
AN IMPLEMENTATION OF A

DATA STRUCTURES

DISPLAY SYSTEM

By

WILSON LEE
\\

Bachelor of Science in Arts and Sciences

Oklahoma State University

Stillwater, Oklahoma

1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1988

thesis
lqg-t .
L..ttil..'
~ r· ;l..

Oklahoma State Univ. Lihral'Y

AN IMPLEMENTATION OF A

DATA STRUCTURES

DISPLAY SYSTEM

Thesis Approved:

TheSlS Adv1ser

~~

Dean of the Graduate College

ii

PREFACE

The Data Structure Display System will be a helpful

tool for students in an introductory level course in data

structures. The system of programs is made up of many

functions which I hope will be reusable code.

I wish to express sincere appreciation to all the

people who assisted me in this study. I am especially

grateful to my major adviser, Dr. D. D. Fisher, for his

encouragement and .guidance throughout my stay here at

Oklahoma State University.

Appreciation is also extended to Dr. J. P. Chandler

and Dr. K. M. George for serving on my graduate committee

and providing suggestions and support.

I also wish to thank Dr. G. E. Hedrick for his guidance

and for agreeing to be on the committee for my thesis

defense.

Many thanks go to my parents, Soon Aik and Chin Sen

San Lee, and my wife, Bee Geok, for their patience and

never-ending support.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

II. LITERATURE REVIEW

Data Structures • • • • • • • • • • • • Source Language And Translation
Intermediate Representation Language • • .
User Interface ••

I I I. SYSTEM OVERVIEW
IV. SYNTAX AND SEMANTICS •

v.

Algorithm Specification Language(ASL)
Intermediate Representation Language

IMPLEMENTATION DESIGN
.

General Storage Structure • • • • • .
Main Driver • • • • • • . • • • • • ••
Language Translation • • • . . • • • •
Pseudo-Code Interpretation ••••
Graphics Driver ••••••
Two-Screen Mode • • • • • • • • • • • • • •

VI. SUMMARY, CONCLUSIONS, AND FUTURE WORK

A SELECTED BIBLIOGRAPHY
APPENDIX A - SAMPLE RUN OF THE SYSTEM

APPENDIX B - SAMPLE IMPLEMENTATION STRUCTURE
DEFINITION • • • • • .

APPENDIX C - SAMPLE ASL PROGRAM

APPENDIX D - SAMPLE PSEUDO-CODE PROGRAM

APPENDIX E - SAMPLE SYMBOL TABLE

APPENDIX F - LIST OF IMPLEMENTATION PROGRAMS

iv

.

.

.
. . .

. • . . .
. . .

.

Page

1

3

3
5
6
8

10

15

15
18

20

22
23
28
29
30
32

34

37

39

52

56

58

61

66

Chapter

APPENDIX G - CONTEXT-FREE ASL GRAMMAR

APPENDIX H - USER MANUAL

v

Page

70

77

LIST OF FIGURES

Figure

1. Indirect Triples Table •.

2. Overview of Data Structure Display System

3. Algorithm Execution Screen Format
4. Sample Execution Screen

5. ASL Keywords

6. ASL Reserved Symbols •
7. ASL Program Structure

8. Pseudo-Code Operation Keywords .

9. Syntax of Pseudo-Code Operations •

10. Hierarchy of Data Structure Display System
Components • • • • • • • • • • • • • . .

11. Node Definition Template •

12. Menu Format One
13. Selecting an Implementation Structure
14. Menu Format Two

15. Hierarchy of System Database ••

vi

Page

7

11

12

13

15

16

17

18

19

21

23

24

25

26

27

CHAPTER I

INTRODUCTION

Anyone who has written or studied computer programs has

encountered data structures. Programs can be thought of as

operations performed on some data structures. For example,

a database program operates on the index structure to

extract information. In a simple "Hello World!" program the

operation is on the string of characters.

A data structure is a structure whose elements are
items of data, and whose organization is
determined both by the relationships between the
data items and by the access functions that are
used to store and retrieve them [Baron, 1980].

Most operations on simple basic data structures can be

visualized and understood easily by most students. Dynamfc

data structures may be built from these basic data

structures. Operations on these dynamic data structures are

not always visualized easily.

Programming is a constructive activity. How can
a constructive, inventive ability be taught? One
method is to crystallize elementary composition
principles out of many cases and exhibit them in
a systematic manner. What remains in our arsenal
of teaching methods is the careful selection and
presentation of master examples [Wirth, 1986].

The study of data structures would be easier if the

1

2

student were to be able to view the graphical representation

of the structure and test various operations associated with

this structure. The keen learner would benefit even more if

his algorithms could be tested easily.

The primary objective of this thesis is to design a

system which :

1. graphically displays a variety of data structures,

2. allows the user to execute and study the immediate

effects of each step of an operation on a

particular data structure.

To be able to handle a variety of data structures, there

must be a method of defining the characteristics of data

structures so that the actual structure information can be

bound at system runtime. This study introduces a method of

defining the characteristics of simple dynamic data

structures and allowing the system to function according to

this definition.

This report first provides some background information

on the areas related to the design of the data structure

display system. After an overview of the display system is

given, the syntax and semantics of the chosen algorithm

specification language and the intermediate representation

language are discussed. The actual implementation design of

various parts of the data structure display system is

discussed in Chapter V.

CHAPTER II

LITERATURE REVIEW

This study involves the design and implementation of a

data structure display system. The areas related to the

design considerations of this display system can be grouped

into the following four topics: data structures, source

language and translation, intermediate representation

language, and user interface.

Data Structures

In the book, Data Structures, Reingold and Hansen

[1983] define a data structure to have three components:

1. a set of function definitions: each function is an

operation available to the rest of the program,

2. a storage structure specifies classes of values,

collections of variables, and relations between

variables as necessary to implement the functions,

3. a set of algorithms, one for each function in which

each algorithm examines and modifies the storage

structure to achieve the result defined for the

corresponding function.

Using this definition as the basic concept, the data

structure to be represented in the display system has a

3

4

definition file to define the storage structure. This data

structure has its associated set of operations or functions.

However, the third component can be extended to have a

sequence of one or more algorithms achieve the result

defined for the corresponding function. An example is to

define a balanced tree insert operation to consist of an

insert algorithm followed by a balancing algorithm.

There are at least two ways for implementing data

structures: sequentially storing elements in contiguous

memory locations and linking elements based on some

relationship.

Blocks are contiguous units of memory that are
processed as structural entities. Linked
structures are structures comprised of several
blocks having some logical interconnection.
Blocks may be divided into fields [Baron, 1980].

The data structures in this display system have the

organization of linked structures. The prototype system

does not support contiguous memory implementation data

structures. Some examples of linked data structures are

linked lists and trees.

A tree is a collection of elements called nodes,
one of which is distinguished as a root, along
with a relation {"parenthood") that places a
hierarchical structure on the nodes [Aho, 1985].

The general type of linked data structures supported

in this display system has a single defined root and has

well-defined links.

5

Source Language And Translation

Tremblay and Sorenson [1985] listed several goals to be

important when designing a programming language. Some of

these goals are human communication, the prevention and

detection of errors, usability, program effectiveness,

compilability, efficiency, machine independence, and

simplicity.

Since the data structure display system is a learning

tool, the language used to specify the algorithm should not

be difficult. With this in mind, the three goals that the

specification language must meet are simplicity,

readability, and compilability. The syntax of each

specification language instruction should reflect the

semantics, or in other words be self-documenting. There

should not be any side-effects to any instruction. There

are parser generators available that produce a translator

for this specification language. The idea of compilability

would then be having the grammar of the specification

language be of the type required by the parser generator

used.

A grammar is a 4-tuple, G = (N, ~' P, S) where
1. N is a finite set of nonterminal symbols
2. ~ is a finite set of terminal symbols,

disjoint from N
3. P is finite subset of

(N U ~)* N (N U 'E)* X (N U :2:);~-
An element (oC, (3) in P will be written o<~~
and called a production

4. S is a distinguished symbol in N called the
sentence (or start) symbol [Aho, 1972].

There are four general classes of grammars:

unrestricted, context-sensitive, context-free, and

right-linear. The last three classes, context-sensitive,

context-free, and right-linear, are phrase-structured

grammars.

For the sake of compilability, the specification

language should be generated by a phrase-structured

language, specifically, a context-free grammar.

A grammar G is said to be context-free if each
production in P is of the form A ~ ~, where
A is inN and (3is in (N U %:)* [Aho, 1972].

The specification language is discussed in Chapter IV.

Intermediate Representation Language

In the book, Compilers: Principles, Techniques, and

Tools, Aho, Sethi, and Ullman [1985] listed several

intermediate representation languages. They are "syntax

trees", "postfix notation", and "three-address code" which

6

can be implemented by quadruples, triples, and indirect

triples. The representation suitable for this system is the

three-address format.

The quadruples implementation has the following format.

<operator>, <operand!>, <operand2>, <result>

where <operand!> and <operand2> denote the first and second

operands, respectively, and <result> specifies the result of

the operation. The result is usually a temporary variable.

The quadruples implementation does not impede program

optimization. One disadvantage of using quadruples is that

the allocation of temporary names must be managed.

The triples notation has the following format.

<n> <operator>, <operandi>, <operand2>

The triples implementation has an advantage over quadruples

because it does not require entering temporary names into

the symbol table to handle compound arithmetic operations.

Triples handle temporary results by pointing at the triple

statement producing a particular intermediate result. Each

triple has a number <n> and the result of a previous triple

is specified by its number in parentheses. For example, an

operand (5) means that the result of triple number five is

used. A disadvantage of using triples notation is that

performing code optimization can be difficult because all

references to a triple must be updated when this triple is

moved.

1 ----+---------~-triple 1
1-------1

2 ----r------------triple 2

n ---+---------,~-triple m

Figure 1. Indirect Triples Table

7

The indirect triples implementation uses a separate

table which contains pointers to the triples. When code is

moved during optimization, only the order of entries in the

table is changed.

User Interface

The design of any system must always take into

consideration the human factor. By considering how humans

work better and what details in the system may make it

difficult to learn and use, we can design a user-friendly

system.

Rubinstein [1984] discussed several factors considered

to be helpful in designing a user-friendly system. Some of

these factors are listed below:

1. minimize conceptual load,

2. make states visible,

3. respond with an appropriate amount of information,

4. coordinate all system responses,

5. avoid multiple style modes,

6. acknowledge user actions quickly,

7. provide an easy way out,

8. allow people to work in real time,

9. announce long delays, and

10. avoid cluttering the display or overwhelming the

user with visual attributes.

The general goals behind these factors are to promote

ease of learning, ease of use, reliability, and

8

productivity.

The design of the data structure display system, to be

an effective learning tool, has to abide by these and other

rules. The main user control of the display system is

through a series of menus. Two advantages of using menus

are listed below:

1. explicit options are given, eliminating the

possibility user typing mistakes, and

2. displayed options also serve as memory aid.

9

In the display system, the menus are kept short with a

limited number of options in each menu so that the user can

learn and remember how to use the data structure display

system easily. The default option is always chosen to

provide the user confidence. For example, most default

options are either information requests, or exit to previous

menu requests. All menus are also labeled so that the user

can easily identify what state he is in.

Another interactive style of control in the user

interface of the display system is direct manipulation.

This style involves entering values for specific fields or

questions. This style of interface is used only when a menu

is not feasible.

CHAPTER III

SYSTEM OVERVIEW

The data structure display system allows the user to

view and study an abstract data structure and its associated

operations.

The prototype display system is implemented for VT100

type terminals. The reason for choosing VT100 terminals is

that these terminals are available at many locations all over

campus.

X3.64.

These terminals also are the basis for Standard

However, the display system is designed so that it

can be modified to handle other terminal types.

Currently, the display system can handle structures

having up to four successors. This is a limitation due to

the hardware problem of displaying graphics as characters

rather than as a combination of pixels.

The data structure display system can be executed using

one-screen or two-screen modes. The one-screen mode

displays on one screen the graphical representation of part

of the structure, the algorithm statement executed, and the

values of the variables in that statement. In the

two-screen mode, the second screen presents a larger part of

the abstract data structure.

10

11

The figure below shows the basic flow of control in the

display system.

~
I 1

Display Control User ~ Functions Function Input

J
Structures
Database

Figure 2. Overview of data structure display system.

The user is allowed the following operations:

1. select a data structure and any associated

operation,

2. define new data structures and operations,

3. view the structure and algorithm of associated

operations, and

4. step through an algorithm.

The control routines perform the following tasks:

1. handle user responses,

2. translate algorithm text into pseudo-code and

an associated symbol table,

3. interpret the operation pseudo-code instructions,

12

4. access the structures database, and

5. supply the graphics driver with information.

The structure database contains the following parts:

1. algorithm text,

2. pseudo-code representation,

3. associated symbol table, and

4. specific information on structures.

During execution of the display system there are

various menus and display screens. Screen dumps of these

screens are in Appendix A. During execution of an algorithm

the screen is divided into three areas: structure, values,

and algorithm (see figure below).

~tructure-----------------------rValues------------~

~lgorithm--------------------------------------~

Figure 3. Algorithm Execution Screen Format.

The partial structure is displayed in the structure

screen region. A maximum of four levels can be displayed at

13

one time. However, the user can browse up and down the

whole structure. The graphics driver handles the portion of

the structure to be displayed. The current node of the

structure is indicated in the structure display region by an

asterisk marker.

A maximum of nine lines of the algorithm is displayed

in the algorithm region, with the appropriate line

highlighted. The algorithm display driver handles the

portion of the text to be displayed.

The values of variables in the algorithm can be seen in

the values region. Other messages also are displayed in

this area.

Struc tur----- l•lt·~t 1 : tn.=.e-t t

99

direction <- "l•ft" ;
f•th•r <- curr ;
curr <- curr.l•ft ;
END

direction <- ''ri3ht" ;
f•tt~r <- curr;
curr <- curr.ri!ht;
END

--~·V•lues.-----------, ..-=

Al3orith.,...III-------1"•11''1-·1(111DI...,.1----------

Figure 4. Sample Execution Screen.

14

In the figure above, the display system currently is

performing the IF-statement. The values of the two

variables, inkey and curr.key, considered in the boolean

expression are displayed in the values region. The node

that holds the curr.key is node number 98 and is indicated

by an asterisk to its left. The user is given the choice of

stepping through the algorithm one step at a time or to go

non-stop.

Appendix A contains a sample run of the data structure

display system. Details on the implementation design are

discussed in Chapter V of this study. The next chapter

discusses the syntax and semantics of the languages chosen

for the Algorithm Specification Language (ASL) and the

intermediate representation language.

CHAPTER IV

SYNTAX AND SEMANTICS

Algorithm Specification Language

The Algorithm Specification Language (ASL) for this

system is designed with simplicity and readability in mind.

It is meant to provide a minimal set of instructions

sufficient for implementing simple non-recursive operations

on dynamic data structures.

The keywords of ASL are listed in the figure below.

ALGORITHM BEGIN BOOLEAN DECLARE

DEQUEUE DO ELSE END

ENQUEUE FALSE FREENODE HEAD

IF IN INPUT INTEGER

NEWNODE NIL NODE NOT

OUT OUTPUT POP PUSH

STRING THEN TRUE WHILE

Figure 5. ASL Keywords.

15

Although the list shown above uses all uppercase

characters, it must be noted that the algorithm

specification language is case insensitive. However, the

16

user is encouraged to have keywords in uppercase characters

to improve readability.

A valid ASL identifier is a string of letters or

numbers which must begin with a letter. ASL keywords by

itself cannot be used for an identifier name, although it

may be embedded within other legal characters to create a

valid identifier name.

The symbols used in ASL are listed in the figure below.

= != < >

{) <-

Figure 6. ASL Reserved Symbols.

The basic structure of the ASL program is shown in the
figure 7.

ALGORITHM

<argument_sequence>

DECLARE

<declaration sequence>

BEGIN

<statement_sequence>

END.

Figure 7. ASL Program Structure.

The first word in an ASL program is the keyword

"ALGORITHM". The <argument_sequence> provides the program

a means of receiving and returning values. The

<declaration sequence> follows the DECLARE keyword. Here,

variables can be declared to be of any of the valid data

types. The current system support only the data types

17

HEAD, NODE, STRING, BOOLEAN, and INTEGER. The NODE data

type is made up of several fields. These fields are defined

in the structure definition file. The HEAD data type is

similar to the NODE data type except that it indicates a

special purpose as the header node.

ASL statements may be any of the nine types:

assignment, if-then-else, loop, push, pop, enqueue, dequeue,

input, and output. The logical end of the ASL program is

indicated by the "END" keyword with a period immediately

following it.

18

The detailed ASL grammar can be found in Appendix G.

The context-free ASL grammar is designed to match the

requirements of the language development tool, Yacc, a

LALR(l) parser generator~ The section on language

translation in Chapter V discusses further the usage of this

tool and other aspects of the translation process.

Intermediate Representation Language

The intermediate representation language for the data

structure display system is a modified version of the

quadruples format [Aho, 1985; Tremblay, 1985]. The problem

of temporary variables is not faced in this system because

there are no compound arithmetic operations.

The pseudo-code operation keywords are listed in the

figure below.

LNO

OR

FRE

OUT

ARG

MOV

NOT

NOP

PSH

RET

TST

JMP

END

POP

AND

NEW

INP

DEQ

Figure 8. Pseudo-code Operation Keywords.

These pseudo-code operations are sufficient to

19

implement all the statements available in the algorithm

specification language. A special pseudo-code operation is

"LNO" which is used to coordinate between the pseudo-code

execution and the algorithm text display. The syntax for

the pseudo-code operations is listed in the figure below.

LNO linenumber
MOV destination,source
TST operandl,operand2,condition
AND
OR
NOT
JMP location,condition
NEW operand
FRE operand
NOP
END
INP operand
OUT operand
PSH operand
POP operand
DEQ operand
ARG operand
RET operand

Figure 9. Syntax of Pseudo-Code Operations.

Most of the operations are self-explanatory. The "TST"

operation compares operandl and operand2 for the condition

specified and pushes the boolean result on the interpreter

stack. "AND" and "OR" operations pop two values off the

stack and pushes the result back on the stack. The "JMP"

operation jumps to the location specified if the value pop

from the stack matches the condition specified.

CHAPTER V

IMPLEMENTATION DESIGN

The data structure display system is written using the

'C' programming language in a Unix environment. The 'C'

programming language is chosen as the development language

because it is available on all computer systems available in

the department. Since 'C' is relatively portable, the data

structure display system may be ported to another host

system when necessary.

Although there are software development utilities in

Unix, the "curses" package for example, that supports screen

formats such as windows, the display system uses only

specially written routines. There are several reasons for

using these specially written routines. The first reason is

that of speed and ease of control. Direct screen writing is

faster than using the window environment in the "curses"

package because there is no need for the window refresh

operation. Another reason is that the data structure

display system involves placing graphics characters on the

screen. On VT100-type terminals, character graphics and

special screen attributes are invoked by sending appropriate

control sequences to the terminal.

However, for language translation operation, two Unix

20

21

software development tools, Lex and Yacc, are used to

implement the translator for the Algorithm Specification

Language. Lex and Yacc are generators for lexical analyzers

and syntactic analyzers respectively.

The data structure display system can be divided into

four main parts: Main Driver, Interpreter, Translator, and

Graphics Driver. The hierarchy diagram of the display

system is shown in the figure below.

Main
Driver

I
I I

Interpreter Translator

I
Graphics
Driver

Figure'lO. Hierarchy of Data Structure Display System
Components.

In general, the main driver provides the user interface

and calls the interpreter or translator at appropriate

times. The interpreter, in turn, calls the graphics driver

22

to display the desired structure. These four components are

discussed further in later sections.

Before discussing the design of the four main parts of

the data structure display system in detail, an important

overall design feature must be presented. This feature is

the storage structure used to accommodate the various

possible node formats.

General Storage Structure

The data structure display system requires a generic

storage structure to be implemented in primary memory.

Different structures may define nodes having different

numbers of keys, pointers, and attributes, or different

combinations of fields. This display system is bound to a

node format only at runtime.

Contiguous bytes of primary memory are used as

implementation storage for each node in a structure. A node

format definition template is obtained from the structure

definition file. This definition file, created when

defining a new structure in the data structure display

system, contains information on the size, offset, and name

of fields in a node (see Figure 11).

Definition Template From
structure definition file

SIZE OFFSET NAME

4 0 key 1-

4 4 parent ;-

4 8 left -
4 12 right -
4 16 val -

Contiguous Bytes
of primary memory

Node A

NodeA+4

_.. NodeA+8

NodeA+12

- NodeA+16

Figure 11. Node Definition Template.

23

This definition template is used extensively by the

pseudo-code interpreter to handle all accesses to nodes of a

structure. It is also used by the translator to set up the

symbol table to reflect entries for a node declaration.

The structure definition file includes other

information like the number of keys, parent pointers, child

pointers, and attribute fields. It also states the location

(field number) in the header node having the root pointer to

the structure. Appendix B contains more information on this

file.

Main Driver

The main driver functions as the controller for the

data structure display system. To prevent uncontrolled

interruption, the main driver places the terminal in raw

24

input/output processing mode. All input keys are handled

solely by the data structure display system without the

operating system checking for special control characters.

Menus are used extensively to meet some of the criteria for

a user-friendly system discussed in Chapter II. Menus allow

the user to specify the desired action easily. To make this

system easy to learn and use, there are only two menu

formats and both formats use the same method of control.

The first menu format (see Figure 12) is used for the main

menu, abstract structure menu, and operation menu; the

second format (see Figure 14) is used for the execution

menu.

M 1 1HWW

Figure 12. Menu Format One.

The first menu format uses the top half of the screen.

Options are selected using the numbers, arrow keys,

spacebar, or backspace, and then pressing the return key.

25

This method of selecting is common to all menus. When a

selection other than "Exit" is made, the bottom half of the

screen is used. Figure 13 shows an example of selecting an

implementation structure.

--- EXIT --
b_trM

inkedl ist

Figure 13.

lnforution
""*MWI;M*i'F¥

B-Tr .. I~l•~•ntation

i'M*E i!Mf!'~ I *lli'i'MPI'

Selecting an Implementation Structure.

The second menu format is shown in Figure 14 below.

The second menu format uses the top right corner of the

screen. The method of selection is the same as in the first

format. Both of these formats are driven by a screen

function (screen.c) and a menu driver (menu.c).

f f l ... : ti r 'l r ~

+;we *''M

~ (• 4 J ~ - ! . [• 4
• : t 1! I :tt 'j ~ • ~ • • : t 1 t 1 ~t ':"

•u t 4
- t,~.:, t .l"'='t t

dir•ction <- " l•ft• ;
r.u-..r <- he.ct;
fOI.nll <- FALSE;
WHILE <c~rr ! • l'llll AND (l'tOT fOI.nlll 00 BEGIN

IF ink~ < c~rr .~ TI£N BEGIN
di~tion <- •t.rt• ;
hther (- Clrt" J
c~rr <- curr.left;

Figure 14. Menu Format Two.

Using these menus, the data structure display system

moves to the correct level i n the system to perform an

operation. The directory hierarchy layout of the display

system is shown in the figure 15.

26

I
info

I
*· cde

kb/

~--~----~'~, ---~~--~
info structure_name •••Ui•uoW

I I
alg/ operation definition

I I
structure_na.me

I~
abs_structl/ ••. abs_structN/

I !
I I I

*.struct struct_name info operation_name

Figure 15. Hierarchy of System Database.

27

The information stored by the data structure display

system is organized into a hierarchy of directories. In the

"kb/" directory there is a file, "structure_name",

containing the names of all implementation structures

defined. Each name item consists of a word (10 characters

maximum) and a short description. The main driver uses the

selected name to move to the directory associated with the

selected implementation structure. The interpreter works at

the implementation directory level. In the implementation

directory level, there is a structure definition file,

"definition". This definition file contains the node

description template discussed in the earlier section on

storage structure. This directory level also has a file,

"structure_name", which has the name entries for all defined

abstract data structures. There is a subdirectory for

28

algorithm, "alg/", and subdirectories for abstract

structures. A subdirectory exists for each abstract

structure containing the definition of operations associated

with this abstract structure. Created structures are also

saved in this subdirectory.

Each operation definition is a sequence of various

algorithms and system utilities needed to perform the

required operation. For example, the insertion operation

for a HB[l] Tree consists of the following sequence:

1. use system utility to ask and extract the correct

tree,

2. perform general insertion algorithm,

3. perform balancing algorithm, and

4. use system utility to return tree to database.

The communication between one algorithm and another is

through a communication file, "comm". The algorithm

subdirectory, "alg/", contains all algorithm text,

pseudo-code, and symbol table files for all operations for

an implementation structure.

Language Translation

The data structure display system allows users to enter

new algorithms for a defined implementation data structure.

These algorithm texts must be translated before the

interpreter can work on an algorithm. The translator for

this system is developed using the software tools, Lex

[Lesk, 1975] and Yacc [Johnson, 1975]. In brief, Lex

generates a lexical analysis function and Yacc generates a

syntax analysis function.

29

The lexical analyzer recognizes words in the Algorithm

Specification Language program and returns the appropriate

tokens to the syntax analyzer. The syntax analyzer is a

pushdown automaton. Based on the grammar rules, the syntax

analyzer performs one of the four actions: shift, reduce,

accept, or reject.

The input to the translator is the algorithm text

written in the Algorithm Specification Language (ASL). The

context-free ASL grammar is listed in Appendix G. The

translator generates an intermediate representation

(pseudo-code) program, and a symbol table. To be able to

work for various types of node structures, the translator

obtains information from the node definition template. This

information allows the translator to install correct symbol

table entries for fields of a node when a node variable is

declared. Appendices D and E contain examples of a

pseudo-code program and a symbol table respectively.

Pseudo-Code Interpreter

The intermediate language (pseudo-code) interpreter is

a major component of the data structure display system. It

performs the algorithm associated with an abstract data

structure by interpreting the pseudo-code instructions.

The interpreter first reads in the node definition

template. This template determines the correct memory

30

location for each field in the storage structure employed

for the data structure display system (see earlier section

on storage structure). Then the interpreter reads the

algorithm text, the pseudo-code program, and the associated

symbol table.

The actions of the interpreter is shown to the user

through three main display functions. One function

(algorithm.c) displays the algorithm text and highlights the

currently executed statement. Another (display value.c)

displays the values of variables in that algorithm

statement. The third function (draw.c) is part of the

graphics driver that displays the graphical representation

of the structure being studied. This graphics driver is

discussed in the next section.

The first task of the interpreter is to handle the

algorithm's input arguments, if any. The interpreter

attempts to get the values for these arguments from the

communication file, "comm". If it fails then the user is

prompted for the argument's values. Once all input

arguments are assigned values, the interpreter proceeds with

the rest of the instructions. At the end of the pseudo-code

program, return results are written to the communication

file, "comm". The values in the communication file, "comm",

are used by the next algorithm.

Since the data structure display system must handle

various structures, the interface between the interpreter

and the graphics driver must use a general format. This

general format is the sequential representation of the

partial structure to be displayed. This sequential

representation is discussed further in the next section on

the graphics driver.

Graphics Driver

31

There are three main functions that make up the

graphics driver. The first is the structure drawing

function (draw.c). This function draws the structure using

the information stored in the sequentially represented

structure string. The sequential representation format

contains the nodes to be displayed arranged sequentially in

order of positions on the screen.

The second function (struct mark.c) places an asterisk

to the left of the current node being accessed. This

function also uses the sequential representation of the

structure. If the node to be marked is not in the string,

that is the node is not displayed, then the marking function

creates a new sequential representation string containing

the desired node and invokes the drawing function.

The third function is the conversion routine that

extracts information from the partial structure to be

displayed to create the sequential representation string.

All the graphics driver functions have built-in checks to

avoid redrawing unchanged graphics on the screen.

The graphics driver draws to the screen by using macros

defined in a VT100 screen control header file (screen.h).

32

These macros are print statements that send screen control

sequences to the terminal to set a desired mode or to

position the cursor. Screen control sequences and

information to be displayed are directed through the

standard error file stream, "stderr". The standard error

stream is different from the standard output stream,

"stdout", in that it is not buffered. Although the display

system places the terminal in raw input/output processing

mode, which means that "stdout" stream is also unbuffered,

the standard error stream is still used because the data

structure display system may be ported to a computer system

that does not fully support the raw input/output mode.

Two-screen Mode

The data structure display system can operate in either

one-screen or two-screen modes. In the two-screen mode, a

larger partial structure is displayed on the second screen.

The main driver of the data structure display system is

the master process. After displaying the title screen, the

main driver prompts the user to select either one-screen or

two-screen mode. If the two-screen mode is selected, the

main driver provides additional instructions on how to use a

second terminal. The user is instructed to log on at

another terminal and type "slave" at the Unix prompt. The

program "slave" is a slave process. This slave process

checks for its own process identifier (pid), terminal device

used, and terminal type. These information are written to a

communication file, "comminfo" and the user is prompted to

press the return key at the main terminal.

33

The master process reads the information in the

communication file. If this file is absent, then the

display system assumes on~-screen mode. Using the slave

pid, the master process signals the slave process using the

"kill" function call. The "SIGUSR2" signal places the slave

process into a suspended state. The slave process stays in

this suspended state for the duration of the session.

Before the main process terminates, it signals the slave

process again. The "SIGUSRl" signal brings the slave

process out of the suspended state to perform cleaning-up

operation. The slave process removes the communication file

and exits.

CHAPTER VI

SUMMARY, CONCLUSIONS, AND FUTURE WORK

There are numerous operations on dynamic data

structures that are difficult to visualize. The data

structure display system provides the user with a means to

study an operation by graphically displaying the structure

while stepping through an algorithm applying to the

structure. A user can define new structures and operations,

or use existing ones. The current prototype display system

handles structures having up to four successor pointers.

During the execution of an algorithm, the screen is divided

into three display areas: structure, values, and algorithm.

The data structure display system's user interface is

mostly menu-driven to help make it a user-friendly system.

The users' manual in Appendix H is written to guide the user

in creating new structures and using existing structures and

operations on the display system. It can be used as a

standalone manual.

One major strong point of the design of the data

structure display system is that most parts of the system

are generalized functions. The data structure display system

uses a generic storage structure implemented in primary

memory. Each node consists of contiguous bytes of primary

34

35

memory. By using node structure templates, this display

system is able to handle different node structures. In this

way, the display system is bound to a node format only at

runtime.

The data structures display system is limited to

managing linked data structures with one header node and

having up to a maximum of four successor nodes. This

display system cannot handle data structures with multiple

header nodes, such as the orthogonal linked list.

Some areas where future work can be done are the

graphics driver and the algorithm specification language.

Firstly, the graphics capability could be extended to handle

more varied structures. It would also be nice to handle

many different types of terminals using the information

found in files such as the Unix "termcap" and "terminfo"

terminal description files. The data structure display

system could be modified to look up terminal description

files for codes to handle the graphics display.

The algorithm specification language used in this

thesis provides a minimal set of instructions. This

language can be extended to provide other instructions and

to support other data types. An immediate choice would be

adding the array data type. Another possible way, but more

drastic in its changes, is to use an ML-like language.

Spooner [1986] discussed and gave examples of applying the

language ML. He stated that this approach would allow the

user to define both the syntax and the semantics of the

36

source language.

Another possible area to work on is to implement a

knowledge-based editor (KBE) for the algorithm specification

language. A KBE helps the user in writing algorithms for

the system by reminding him of the syntax the system expects

and in some cases the semantics as well. The KBE also

reminds the user of the names given to the fields of the

defined node structure.

A SELECTED BIBLIOGRAPHY

Aho, A. V., Hopcroft, J. E., and Ullman, J.D. Data
Structures and Algorithms. Reading, Massachusetts
Addison-Wesley, 1985.

Aho, A. V. and Ullman, J. D. The Theory of Parsing,
Translation, and Compiling, Vol. I : Parsing. Englewood
Cliffs, New Jersey : Prentice-Hall, 1972.

'\J'Kho, A. v., Sethi, R., and Ullman, J.D. Compilers
Principles, Techniques, and Tools. Reading,
Massachusetts : Addison-Wesley, 1985.

~Baron, R. J. and Shapiro, L. G. Data Structures and their
Implementations. New York, New York : Van Nostrand
Reinhold, 1980.

Barrett, W. A., Bates, R~ M., Gustafson, D. A., and Couch,
J. D. Compiler Construction : Theory and Practice.
Chicago, Illinois : Science Research Associates, 1986.

Digital Equipment Corporation Rainbow Owner's Manual.
Bedford, Massachusetts : Digital Equipment Corporation,
1983.

Johnson, S. C. "Yacc - Yet Another Compiler-Compiler." Comp.
Sci. Tech. Rep. No. 32, Bell Laboratories (July 1975).

Lesk, M. E. "Lex - A Lexical Analyzer Generator." Comp. Sci.
Tech. Rep. No. 39, Bell Laboratories (October 1975).

,~Reingold, E. M. and Hansen, w. J. Data Structures. Boston,
I Massachusetts : Little, Brown and Company, 1983.

Rubinstein, R. and Hersh, H. M. The Human Factor : Designing
Computer Systems for People. Burlington, Massachusetts
: Digital Press, 1984.

Spooner, C. R. "The ML Approach to the Readable All-Purpose
Language." ACM Transaction on Programming Languages and
Systems, Vol. 8, No. 2 (April 1986), pp. 215- 243.

Tremblay, J. and Sorenson, P. G. An Implementation Guide to
Compiler Writing. New York, New York : McGraw-Hill,
1982.

37

38

Tremblay, J. and Sorenson, P. G. The Theory and Practice of
Compiler Writing. New York, New York McGraw-Hill,
1985.

~Wirth, N. Algorithms and Data Structures. Englewood Cliffs,
New Jersey : Prentice-Hall, 1986.

APPENDIX A

SAMPLE RUN OF THE SYSTEM

39

The Data Structures Display System is designed to be

almost fully menu-driven. There are four major menus:

1. Main Menu

a. Information

b. Select Implementation Data Structure

c. Define Implementation Data Structure

2. Abstract Data Structure Menu

a. Information

b. Select Abstract Data Structure

c. Define Abstract Data Structure

3. Operation Menu

a. Information

b. Select Operation

c. Define Operation

4. Execution Menu

a. Information

b. Browse Algorithm

c. Browse Structure

d. Execute Algorithm

40

Since the data structure display system is a visual

learning tool, the best way to describe this system is to

show what the user sees in a sample run. The following

pages show the screens as a user works with the data

structure display system. This sample run involves using

the already defined insertion operation for a binary search

tree.

A brief summary of the sequence of operation is given

41

below.

1. Title Page This is the first screen displayed by

the system and stays on for two seconds.

2. Main Menu -- The user uses the number or SPACEBAR

to highlight the desired option and press RETURN

to select. In this case, the user selects

option 2, "Select Implementation Data Structure."

3. Available Implementation Data Structures -- The

user selects the desired implementation structure

of a binary tree.

2

rr_ Jl
2

The Data Structure Displa~ S~ste~ (CDSl)

A Thesis Project
b~

Wilson Lee

l·Je 1 c or•te t..o the d.::l t...:s. ;. true hwe pr·o~:_w.:sr··,. • • • l·Jr· i t ten b~:i l·J i 1 :::.on Lee (19::::::) ••

Departfflent of Co~puting & Infor~ation Sciences
Oklahoffla State Universit~

~
N

fi-TI 2

lli!=l~-u
r.l_ =11

1 In f •:.r· '''::, t 1 or·
2 -Sel ecticrspl el'len ta ti on Data S true ture
3 De~ine ll'lplel'\entation O.S.
E Exit ~rol'\ [0Sl2

~
w

JG-TI 2

=11-u
n_ -II

1 InforP\ation
c.· ·: . .::-1.::-·: t Ir"pl.:-r".:-r·,t ,:jt 1.:•n [•3t ,:j ·:.tr·u·: t t_w:
3 Define Icrsplel\\entation D.S.
E Exit frocrs tDSl2

--- EXIT
b tree B-Tree Icrsplecrsentation
t:•lnar-·:1 E:1nar··:.1 ·: . .:-,ar··.:h Tr··ee l!'ttpler•tent.3tlon
linkedlist Cfnked:...:L is t 1 crsp 1 e&\\e-n t.a t ion

~
~

45

4. Abstract Structures Menu -- Having selected the

implementation structure, the user now selects the

option 2, "Select Abstract Data Structure."

5. Available Abstract Data Structures -- The user

selects the binary search tree as the abstract

data structure.

6. Operation Menu Having selected the

implementation and abstract structures, the user

chooses option 2 to select an operation. In this

case the insertion operation is chosen.

7. Execution Menu After entering the name of the

tree to be used, the execution menu is displayed.

Option 4 is chosen to execute the insertion

algorithm.

8. Execution Screen This is the screen displayed

during the execution of an algorithm.

TITI 2

fui JI-u
0._ _ll

1 I nf ·:.r· r" :s t l•:.r ·
2---Select Abstract Data Structure
3 Define New Abstract Data Structure
E Exit to Previous Menu

.,.
0'1

"fi-TI 2

ful_l~ u
o._ -II

--- EXIT ---

1 lnforP\ation
2 ·:_ . .,:. l .,:..: t Hb:: tr- :;,.: t [! ;j t a ·:. tru•: t ,_w:
3 Define New Abstract Data Structure
E Exit to Previous Menu

t:otnar-':1 ·:.w.plo:- E:l.nar-·•:1 ·: . .,:.:sr-d-, Tr--:-o:-

+

..,.

......,

r-TI 2

ll___t.! _l ~ --u

1'1_ =II

1 I n f .:• r · r" "' t 1 or·
2 Select Operation
3 Define New Operation
E Exit to Previous Menu

~
en

99

98 97

94

1rec
f'ather <- head;
f'ound <- FALSE;
WHILE (curr != NIL) AND (NOT f'oundl DO BEGIN

IF inke~ < curr.ke~ THEN BEGIN
direction <- "lef't";
f'ather <- curr;
curr <- curr.lef't;

E: :EC UTI Ot~ t·1Etit

1 Inf'orl'\ation
2 Browse Alsorithl'\
3 Browse Structure
4 E . >?•: u t >? H l·:_1or· 1 t hr•
E-tx1t-to -Previous-Menu

~

\0

Struc

direction <- "left";
father <- curr;
curr <- curr.left;
END

EL ·:.E IF u~~-=- '.:1 o:urr\ •. k-?':1 THG~ E:EC]Ir~

lgori

direction <--~right";
father <- curr;
curr <- curr.right;
END

dde
ddd

U1
0

51

After the execution of the algorithm has completed then

the execution menu is displayed again. From here the user

can choose other operations, other structures, or exit from

the system by selecting appropriate choices.

APPENDIX B

SAMPLE IMPLEMENTATION STRUCTURE DEFINITION

52

The Data Structure Display System interpreter and

translator work according to the implementation structure

definitions given in a file. Each implementation data

structure owns a definition file. This file contains

information on the components of a structure node. The

first line of the structure definition file contains the

following information:

1. Number of keys,

2. Number of Parent Pointers,

3. Number of Successor Pointers,

4. Number of Attributes, and

5. Field Number of Root Node holding Root Pointer.

53

The remaining lines in the file provide information on

each individual field. The first number is the length of

the field measured in bytes. The second number is the byte

offset of that field from the start of the node. The third

value on the line is the name of the field. This field name

is used in when writing the Algorithm Specification Language

Program.

54

The binary tree node structure definition file,

"definition", is listed below. The last line in the file is

for the unused bytes in the node (default node size of 40

bytes).

1 1 2 1 2
4 0 key
4 4 parent
4 8 left
4 12 right
4 16 attr
4 20 info
16 24 mise

APPENDIX C

SAMPLE ASL PROGRAM

55

The Data Structures Display System coordinates the

execution of the algorithm with the display and the

highlighting of the particular algorithm text line. The

algorithm text is stored in "name.txt", where name is the

short-form (10 characters maximum) name of the operation.

This algorithm text is written using the Algorithm

Specification Language (ASL) discussed in the body of this

report. This algorithm text is translated to produce the

pseudo-code instructions and the associated symbol table.

56

The algorithm text, "insert.txt", for the binary search tree

insert operation is listed below. The associated

pseudo-code program, "insert.cde", and symbol table,

"insert.tbl", are in Appendices D and E respectively.

ALGORITHM
in key
found
curr

DECLARE

IN;
OUT;
OUT;

head : HEAD;
curr : NODE;
father : NODE;
direction : STRING;
found : BOOLEAN;

BEGIN
curr <~ head.left;
direction <- "left";
father <- head;
found <- FALSE;
WHILE ((curr !=NIL) AND (NOT

IF (inkey < curr.key) THEN
direction <- "left";
father <- curr;
curr <- curr.left;
END

ELSE IF (inkey > curr.key)
direction <- "right";

found)) DO BEGIN
BEGIN

THEN BEGIN

father <- curr;
curr <- curr.right;
END

ELSE found <- TRUE;
END; .

IF (NOT found) THEN BEGIN
curr <- NEWNODE();
curr.parent <- father;
curr.left <- NIL;
curr.right <- NIL;
curr.key <- inkey;

END.

IF (direction.= "left") THEN
father.left <- curr;

ELSE father.right <- curr;
END;

57

APPENDIX D

SAMPLE PSEUDO-CODE PROGRAM

58

59

The Data Structures Display System interpreter executes

the instructions in a specific pseudo-code file. This

pseudo-code file is given the name "name.cde", where name is

the short-form (10 characters maximum) name of the

operation. A listing of the binary search tree insert

operation pseudo-code program, "insert.cde", is given below.

This program is translated from the algorithm text

"insert.txt" given in Appendix C. The corresponding symbol

table, "insert.tbl", is given in Appendix E.

ARG 31
LNO 1
MOV 11,26
LNO 2
MOV 29,32
LNO 3
MOV 17,23
LNO 4
MOV 30,2
LNO 5
TST 11,3,-4
TST 30,1,-4
AND
JMP 40,-2
LNO 6
TST 31,12,-6
JMP 25,-2
LNO 7
MOV 29, 32
LNO 8
MOV 17,11
LNO 9
MOV 11,14
LNO 10
JMP 38,-8
LNO 11
TST 31,12,-7
JMP 36,-2
LNO 12
MOV 29,33
LNO 13

60

MOV 17,11
LNO 14
MOV 11,15
LNO 15
JMP 38,-8
LNO 16
MOV 30,1
LNO 17
JMP 9,-8
LNO 18
TST 30,1,-4
JMP 61,-2
LNO 19
NEW 11
LNO 20
MOV 13,17
LNO 21
MOV 14,3
LNO 22
MOV 15,3
LNO 23
MOV 12,31
LNO 24
TST 29,32,-5
JMP 59,-2
LNO 25
MOV 20,11
JMP 61,-8
LNO 26
MOV 21,11
LNO 27
NOP
RET 30
RET 11
END

APPENDIX E

SAMPLE SYMBOL TABLE

61

62

The Data Structures Display System interpreter executes

the pseudo-code instructions using the associated symbol

table. The symbol table is stored in a file in the

following format, each terminated by a newline character:

1. Name of Symbol,

2. Value of Symbol,

3. Type of Symbol,

4. Parent Symbol Location, and

5. Offset from Parent Symbol Location.

The symbol table file, "insert.tbl", for the binary

search tree insert operation is listed below. The

corresponding pseudo-code file, "insert.cde", is in Appendix

D and the algorithm text, "insert.txt", is in Appendix c.

INSERT OPERATION

0
TRUE

TRUE
9
1
1

FALSE
FALSE
9
2
2
NIL

NIL
9
3
3

NEQ
NEQ
9

4
4

EQ
EQ
9
5
5

LESS
LESS
9
6
6

GTR
GTR
9
7
7

ALL
ALL
9
8
8

LEQ
LEQ
9
9
9

GEQ
GEQ
9
10
10
curr
undefined
6
11
11
curr.key
undefined
2
11
0
curr.parent
undefined
1
11
4
curr.left
undefined
1
11
8
curr.right
undefined

63

1
11
12
curr.val
undefined
2
11
16
father
undefined
6
17
17
father.key
undefined
2
17
0
father.parent
undefined
1
17
4
father.left
undefined
1
17
8
father.right
undefined
1
17
12
father.val
undefined
2
17
16
head
100
7
23
23
head. key
NIL
12
23
0
head.parent
NIL
11
23
4
head.1eft

64

NIL
11
23
8
head.right
NIL
11
23
12
head.val
NIL
12
23
16
direction
undefined
5
29
29
found
undefined
3
30
30
in key
undefined
8
31
31

"left"
10
32
32

"right"
10
33
33

65

APPENDIX F

LIST OF IMPLEMENTATION PROGRAMS .

66

67

The following list contains the names of the 'C'

Language Programs and supporting files written to implement

the Data Structures Display System. A listing of these

programs is available at the Department of Computing and

Information Sciences, Oklahoma State University.

Header Files

Directory: include/

instruction.h

screen.h

Main Driver Programs

Directory: src/

browsetext.c

get_term.c

indexmenu.c

logo_at.c

main.c

menu.c

screen.c

title.c

wrdcpy.c

Display Driver Programs

Directory: src/

- definitions for the pseudo-code
instructions interpreter

- macro definitions for VT100-type
terminal screen control sequences
including line-drawing characters

browse a named text file by using
arrow keys or the space bar

- get terminal type from environment

- allow scrolling menu selection from
items listed in a file

- display [DS]2 logo at the screen
location specified

main driver for the display system
and is the user-interface

menu driver for both format one and
two menus

screen frames

- title screen

- copy word from string

algorithm.c

box line.c

display_val.c

draw.c

keyhit.c

line to.c

put text.c

raw_gets.c

- display algorithm text and
highlighting a specific line

draw line box

display value of variables

main graphics drawing routine
for the graphical representation
of the data structure

- keyboard handler returns the key
hit

68

- draw line from a starting point to
an ending point

display text with screen character
attribute at a given location

- raw mode gets()

Language Translation Programs

Directory: src/

translate.c

lex.yy.c

y.tab.c

- main translation driver

- lexical analyzer generated by Lex

- LALR(l) parser generated by Yacc

Pseudo-code Interpretation Programs

Directory: src/

struct_heap.c

struct mark.c

interpret.c

power.c

read code.c

read def.c

- make structure into sequential
representation

- mark named node with asterisk and
calls draw() to redraw the local
portion of the structure if
necessary

- main interpretation driver

- x to power of y

- read pseudo-code from file

read implementation structure
definition from file

69

read table.c - read symbol table from file

read text.c - read algorithm text from file

readsave.c - read/save structure nodes from/to
file

APPENDIX G

CONTEXT-FREE ASL GRAMMAR

70

The Algorithm Specification Language (ASL) has a

context-free grammar, GASL" A grammar for any language has

several properties: a set of terminal and nonterminal

71

symbols, a starting symbol, and a set of rules. Aho [1972]

states the following formal definition of a grammar.

A grammar is a 4-tuple, G = (N, ~, P, S) where
1. N is a finite set of nonterminal symbols,
2. z is a finite set of terminal symbols,

disjoint from N,
3. P is finite subset of

(N U Z)* N (N U 'L)*' X (N U Z)*
where an element (~, ~) in P is written
~ ~ ~ and called a production,

4. S is a distinguished symbol in N called the
sentence (or start) symbol.

The grammar G is context-free if every production rule in P

has the form o(~ (3, where o<. is a nonterminal symbol and {3

consists of zero or more terminal and nonterminal symbols.

72

The set of terminal symbols (or alphabet set ZASL)

consists of ASL keywords, identifiers, string constants, and

integers. The ASL grammar alphabet set ZA5~is listed below.

AND ALGORITHM BEGIN BOOLEAN
DECLARE DEQUEUE DO ELSE
END ENQUEUE FALSE FREEN ODE
HEAD IF IN INPUT
INTEGER NEWNODE NIL NODE
NOT OR OUT OUTPUT
POP PUSH STRING THEN
TRUE WHILE PERIOD COMMA
COLON SEMICOLON EQUAL NOTEQUAL
LESS THAN GREATERTHAN LEFTBRACE RIGHTBRACE
ASSIGN PLUS MINUS GREATEREQUAL
LESS EQUAL QUOTE IDENTIFIER NUMBER

During the language translation phase, these grammar

alphabet members, ~sL, are actually tokens returned by the

lexical analyzer. The lexical analyzer matches strings of

input characters to the set of definitions for ASL keywords,

identifiers, string constants, and integers. The ASL

identifier consists of a letter and followed by zero or more

letters or digits. A period is allowed in positions other

than the first and the last positions to indicate a node

field variable.

The Unix-style regular expressions for describing an

ASL identifier are listed below.

letter
digit
identifier

[a-zA-Z]
[0-9]
{letter}(({letter}l{digit})*\.?

({letter} {digit})+)*

The symbols "[" and "]" indicate that one element from the

set is chosen. The symbol "I" represents the boolean "or"

73

operation and the "?" indicates that the preceding symbol

may or may not be present. The symbols "*" and "+" mean

zero or more and one or more occurrences, respectively.

The set of nonterminals, N~L , consists of ~he symbols

appearing on the left-hand side of the production rules,

PASL. These nonterminals are listed below.

program
parameter
declare
block
assign_stmt
pop stmt
enq-stmt
input stmt
comparison

define sect
para type
data-type
stmt-seq
whil'e stmt
push stmt
new stmt
output stmt
boolean_op

parameter sect
declare sect
body sect
stmt-
if stmt
deq stmt
free stmt
control_expr

The set of production rules, PA~L' is listed below.

The terminal symbols are in upper-case and the nonterminal

symbols are in lower-case.

program

define sect

parameter_sect

parameter

para_ type

declare sect

define sect body sect - -

algorithm parameter sect DECLARE
declare sect -

algorithm DECLARE declare sect

parameter sect parameter
parameter-

IDENTIFIER COLON para_type SEMICOLON

IN
OUT

declare sect declare
declare-

declare

data_type

body_sect

block

stmt_seq

.
'

stmt

assign stmt

.
'

while stmt

.
'

if stmt

.
'

74

IDENTIFIER COLON data_type SEMICOLON

BOOLEAN
HEAD
INTEGER
NODE
STRING

block PERIOD

BEGIN stmt_seq END

stmt seq stmt
stmt-

assign stmt SEMICOLON
while stmt SEMICOLON
if stmt SEMICOLON
pop stmt SEMICOLON
push stmt SEMICOLON
deq stmt SEMICOLON
enq-stmt SEMICOLON
new-stmt SEMICOLON
free stmt SEMICOLON
input stmt SEMICOLON
output stmt SEMICOLON

IDENTIFIER ASSIGN IDENTIFIER
IDENTIFIER ASSIGN NUMBER
IDENTIFIER ASSIGN QUOTE
IDENTIFIER ASSIGN FALSE
IDENTIFIER ASSIGN TRUE
IDENTIFIER ASSIGN NIL

WHILE control_expr DO block
WHILE control_expr DO stmt

IF control_expr THEN block
IF control_expr THEN stmt
IF control_expr THEN block ELSE

block
IF control_expr THEN block ELSE
IF control_expr THEN stmt ELSE
IF control_expr THEN stmt ELSE

block

stmt
stmt

pop_stmt

push_stmt

deq_stmt

enq_stmt

new stmt

free stmt

input stmt

output_stmt

control_expr

comparison

. ,

. ,

. ,

. ,

. ,

. ,

IDENTIFIER ASSIGN POP LEFTBRACE
RIGHTBRACE

PUSH LEFTBRACE IDENTIFIER
RIGHTBRACE

75

IDENTIFIER ASSIGN DEQUEUE LEFTBRACE
RIGHTBRACE

ENQUEUE LEFTBRACE IDENTIFIER
RIGHTBRACE

IDENTIFIER ASSIGN NEWNODE LEFTBRACE
RIGHTBRACE

FREENODE LEFTBRACE IDENTIFIER
RIGHTBRACE

INPUT LEFTBRACE IDENTIFIER
RIGHTBRACE

OUTPUT LEFTBRACE IDENTIFIER
RIGHTBRACE

OUTPUT LEFTBRACE QUOTE RIGHTBRACE

LEFTBRACE control expr AND
comparison RIGHTBRACE

LEFTBRACE control expr OR
comparison RIGHTBRACE

comparison

LEFTBRACE IDENTIFIER boolean op
IDENTIFIER RIGHTBRACE -

LEFTBRACE IDENTIFIER boolean op
NUMBER RIGHTBRACE -

LEFTBRACE IDENTIFIER boolean_op
QUOTE RIGHTBRACE

LEFTBRACE IDENTIFIER boolean_op
NIL RIGHTBRACE

LEFTBRACE IDENTIFIER boolean_op
TRUE RIGHTBRACE

LEFTBRACE IDENTIFIER boolean_op
FALSE RIGHTBRACE

LEFTBRACE NOT IDENTIFIER RIGHTBRACE

boolean op

.
'

EQUAL
NOTEQUAL
LESS THAN
GREATERTHAN
LESS EQUAL
GREATEREQUAL

76

Each production rule has a nonterminal symbol on the

left-hand side of the rule. This nonterminal symbol defines

the partial language structure on the right-hand side. The

language structure is described with terminal and

nonterminal symbols.

A production rule can be written to define a partial

language structure in terms of other partial language

structures. In this way, the result is a production rule

defining the overall structure of an ASL program. The

distinguished nonterminal symbol, SASL' which defines the

overall structure of the ASL is "program".

APPENDIX H

USERS' MANUAL

77

78

The Data Structures Display System Users' Manual

provides information on the general use of this system.

This document, "user man", is kept in the directory "doc/".

It can be printed by sending the formatted output to a

printer. The following command accomplishes this:

pr66 user_man I lp -d<dest>

where <dest> is the name of the printer queue.

The data structure display system user's manual starts on

the next page.

DATA STRUCTURE DISPLAY SYSTEM USERS' MANUAL

2

rr_ Jl
2

The Data Structure Displa~ S~steM (CDSl l

The data structure display system allows the user to

79

view and study an abstract data structure and its associated

operations. This system displays the graphical

representation of the structure. At the same time, the

display system also displays the algorithm statement

executed and the values of all variables in that statement.

This users' manual is written to guide the user in

defining implementation and abstract data structures and

their associated operations and algorithms. This manual also

explains how the user applies an operation to an abstract

data structure. Detailed discussion on the display system

implementation design is not included in this manual but

80

it can be found in the Master of Science in Computer Science

thesis report by Wilson Lee, 1988.

The data structure display system is covered in this

users' manual in the following sequence.

1. System Overview.
2. Algorithm Specification Language (ASL) Program.
3. ASL Syntax Summary.
4. General Usage Instructions.
5. Screen Mode Selection.
6. Implementation Structure Definition.
7. Abstract Structure Definition.
8. Operation Definition.
9. Operation Execution.

10. Notes.

First, the users' manual provides an overview of the

data structure display system. The language used to specify

an algorithm is covered in sections two and three. The

method of defining new structures and operations is

discussed in sections six through eight. Section nine covers

using an existing operation applied on a data structure.

The user is assumed to have some experience programming in a

high-level language and some knowledge of data structures.

This users' manual is kept in the data structure

display system directory. It can be printed by sending the

formatted output to a printer. The following command

accomplishes this:

pr66 user_man I lp -d<dest>

where <dest> is the name of the printer queue.

Please note any questions and suggestions and direct

them to Wilson Lee through the Department of Computing and

Information Sciences.

System Overview

The prototype data structure display system is

implemented for VT100-type terminals. Any terminal that

supports VT100-type screen controls and line drawing

graphics characters can be used.

The data structure display system can operate in

81

one-screen and two-screen modes. In the one-screen mode, the

display system displays on one screen the graphical

representation of part of the structure, the algorithm text,

and the values of variables.

St.ruc tur----- l·lt' -:tl i ! lr,.=-:-r t

99

dir«tion <- " left" ;
father (- ClM"t"')

CUN' (- ClM"t"'.left;
El'()

chrec tion <- "ri3ht";
fa tlwr <- c lM"t"';

curr <- ClM"t"' .right;

---...,.Val u.s-----------, ..-=

EI'IO
AlS~Ori th!ll-------IIIIII'Mii'll'ii"IUUIIPIII1111l1·------------_j

In addition to the one-screen display, the two-screen

mode allows the user to see a larger partial graphical

representation of the data structure on the second screen.

The method of mode selection is explained in a later

section.

82

The data structures that can be handled by this system

has a header node and a maximum of four successors. The

limitation of four successors maximum is due to the hardware

problem of displaying graphics as characters and not as a

combination of pixels. The figure below shows the basic flow

of control in the data structure display system.

Display
Functions

Control
Function

Structures
Database

User
Input

The user is allowed the following operations:

1. select a data structure and any associated
operation,

2. define new data structures and operations,

3. view the structure and algorithm of associated
operations, and

4. step through an algorithm.

The control routines perform the following tasks:

1. handle user responses,

2. translate algorithm text into pseudo-code and
an associated symbol table,

3. interpret the operation pseudo-code instructions,

4. access the structures database, and

5. supply the graphics driver with information.

The structure database contains the following parts:

1. algorithm text,

2. pseudo-code representation,

3. associated symbol table, and

4. specific information on structures.

83

84

Algorithm Specification Language (ASL) Program

The Algorithm Specification Language (ASL) for this

system is designed both with simplicity and with readibility

in mind. However, the user is assumed to be reasonably

familiar with programming languages and to have some

knowledge of linked data structures. It provides a minimal

set of instructions sufficient for implementing simple

non-recursive operations on dynamic linked data structures.

The ASL keywords are listed below.

ALGORITHM BEGIN BOOLEAN DECLARE
DEQUEUE DO ELSE END
ENQUEUE FALSE FREENODE HEAD
IF IN INPUT INTEGER
NEWNODE NIL NODE NOT
OUT OUTPUT POP PUSH
STRING THEN TRUE WHILE

Although the list shown above uses all upper-case

characters, it must be noted that the Algorithm

Specification Language is case insensitive. However, the

user is encouraged to have keywords in upper-case characters

to improve readability.

A valid ASL identifier must begin with a letter and

followed by zero or more letters or digits. An ASL keyword

by itself cannot be used for an identifier name, although it

may be embedded within other legal characters to create a

valid identifier name. A period is embedded in a identifier

name in the case of node field name. The maximum length of

an identifier name is twenty characters.

The reserved symbols of ASL are listed below:

=
,

! = <
<-

. ,
>

85

The basic structure of the ASL program is shown below.

ALGORITHM

<parameter_sequence>

DECLARE

<declaration_sequence>

BEGIN

<statement_sequence>

END.

The first word in an ASL program is the keyword

"ALGORITHM". The <parameter_sequence> provides the program a

means of receiving and returning values. One point to note

is that algorithms are executed and the values returned only

at the end of the algorithm program. The

<declaration_sequence> follows the "DECLARE" keyword. Here,

variables can be declared to be of any of the valid data

types. The current display system supports the data types

HEAD, NODE, STRING, BOOLEAN, and INTEGER. The NODE data type

is made up of several fields. These fields are defined in

the structure definition file. The structure definition file

contains information the user provides when he creates a new

structure. The method of creating new structures is covered

in a later section~ The HEAD data type is similar to the

86

NODE data type except that it indicates a special purpose as

the header node of a structure.

ASL statements may be any of the nine types:

assignment, if-then-else, while-loop, push, pop, enqueue,

dequeue, input, and output. These statements are placed

between the "BEGIN" and "END" keywords. The logical end of

the ASL program is indicated by the period following the

"END" keyword.

The Algorithm Specification Language syntax is defined

in the next section. An example of the assignment statement

is shown below. The assign operator is "<-".

curr <- curr.left

In the above assignment statement, the variable "curr" is

assigned the value in the node field "left" of the node

pointed to by "curr". The left-hand side of the assignment

statement is always an identifier. The data_type for the

right-hand operand must match that of the left operand.

See the syntax definition for more details.

IF

The if-then-else statement has the following format.

boolean-expression THEN
ELSE

sequence-of-statements-1
sequence-of-statements-2

The boolean-expression is evaluated and the appropriate

sequence of statements is executed by an if-then-else

statement. The else part of this statement format may be

omitted if an if-then type of statement is desired.

The while-loop statement is similar to that used in the

Pascal language.

WHILE boolean-expression DO sequence-of-statements

The sequence of statements are executed while the

boolean expression is tested to be true.

The push statement places the value of the identifier

on top of the stack. There is only one stack available to

the user algorithm. The pop statement returns the value on

top of the stack.

identifier <- POP()

The format of the pop statement is similar to that of the

assignment. The difference is that the value on top of the

stack is assigned.

The enqueue and dequeue statement formats are shown

below.

identifier <-DEQUEUE()

ENQUEUE(identifier

87

These statements are used for managing a queue. On the

current system the stack and the queue refer to the same

data structure. Therefore, avoid using the queue statements

when the stack is used.

The input and output statements are used for bringing

values into the algorithm and displaying values of

identifiers. The formats of these statements are shown

below.

88

INPUT(identifier)

OUTPUT(identifier or string constant

The output statement may be used to display an identifier's

value or a string constant.

89

ASL Syntax Summary

The Algorithm Specification Language syntax is covered

in this section. The following notation is used in the

syntax definition of the Algorithm Specification Language

(ASL).

[xxx] XXX is optional

{xxx}* XXX may be repeated 0 or more times

{xxx}+ XXX may be repeated 1 or more times

xxxlyyy choose either XXX Or yyy

XXX
or yyy choose either XXX or yyy

The ASL keywords are represented in this manual in

upper-case letters and the program items in lower-case

letters. The grouping of items is indicated by enclosing the

items between backslashes "/". The item being defined is

shown enclosed between the "<" and ">" characters, and the

definition of this item follows indented on the next line.

The following definitions are for the basic items.

<digit>
Olll2l···l9

<letter>
alblcl···lziAIBICI ••• Iz

<integer>
\-1[+]\{digit}+

<identifier> ·
letter{letterldigit}*[.{letterldigit}+]

<string>
"{letterldigitl·l }*"

The following definitions are the program items.

<program>
define sect body sect - -

<define sect>
ALGORITHM parameter sect DECLARE declare sect

<parameter_sect>
{ identifier para_type ; }*

<para type>
IN I OUT

<declare sect>
{ identifier data_type

<data type>
BOOLEAN HEAD I INTEGER

<body sect>
block •

<block>
BEGIN END

or BEGIN stmt_seq END

<stmt seq>
Tstmt}+

<stmt>
assign stmt ;

or while stmt
or if stiiit ;
or pop stmt ;
or push stmt ;

. or deq stmt ;
or enq-stmt ;
or new-stmt ;
or free stmt ;
or input_stmt ;
or output_stmt ;

<assign stmt>
· identifier <- value

<value>
identifier

or integer
or string
or TRUE
or FALSE
or NIL

}*

NODE I STRING

90

<while stmt>
wHILE control_expr DO stmtlblock

<if stmt>
-IF control_expr THEN stmt,block

[ELSE stmt block]

<pop stmt>
-identifier <- POP)

<push stmt>
PUSH (identifier

<deq stmt>
-identifier <- DEQUEUE

<enq stmt>
-ENQUEUE (identifier)

<new stmt>
-identifier <- NEWNODE)

<free stmt>
FREENODE (identifier)

<input stmt>
INPUT (identifier)

<output stmt>
OUTPUT (identifierlstring

<control expr>
(control expr ANDIOR comparison

or comparison

<comparison>
(identifier boolean op

identifierlintegerTstringiNILITRUEIFALSE
or (NOT identifier)

<boolean op>
EQUAL I NOTEQUAL I LESSTHAN

or GREATERTHAN I LESSEQUAL I GREATEREQUAL

91

92

General Usage Instructions

The user must have a valid data structure display

system account to use this system. The data structure

display system must be run on a terminal that supports

VT100-type screen controls and line drawing graphics

characters. Log onto the data structure display system

account and type "ds2" at the Unix prompt. This command

executes the "ds2" program which is the main driver for the

data structure display system. If you are using a Tandy

DTlOO terminal, set the Unix environment variable "TERM" by

typing "setenv TERM dtlOO" before running the program.

After displaying the title screen for approximately two

seconds, the data structure display system asks the user to

select the screen mode. Selection of screen mode is covered

in the next section.

Selecting Screen Mode

{],I u
Q __]l

2
The Data Structure Displ•l:l Sl:jStl!lll tDSJ l

A Tn.sis Project
~

Wilson Lee

Depart~nt of Co~uting ~ Infor~•tion Sciences
Oklilho~a State Universitl:j

The data structure display system has two modes of

operation: one-screen and two-screen. modes. The display

system prints a message after displaying the title screen

asking the user to select either one-screen or two-screen

mode.

1 he IJa ta :::.true tur·e L> 1 sp i <~l:l ::>l:I:S te111

Pro?ss 11 for sin:;,!o? scro?en and D for· dual s•:reen

93

94

The user must press "1" or "2" in response to that

question. In the case of pressing "2" to indicate the

two-screen mode, the display system provides instructions to

prepare the second terminal.

T(1 us.:- thl(l scr·eens_.. lc.~::~ on t.o this :~ccount.. 1:1n ::noth.;.r
te~·f(jin-=:1 -~nd t:_ipe .=.la;,.;e'· .:;t the l~ni>~ pr··ompt.

The ::-~::.t.ef'! d1:=pl.;,~:: .:;,. title scre,;.n.
W-=i t. for· a .. ·r'"'e:.;.sa::_,e to continr.~e-· on the
;.econd s.::r·een.

The user should now log onto the data structure display

system account at a second terminal and type "slave" at the

Unix prompt.

The Data Struct~1re Displa!J S!;tste111 Slave Momtor

95

The second screen shows the slave monitor title screen

and displays the following message: "Setting up

communications; one moment please "

The Data Structur-e D1~pla~ S~;;te-1<1 Slave Horoltor

Thi;; terl'<liroal i;; r·ead~i press I§!Pitlil oro the other· terl'<liroal • • •

When communication has been set up with the first

terminal this second terminal displays the message: "This

terminal is ready; press RETURN at the other terminal". Now

the user hits the RETURN key and the display system shows

the main menu on the first terminal.

I Jfl { I!f.-ntation Data Struc tur•
3 Define l"Pl.-ntation O.S.
E Exit fN* COS12

. • • t. t .. • • • • : • t . .. t • ••• ~ • • • • • • • • .. ~ • i- ••

All user input is through the first terminal. The

second terminal is only used as a data structure display.

96

Defining An Implementation Structure

Before the data structure display system can be used,

the user must define implementation and abstract data

structures. The operations and algorithms must also be

defined.

e Zf.J l"PleMnt..Uon D•t.. Structl.re
3 Define l"PleMnt..tion D.S.
E Exit f"roa tDSl2

; 'o.- '• 1 • ;;_ 1 • ,, : • oi,. 1 , , I '•,, , , ,, .. I:. >.

The first step is to define the implementation data

structure. The user selects the definition option at the

main menu. The display system displays the information it

needs to know, namely: number of keys, parent pointers,

child pointers, and attributes in a node in the

implementation structure. The display system also asks for

the name for each field of the node structure.

The display system returns to the main menu after the

user has answered all questions.

97

--- EXIT --
b tree
ii

linkedlist

Defining An Abstract Structure

Infor111ation
W'WIPM'Eif+&-WC

3 Define IMpleMentation D.S.
E Exit fr0111 CDSJ2

B-Tree IMpleMentation
i''''*ri!+eee • 'W'MW''
Linked-List IMpleMentation

98

After defining the implementation structure, the user

selects the "Select Implementation Data Structure" option at

the main menu. After selecting the desired implementation

data structure, the display system now displays the abstract

structure menu.

2 Select Abstract Data Structure
3 De1ine New Abstract Data Structure
E Exit to Previous Menu

99

The user selects the definition option at the abstract

structure menu. The display system displays a message and

asks the user for a name for the new abstract structure. If

the name is non-existent then the data structure display

system creates a new abstract structure.

The display system returns to the main menu if the

user's answers are valid.

--EXIT-

Defining An Operation

1 lnf'orNUon
,_. 1 ~ I Ht :: fr -1 t [1,f ::t f f , t H

3 c.firw New Abstr.ct ~~ Struc tlre
E Exit to Pr4tvious tt.nu

t 1 ',-:,, ':1 1 r••P l "'=" E 1 r adr ':1 3' ._ t, T' --

100

An operation associated with an existing abstract

structure can be defined by first selecting the "Select

Abstract Data Structure" option at the abstract structure

menu. After selecting the desired abstract data structure,

the display system displays the operations menu. Now the

user selects the definition option.

101

An operation consists of a number of system utilities

and algorithms. The display system .shows the available

system utilities and the existing algorithms for this

abstract structure. The user types in the correct sequence

for the system utilities and algorithms. The system then

prepares for the user to type in all the_ non-existent

algorithms. The user enters the algorithm text using the

Unix "vi" editor. The user can learn more about the "vi"

editor by reading any Unix users' guide.

The system returns to the operations menu after the

user completes entering all required information.

102

Execution Of An Operation

The execution of an operation on an abstract data

structure can only be done after the implementation

structure, abstract structure, and the associated operation

have been defined.

l I nf or· f•1 ~ t 1• . .-:<t

2 Select Operation
3 Define New Operation
E Exit to Previous Menu

The user selects the "Select Operation" option at the

operations menu. After an operation is chosen, the display

system shows a three-window screen with the execution menu.

The user executes the operation by·selecting the "Execute

Algorithm" option at this menu.

··- Hi •••
1 Infor.ation
2 8rowH Al!JOI" i u-o.-
3 8rowH Struc tur.

!"Exit to ~r.vious M4tnU

~~· L:.- l.l.:.;tln.:st··j ~·.'-.:tu,:tr':'
'lf f - j , ,.1.1':"• t

c:h r•chon <- "l•ft" ;
father <- .,.~;

found <- FALSE;
WHILE (curr !• l'tlll Al'tD (NOT found) 00 BEGII't

IF ink~ < curr .k~ T~l't BEGII't
dir«tion <- "l.rt•;
fat"'-r <- curr;
curr <- curr.l•f t ;

The display system now leads the user through the

algorithm execution step by step.

Structur·e----------
99

dir.ction <- "l•ft";
father <- curr;
curr <- curr.l•ft;
El'tO

clir•c tion <- "right";
father <- curr;
curr <- curr.r isht;
£1'1)

r-----~Valu.·s--------------------, ... ::

Al3ori~-------------ieer11111111111111r-------------------------~--.J

103

After execution has completed, the execution menu 1s

displayed again.

104

d
VITA

Wilson Lee

Candidate for the Degree of

Master of Science

Thesis: AN IMPLEMENTATION OF A DATA STRUCTURES DISPLAY
SYSTEM

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Singapore, September 19, 1957,
the son of Mr. and Mrs. Soon Aik Lee.

Education: Graduated from Raffles Institution in
December 1975; received Technician Diploma in
Electrical Engineering from Singapore Polytechnic
in May 1983; received Bachelor of Science Degree
in Computing and Information Sciences from
Oklahoma State University in May 1986; completed
requirements for the Master of Science Degree at
Oklahoma State University in December 1988.

Professional Experience: Computer Programmer, State
4-H Programs Office, March 1986 to July 1986;
Teaching Assistant, Department of Computing and
Information Sciences, Oklahoma State University,
August 1986 to May 1988.

