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CHAPTER I 

INTRODUCTION 

Computer vision systems have become an integral part of many automated 

manufacturing processes. Visual sensors are used in many applications for robot 

arm positioning and parts placement, while inspection systems using object 

classification techniques are used in quality control to detect flaws in objects to 

ensure high quality products in many areas (1). Most of the vision systems used in 

quality control have not only proved to be faster but also more reliable than 

human inspectors. Besides their use for quality control, robots are used in the 

assembly line to assemble parts by making use of their ability to recognize and 

distinguish a part from a number of other parts and also their mechanical ability 

to assemble these parts. 

Restrictions do apply when it comes to using vision systems in real-time 

applications. One restriction is that some systems require the part or the object 

to be recognized be isolated from the others and also be completely visible (2), 

though there are systems which have overcome this problem (3) with reduced 

accuracy. The present paper deals with a method of classification of objects using 

a mathematical model whose parameters represent the shape of the boundary 

detected in digitized images of the objects. This research is based on a reference 

method by Susan R. Dubois and Filson H. Glanz (4). Improvements are suggested 

and investigated in this research. The mathematical model used is an 

autoregressive (AR) model whose parameters represent the shape of the 
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boundaries of objects invariant to the size and orientation of the object. The 

recognition techniques used in the research require the object to be isolated and 

complete! y visible. An investigation is performed on the ability to accurate! y 

classify a number of industrial as well as non-industrial objects. 

Overview 

Chapter II is an overview of recognition methods. It is divided into two 

parts. The first part describes several techniques to represent a closed boundary. 

The second part describes models and methods to extract invariant features of the 

image of the object from its boundary representation. Chapter III describes the 

approach used in the present research. It describes the reference method for 

estimation of the AR model parameters and the modifications on it to investigate 

improvement in the accuracy of classification. The results of the investigation 

and the comparision of these results with the prevous work by Dubois and Glanz 

(4) are presented in Chapter IV. Finally, in Chapter V, a summary of the work 

done by the author, his conclusions on the methods and future work which could be 

done furthering this research are described. 



CHAPTER II 

OVERVIEW OF RECOGNITION METHODS 

This chapter is divided into two parts. The first part describes several 

techniques to represent a closed boundary. The second part describes methods to 

extract features of the image from its boundary representation. These methods 

are invariant to scaling, translation, and rotation of the object. These feature 

extraction techniques could be used on any of the forms of boundary 

representation described here. Though there are other methods for object 

recognition, not using boundary representation, this chapter is restricted to only 

those methods which use boundary representation for classifying objects, this 

being the point of the present research. 

Representation of Closed Boundaries 

Most of the vision systems used in the present day are based on recognition 

techniques which use one of several ways to represent the detected boundary of an 

object. This section describes some of the different ways to represent a closed 

boundary. These techniques are restricted to two-dimensional shapes whose 

boundary does not cross itself~ The basic rule in the described methods is that the 

boundary is represented by a sequence of real numbers in a form much like a time 

series. The given boundary is approximated to be a polygon of N sides where N is 

chosen depending on the needed accuracy of the representation. Some of the 

techniques follow. 

3 
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Poly lines 

The method of polylines (5) is one of the simplest ways to represent a 

boundary. The boundary is seen here as a concatenation of line segments and is 

represented as a list of points x1, x2, x3, •• ., xN. If the first and the last points are 

the same, then the representation is that of a closed boundary. Polylines can 

approximate the the boundary to any desired accuracy. The accuracy depends on 

the number of break points, N. An algorithm (5) is given below for closed 

boundary approximation which would approximate a boundary giyen the number of 

break points. 

ALGORITHM for Polylines 

1) Select a starting point. 

2) For every point on the boundary, compute its perpendicular distance to 

the approximating polyline. For the starting point, just compute the 

distances of all the boundry points. If all the distances are within 

tolerance, exit. 

3) If the distances are above tolerance, pick the point farthest from the 

approximating polyline and make this the new break point and replace 

the relevant segment of the polyline with two new line segments. 

4) Apply the algorithm recursively to the new segments. Figure (1) shows 

the different stages of this implementation. 

Chain Codes 

Chain codes were developed by Freeman (5) and are often called Freeman 

chain codes. They consist of line segments that must lie on a fixed grid with a 

fixed set of possible orientations. The starting point is represented by its 
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location, and the other points on the boundary are represented by successive 

displacements from grid point to grid point along the boundary. A large number of 

grid points would mean a more accurate representation of the boundary. Figure 

(2) shows a closed boundary and its corresponding chain code. The grid is usually 

considered to be four- or eight-connected. The direction can be represented in 

two or three bits but the starting point (as an example) takes sixteen bits to be 

represented in a 256 x 256 image. But chain codes may be made position 

independent by ignoring the starting point. Chain codes can be normalized by 

choosing a starting point so that the resulting sequence of direction codes forms 

an integer of minimum magnitude. This could be achieved by choosing a starting 

point that has the maximum number of 'D's that follow the starting point. Periodic 

correlation provides a measure of the chain code similarity. The derivative of the 

chain code is useful because it is invariant under boundary rotation. The 

derivative is just another sequence of numbers indicating the relative direction of 

the chain code segments. Chain codes are also helpful in the calculation of 

parameters, such as the area enclosed by a closed boundary, by using the chain 

code information to determine the slope at the break points. Figure (2a) shows 

the direction numbers for a chain code (four-connected). Figure (2b) shows a 

boundary and the corresponding chain code. 

1jJ -s Curve 

The 1j!-s curve (5) is similar to the chain code representation. is the angle 

made between a fixed line and a tangent to the boundary of the shape. It is 

plotted against s, the arc length traversed. The 1/J-s function is periodic with a 

discontinuous break from 2rr to 0 as the tangent retains the angle of the starting 

point after traversing the boundary. Horizontal lines correspond to straight lines 

on the boundary whereas vertical lines correspond to a rapid change in direction 
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Figure 1. Stages in the algorithm for polylines. 
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Chain code: 11011000000303222233222 

Fi9ure 2. Chain code representation. 
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along the curve. Figure (3) shows the 1)!-s curve for the given boundary. This 

method is important in the sense that it forms the basis for several measures of 

shape. There is a disadvantage with this method in that the representation is very 

sensitive to the noise inherent in the fuzzy boundary. Angle time-series: Angle 

time-series representation (6) is a one-dimensional boundary representation. A 

time series describing the boundary is formed by a series of angles 81,e 2, 83, 8 4, 

••• , N which describes a polygon Ap A2, ••• , AN, having equal sides. The vertices 

of the polygon are points on the boundary of the object. The larger the number of 

sides of the polygon the better is the representation. 8i is the angle of the sector 

described by side A with respect to the centroid. The representation would be (8 i' 

i=l, ••• , N). Radius time-series: The radius time-series method (6) is the one used 

in the present research to represent a closed boundary. A time series is formed by 

a series of radius vectors rp r2, ••• , rN, which are the distances from the centroid 

of the closed boundary to N points on the boundary displaced by equal angles. The 

number of boundary points may be more than N if the shape is wide-sense 

convex. Figure (4) shows a boundary and the plot of the radius vectors as a 

function of "time". The representation would be (ri, i=l, ••• , N). 

8-Splines 

The 8-splines technique (5) is an interpolative technique of a piecewise 

polynomial interpolant. 8-splines are piecewise polynomial curves used in 

approximate representation of a boundary. Cubic polynomials could be used for 

splines as they are the lowest order in which a curvature can change sign. Spline 

approximations are accurate and the curve is guaranteed to lie between groups of 

n+l consecutive points, where n is the degree of the polynomial. Another 

advantage is that the interpolation is done locally and the boundary is 

approximated in a piecewise fashion. 



X 

>-

s::: 
0 

.j..) 

n:l 
.j..) 
s::: 
(1) 
Vl 
(1) 
s... 
a. 
(1) 
s... 
Vl 
I 

-? 

(1) 
s... 
::s 
0') 

LJ... 

8 



9 

6 

5 

t=O 

3 

2 

(a l . 

~--~--~~-~--~---4.----~--~--~ 

0 1 2 3 4 5 6 7 t 

(b) 

Figure 4. Radius time-series representation. 



10 

The above described methods make use of curve fitting or boundary 

following algorithms to describe the boundary. Some of the other methods which 

also fall in the above category are the strip tree techniques (5) and conic 

representation (5) of the boundary. A strip tree is a binary tree representation 

having the property that it allows efficient computations on its code albeit taking 

more memory space. A conic representation is a polynomial representation of 

degree two, having six parameters. Conic representations are terse and serve as 

good models for physical curves such as edges of industrial objects. 

Recognition Methods 

The previous section described several ways to represent a closed boundary. 

In this section the methods to extract invariant properties from these boundary 

representations are described. The two analytic methods which are described here 

are Fourier descriptors and the Autoregressive model. 

Fourier Descriptor T echnigue 

The Fourier descriptor technique (5, 7) represents the boundary of an 

object as a periodic function which can be expanded in a Fourier series. The 

discrete Fourier transform for a series is given by 

jkw 5 

x(5) = LXk e 0 

and the coefficients X are given by 

w = 21T/p 
0 

== l / x(5) 
-j kw 5 

e 0 d5 
p 0 

(2. I) 

(2.2) 
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The discrete Fourier transform performed on a sampled boundary 

representation such as the polylines, or chain code, or the w-s curve could lead to 

a set of features of the image related to the shape of its boundary. These 

features, which are given by the Fourier coefficients, could be used for 

classification purposes. Depending on the number of coefficients included, these 

descriptors give an accurate characterization of the shape. In most applications 

these extracted features need to be invariant to orientation and translation of the 

object. The properties of Fourier transforms make the coefficients invariant to 

these variations, so this technique provides a way of determining invariant 

features. The reconstruction of the boundary is possible, but if the number of the 

coefficients is finite, the resulting reconstruction may not be a closed boundary. 

The magnitudes of the Fourier coefficients contain the information about 

the shape of the object, and are invariant. The phase also contains information 

about the shape, but is affected by the orientation. The phase could be used as an 

invariant feature only after performing "phase normalization" which does not 

affect the magnitudes of the Fourier coefficients. As an example, Figure (5) 

shows a boundary, its sampled boundary list, and the real and imaginary parts of 

the discrete Fourier transform. 

Autoregressive Model 

An autoregressive model (4, 6) is the model which is used in the present 

research for description of the shape of a closed boundary. An AR model is a 

parametric equation which expresses each sample of an ordered set of data 

samples as a linear combination of a specified number of previous samples plus an 

error term. This model is described by Kashyap and Chellappa (6) who use it for 

shape storage and reconstruction. This model is given by 
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j= J t- J 
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(2.3) 

The AR model is a simple linear model whose coefficients describe the shape 

of the boundary of an object. The coefficients are obtained by fitting a linear, 

autoregressive polynomial to a numerical boundary representation of the object. 

The boundary representation gives us a way of representing the shape of an object 

as a vector of radius elements. It is a representative vector for the object, the 

length of this vector being N. Since only the coefficients of this model are used 

to describe the shape of an object, the length of the representative vector reduces 

from N, the number of radius vectors in the boundary representation, to m, the 

order of the model. m is always much less than N. Any of the sampled boundary 

representations described earlier could be used as the basis for this model. The 

radius time series method for boundary representation is used in the present 

res~arch. The parameters of the model corresponding to a given boundary are 

invariant to transformations on the boundary, such as translation, rotation and 

scaling. Hence this model is suitable for classification purposes. Maximum 

Likelihood (ML) and Least Squares (L2) techniques are usually used to estimate the 

model parameters. 

In the previous work considered by Dubois and Glanz (4), a traditional least 

square (L2) technique was used to estimate the model parameters. The boundary 
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representation data was assumed to be non-periodic. It is easily seen that the 

boundary representation is periodic. This is because the representation is that of 

a closed boundary and so it is periodic with period N, the number of radius vectors 

in the boundary representation. With the data considered to be periodic, the 

estimates of the model coefficients are expected to be more accurate and also 

have lower variance when coefficients are estimated for a number of samples of 

an object. This is being investigated in the present research. The distribution of 

the data samples in the boundary representation was not mentioned in the earlier 

work (4). If the radius data samples are Gaussian distributed, a least square 

estimate would give the best estimate of the model parameters. However, if the 

distribution of the radius data samples is Laplacian, a least absolute (Ll) estimate 

of the model parameters is the best estimate. This has also been investigated in 

the present research. 

In brief, the present research investigates the effect on the performance of 

the recognition system by choosing a least absolute (Ll) technique to estimate the 

model parameters considering the boundary representation data to be periodic and 

non-periodic over the boundary. The change in performance is also investigated 

when the data is considered periodic for a least square (L2) estimate. 



CHAPTER III 

THE APPROACH 

This chapter describes in detail the approach taken in the present research 

for classifying objects based on the parameters of an AR model which represent 

the shape of the boundary detected from the digitized image of the object. The 

AR model is described in the first section giving details about the parameters of 

the model, its invariant properties, and choice of the parameters which are useful 

for classification. The second section describes the boundary representation 

technique in detail including the algorithm describing its implementation. In the 

third section the estimation of the model parameters using the least square and 

the least absolute error methods is described. The solution to the model is 

described in detail. The fourth and the final section describes the recognition 

technique used in classifying the objects. The technique is a pattern recognition 

technique called the feature weighting method (10). Feature weighting is a 

method which emphasizes the common features of a set of samples of one class, 

and deemphasizes the uncommon features. 

The Autoregressive Model 

As mentioned before, the shape description technique is based on an AR 

model. An autoregressive model is a mathematical parametric equation which 

approximates the boundary of a two dimensional image of an object as a linear 

combination of sequential boundary samples plus an error term (4). It is the 

15 
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invariant properties of this model that make it useful for classification purposes. 

The data samples taken here form a series of radius vectors, each radius vector 

giving the distance between the centroid of the object and a boundary point. N 

such radius vectors represent the boundary of a particular object where each of 

the radius vectors is equally spaced with an angular difference of 2n/N radians. 

The model as given by Kashyap and Chellappa (6) is 

where 

= 

= 
m 

a. + . L: 1 e . r . + /i3 wt 
j= J t-j 

current radius length 

t 1 , ••• , N 

rt-j (j=l, ... ,m) previous m radius lengths 

e. (j=l, ... ,m) 
J 

m model order 

model coefficients 

B residual variance 

a. shape descriptor (proportional to shape size) 

= random sequence of independent, zero mean samples 

(3. 1) 

The variance of wt is unity and so the factor IS" transforms wt to a random 

variable with variance B (4). B is then the residual variance which is estimated as 

(3.2) 

The parameter a. (4), which is a descriptor of the shape size is given by 



17 

Cl. (3. 3) 

where r is the mean radius vector length. 

B is defined as the residual variance. It gives a measure of the error in 

prediction of the tth sample from m previous samples. Hence it can be taken as 

the noise term. a is proportional to the mean of all the radius values and so is a 

descriptor of the size of the shape. It gives us a measure of the average 

signal. a./ /r3 can therefore be interpreted as the shape signal-to-noise ratio (SNR). 

The coefficients of the model ( 81' 82, 83, ... , 8m) are correlated with the shape of 

the boundary. These coefficients determine the overall shape of the boundary. 

The boundary representation which is used here is insensitive to translation, 

rotation, and changes in the starting point. When there is a variation in the 

starting point by an integral multiple of 2TI/N, then the resulting series of radius 

vectors is circularly shifted by an amount of this change from the orignal. If the 

variation in starting point is not an integral multiple of 2 n/N, then there would be 

a variation in the series of radius vectors. If the value of N is large, the 

variations in the starting point not being an integral multiple of 2TI/N does not 

matter much because the error in the representation would be small. Hence, the. 

parameters of the AR model, which are derived from this time series, are 

insensitive to translation, rotation, and variations in the starting point. When the 

object is scaled, the time series of the radius vectors would be a similar, but 

scaled version, of the unsealed shape. Hence, the parameters are also insensitive 

to the size of the object a., which is proportional to the mean radius vector is 

dependent on the size of the object and so is S, the residual variance. However, 

the function a./~ the SNR, is independent of the shape size because of the similar 

variations in a. and s. Therefore, the vector ( ) which is independent to scaling, 



18 

translation, rotation and changes in the starting point of the boundary could be 

used as a feature vector for object classification purposes. 

Boundary Representation 

The basis for the AR model is one of the boundary representation 

techniques. Several techniques were discussed in the previous chapter. The 

technique used here is the radius time-series technique. The boundary is 

approximated by a series of lengths of N angularly equispaced radius vectors from 

the centroid to the boundary of the object. Figure (4.a) shows an approximation of 

the boundary shown, and Figure (4.b) shows the plot of the series of radius vectors 

versus time. The larger the value of N, the better is the approximation. The 

radius vector lengths are a function of the angle of projection 

t ,., 2'IT/N (3.4) 

where t = 1, 2, ••. , N and r(t) forms a one-dimensional approximation of the 

boundary. For convenience, the boundary is represented as a time series, t 

describing the time or the position of the radius vector in increments of 2 /N 

radians from the starting point. 

r(l) = r(l ,•, 2'IT/N) 

r(2) = r(2 -;'; 2'IT/N) ( 3. 5) 

r(N) = r(N ~~ 2'IT/N) 

Note that 

r(t) = rt (3.6) 

Since the boundary is closed, the time series is periodic with one rotation 
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from starting point to starting point of the boundary as the period. The 

restriction here seems to be that the radius function be single valued (i.e., the 

radius vectors must each intersect the boundary at only one point). If the radius 

function r(t) is multivalued, the boundary cannot be represented by an AR model. 

Hence, to avoid this restriction on boundries which are convex or wide-sense 

convex, an extended series of the radius vectors is created. The extended series 

of the radius vectors is called the unwrapped or the stretched series of the radius 

vectors. The function r(t) is still a function of the equispaced angles (Eqn. 3.4). 

Instead of having N lengths to approximate the boundary, the boundary is now 

approximated by a larger number of lengths. Figure (6.a) shows a wide-sense 

convex boundary. Figure (6.b) shows the multivalued radius time-series, and 

Figure (6.c) shows its unwrapped version. The unwrapped version is a single valued 

one-dimensional approximation of the boundary which can also be evaluated by the 

AR model. The new unwrapped version, represented by ru(i), is also obtained by 

measuring the distance between the centroid and the boundary, but the order of 

these lengths is not necessarily in the increasing angle of projection. The 

boundary is searched sequentially until a radius vector crossing is detected and the 

distance between the centroid and the boundary is measured at this crossing point 

and stored. The boundary is sequentially searched again for the next crossing 

vector and again the length is calculated and stored. This is repeated until the 

starting point is reached. Therefore, the radius vector lengths are stored in_the 

order of detection 'i' by the boundary follower. The period of the new extended 

series is Nu, which is longer than N of r(t). The observations for the radius vector 

lengths are still taken at equiangular spaced points, so variations in the starting 

point would still produce a circularly shifted version of the original boundary 

series. Thus the new boundary approximation would still have model parameters, 

(e, a/ 1§5, with the invariant properties described earlier. Therefore, the AR model 
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could be used to represent the boundaries of an unrestricted class of two

dimensional closed boundaries. 

Though the representation of the boundary seems simple as described above, 

some approximations and assumptions are made in its practical implementation. 

The unwrapped time-series always has a larger number of points than the wrapped 

boundary when the boundary is convex or wide-sense convex. The estimation of 

the model parameters would vary if the difference between N and Nu is large. 

If the boundary has segments which are straight lines then there is a chance 

that this line may be coincident with one of the radius vectors. If this were to be 

the case, the estimation of the model parameters would be biased since all the 

points on the boundary on this radius vector would have to be considered. A slight 

rotation of the object might result in all the points on this line being undetected, 

and the parameters would then be estimated from a lesser number of data points. 

To avoid this situation, the algorithm is modified so that only one radius vector

boundary intersection between consecutive points is chosen. This is shown in 

Figure (7). After point _£> 1 is detected, further points on the line segment are 

ignored. Though radius vector r3 crosses the boundary twice, only point Pz is 

detected because two consecutive points on the same radius vector are not 

allowed. The accuracy of the boundary representation could be improved by 

choosing a large value for the number of radius vectors to be projected from the 

centroid. One condition which is established when implementing this is that the 

boundary be traced in the same direction (clockwise or anticlockwise) for all the 

samples of the object. If the boundary tracing direction is not the same for all the 

samples, it could result in different representations of the same boundary. 

There is a loss of phase information by the method used here for unwrapping 

a wide-sense convex shape. This is because the change of sign of the angular 

change is not preserved. Though it is possible that the same extended series of 
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radius vectors could come from a different number of objects, it is unlikely that 

the object would have its centroid at the radius vector origin. 

Implementation 

In this subsection, the implementation of the algorithm for the boundary 

representation is discussed. The transformation is from the digitized video image 

to the extended series of radius vectors. 

The first step in this transformation is to obtain the digitized video image. 

A solid state cctv camera (Hitachi) was used with a macro lens (75 mm) to get an 

analog image. The continuous image picked up by the monochrome camera has 

various levels of gray ranging from black to white. The digitized image is 

displayed on a Panasonic monitor. The image frame has the dimension 240 x 256 

pixels. The gray level range is 0-255. The image is processed on an International 

Robomation and Intelligence, Inc. (IRI) machine vision system. 

Once the image is stored in an image frame buffer, the next step is to 

process the image to make it more useful for the present purpose. The image is 

segmented at a threshold for the gray level (which could be varied) so as to get a 

binary image. All pixels below this threshold gray level belong to the object and 

all the pixels above this gray level form the background. The image is now 

inverted so that all pixels belonging to the object have the gray level 255 (white) 

· and all the pixels of the background have a gray level 0 (black). Runlength coding 

is then performed on this binary image to find a starting point on the boundary of 

the image. Runlength coding is a pixel scan routine which is used for object 

location and feature extraction of a binary image. The result of this is a data 

structure containing the coordinate pairs (x,y) of the transitions from black to 

white and vice versa. Once a starting point on the boundary is located, the next 

step is to follow the boundary and find all the bounday points of the image. The 
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boundary follower/detector is called a "turtle" (5), and the algorithm for boundary 

following is called the turtle algorithm. This algorithm can only be used on binary 

pictures without any gaps in the object boundary. The turtle algotri thm is as 

follows. 

"TURTLE" ALGORITHM (5) 

1) Find a pixel on the boundary. Make this the starting pixel. 

2) If the current pixel is inside the object (white), then step left relative to 

the previous step direction. If the current pixel is outside the object 

(black), then step right relative to the previous step direction. Store 

the coordinates of the pixel if it is inside the object. 

3) Stop, if the boundary point is same as the starting one. Else, go to step 

2). 

The centroid of the boundary is then calculated. In the present research it 

was done using the momemt calculating routines present on the IRI system. This 

could also be done in another simple way. The x and y coordinates of the centroid 

are the averages of the x and y coordinates respectively of all the pixels which 

form the boundary of the object. 

Once the boundary and the centroid of the object are found, the final step in 

the transformation, from the video image to the series of radius vectors, is to find 

the series of radius vectors itself. An algorithm is given below which describes 

the steps in determining the series ru(i) (4). 

ALGORITHM for Finding Radius Vector Series 

l) Select the number of radius vectors N to project from the centroid. 

2) Find the magnitude of the radius vector slopes for the first quadrant. 

The boundary is followed sequentially, so the quadrant in which a radius 
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vector lies need not be determined. The calculations are performed as 

if all the boundary pixels lie in the first quadrant. Also, the magnitude 

of the slopes of the radius vectors is the same in all the quadrants. 

3) Begin with the starting boundary pixel (X1, Y 1). 

4) If Yi -Yen (centroid coordinates: Xcn' Yen) equals zero (i.e., the pixel 

lies on the same vertical as the centroid), the current pixel lies on the 

vertical radius vector. The radius length for this point is given by Xi -

Xcn· While the condition that (Y i - Yen = 0) is true for the next pixels, 

stay in this step without evaluating the radius length, as one on this 

radius vector is already found. Move to the next step when the 

condition fails. 

5) Determine the first quadrant sector in which the current pixel is 

located. First find the slope of the line joining the current pixel, P 1 in 

Figure (8), and the centroid 

Slope = 
X l - X en 
y 1 - y 

en 
(3.7) 

From the array of slopes in the first quadrant, find the two slopes between 

which the calculated slope lies. If the pixel is between the slopes of the last slope 

in the array and the vertical, then the two slopes bettween which the current pixel 

lies are the last slope of the array and zero. The two slopes, between which the 

calculated slope for the current pixel lies, define the sector. In Figure (8), 0 and 1 

form the sector for the starting pixel P 1' 

6) Calculate the x-coordinates, relative to the centroid, of the possible 

radius vector intersections, XTR Yl and XTRY2, where 
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XTRY1 = JY. - y I ~·< SLOPE(O) 
1 en 

( 3. 8) 

XTRY2 lv.- v I~·< SLOPE(1) 
1 en 

(3.9) 

Calculate the differences XDPl and XDP2 between the y coordinates of the 

possible radius vector intersections. These are references to the sector. 

XDP1 1x. - x I - XTRY1 
1 en 

(3.10) 

XDP2 = 1x. - x 1 - XTRY2 
1 en 

(3. 11) 

7) Take the next boundary pixel. Calculate XTRYl and XTR Y2 for the 

current pixel (P in Figure (8)). Calculate XDl and XD2 

XD1 Jx. - x I - XTRY1 
1 en 

(3. 12) 

XD2 = IX. - X I - XTRY2 
1 en 

(3. 13) 

Compare XDPl with XDl and XDP2 with XD2. If XDl and XDPl are of 

opposite signs then P is the approximate radius vector-0 boundary intersection. If 

XD2 and XDP2 are of opposite signs, then Pk is the approximate radius vector-1 

boundary intersection (as in Figure (8)). Check to see if the previous radius vector 

slope for this boundary intersection is not the same as the previous one. If they 

are not the same then find the radius vector length by the formula 

Length = Ax. :. x )2 + (v. - v )2 
1 en 1 en 

(3. 14) 

Store the length as a function of i, the order in which it was detected. If the 

slopes of the present and the previous radius vectors are the same, then do not 
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find the length. If in the first place, there is no sign change in XDl, XDPl and 

XD2, XDP2 then do not process this pixel but proceed to the next pixel and repeat 

this step. Proceed to the next step if a radius vector is stored or the pixel 

coordinates are the same as the starting pixel. 

8) Exit if all the pixels have been dealt with. Else, go to step (4). 

At the end of the implementation of this algorithm, the extended series of 

the radius vectors is obtained. One of the assumptions made in the 

implementation of this algorithm is that the value of N is an integral multiple of 

four. This is just a convenience so that there are equal points on the boundary in 

all four quadrants. An approximation is that the radius vector-boundary 

intersection is an approximate value because pixel coordinates are always 

integers. The programs for the algorithms in this section were written in C on the 

IRI machine vision system. 

Estimation of Model Parameters 

The model parameters are estimated by fitting the AR model to the 

observed time series (rl' r2, r3, ••. , rN). The AR model approximates each data 

sample by a linear combination of past data samples. By minimizing the sum of 

the squared differences or the sum of the absolute differences between the actual 

value and the linearly predicted samples, a set of coefficients for the model can 

be determined. This set of coefficients is unique if the estimate minimizes the 

least square error. If the estimates minimize the least absolute error, then the 

solution is not necessarily unique. In the analysis of speech signals this model is 

called the Linear Predictive Coding (LPC) model and the determined coefficients 

are called the predictor coefficients (8). An AR model with coefficients is 

defined as a system with the output 
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m 
rt• = .1:1 e. rt . 

j= J - J 
(3. 15) 

where rt1 is the predicted value. If rt is the actual value of the data sample at 

time t, then the error in prediction is given by 

= 
m 

rt - . L: 1 e. r . 
J = J t- J 

(3. 16) 

and the average squared prediction error is given by 

(3. 17) 

(3. 18) 

This is in the case of least square estimation. If the model parameters were to be 

estimated using the least absolute value technique, then the average prediction 

error is given by 

= L:ie(n)l 
n t 

= ( 3. 19) 

where rt(n) is a segment of the samples that has been selected in the vicinity of 

samples at time t. 

= rt+n (3 .20) 

Least Square Error Technique (8) 

The range of the summation, n, is usually a finite interval. To find the 

values of the model coefficients, the prediction error in the least square error 

technique has to be minimized. This is done by differentiating the error 



expression with respect to the model cofficients and equating it to zero. 

0. 
' 

1,2, ... ,m 

By doing sa, the following equation is obtained 

L: r (n-i) rt(n) 
n t 

m 
j~l ej L: rt(n-i) rt(n-j) 

The js obtained here are the values which minimize Et" 

Defining 

Equation (3.24) is obtained. 

lsism 

= 1,2, ... ,m 
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( 3. 21) 

(3.22) 

(3. 23) 

(3 .24) 

Now, m equations in m unknowns are obtained which have to be solved for 

minimizing the average square or the average absolute error for the segment e 

(n). Using the Equation (3.22), Equation (3.18) can also be written as 

(3 .25) 

As can be seen from the above equation, the total minimum error consists of a 

fixed component and a component which depends on the coefficients of the model. 

Now, to solve for the optimum coefficients the quantities <Pt(i,j) for 1 < = i, j < = m 

must be obtained. Then solving Equation (3.23) the values afej are obtained. 

In defining the limits of summation n, it was defined earlier that it is a 

finite interval. Two assumptions could be made here while solving for ejs· One is 

that the radius vector data samples beyond N are zero. This could be expressed as 

rt(n) = r(t+n) w(n) (26) 
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where w(n) is a window. A hamming window is chosen if the data samples are 

chosen non-periodic. The other assumption which could be made is that the radius 

vector of samples is periodic with period Nu, the length of the expanded series. In 

fact, in the present case, the boundary representation itself is periodic with period 

N, because the representation is that of a closed boundary. The window function 

could be a regular rectangular window. 

The advantage of considering data to be periodic is that we have more data 

which could be used in the estimation of the model parameters. This 

consideration is investigated in the present research. In the reference method (4), 

the assumption was that the data samples were non-periodic. The prediction error 

in the first few samples in the case of non-periodic data is large beacuse the first 

few samples are predicted from samples which are arbitrarily set to zero. 

Likewise, the prediction error would be large even at the end because zero is 

trying to be predicted from samples that are non-zero. A tapering window is thus 

preferred for non-periodic data samples. If the data samples are non-periodic, 

then 

which can also be written as 

In this case Bt(i,j) is the short time autocorrelation function Rt(i-j) given by 

= R (i-k) 
t 

(3.27) 

(3.28) 

(3. 29) 

Since the autocorrelation function is an even function the Equation (3.29) can be 

expressed as 

= R (ji-kj 
t 

( 3. 30) 



and the minimum squared prediction error takes the form 

= 
m 

Rt(O) - .2: 1 6. Rt(j) 
j= J 

Expressing Equation (3.31) in a matrix form we have 

IR,(O) Rt ( 1) Rt(m-1) e 1 
-1 
I 
I 

I Rt(1) Rt (m- 2) 62 I 
I 
I 

I 

~a~f lR:(m-1) 
. 

Rt(O) 

32 

(3. 31) 

Rt (I) l 
I 

Rt(2) I 
(3.32) 

Rt (m) 

This pxp matrix of autocorrelation values is a symmetric Toeplitz matrix 

and a number of algorithms are available for solving it. Solving the matrix 

equation, the model coefficients are obtained. One method for solving the system 

of equations given in matrix form by Equation (3.32) is Levinson's method (9) 

which was used in the present research. This method is used for solving a single 

channel of normal equations. One equation is present for every coefficient of the 

model to be solved. The algorithm takes advantage of the symmetric Toeplitz 

form of the autocorrelation matrix. All the terms along each diagonal are the 

same in this matrix. Thus, given the entries in the top row of the first column, 

the whole of the matrix is specified. 

The Toeplitz recursion involves determining the model with one parameter, 

using this to determine the model with two parameters and so on until the model 

is determined with the desired number of parameters. A benefit of using this 
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scheme is that the mean square error could be computed at each step of the 

process. A subroutine called 'EUREKA' which solves the least square normal 

equations for the coefficients of the AR model given in Reference (9) was used to 

obtain the coefficients of the model. The subroutine uses Levinson's method to 

determine the model coefficients. The function 'EUREKA' was written in C 

language on the IRI machine vision system. 

Least Absolute Error Technique 

The least absolute error criterion is as given in Equation (3.19). 

= L:je(n)l 
n t 

rlrt(n)- .~ 1 e. r (n-j)l 
n J- J t 

(3.33) 

One way the least absolute (L1) solution could be found is by using linear 

programming (10). In this method the variables of an underdetermined system of 

equations is allowed to take on only positive values. With this condition, a simple 

procedure called the simplex method (11) is used to obtain a minimum of a linear 

objective function. One problem which is faced when using the linear 

programming approach is that it requires an underdetermined system of equations. 

Hence, if this approach is used, the formulations of the linear prediction equations 

will have to be modified. 

Another general solution to the linear prediction equations is the residual 

steepest descent (RSD) algorithm (12). The basic problem here is to minimize E, 

where the linear prerdiction equations are given in the matrix form as seen below. 
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= (3. 34) 

8 
1 m · ,_ r'j 

·- Q 

rt' is the predicted value of the radius vector rt at time t. The 8's are the m model 

coefficients, N is the number of radius vectors in the boundary representation and 

Q = N+M-1 

Symbolically, Equation(3.34) can be written 

RG= R' 

This equation is solved for 8's using the following RSD algorithm. 

ALGORITHM (RSD) (13) 

(3. 35) 

(3.36) 

1) Calculate the initial value of 8. A least square solution could be used as 

an initial estimate. 

2) Let k=O (k is the iteration counter). ITERATE OVER k. 

3) Calculate e(k) = (R S(k))- R'. e(k) is the residual vector. 

4) Let ,1 (k)= SGN(ei(k)) i=1, •• ,q). This means to perform the signum 

operation on every element of e. If an element is zero, +1 or -1 is 

assigned arbitrarily. 

5) Minimize E(k) w.r.t.L'lk, where 

E(k) = II ~(k) - L'lk R (RtR)-l 'l"(k) II 

This can be solved in a least absolute normed sense or using the 

iteratively reweighted least squares (IRLS) (12 technique. 

6) Let 8'(k+1) = 8(k) - L'lk * (R tRr1 * R t1(k). 
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7) If L'lk, the tolerance is sufficiently small, then the solution has 

converged; otherwise go to step 3). 

This algorithm does not converge for a true least absolute error solution in 

all cases. However, it usually converges to a solution within acceptable limits. 

Recognition Technique (14) 

Pattern recognition consists of two major tasks. One is to characterize the 

category or the class to which a set of events belongs and the second is to decide 

the category or the class to which a new described event belongs. In terms of 

characterization, it involves the construction of regions in the N-dimensional 

space in which the samples of a class are contained. The second task involves 

classifying the region or the class to which a new input belongs. 

In most of the object recognition schemes, each of the objects to be 

recognized forms a single class, and a number of samples (f m' m=l, ••• , M) of the 

features for the object (class) are determined. The similarity of a new event v to 

a class is measured by the closeness of v to every one of the samples taken in a 

particular class(f m). The similarity is represented by S and is taken as the mean 

square 'distance' between v and the class of events (f m). f m is the mth sample in 

class F. The similarity S( v,(f )) of a new event v and a set (f m) is mathematically 

given as 

S(v, {f }) 
m 

(3.37) 

The distance measurement is left unspecified. The conditions which d() must 

satisfy are 

d(a,b) d(b,a) (3.38) 

d(a,c) ~ d(a,b) + d(b,c) (3.39) 
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d(a,b) ;:: o (3. 40) 

d(a,b) 0 iff. a=b (3.41) 

Feature Weighting T echnigue 

Consider the distance measurement as given by Equation (3.42) 

= 
IN 2 2 l: 1 W (a -b ) , 

n= n n n 
d(a,b) (3.42) 

where N is the dimension of the space. If the vectors are expressed in terms of an 

orthogonal coordinate system ( 8 n), then it might be possible that the events 

represented by different coordinate directions need not be equally important. 

This is the concept of feature weighting. W n represents the weights of the 

features in each of the N dimensions. It is reasonable, in comparing two points 

feature by feature, that features with decreasing significance be weighted with 

decreasing weights W n· Equation (3.42) expressed in an alternative form would be 

d(a,b) = (3.43) 

This definition of the distance measurement does satisfy the Equations (3.38 -

3.41). The weighting factor W n is similar to a linear transformation of the signal 

space which involves only scale factor changes of the coordinates. This is shown 

in Equation (3.44) where a' and b' are vectors obtained from a and b by a linear 

transformation denoted by matrix W. 

a 
N 
l: a 8 

n=1 n n 

(a' - b') 

N 
b = l: b 8 

n n= 1 n n 

(a- b) W (3.44) 



37 

The euclidian distance between a' and b' is given by 

(3.45) 

If the linear transformation involves only scale factor changes of the coordinates, 

only the elements on the main diagonal of the matrix W are non-zero. In this case 

= (3.46) 

This condition is used to minimize the mean square distance between the set of 

points. The formulation of the minimization is given by 

= 1 ~ ~ ~ w2 ( f - f ) z 
M(M-1) p=l m=l n=l nn mn pn = minimum 

This can be evaluated under two constraints. These two constraints are 

N 
IT W n=l nn 

and 

(3.47) 

(3. 48) 

(3.49) 

The constraint in Equation (3.48) is so considered that each weight w is a 

fractional value of the feature n which it weighs. It denotes a fractional value 

assigned in the total measure of the distance of the vector. The disadvantage of 

this constraint is that it does not guarantee that a shrinkage is disallowed in the 

size of the signal space. This shrinkage would not change the orientation of the 
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points to each other which is what is required. The constraint in Equation (3.49) 

states that the volume of the space is constant. The minimization when worked 

out with both the constraints would give similar results. With the constraint given 

in Equation (3.48) the values of the feature weights which would minimize the 

distances would be 

w = 
p 

= (3. 50) 
nn 2 2 N 1 (J z n (J 2 n p=1 

(J 
p 

where is the sample variance of the coefficients in the n direction. With the 

constraint given in Equation (3.49) the resulting feature weights are given by 

w = (3.51) 
nn 

If the variance of a coordinate of the ensemble is large, then the 

corresponding wnn is small which means that a small weight is to be given to the 

measure of the distance with a large variation. If the variance of the magnitude 

of a coordinate is small, then this would mean that feature is accurately obtained 

and so its weighting factor must be large. This might mean that if the variance is 

zero then the corresponding weight for that coordinate would be set to one and 

the rest to zero. This would surely create problems. To avoid overweighting a 

coordinate, a higher weighting is given to a feature which is alike in its class and 

differing from those of the other categories. The feature weighting coefficients 

can be thought of as descriptors of the category whose feature they weight. The 

similarity function between a new vector p and a category is then given by 
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S(p,f ) 
m 

N N p -f2 
( CJ ) 2/ N [ ( n n) ] pU 1 n n~ 1 cr + N 

n 
(3.52) 

When a new vector is to be classified, the similarity function for each of the 

classes is evaluated. The class closest in distance to the new vector is then 

assigned as the class to which the new vector belongs. 



CHAPTER IV 

TESTS AND RESULTS 

This chapter describes the tests that were conducted in order to investigate 

the effectiveness of the autoregressive model coefficients for classification. The 

primary reason for using these model coefficients for classification is that they 

are invariant to scaling, translation, and rotation of the object. The boundary 

representation obtained from the 2-D image of an object is invariant to the above 

mentioned variations, and since the boundary representation forms the basis for 

the AR model, the coefficients obtained for this model too are invariant. The AR 

model coefficients essentially help in reducing the size of the descriptive vector 

for a shape. The tests conducted are basically to 

i) check the accuracy in classifying a test pattern vector to one of the 

classes in a set of classes, and 

ii) analyze the results by comparing the recognition performance using the 

four different methods to estimate the model coefficients. The 

following sections contain the test procedures and an analysis of the 

obtained results. 

Test Procedures 

The algorithm used here classifies an object based on the description of the 

shape of its boundary. Objects having similar shapes as well as objects having 

different shapes were chosen for the present study. The shapes of seven objects 

40 
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consisting of industrial and non-industrial objects were cut out of black 

construction paper and used as a pattern set of shapes. Two non-industrial shapes 

used were the hand-written English alphabetic characters 's' and 'n'. They were 

chosen to study the performance and evaluate the potential of the recognition 

scheme being used for character recognition. Figure (9) shows the shapes of the 

objects which formed the pattern set for the tests. The inner boundary 

information was not used as, the "turtle" algorithm described in Chapter III 

follows only the outer boundary of the binary image of an object. 

To obtain samples for each object, the coefficients of the AR model were 

determined for different orientations of the object. Each object was oriented in 

six different positions (i.e., objects were rotated with a reference point on the 

boundary at 0°, 90°, 180°, 270° and two other arbitrary angles with respect to a 

referance line in the plane). The size of each image of the object was kept 

constant 8nd was approximately 1.5 times the actual size of the object. The 

boundaries of the object at each of these orientations were approximated by 64 

angularly equispaced radius vectors drawn from the centroid of the object. This 

number was chosen arbitrarily and it seemed to b~ a reasonable number for 

performing computations in the algorithm. 

One of the objectives of the study was to compare the the present research 

with the results obtained in earlier work (4). The data is therefore collected in a 

manner similar to that described in (4). For each of the six different orientations, 

the coefficients of the model were determined by running the AR model on the 

boundary representation of each of the samples. The first step before going into 

the routine to get the boundary representation was to obtain a binary image from 

the digitized gray level image of the object. The binary image was obtained by 

thresholding the initial image at a set gray level (128). The image was thresholded 

at the same gray level for all the samples of the object while determining the 
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model coefficients. This was done to avoid any bias in calculating the model 

coefficients. 

Depending on the orientation and the shape of the object, the number of 

radius vectors representing the boundary shape for each stayed within +-5 of the 

number of radius vectors for any of the representations in that class. For one of 

the objects which had an elliptical shape the number of radius vectors was the 

same at each of the orientations and was equal to the number of radius vectors 

projected from the centroid. For objects having two or more boundary - radius 

vector intersections and whose centroid is enclosed within the boundary of the 

closed object, the number of radius vectors which represent the boundary is larger 

than the number of radius vectors projected from the centroid. For objects having 

centroids outside the closed boundary and with two or more radius vector -

boundary intersections, there is a chance that the number of radius vectors 

representing the boundary is less than the number of radius vectors projected from 

the centroid. Figures (lOa and b) show examples of two such shapes whose 

boundary is represented by less (a) and more (b) radius vectors than those 

projected from the centroid. 

The coefficients of the AR model are found using the four following 

approaches. 

i) Least square error technique considering data to be periodic. 

ii) Least square error technique considering the data to be non-periodic. 

This is the referance method. 

iii) Least absolute error technique considering the data to be periodic. 

iv) Least absolute error technique considering data to be non-periodic. 

The coefficients of the model were obtained for all the objects at each of 

the six orientations using the above four approaches. The coefficients are 

expected to be similar for an object at different orientations but using the same 
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approach to estimate the model parameters. The coefficients form clusters, in a 

weighted m+l dimensional space, which are at different points in space for the 

different objects. A test pattern vector is classified by finding the euclidian 

distance between the test pattern vectors and the cluster of coefficients of the 

sample pattern vectors of a class. The test vector is labeled to the class to which 

the euclidian distance is the least. The test pattern vectors for conducting the 

tests are generated using the same shapes. Two sets of test pattern vectors were 

generated. One set of the test vectors was obtained by adding noise to the 

boundary representation. This was done by varying the threshold at which the 

initial image was transformed to a binary image. The threshold was selected so 

that a rough boundary is seen in the binary image. No effort was made to 

characterize this additive noise. The other set of test vectors was generated in 

the normal way by thresholding the image at the same level as the sample pattern 

vectors but at different orientations. Two samples of test vectors were generated 

for the first set of test vectors per class and six samples of test vectors were 

generated for the second set of sample vectors for each class. 

The sample pattern vectors and the test pattern vectors were generated for 

all the objects using the four different approaches. The performance and the 

analysis of the results are discussed below. 

Results 

Table I shows the performance of the recognition system for the model 

coefficients determined by the least absolute error technique. Table II shows the 

performance of the recognition system for the coefficients determined by the 

least square error technique. The results, as seen in Tables I and II, do indicate 

that the AR model parameters are useful descriptors of the shape of the objects, 

and the boundary representation which was considered in the present study does 
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TABLE I 

RECOGNITION PERFORMANCE (LEAST ABSOLUTE 
ERROR TECHNIQUE) 

CLASSIFIED AS • 
DATA CLASS 

norm. data ' noisy data 
6 sam./cls. class. 2 sam.jcls. 
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TABLE II 

RECOGNITION PERFORMANCE (LEAST SQUARE 
ERROR TECHNIQUE) 

CLASSIFIED AS • 
DATA CLASS 

norm. data ' noisy data 
6 aam./cls. class. 2 sam.jcls. 
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indeed retain enough information for the estimation of these model parameters. 

The results do depend on the order of the model but not to a very large extent. 

The performance is expected to improve as the model order is increased in the 

range 3 to 6. For model orders lower than 3 the error in prediction, of the data in 

the boundary representation, would would be large because of lesser coefficients 

to predict from. Thus, the coefficients will not be an accurate representation of 

the object, so the performance of the recognition system would be bad. For model 

orders higher than 6 some of the last model coefficients take on very low, noisy, 

values. The predicted values of the radius vector would thus contain the noise 

generated by the low values of the model coefficients. Hence, the performance of 

the recognition system would likely worsen. In the present research only third and 

fourth order AR models were considered. Since the representative vector for an 

object contained the coefficients of the AR model and also the extra signal-to

noise ratio term, the order of the pattern vectors was one higher than the AR 

model orders used. The correct classification percentages were in the range 80% 

to more than 98%. Table III shows the variance of a coefficient for each of the 

coefficients of the sample pattern vectors, for all the classes, for the two orders 

of the model considered, and for periodic and non-periodic data using the least 

absolute error technique. Table IV shows the same results but considering the 

least square error technique. 

Observing Tables I and II, the following conclusions were reached. 

Least Square Vs. Least Absolute Technique 

On the whole, using the least square error technique to estimate the model 

parameters yields a better recognition abilitiy compared to using the least 

absolute error technique. This conclusion seems to be independent of the order of 

the model and also the consideration of data to be periodic or non-periodic while 



ORDER 

3 

3 

4 

4 

TABLE III 

AVERAGE VARIANCE OF COEFFICIENTS (USING 
LEAST ABSOLUTE ERROR TECHNIQUE) 

DATA CLASS AVERAGE VARIANCE 

1 0.007:266 

2 0.033540 

3 0.012803 

periodic 4 0.003828 

5 0.016625 

6 0.006567 

7 0.004543 

1 0.009934 

2 0.039232 

3 0.029229 
non-

periodic 4 0.005691 

5 0.021926 

6 0.008389 

7 0.009009 

1 0.005371 

2 0.046345 

3 0.009486 

periodic 4 0.004406 

5 0.021308 

6 0.005144 

7 0.005563 

1 0.006647 

2 0.056000 

3 0.022077 
non-

periodic 4 0.008964 

5 0 •. 027277 

6 0.007387 

7 0.006941 
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TABLE IV 

AVERAGE VARIANCE OF COEFFICIENTS (USING 
LEAST SQUARE ERROR TECHNIQUE) 

ORDER DATA CLASS AVERAGE VARIANCE 

1 0.001461 

2 0.017038 

3 0.005277 

3 periodic 4 0.003863 

5 0.016558 

6 0.005321 

7 0.010353 

1 0.002637 

2 0.020380 

3 0.024858 
non-

3 periodic 4 0.010113 

5 0.014963 

6 0.011629 

7 0.011557 

1 0.003456 

2 0.031139 

3 0.004136 

4 periodic 4 0.004077 

5 0.025615 

6 0.004558 

7 0.014382 

1 0.004346 

2 0. 067145 

3 0.019588 
non-

4 periodic 4 0.017221 

5 0.028607 

6 0.002976 

7 0.023866 

50 



------

51 

estimating the model coefficients. The average difference in percentage 

recognition is about 8%. But, looking at the tables it is seen that object 3 was 

misclassi fied as object 4 about 50% of the times while using the least absolute 

error technique. Neglecting the classification of this object, it is seen that the 

recognition performance using the least absolute technique is comparable with the 

performance using least square error technique, though the least square technique 

still performs better than the least absolute technique. The average difference in 

percentage recognition is about 5%. The results here would seem to indicate that 

the probability distribution function of the data is probably Gaussian. This is 

because the best solution for Gaussian distributed data is obtained from the least 

square estimate. This is just an hypothesis and no further tests were conducted to 

verify or oppose it. Looking at the classification of the noisy test vectors, the 

performance using both methods is comparable except for the misclassification of 

object 3 as 4. Though only two test vectors per class for the "noisy" case were 

classified, it can be seen that the order of the model did not seem to matter. The 

performance was above 85% for both order models. 

Periodic Vs. Non-Periodic Assumption 

The second analysis which could be made is a comparision of the recognition 

performance by estimating the model parameters, considering data to be periodic 

and non-periodic, independent of the order of the model and the coefficient 

estimating technique. It is seen that estimating coefficients considering data to 

be periodic yields better recognition ability compared to the non-periodic case. 

The average difference in percentage recognition is about 8%. This is true for the 

classification of the "noisy" test vectors as well. The average difference in 

percentage recognition is about 7%. The results seen here are as expected. This 

is because periodic data will have more information about the shape of the object 
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from which the model parameters are estimated. 

Third Order Vs. Fourth Order 

The third and final analysis which could be made is a comparision of the 

recognition performance by the order of the model independent of periodicity and 

the estimating technique. It should be remembered that the order of the pattern 

vectors is one higher than the order of the AR model. There is not much 

difference in the performance. The average difference in percentage recognition 

is about 3%. Hence, in a practical implementation of the recognition system, a 

third order AR model should suffice. All the results described above could be 

verified by examining Tables III and IV. These tables show the variance of the 

coefficients for all classes, for the different approaches to estimate the model 

parameters. Some of the observations are discussed below. 

l) The average variance of the coefficients is less for the least square 

error estimates compared to the least absolute error estimates. This 

holds true for 19 out of the 28 pos~ible comparisions (7 classes, 2 model 

orders, and periodic and non-periodic data). A lesser variance in the 

estimate would mean the estimates are better clustered and probably 

more accurate. The lesser variance could als.o result from the 

numerical procedure used to calculate the least absolute error model 

coefficients. It is iterative, non-exact, and the solution is also not 

necessarily unique. This explains the results in the first comparision 

above. 

2) The average variance of the coefficients is lesser for the estimates 

considering periodic data compared to non-periodic data. This holds 

true for 26 of the 28 possible comparisions (7 classes, 2 model orders, 

and 2 techniques to estimate the coefficients). This also explains the 



53 

better performance when using periodic data. The average variance 

cannot be compared for different model orders because of the unequal 

number of coefficients from which the variance is determined. 



CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

The paper compares the performance of a recognition scheme, using AR 

model parameters as shape descriptors, described in the present research with a 

reference method in (4). The model differs from the reference method in the 

technique of estimating the model parameters. It is shown in the present research 

that estimating the model parameters considering the data to be periodic would 

result in better recognition abilities of the recognition system. It is also shown 

that, neglecting the misclassification of object 3 as 4, the performance of the 

system using least absolute error techique to estimate model parameters is 

comparable with the system using least square error technique. In all the 

methods, the recognition accuracy was in the range 80% to more than 98%. This 

can be categorized as good performance considering the following advantages 

offered by this system. 

i) The number of parameters required to describe and recognize an 

object is very small. It is just a function of the order of the AR 

model •. 

ii) The storage space required for describing an object is small. This is the 

memory space required to store the model coefficients. 

iii) The time needed to classify a test object is small. 

iv) Efficient methods exist to calculate the model parameters. 

v) Reconstruction of the shape of the object is possible (6). 
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Future work which could be done to improve the present research includes 

i) Improving the boundary representation technique. Inner boundary 

information (if any) is not represented in the present research. 

ii) The number of radius vectors projected from the centroid is presently 

fixed at 64. A rule could be formed to find the optimum number of 

radius vectors for the best boundary representation. 

iii) Techniques could be considered which would help in clustering the 

coefficients of the model more closely, resulting in a better 

performing recognition system. 

iv) Further work could also be done in studying the effects of adding 

different types of "noise" to the boundary representation, and from it 

determining an estimation technique for the model coefficients which 

would produce even better recognition performance. 

v) Investigate the usefulness of the AR model coefficients in the 

reconstruction of the shape of the boundary of an object. 
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