the race and the other end is fixed in space as shown in the cross sectional view illustrated in Figure 23. A force, F, is applied to one of the ballrace contact points, at an angle corresponding to the contact angle, as shown in a cross sectional view illustrated in Figure 24. Once the displacement, y, of that node, due to the normal force, is determined a spring constant is calculated using the following equation

$$
\begin{equation*}
\mathrm{k}_{\mathrm{s}}=\frac{\mathrm{F}}{\mathrm{y}} \tag{42}
\end{equation*}
$$

Figure 20. Locations of Force-Deflection Elements in a Finite Element Inner Race and Ring Model Cross Section

Spring Elements

Figure 21. Locations of Spring Elements in a Finite Element Inner Race and Ring Model Cross Section

Figure 22. Isometric View of Finite Element Outer Race Model

Figure 23. Location of Spar Elements in a Finite Element Outer Race Model Cross Section

Figure 24. Location of Applied Force in a Finite Element Outer Race Model Cross Section

Loading

To simulate an applied moment load on the bearing, two equal and opposite force are applied to the rigid ring as shown in Figure 25. An example listing of the input commands for the moment load application is given in Appendix D. Radial loads are transmitted from the structure to the bearing through the connecting bolts. The elements used to represent the bolts are tension only, spar elements and cannot transmit the required force. Figure 26 shows how the radial load is simulated. On the top of the bearing, equal radial forces are applied at each of the bolt locations simulating the way in which the bolts would transmit the forces. As described in the rigid model, the number of balls that carry the applied radial load is a function of the diametral clearance. Gap elements, which can simulate this clearance, are available in ANSYS. Unfortunately, when the extra elements are added to the model, the wave front limit of 200 is exceeded and the program will not run. To compensate for this, a clearance adjustment factor will be determined using the rigid model. The adjustment factor is described in the results section. An example listing of the input commands for the radial load is given in Appendix E. Figure 27 illustrates how a simulated thrust load is applied to the bearing. Equal forces are applied to all of the nodes on the top of the ring. Appendix F contains a listing of the input commands for the thrust application.

Figure 25. Moment Load Simulation on the Finite Element Inner Race and Ring Model

Figure 26. Radial Load Simulation on the Finite Element Inner Race and Ring Model

Figure 27. Thrust Load Simulation on the Finite Element Inner Race and Ring Model

CHAPTER IV

MODEL RESULTS

Moment

Using both the finite element and the rigid models, six different moment loads are applied to each of the bearings listed in Table I. An example of the load distribution obtained from both models is shown in the polar plot illustrated in Figure 28. A force into the page at 90 degrees and a force out of the page at 270 degrees represent the moment load. Recalling that the finite element model had two ball-raceway contact points, the " + " indicates forces at the top of the raceway, and the "*" indicates forces at the bottom of the raceway. The rigid model forces are represented by the " 0 ". As expected the forces a largest at 90 and 270 degrees and decrease as the moment axis of symmetry is approached. The same bearing parameters and applied moment load were used for both models. The moment loads and the resulting maximum race forces from both models are listed in Tables VI-XI given in Appendix G, for bearing numbers 1-6, respectively. For each of the bearings the race forces are plotted against the moment loads and are shown in Figures 29-34. As expected, when the rigid model data points, for each bearing, are connected the result is a straight line that intersects the origin. The finite element model data points, for each bearing, do not intersect the origin. Connecting the data points, for each bearing, results in an "elbow" that develops into a straight line. The "elbow"

Figure 28. Polar Plot of Moment Load Distribution from Finite Element and Rigid Model Results

Figure 29. Finite Element and Rigid Model Plot of Race Force vs. Moment Load for Bearing 非1

Figure 30. Finite Element and Rigid Model Plot of Race Force vs. Moment Load for Bearing \#2

Figure 31. Finite Element and Rigid Model Plot of Race Force vs. Moment Load for Bearing \#3

Figure 32. Finite Element and Rigid Mode1 Plot of Race Force vs. Moment Load for Bearing \#4

Figure 33. Finite Element and Rigid Model Plot of Race Force vs. Moment Load for Bearing \#5

Figure 34. Finite Element and Rigid Model Plot of Race Force vs. Moment Load for Bearing \#6
is caused by the preload of the bolts. The straight line develops as the increasing moment load overcomes the bolt preload. The straight line section is the area of interest and therefore the "elbow" section is neglected. For each bearing, if the straight line section is extended toward the origin, they all intersect the origin. Since all the curves for both models intersect the origin, the slopes can be directly compared. For each of the bearings, shown in Figures 29-34, the values of the slopes of the two lines, generated from the finite element and the rigid model data, are calculated. Also, for each bearing the value of the slope for the finite element model, S_{F}, was subtracted from the value of the slope for the rigid model, S_{R}, resulting in the slope difference, $S_{R}-S_{F}$. All three sets of values are listed in Table II. In order to determine a relationship between the two models for all of the bearings, these three sets of values where plotted against various parameters including; ball path diameter, number of balls, and number of balls multiplied by the ball path diameter. The best correlation was achieved when all the values of the finite element model slopes were plotted against the number of balls multiplied by the ball path diameter, X_{B}, as shown in Figure 35. From Chapra and Canale (1985), fitting a simple power function, by method of linear regression, to this set of data points results in the following equation.

$$
\begin{equation*}
S_{F M}=18.5516 X_{B}^{-0.8361} \tag{43}
\end{equation*}
$$

Where, $S_{F M}$ is the finite element model slope of the line relating the race force and the moment load. The curve generated from this equation is shown along with the data points in Figure 35. Using equation (43) the finite element model slope of the line, relating the

TABLE II

RIGID MODEL SLOPES, FINITE ELEMENT MODEL SLOPES AND SLOPE DIFFERENCES FOR RACE FORCE VS. MOMENT LOAD

Bearing Number	$\begin{gathered} \mathrm{S}_{\mathrm{R}} \\ \left(\frac{\mathrm{Lb}}{\mathrm{Ft}-\mathrm{Lb}}\right) \end{gathered}$	$\begin{aligned} & S_{F} \\ & \left(\frac{L b}{F t-L b}\right) \end{aligned}$	$\begin{aligned} & S_{R}-S_{F} \\ & \left(\frac{L b}{F t-L b}\right) \end{aligned}$
1	0.1075	0.0955	0.0120
2	0.0961	0.0855	0.0106
3	0.0724	0.0670	0.0054
4	0.0422	0.0385	0.0037
5	0.0256	0.0295	-0.0039
6	0.0238	0.0267	-0.0029

Figure 35. Plot of Moment Finite Element Model Slopes vs. Number of Balls Times Ball Path Diameter and Curve Generated from Equation (43)
race force and moment load for a bearing with a known ball path diameter and number of balls, can be found. Combining the value of the finite element model slope with the limiting race force determined from the rating criteria, the maximum moment load for a specific bearing can be calculated. Therefore, for the moment load application, a correlation between the two models was not found and the relationship is base soley in the finite element model. Chapter V will explain how these equations are utilized in the rating program.

Radial

For each bearing listed in Table I, four different radial loads were applied to both the finite element and rigid models. Figure 36 shows a polar plot of the load distribution obtained from both models. A force, positive to the right of the page, represents the radial load. As explained previously, $"+"$ indicates forces at the top of the raceway, "*" indicates forces at the bottom of the raceway for the finite element model, and "O" indicates the rigid model forces. Since both models represent a zero diametral clearance, the race forces are limited to a 180 degree load zone. For both models the same bearing parameters and applied radial load were used. The radial loads and the resulting maximum race forces from both models are listed in Tables VI-XI given in Appendix G, for bearing numbers 1-6, respectively. Figures 37-42 show the race forces plotted against the radial loads for each of the bearings. The data points from the rigid model, when connected, form a straight line that intersects the origin. The data points from the finite element model are similar to those of the moment load application. The data points begin above the origin creating an

Figure 36. Polar Plot of Radial Load Distribution from Finite Element and Rigid Model Results

Figure 37. Finite Element and Rigid Model Plot of Race Force vs. Radial Load for Bearing \#1

Figure 38．Finite Element and Rigid Model Plot of Race Force vs．Radial Load for Bearing $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 2

Figure 39. Finite Element and Rigid Model Plot of Race Force vs. Radial Load for Bearing \#3

Figure 40. Finite Element and Rigid Model Plot of Race Force vs. Radial Load for Bearing \#4

Figure 41. Finite Element and Rigid Model Plot of Race Force vs. Radial Load for Bearing \#5

Figure 42. Finite Element and Rigid Model Plot of Race Force vs. Radial Load for Bearing \#6
"elbow", due to the preload of the bolts, that develops into a straight line as the increasing radial load overcomes the bolt preload. When the straight line sections are extended they all intersect the origin. This will allow all the slopes to be directly compared. Table III shows the values of the slopes of the finite element model, S_{F}, the rigid model, S_{R}, and the slope difference, $S_{R}-S_{F}$, for each bearing. These values were plotted against various parameters including; number of balls, ball path diameter, and number of balls multiplied by the ball path diameter. As shown in Figure 43, the best correlation was obtained when the slope values from the finite element model were plotted against the number of balls multiplied by the ball path diameter, X_{B}. From Chapra and Canale (1985), the following equation was obtained by fitting a saturation-growth-rate function to these data points.

$$
\begin{equation*}
S_{F R}=\frac{\left(0.0464 X_{B}\right)}{\left(-368.9887+X_{B}\right)} \tag{44}
\end{equation*}
$$

Where, $S_{F R}$ is the finite element model slope of the line relating the race force and the radial load. The curve generated from this equation is shown in Figure 43 along with the data points. Using equation (44) the value of the finite element slope of the line, relating the race force and radial load for a bearing with a known ball path diameter and number of balls, can be found. As previously mentioned, the finite element model is not able to incorporate the diametral clearance. The finite element model simulates a zero diametral clearance. Using the rigid model, a clearance adjustment factor, k_{c}, will be determined utilizing the same bearing parameters used in the finite element model. Two race force values will be

TABLE III
RIGID MODEL SLOPES, FINITE ELEMENT MODEL SLOPES AND SLOPE DIFFERENCES FOR RACE FORCE VS. RADIAL LOAD

Bearing Number	S_{R}	S_{F}	$\mathrm{S}_{\mathrm{R}}-\mathrm{S}_{\mathrm{F}}$
1	0.1285	0.1181	0.0104
2	0.1214	0.1119	0.0095
3	0.1150	0.1024	0.0126
4	0.0672	0.0577	0.0095
5	0.0683	0.0574	0.0109
6	0.0607	0.0524	0.0083

Figure 43. Plot of Radial Finite Element Model Slopes vs. Number of Balls Times Ball Path Diameter and Curve Generated from Equation (44)
calculated using the rigid model. The first race force, f_{1}, will be calculated using a zero diametral clearance. The second race force, f_{2}, will be calculated using the input diametral clearance. The clearance adjustment factor is calculated as shown below.

$$
\begin{equation*}
k_{c}=f_{1} / f_{2} \tag{45}
\end{equation*}
$$

The race force determined from the rating criteria is multiplied by the clearance adjustment factor, calculated from equation (45), to correct the finite element model. With the adjusted race force and the value of the finite element model slope, calculated from equation (44), the maximum radial load can be found for a specific bearing. An explanation of how these equations are used in the rating program will be presented in Chapter V.

Thrust

Four different thrust loads were applied to each of the bearings listed in Table I, using both the finite element and rigid models. An example of the load distribution obtained from both models is shown in the polar plot illustrated in Figure 44. The thrust load is represented by forces into the page. For the finite element model, "+" indicate forces at the top of the raceway, and the rigid model forces are indicated by " 0 ". The forces, for each model, are equal at all the ball locations. The same applied thrust load and bearing parameters were used for both models. The maximum race forces from both models, and the thrust loads that created them, are listed in Tables VI-XI given in Appendix G, for bearing numbers 1-6, respectively. Figures 45-50 shows

Figure 44. Polar Plot of Thrust Load Distribution from Finite Element and Rigid Model Results
the plots of race force versus thrust load for each of the bearings. A relationship needs to be found between all the bearings. As with the moment and radial load applications, the connected rigid model data points create a straight line that intersects the origin. Also, the connected finite element model data points create an "elbow", due to the bolt preload, that begins above the origin and develops into a straight line as the applied thrust load increases. However, unlike the moment and radial load applications, when the straight line sections of the finite element model data points are extended they do not intersect the origin. Therefore, the values of the slopes of the lines generated by the two models cannot be directly compared. As can be seen in Figures 45-50, for each bearing the straight line section of the finite element model is nearly parallel with the rigid model line. For comparison the values of the slopes of the lines from the finite element model, S_{F}, and the rigid model, S_{R}, are calculated for each bearing and are shown along with the difference in slopes, $S_{R}-S_{F}$, in Table IV. The values of the slope difference indicate that the lines are parallel and therefore, the percent difference between the race forces from the two models can be used for comparison. Table IV also lists the percent difference of the race force between the finite element model and the rigid model for each bearing. In order to try to obtain a correlation between all the bearings these values were plotted against various parameters including; number of balls, ball path diameter, number of balls multiplied by ball path diameter, bearing circumference, bearing cross section moment of inertia, number of bolts, and bolt preload.

Figure 45. Finite Element and Rigid Model Plot of Race Force vs. Thrust Load for Bearing \#1

Figure 46. Finite Element and Rigid Model Plot of Race Force vs. Thrust Load for Bearing \#2

Figure 47. Finite Element and Rigid Mode1 Plot of Race Force vs. Thrust Load for Bearing \#3

Figure 48. Finite Element and Rigid Model Plot of Race Force vs. Thrust Load for Bearing \#4

Figure 49. Finite Element and Rigid Model Plot of Race Force vs. Thrust Load for Bearing \#5

Figure 50. Finite Element and Rigid Model Plot of Race Force vs. Thrust Load for Bearing \#6

TABLE IV
RIGID MODEL SLOPES, FINITE ELEMENT MODEL SLOPES, SLOPE DIFFERENCES, AND RACE FORCE PERCENT DIFFERENCES FOR RACE FORCE VS. THRUST LOAD

Bearing Number	S_{R}	S_{F}	$\mathrm{S}_{\mathrm{R}}-\mathrm{S}_{\mathrm{F}}$	Race Force \% Difference
1	0.0340	0.0347	-0.0007	2.88
2	0.0321	0.0321	0.0	2.01
3	0.0304	0.0304	0.0	
4	0.0178	0.0176	0.0002	2.35
5	0.0180	0.0175	0.0005	1.46
6	0.0160	0.0160	0.0	

Unfortunately, none of these produced a useful correlation. From Table IV it can be seen that the race force percent difference between the two models is fairly small, the worst being less that five percent. This indicates that the rigid model is fairly accurate and, with a minor adjustment of five percent, can be used in rating a bearing for an applied thrust load. From the equations developed for the rigid model, equation (36) can be modified for the five percent race force difference which results in the following equation.

$$
\begin{equation*}
T=N\left(0.95 F_{i}\right) \sin \alpha \tag{46}
\end{equation*}
$$

With the race force determined from the rating criteria and a bearing with a known contact angle and number of balls, the maximum thrust load can be obtained using equation (46). Chapter V will explain how this equation is utilized in the rating program.

CHAPTER V

BEARING RATING

Rating Algorithm

The objective of this study is to develop an interactive rating program for large diameter bearings. Given parameters for a certain bearing, we want to determine static and dynamic capacity ratings for moment, radial, and thrust applications; life of the bearing due to a static load; von Mises stress for increasing depth into the raceway; and required depth of the hardened case. The rating equations were developed from models that had a contact angle of sixty degrees and a conformity of 1.08 , therfore these values are fixed in the program and will not be included as input variables. The program will request the input of:
ball path diameter (inches)
ball diameter (inches)
number of balls
diametral clearance (inches)
Brinell factor
safety factor
raceway material yield strength (psi)

The program will also request the input of the bearing name so the
different bearings can be distinguished. The procedure for rating a bearing is as follows:

1. Calculate the limiting static race force - equation (5).
2. Calculate the limiting dynamic race force - equation (14).
3. Divide the limiting static and dynamic race forces by the safety factor.
4. Calculate the finite element model slope of the line relating race force and moment load - equation (43).
5. Calculate the static moment load.

$$
\begin{equation*}
M_{S}=\frac{F_{S}}{S_{F M}} \tag{47}
\end{equation*}
$$

6. Calculate the dynamic moment load.

$$
\begin{equation*}
M_{D}=\frac{F_{D}}{S_{F M}} \tag{48}
\end{equation*}
$$

7. Calculate the finite element model slope of the line relating race force and radial load - equation (44).
8. Calculate an initial static radial load.

$$
\begin{equation*}
R=\frac{F_{S}}{S_{F R}} \tag{49}
\end{equation*}
$$

9. Calculate the clearance adjustment factor - equation (45). The clearance adjustment factor is found using an iteration method. The rigid model radial program is used to calculate race forces, f_{1} and f_{2}, using the initial static radial load. The clearance
adjustment factor is calculated using equation (45). A new static radial load is calculated using the adjusted static race force and equation (48). The process is repeated until convergence is reached.
10. Calculate the static radial load.

$$
\begin{equation*}
R_{S}=\frac{F_{S}}{S_{F R}} \tag{50}
\end{equation*}
$$

11. Calculate the dynamic radial load.

$$
\begin{equation*}
R_{D}=\frac{F_{D}}{S_{F R}} \tag{51}
\end{equation*}
$$

12. Calculate the static thrust load - equation (46).
13. Calculate the dynamic thrust load - equation (46).
14. Calculate the fatigue life - equation (1).
15. Calculate the von Mises stress for increasing depth into the raceway based on the static race force - equations (6)-(12).
16. Determine the minimum case depth.

Appendix F contains a listing of the interactive rating program.

Example Rating

A sample bearing rating is obtained using the rating program and the following input variables;

Bearing Name - Sample
Ball Path Diameter - 16.5 inches
Ball Diameter - 1.5 inches

Number of Balls－ 34
Diametral Clearance－ 0.0001 inches
Material Yield Strength－ 130 kpsi
Brinell Factor－ 0.0001
Safety Factor－ 1.5

The output obtained from the rating program is shown in Figure 51．The von Mises（equivalent）stress values presented in the table require further explanation．The limiting static race force，which is based on a permanent deformation limit，is used to calculate these stresses．The calculated von Mises stresses are based on a linear elastic model．The calculated stress just below the surface may exceed the material yield limit in that region．In an actual situation the material will yield and the stresses will be lower．This will not affect the values at other points where the yielding is not exceeded such as those used for determining the minimum case depth．

Comparison With Established Standards

Established moment ratings were obtained for the six bearings listed in Table I and are shown in Table XI．These moment ratings are based on a Brinell factor of 0.0001 and a safety factor of 1.67 ． Corresponding moment ratings were made using the same Brinell and safety factors，the bearing data from Table I ，and the rating program．The calculated moment ratings are also shown in Table V．The calculated moment ratings compare quite well with the established standards．The largest difference，of nineteen percent，is seen in bearing $⿰ ⿰ 三 丨 ⿰ 丨 三 6$ with the calculated value being less conservative．
INPUT
Bearing Number - SAMPLE
Ball Path Diameter (in) $=16.500$
Ball Diameter (in) $=1.500$
Number of Balls $=\quad 34$
Diametral Clearance (in) $\quad=0.000100$
Material Yield Strength (kpsi) = 130
Brinell Factor $=0.000100$
Safety Factor $=1.50$
RATINGS
Static Moment Load (ft-1bs) $=115402$.
Dynamic Moment Load (ft-lbs) $=44572$.
Static Radial Load (lbs) $=79439$.
Dynamic Radial Load (lbs) $=30682$.
Static Thrust Load (lbs) $=301245$.
Dynamic Thrust Load (lbs) $=116351$.
Fatigue Life For Static Load (rev) $=194459$.
CASE-CORE CRUSHING DATA
Depth (in) von Mises Stress (psi)
$0.000 \quad 611623.7$
$0.020 \quad 638109.0$
$0.040 \quad 597068.2$
$0.060 \quad 515738.1$
$0.080 \quad 426918.1$
$0.100 \quad 347652.3$
$0.120 \quad 202 \% 25.0$
$0.140 \quad 231375.1$
$0.160 \quad 191194.3$
$0.180 \quad 159713.0$
$0.200 \quad 134869.3$
$0.220 \quad 115076.9$
$0.240 \quad 99133.9$
$0.260 \quad 86151.7$
$0.280 \quad 75477.2$
$0.300 \quad 66589.7$
$0.320 \quad 59167.7$
$0.340 \quad 52822.4$
$0.360 \quad 47581.7$
$0.380 \quad 42364.8$
$0.400 \quad 38710.4$
Suggested Minimum Case Depth (in) $=0.220$
Figure 51. Sample Output of the Rating Program

TABLE V
ESTABLISHED AND CALCULATED MOMENT RATINGS FOR BEARING \#1-6

Bearing Number	Moment Ratings (Ft - Lb)	
	Established	Calculated
1	93,300	104,200
2	101,500	114,600
3	188,500	197,900
4	104,000	102,400
5	533,000	476,600
6	301,000	372,100

Rating Limitations

The rating equations were developed using the dimensional constants for the the six bearings listed in Table I. Using the program for values outside of the range of these constants may produce inaccurate and unreliable results. The limiting variables include; ball path diameter (16.5-37.0 inches), ball diameter (1.0-1.75 inches), and number of balls multiplied by ball path diameter (560 - 2540 inches). The moment, radial, and thrust load ratings are calculated separately and should not be added to obtain a combined load rating. The six bearings listed in Table I all had evenly spaced bolt patterns. Bearings with unevenly spaced bolt patterns may have higher race forces and therefore should not be rated with this program.

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The program developed is a versatile and reliable method of rating large diameter bearings for moment, radial, and thrust loads. The Brinell and safety factor input variables gives the user the ability to control how conservative a bearing is rated. The program allows for a wide range of ball path diameters, and can rate all but the largest bearings. The accuracy of the program was verified by comparing moment ratings against established standards.

Recommendations

Although the results from the rating program are acceptable, the usefulness, range, and accuracy can be improved. The program rating equations were developed using a limited range and number of bearing parameters. Using more bearings with a wider range of bearing parameters to develop the rating equations would increase the usefulness and range of the program's application. The affect of the diametral clearance on the bearing could not be fully investigated because of the limitations in the finite element analysis program (ANSYS). The same limitations also prevented the accuracy of the model to be checked by using a finer meshed model. A more powerful finite element analysis program would allow the diametral clearance affect and the model
accuracy to be investigated.

REFERENCES

AFBMA Standards, Load Rating And Fatigue Life for Ball Bearings.

 Standard, No. 9, AFBMA, New York, November 1978.Boresi, A.P., Advanced Mechanics Of Materials. New York: John Wiley and Sons, 1978.

Chapra, S.C., Canale, R.P., Numerical Methods For Engineers. New York: McGraw-Hill, 1985.

DeSalvo, G.E., Swanson, J.A., ANSYS Engineering Analysis System User's Manual. Houston, PA: Swanson Analysis Systems, 1985.

Harris, T.A., Rolling Bearing Analysis. New York: John Wiley and Sons, 1966.

Pritts, B.A., Swing Bearing Systems for Cranes and Excavators. SAE Paper 730738, presented at the National Combined Farm Construction and Industrial Machinery and Fuels and Lubricants Meetings, Milwaukee, WI, September 10-13, 1973.

Pritts, B.A., Jones I.J., Applying Large Multiload Bearings to Rotating Structures. SAE Paper 670107, presented at the Automotive Engineering Congress, Detroit, MI, January 9-13, 1967.

Pritts, B.A., Myers, L.L., "New Guidelines for Evaluating Large Diameter Bearings." Machine Design, October 21, 1976.

Roark, R.J., Young, W.C., Formulas for Stress and Strain. New York: McGraw-Hill, 1975.

Sague, J.E., "The Special Way Big Bearings Can Fail." Machine Design, September 21, 1978.

Sague, J.E., Rumbarger, J.H., Design Criteria to Prevent Core Crushing Failure in Large Diameter, Case Hardened, Ball and Roller Bearings. ASME Paper 77-DE-39, presented at the Design Engineering Conference \& Show, Chicago, IL, May 9-12, 1977.

Shigley, J.E., Mischke, C.R., Standard Handbook of Machine Design. New York: McGraw-Hill, 1986.

Shigley, J.E., Mitchell, L.D., Mechanical Engineering Design. New York: McGraw-Hill, 1983.

Sokolnikoff, I.S., Advanced Calculus. New York: McGraw-Hill, 1939.

APPENDIXES

APPENDIX A

RIGID MODEL: MOMENT LOAD PROGRAM LISTING

```
PROGRAM MOMENT(INPUT,OUTPUT,DATA);
TYPE NUH=ARRAY[0..100]OF REAL;
VAR
        C, {CONFORMITY}
        CA,
    C1,
    D,
    DM,
    M,
    PD,
    PR,
    THETA:
        REAL;
    N:
        INTEGER;
    DI, {DEFORMATION OF BALL I (IN)}
    FI, {FORCE ON BALL I (LSS)}
    THI,
    THIR:
        NUM;
    DATA: {OUTPUT FILE}
        TEXT;
    8:
        B00LEAN;
```

PRDCEDURE YesNo(VAR Yes:GOOLEAN);

Returns TRUE for an input of YES, yes, Y, or y; returns FALSE for an input of NO, no, N, or n. If the user inputs anything else he is prowpted to aake a valid input.

GLOBAL VARIABLES: Q

VAR
String : PACKED ARRAY[1..3] OF CHAR;
Legal : 800LEAN;

EEGIN
REPEAT
Legal:=TRUE;
READLN(String);
If String='YES' THEN Yes: =TRUE
ELSE IF String='yes' THEN Yes:=TRUE

```
    ELSE IF String='Y ' THEN Yes:=TRUE
    ELSE IF String='y ' THEN Yes:=TRUE
    ELSE IF String='NO ' THEN Yes:=FALSE
    ELSE IF String='no' THEN Yes:=FALSE
    ELSE IF String='N ' THEN Yes:=FALSE
    ELSE IF String='n ' THEN Yes:=FALSE
    ELSE
        HEGIN
                HRITELN('************************************************');
                HRITELN('Response must be YES, yes, Y, y, NO, no, N, or n');
                URITELN('Please enter a valid respon5e ...');
```



```
                Legal:=FALSE;
        CND;
    UNTIL Legal;
END; {YESNO}
PROCEDURE CLEAR;
```



```
    clears the screen
    GLOBAL VARIABLES: NONE
```



```
VAR S: INTEGER;
HEGIN
    FOR 8:=1 TO 24 DO WRITELN;
END; {CLEAR}
FUNCTION EXPT(Y, X:REAL):REAL;
```



```
returns the result of yax
GLOBAL VARIABLES: NONE
```



```
VAR L:INTEGER;
```

VAR L:INTEGER;
BEGIN
IF X=0 THEN
EXPT:=1.0
ELSE
IF }Y=0\mathrm{ THEN
EXPT: =0.0
ELSE

```
```

 IF Y>O THEN
 EXPT:=EXP(X*LN(Y))
 ELSE
 IF ABS(X-ROUND(X))<1E-10 THEN
 BEGIN
 l:=TRUNC(X);
 IF ODD(Z) THEN
 EXPT:=-EXP(X*LN(-Y))
 ELSE
 EXPT:=EXP(X*LN(-Y))
 END
 END; {EXPT}
PROCEDURE DUTDATA;

```

```

 SETS UP THE OUTPUT FILE
 GLOBAL VARIABLES: DATA
    ```

```

VAR STATUS:INTEGER;
FILENAME:PACKED ARRAY[1..17] OF CHAR;
8EGIN
CLEAR;
REPEAT
WRITELN('ENTER THE NAME OF THE OUTPUT FILE - ');
READLN(FILENAME);
BIND(DATA,FILENAME,STATUS);
IF STATUS=1 THEN
HRITELN('FILE DOES NOT EXIST OR IS INACCESSIBLE, PLEASE TRY AGAIN');
WRITELN;
UNTIL STATUS=0;
REHRITE(DATA);
END; {OUTDATA}
PROCEDURE INUAR;

```

```

 INITIALIIE THE PROGRAM variagles
 GLOBAL VARIABLES: C,CA,D,DATA,M,N,PD
    ```

```

BEGIN
WRITELN; WRITELN(DATA);

```
```

WRITELN(DATA);
\#RITELN('ENTER THE MOMENT LDAD (FT-LB) - ');
READLN(M);
HRITELN;
WRITELN('MOMENT LOAD = ',M:8:3;' FT-LB');
HRITELN(DATA,'MOMENT LOAD = ',H:8:3,' FT-L8');
HRITELN;
WRITELN('ENTER THE BALL PATH DIAMETER (IN) - ');
READLN(PD);
HRITELN;
HRITELN('BALL PATH DIAMETER = ',PD:8:3,' IN');
HRITELN(DATA,'BALL PATH DIAMETER = ',PD:8:3,' IN');
WRITELN;
HRITELN('ENTER THE CONFORHITY - ');
READLN(C);
WRITELN;
WRITELN('CONFORMITY = ',0:8:5);
HRITELN(DATA,'CONFORMITY = ',C:8:5);
HRITELN;
WRITELN('ENTER THE CONTACT ANGLE (DEGREES) - ');
READLN(CA);
HRITELN;
HRITELN('CONTACT ANGLE = ',CA:8:4,' DEGREES');
HRITELN(DATA,'CONTACT ANGLE = ',CA:8:4,' DEGREES');
HRITELN;
WRITELN('ENTER THE BALL DIAMETER (IN) - ');
READLN(D);
WRITELN;
HRITELN('BALL DIAMETER = ',D:E:3,' IN');
MRITELN(DATA,'BALL DIAMETER = ',D:6:3,' IN');
HRITELN;
HRITELN('ENTER THE NUMBER OF BALLS - ');
READLN(N);
WRITELN;
WRITELN('NUMBER OF BALLS = ',N:3);
WRITELN(DATA,'NUMBER OF BALLS = ',N:3);
HRITELN;
END; {INUAR}

```

Procedure congtants;

\section*{}
calculate the constants

GLOBAL VARIABLES: \(C, C A, C 1, D, M, N, P D, P R, T H E T A\)

BEGIN
\(M:=M \times 12.0 ;\)
PR: \(=\mathrm{FD} / 2.0\);
\(C 1:=2.198 E 7 * 5 R R T((C * 0.5 * D) /(C-1))\);
```

 THETA:=380.0/N;
 CA:=CA*3.1415927/180.0;
 MRITELN('THE BALL SPACING IS ',THETA:8:4,' DEgREES');
 WRITELN(DATA,'THE GALL SPACING IS = ',THETA:3:4;' DEGREES');
 WRITELN;
 END; {CONSTANTS]

```
PROCEDURE MDFOR;

    CALCULATE THE MAXIMUM BALL DEFORMATION
    GLOBAL VARIABLES: CA,CI,DM,M,N,PR,THETA,THI,THIR

VAR SUM, EXPTHIR,MAX:REAL;
    K, I: INTEGER;
BEGIN
    SUM: \(=0.0\);
    \(\mathrm{K}:=0\);
    FOR I: = 1 TO N DO
    HEGIN
        THI[I]: =(THETA天K);
        THIR[I]:=THI[I]*3.1415927/180;
        EXPTHIR: =EXPT(ABS(COS(THIR[I])),2.5);
        SUM: =SUM + EXPTHIR;
        \(\mathrm{K}:=\mathrm{K}+1\);
    END;
    DM: \(=\operatorname{EXPT}(M /(C 1 * P R * S I N(C A) * S U M), 2 / 3) ; \quad\) \{EQUATION 30\(\}\)
END; [MDFOR]
PROCEDURE BALLDFOR;

    CALCULATE THE INDIVIDUAL BALL DEFORMATION
    GLOBAL VARIABLES: DI,DM,N,THIR

VAR I:INTEGER;
SEGIN
    FOR I: = 1 TO N DO
    HEGIN
        DI[I]:=DMAABS (COS(THIR[I])); \{EQUATION 27\}
        END;
END; \{BALLDFDR\}
```

PROCEDURE BALLFORCE;

```

```

 CALCULATE THE INDIVIDUAL BALL FORCES
 GLOBAL VARIABLES: C1,DI,FI,N
    ```

```

VAR I:INTEGER;
BEGIN
FOR I:= 1 TO N DO
FI[I]:=C1*EXPT(DI[I],1.5); {ERUATION 26}
END; {BALLFORCE}
FROCEDURE HRITEDATA;

```

```

 WRITE THE dATA tO THE SCREEN AND THE OUTPUT file
 GLOBAL VARIABLES: DI,FI,N,THI
    ```

```

VAR I:INTEGER;
8EGIN
CLEAR;
HRITELN;
WRITELN('BALL NUMBER POSITION (DEG) DEFORMATION (IN) FORCE (LBS)');
HRITELN;
FOR I:=1 TO N DO
WRITELN(I,' ',THI[I]:12:4,' ',DI[I]:15:6,' ',FI[I]:14:2);
WRITELN(DATA);
WRITELN(DATA,'BALL NUMBER POSITION (DEG) DEFORMATION (IN) FORCE (LBS)');
HRITELN(DATA);
FOR I:=1 TO N DO
WRITELN(DATA, I', ',THI[I]:14:4,' ',DI[I]:15:9,' ',FI[1]:14:2);
END; {WRITEDATA}

```

```

 BEgIN MAIN PROGRAM
    ```

```

BEGIN

```
```

OUTDATA;
REPEAT
INVAR;
CONSTANTS;
MDFOR;
BALLDFOR;
BALLFORCE;
WRITEDATA;
HRITELN('DO YOU WANT TO RUN THE PROGRAM AGAIN (Y/N) ?');
YESNO(Q);
UNTIL Q=FALSE;
CLOSE(DATA);
END. {MAIN}

```

APPENDIX B

RIGID MODEL: RADIAL LOAD PROGRAM LISTING
```

PROGRAM RADIAL(INPUT,OUTPUT, DATA);
TYPE NUM=ARRAY[1..100]OF REAL;
VAR
C, {CONFORMITY}
CA, {CONTACT ANGLE (DEGREES)}
C1, {EQUATION (26) CONSTANT}
D, {BALL DIAMETER (IN)}
DC, {DIAMETERAL CLEAFANCE (INCHES)}
DM, {MAXIMUM BALL DEFORMATION (INCHES)}
PD, {BALL FATH DIAMETER (INCHES)}
R, {RADIAL LOAD (LBS)}
RAD, {DEGREE TO RADIAN CONUERSION}
THETA, {BALL SPACING (DEGREES)}
THETAZONE:
REAL;
N:
{NUMBER OF BALLS}
INTEGER;

| FI, | \{FORCE ON BALL I (LBS) \} |
| :--- | :--- |
| DI, | \{DEFORMATION OF BALL I (IN)\} |
| THI: | \{POSITION OF BALL I (DEGREES) \} |
| NUM; | |

DATA: {OUTPUT FILE}
TEXT;
Q:
{YESND PROCEDURE CONSTANT}
B00LEAN;

```
PROCEDURE YesNo(VAR Yes:BOOLEAN);


Returns TRUE for an input of YES, yes, \(Y\), or y; returns FALSE for an input of \(N O\), no, \(N\), or \(n\). If the user inputs anything else he is prompted to make a valid input.

GLOBAL VARIABLES: 0

\section*{}
```

VAR
String : PACKED ARRAY[1..3] OF CHAR;
Legal : 800LEAN;
BEGIN
REPEAT
Legal:=TRUE;
READLN(String);
If String='YES' THEN Yes:=TRUE

```
```

 ELSE IF String='yes' THEN Yes:=TRUE
 ELSE IF String='Y ' THEN Yes:=TRUE
 ELSE IF String='y ' THEN Yes:=TRUE
 ELSE IF String='NO' THEN Yes:=FALSE
 ELSE IF String='no' THEN Yes:=FALSE
 ELSE IF String='N ' THEN Yes:=FALSE
 ELSE IF String='n ' THEN Yes:=FALSE
 ELSE
 BEGIN
    ```

```

 HRITELN('Response must be YES, yes, Y, y, NO, no, N, of n');
 URITELN('Please enter a valid response ...');
 HRITELN('***t****');
 Legal:=FALSE;
 END;
 UNTIL Legal;
 END; {YESNO}

```
procedure clear;

    CLEARS THE SCREEN
    GLOBAL VARIABLES: NONE

VAR B: INTEGER;
BEGIN
    FOR \(\mathrm{B}:=1\) TO 24 DO HRITELN;
END; \{CLEAR]
FUNCTION ARCCOS (X:REAL):REAL;

    INVERSE COSINE FUNCTION, RETURNS ARCCOS \((X),-1.0<=X<=+1.0\), IN RADIANS
    GLOBAL VARIABLES: NONE

CONST PI=3.1415926536;
BEGIN
    IF \((x=1)\) OR \((x=-1)\) THEN
        IF \(X=1\) THEN
            \(\operatorname{ARCCOS}:=0.0\)
        ELSE
            ARCCOS: \(=\mathrm{PI}\)
```

ELSE
ARCCOS: =-ARCTAN(X/SQRT(1-X*X))+FI/2.0
END; (ARCCOS}
FUNCTION EXPT(Y, X:REAL):REAL;

```

```

 RETURNS THE RESULT OF YAX
 GLOBAL VARIABLES: NONE
    ```

```

VAR L: INTEGER;
BEGIN
IF X=0 THEN
EXPT:=1.0
ELSE
IF Y=0 THEN
EXPT: =0.0
ELSE
IF Y>0 THEN
EXPT:=EXP(X*LN(Y))
ELSE
IF ABS(X-ROUND(X))<IE-10 THEN
BEGIN
Z:=TRUNC(X);
IF ODD(Z) THEN
EXPT:=-EXP(XALN(-Y)
ELSE
EXPT: =EXP(X*LN(-Y))
END
END; {EXPT}
PROCEDURE OUTDATA;
{***
SETS UP THE OUTPUT FILE
GLOBAL VARIABLES: DATA
E******************************⿱丷天**)
VAR STATUS: INTEIER;
FILENAME:FACKED ARRAY[1..17] OF CHAR;
BEGIN
CLEAR;
REPEAT

```
```

 WRITELN('ENTER THE NAME OF THE OUTPUT FILE - '?;
 READLN(FILENAME);
 BIND(DATA,FILENAME, STATUS);
 IF gTATUS=1 THEN
 WRITELN('FILE DOES NOT EXIST DR IS INACCESSIELE, PLEASE TRY AGAIN');
 HRITELN;
 UNTIL STATUS=0;
REHRITE(DATA);
END; {OUTDATA}

```

PROCEDURE INVAR;

initialile the program variables
GLOBAL VARIABLES: \(\quad C, C A, D, D A T A, D C, N, P D, R, T H E T A\)


BEGIN
WRITELN;
HRITELN('ENTER THE RADIAL LOAD (LBS) - ');
READLN(R);
HRITELN;
WRITELN('RADIAL LOAD = ',R:8:3,' LBS');
WRITELN(DATA, RADIAL LOAD \(={ }^{\prime}, R: 8: 3, '\) LBS');
HRITELN;
HRITELN('ENTER THE BALL PATH DIAMETER (IN) - ');
PEADLN(PD);
WRITELN;
WRITELN('BALL PATH DIAMETER = ',PD:8:3,' IN');
WRITELN(DATA,'8ALL PATH DIAMETER = ',PD:8:3,' IN');
WRITELN;
HRITELN('ENTER THE DIAMETERAL CLEARANCE (IN) - ');
READLN(DC);
WRITELN;
HRITELN('DIAMETERAL CLEARANCE \(=\) ', DC: 8:7;' IN');
HRITELN(DATA, 'DIAMETERAL CLEARANCE \(=1, D C: 8: 7,1\) IN');
HRITELN;
HRITELN('ENTER THE CONFORMITY - ');
READLN(C);
HRITELN;
HRITELN (' \(\operatorname{CONFORMITY}=\) ', \(\mathrm{C:O:5}\) );
WRITELN(DATA, CONFORMITY \(=1,1: 8: 5)\);
HRITELN;
URITELN('ENTER THE CONTACT ANGLE (DEGREES) - ');
READLN(CA);
WRITELN;
WRITELN('CONTACT ANGLE = ',CA:8:4,' DEGREES');
WRITELN(DATA, 'CONTACT ANGLE = ', CA:8:4,' DEGREES');
HRITELN;
WRITELN('ENTER THE BALL DIAMETER (IN) - ');
```

READLN(D);
HRITELN;
WRITELN('BALL DIAMETER = ',D:6:3,' IN');
HRITELN(DATA,'bALL DIAMETER = ',D:6:3,' IN');
WRITELN;
HRITELN('ENTER THE NUMGER OF BALLS - ');
READLN(N);
WRITELN;
HRITELN('NUMBER OF BALLS = ',N:3);
HRITELN(DATA,'NUMBER OF BALLS = ',N:3);
THETA:=350/N;
WRITELN;
HRITELN('THE BALL SPACING IS ',THETA:8:4,' DEGREES');
WRITELN(DATA,'THE BALL SPACING IS = ',THETA:8:4,' DEGREES');
END; [INUAR}

```
PROCEDURE CONGTANTS;

    calculate the constants
    GLOBAL VARIABLES: \(\quad i, C A, C 1, D, R A D, T H E T A, T H I\)

VAR I: INTEGER;
BEGIN
    FOR I: \(=1\) TO N DO
        THICI]: =THETA \((1-1) ;\)
    RAD: \(=3.1415927 / 180.0 ;\)
    THETA: =THETA*RAD;
    CA: \(=\) CA*RAD;
    C1: \(=2.198 E 7 \times 5\) RRT ( \((C * 0.5 * D) /(C-1)) ;\) \{ERUATION 25\(\}\)
END; \{CONSTANTS\}
FROCEDURE ZONE(VAR THETAI2;REAL);

    CALCULATE THE LOAD ZONE
    GLOBAL VARIARLES: DE:, DM

BEGIN
    THETAL2: \(=\mathrm{DC} /(2.0 \pm D M)\); \(\{E Q U A T I O N\) 31\}
    IF ABS (THETAL2) \(>=1.0\) THEN
        THETAL2: =0.0
    ELSE
```

 THETAZ2: =ARCCOS(THETAZ2);
 END; {ZONE}

```
PROCEDURE MDFOR;


CALCULATE THE MAXIMUM BALL DEFORMATION
GLOBAL VARIALBES: CA,C1,DM,R,THETA,THETAZONE

\section*{}
```

VAR THBEG,THSUM, EXPTHSUM,
THETAZ1,THETAL2,DTHETAZ1, DTHETAZ2,SUM:REAL;
J:NTEGER;
BEGIN
DTHETAZ2:=0.0;
THETAZ2: =THETA;
REPEAT
THETAZ1:=THETAL2;
SUM: =0.0;
THEES:=0.0;
WHILE THBEG }\rangle=-\mathrm{ THETAZI DD
THBEG:=TH8EG - THETA;
THBEG:=THBEG + THETA;
THSUK: =THEEG;
WHILE THSUM <= THETAZI DO
gegIN
EXPTHSUM: =XPT(COS (THSUM),2,5);
SUM:=SUM + EXPTHSUM;
THSUH:=THSUM + THETA;
END;
DM: =EXPT(R/(2.0*C1xCOS(CA)*SUM),2,0/3.0); {EQUATION 34}
ZONE(THETAZ2);
DTHETAZI:=THETAZ2-THETAZ1;
IF ABG(DTHETAZ1)=ABG(DTHETAL2) THEN
IF THETAL1 > THETAL2 THEN
BEgIN
THETAZ1:=THETAZ2;
SUM:=0.0;
THBEG:=0.0;
HHILE THBEG >= -THETAZI DO
THBEG:=THBEG - THETA;
THBEG: =THEEG + THETA;
THSUM:=THBEG;
WHILE THSUM <= THETALI DO
BEGIN
EXFTHSUM:=EXPT(CDS(THSUM),2.5);
SUM:=SUM + EXPTHSUM;
THSUM: =THSUM + THETA;
END;

```
```

 DM: =EXPT(R/(2.04C1*COS(CA)*SUM),2.0/3.0); {EQUATION 34}
 DTHETAZ1:=0.0;
 END;
 DTHETAL2:=DTHETAZ1;
 UNTIL ABS(DTHETAZ1)<1E-3;
 THETAZONE:=THETAL2;
 END; {MDFOR}

```

PROCEDURE BALLDFOR;


\section*{CALCULATE THE INDIVIDUAL BALL DEFORMATION \\ GLOBAL VARIABLES: DC,DI,DM,N,THETA, THETAZONE}

\section*{}
```

VAR THIR:REAL;

```
        I: INTEGER;
BEGIN
    I: \(=1 ;\)
    REPEAT
        THIR: =THETAま (I-1);
        If THIRS=THETAZONE THEN
            BEGIN
            DI[I]: \(=\) DM \(x \operatorname{COS}(T H I R) ; \quad\{E Q U A T I O N 27\}\)
            I: \(=1+1 ;\)
        END;
    UNTIL THIRYTHETAZONE;
    REPEAT
        THIR: =THETA \(\pm(I-1)\);
        IF THIRく(6.2831853-THETAZONE) THEN
        SEITN
            DI[I]: \(=0.0\);
            I: \(=1+1\);
        END;
    UNTIL THIR \(=(6.2831853-T H E T A Z O N E)\);
    REPEAT
        THIR:=THETA*(I-1);
        IF THIR 6.2831853 THEN
        BEGIN
            DI[I]: \(=\) DM \(\times C O S(T H I R) ;\) [EQUATION 27)
            I: \(=1+1\);
        END;
    UNTIL THIR \(=6.2831953\);
END; \{BALLDFOR]

PROCEDURE BALLFORCE;
calculate the individual ball forces

GLOBAL VARIABLES: C1,DI,FI,N

VAR I: INTEGER;
BEGIN
FOR \(I:=1\) TQ NDO
FI[I]: \(=\) C1*EXPT(DI[I],1.5); \(\{E Q U A T I O N ~ 26\} ~\)
END; (BALLFORCE)

PROCEDURE WRITEDATA;

hrite the data to the screen and the dutput file
GLOBAL VARIABLES: DI,FI,N,THI


VAR I: INTEGER;
BEGIN
CLEAR;
WRITELN;
WRITELN('HALL NUMGER POSITION (DEG) DEFORMATION (IN) FORCE (LBS)'); WRITELN;
FOR I: \(=1\) TO N DO
WRITELN(I,' ',THI[I]:14:4,' ',DI[I]:15:E,' ',FI[I1:14:2);
WRITELN(DATA);
HRITELN(DATA, 'BALL NUMBER FOSITIDN (DEG) DEFORMATION (IN) FORCE (LES)');
WRITELN(DATA);
FOR I: \(=1\) TO NDO
URITELN(DATA,1,' ',THI[I]:14:4,' ',DI[I]:13:6,' ',FI[11:14:2);
END; \{HRITEDATA\}

\section*{}

BEGIN MAIN PROGRAM


BEGIN
OUTDATA;
REPEAT INVAR; CONSTANTS; MDFOR;
```

 BALLDFOR;
 BALLFDRCE;
 HRITEDATA;
 WRITELN('DO YOU WANT TO RUN THE PROGRAM AGAIN (Y/N) ?');
 YESNO(G);
 UNTIL Q=FALSE;
ClOSE(DATA);
END. {MAIN}

```

APPENDIX C

RIGID MODEL: THRUST LOAD PROGRAM LISTING
```

PROGRAM THRUST(INPUT,OUTPUT, DATA);
VAR
C, {CONFORMITY)
CA, (CONTACT ANGLE (DEgREES)}
C1, {EQUATION 26 CONSTANT}
D, {BALL DIAMETER (INCHES)}
DI, {DEFORMATION OF BALL I (IN)}
FI, {FORCE ON BALL I (LBS)}
T, [THRUST FORCE (LBS)]
THETA: {BALL SPACING (DEGREES)}
REAL;
N:
{NUMBER OF BALLS}
INTEGER;
DATA: {OUTPUT FILE]
TEXT;
2:
[YESNO PROCEDURE COHSTANT)
B00LEAN;
PROCEDURE YesNo(VAR Yes:BOOLEAN);

```

```

 Returns TEUE for an input of YES; yes; Y, or y; returns FALSE for an input
 of NO, no, N, or n. If the usar inputs anything else he is prompted to
 make a valid input.
 GLOBAL VARIABLES: Q
    ```

```

VAR
String : PACKED ARRAY[1..3] OF CHAR;
Legal : BoOLEAN;
BEGIN
REPEAT
Legal:=TRUE;
REAOLN(String);
IF String='YES' THEN Yes:=TRUE
ELSE IF String='yes' THEN Yes:=TRUE
ELSE IF String='Y ; THEN Yes:=TRUE
ELSE IF String='y : THEN Yes;=TRUE
ELSE IF String='NO' THEN Yes:=FALSE
ELSE If String='no'' THEN Yes:=FALSE
ELSE IF String='N ' THEN Yes:=FALSE
ELSE If String='n ' THEN Yes:=FALSE
ELSE
BEGIN
HRITELN('**');

```
```

HRITELN('Response wust be YES, yes, Y, y, NO, no, N, or n');
WRITELN('Please enter a valid response ...');

```

```

Legal:=FALSE;
END;
UNTIL Legal;
END; {YESNO}
FUNCTION EXPT(Y,X:REAL):REAL;

```


\section*{RETURNS THE RESULT OF \(Y^{\wedge} \chi\)}
```

GLIDAAL VARIABLES: NONE

```

```

VAR $l:$ INTEGER;
BEGIN
If $X=0$ THEN
EXPT: $=1.0$
ELSE
IF $Y=0$ THEN
EXPT: $=0.0$
ELSE
IF Y>0 THEN
EXPT: $=\mathrm{EXP}(X \times L N(Y))$
ELSE
IF ABS (X-ROUND $(X))<=1 E-10$ THEN
BEGIN
2: =TRUNC (x);
If ODD(Z) THEN
EXPT: $=-\operatorname{EXP}(X * L N(-Y))$
ELSE
EXPT: $=E X P(X * L N(-Y))$
END
END; (EXPT)
PROCEDURE CLEAR;

```

```

dLEARS THE SCREEN
GLOEAL VARIABLES: NONE

```


VAR B: INTEGER;
```

BEGIN
FOR 8:=1 T0 24 DO HRITELN;
END; {CLEAR}
Procedure OUTDATA;

```

```

 SETS UP THE OUTPUT FILE
 GLOBAL VARIABLES: DATA
    ```

```

VAR STATUS: INTEGER;
FILENAME:PACKED ARRAY[1..17] OF CHAR;
BEGIN
CLEAR;
REPEAT
WRITELN('ENTER THE NAME OF THE DUTPUT FILE - ');
READLN(FILENAME);
IIND(DATA, FILENAME, STATUS);
IF STATUS=1 THEN
WRITELN('FILE DOES NOT EXIST OR IS INACCESSIBLE, PLEASE TRY AGAIN');
WRITELN;
UNTIL STATUS=0;
REWRITE(DATA);
END; {OUTDATA}
PROCEDURE INVAR;

```

```

 INITIALIIE THE PROGRAM YARIABLES
 GLOBAL VARIABLES: C,CA,D,N,T,THETA
    ```

```

BEGIN
HRITELN('ENTER THE THRUST LOAD (LBS) - ');
READLN(T);
WRITELN;
HRITELN('THRUST LOAD = ',T:8:3,' LBS');
WRITELN(DATA,'THRUST = ',T:8:3,' LBS');
HRITELN;
URITELN('ENTER THE CONTACT ANGLE (DEGREES) -');
READLN(CA);
WRITELN;
WRITELN('CONTACT ANGLE = ',CA:8:4,' DEGREES');
WRITELN(DATA,'CONTACT ANGLE = ',CA:8:4,' DEgREES');

```
```

HRITELN;
HRITELN('ENTER THE CONFORMITY - ');
READLN(C);
WRITELN;
WRITELN('CONFORMITY = ',C:0:5);
HRITELN(DATA,'CONFORMITY = ',:9:5);
WRITELN;
WRITELN('ENTER THE BALL DIAMETER (IN) - ');
READLN(D);
MRITELN;
WRITELN('BALL DIAMETER = ',D:6:3,' IN');
HRITELN(DATA,'GALL DIAMETER = ',D:6:3;' IN');
WRITELN;
HRITELN('ENTER THE NUMBER OF BALLS - ');
READLN(N);
HRITELN;
HRITELN('NUMEER OF BALLS = ',N:3);
HRITELN(DATA,'NUMBER OF BALLS = ',N:3);
THETA:=360/N;
WRITELN;
WRITELN('BALL SPACING = ',THETA:8:4,' DEGREES');
HRITELN(DATA,'BALL SPACING = ',THETA:8:4,' DEGREES');
HRITELN;
END; {INYAR}

```
PROCEDURE CONSTANTS;

\section*{}
calculate the constants
GLOBAL VARIABLES: C,CA,C1,D

```

HEGIN

```
    C1: \(=2.198 E 7 * S Q R T((C * 0.5 * D) /(C-1)) ; \quad\) \{EQUATION 25\}
    \(C A:=C A+3.1415927 / 180.0 ;\)
END; [CONSTANTS)

PROCEDURE BALLFORCE;

dalculate the individual ball forices

GLOBAL VARIABLES: CA,FI,N,T


BEGIN
FI: \(=\mathrm{T} /(\mathrm{N} F \mathrm{SIN}(\mathrm{CA})) ;\)
\{EQUATION 37\}

END; \{8ALLFORCE\}

FROCEDURE BALLDFOR;


CALCULATE THE INDIVIDUAL BALL DEFORMATIDN

GLOBAL VARIAELES: CI,DI,FI

BEGIN
II: \(=\) EXPT(FI/CI,2/3); \{EQUATION 38\}
END; \{8ALLDFOR\}

PROCEDURE HRITEDATA:

hrite the data to the screen and the output file
flobal variables: FI, DI


BEGIN
HRITELN('THE FORCE ON EACH BALL IS = ',FI:8:3;' LBS');
WRITELN(DATA,'THE FORCE ON EACH BALL IS = ',FI:9:3,' LSS');
HRITELN;
WRITELN('THE DEFDRMATION OF EACH BALL IS = ', DI:11:9,' IN');
WRITELN(DATA, THE DEFORMATION OF EACH BALL IS = ', DI:I1:9;' IN');
HRITELN;
END; \{HRITEDATA\}


BEGIN MAIN PROGRAM

BEGIN
OUTDATA;
REPEAT
INVAR;
CONSTANTS;
BALLFDRCE;
8ALLDFDR;
hRITEDATA;
WRITELA('DO YOU WANT TO RUN THE FROGRAM AGAIN (Y/N) ?');
YESNO(Q);

UNTIL Q=FALSE;
ClOSE(DATA);
END. \{MAIN\}

APPENDIX D

FINITE ELEMENT MODEL: MOMENT LOAD INPUT COMMANDS
```

CSYS,1
N,1,6,5
N,2,6.5,.1.75
N,3,6.5,.3.1.3
N,4,6.5,.3.5
N,5,6.5,.4.5
N,6,7.3125
N,7,7.3125,11.75
N,8,7.3125,.3.13
N,9,7.3125,,3.5
N,10,7.3125,.4.5
N.11,7.88
N,12,7.88,.1.75
N,13,7.88,.3.13
N.14,7.88,.3.5
N,15,7.88,.4.5
N,16,8.285
N,19.8.285, .3.13
N,20,8.285,.3.5
N,21,8.285,,4.5
N,22,8.69
N.25.8.69.,3.13
LOCAL,12,1,8.69,.1.75,,.90
N,23,0.81,270
N,17,0.81,240
N,18,0.81,120
N,24,0.81,90
CSYS.1
NGEN,72,25,1,25,1,,5
NMODIF,17,1,r,,150
NMODIF,18,,.,.30
NMODIF,67,.,.10,.150
NMODIF,58,,,,10,,30
NMODIF,117,,,,20,,150
NMODIE,ILB,,,20,,30
NMODIE,167,,,30,,150
NMODIF,168,,,30,,30
NMODIF,217,,,,40,,150
NMODIE,218,,,.40,,30
NMODIF,267,r,,50,,150
NMODIF,268,,, 50, 30
NMODIF,317,···,60,.150
NMODIF,318,,,60,.30
NMODIF,367,.,.70,.150
NMODIF,368,,,70,70
NMODIF,417,,,80,,150
NMODIF',418,,,r80,,30
NMODIF,467,···,90,,150
NMODIF,468,,r,90,.30
NMODIF,517, , ,100,,150
MMODIF,518,,,,100,.30
NMODIF,567,,,,110,.150
NMODIF,568,,,110,,30

```
```

NMODIF,617,,,120,,150
NMODIE,618,.,,120,.30
NMODIF,667,.,,130,.150
NMODIF,663,,,,130,,30
NMODIF,717,,,,140,,150
NMODIF,718,,,,140,,30
NMODIF,767,,r,150,,150
NMODIF,768,,,,150,,30
NMODIF,817,.,160,,150
NMODIF,818,,,,160,,30
NMODIF,867,,,,170,,150
NMODIF,868,,,,170,,30
NMODIF,917,.,,180,,150
NMODIF,918,,,,180,,30
NMODIF,967,.,,190,,150
NMODIF,968,.,,190,,30
NMODIF,1017,,.,200,,150
NMODIE,1018,., 200.,30
NMODIE,1067,,,,210,,150
NMODIE,1068,,,,210,,30
NMODIF,1117,.,,220,,150
NMODIF,1118,.,,220,.30
NMODIF,1167,,,,230,,150
NMODIF,1158,,,,230,,30
NMODIF,1217,,,,240,,150
NMODIF,1218,., ,240,,30
NMODIF,1267,,,,250,,150
NMODIF,1268,, , 250, ,30
NMODIF,1317,,,260,,150
NMODIF,1318,,,,260,,30
NMODIF,1367,,,270,,150
NMODIF,1368,,,,270,,30
NMODIF,1417,,,280,,150
NMODIF,1418,,,280, ,30
NMODIF,1467,,,290,,150
NMODIF,1468,,,,290,,30
NMODIF,1517,,,,300,,150
NMODIF,1518,.,,300,,30
NMODIF,1567,,,310,,150
NMODIF',1568,,,,310,,30
NMODIF,1517,,,,320,,150
NMODIF,1618,,, 320,,30
NMODIF,1667,,,,330,,150
NMODIF,1668,, , ,330,,30
NMODIF,1717,.,r340,,150
NMODIF,1718,,, ,340,,30
NMODIF,1767,.,,350,,150
NMODIF,1768,,,,350,,30
ET,1,45
EX, 1,30E6
TYPE,1
REAL,I
MAT,I

```
```

E,7,6,7,2,26,31,32,27
E,2,7,8,3,27,32,33,28
E,6,11,12,7,31,36,37,32
E,7,12,13,8,32,37,38,33
E,11,16,17,12,35,41,42,37
E,12,18,19,13,37,43,44,38
E,16,22,23,17,41,47,48,42
E,18,24,25,19,43,49,50,44
EGEN,72,25,1,8,1
EDELE,569,576,1
E,1776,1781,1782,1777,1,6,7,2
E,1777,1782,1783,1778,2,7,8,3
E,1781,1786,1787,1782,6,11,12,7
E,1782,1787,1788,1783,7,12,13,8
E,1786,1791,1792,1787,11,16,17,12
E,1787,1793,1794,1788,12,18,19,13
E,1791,1797,1798,1792,16,22,23,17
E,1793,1799,1800,1794,18,24,25,19
ECOMPR
EX,2,30EB
MAT, 2
E,4,9,10,5,29,34,35,30
E,9,14,15,10,34,39,40,35
E,14,20,21,15,39,45,46,40
EGEN,72,25,577,579,1
EDELE,790,792,1
E,1779,1784,1785,1780,4,9,10,5
E,1784,1789,1790,1785,9,14,15,10
E.1789,1795,1796,1790,14,20,21,15
ECOMPR
D,4,UY
D.454,IJX
D,904,UV
D,1354,UX
F,460,FZ,-80000
F,1360,FC,80000
ET,3,52,,.1
R,3,1.0E4,0.0
MU,3,0.45
TYPE,3
REAL,3
MAT, 3
E,3,4
E,8,9
E,13,14
E,19,20
EGEN,72,25,793,796,1
ET,4,39,,.3
RSIZE,40
R,4,-0.0050367,-25000,-0.0043405,-20000,-0.003583,-15000
RMORE,-0.0027343,-10000,-0.0017225,-5000,-0.0016057,-4500
RMORE, -0.0014844,-4000,-0.001358,-3500,-0.0012254,-3000
RMORE,-0.0010851,-2500,-0.0009351,-2000,-0.0007719,-1500

```
```

RMORE,-0.0005891,-1000,-0.0003711,-500,-0.0003198,-400
RMORE,-0.000264,-300,-0.0002015,-200,-0.0001269,-100
RMORE,0,0,1,100
LOCAL,12,1,8.59,.1.75,.,90
N,1801,0.81,240
N,1802,0.82,120
TYPE,4
REAL,4
MAT,4
E.1801,17
E,1802,18
CSYS,1
NGEN,36,50,1801,1802,1,,10
EGEN,36,50,1081,1082,1
NCOMPR
NMODIF,1801,,,r,,150
NMODIF,1802,.,,,,30
NMODTF,1803,,,10,,150
NMODIF,1804, ,, ,10,,30
MMODIF,1805,.,,20,,150
NMODIF,I806,,,20,,30
NMODIF,1807,,,,30,,150
NMODIF,1808,,,,30,,30
NMODIF,1809,,,,40,,150
NMODIF,1810,,,,40,,30
NMODIF,1811,,,,50,,150
NMODIF,1812,,,,50,,30
NMODIF,1813,,,,60,,150
NMODIF,1814,,,,60,,30
NMODIF,1815,,,,70,,150
NMODIF,1816,., 70, ,30
NMODIF,1817,,,,80,,150
NMODIF',1818,,,,80,,30
NMODIF,1819,,,,90,,150
NMODIF,1820,.,,90,,30
NMODIF,1821,,,,100,,150
NMODIF,1822,,,,100,,30
NMODIF,1823,,.,110,,150
NMODIF,1824,.,,110,,30
NMODIF,1825,,,120,,150
NMODIF,1826,,,,120,,30
NMODIF,1827,,,,130,,150
NMODIF,1828,.,,130,,30
NMODTF,1829,,,,140,,150
NMODIF,1830,,,,140,.30
NMODIF',1831,,,,150,,150
NMODIF,1832,.,,150,,30
NMODIF',1833,,,,160,,150
NMODIF,1834,.,,160,,30
NMODIF,1835,,,,170,,150
NMODIF,1836,,,,170,,30
NMODIF,1837,,,,180,,150
NMODIF,1838,,,,180,,30

```
```

NMODIF,1839,.,.190.,150
NMODIF,1840,,,,190,,30
NMODIE,1841, %, 200,.150
NMODIF,1842,,,200,,30
NMODIE,1843,,,,210,,150
NMODIF,1844,,,210,.30
NMODIF,1845,,,,220,,150
NMODIF,1846,,, 220,,30
NMODIF,1847,,,,230,,150
NMODIF,1848,,,230,,30
NMODIF,1849,.,.240,,150
NMODIF,1850,.,.240,.30
NMODIF,1851,,,,250,,150
NMODIF,1852,,,,250,,30
NMODIF,1853,,,,260,,150
NMODIF,1854,r,r260,.30
NMODIF,1855,,,,270,,150
NMODIF,1856,.,270,,30
NMODIF,1857,,,280,.150
NMODIF,1858,, , 280,,30
NMODIF,1859, ,,290,,150
NMODIE,1860,,,,290,,30
NMODIF,1861,,,,300,,150
NMODIF,1862,,,300,.30
NMODIF,1863,,,,310,,150
NMODIF,1864,r,310,,30
NMODIF,1865,,,,320,.150
NMODIF,1866,,,320,,30
NMODIF,1867,,,330,,150
NMODIF,1868,,r,330,,30
NMODIF,1869,,,,340,,150
NMODIF,1870,,,340,,30
NMODIF,1871,r,r350,,150
NMODIF,1872,,,350,.30
ET,5,10,.1
R,5,0.479369,1.0217556E-1
EX,5,30E6
TYPE,5
REAI,5
MAT,5
E,7,10
E,107,110
E,207,210
E,307,310
E,407,410
E,507,510
E,607,610
E,707,710
E,807,810
E,907,910
E.1007,1010
E,1107.1110
E,1207,1210

```
```

E,1307,1310
E,1407,1410
E,1507,1510
E,1607.1610
E,1707,1710
ET,6,14.,3
R,6,2.5853.154E6
LOCAL,12,1,8.69,.1.75,.,90
N,1873,0.81,240
N,1874,0.81,120
TYPE,6
REAL,6
MAT,6
E,1801,1873
E,1802,1874
CSYS.1
NGEN,36,2,1873,1874,1,,10
EGEN,36,2,1171,1172,1
D,1873,ALL,.,1944,1
NMODIF,1873,,,,,150
NMODIF,1874,, ,,,30
NMODIF,1875,,,,10,,150
NMODIF,1876,.,,10,,30
NMODIF,1877,,,,20,,150
NMODIF,1878,,, 20,,30
NMODIF,1879,.,,30,,150
NMODIF,1880,,,,30,,30
NMODIF,1881,,,,40,,150
NMODIF,1882,,,,40,,30
NMODIF,1883,,,,50,,150
NMODIF,1884,,,50,,30
NMODIF,1885,,,,60,,150
NMODIF,1886,,,60,,30
NMODIF,1887,,, 70,,150
NMODIF,1888,,,70,,30
NMODIF,1889,,.,80,,150
NMODIF',1890,,.,80,,30
NMODIF,1891,,,,90,,150
NMODIF,1892,,,,90,,30
NMODIF,1893,,,,100,,150
NMODIF,1894,,,,100,,30
NMODIF,1895,,,,110,,150
NMODIF,1896,,,,110,,30
NMODIF,1897,,.,120,,150
NMODIF,1898,,,,120,,30
NMODIF,1899,,,130,,150
NMODIF,1900,,,,130,,30
NMODIF,1901,,,,140,r150
NMMODIF,1902,,,,140,,30
NMODIF,1903,,,,150,,150
NMODIF,1904,,,,150,,30
NMODIF,1905,,,,160,,150
NMODIF',1906,,,,160,,30

```
```

NMODIF,1907,,,,170,,150
NMODIF,1908,,,.170,,30
NMODIF,1909,.,.180,.150
NMODIF,1910,.,,180,,30
NMODIF,1911,,,,190,,150
NMODIF,1912,,,190,,30
NMODIF,1913,.,,200,,150
NMODIF,1914,.,,200,,30
NMODIF,1915,,,,210,,150
NMODIF,1916,,,,210,,30
NMODIF,1917,,,,220,,150
NMODIF,1918,.,.220,,30
NMODIF,1919,,,,230,,150
NMODIF,1920,,,,230,,30
NMODIF,1921,,,,240,,150
NMODIF,1922,,,,240,,30
NMODIF,1923,.,,250,,150
NMODIF,1924,,,,250,.30
NMODIE,1925,,,260,,150
NMODIE,1926,,,,260,,30
NMODIF,1927,,,,270,,150
NMODIF,1928,,,270,,30
NMODIF,1929,.,,280,,150
NMODIF,1930,,,,280,,30
NMODIF,1931,,,290,,150
NMODIF,1932,,,,290,,30
NMODIF,1933,.,,300,,150
NMODIF,1934,,r,300,,30
NMODIF,1935,,,,310,,150
NMODIF,1936,.,,310,,30
NMODIF,1937,,,,320,,150
NMODIF,1938,.,,320,,30
NMODIF,1939,.,,330,,150
NMODIF,1940,,, 330,,30
NMODIF,1941,,,,340,,150
NMODIF,1942,,,340,,30
NMODIF,1943,,,,350,,150
NMODIF,1944,,,,350,,30
ITER,-15

```

\section*{APPENDIX E}

FINITE ELEMENT MODEL: RADIAL LOAD INPUT COMMANDS
```

CSYS.1
N.1,6.5
N,2,6.5,.1.75
N,3,5.5,,3.13
N,4,6.5,.3.5
N,5,6.5,.4.5
N,6,7.3125
N,7.7.3125,.1.75
N,8,7.3125,.3.13
N,9,7.3125,.3.5
N,10,7.3125,.4.5
N,11,7.88
N,12,7.88,.1.75
N,13,7.88,.3.13
N,14,7.88,.3.5
N,15,7.88,.4.5
N, 16,8.285
N,19,8.285,.3.13
N,20,8.285, .3.5
N,21,8.285,.4.5
N,22,8.69
N,25,8.69,,3,13
LOCAL,12,1,8.69,.1.75,,.90
N,23,0.81,270
N,17,0.81,240
N,18,0.81,120
N,24,0.81,90
CSYS,I
NGEN,72,25,1,25,1,5
NMODIF,17,···,.,150
NMODIF,18,,, ,,30
NMODIE,67,,,,10,,150
NMODIF,68,,,,10,,30
NMODIF,117,,,,20,,150
NMODIF,118,,,,20,,30
NMODIF,167,,,30,,150
NMODIF,168,,,,30,,30
NMODIF,217,,,,40,,150
NMODIF,218,,,,40,,30
NMODIF,267,,,50,,150
NMODIF,268,,,,50,,30
NMODIF,317, , 60,,150
NMODIF,318, ,,60,60
NMODIF,367,,,70,,150
NMODIF,368,,,70,,30
NMODIF,417,,,,80,,150
NMODIF,418,,,,80,.30
NMODIF,467,,,90,,150
NMODIF,468,,,90,,30
NMODIE,5I7,,.,100,,150
NMODIF,518,···,100,,30
NMODIE,567,,,.110,,150
NMODIF,568,,,,110,,30

```
```

MMODIF,617,.,,120,,150
NMODIE,518,,,,120,,30
MMODIF,667,.,130,,150
NMODIF,668,···,130,,30
NMODIF;717,,,.140,,150
NMODIF,718,,,,140,,30
NMODIF,767,,,,150,,150
NMODIF,768,,,,150,,30
NMODIF,817,,,,160,,150
NMODIF,818,,,,160,,30
NMODIF,867,,,,170,,150
NMODIF,868,,,,170,,30
NMODIF,917,,,,180,,150
NMODIF,918,,,,180, ,30
NMODIF,967,,.,190,,150
MMODIF,968,.,190,.30
NMODIF,1017,., 200,,150
NMODIF,1018,,,,200,,30
NMODIF,1067,,,,210,,150
NMODIF,1068,,,,210,,30
NMODIF,1117,.,220,,150
NMODIF,1118,,,,220,.30
NMODIF,1167,,,,230,,150
NMODIF,1168,,,,230,,30
NMODIF,1217,,,,240,,150
NMODIF,1218,,,,240,,30
NMODIF,1267,.,250,.150
NMODIF,1268,,,,250,,30
NMODIF,1317,,,,260,,150
NMODIF,1318,,,,260,,30
NMODIF,1367,,,270,,150
NMODIF,1368,,,,270,,30
NMODIF,1417,,,,280,,150
NMODIF,1418,,,,280,,30
NMODIF,1467,.,,290,,150
NMODIF,1468,.,,290,,30
NMODIF,1517,,,,300,,150
NMODIF,1518,.,.300,,30
NMODIF,1567,,,,310,,150
NMODIF,1568,,,,310,,30
NMODIF,1617,.,320,,150
NMODIE,1618,,,,320,,30
NMODIF,1667,,,,330,,150
NMODIF,1668,,, 330,,30
NMODIF,1717,,,,340,,150
NMODIF,I718,,,,340,,30
NMODIF,1757,,,,350,.150
NMODIF,1768,,,,350,,30
ET,1,45
EX,1,30E6
TYPE,I
REAL,I
MAT,I

```
```

E,1,6,7,2,26,31,32,27
E,2,7,8,3,27,32,33,28
E,6,11,12,7,31,36,37,32
E,7,12,13,8,32,37,38,33
E,11,16,17,12,36,41,42,37
E,12,18,19,13,37,43,44,38
E,.16,22,23,17,41,47,48,42
E,18,24,25,19,43,49,50,44
EGEN,72,25,1,8,1
EDELE,569,576,1
E,1776,1781,1782,1777,1,6,7,2
E,1777,1782,1783,1778,2,7,8,3
E,1781,1786,1787,1782,6,11,12,7
E,1782,1787,1788,1783,7,12,13,8
E,1786,1791,1792,1787,11,16,17,12
E,1787,1793,1794,1788,12,18,19,13
E,1791,1797,1798,1792,16,22,23,17
E,1793,1799,1800,1794,19,24,25,19
ECOMPR
EX, 2,30E8
MAT, 2
E,4,9,10,5,29,34,35,30
E,9,14,15,10,34,39,40,35
E,14,20,21,15,39,45,46,40
EGEN,72,25,577,579,1
EDELE,790,792,1
E,1779,1784,1785,1780,4,9,10,5
E,1784,1789,1790,1785,9,14,15,10
E,1789,1795,1796,1790,14,20,21,15
ECOMPR
D.4.UY
D.904,UY
F,8,EX,2777.7778
F,108,FX,2777.7778
F,208,FX,2777.7778
F,308,FX,2777.7778
F,408,FX,2777.7778
F,508,FX,2777.7778
F,608,FX,2777.7778
F,708,FX,2777.7778
F,808,FX,2777.7778
F,908,FX,2777.7778
F,1008,FX,2777.7778
F,1108,FX,2777.7778
F,1208,FX,2777.7778
E,1308,FX,2777.7778
F,1408,FX,2777.7778
F,1508,FX,2777.7778
E,1608,FX,2777.7778
F,1708,FX,2777.7778
ET,3,52,.,1
R,3,1.0E4,0.0
MU,3.0.45

```

TYPE, 3
REAL, 3
MAT', 3
E, 3,4
E, 8,9
E.13.14
E.19,20

EGEN,72,25;793,796,1
ET, 4,39,.,3
RSIZE,40
R,4,-0.0050367,-25000,-0.0043405,-20000,-0.003583,-15000
RMORE, \(-0.0027343,-10000,-0.0017225,-5000,-0.0016057,-4500\)
RMORE, \(-0.0014844,-4000,-0.001358,-3500,-0.0012254,-3000\)
RMORE, \(-0.0010851,-2500,-0.0009351,-2000,-0.0007719,-1500\)
RMORE: \(-0.0005891,-1000,-0.0003711,-500,-0.0003198,-400\)
RMORE, \(-0.000264,-300,-0.0002015,-200,-0.0001269,-100\)
RMORE, 0,0,1,100
LOCAL, 12,1, \(3.69,1.75,, 90\)
N,1801,0.81,240
N,1802,0.81,120
TYPE, 4
REAL, 4
MAT, 4
E,1801,17
E,1802,18
CSYS. 1
NGEN, 36,50,1801,1802,1,,10
EGEN, 36,50,1081,1082,1
NCOMPR
NMODIF,1801,.,.,.,150
NMODIF,1802,.,.,.,30
NMODIF,1803,, , 10, 150
NMODIF,1804,,, ,10, 30
NMODIF, 1805,, , 20, ,150
NMODIF,1806,,.,20,,30
NMODIF,1807,., 30,150
NMODIF,1808,, , 30,30
NMODIF,1809, , , 40, ,150
NMODIF, 1810, ,, 40, , 30
NMODIF, 1811,., 50,150
NMODIF,1812,,, 50,130
NMODIF,1813,, \(, 60,150\)
NMODIF,1814,., 60,130
NMODIF,1815,,,70,,150
NMODIF,1816,,, 70,130
NMODIF,1817,., , 80, , 150
NMODIF, 1818,, , 80,30
NMODIF,1819,., 90,150
NMODIF',1820, , , 90,30
NMODIF, 1821,, , 100, ,150
NMODIF,1822,.,100,.30
NMODIF,1823,., 110,150
NMODIF,1824,,.,110, 30
```

NMODTE,1825,,,120,,150
NMODIF,1826,,,120,.30
NMODIF,1827,,,130,.150
NMODIF,1828,,.,130,.30
NMODIF,1829,,,140,150
NMODIF,1830,,,,140,.30
NMODIF,1831,r,r150,,150
NMODIF,1832,,,,150,,30
NMODIF,1833,,,,160,,150
NMODIF,1834,,,,160,,30
NMODIF,1835,,,,170,,150
NMODIF,1836,,,,170,,30
NMODIF,1837,,,180,150
NMODIF,1838,,,.180,.30
NMODIF',1839,,,r190,,150
NMODIF,1840,,r,190,,30
NMODIF,1841,.,.200,.150
NMODIF,1842,,,200,.30
NMODIF,1843,,,210,,150
NMODIF,1844,,,,210,,30
NMODIF,1845,,.,220,,150
NMODTE, 1846,···,,220,,30
NMODIF,1847,.,.230,.150
NMODIF,1848,,, 230,,30
NMODIF,1849,,,,240,,150
NMODIF,1850,,,,240,,30
NMODTF,1851,, , 250,,150
NMODIF,1852,,, 250,,30
NMODIF,1853,,,,260,,150
NMODIF,1854,,,,260,.30
NMODIF,1855,.,.270,,150
NMODIF,1856,,,,270,,30
NMODIF,1857,.,280,.150
NMODIF,1858, , , 280,,30
NMODIF,1859,···,,290,,150
NMODIF,1860,,.,290,,30
NMODIF,1861,, ,300,,150
NMODIF,1862,,,,300,,30
NMODIF,1863,,,,310,,150
NMODIE,1864,,,.310,.30
NMODIF,1865,,,,320,,150
NMODIF,1866,,,.320,,30
NMODIF,1867,,,;330,,150
NMODIE,1868,,,,330,,30
NMODTE,1869,,,,340,,150
NMODIF,1870,,,.340,.30
NMODIF,1871,,,,350,.150
NMODIF,1872,,,350,.30
ET,5,10,,1
R,5,0.479369.1.0217556E-1
EX,5,30E6
TYPE,5
REAL,5

```

MAT, 5
E,7,10
E,107,110
E,207.210
E,307,310
E,407,410
E,507,510
E,607,610
E,707,710
E,807,810
E,907,910
E,1007,1010
E,1107,1110
E,1207.1210
E,1307.1310
E,1407,1410
E,1507.1510
E,1607,1610
E,1707,1710
ET, 6,14, 3
R,6.2.5853154E6
LOCAL,12,1,8.69,.1.75,, 90
N,1873,0.81,240
N,1874,0.81,120
TYPE, 6
REAL, 6
MAT, 6
E,1801,1873
E,1802,1874
CSYS. 1
NGEN, 36,2,1873,1874,1, 10
EGEN, 36,2,1171,1172,1
D,1873,ALL, ,1944,1
NMODIF,1873,...r.150
NMODIF,1874,.,., 30
NMODIF,1875,,, 10, 150
NMODIF, 1876, ,, 10, ,30
NMODIF,1877,, , 20, 150
NMODIF,1878,, , 20, 30
NMODIF,1879, , , 30, 150
NMODIF,1880,., 30, 30
NMODIF,1881,.,,40,,150
NMODIF,1882,., 40,130
NMODIF,1883,,, 50, 150
NMODIF,1884, , ,50, 30
NMODIF, 1885, , , 60, 150
NMODIF,1886, , , 60, 30
NMODIF,1887,, , 70, 150
NMODIF,1888, , , 70, 30
NMODIF,1889, , , 80, ,150
NMODIF,1890,., 80,130
NMODIF,1891,.,.,90,.150
NMODIF, 1892, , ,90, 30
```

NMODIF,1893,,,,100,,150
NMODIF,1894,,,,100,,30
NMODIF,1895,,,,110,,150
NMODIF,1896,,,.110,,30
NMODIF,1897,,,120,,150
NMODIF,1898,.,,120,,30
NMODIF,1899,,,,130,,150
NMODIF,1900,, , 130,,30
NMODIF,1901,,,,140,,150
NMODIF,1902,,,,140,,30
NMODIF,1903,,,,150,,150
NMODIF,1904,,,,150,,30
NMODIF,1905,,,,160,,150
NMODIF,1906,,,,160,,30
NMODIF,1907,.,.170,,150
NMODIF,1908,,r,170,,30
NMODIF,1909,,,,180,,150
NMODIF,1910,,,,180,,30
NMODIF,1911,,,,190,,150
NMODIE,1912,,,,190,,30
NMODIF,1913,,,,200,,150
NMODIF,1914,···,200,,30
NMODIF,1915,, , 210,,150
NMODIF,1916,,.,210,,30
NMODIF,1917,,,,220,,150
NMODIF,1918,,, ,220,,30
NMODIF,1919,,,,230,,150
NMODIF,1920,,,,230,,30
NMODIF,1921,,,,240,,150
NMODIF,1922,,,240,,30
NMODIF,1923,.,,250,,150
NMODIF,1924,,,,250,,30
NMODIF,1925,,,,260,,150
NMODIF,1926,.,,260,,30
NMODIF,1927,,,,270,,150
NMODIF,1928,,,,270,,30
NMODIF,1929,,,,280,,150
NMODIF,1930,,,,280,,30
NMODIF,1931,,,,290,,150
NMODIF,1932,,,,290,,30
NMODIF,1933,.,,300,,150
NMODIF,1934,,,,300,,30
NMODIF,1935,,,,310,,150
NMODIE,1936,,,,310,,30
NMODIF,1937,···,320,,150
NMMODIF,1938,,,,320,,30
NMODIF,1939,,,,330,,150
NMODIF,1940,.,,330,,30
NMODIF,1941,,,,340,,150
NMODIF,1942,.,,340,,30
NMODIF,1943,,,,350,,150
NMODTF,1944,,,,350,,30
ITER,-15

```

\section*{APPENDIX F}

FINITE ELEMENT MODEL: THRUST LOAD INPUT COMMANDS

Csys. 1
N, 1,6.5
\(\mathrm{N}, 2,6,5, .1 .75\)
\(\mathrm{N}, 3,6.5,3.13\)
N. \(4,6.5,3.3\)
\(\mathrm{N}, 5,6.5,4.5\)
N, 6,7.3125
N,7,7.3125,.1.75
N, 8,7.3125, ,3.13
N,9,7.3125,.3.5
\(\mathrm{N}, 10,7.312 b, 4.5\)
N,11,7.88
\(\mathrm{N}, 12,7.88,1.75\)
N,13,7.88, 3.13
N,14,7.88, ,3.5
N, 15, 7. \(88,14.5\)
\(\mathrm{N}, 16,8.285\)
\(\mathrm{N}, 19,8.285,13.13\)
\(\mathrm{N}, 20,8.285, .3 .5\)
\(\mathrm{N}, 21,8.285,4.5\)
\(\mathrm{N}, 22,8.69\)
\(\mathrm{N}, 25,8.69, .3 .13\)
LOCAL, 12,1,8.69,1.75, ,90
\(\mathrm{N}, 23,0.81,270\)
\(\mathrm{N}, 17,0.81,240\)
\(\mathrm{N}, 18,0.81,120\)
N, 24,0.81,90
CSYS.I
NGEN, 72,25,1,25,1,.5
NMODIF,17,,, , 150
NMODIF,18,., , , 30
NMODIF, 67,., 10,150
NMODIF, 68,,, 10,10
NMODIF,117, , , 20, 150
NMODIF, 118, , , 20, 30
NMODIF,167,, , 30, ,150
NMODIF, 168, , , 30, ,30
NMODIF,217,, , 40,150
NMODIF,218,., ,40,,30
NMODIF, 267,., 50, 150
NMODIF, 268, , , 50, 30
NMODIF,317,,, 60,150
NMODIF, 318,., ,60, 30
NMODTE, \(367,,, 70,150\)
NMODIF, 368,, ,70, 30
NMODIE, 417,., 80,150
NMODIF,418, , , 80, 30
NMODIF,467,,.,90,,150
NMODIF, 468,,, 90,30
NMODIF,517,, , 100,,150
NMODIF,518,,,.100,,30
NMODIF, 567,,, ,110, ,150
NMODIF,558,,, 110, ,30
```

NMODTF,617,,,,120,,150
NMODIF,618,,,,120,,30
NMODIF,667,,,,130,,150
NMODIF,658,,,,130,,30
NMODIF,717,,,140,,150
NMODIF,718,.,,140,,30
NMODIF,767,,,,150,,150
NMODIF,768,,,,150,,30
NMODIF,817,,,,160,,150
NMODIF,818,,,,160,,30
NMODIF,867,,,,170,,150
NMODIF,868,.,,170,,30
NMODIF,917,.,,180,,150
NMODIF,918,,,,180,,30
NMODIF,967,,,,190,,150
NMODIF,968,,,,190,,30
NMODIF,1017,.,,200,,150
NMODIF,1018,,, ,200,,30
NMODIF,1067,.,,210,.150
NMODIF,1068,,,,210,,30
NMODIF,1117,,,,220,,150
NMODIF,1118,.,,220,,30
NMODIF,1167,···,230,,150
NMODIF,1168,.,,230,,30
NMODIF,1217,,,,240,,150
NMODIF,1218,,,,240,,30
NMODIF,1267,,,,250,,150
NMODIF,1268,,r,250,,30
NMODIF,1317,,,,260,,150
NMODIF,1318,.,,260,,30
NMODIF,1367,,,,270,,150
NMODIF,1368,,,,270,,30
NMODIF,1417,,,280,,150
NMODIF,1418,,,,280,,30
NMODIF,1467,,,,290,,150
NMODIF,1468,,,,290,,30
NMODIF,1517,,,,300,,150
NMODIF,1518,,,,300,,30
NMODIF,1567,,,310,,150
NMODIF,1568,.,,310,,30
NMODIF,1617,,,,320,,150
NMODIF,1618,,,,320,,30
NMODIF,1667,.,,330,,150
NMODIF,1668,.,,330,,30
NMODIF,1717,.,,340,,150
NMODIF,1718,,,,340,,30
NMODIF,1767,.,,350,,150
NMODIF,1768,,,,350,,30
ET,1,45
EX,1,30E6
TYPE,1
REAL,1
MAT,1

```
```

E,1,6,7,2,26,31,32,27
E,2,7,8,3,27,32,33,28
E,6,11,12,7,31,36,37,32
E,7,12,13,8,32,37,38,33
E,11,16,17,12,36,41,42,37
E,12,18,19,13,37,43,44,38
E,16,22,23,17,41,47,48,42
E,18,24,25,19,43,49,50,44
EGEN,72,25,1,8,1
EDELE,569,576,1
E,1776,1781,1782,1777,1,6,7,2
E,1777,1782,1783,1778,2,7,8,3
E,1781,1786,1787,1782,6,11,12,7
E,1782,1787,1788,1783,7,12,13,8
E,1786,1791,1792,1787,11,16,17,12
E,1787,1793,1794,1788,12,18,19,13
E,1791,1797,1798,1792,16,22,23,17
E,1793,1799,1800,1794,18,24,25,19
ECOMPR
EX, 2,30E8
MAT,2
E,4,9,10,5,29,34,35,30
E,9,14,15,10,34,39,40,35
E,14,20,21,15,39,45,46,40
EGEN,72,25,577,579,1
EDELE,790,792,I
E,1779,1784,1785,1780,4,9,10,5
E,1784,1789,1790,1785,9,14,15,10
E,1789,1795,1796,1790,14,20,21,15
ECOMPR
D.4,UY
D.454.UX
D,904,UY
D.1354,UX
NSEL, Z,4.5
F,ALI,FZ,-347.22223
NALL
ET,3,52,,,1
R,3,1.0E4,0.0
MU, 3,0.45
TYPE,3
REAL,3
MAT, 3
E,3,4
E,8,9
E.13.14
E,19,20
EGEN,72,25,793,796,I
ET,4,39,.,3
RSIZE,40
R,4,-0.0050367,-25000,-0.0043405,-20000,-0.003583,-15000
RMORE,-0.0027343,-10000,-0.0017225,-5000,-0.0016057,--1500
RMORE,-0.0014844,-4000,-0.001358,-3500,-0.0012254,-3000

```
```

RMORE,-0.0010851,-2500,-0.0009351,-2000,-0.0007719,-1500
RMORE, -0.0005891,-1000,-0.0003711,-500,-0.0003198,-400
RMORE,-0.000264,-300,-0.0002015,-200,-0.0001269,-100
RMORE,0,0,1,100
LOCAL,12,1,8.69,.1.75,,90
N,1801,0.81,240
N,1802,0.81,120
TYPE,4
REAL,4
MAT,4
E,1801,17
E,1802,18
CSYS.1
NGEN,36,50,1801,1802,1,,10
EGEN,36,50,1081,1082,1
NCOMPR
NMODIF,1801,.,,,150
NMODIF,1802,.,.,.30
NMODIF,1803,.,,10,,150
NMODIF,1804,,,110,.30
NMODIF,1805,,,,20,,150
NMODIF,1806,,,,20,,30
NMODIF,1807,,,,30,,150
NMODIF,1808,, , 30,,30
NMODIF,1809,,,,40,,150
NMODIF,1810,,,,40,,30
NMODIF,1811,,,,50,,150
NMODIF,1812,,,,50,,30
NMODIF,1813,,,,60,,150
NMODIF,1814,,,,60,,30
NMODIF,1815,,,,70,,150
NMODIF,1816,,,,70,,30
NMODIF,1817,,,80,,150
NMODIF,1818,,,,80,,30
NMODIF,1819,.,,90,,150
NMODIF,1820, ,, 90,,30
NMODIF,1821,,,,100,,150
NMODIF,1822,,,,100,,30
NMODIF,1823,,,,110,,150
NMODIF,1824,,,,110,,30
NMODIF,1825,,,,120,,150
NMODIF,1826,,,,I20,,30
NMODIF,1827,,,,130,,150
NMODIF,1828,,,,130,,30
NMODIF,1829,,,,140,,150
NMODIF,I830,,,,140,,30
NMODIF,1831,.,.150,.150
NMODIF,1832,,,150,,30
NMODIF,1833,,,,160,,150
NMODIF,1834,,,,160,,30
NMODIF,1835,.,,170,,150
NMODIF,1836,,,,170,,30
NMODIF,1837,,,,180,,150

```
```

NMODIF,1838,,,180,,30
NMODIF,1839,,,,190,.150
NMODIE,1840,.,.190,.30
NMODIF,1841,.,.200,.150
NMODIF,1842,,,200,,30
NMODIF,1843,,,,210,,150
NMODIF,1844,.,,210,,30
NMODIF,1845,, , 220,,150
NMODIF,1846,···,220,,30
NMODIF,1847,,, 230,,150
NMODIF,1848,,,,230,,30
NMODIF,1849,,r,240,,150
NMODIF,1850,,,,240,,30
NMODIF,1851,,,,250,.150
NMODIF,1852,,.,250,,30
NMODIF,1853,,,260,,150
NMODIF,1854,,,,260,,30
NMODIF,1855,,,,270,.150
NMODIE,1856,.,.270,.30
NMODIF,1857,,,280,,150
NMODIF,1858,···,,280,,30
NMODIF,1859,.,.290,.150
NMODIF,1860,,,,290,,30
NMODIF,1861,,,300,.150
NMODIF,1862,,,,300,,30
NMODIF,1853,,,,310,.150
NMODIF,1864,,,310,,30
NMODIF,1865,,,320,,150
NMODIF,1866,,,,320,,30
NMODIF,1867,,,330,,150
NMODIF,1868,,,,330, 30
NMODIF,1869,,,,340,,150
NMODIF,1870,,,,340,,30
NMODIF,1871,,,,350,,150
NMODIF,1872,,,,350,.30
ET,5,10,,1
R.5.0.479369,1.0217556E-1
EX,5,30E6
TVPE,5
REAL,5
MAT,5
E,7,10
E.107,110
E,207,210
E,307,310
E,407,410
E,507,5]0
E,607,610
E,707,710
E,807,810
E,907,910
E,1007,1010
E,1107,1110

```
```

E,1207.1210
E,1307,1310
E.1407.1410
E,1507,1510
E.1607,1610
E,1707,1710
ET,6,14,,3
R,6,2.5853154E6
LOCAL,12,1,8.69,,1.75,,90
N.1873,0.81,240
N,1874,0.81,120
TYPE,6
REAL,6
MAT,6
E.1801.1873
E,1802,1874
CSYS.1
NGEN,36,2,1873,1874,1,.10
EGEN,36,2,1171,1172,1.
D.1873,ALL,,.1944,1
NMODIF,1873,,.,,150
NMODIF,1874,,,,,.30
NMODIF,1875,,,10,,150
NMODIF,1876,,,,10,,30
NMODIF,1877,,,,20,,150
NMODIF,1878,, ,20,,30
NMODIF,1879,,,30,,150
NMODIF,1880,,,,30,,30
NMODIF,1881,,,,40,,150
NMODIF,1882,,,,40,,30
NMODIF,1883,,,,50,,150
NMODIF,1884,,,,50,,30
NMODIF,1885,.,,60,,150
NMODIF,1886,,,,60,,30
NMODIF,1887,, , 70,,150
NMODIF,1888,,,70,,30
NMODIF,1889,,,,80,,150
NMODIF,1890,,,,80,,30
NMODIF,1891,,.,90,,150
NMODIF,1892,,,,90,,30
NMODIF,1893,,,100,,150
NMODIF,1894,,,,100,,30
NMODIE,1895,,,,110,,150
NMODIF,1896,,,,110,,30
NMODIF,1897,.,.120,.150
NMODIF,1898,,,,120,,30
NMODIF,1899,.,.130,,150
NMODIF,1900,,,,130,,30
NMODIF,1901,,,,140,,150
NMODIF,1902,,,,140,,30
NMODIF,1903,.,,150,,150
NMODIF,1904,,,,150,,30
NMODIF,1905,,,160,,150

```
```

NMODIE,1906,.,,160,,30
NMODIE,1907,,,,170,,150
NMODIF,1908,···,170,,30
NMODIF,1909,.,.180,,150
NMODIF,1910,.,180,.30
NMODIF,1911,,,,190,,150
NMODIF,1912,,,,190,,30
NMODIF,1913,.,,200,,150
NMODIF,1914,,,,200,,30
NMODIF,1915,···,210,,150
NMODIF,1916,,,,210,,30
NMODIF,1917,,,,220,,150
NMODIF,1918,,,,220,,30
NMODIF,1919,···,230,.150
NMODIF,1920,.,,230,,30
NMODIF,1921,,,,240,,150
NMODIF,1922,,, 240,,30
NMODIF,1923,,.,250,,150
NMODIF,1924,.,,250,,30
NMODIF,1925,.,260,,150
NMODIF,1926,.,,260,,30
NMODIE,1927,,,,270,,150
NMODIF,1928,,, ,270,,30
NMODIF,1929,,,r280,,150
NMODIF,1930,,, 280,,30
NMODIF,1931,,,,290,,150
MMODIF,1932,,, 290,,30
NMODIF,1933,, , 300,,150
NMODIF,1934,.,,300,,30
NMODIF,1935,,,,310,,150
NMODIF,1936,,,,310,,30
NMODIF,1937,,,320,,150
NMODIF,1938,, , 320,,30
NMODIF,1939,,,,330,.150
NMODIF,1940,,,,330,,30
NMODIF,1941,,,,340,,150
NMODIF,1942,,,,340,,30
NMODIF,1943,,,,350,,150
NMODIF,1944,.,.350,,30
ITER,-15

```

APPENDIX G

BEARING 非1-6 FINITE ELEMENT AND RIGID MODEL RACE FORCES FOR MOMENT, RADIAL, AND THRUST LOADS

TABLE VI
BEARING \#1 FINITE ELEMENT AND RIGID MODEL RACE FORCES FOR MOMENT, RADIAL, AND THRUST LOADS
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{Race Force (Lb)} \\
\hline & Finite Element Model & Rigid Model \\
\hline \multicolumn{3}{|l|}{Moment Load (Ft - Lb)} \\
\hline 11458.3 & 1153.77 & 1232.20 \\
\hline 22916.7 & 2245.56 & 2464.41 \\
\hline 45833.3 & 4438.36 & 4928.82 \\
\hline 68750.0 & 6635.76 & 7393.23 \\
\hline 91666.7 & 8816.68 & 9857.64 \\
\hline \multicolumn{3}{|l|}{Radial Load (Lb)} \\
\hline 3000.0 & 531.47 & 385.61 \\
\hline 15000.0 & 1801.25 & 1928.03 \\
\hline 30000.0 & 3572.81 & 3856.07 \\
\hline 50000.0 & 5934.27 & 6426.78 \\
\hline \multicolumn{3}{|l|}{Thrust Load (Lb)} \\
\hline 10000.0 & 513.85 & 339.62 \\
\hline 50000.0 & 1758.08 & 1698.09 \\
\hline 100000.0 & 3494.00 & 3396.18 \\
\hline
\end{tabular}

TABLE VII
BEARING \#2 FINITE ELEMENT AND RIGID MODEL RACE FORCES FOR MOMENT, RADIAL, AND THRUST LOADS
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{Race Force (Lb)} \\
\hline & Finite Element Model & Rigid Model \\
\hline \multicolumn{3}{|l|}{Moment Load (Ft - Lb)} \\
\hline 12187.5 & 1124.21 & 1171.40 \\
\hline 24375.0 & 2151.25 & 2342.79 \\
\hline 48750.0 & 4239.30 & 4685.38 \\
\hline 73125.0 & 6340.14 & 7028.38 \\
\hline 97500.0 & 8418.68 & 9371.18 \\
\hline \multicolumn{3}{|l|}{Radial Load (Lb)} \\
\hline 3000.0 & 629.32 & 364.17 \\
\hline 15000.0 & 1700.39 & 1820.83 \\
\hline 30000.0 & 3372.36 & 3641.65 \\
\hline 50000.0 & 5611.11 & 6069.42 \\
\hline \multicolumn{3}{|l|}{Thrust Load (Lb)} \\
\hline 10000.0 & 608.31 & 320.75 \\
\hline 50000.0 & 1667.76 & 1603.75 \\
\hline 100000.0 & 3272.04 & 3207.50 \\
\hline
\end{tabular}

TABLE VIII
BEARING \#3 FINITE ELEMENT AND RIGID MODEL RACE FORCES FOR MOMENT, RADIAL, AND THRUST LOADS
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{Race Force (Lb)} \\
\hline & Finite Element Model & Rigid Model \\
\hline \multicolumn{3}{|l|}{Moment Load (Ft - Lb)} \\
\hline 38791.67 & 2667.26 & 2809.84 \\
\hline 77583.33 & 5271.19 & 5619.68 \\
\hline 116375.00 & 7864.70 & 8429.52 \\
\hline 155166.67 & 10458.59 & 11239.36 \\
\hline 186200.00 & 12544.25 & 13487.23 \\
\hline \multicolumn{3}{|l|}{Radial Load (Lb)} \\
\hline 3000.0 & 615.83 & 345.01 \\
\hline 15000.0 & 1589.60 & 1725.07 \\
\hline 30000.0 & 3119.66 & 3450.14 \\
\hline 50000.0 & 5168.58 & 5750.23 \\
\hline \multicolumn{3}{|l|}{Thrust Load (Lb)} \\
\hline 10000.0 & 597.94 & 303.87 \\
\hline 50000.0 & 1589.72 & 1519.34 \\
\hline 100000.0 & 3110.22 & 3038.69 \\
\hline
\end{tabular}

TABLE IX
BEARING \#4 FINITE ELEMENT AND RIGID MODEL RACE FORCES FOR MOMENT, RADIAL, AND THRUST LOADS
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{Race Force (Lb)} \\
\hline & Finite Element Model & Rigid Model \\
\hline \multicolumn{3}{|l|}{Moment Load (Ft - Lb)} \\
\hline 16250.00 & 716.75 & 686.24 \\
\hline 32500.00 & 1333.11 & 1372.48 \\
\hline 65000.00 & 2570.15 & 2744.96 \\
\hline 97500.00 & 3834.04 & 4117.44 \\
\hline 104000.00 & 4097.72 & 4391.94 \\
\hline \multicolumn{3}{|l|}{Radial Load (Lb)} \\
\hline 3000.0 & 267.50 & 201.70 \\
\hline 15000.0 & 960.82 & 1008.49 \\
\hline 30000.0 & 1832.12 & 2016.97 \\
\hline 50000.0 & 2985.31 & 3361.62 \\
\hline \multicolumn{3}{|l|}{Thrust Load (Lb)} \\
\hline 10000.0 & 263.34 & 177.65 \\
\hline 50000.0 & 974.50 & 888.23 \\
\hline 100000.0 & 1856.05 & 1776.46 \\
\hline
\end{tabular}

TABLE X
BEARING ⿰⿰三丨⿰丨三一5 FINITE ELEMENT AND RIGID MODEL RACE FORCES FOR MOMENT，RADIAL，AND THRUST LOADS
\begin{tabular}{|c|c|c|}
\hline & Finite Element Model & \begin{tabular}{l}
（Lb） \\
Rigid Model
\end{tabular} \\
\hline \multicolumn{3}{|l|}{Moment Load（Ft－Lb）} \\
\hline 136458.33 & 4160.09 & 3489.46 \\
\hline 272916.67 & 8152.81 & 6978.92 \\
\hline 409375.00 & 12186.65 & 10468.92 \\
\hline 545833.33 & 16228.40 & 13957.85 \\
\hline 600416.67 & 17847.98 & 15353.63 \\
\hline \multicolumn{3}{|l|}{Radial Load（Lb）} \\
\hline 3000.0 & 1153.11 & 204.85 \\
\hline 15000.0 & 1554.26 & 1024.24 \\
\hline 30000.0 & 2066.43 & 2048.48 \\
\hline 50000.0 & 3011.67 & 3414.13 \\
\hline 100000.0 & 5880.68 & 6828.25 \\
\hline \multicolumn{3}{|l|}{Thrust Load（Lb）} \\
\hline 10000.0 & 1150.07 & 180.42 \\
\hline 50000.0 & 1471.76 & 902.11 \\
\hline 100000.0 & 1917.02 & 1804.22 \\
\hline 200000.0 & 3661.05 & 3608.44 \\
\hline
\end{tabular}

TABLE XI
BEARING \#6 FINITE ELEMENT AND RIGID MODEL RACE FORCES FOR MOMENT, RADIAL, AND THRUST LOADS
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{Race Force (Lb)} \\
\hline & Finite Element Model & Rigid Model \\
\hline \multicolumn{3}{|l|}{Moment Load (Ft - Lb)} \\
\hline 55766.67 & 1500.51 & 1328.19 \\
\hline 111533.33 & 2974.42 & 2656.38 \\
\hline 167300.00 & 4450.26 & 3984.57 \\
\hline 223066.67 & 5958.48 & 5312.76 \\
\hline 278833.33 & 7456.35 & 6640.95 \\
\hline \multicolumn{3}{|l|}{Radial Load (Lb)} \\
\hline 3000.0 & 196.06 & 182.09 \\
\hline 15000.0 & 810.62 & 910.43 \\
\hline 30000.0 & 1596.94 & 1820.87 \\
\hline 50000.0 & 2644.95 & 3034.78 \\
\hline \multicolumn{3}{|l|}{Thrust Load (Lb)} \\
\hline 10000.0 & 201.91 & 160.38 \\
\hline 50000.0 & 845.98 & 801.88 \\
\hline 100000.0 & 1647.97 & 1603.75 \\
\hline
\end{tabular}

APPENDIX H

Rating Program listing
```

program rating (INFUT,OUTFUT,DATA);
TYPE NUM=ARRAY[1.. 10]OF REAL;
VAR
BF, {ERINELL FACTOR}
C: {CONFORMITY}
GA, {CONTACT ANgLE - degrees}
CD, {CASE DEPTH - INCHES}
C1, {EQUATION 2E CONSTANT}
3, [EQUATION 2 CONSTANT}
D,
DC;
FC;
FD,
F5;
L,
M0,
MS,
PD,
R,
RB,
RD,
RP:
昉;
SF,
SFM,
GFR,
SF,
TD,
THETA,
TS,
*8;
Y5:
REAL;
N:
INTEGER;
NAME:
PACKED ARRAY[1. 50]0F CHAR;
DATA:
{OUTPUT FILE)
TEXT;
1:
g00LEAN;

```
PROCEDURE CLEAR;

```

 GLOGAL VARIAELES: NONE

```
VAR B: INTEGER;
EEGIN
    FOR \(8:=1\) TO 24 DO WRITELN;
END; \{CLEAR\}
PROCEDURE YESNO(VAR YEG: BOOLEAN);

```

 RETURNS TRUE FOR AN INPUT OF YES, yes, Y, OR y; RETURNS FALSE FUR AN INPUT
 OF NO, no, N, DR n. If THE USER INFUTS ANYTHINg ELGE HE IS FROMPTED io
 mAVE A VALID INPIT.
 global variakles: 0
 F****)

```
VAP
    Str : FACKED ARRAY[1..3] OF CHAR;
    Legal : g00LEAN;
BEGIN
    REPEAT
        Legal:=TRUE;
        READLN(Str);
        IF Str ='YES' THEN Yes:=TRUE
        ELSE IF Str='yes' THEN Yes:=TRUE
        ELSE IF Str='Y ' THEN Yes:=TRUE
        ELSE IF Str='y ' THEN Yes:=TRUE
        ELSE IF Str=? ND : THEN Yes:=FALSE
        ELSE IF Str='no ' THEN Yes:=FALSE
        ELSE IF Str='N ' THEN Yes:=FALSE
        ELSE IF Str=1n : THEN Yes: =FALSE
        ELSE
            SEGIN
                URITELN('*********************************************');
                HRITELN('Response must be YES, yes, Y, \(y, N 0, n 0, N\), or \(n^{\prime}\) );
                    WRITELN('Please enter a valid response ...');

                    Legal: =FALSE;
            END:
        UNTIL Legal;
END; \{PrOCEDURE YESNO\}
FUNCTION EXPT(Y, X:PEAL): REAL:

\section*{}
```

 RETURNS THE RESULT OF YAX
 global varIAELES: NUNE
    ```

```

VAR I: INTEGER;
BEGIN
IF X=0 THEN
EXPT:=1.0
ELSE
IF }Y=0\mathrm{ THEN
EXPT: =0.0
ELSE
IF YO THEN
EXPT:=EXP(X*LN(Y))
ELSE
IF ABS(X-ROUND(X))<1E-10 THEN
9EGIN
l:=TRUNC(X);
IF ODD(Z) THEN
EXPT:=-EXP(X*LN(-Y))
ELEE
EXFT: =EXF(X*LN(-Y))
END
END; {EXPT}
FUNCIION ARCCOS(X:NEAL):REAL;
{***
INUERSE COSINE FUNCTION, RETUPNS ARCCOS(X), -1.0<= X<=+1.0, IN rADIANG
gLOBAL VARIABLES: NONE
**)
COMST PI=3.1415926536;
BEGIN
If (X=1) Of (X=-1) THES
IF }x=1\mathrm{ THEN
ARCCOS: =0.0
ELGE
ARCOOS:=PI
ELSE
ARCCOS:=-ARCTAN(X/EQRT(1-X*X))+PI/2.0
END; {ARCOOS:

```

Froctoure zone (yar da; DM, thetazz:real);

```

 GALCULATE THE LOAD IONE
 GLOEAL VARIABLES: OM

```


```

8EGIN
THETAZ2:=CL/2.0*DM); {E[UATION 31)
IF ABS(THETAZ2)\=1.0 THEN
THETAZ2:=0.0
ELSE
THETAZ2:=ARCCOS(THETAZ2);
ENO; {ZONE}
PROCEDURE MDFOR(VAR CL,EK,DM:REAL;

```


CALCULATE THE MAXIMUM BALL DEFDRMATION

GLOBAL VARIALBES: CA,CI,THETA

\section*{}

VAR THEEG, THGUM, EXPTHSUM, THETAZONE, THETAZ1, THETAZ2, DTHETAZ1, DTHETAL2, SUM: REAL;

距IN
ITHETAL2: \(=0.0\);
THETAZ2: =THETA;
REPEAT
THETALI: =THETALZ
SUM: \(=0.0\);
TH8EG: \(=0.0\);
WHILE THBEG \(>=-\) THETAZ1 DO
THBCI: =THBEG - THETA;
THBEG: =THEEG + THETA;
THSUM: =THBEG;
WHILE THSUM : = THETAZI DO
BEGIN
EXFTHSUM: \(=\) EXPT (COS (THSUM) 2.5 );
SUM: \(=\) SUM + EXPTHSUM;
THSUM: \(=\) THSUH + THETA;
END;
DM: \(=\) EXPT(RK/(2.0*C1*COS(CA) 45 SM\(), 2.0 / 3.0) ;\) [EDUATION 34]
ZONE(CL, DM, THETAZD);
DTHETAZ1:=THETAZ2-THETAZ1;
If ABS(DTHETAZ1)=A8G(DTHETAZZ) THEK
IF THETAZL > THETALZ THEN
```

WGIN
THETAZ1:=THETAL2;
SIM: =0.0;
THEEG:=0.0;
WHILE THBEG >= -THETALI DO
THBEG:=THBEG - THETA;
THSEG:=THESG + THETA;
THSUM:=THEEG;
WHILE THSIM <= THETAZ1 DO
BEgit
EXPTHSUH:=EXPT(COS(THSUM),2.5);
SUM: =SUM + EXPTHSUM;
THSUM: =THSLM + THETA;
CND;
DM:=EXPT(RN/(2.04CHEOS(CA)*SUM),2.0/3.0); {ERUATION 34}
DTHETAZ1:=0.0;
END;
DTHETAL2:=DTHETAL1;
UNTIL AES(DTHTAZ1)<IE-3;
END; (MDFOR]
PROCEDURE BALLFDRCE(VAR DM,F:REAL);

```

    calculate the individual ball forces
    gLOBAL VARIABLES: CI

BETIN

END; \{BALLFORCE
PROCEDURE ADJUST(UAR KC:REAL);

    CALCULATE THE LLEARANGE ADJUSTMENT FACTOR
    blobal varlables: Fs, SFR

WAR KC1, \(\mathrm{KCO}, \mathrm{KCD}, \mathrm{CL}, \mathrm{DM}, \mathrm{Fi}, \mathrm{FA}, \mathrm{RK}, \mathrm{REAL} ;\)
BEGIN
    \(\mathrm{KC2}:=1.0\);
    REPEAT
        \(\mathrm{KCH}=\mathrm{KC} 2 ;\)
        RK: \(=K C 1 * F S / S F R ;\)
```

 CL:=0.0;
 MDPOR(CL, FK,DM);
 BALLORE(OH,F1);
 CL:TC;
 MDFDR(CL,RK,DM);
 BALLFORCE(U#,F2);
 KC2:FF1/F2; EEQUATION 45]
 KCD:=KC2-KC1;
 UNTIL ABS(KCD)<IE-3;
 N0: =(C2;
 END;

```

PROCEDURE OUTDATA;

\section*{}

\section*{gets uf the output file}

IGLOEAL VARIABLES: DATA


VAR FILENAME: PADKED ARPAY[1..17] OF CHAR; STATUS:INTEGER;
```

BEGIN

```
    CEAR;
    WRITELN(' GEAR PRODUCTS INC., TULSA, OKLAHOMA');
    WRITELN(' COMPUTER-AIDED ROTATION bearing rating');
    WRITELN:
    WRITELN('ENTER THE NA弑 OF THE OUTPUT FILE - ');
    READLN(TILENAME);
    BIND(DATA, FILENAME, STATUS);
    REHRITE(DATA):
    WRITELN:
END: (DUTDATA?

PROCEDURE INDATA:

intialite the grogram variables
GLDEAL VARIABLES: BF,D, DC,N,NAME, PD, SF,YS

```

EEGH
HRITELA('ENTER THE bEAKING NUMBER');
READLN(NAME);
WRITELN;
HEITELN('gEAEING NMMER - ',NAME);

```
```

 HRITELN;
 HRITELN('ENTEP THE BALL PATH DIAMETER IN INCHES -');
 EEADMOD;
 HITELM;
 MRITELN('GALL PATH DIAMETER = ',PD:7:3);
 WRITE!N;
 HEITELN('ENTER THE BALL DIAMETER IN INCHES -');
 READLN(D);
 WRITELN;
 MRITELN('BALL DIAMETER = ',0:6:3);
 WRITELN;
 MRTTELN(?ENTER THE RUMBER DF RALLS -1);
 PEADLN(N);
 #RITELN;
 WRITELN('NUMBER OT BALLS = ',N:3);
 HRITELN;
 HRITELN!ENTER THE DIAMETERAL CLEARANCE IN INCHES -');
 BEADLNDCO;
 WRITELH:
 MITELN('DIAMETERAL CLEARANOE = ',DC:8:6;;
 WRITELN:
 WRITELU('ENTER THE 4ATERIAL YIELD STRENGTH IN KPSI -');
 READLN(YS);
 WRITELN;
 HRITELN('MATERIAL YIELD STRENGTH = ', vs:8:1);
 YS:=Y5+1000.0;
 MRITELN;
 HRITELI(`ENTER THE BRINELL FACTOR -');
 MEADLN(BF);
 WRITELN;
 HRITELN('gRINELL FACTOR = ',BF:8:6);
 HRITELH;
 WRITELN(IENTER THE SAFETY FACTOR -'?;
 READLN(SF);
 WEITELN;
 WRITELN('SAFETY FACTOR = ',9F:4:2);
 WRITELN;
 END; {PROCEDURE INDATA}
PROCEDIRE CONSTANTS;

```

```

 calglate the program donstants
 GLOEAL VARIAELES: C,CA,CI,C2,D,N,PD, R,RP,THETA, XB
    ```

```

FEGIN
C:=1.08;
CA:=1.0471976;
C1:=2.19857*50RT((C*0.5*D)/(C-1));

```
    C2:=D*OS(CA)/PD;
    FC:=7450*EXPT(C/(C-1),0.41)*(EXPT(1-02,1.39)/(EXFT(1+02,1/3)))*
        EXPT(C2/COS(CA),0.3)*EXPT(0,1.8) & EXPT(N,-1/3); {EQUATION 2}
    [:=6%1/2.0;
8R:2/2.0;
RP:=R+[P|/2.0);
THETA:=(360.0/N) }4(3.1415927/180.0)
YE: = N: FPD;
IF (HES560.0) OR (RE\2370.0) THEN
BEGIN
    WRITELN('*** HARNING: NUMBER OF BALLS TIMES BALL PATH DIAMETER OUT');
```



```
    #RITELN(DATA,'*** HARNING: NUMEER OF EALLS TImES DALL FATH DIAMETER DUT;';
    HRITELM(DATA,' OF RANGE, RESULTS MAY bE INACCURATE');
    END;
END; {PROCEDURE CONSTANTS:
FROCDUPE STATIG;
```



```
    galculate the limiting static race forde
    GLOBAL VARIAELCS: BF,C,C2,D,FB,GF
```



```
BEGIN
{EQUATION 5)
    FS:=SQRT((4.0E10*EF*EXPT (0,4.0))/((1+(C2/(1-02)))*(1-1/0)));
    FS:=FS/SF;
END; {PROCEDURE STATIC}
PROCEDURE DNNAMIC;
```



```
    calcllate the limiting dynmic race force
    GLOBAL VARIAELES: FC,FD,GF
#***********************F*********************************************************
REGIN
    FD:=FC;
    {EqUATION 14}
    FD:=FD/SF;
ENd; PPROCEDURE DYNAMIC
FTUCEDURE gATING;
```

```
    calculate the gearing pating
    GLOEAL VARIABLES: CA,FD,FS,N,GFM,5FR,MB
```



```
VAR KC:REAL;
Ggin
    SFM:=18.5515*EXPT(XB,-0.8361); {ERUATION 43}
    MS:FF/GFM; {ERUATION 47]
    MD:=FD/SFM; {EQUATION 47)
    9FT:=(0.0464*88)/(-368.9887+3B); {EQUATION 44}
    ADJUST(%C);
    R5:=KC*FS/SFR; EEDUATION 483
    RD: =KC&FD/SFR; {EQUATION 40]
    TS:=N*O.95*FS*SIN(CA); {EQUATION 46}
    TD:=N*0.95FTDESN(CA); {EDUATION 46)
END; RFROCEDURE RATING;
proceduge LIFE;
```



```
    galculate gearmg life due to limiting gtatic race force
    GLOEAL VARIAELES: FC,FS,L
*********************************************************************************
GEIN
    L:=EXPT(FC/FS,3.0)*IEE; {EPUATION 1?
END; (PROCEDURE LIFE)
FROCEDURE HRITE;
{**子****************************************************************************
    h&ITE the data to the dutput file
    GLOEAL VARIABLES: BF,D,DC,MD,MS,N,PD,RS,RD,SP,TS,TD
```



```
VAR I:INTEGEE;
semm
    FOR I:=1 TO 3 DO
        WRITELN(DATA);
    MRITELN!' GEAR Products INC., tulSA, OKLAHOMA');
    WRITELN(DATA;' GEAR PRODUETS INC., TULSA, OKLAHOMA');
```

```
#RITELN(' COMFUTER-ADDED ROTATION GEARING RATING');
WRITELN(DATA,' COMPUTEP-AIDED FOTATION DEARIMG RATING'?;
HRITELN;
HEITELN(DATA);
WRITELN!
HRITELN(DATA,'
MRITELN;
MRITELN(DATA);
WEITELM!
#RITELN(DATA,'
WRITELN!'
WRITELN(DATA:'
WRITELN!
WRITELN(DATA,'
WRITELN('
HRITELN(DATA,'
MRITELN!'
Writelnomata,'
MITELI!
WRIEEMODATA;
MRITELN('
MRTELNIDATA;
HRITELN!
WRITELN(DATA;
#RITELN;
WRITELN(DATA);
MRITEN(!
WRITELNODATA,
HRITELN;
MRITELN(DATA);
MRITELN!'
WRITELN(DATA,'
WRITELN('
WRITELN(DATA,'
MITELH:
HRITELN(DATA,'
HRITELN!'
WRITELN(DATA,'
MRITELIN:
HRITELN(DATA,'
MEITELI!
HRITELN(DATA,'
WRITELN('
WITELN(DATA,'
HRITELM;
HEITELN(DATA);
END; RPRGCDURE OUTDATA)
```

PRDCDURE TAELE;

calculate the von miges stress and limiting case depth

```
    GLOBAL VARIAELES: FS,R,RE,品,SF
```



```
WAR A, B, EE,AE,NO,M,MF,N1,Z,FHI,FI,HI,N1,GI,OX,OXP,OY,OYP,M,SX,SY,SL;
    S1,S2,S3,SP,P,FI1,5I2,FIS,F14,FIS,FI6,HIL,HI2,HI3,HI4,HI5,HIG,
    TEMF;INC:REAL;
    I,J,K,L:INTEGER;
    CHECK:BOOLEAN;
    LAME:ARRAY[1..SIOF REAL;
BEGIN
    INC: =0.02;
    CHECK:=TRUE;
    WRITELN(' **CASE-CDRE CRUSHING DATA*Y');
    #RITELMDATA,' **CAGE-CORE CRUSHNG Dhta*F';
    MTTELN;
    HRITELN(DATA);
    W\mp@code{ITELO" Depth (in)',' ','von Mises Strese (psi)');};0,
    WRITELN(DATA,' Depth (in)',' ','von Nises gtress (psi)');
    A:=0.5*((1.0/RE)-(1.0/RP)); EEQUATION 3B?
    E:=0.5*((1.0/R8)-(1.0/R)); {EQUATION 35)
    F:=5.0EEEEETE-8/(A+B); [EOUATION BA)
    5:=0.5;
    AE:=0.75;
    N:=EE/AE; {EQUATIDN BE?
    FOE I:=0 T0 20 DO
        BEGIN
        Z:=INC:I;
        REPEAT
            KO:=KN;
            MP:=SQRT(1.0-5QR(ND)); [EDUATION G]
{EDUATION 3A)
```



```
        IF l=0.0 THEN
            PH1:=1.5707053
        ESE
            PHI:=ARCTAN(BE/(KO&Z)); [EQLATION 8B,
{EDuTIONG [1]
    FI1:=0.5*5QR(KP)*(0.5*PHI-0.25*STN2,0FPHD);
```



```
    0.03125*SIN(4.07FHH);
        FI3:=0.3125EMPT(KP,5.0)*(0.3125*HI-0.2083333SIN(2.0xPHI)+
            0.0260417*SIN(4.0*FHI)-0.1EEE657*COS(FHI)*EXPT(SIN(PHI),5.0));
```



```
            0.0227855*51N(4.0%PH1)-0.1458333%C05(PHI)*LXPT(SIN(PH1),5.0)-
            0.125400(PHI)*EXPT(GIN(PH1),7.01);
        FI:=FHI+FII+FI2+FI3+FI4;
        HIL:=0.5*50R(KP)*(0.5*PHI-0.25*SIN(2.0.FHID);
        H12:=0.125*SQR(COR(NP))*(0.375*PHI-0.25*SNN(2.0*FHD)+
            0.0312525IN(4.07PHI);
        HH2:=0.0625*XPT(KP,6.0)*(0.3125*FHI-0.2083333*5IN(2.0*FHI)+
            0.0260417*5IN(4.04PHD-0.1666657*00S(PHI)*EXFT(SIN(FHD),5.0))
```



```
        0.02Z78ESSSIN(4.0FPHO-0.1458333*COE(PHI)EXPT(SIM(PHI),5.0)-
        0.125*COS(PHI)*EXPT(GIN(PHI),7.0);
        HI:=PHI-HI-HI2-HIS-HI4;
{EQuATIONS 12}
```



```
        SI:=1.5707963-0.3926991%20R(KP)-0.073E311*50R(50R(NP))-
            0.0305796 EXPT(KP,6.0)-0.0167779EXPT(KP,9.0)-0.0105701*EXPT(KP, 10.0);
        KN:=5RRT(GI/(CB*(KI-GI)/A)+KI));
                {EQUATION 10}
            BE: =EXFT(3.0*KN*IIFF5*P/6.2831853,1.0/3.0); {EQUATION 38}
            AE:=T5/KN;
                {EQUATION SE`
    UNTIL ABS(KN-K0)<0.001;
EEQuATIONS 8B%
    0X:=(XN*2*(FI-HI)/8E)-0.5*(1-NL);
    OXP:=1.0+(NN*2*(HI/COR(KN))-FI)/EE)-(N1/GQR(NW);
```



```
    DF: =N1+(KN*2*(FI-HI)/EE)-L.0;
    H:=(2.0%W%/GOR(N)+GI);
        EquATIOR 8A)
cE|uATIONS 7%
    SX:=H*&C{(0.-0.3*OYP)/F;
    SY:=%#E?(0Y+0.3*DYP)/F;
    SL:=-0.5*M*BE*(1.0/N1-NL)/P;
    LAM2[1]:=5x;
    LAMET2]:=5Y;
    LAM2[31:=52;
    FOR K:=1 70 3DO
    BEGIM
        L:=K;
        FOR J:=L+1 T0 3 DO
        FGTM
            IF LAM2[J] >= LAM2[L] THEN
                BEGIN
                    TEMF:=LAM2[L];
                    LAH2[l]:=LAMR[J];
                    LAM2CJ1:=TEMF;
            ENO;
        END;
    END;
    31:=LAM2[11;
    G2:=LAM2[2];
    53:=[AM2[3];
    SF:=5QRT(CSQR(51-52)+50R(52-53)+5RR(SN-51)/2.0); [ENUATION 5)
    MRITEN(' ',2:5:3:' ',SP:9:1);
    WRITELNIDATA,' ',2:5:3,' ',G:9:1);
    IF CHECK=TPUE THEN
    BEGIN
        IT 5% < YS THEN
        gEGIN
            CD: = l;
            MECK:FALSE
        CND;
    END;
END;
```

```
    WETTELN;
    HETECHOATA);
    HRITLNO" Suggested Minimum Case Septh (in) = ',0D:6:3);
    WITENTOATA,' Suggesed Minimum Case Depth (in) = ',0060%;
    #EIELN(DATA);
    WRITELN(DATA);
END; {PROCEDURE TABLE:
```


BEGIN MAIN PROGAAH

Dith

olitata;
BRPEAT
MDATA;
onnctants;
STATIC;
DVMATC:
Fatlag;
LIFE;
WRIT:
TADE F_{i}
HETELH;
WELELMDO YOU WANT TO RUN THE FROGRAM AGAN (Y/N)?');
HETELM
YESNO:
UNTIL D=FALSE;
Close (DATA);
END.

vita 2

Urs Thomas Moeker
Candidate for the Degree of
Master of Science

Thesis: COMPUTER AIDED RATING OF LARGE DIAMETER ROTATION BEARINGS
Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in Tulsa, Oklahoma, July 13, 1962, the son of Joachim W. and Caecilia T. Moeker.

Education: Graduated from Nathan Hale High School, Tulsa, Oklahoma, in May 1980; received Bachelor of Science Degree in Mechanical Engineering from Oklahoma State University in May, 1985; completed requirements for Master of Science degree at Oklahoma State University in May, 1988.

Professional Experience: Project Engineer, United States Gypsum Company, Southard, Oklahoma, September 1985 to August, 1986. Research Assistant, Department of Mechanical Engineering, Oklahoma State University, February, 1987, to December 1987.

