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CHAPTER I 

INTRODUCTION 

A web is defined as any continuous· roll of flexible material. 

Many products experience a web form sometime during processing. 

Through the years, several devices have been developed to aid in con

trolling the web material during these processes. One such device is 

the concave roller. The concave roller is most often used as a 

spreading device to alleviate wrinkles and ensure a flat sheet run. 

It therefore becomes necessary to understand the structural impact of 

the concave roller on the web material. 

The steady-state response of a web encountering a concave roller 

can yield several equilibrium positions. Shelton [1] states that a 

web will seek normal entry to a roller. However, once on the roller, 

the web can have several different reactions. They all involve the 

interaction between spreading friction forces and slippage. 

One such case results in the web seeking the maximum spreading 

until slippage occurs. In this case the concave roller causes the web 

to hold a fixed lateral position as it travels across the roller. In 

another case, slippage becomes predominant. The roller initially 

spreads the web, but the web then slips back down the sides of the 

roller as the web travels over the roller. Furthermore, continual 

slippage occurs between the web and roller which can be deleterious to 
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the web by causing scratching. The condition of normal entry may be 

violated in this case. 

Leport [2] developed a finite element computer model which simu

lates the spreading of a web on a concave roller. However, no attempt 

was made to enforce either of the aforementioned responses. This 

research will be focused upon the first case in which spreading occurs 

just to the threshold of slip, in which case the web will still 

attempt to seek normal entry to the concave roller. The effect of 

various parameters on the system will also be studied. 

1 • 1 Objectives 

The objectives of this study are: 

1. To develop and enforce new boundary conditions associated 

with the first spreading response and to incorporate these 

into the model developed by Leport. 

2. To add additional parameters to the existing model. 

3. To study both the validity and the response of the model by 

analyzing variations in the parameters. 

1.2 ·Literature Survey 

There is a lack of significant background material on the analy

sis of concave rollers. Leport [2] acknowledges this and uses belt 

theory to describe the spreading action of a concave roller. The 

initial theory he cites was developed by Swift [3]. 

Swift addresses the principles behind a belt reacting to coned 

pulleys and relates this to other pulley geometries. He also develops 

a general theory of pulley camber. Referring to power transmission, 
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he develops the concept of an idle arc in which tension is invariant 

and no relative slipping between belt and pulley occurs. This results 

in the strain of each longitudinal fiber of· the belt conforming to the 

underlying pulley. This is an important consideration in the upcoming 

boundary condition development, whereby a strain profile corresponding 

to a concave roller will be enforced. 

Swift also mentions that when a belt enters a pulley at some 

angle e from perpendicular, a helical track will result over the 

pulley in this idle arc region. The lateral rate of travel of the 

belt across the roll can be found from 

where 

v = v ·tane 
L 

VL lateral velocity of belt across roll; 

V = belt speed; and 

e = helix angle. 

( 1 • 1 ) 

This relationship is expressed graphically in Figure 1. Swift con-

tinues by mathematically developing a camber associated with the 

stress distribution related to the pulley profile. This camber acts 

on the belt as it enters the pulley. Swift expands by developing the 

cambers associated with various drives and geometries. 

Pfeiffer [4] also describes the lateral behavior on a roll. He 

states that, given some lateral displacement on the roll with an asso-

ciated helix angle, a web strip will travel laterally driving the 

helix angle to zero. In other words, the web will seek normal entry 

to the roll. 

This response is aided by "planar action." This action, as 

described by an unpublished information pamphlet [5], is characterized 
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by each point being carried over the surface of the roll in planes 

perpendicular to the axis of rotation of the roll. In other words, 

the lateral location that a point first contacts a roll remains un

changed around the roll. The pamphlet also mentions concave rollers 

but only to address them from an undesirable centering standpoint. 

The action of a belt on a concave roller is shown in Figure 2. 

Shelton [6] applies these and other principles to develop corol

laries for web transport. He advances these corollaries by providing 

various examples of application. Among these is one addressing a web 

encountering spreaders, particularly mentioning a concave roller. He 

states that the edges of the web will contact the concave roller tan

gent to planes perpendicular to the axis of rotation. He concludes 

that, if friction is sufficient, web edges will remain in planes of 

lateral locations as the web is carried over the roller. This is the 

particular case this research addresses. 

Daly [7] considers the traction between webs and rolls. He, 

however, includes the interaction between the porosity of the material 

and the air entrainment over the roll. This research includes the 

effect of air entrainment only through the input coefficient of 

friction. 

1.3 Organization 

Since this study is an extension of the work done by Leport [2], 

all of the underlying theory will not be covered again. Instead, the 

theory behind the generation of new boundary conditions is of primary 

interest and covered in Chapter II. Chapter III describes the appli

cation of this theory to the model. Some of the finer points of the 
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Figure 2. Belt Action on a Concave Roller 
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model are repeated for clarity. Chapter IV provides a discussion of 

the results. Numerous plots are provided to both clarify and validate 

the results of the study. Chapter V contains a general summary of the 

results and conclusions based on these results. A recommendation for 

future study is also provided. 



CHAPTER II 

THEORY DEVELOPMENT FOR BOUNDARY CONDITIONS 

To develop the theory behind the interaction of web material and 

concave rollers, a generalized roller layout must be assumed. Figure 

3 shows this generalized model. The model begins with a web span 

preceding a cylindrical roller labeled A and proceeds over the roller 

into another span bounded by a concave roller labeled B. The web then 

wraps around the concave roller and exits into a web span bounded by a 

cylindrical roller labeled C. 

For steady-state conditions, the net amount of material passing 

through each span must be equal. The net amount of material passing 

through the spans is a function of both the strain present in the web 

span and the velocity of the web span. This net amount of material 

can be found by subtracting the amount of strain in the span from the 

total amount of material passing through the span. This relationship 

can be expressed in equation form as 

(1 - E ) • V = (1 - E ) • V A A B B ( 2 0 1 ) 

where 

EA = strain in web immediately prior to roller A; 

VA velocity of web immediately prior to roller A; 

EB = strain in web immediately prior to roller B; and 

VB = velocity of web immediately prior to roller B. 

8 
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Since the velocity of the web span immediately prior to a roller is a 

function of the radius and the angular velocity of that roller, Equa

tion (2.1) can be rewritten as 

( 1 - e: ) . r • wA ( 1 - e: ) • rB • ~ A A B (2.2) 

or 

( 1 - e: ) rB ·~ A 
( 1 - e: ) rA • wA B 

(2.3) 

where 

rA radius of roller A; 

rs = radius of roller B; 

wA angular velocity of roller A; and 

Ws angular velocity of roller B. 

Equation (2.3) is Shelton's [8] continuity equation for web spans 

between rollers. 

Several of the variables in Equation (2.3) are either known or 

can be directly calculated due to the physical and operating con-

straints of the system. The radii of both rollers are directly 

known. Since roller A is cylindrical, rA is constant. Roller B is a 

concave roller and the radius is a function of the lateral location on 

that roller. Since the nominal web line velocity of the system can be 

measured and rA is constant, wA can be found from the relationship 

VA = rA • wA (2.4) 

The strain immediately prior to roller A can also be calculated. If 

the tension in the web is known, the stress in an axially loaded mem-

ber can be found from 

s 
X 

T 
A 

(2.5) 
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where 

Sx x-direction stress; 

T total tension in the line; and 

A cross-sectional area of the web. 

The area is also known and expressed as 

A = t · ww (2.6) 

where t is the thickness of the web, and ww is the width of the web. 

From Hooke's Law, 

s 
X 

e: = E (2.7) 

where E is the modulus of elasticity. Substituting Equations (2.5) 

and (2.6) into (2.7) yields 

(2.8) 

Equation (2.8) can now be used to find the strain immediately prior to 

roller A. 

Since Equation (2.3) contains two unknowns, e:8 and w8 , another 

equation is needed to obtain a unique solution. This second equation 

can be found by assuming a constant line tension exists from one span 

to the next. If the line tension between spans is constant, the aver-

age machine direction strain must also be constant between spans. 

Enforcing these average strains will yield the second equation. 

Figure 4 shows a graphical interpretation of the strains. 

Since roller A has a constant radius, the average strain immedi-

ately prior to it is constant throughout the width of the web. This 

yields 

1 ·Jww 
WW o e:A dy (2.9) 



H 

= e:B 
avg · 

Figure 4. Graphical Interpretation of Average Strain 
Criteria 
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The strain immediately prior to the concave roller can be found 

from Equation (2.3). Solving for Eg yields 

€ = B (2.10) 

However, the radius of a concave roller is a function of the lateral 

location on the roller, as shown in Figure 5. From Figure 5, r 8 can 

be found. In equation form, 

r = 
B 

Capr + Rzero - / Capr2 - y2 (2 .11) 

where the variables are the same as indicated in Figure 5. Substitut-

ing Equation (2.11) into Equation (2.10) yields 

(2.12) 

For the average strain, 

=-ww 

0 
(Capr + Rzero 

The second equation can now be found. As mentioned, the second equa-

tion arises from equating the average strains of the web regions 

immediately prior to the two rollers, or 

€A = €8 (2.14) 
avg avg 

Substituting in the appropriate values yields 

dy (2.15) 

This equation cannot be directly solved for Wg because the radius of 

the concave roller is a function of the lateral location. A search 



where 

+ 

y 

Capr = Circular arc profile radius 
of curvature 

Rzero = Roller base radius 

y = Lateral location from 
Centerline 

= Radius of Concave Roller at 
Lateral Location y 

Figure 5... Geometry of Concave Roller 
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for we must therefore be performed until the one that satisfies the 

equation is found. In other words, a trial value of we is chosen, the 

argument is integrated and averaged, and the answer is then compared 

to e:A. If the difference is not within a specified tolerance, a new 

we is chosen and the procedure is repeated. 



CHAPTER III 

ANALYTICAL STUDY 

The purpose of this study is to develop new boundary conditions 

which better represent the response of a web on a concave roller. The 

existing programs are also modified to incorporate additional parame-

ters to make them· more flexible and realistic. Variations in the 

parameters are also studied to gain insight to the impact of these 

parameters on the steady-state response of webs encountering concave 

rollers, as well as aid in checking the validity of the model. 

This report assumes the reader has adequate background in the 

theory and formulation of the finite element method. For review, the 

reader may consult Seger lind [9] or Leport [2] for a comprehensive 

explanation of the fundamentals. This finite element program utilizes 

two-dimensional elasticity for plane stress conditions. Plane stress 

is required because webs are typically very thin with respect to their 

overall width and length. Simplex triangles are used throughout the 

model. This type of element is acceptable for axially loaded condi

tions where bending has no significant contribution. 

The following assumptions were made to reduce the problem size or 

to represent physical boundary conditions which the concave roll en

forces upon the web. Both lateral symmetry and machine direction sym-

metry are assumed and incorporated. Laterally, an axis of symmetry 

occurs in the middle of the web extending the full machine direction 

16 
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distance. This prompts the coordinate system to originate at the 

middle of the cylindrical roller. The x-axis is typically associated 

with the machine direction. The y-axis is extended laterally across 

the web. The modeling technique incorporates a machine direction sym

metry about the concave roller. The model therefore ends halfway 

around the roller. The symmetric model is shown in Figure 6. To 

enforce the lateral symmetry, the nodes along the x-axis are con

strained to resist any lateral movement, yet allowed to displace in 

the machine direction. 

3.1 Finite Element Model 

The computer code MSHGNR develops the finite element mesh for the 

model. Although the model is continuous, the code acknowledges two 

distinct spans. The first span is the entry span which begins at the 

cylindrical roller and proceeds to contact the concave roller. The 

second span deals with that portion of the web in contact with the 

concave roller. 

The user is required to input variables which sufficiently define 

the system. MSHGNR uses some of these variables to generate global 

coordinates and the associated element connectivities. A list of 

these variables is shown in Table I. Other parameters are also re

quired by MSHGNR. These additional values deal with the material 

properties of the web (e.g., thickness, modulus of elasticity, 

Poisson's ratio) and the operating constraints of the system (e.g., 

tension, wrap angle around concave roller). Appendix C contains a 

complete list and description of the user definable input in the 

comments of the code MSHGNR. 
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Variable 
Name 

ww 

ALBR 

RZERO 

CAPR 

NXB 

NAR 

NY 

TABLE I 

A PARTIAL LIST OF THE REQUIRED INPUT FOR 
THE COMPUTER CODE MSHGNR 

Variable 
Description 

Width of the web 

19 

Length of the web before the concave roller (entry span 
length) 

Roller base radius (applies to both the cylindrical and 
concave rollers) 

Circular arc profile radius of curvature 

Number of element intervals in the x-direction 

Number of element intervals over the concave roller 

Number of element intervals in the y-direction 

The entry span just prior to the concave roller is a region of 

sharp transition due to the abrupt changes induced in the web by the 

concave roller. MSHGNR automatically increases the element density in 

the region just prior to the concave roller for a distance of 25 per-

cent of the entry span length. This approximate distance of 25 percent 

is based upon computer runs using the two-dimensional finite element 

code STRESS [10]. A completely planar mesh using only the entry span 

was used in the analyses. Linear and parabolic displacements were 

input at one end of the span. The results of the analyses showed that 

the input displacement distributions caused a cross machine direction 

variation in machine direction stresses from the applied displacement 
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end of the span to a point which was about 25 percent of the span 

length downstream. At this location, the lateral distribution of the 

machine direction stresses became approximately uniform and continued 

this uniform lateral distribution throughout the remaining length of 

the web. In other words, the major effect of the linear and parabolic 

input distributions had been lost in the aforementioned distance away 

from that end of the web. Figures 7 and 8 show this transition for 

linear and parabolic displacements, respectively. 

A more accurate modeling of this transition region was incorpor

ated into MSHGNR. For example, if the entry span is 16 inches long 

and 16 machine direction element intervals have been specified, MSHGNR 

places 8 machine direction element intervals in the first 12 inches of 

the entry span and 8 intervals in the remaining 4 inches. If an odd 

number of element intervals is specified, the smaller number of inter

vals is placed in the increased element density region. A planar view 

of the general mesh is shown in Figure 9. The variables shown are the 

same as those defined in Table I. 

A single finite element mesh was used throughout the analysis. 

The entry span length was 16 inches long and the symmetric width of 

the web was 4 inches. Fifteen element intervals were used in the 

machine direction and ten intervals were used laterally. Five machine 

direction element intervals were specified around the concave roller. 

A roller base radius of 1.125 inches was also used. Figure 10 shows 

the mesh used for the analysis. This figure does not show the in-

crease in the machine direction lengths of the elements laterally 

across the concave roller. The increase in length is due to the 
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changing radius of the concave roller. The machine direction dis-

tances shown correspond to the centerline of the web. 

3.2 Average Plane Transformation 

The presence of the concave roller and the resulting web wrap 

around it cause out-of-plane (z) coordinate locations. As mentioned 

in theory, the outer radii of a concave roller are larger than the 

inner radii. By referring again to Figure 6, it is seen that the 

entry span must move out of the x-y plane contact with the cylindrical 

roller to the out-of-plane contact with the concave roller. A linear 

transition is assumed for the entry span between the in-plane contact 

with the cylindrical roller to the out-of-plane contact with the con

cave roller. More out-of-plane locations occur in the web span that 

wraps around the concave roller. These out-of-plane coordinates cause 

a problem with the two-dimensional analysis. A node displacement in 

one element causes out-of-plane displacements for the adjoining ele

ments. Figure 11 shows a graphical representation of this problem. To 

address this problem, the code develops a new coordinate system for 

the nodes based on adjacent planes surrounding the node. 

As previously mentioned, the MSHGNR program generates global 

coordinates and element connecti vi ties based on user input. These 

values are then written to an output file to be read by the main 

program, CONCAVE. CONCAVE reads in the coordinates associated with 

each element. A coordinate transformation matrix [T] is computed (see 

Segerlind [9] or Leport [2]) to transform the coordinates to a local 

system associated with each particular element. Once transformed, an 

elemental stiffness matrix is developed using the procedure described 



Figure 11. Graphical Interpretation of Out
of-Plane Displacements 
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in Segerlind [9]. The elemental stiffness matrix, denoted by [K(e)], 

is then expanded to three dimensions by inserting rows and columns of 

zeros in the third, sixth, and ninth degree-of-freedom locations. 

[K(e)] is then converted back to the global coordinate system by the 

relationship 

( 3.1) 

A global stiffness matrix for the system is assembled by placing the 

entries from the global elemental matrix into the corresponding 

degree-of-freedom locations for the global matrix. 

All of the procedures to this point have involved standard assem-

bly techniques and transformations. The problem of out-of-plane 

displacements still has not been addressed. This is done by trans-

forming the global stiffness matrix to a new local system based on 

nodes instead of elements. This new coordinate system is based on 

averaging the planes surrounding each node. The coordinate system is 

then able to better represent nodal displacements because the nodes 

displace only in the plane associated with it. Consequently, the z 

degree-of-freedom of every node throughout the model must be con-

strained against displacement. 

This procedure is accomplished in the CONCAVE subroutine called 

SKEWED. For interior nodes, the program finds the four closest nodes 

to develop planes as shown in Figure 12. The planes are then averaged 

and a coordinate transformation matrix, denoted by [T'], is developed 

based on directional cosines. The degree-of-freedoms in the global 

stiffness matrix associated with this node are then modified. This 

modification is accomplished by pre-multiplying the appropriate rows 



Figure 12. Planes Used for 
Interior Needs 
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of the global stiffness matrix by the new transformation matrix [T'] 

and then post-multiplying the appropriate columns by the transpose of 

[T']. Appendix A describes this procedure in detail. This procedure 

is repeated for all the nodes with a slight modification for edge and 

corner nodes. Edge nodes only average two planes and corner nodes use 

only one plane as shown in Figure 13. 

3.3 Generation of Boundary Conditions 

A variety of boundary conditions is required to develop an 

accurate model. Some of these conditions are obtained by a prelimi

nary partial run through the computer program. Others are applied by 

appending the stiffness matrix with additional compatibility 

equations. 

A preliminary run through the entry span of the model is required 

to generate displacements to enforce in the final run. These values 

are needed to compensate for the abrupt changes occurring between the 

entry span and the span on the concave roller. Since, for a concave 

roller, the exterior radii are larger than the interior radii, the 

exterior web fibers experience more strain than the interior fibers. 

However, as described in the theory section, the average strain of the 

system must remain constant. The constant strain immediately prior to 

the cylindrical roller must therefore be redistributed for the web 

portion immediately prior to the concave roller such that the average 

strains are equal. The program must be able to do this to accurately 

represent the steady-state response of the system. The preliminary 

run is used to find this redistribution so it can be applied to the 

final run in the form of displacements. 
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The theory section presented the equations required to find sA 
avg 

and sB , the average strains immediately prior to the cylindrical 
avg 

and concave rollers, respectively. The average EA can be found from 

Equation (2.8) via Equation (2.9), or 

EA 
avg 

= 
T 

where the variables are the same as previously defined. 

(2.8) 

Likewise, 

Equation (2.13) shows the average strain immediately prior to the 

concave roller B as 

WW ( 1-EA) • rA • wA I [ 1 - ]dy 
0 (Capr + Rzero - /tapr2- y2) · w B 

(2.13) 

Since the average EB cannot be directly found, MSHGNR performs an in-

cremental search to find the We necessary to satisfy Equation (2.14). 

Once We is found, the resulting strains immediately prior to the 

concave roller are found at the desired lateral locations from 

Equation (2.12), or 

(2.12) 

With the strains now known, differential forces can be found to apply 

to the preliminary entry span run. The output machine direction dis-

placements at the entry span nodes in contact with the concave roller 

can then be used to provide adjustments for the final run. MSHGNR 

calculates the required forces by the following procedure: 

1. EB- EA is calculated for each lateral node location Y. 

2. Forces are then found for each node by 

(3 .2) 
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E modulus of elasticity; 

A = contribution area for each node location; and 

i index ranging from 1 to the number of lateral node locations. 

A- flowchart for the search procedure and force calculation used in 

MSHGNR is shown in Figure 14. The calculated forces are written to an 

output file to be read by the program CONCAVE. 

The preliminary execution of CONCAVE involves only the entry span 

of the web. The same stiffness matrix formulation and transformation 

procedure previously described are used but only for the elements and 

nodes associated with the entry span. The forces are applied in the 

machine direction at the end of the web in contact with the concave 

roller. The cylindrical roller end of the entry span is constrained 

against machine direction displacements yet allowed to displace later-

ally. Once the system of equations is solved, the resulting machine 

direction displacements at the end of the entry span portion of the 

web are the desired adjustments for the concave roller. 

MSHGNR is also used to calculate other displacements for the 

nodes wrapping around the concave roller. Enforced machine direction 

displacements are required around the roller to enforce the no slip

page requirement of the web response this model addresses. These 

displacements induce the proper machine direction stresses which in 

turn induce the required normal forces necessary to generate the lat

eral stresses. In other words, the machine direction stress contribu

tion to the normal force is initially constant around the concave 

roller for each lateral location. This ensures that a relaxation of 

the normal forces does not occur around the roller, which would result 

in a decrease of the lateral spreading traction around the roller. If 
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Figure 14. Search Procedure and Force Calculation Used in MSHGNR 
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this decrease were allowed, it would result in the web "slipping" back 

to lesser lateral displacements. MSHGNR provides these desired 

machine direction displacements for the nodes around the roller. By 

using half of the wrap angle, the number of elements around the 

roller, and the strain at the desired lateral location, the machine 

direction displacements for each node on the roller can be calculated 

from the relationship 

(3.3) 

For this equation, i represents the nodes on the roller and ui the 

desired displacements; r 8 i and €Bi represent the radius and associated 

strain for the desired node i; an represents the cummulati ve angle 

associated with the corresponding row of nodes around the roller in 

degrees. an is found by dividing half the wrap angle (taking advan-

tage of symmetry) by the number of elements around the roller. For 

example, if the wrap angle is 90° and five element intervals are 

specified around the roller, the angle increment would be 45° divided 

by 5, or 9 o. The corresponding en values would then be 0 o, 9 o, 18 o, 

27°, 36°, and 45°. Obviously, the first row of nodes would have no 

displacement associated with it. MSHGNR writes these values to an 

output file to be read by CONCAVE. CONCAVE then adds these displace-

ments to the adjustments found from the preliminary run. The final 

displacements are enforced in the machine direction around the concave 

roller. 

Another set of applied boundary conditions deals with the lateral 

displacements of the web on the concave roller. As mentioned in the 

introduction, the case this program models requires uniform lateral 
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spreading around the concave roller. In other words, each node within 

a column must have the same lateral displacement. The term column is 

used here to denote all the nodes around the concave roller which have 

the same lateral location. The required lateral displacement "locks" 

can be achieved by appending the stiffness matrix with additional con-

straint equations. The equations stem from the relationship that the 

subtraction of the lateral degree-of-freedom of any node in a column 

from the lateral degree-of-freedom of the first node in that column 

must equal zero. Figure 15 shows a graphical representation of this 

requirement. Letting vi represent the lateral displacement of the node 

associated with lateral location i, the equations may be written as 

II 

II 

0 (3. 4) 

where n is the number of nodes around the concave roller. 

These equations can be added to the stiffness matrix by simply 

placing 1 's and -1 's in the appropriate degree-of-freedom locations 

and O's in all other locations. This must be done for both the rows 

and columns to maintain matrix symmetry. Since the general stiffness 

equation has the form 

{F} = [K] • {X} (3. 5) 

the force vector {F} and displacement vector {X} must also be appended 

to maintain consistency. The force vector is appended with the dis-

placements of the constraint equations, in this case zeros. When the 

system of equations is solved, the displacement vector will be 
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Figure 15. Lateral Displacement •'Locks" 
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appended with the forces required to enforce the constraint 

equations. The modifications are shown again in Appendix B. 

The final set of boundary conditions deals with the operating 

tension of the system. The tension is input to the upstream web span 

at the upstream cylindrical roller in the form of displacements. To 

find the required displacements, Equation (2.9) is again used to find 

the strain for the cylindrical roller A. This uniform strain is then 

multiplied by the entry span length to obtain the proper displace

ments. These displacements are applied in the negative of the machine 

direction to the beginning of the model. MSHGNR is used to find these 

displacements. The operating tension is input to the elements on the 

concave roller via the displacement boundary conditions associated 

with Equation (3.3). Recall that the average value of e:A is the 

uniform strain associated with the operating tension. 

3.4 Spreading Analysis 

The spreading of the web due to the concave roller is a non-

linear response. Any computer analysis of the spreading behavior 

cannot be directly solved and must therefore be approached from an 

iteration standpoint. Two stiffness matrices are used throughout the 

analysis. Both are in the local coordinate system of average planes 

as previously described. The first matrix, labeled GSM, is the full 

unmodified matrix. The term unmodified indicates that the z degree

of-freedoms and all symmetric considerations as well as all known 

displacements have not yet been enforced. 

labeled GTSM. 

The modified matrix is 
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The spreading analysis begins by solving the modified stiffness 

matrix GTSM for the displacements. The nodes in contact with the con

cave roller are of primary concern. The forces and corresponding dis

placements of these nodes are iterated upon in the spreading analy~is. 

A problem exists with the entry and exit of the web to and from 

the concave roller. The first and last rows of nodes generate some 

negative normal forces. These resulting negative normal forces are 

best understood in physical terms. The internal rows of nodes have 

other rows of nodes on both sides in contact with the roller, thereby 

keeping them fully confined to the roller. The two exterior rows of 

nodes on the roller have only one adjacent row of nodes in contact 

with the roller. This results in the web trying to "lift-off" the 

roller at these exterior rows and thus the negative normal forces. 

To address this problem, only the interior rows of nodes are used 

to calculate the friction forces. The friction forces for the nodes 

on the exterior rows are supplied by using half of the friction force 

of the corresponding lateral node on the adjacent row in contact with 

the roller. Only half of the friction forces are applied at the last 

row of nodes because machine direction symmetry is enforced. Like

wise, half of the friction forces are applied to the first row of 

nodes because only half the area associated with this row of nodes is 

in contact with the roller. Figure 16 is supplied to better explain 

this assumption. This figure represents the portion of the web in 

contact with the concave roller. If this web span were unwrapped from 

the roller and laid on a flat surface, it would appear as shown. The 

exterior nodes simply have half of the spreading force associated with 

their adjacent interior counterparts. 



Figure 16. Friction Forces for Exterior Raws 
of Nodes 

39 



40 

Once the initial system of equations has been solved, the 

degrees-of-freedom associated with the spreading nodes are multiplied 

by the unmodified GSM matrix. This multiplication yields local normal 

forces for each node. The friction forces are then found from the 

classic relationship: 

Ff .. JJ • N (3.6) 

where 

Ff = friction force; 

JJ = coefficient of friction; and 

N = normal fo.rce. 

These friction forces are shifted to the y degrees-of-freedom and then 

applied as a force vector. The forces for the nodes on the exterior 

rows are applied as d~scribed above. The new system is solved and new 

displacements are generated. Local forces are again found and conver-

ted to friction forces. The new friction forces are compared to the 

old friction forces. This comparison applies only to the rows of 

nodes interior to the concave roller. If any nodal friction force is 

not within a specified tolerance envelope, the procedure is repeated 

until all nodes meet the convergence criteria. 

To aid convergence, the new friction forces are weighted and then 

added to the old spreading forces. This is the force that is then re-

applied. The weighting equation is 

(Fs) .. (Fs) + ~ [(Ff) - (Fs) ] 
i,n i,n-1 i,n i,n-1 

(3.7) 

where F5 = spreading force; 

Ff = friction force; 

i .. node number; and 

n = iteration number. 
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A flowchart for the iteration process is shown in Figure 17. 

The number of iterations required for convergence increases with 

changes in various parameters. Lowering the radius of curvature, for 

example, results in a higher number of iterations required for 

convergence. The user must be aware of this iteration number. It is 

the last entry in the output file OUT.DAT. An iteration number of 101 

indicates the model did riot fully converge and the resulting data must 

therefore be used with caution or the input variables must be 

modified. 

3.5 Program Summary 

This study utilizes two programs, MSHGNR and CONCAVE, both 

previously mentioned. Both are file oriented programs which require 

input files to receive the necessary information. 

results are written to output files. 

Accordingly, the 

As mentioned, the program MSHGNR develops the finite element mesh 

and boundary conditions required by the main program CONCAVE. MSHGNR 

uses the user definable variables found in the file INPUT .DAT to de-

velop the global coordinates and element connectivities of the mesh. 

The information as well as an echo of the original input is written to 

the output file MESH. DAT. MSHGNR is also used to solve the compati-

bility requirement 

e:A = e: 
avg 8avg 

(2.14) 

employing the subroutine SMPINT, a Simpson's integration routine. 

This analysis was outlined in Figure 14. Once the equation is satis

fied,. adjustments in the form of forces are written to the file 

FORCE.DAT to be used in the preliminary run of CONCAVE. The final 
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data generated by MSHGNR involve the constraints of the system. Since 

the preliminary and final runs of CONCAVE incorporate slightly differ-

ent constraints, two output files are used. They are CONSTR. DAT and 

BCNSTR. DAT, both required by CONCAVE. The main analysis sections of 

CONCAVE have already been discussed. Figure 18 shows a generalized 

flowchart for the program. Following is a description of the sub-

routines used by CONCAVE: 

INPUT 

ELSTMX 

LA MDA 

TRNSMX 

TRNSFM 

ASSEMB 

SKEWED 

MODIFY 

SANDS 

FACTOR 

SUBST 

FRICTN 

APFORS 

Reads in data files generated by MSHGNR. 
Performs some diagnostic checks of data. 

Calcvlates 
[K(eJ]. 

local elemental stiffness matrix 

Generates directional cosine matrix [A] used to 
develop transformation matrix [T]. 
Also used to generate [A'] used by SKEWED for an 
average plane transformation [T']. 

Evaluates transformation matrices [T] and [T]T. 

Performs transormrtton of local( )elemental 
stiffness matrix [K e ] to global [KG e ]. 

Uses direct stiffness assembly procedure to 
assemble global stiffness matrix [KG]. 

Performs transformation of global stiffness 
matrix to average plane system. 

Reads enforced nodal displacements and nodal 
forces applied to web. 
Modifies system of equations. 

Calculates stress and strain vectors and 
principal stresses. 

Transforms system of equations to upper 
triangular form. 

Back-substitutes into equations to find solution 
vector. 

Calculates friction force for each node. 

Applies force to force vector. 
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Calculates ratio of spreading force to friction 
force for interior nodes on roller. 
Checks if ratio is within limits 

3.6 Parameter Response 

The last portion of the analytical study deals with the 

parameters of the model. Ranges of several of the user definable 

parameters were studied to aid in checking the validi ~Y of the model 

as well as gain insight to the effect of the parameters on the 

response of the system. Table II shows a list of the parameters 

studied and their associated descriptions. 

TABLE II 

LIST OF PARAMETERS STUDIED 

Parameters Description 

CAPR Circular arc profile radius of curvature 

EM Modulus of Elasticity 

TH Thickness 

PR Poisson's Ratio 

AMU Coefficient of Friction 

WRAP Wrap angle around concave roller 

FORCE Nodal tensile force 
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A range of values for each of the parameters was input and the 

resulting response of the system was then analyzed. To effectively 

analyze the response, a base model was developed. 

values are shown in Table III. 

TABLE III 

PARAMETER VALUES USED FOR BASE MODEL 

Parameter Value 

CAPR 1250 in. 

EM 220,000 psi. 

TH 0.002 in. 

PR 0.3 

AMU 0.3 

WRAP goo 

The base model 

FORCE 6.25 lbs/inch 

3.7 Parameter Values Studied 

The parameter study involved seven parameters: four represented 

the operating constraints of the system and three represented material 

properties of the web. Each parameter included a range of values that 

corresponded to actual practice. 

Table IV shows the various parameter values for the radius of 

curvature; 175 inches was the lowest radius of curvature possible 
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given the other base parameters. Values lower than 175 inches pro-

duced negative strain on the concave roller. When this case exists, 

the program stops execution. For the analysis to continue, the user 

must either increase the radius of curvature and/or increase the 

operating tension. The web has no compressive stiffness and therefore 

a negative strain indicates wrinkling. 

TABLE IV 

PARAMETER VALUES USED IN STUDY 

Capr Wrap Force EM PR TH AMU 
(in.) (deg.) (lb/in.) (psi.) (in.) (Mu) 

175 30 1.0 50,000 o.o 0.0002 0.001 

300a 60 2.0 150,000 0. 1 0.0010 0.010 

750 gob 3.0 220,000b 0.2 0.0020b 0.050 

1250b 120 4.0 350,000 0.3b 0.0030 0.100 

3500 150 6.25b 500,000 0.4 0.0100 0.300b 

180 

300 was added later to help clarify results. 

bindicates parameter values used for base model 



CHAPTER IV 

ANALYSIS OF RESULTS 

Once the boundary conditions were enforced into the model, the 

effect of the various parameters on the model was studied. The para

meters studied and their associated values can again be viewed by 

referring to Table IV. Plots which represented the response of the 

system were generated for each parameter. A wide range of plots were 

generated for variations in the radius of curvature to better under

stand the trends of the system and to check the validity of the model. 

Once the general responses of the system were described, the plots for 

the remaining parameters were isolated to only the particular trends 

they involved. For example, plots of the entry span were not gener

ated for many of the parameters since for most cases the response of 

this portion of the web will be the same and will simply be a function 

of the spreading on the roll. 

4.1 Curved Arc Profile Radius of Curvature 

One of the primary concerns of this parameter was the spreading 

ability of the various radii of curvature as shown in Figure 19. The 

edge displacement of the web is plotted as a function of the various 

radii of curvature. This edge displacement, as shown on this and 

other plots, is relative to a relaxed web state. A radius of cur

vature of 300 inches was added to this and a few of the other plots to 
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better represent the nonlinear behavior of the lower radii of curva

ture. Given the base model values of the other parameters, a radius of 

175 inches was the lowest value possible because lower values produced 

negative strain on the concave roller. 

The plot shows that lower radii of curvature produce much more 

spreading of the web. This result was expected because lower radii 

produce larger normal forces, thus larger spreading forces. Theoretic

ally, the curve should approach zero as the radius approaches infin

ity. An infinite radius of curvature would represent a cylindrical 

roller, which has no spreading capability. 

Figure 20 shows the edge displacements down the length of the 

web. Since the web is not laterally constrained at the beginning of 

the model, the web seeks the Poisson contraction of the material. The 

smaller radii of curvature begin spreading the web sooner than the 

larger radii. The majority of the transition, however, occurs in the 

span approximately 25 percent of the entry span length upstream of the 

concave roller. Again it can be seen that the smaller radii produce 

more spreading in the web. 

This plot also indicates that the web entry into the concave 

roller is not perfectly normal. Although this was an initial assump

tion used in the generation of the theory, it was not enforceable in a 

finite element model using Simplex elements (i.e., rotations are unde

fined). However, this is a local inconsistency related only to the 

one or two rows of nodes immediately preceding the concave roller. 

The localized effect of this inconsistency will be verified by the 

following plots. This minor inconsistency does not significantly 

influence the other results because the spreading of the web is 
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controlled by only friction forces at the interior row of nodes on the 

roller. Since the stresses are computed separately upon each itera

tion, an accumulation error buildup does not occur. 

The trends shown in Figures 21 and 22 can be explained physically 

via the continuity expression of Equation (2.3). Refer to Figure 23 

which shows the machine direction strain distributions across the 

first row of elements on the roll for various radii of curvature. 

These distributions result from satisfying the average strain criteria 

expressed by Equation ( 2.14). The normal forces which are available 

to provide spreading tractions are highly dependent on the machine 

direction stresses which stem from these machine direction strains, 

via Equation (2.7). However, the lateral location on the concave 

roller also contributes to the normal force. Recall that the radius 

of a concave roller increases laterally across the roll, with the 

largest increases on the outside edge. This translates to the lateral 

location contribution to the normal force also increasing laterally 

across the roll, again with the largest increases on the outside edge. 

To clarify, a small displacement applied to a node near the centerline 

of the web results in a minor additional contribution of the lateral 

location to the normal force. However, the same displacement applied 

to a node near the outside edge of the web results in a much more 

significant contribution to the normal force. Therefore, although the 

normal force is highly dependent on the machine direction stress 

throughout the lateral span of the web, it is even more dependent in 

the laterally interior region of the roll than in the exterior 

region. This relationship is necessary to understand the Sy and Sx 

stress plots presented in Figures 21 and 22, respectively. 
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It is also necessary to again review the spreading technique 

applied by the program. Recall that spreading forces are applied to 

the nodes in that portion of the web in contact with the concave 

roller on an individual basis. Each node is spread on the basis of 

the available friction capability, derived from the available normal 

force. Again recall that both the initial machine direction stress 

and the lateral location on the roll both contribute to the normal 

force. The term "initial machine direction stress" refers only to the 

resulting stress distribution obtained from satisfying the average 

strain criteria, and is not to be confused with the machine direction 

stress of the system, a product of both the initial machine direction 

stress and the machine direction stress component resulting from the 

spreading of the web. This relationship will be discussed later. 

Beginning with the contracted state of the web resulting from the 

Poisson effect, frictional forces are applied as spreading forces to 

achieve new lateral displacements, or a spreading of the web. These 

new lateral displacements are used in conjunction with the initial 

machine direction stresses to find new normal forces resulting in new 

friction forces. The new friction forces are then weighted and 

applied, resulting in the web being spread further upon each itera

tion. The spreading is finally stopped when each interior node on the 

web on the concave roller has achieved a state of impending lateral 

slip. In other words, the new spreading forces are checked against 

the previous spreading forces for convergence. Since the spreading 

forces are derived from the normal forces, it follows that new normal 

forces must be of sufficient magnitude over the previous normal force 

for nodal spreading to continue. 



58 

Figures 21 and 22 can now be more fully explained. The initial 

machine direction stress distribution is simply the machine direction 

strain distribution, shown in Figure 23, multiplied by the modulus of 

elasticity, a constant for the analysis of the radius of curvature 

parameter. The initial machine direction stress distribution will 

therefore be the same as the machine direction strain distribution 

shown in Figure 23, with only the y-axis values changing. With the 

understanding that the trends are equivalent, the machine direction 

strain distribution will be frequently referred to as the initial 

machine direction stress distribution. Since all values in this dis-

tribution are positive, they all provide positive normal forces 

resulting in spreading. Considering only the interior portion of the 

roll, larger changes are shown for smaller radii of curvature relative 

to larger radii of curvature. Since the normal force, especially in 

this interior region, is highly dependent on the initial machine 

direction stress, an increase in this stress between successive nodes 

will result in more spreading of the latter node, thereby increasing 

the lateral stress. This is easily seen by comparing the increasing 

trends of the smaller radii of curvature shown in Figure 23 to the 

increasing trends of the lateral stress as shown in Figure 21. Like-

wise, each increase in the lateral direction stress, SY' results in an 

increase in the machine direction stress via 

Sx = E • € + v • S X y 
( 4. 1 ) 

The variables for this equation have all been previously defined. The 

machine direction strain, Ex, is presented graphically in Figure 23. 

Equation ( 4.1) is a two-dimensional elastic! ty equation representing 

the interaction between directional stresses of the system. The 
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increasing trends of machine direction stresses for the smaller radii 

of curvature resulting from Equation (4.1) are shown in Figure 22. 

Although slightly increasing, larger radii of curvature supply a 

much more uniform initial machine direction stress distribution for 

the interior portion of the roll. These uniform trends are again the 

same trends shown in Figure 23. With the initial machine direction 

stresses virtually the same for each consecutive node in the interior 

region of the roll, each node has the same initial spreading abil

ity. Due to the nature of the larger radii of curvature, the nodes do 

not receive much additional contribution to the normal force from the 

lateral location of the web on the roll. Therefore, the impending 

lateral slip is achieved sooner for each successive node due to the 

increasing radius of the concave roller. A decrease in the spreading 

should therefore occur for each successive lateral location in the 

interior portion of the roll for larger radii of curvature. This trend 

can be seen by again referring to Figure 21. This decreasing trend is 

also reflected in the machine direction stresses as shown in Figure 22 

again via Equation (4.1). The slight increases in the initial machine 

direction stresses depicted in Figure 23 are almost entirely removed 

due to the decreasing contribution of the lateral spreading stresses 

in this interior portion of the roll. 

The previous analogies also hold for the laterally exterior por

tion of the roll with the exception that each change in the normal 

force contribution is significant enough to provide additional spread

ing for a longer time in terms of the impending lateral slip criteria. 

In other words, the lateral locations of the exterior portion of the 

roll provide addi tiona! spreading abilities relative to the interior 
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portion of the roll. With this in mind, again refer to Figure 23 for 

initial machine direction stress trends of the various radii of curva

ture. All distributions show a lateral increase in the outer portion 

of the roll, with the smaller radii increasing more dramatically. 

These dramatic increases for smaller radii of curvature coupled with 

the increasing contributions of the lateral locations provide the 

trends shown in Figure 21 • Spreading stresses for small radii of 

curvature increase sharply laterally across the roll. These sharp 

increases again combined with machine direction strain increases via 

Equation (4.1) result in the increases shown in Figure 22 for machine 

direction stresses for smaller radii of curvature. 

Figure 23 indicates that larger radii of curvature experience 

less dramatic increases in the machine direction stress distribution. 

Although increasing, these larger radii represent a more uniform 

spreading ability for this outer region of the web relative to smaller 

radii. Recall the lateral slip criteria. With no substantial 

increase in the machine direction stresses laterally across the web, 

each new lateral location satisfies this criteria sooner in a lateral 

displacement sense. The result is the uniform spreading trends demon

strated in Figure 21 for the larger radii of curvature. Particularly 

note the 3500-inch radius of curvature in which the spreading stress 

continues to decrease laterally across the roll due to the insuffi

cient increases in the initial machine direction stress. 

Figure 22 shows machine direction stresses of larger radii of 

curvature increasing gradually in the outer portion of the roll. 

However, slopes of the increase are smaller than the slope of the 

machine direction stress distribution because each lateral location 
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receives less of an impact from the spreading stress again via Equa

tion (4.1). 

It is important to note that all spreading stresses shown in 

Figure 21 should theoretically converge to zero at the outside edge of 

the web, since the edge has no ability to support stresses. The 

stresses shown represent the values at the interior of the corre

sponding elements. For the edge convergence to be modeled accurately, 

many additional elements would be required. The width of these ele

ments would need to decrease laterally until the outermost element had 

an infinitesimally small width. It is not feasible, nor physically 

possible, to incorporate such decreasing elements and the user must 

therefore remain aware of this exterior convergence. 

The trends of Figure 21 for the various radii of curvature can be 

used to explain Figure 24. Figure 24 represents the net lateral 

spreading of each lateral node location, derived from subtracting the 

Poisson contraction of each lateral node location from the spreading 

experienced by the corresponding nodal location on the concave 

roller. Realize that each subsequent lateral node for a particular 

radius of curvature has an increased Poisson contraction associated 

with it as per Figure 23. A more complete discussion of the Poisson 

effect will be provided later. The spreading tractions shown in 

Figure 21 represent the ability of the web to spread beyond this 

Poisson effect. Figure 24 shows that, although the exterior nodes for 

the larger radii represent less spreading ability relative to their 

interior nodes, the overall net spreading is higher. This is because 

each outer node also experiences the contraction of all of the 

interior .nodes, giving each outer node increased contractions beyond 
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their individual Poisson contraction. As the interior nodes spread, 

they also move out the outer nodes. This results in the cummulati ve 

spreading curves shown in Figure 24, whereby the outer nodes also 

experience the spreading associated with the interior nodes. The 

smaller radii shown in Figure 21 indicate continually increasing 

spreading stresses. This results in the larger net increases per 

consecutive node as shown in Figure 24. 

The machine direction stress, Sx, and the lateral stress, Sy, 

distributions at a lateral location of 3.33 inches are shown through

out the length of the web in Figures 25 and 26, respectively. Figure 

25 is very similar to the edge displacement plot shown in Figure 20. 

Stresses are constant in the beginning portion of the web and rapidly 

tncrease as the concave roller is approached. Stresses on the roller 

are constant, as enforced by the constraints of the model. Again the 

localized inconsistency of the row of nodes immediately preceding the 

concave roller is seen. 

Lateral stresses (shown in Figure 26) are nearly zero in the 

beginning portion of the model. However, they begin to increase close 

to the concave roller. Again, there is a drop between stresses on the 

roller and those immediately prior to the roller. The stresses are 

constant on the roller itself. This was one of the main concerns of 

the model. Constant lateral stresses were desired to adequately model 

the spreading condition which assumes a constant lateral spreading for 

each column of nodes and machine direction force symmetry. 

Primary and secondary stress distributions, s1 and s2, throughout 

the machine direction distance are plotted in Figures 27 and 28, 

respectively. Both plots show the same trends as discussed for the 
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machine direction variations of Sx and Sy. However, these plots are 

not constant on the roller and have slightly different values in the 

region prior to the roller. This variation is understood by again 

considering enforced machine direction displacements on the concave 

roller. These displacements increase as the outside of the web is 

approached. Elements in this region experience different enforced 

displacements for nodes as soc ia ted with it. Nodes at one lateral 

location have a different enforced displacement than nodes interior 

and exterior to it. This creates shear in the elements. This shear 

is a cumulative value as the elements proceed around the concave 

roller. Cumulative shear values have a positive impact on the prin-

ciple stress s1 and a negative impact on the secondary stress s2 as 

seen by Equations (4.2) and (4.3): 

s s s s 2 
+ 2 s = X + Y. + I X - l) 

1 2 
( 

2 txy (4.2) 

s s s s 2 
2 s = X + :l - I X - Y.) ( + t 

2 2 2 xy (4.3) 

Shear values therefore become additive to Sx and negative to Sy. This 

results in s1 showing an increase on the roller and s2 showing a de-

crease on the roller. Shear contributions also account for slight 

changes in the span just prior to the concave roller due to the con-

traction and expansion (spreading) experienced by the web. 

Figures 29 and 30 show the s1 and s2 distribution laterally 

across the web. Both follow the analysis presented for the lateral 

behavior of Sx and Sy with only slight variations. Again, s1 and s2 

consider the shear present in the elements. This results in slightly 

higher values for s1 than expressed for Sx, but the overall trend is 
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the same. Likewise, s2 shows lower values than Sy. The shear contri-

bution outweighs the lateral spreading contribution for the 175-inch 

radius of curvature, thereby creating negative s2 values. This is 

because the trend for Sy is different as previously discussed. The 

values start out much lower than the other values and increase more 

rapidly to produce the overall spreading effect. The shear contribu-

tion is greater for the smaller radii of curvature and therefore the 

175-inch case is greatly influenced by the shear at the interior por-

tion of the web. However, spreading tractions again become dominant 

as the edge of the web is approached. 

The final data analyzed was the machine direction €x distribution 

and the lateral €y distribution, shown in Figures 31 and 32, respec

tively. Figure 31 again shows the discontinuity involved with the row 

of nodes immediately prior to the concave roller. However, aside from 

this one row of nodes, the plot shows a reasonable continuous €x dis-

tribution throughout the length of the web. Slightly higher values of 

the larger radii prior to the roller can be explained by the relation-

ship 

1 
€ = - (S - vS ) 

X E X y 
(4.4) 

This equation shows €x results from the difference of the machine 

direction Sx and the Poisson contribution of Sy. Refer to Figures 25 

and 26 for the machine direction Sx and Sy distributions. Note par

ticularly from Figure 25 that the Sx resulting from the roller has a 

further influence upstream into the_ entry span than the Sy influence 

from the roller, shown in Figure 26. The higher €x value prior to the 

roller for the larger radii of curvature represents the prolonged 

influence of S upstream into the entry span via Equation (4.4). This X . 
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trend is not as pronounced for the 175-inch radius due to the 

increased SY influence into the entry span. 

Figure 32 shows the Ey distribution across the roller. Recall 

that machine direction strains are enforced across the roller by 

machine direction displacements, with the largest values in the outer 

region of the web. These machine direction strains are related to 

lateral strains by Poisson's ratio. In general terms, Poisson's ratio 

represents the relationship between the transverse contraction of a 

specimen resulting from a longitudinal elongation, and can be express-

ed as 

E = - VE (4.5) 
y X 

where v represents Poisson's ratio. The largest lateral contractions 

will therefore correspond to the largest enforced machine direction 

displacements or, the outer regions of the web. Recall the increased 

spreading ability of the smaller radii of curvature as shown in Figure 

21 . This increased ability creates positive strains in excess of the 

Poisson contraction induced by the machine direction displacements. 

The larger radii do not have this increased spreading ability. There-

fore. as machine direction strains increase laterally across the web, 

spreading stresses provide a lesser ability to overcome the increasing 

contractions, thus resulting in the decreasing trends of the larger 

radii as shown in Figure 32. 

4.2 Angle of Wrap 

The next parameter studied was the angle of wrap around the con-

cave roller. Figure 33 shows the edge displacement of the web on the 
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concave roller as a function of the wrap angle. The plot indicates 

that larger wrap angles produce more spreading in the web. This 

result was expected because larger wrap angles translate to more web 

material in contact with the roll, thus generating higher normal 

forces. These higher normal forces represent an increased spreading 

ability. For the given base model parameters, a wrap angle of approx

imately 60 degrees was required to return the web to its original 

undeformed lateral width. Angles less than 60 degrees were unable to 

generate enough spreading force to produce positive displacements in 

the web. 

Figure 34 shows the lateral Sy distribution across the web at the 

machine direction location corresponding to the first row of elements 

on the roll~ Smaller wrap angles produce lower spreading stresses. 

Refer to Figure 23 for the initial machine direction distribution of 

the base parameter radius of curvature of 1250 inches. The initial 

machine direction stress is virtually uniform in the interior portion 

of the web. Therefore, any changes in any values which affect the 

normal force--in this case the amount of area in contact with the 

roll--will have a more significant effect on spreading of the web. 

This impact is represented in Figure 34 by indicating the larger wrap 

angles produce more spreading ability of the nodes in the interior 

region of the roll. The convergence of the lateral stresses at the 

edge of the web result from the equilibrium requirements of the 

model. These equilibrium requirements will be shown in detail under 

section 4.7 for the coefficient of friction. For now it is sufficient 

to note they do converge. 
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4.3 Web Tension 

Effects of changes in the input tension to the model are shown in 

Figure 35. The plot shows . the edge displacement on the roll as a 

function of the tension of the system. A linear trend is shown with 

the higher tensions producing increased edge displacements. Recall 

that the input distribution is the same for all forces since the 

radius of curvature is a constant, namely 1250 inches. Only the mag

nitude of each distribution changes. This results in higher normal 

forces generated for the higher tensions. The elastic properties of 

the web are also a constant for this parameter. Thus, the edge dis

placements become linearly proportional to the forces as shown in the 

plot. · 

Trends shown in Figure 36 again represent this relationship. The 

higher tensions produce higher lateral stresses. The relation between 

the stresses of the various curves is again linear, as shown in Figure 

37. Discussion of the convergence at the edge of the web will again 

be delayed until Section 4.7. 

4.4 Modulus of Elasticity 

Changes in the modulus of elasticity produce a nonlinear effect 

on spreading of the web on the concave roll, as shown in Figure 38. 

The modulus of elasticity is a measurement of material stiffness. It 

is therefore expected that larger moduli would indicate a stiffer 

material and thus a lower spreading response on the concave roller. 

This corresponds to the trends shown in Figure 38. 

Effects of the various moduli of elasticity on the Sy distribu-

tion laterally across the roll are shown in Figure 39. To address 
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these trends, it is necessary to understand changes in the initial 

machine direction stress induced by the changing moduli. Recall that 

the strain distribution is constant for this parameter since the 

radius of curvature is a constant value of 1250 inches. Significantly 

increasing the modulus of elasticity results in large increases in the 

initial machine direction stress distribution via Equation (2.7). 

This distribution of the initial machine direction stress can again be 

seen by referring to Figure 23 for the curve representing the 1250-

inch radius. The uniform trend of the curve in the interior portion 

of the web causes the initial decrease shown in Figure 39. The lack 

of significant lateral increase in the machine direction stress 

combines with the lateral increase in the radius of the concave roller 

to result in impending lateral slip being achieved sooner for each 

subsequent node in this interior region. The lower moduli also show 

higher stresses relative to the higher moduli in this interior region 

of the web. This result is due to the various stiffnesses represented 

by the different moduli. Although the higher moduli have higher 

initial machine direction stresses, they also have increased stiff-

ness. This stiffness resists spreading thereby meeting the lateral 

slip criteria earlier with respect to the lower moduli. 

However, these trends change for the exterior port ion of the 

web. The higher initial machine direction stresses of the higher 

moduli provide considerably more spreading ability due to the 

increasing trends shown in Figure 23. The lower moduli result in much 

smaller changes in the initial machine direction stress for this 

exterior region. These smaller changes again coupled with the 
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increasing roller radius provide the continued decreasing trends of 

the small moduli as shown in Figure 39. 

Spreading stresses at a lateral location of 3.33 inches are 

plotted as a function of the various moduli of elasticity in Figure 

40. This plot shows a linear relationship between the spreading 

stress at this location and the various moduli. This plot corresponds 

with the previous analysis in that each larger modulus is capable of 

supporting higher frictional forces. 

4.5 Poisson's Ratio 

Figure 41 shows the effect of various values of Poisson's ratio 

on the spreading of the web. Refer to section 4.1 for Equation (4.5) 

and the discussion on Poisson's ratio. The plot indicates that lower 

Poisson values result in higher edge displacements of the web. This 

trend is understood by considering the amount of contraction, induced 

by the initial machine direction strains, that the spreading must 

overcome. Small Poisson values represent small lateral contractions 

and therefore less contraction to overcome. This results in increased 

spreading ability given the available friction forces. Likewise, 

larger Poisson values represent large contractions. Spreading dis-

placements must overcome this contraction before positive displace

ments, relative to the undeformed web width, result. 

Lateral stresses across the roll are shown in Figure 42. The 

results presented in this plot logically follow the trends shown in 

Figure 41. Refer to Figure 43 for lateral stresses down the length of 

the web for various Poisson values. Particularly note the lateral 

stresses of the contracted state of the web. These lateral stresses 
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are virtually zero, although they all represent different contractions 

of the web. Therefore, any spreading from this contracted state 

results in positive spreading stresses (i.e., no negative lateral 

stresses to overcome). Although the larger Poisson values show less 

positive displacements, they represent more net spreading, as shown in 

Figure 44. This larger net spreading of larger Poisson values and 

lower net spreading of lower Poisson values result in the correspon

ding stresses shown in Figure 42. The increasing net spreading values 

shown in Figure 44 are again a result of each outer node also exper

iencing the spreading associated with the nodes interior to it. 

4.6 Thickness 

The next parameter studied was web thickness. Figure 45 is a 

plot of the edge displacement as a function of web thickness. The 

curve shows that lower thicknesses increase the spreading ability of 

the concave roller. With the tension, web width, and modulus of 

elasticity the same for all values of the thickness, a smaller 

thickness would result in higher initial machine direction strain 

distribution via Equation (2.8 and thus a higher initial machine 

direction stress distribution via Equation (2. 7). The larger initial 

machine direction stresses associated with the smaller thicknesses 

would then result in higher spreading abilities in the web. This is 

the trend shown in Figure 45. 

Figure 46 shows the lateral stress distributions across the web 

for the various thicknesses. The same discussion presented for the 

other parameters again holds for this plot. The increasing curves of 

the larger thicknesses result from the laterally increasing initial 
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machine direction stress distribution. However, the curves for the 

smaller thicknesses decrease. This decrease is again due to the 

increasing radius of the concave roller, whereby impending slippage 

occurs sooner for each subsequent node. 

Figure 47 shows a plot of the lateral stress at a lateral loca

tion of 3.33 inches. The curve shown has a strong correlation to the 

edge displacement curve shown in Figure 47. This curve is understood 

by considering the use of the thickness in the finite element method. 

The thickness is just used as a constant in the development of the 

elemental stiffness matrices. Therefore, changes in this parameter 

can simply be thought of as "scaling factors" for the stiffness matrix 

and do not affect elastic characteristics of the material. This 

results in the correlation between Figures 47 and 45, whereby a given 

stress results in a given displacement. 

4.7 Coefficient of Friction 

The last parameter in this study is the coefficient of fric

tion. Figure 48 shows the edge displacement on the roll as a function 

of this parameter. The resulting curve is linear, indicating a direct 

correlation between the coefficient of friction and the edge displace

ment of the web. The coefficient of friction is a operating system 

parameter and not a material property parameter. A high correlation 

between changes in this parameter and the resulting spreading of the 

web would therefore be expected. Recall that the coefficient of fric

tion is used to calculate the spreading force via Equation ( 3. 6). 

Increases in this variable would provide higher frictional forces and 

thus result in larger spreading displacements as shown in Figure 48. 
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Figure 49 shows the Sy distribution laterally across the web for 

various coefficients. This plot again shows the higher coefficients 

of friction resulting in higher spreading tractions. The convergence 

at the edge of the web was not expected. 

To address this convergence as well as the convergence of the 

wrap angle and tension parameters, it becomes necessary to consider 

the equilibrium requirements of the outer elements. Recall that the 

outside edge of the web cannot support any traction. A theoretical 

element would therefore appear as Figure 50, with the variables 

representing their usual meanings. Summing forces in the x and y 

directions result in equations (4.6) and (4.7), respectively. 

aax a .. 
-~ = 0 

ax ay 
(4.6) 

aa a .. 
__y_ _ _g_=O 
ay ax (4.7) 

Equation (4.8) is obtained by summing the moments about the center of 

the element. 

a .. 
(dx ) + 1 

a .. 
(dx)] dx 

[.. + xx - _g_ dy dz xy ax 2 xy ax 2 2 

a .. a .. 
(£x.) £x.d - [~ (£x.) -~ ] dx = 0 ay 2 ay 2 2 z (4.8) 

Simplifying, 

(4.9) 

or 

1' = 0 xy 
(4.10) 

By incorporating (4.10) into the theoretical element, Figure 51 is 

obtained. 

Summing the forces about Point C yields 
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aax d aa 
ax dx) 2y dydz + ~ dy (d~) dxdz 0 (4.11) 

or 
a ax a a 

dy = y dx (4.12) ax ay 
This equation explains the convergence of the lateral stress for the 

edge elements of the wrap angle, tension, and coefficient of friction 

parameters. Recall that the machine direction stresses are enforced 

and therefore the rate of change per unit width is also enforced. In 

other words, the right side of Equation (4.12) is set for constant 

material properties and a given geometry (i.e., Radius of Curvature is 

constant.) All stresses therefore converge at the edge of the web 

because the lateral stress at this location is totally dependent on 

the enforced machine direction displacements. 

Herein lies a shortcoming of the coefficient of friction 

analysis. The problem is associated with the assumed boundary 

conditions. Recall that the procedure used to calculate the initial 

machine direction strain profile ignores the possibility of slippage 

in the machine direction. If slippage is occurring in the machine 

direction, then the initial strain profile will be nearly uniform 

across the web width and thus less spreading will occur. If this 

slippage was accounted for with respect to the various coefficients of 

friction, the lateral stresses at the outside edge of the web would 

not converge. Thus the results shown in Figure 49 must only be 

regarded as qualitative at best without a thorough study of the effect 

of machine direction slippage upon the lateral stresses. 

This shortcoming of the coefficient of friction parameter does 

not invalidate the other lateral stress trends. Although the lateral 

stress of the outer element is controlled by Equation (4.12), the 
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interior elements are still capable of supporting all of the plane 

stress components. The trends they indicate are therefore still 

acceptable. 

It should also be mentioned that the fact cry is prescribed for 

the outer element in no way invalidates the spreading analysis. The 

spreading results have frequently been described in terms of applied 

stresses. In actuality, the spreading analysis is based upon forces 

and displacements. The stresses are merely a derivative of this 

interaction and are therefore just a convenient tool in the analysis 

of the results. 



CHAPTER V 

CONCLUSIONS 

5.1 Overview 

In this study, finite element programs developed by Leport [2] 

were modified to better simulate the response of a web induced by a 

concave roller. The same average plane coordinate system was used to 

address out-of-plane nodal displacements. An average strain criteria 

was developed for web spans. This criteria led to the redistribution 

of the strain present in the web for the geometry of the concave 

roller. Displacements were calculated and enforced across and around 

the concave roller to ensure equal spreading. The nodes on the roller 

were constrained such that all the nodes at a given lateral location 

spread equally. New parameters were also added to provide more 

flexibility to the model. 

Once the above boundary conditions were incorporated, a baseline 

set of parameters was selected and one parameter was allowed to vary 

within specified ranges. The output of the finite element model was 

studied as a result of allowing that parameter to vary in terms of 

machine direction and cross machine direction stresses and displace

ments. The analyses showed that increasing the radius of curvature, 

angle of wrap, web tension, and coefficient of friction all induced 

increased spreading of the web. Conversely, increases in the Modulus 

103 



104 

of Elasticity, Poisson's ratio, and thickness of the web resulted in a 

decrease in the spreading response. 

In typical applications, spreading devices are added after web 

lines are constructed. The usefulness of this model is as a design 

tool to help design engineers select the concave roller profile and 

the coefficient of friction, which can be controlled by selecting 

various roll coverings and by fluting the roll if air entrainment is a 

problem. For the range of parameters studied, the model bahaved as 

expected except with regard to the coefficient of friction parameter 

as low values of this parameter cannot be expected to enforce the 

machine direction strains due to the concave roll which was originally 

assumed. Thus, for the model to be. valid, it is required that the 

web/roll traction be sufficient to prevent machine direction slippage. 

As in 

necessary. 

detect very 

5.2 Recommendation for Future Study 

any computer simulation, experimental verification is 

However, sensors are still unavailable to accurately 

small displacements. Likewise, no method of stress 

determination in a moving web is available. Improvements in these 

areas are necessary to verify this computer model. This approach 

should also be applied to different geometries and different spreaders 

to predict their behavior. Once the model has been experimentally 

verified, parametric analysis should be performed to determine the 

sensitivity of the lateral spreading stresses and displacements to the 

various parameters. 

An increasing amount of research and literature address the 

impact of air entrainment between the web and roll on the coefficient 
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of friction. This research is very important to this model because 

the coefficient of friction is likely to be a function of other para-

meters such as the tension and the wrap angle. This model merely 

assumes all the exterior influences of this parameter have already 

been accounted for in the prescribed value. 

Lastly, this model should be condensed and made more efficient so 

it can run on a personal computer. This task can possibly be aided by 

incorporating higher order elements into the model. These higher 

order elements should also provide a better modeling in the region 

immediately prior to the concave roller. 
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APPENDIX A 

MODIFICATIONS FOR SKEWED BOUNDARY CONDITIONS 
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X and Y represent the global c:oordinate.system Xm and Ym represent the 

average plane coordinate system. After the global stiffness matrix 

for the structure is established, modify only the rows and columns 

associated with the node to be transformed: 

1. Premultiply the appropriate rows of [K] by [TJ. 

2. Postmultiply the appropriate columns of [Kl by [T]T. 

Postmultiply (T]T 
I . 

Premultiply [T] 

I 
I 
I 
I 

K I 
I 
I ------ ... ~-
1 I -----,-.-
I I 

This is done for every node. The resulting (K] matrix will be entire

ly in the CQOrdi nate system of average planes. Si nee forces will be 

applied in the average plane system, the resulting displacements will 

also be in this system. 
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Additional constraint equations: 

v~ - vn+l • o 
vn - vn+2 • a 

Ill 

-

Shaded regions represent matrix additions. (K] is appended with the 

addi t i ana 1 equations. { F} is appended with the di sp 1 ace~~~ents. When 

the new system of equations is solved, the F' portion of the C(} 

matrix will represent the forces required to enforce the constraints. 
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c ************************************~************************** 
c 
c 
c 

PROGRAM MSHGNR. FOR 

C THIS PROGRAM GENERATES THE FINITE ELEMENT DATA NEEDED FOR 

C THE PROGRAM CONCAVE.FOR 

C IT GENERATES THE MESH DATA, ENFORCED DISPLACEMENTS, 

C AND THE APPLIED FORCES 

C THE PROGRAM CREATES FOUR FILES: MESH.DAT CONSTR.DAT FORCE.DAT 

C AND BCNSTR.DAT 

c 
c *************************************************************** 
c 
c *************************************************************** 
c 
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C MACHINE DIRECTION SYMMETRY ABOUT THE CONCAVE ROLLER IS INCORPORATED. 

C AN INCREASED ELEMENT DENSITY RESION EXISTS FOR 25% OF THE ENTRY SPAN 

C LENGTH PRECEEDING THE CONCAVE ROLLER. 

C MACHINE DIRECTION DISPLACEMENTS ARE ENFORCED OVER THE ROLLER. 

C W2 IS FOUND SUCH THAT THE AVERAGE STRAIN CRITERIA IS MET. 

C CALCULATES DIFFERENTIAL FORCES TO REDISTRIBUTE STRAINS FOR CONCAVE 

C ROLLER. 

c 
c ************************************************************** 
c LAST UPDATE 5/16/88 

c ************************************************************** 
c 
c 

c 

DOQBLE PRECISION R,Y(400),CAPR 

DIMENSION I(500),J{500),K(500) 

DIMENSION X(400),XC(400),Z(400),UDISP1(20),UDISP2(20) 
'· 

COMMON/DOMEGA/CAPR 

COMMON/TLE/TITLE(20) 

COMMO~/OMEGAl/RZERO, WW, Wl, STRA 

COMMON/OMEGA2/W2,STRB 

c ********************************** 
C DEFINITION OF THE INPUT VARIABLES 

c ********************************** 
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c 
C MODEL PARAMETERS 

C WW - WIDTH OF THE WEB 

C ALBR - LENGTH OF WEB BEFORE THE ROLLER 

C RZERO - ROLLER BASE RADIUS 

C CAPR - CIRCULAR ARC PROFILE: RADIUS OF CURVATURE 

C LINEAR TAPER PROFILE: RADIUS AT OUTSIDE EDGE 

C NXB - NUMBER OF ELEMENT INTERVALS IN THE X-DIRECTION 

C NAR - NUMBER OF ELEMENT INTERVALS OVER THE ROLLER 

C NY - NUMBER OF ELEMENT INTERVALS IN THE Y-DIRECTION 

C TH - THICKNESS OF WEB 

C EM - MODULUS OF ELASTICITY OF WEB 

C PR - POISSON'S RATIO 

C AMU - COEFFICIENT OF FRICTION 

C Wl - ANGULAR VELOCITY OF FIRST ROLLER 

C FORCE - NODAL FORCE APPLIED AT END OF WEB 

C WRAP - ANGLE OF WRAP AROUND ROLLER 

c 
C NODAL COORDINATES 

C X(I) - X COORDINATES OF NODES IN NUMERICAL SEQUENCE 

C Y (I) - Y COORDINATES OF NODES IN NUMERICAL SEQUENCE 

C Z (I) - Z COORDINATES OF NODES IN NUMERICAL SEQUENCE 

c 
C ELEMENT CONNECTIVITIES 

C N - ELEMENT NUMBER 

C I (N) - NUMERICAL VALUE OF NODE I 

C J(N) - NUMERICAL VALUE OF NODE J 

C K(I) - NUMERICAL VALUE OF NODE K 

c 
c 
c **************************************** 
C INPUT SECTION OF THE PROGRAM 

c **************************************** 
c 

READ(9,3) TITLE 

3 FORMAT (20A3) 

READ (9, *) ww 
READ (9, *) ALBR 

READ (9, *) RZERO 



READ (9, *) CAPR 
READ (9, *) NXB 

READ (9, *) NAR 

READ (9, *) NY 

READ (9, *) TH 
READ (9, *) EM 

READ (9, *) PR 
READ (9, *) AMU 

READ (9, *) Wl 

READ (9, *) FORCE 
READ (9, *) WRAP 

c 
C ECHO INPUT DATA 
c 

WRITE(10,3) TITLE 
WRITE(10,*) ww 
WRITE (10, *) ALBR 
WRITE(10,*) RZERO 
WRITE (10, *) CAPR 

. WRITE (10, *) NXB 

WRITE (10, *) NAR 

WRITE (10, *) NY 

WRITE (10, *) TH 
WRITE (10, *) EM 

WRITE(10,*) PR 
WRITE (10, *) AMU 

WRITE (10, *) Wl 

WRITE(10,*) FORCE 
WRITE (10, *) WRAP 

c 
c 
C CALCULATION OF NN AND NE 

c 
10 NXP1=NXB+1 

NYP1=NY+1 

NARl=NAR+1 

c 
C NUMBER OF NODES NN 

c 
c BEFORE ROLLER 
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c 

c 
c 
c 

c 
c 
c 
c 

c 

NNB=NYP1 *NXB 

ON ROLLER 

NNO=NYP1 *NARl 

TOTAL 

NN=NNB+NNO 

C NUMBER OF ELEMENTS NE 

c 
c BEFORE ROLLER 

c 
NEB=(NY*2)*NXB 

c 
c ON ROLLER 

c 
NEO= (NY*2) *NAR 

c 
c TOTAL 

c 
NE=NEB+NEO 

c 
C WRITE MESH DATA TO FILE MESH. DAT 

c 
WRITE (10, *) NNB 

WRITE (10, *) NNO 

WRITE (10, *) NEB 

WRITE (10, *) NEO 

WRITE (10, *) NN 

WRITE (10, *) NE 

c 
c *********************************************** 
C CALCULATION OF THE NODAL COORDINATES 

c *********************************************** 
c 
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C MESH BEFORE ROLLER 
c 
C X COORDINATES 
C ELEMENT DENSITY IS INCREASED BY APPROX A 
C FACTOR OF 3 IN THE SPAN 25% OF ALBR IN 
C FRONT OF THE CONCAVE ROLLER 
c 

c 

c 

c 

IREMD=MOD(NXB,2) 
IF (IREMD.EQ.O) GO TO 95 
NXB1=(NXB+1)/2 
NXB2=NXB1-1 
GO TO 96 

95 NXB1=NXB/2 
NXB2=NXB1 

96 ALBR1=(0.75*ALBR) 
DXB1=ALBR1/NXB1 
ALBR2=(0.25*ALBR) 
DXB2=ALBR2/NXB2 
NEB1~(NY*2)*NXB1 

NEB2=(NY*2)*NXB2 

WRITE (10, *) NXB1 
WRITE (10, *) NXB2 
WRITE (10, *) ALBRl 
WRITE (10, *) ALBR2 
WRITE (10, *) NEB1 
WRITE (10, *) NEB2 

X(1)=0.0 
DO 97 II=2,NXB1+1 
X(II)=X(II-1)+DXB1 

97 CONTINUE 
DO 98 JJ=NXB1+2,NXB+1 
X(JJ)=X(JJ-1)+DXB2 

98 CONTINUE 

C Y COORDINATES 

c 
DY=WW/NY 

Y(1)=0.0 
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DO 200 II=2,NYP1 
200 Y{II)=Y{II-l)+DY 

c 
C Z COORDINATES 
C WRITE NODAL COORDINATES TO FILE MESH.DAT 
c 

c 

DO 400 IX=l,NXPl 
DO 300 IY=l,NYPl 
R=-DSQRT(CAPR**2-Y{IY)**2)+CAPR+RZERO 
SLOPEX=(R-RZERO)/ALBR 
Z(IY)=SLOPEX*X(IX) 
WRITE(l0,20l) X(IX),Y(IY),Z(IY) 

201 FORMAT(F9.5,2X,F9.5,2X,Fl5.10) 
300 CONTINUE 
400 CONTINUE 

C MESH ON ROLLER 
c 
C X, Z COORDINATES 
C WRITE NODAL COORDINATES TO FILE MESH.DAT 
c 

c 
c 

WRAP=WRAP /2. 0 
THINC=WRAP/NAR 
THETA=THINC 
DO 500 ISTEP=l,NAR 

THRADa(THETA*3.14159265)/180. 
DO 475 IY=l,NYPl 

R=-DSQRT(CAPR**2-Y(IY)**2)+CAPR+RZERO 
XC(IY)=ALBR+R*SIN(THRAD) 

Z(IY)=(R*COS(THRAD))-RZERO 
WRITE(l0,20l) XC(IY),Y(IY),Z(IY) 

475 CONTINUE 
THETA=THETA+THINC 

500 CONTINUE 

c ******************************************************* 
C CALCULATION OF THE ELEMENT CONNECTIVITIES 
c ******************************************************* 
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C ODD NUMBERED ELEMENTS 

c 

c 

ICOUNT=O 
I(1)=2 
J(1)=1 

K(1)=NYP1+1 

NJ=1 
WRITE(10,*) NJ,I(1),J(1),K(1) 
DO 1200 N=3,NE,2 

ICOUNT=ICOUNT+1 
IREMFMOD(ICOUNT,NY) 

IF(IREM.EQ.O) GO TO 1100 
I(N)=-=I(N-2)+1 
J(N):o:J(N-2)+1 
K(N)=K(N-2)+1 

GO TO 1200 
1100 I(N)=I(N-2)+2 

J(N)=J(N-2)+2 
K(N)=K(N-2)+2 

1200 CONTINUE 

C EVEN NUMBERED ELEMENTS 

c 
ICOUNT=O 
I(2)=-2 
J(2)=NYP1+1 

K(2)=NYP1+2 

NK=2 

WRITE(10,*) NK,I(2),J(2),K(2) 

DO 1400 N=4,NE,2 

ICOUNT=ICOUNT+1 
I~D(ICOUNT,NY) 

IF(IREM.EQ.O) GO TO 1300 
I(N)=-I(N-2)+1 
J(N)=J(N-2)+1 
K(N)=-K(N-2)+1 
GO TO 1400 

1300 I(N)=I(N-2)+2 

J(N)=J(N-2)+2 

K(N)=K(N-2)+2 
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1400 CONTINUE 
c 
C WRITE ELEMENT DATA TO FILE MESH. OAT 
c 

c 
c 

DO 1500 N=3, NE 
1500 WRITE(10,*) N,I(N),J(N),K(N) 

c ********************** 
C CONSTRAINTS 
C ENFORCED DISPLACEMENTS 
c ********************** 
c 
C INCREMENT SEARCH FOR W2 SUCH THAT STRA s STRB 
c 

W2INC=(Wl*0.001) 

ICOUNT=O 
W2LAST=Wl 
TOTF=FORCE*NY 

67 FORMAT(2X,F10.4) 
STRA=TOTF I (WW*TH*EM) 
UDISPA=STRA*ALBR 
IF (STRA .LE. 0.0) THEN 

IDCHEK = 2 
WRITE(14,*) IDCHEK 
WRITE (14, 49) 
WRITE (12, 49) 

49 FORMAT(//2X, 1 STRAIN A IS ZERO OR NEGATIVE. 1 //2X, 
$ 1 PLEASE REVISE INITIAL CONDITIONS. 1 ) 

GOTO 2600 
END IF 

W2=Wl 

CALL SMPINT 
TOL=STRA/1000. 
IF (ABS(STRB-STRA) .LE.TOL) GO TO 1900 

1660 W2LAST=W2 
W2=W2-W2INC 

STRB2=STRB 
1680 CALL SMPINT 
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IF (ABS (STRB-STRA) .LE.TOL) GO TO 1900 
ICOUNT=ICOUNT+1 
IF (ICOUNT.GE.50) THEN 

IDCHEK = 3 
WRITE(14,*) IDCHEK 
WRITE (14, 51) 
WRITE (12, 51) 
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51 FORMAT(/ /2X, 1 AVERAGE STRAIN DID NOT CONVERGE WITHIN 50 ITERATI 

c 

$ IONS. I) 

GOTO 2600 
END IF 
IF ((STRB-STRA)*(STRB2-STRA).GT.0.0) GO TO 1660 

W2INC=W2INC/10 
W2-w2LAST-W2INC 
GO TO 1680 

C CALCULATION OF DIFFERENTIAL STRAIN FORCES 

c 

c 

1900 

53 
54 

$ 

WRITE (10, *) W2 

C1=(1-STRA)*RZERO*Wl 
C2-cAPR+RZERO 
DO 2001 IA=1,NYP1 

STRB=1-C1/((C2-DSQRT(CAPR**2-Y(IA)**2))*W2) 

IF (ST.RB.LT.O.O) THEN 

IDCHEK = 4 
WRITE (14, *) IDCHEK 
WRITE(14,54) Y(IA),STRB 
WRITE (12, 54) Y (IA) , ST.RB 

WRITE (12, 53) 
FORMAT (/ /2X, 1 NO FORCES CALCULATED. 1 ) 

FORMAT(//2X, 1NEGATIVE STRAIN 1 //5X,3HY =,F15.10,10X, 
' 

8HSTRAIN =,E15.6) 
GO TO 2600 

END IF 
IDCHEK = 1 
IF (IA.EQ.l) WRITE(14,*) IDCHEK 

C CALCULATION OF FORCES 
AREA= (WW/NY) *TH 



IF(IA.EQ.l) AREA=O.S*AREA 
IF(IA.EQ.NYPl) AREA=O.S*AREA 

FORCE=(STRB-STRA)*EM*AREA 

NFN= (NNB+ IA) 
IDOF::z3*NFN-2 
WRITE(12,56) NFN,IDOF,FORCE 

c 
2001 CONTINUE 

NFN=O 
IDOF=O 
VALUE=O.O 
WRITE(12,55) NFN,IDOF,VALUE 

55 FORMAT(I4,2X,I4,2X,F3.1) 
56 FORMAT(I4,2X,I4,2X,F14.10) 

c 
C CONSTRAIN Z AND SYMMETRIC Y DOFS FOR APRON BEFORE ROLLER 
c 

c 

c 

DO 2004 IX=1,NNB+NYP1 

VALUE=O.O 
IREM=MOD ( (IX-1) ,NYP1) 

IF (IREM.EQ.O) THEN 

IDOF=3*IX-1 
WRITE(14,55) IX,IDOF,VALUE 

END IF 
IDOF=3*IX 
WRITE (14, 55) IX, IDOF I VALUE 

2004 CONTINUE 

IX=O 

IDOF=O 
WRITE (14, 55) IX, IDOF I VALUE 

C CONSTRAIN Z AND SYMMETRIC Y DOFS ON ROLLER 

c 
DO 2005 IY=NNB+NYP1+1,NN 

VALUE=O.O 
IREM=MOD ( (IY-1) ,NYP1) 
IF (IREM.EQ. 0) THEN 

IDOF=3*IY-1 
WRITE(14,55) IY,IDOF,VALUE 
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END IF 
IDOF=3*IY 
WRITE (14, 55) IY,IDOF,VALUE 

2005 CONTINUE 
c 

IX=O 
IDOF=O 
WRITE (14, 55) IX,IDOF,VALUE 

c 
C CALCUlATE UNADJUSTED DISTANCES OVER ROLLER 
c 

C1=(1-STRA)*RZERO*Wl 
C2=CAPR+RZERO 
DO 2045 IR=1,NYP1 

STRB=1-C1/((C2-DSQRT(CAPR**2-Y(IR)**2))*W2) 

R2=-DSQRT(CAPR**2-Y(IR)**2)+C2 
ROLINC=((WRAP/360.)*2.0*R2*3.14159265*STRB)/NAR 
DO 2050 IP=1,NAR+1 

IRR=IR+NNB+(IP-1)*NYP1 
IDOF=3*IRR-2 
UDISPC=(IP-1)*ROLINC 
WRITE(14,56) IRR,IDOF,UDISPC 

2050 CONTINUE 
2045 CONTINUE 

c 
C LOCK Y DISPLACEMENTS TOGETHER OVER ROLLER 

c 

c 

DO 2305 ID=NNB+2,NNB+NYP1 

IDOF=3*ID-1 
DO 2306 II=1,NAR 

ID1=ID+(NYP1*II) 

IDOF1=3*ID1-1 
WRITE(14,57) ID,IDOF,ID1,IDOF1 

2306 CONTINUE 

2305 CONTINUE 
57 FORMAT(I4,2X,I4,2X,I4,2X,I4) 

C WRITE CONSTRAINTS FOR FIRST ROW ON APRON 
C -THESE ARE USED ONLY FOR DEVELOPMENT OF FINAL 
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C BOUNDARY CONDITIONS (1ST PRELIMINARY RUN) 
c 

DO 2175 IL=l,NYPl 
IDOF=3*IL-2 
WRITE(l7,55) IL,IDOF,VALUE 

2175 CONTINUE 
IDOF=O 
WRITE(17,55) IB,IDOF,VALUE 

c 
C WRITE ENFORCED DISPL FOR FIRST ROW TO BCNSTR* 
C -THESE ARE USED FOR DEVELOPMENT OF FINAL 
C BOUNDARY CONDITIONS (FINAL RUN) 

c 

2100 

c 
c 

c 
c 

2600 

UDISPA=-UDISPA 
DO 2100 IB=l,NYPl 

IDOF=3*IB-2 
WRITE (1 7, 56) IB,IDOF,UDISPA 

CONTINUE 
IB=O 
IDOF=O 
VALUE=O.O 
WRITE (17, 56) IB,IDOF,VALUE 

STOP 
END· 

c ********************************* 
c ********************************* 

SUBROUTINE SMPINT 
c ********************************* 

c ********************************* 

c 

c 

DOUBLE PRECISION R,Y(400),CAPR 

COMMON/DOMEGA/CAPR 
COMMON/OMEGAl/RZERO, WW, Wl, STRA 
COMMON/OMEGA2/W2, STRB 

C1=(1-STRA)*RZERO*Wl 
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125 

C2=CAPR+RZERO 
PARTl=O.O 
PART2=0.0 
STRB=O.O 

N=lO 
c 
c STEP SIZE - N MUST BE EVEN 

STSIZE=WW/N 

c 
II=O 

50 YVAL=II*STSIZE 

VAL=1-Cl/((C2-DSQRT(CAPR**2-YVAL**2))*W2) 

IF (II.EQ.O) THEN 

VALO=VAL 
GO TO 90 

END IF 
IF (II.EQ.N) GO TO 100 
IREM=MOD(II,2) 

IF (IREM.EQ.O) THEN 

PART2=PART2+VAL 

GO TO 90 
END IF 
PARTl=PARTl+VAL 

90 II=II+l 

GO TO 50 

c 
100 SUM=VAL0+4*PART1+2*PART2+VAL 

STRBs(WW*SUM/(3*N))/WW 

c 
RETURN 

END 

c 



APPENDIX D 

COMPUTER PROGRAM FOR PROGRAM CONCAVE 
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************************************************************ 
c 
c 
c 

PROGRAM CONCAVE.FOR 

C THIS PROGRAM ANALYZES A WEB ON A CONCAVE ROLLER 

C IT ITERATIVELY SPREADS THE WEB ON THE ROLLER TO THE 

C POINT AT WHICH THE SPREADING FORCES EQUAL THE AVAILABLE 

C FRICTION FORCES 

C THE PROGRAM HANDLES ONLY LINEAR TRIANGULAR PLANE STRESS ELEl!-:lENTS 

c 
c ************************************************************ 
c 
c ************************************************************ 
c 
C MACHINE DIRECTION SYMMETRY ABOUT THE CONCAVE ROLLER IS INCORPORATED. 

C AN INCREASED ELEMENT DENSITY REGION EXISTS FOR 25% OF THE ENTRY 

C SPAN PRECEEDING THE CONCAVE ROLLER. 

C MACHINE DIRECTION DISPLACEMENTS ARE ENFORCED OVER THE ROLLER. 

C THE NODES AT EQUAL LATERAL LOCATIONS. ON THE ROLL ARE REQUIRED 

C TO SPREAD EQUALLY. 

C 1 PRELIMINARY RUN THROUGH THE ENTRY SPAN IS REQUIRED TO 

C GENERATE THE NECESSARY BOUNDARY CONDITIONS FOR THE FINAL RUN. 

c 
C THE PROGRAM REQUIRES FOUR FILES: MESH. OAT CONSTR. OAT FORCE. OAT 

C AND BCNSTR.DAT 

c 
C THE PRIMARY OUTPUT IS FOUND IN FILE OUT. OAT 

c 
c ************************************************************ 
c 
c ************************************************************ 
c LAST UPDATE 5/23/88 

c ************************************************************ 
c 

PARAMETER(IMAXNN=23l,IMAXNY=l0) 

COMMON/GRAD/B(3,6),AR2 

COMMON/ELMATX/ESM(9,9),X(3),Y(3),Z(3),D(3,3),GESM(9,9), 

$ GSM(3*IMAXNN,3*IMAXNN),GTSM(3*IMAXNN+l20,3*IMAXNN+l20),IELR 
COMMON/MTL/EM,PR,TH,AMU 
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COMMON/TLE/TITLE(20) 
COMMON/N/NP,NN,NE,NS(9),ICK(500),NS1,NS2,UU(9) 
COMMON/ELM/NEL(500,3),XC(IMAXNN),YC(IMAXNN),ZC(IMAXNN) 
COMMON/DUMM/DUM1(9,9),DUM2(9,9),DUM3(3,3*IMAXNN), 
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$ DUM4(3,3*IMAXNN),DUM5(3*IMAXNN,3),DUM6(3*IMAXNN,3) 
COMMON/TMATX/AL(3,3),T(9,9),ALT(3,3),TT(9,9) 
COMMON/DOF/F(3*IMAXNN+120),U(3*IMAXNN+120),STRA(6),STRE(6),THM, 

$ TM,S1,S2 

c 

COMMON/LOCAL/XYZ(9),STOR(9),XL(3),YL(3),ZL(3), 
$ FL (3*IMAXNN) 

COMMON/LAM/TEMP(3,3),ALN(3,3),ALNT(3,3) 
COMMON/PARAM/NY, NYP1, WW, NAR 
COMMON/PARAM2/NNB,NNO,NEB,NEO 
COMMON/PARAM3/ALBR, NXB 
COMMON/PARAM4/RZERO,CAPR,Wl,W2,FORCE,WRAP 
COMMON/PARAMS/NXB1,NXB2,ALBR1,ALBR2,NEB1,NEB2 
COMMON/ANGL/SLOPE,FRICTF(IMAXNN),FEXT(IMAXNN),ADIV(IMAXNN), 

$ CONST(IMAXNN) 
COMMON/MODIF/NEWID(120),TMPDSP(110) 
DIMENSION W(3*IMAXNN+120,3*IMAXNN+120) 
INTEGER IPIVOT(3*IMAXNN+120) 

c **************************************************************** 
c 
c 
c 

MAIN PROGRAM 

c **************************************************************** 

c 
c 
c ******************** 
C INPUT SECTION OF THE PROGRAM 

c ******************* 
c 
C CHECK DATA FILES 

c 
READ(14,*) IDCHEK 
IF (IDCHEK. NE. 1 ) THEN 

IF (IDCHEK.EQ.2) THEN 
WRITE (15, 131) 



c 
c 

c 

c 

WRITE(18,131) 
131 FORMAT(//2X, 1 NEGATIVE STRAIN ON BOUNDARY ROLLER. 1 //2X, 

$ I NO OUTPUT GENERATED. I ) 

END IF 
IF (IDCHEK.EQ.3) THEN 

WRITE (15, 132) 
WRITE (18, 132) 

132 FORMAT(//2X, 1AVERAGE STRAIN DID NOT CONVERGE WITHIN 50 

$ ITERATIONS. I I /2X, 'NO OUTPUT GENERATED. I) 

END IF 
IF (IDCHEK.EQ. 4) THEN 

WRITE (15, 133) 
WRITE (18, 133) 

133 FORMAT(//2X,'NEGATIVE STRAIN ON CONCAVE ROLLER.'//2X, 
$ I NO OUTPUT GENERATED. I ) 

END IF 
GO TO 110 

END IF 

CALL INPUTS 

LOOPFL=O 
I<MTRX=O 

c ******************* 
C GENERATION OF THE SYSTEM OF EQUATIONS 

c ******************* 
c 
C INITIALIZATION OF THE STIFFNESS MATRIX 

c 

c 

c 

3 KMTRX=I<MTRX+ 1 

DO 555 I=1,NP 
DO 555 J-1,NP 

555 GSM(I,J)=O.O 

C START OF THE LOOP FOR THE ELEMENT MATRICES 

c 
ITER=O 
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c 

IELR=O 
KK=l 

C GENERATION OF THE NODAL DEGREES OF FREEDOM 
C RETRIEVAL OF THE NODAL COORDINATES 
c 

c 

c 

5 DO 10 I=l,3 
J=NEL (KK, I) 
NS(3*I-2)=J*3-2 
NS(3*I-1)=J*3-1 
NS(3*I)=J*3 
X (I) =XC (J) 

Y (I)-YC (J) 
10 Z(I)=ZC(J) 

CALL LAMDA (KK) 

CALL TRNSMX 

C GENERATION OF THE LOCAL COORDINATES 

c 

c 

c 

JJ=-1 
DO 30 I ... 1,9,3 

XYZ (I) =X (JJ) 
XYZ(I+1)=Y(JJ) 
XYZ (I+2) •Z (JJ) 
JJ=JJ+1 

30 CONTINUE 

DO 40 I=l,9 
STOR(I)=O.O 

DO 40 J=1,9 
40 STOR(I)=STOR(I)+T(I,J)*XYZ(J) 

JK=l 
DO 50 !=1,3 
XL(I)=STOR(JK) 
YL(I)=STOR(JK+1) 

ZL(I)=STOR(JK+2) 
JK=JK+3 
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50 CONTINUE 

c 
c ******************* 
C CALCULATION OF THE ELEMENT MATRICES 

C TRANSFO:RMATION TO GLOBAL COORDINATES 

C ASSEMBLY VIA DIRECT STIFFNESS PROCEDURE 

c 
c 

c 

c 
c 
c 
c 
c 

c 

c 

c 

******************* 

CALL ELSTMX (I<K) 

CALL TRNSFM 

CALL ASSEMB 

I<K=I<K+l 

IF(KMTRX.EQ.l) THEN 

IF (I<K.LE.NEB) GO TO 5 
ELSE 

IF (I<K.LE. NE) GO TO 5 

END IF 

******************* 
SKEWED COORDINATE TRANSFORMATION 

******************* 

KN=-1 

200 CALL SKEWED (KN) 

KN=KN+l 

IF(KMTRX.EQ.l) THEN 

IF (KN.LE.NNB+NYPl) GO TO 200 

ELSE 

IF (KN.LE.NN) GO TO 200 

END IF 

c ******************* 
C K>DIFICATION OF THE SYSTEM OF EQUATIONS 

C DATA IS CALLED BY MODIFY 

c ****************** 
c 

205 LOOPFL=LOOPFL+l 
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c 
CALL MODIFY(LOOPFL) 

c 
c ****************** 
C SOLUTION OF THE MODIFIED SYSTEM OF EQUATIONS 
c ****************** 
c 

c 

c 
c 

CALL FACTOR(GTSM,IPIVOT,IFLAG,LOOPFL) 
IF(IFLAG.EQ.O) THEN 

WRITE(15,*) 'SYSTEM CANNOT BE SOLVED--0 ON DIAGONAL' 
GO TO 110 

END IF 
CALL SUBST(GTSM,IPIVOT,F,U,LOOPFL) 

IF (LOOPFL. EQ .1) THEN 

DO 209 KJ2=1,NYP1 
TMPDSP (KJ2) =U (3* (KJ2+NNB) -2) 
IVAL-3*(KJ2+NNB)-2 
WRITE(20,213) KJ2,IVAL,TMPDSP(KJ2) 

209 CONI'INUE 

GO TO 3 

END IF 

C SAVE FORCES GENERATED FROM ENFORCED Y-LOCK DISPLACEMENTS 

C FORCES ARE FOUND IN SECTION ADDED TO DISPLACEMENT VECTOR U 
DO 215 N•1,NAR*NY 
WRITE ( 21, 213) N, NEWID (N) , U (NP+N) 

213 FORMAT(3X,I5,3X,I5,3X,E15.6) 

215 CONTINUE 

c 
C SAVE ENFORCED DISPLACEMENT CONSTRAINT FORCES 

WRITE ( 21, 221) 

221 FORMAT(//,SX,'IDOF',9X,'FORCE') 

DO 225 N=-1,NP 
WRITE(21,223) N,F(N) 

223 FORMAT(3X,I5,3X,E15.6) 

225 CONTINUE 

c 
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c ****************** 
C OUTPUT OF THE CALCULATED NODAL DISPLACEMENTS 
C DATA IS WRITTEN TO FILE OUT.DAT 
c ****************** 
c 

IFLAG4=0 
250 WRITE (15, 31) TITLE,NN,NE 

IF (ITER.EQ. 0) WRITE (18, 31) TITLE,NN,NE 
31 FORMAT(1H1,////,10X,20A3,//,13X,'NN =',I4/ 

$ ,13X,5HNE = ,I4) 
IF(ITER.EQ.O) WRITE(18,29) 

29 FORMAT(/ I, 'VALUES SHOWN ARE AFTER 1 ITERATION'//) 
WRITE (15, 32) EM,PR,TH,AMU 
IF(ITER.EQ.O) WRITE(18,32) EM,PR,TH,AMU 

32 FORMAT(//10X,'PARAMETER VALUES'/ 
$ /13X,4HEM =,E12.5/13X,4HPR =, 
$ E12.5/13X,4HTH =,E12.5,/13X, 

$ 4HMU =,E12.5/) 
WRITE(15,33) CAPR,RZERO,Wl,W2 
IF (ITER.EQ. 0) WRITE (18,33) CAPR,RZERO,Wl,W2 

33 FORMAT(13X,6HCAPR =,E12.5,/13X,7HRZERO •,E12.5,/ 
$ 13X,4HW1 =,E12.5,/13X,11HW2 (CALC) =,E12.5,/) 

WRITE(15,34) FORCE,WRAP 
IF(ITER.EQ.O) WRITE(18,34) FORCE,WRAP 

34 FORMAT(13X,13HNODAL FORCE =,E12.5,/13X,12HWRAP ANGLE =, 
$ E12. 5) 

WRITE (15, 35) 
IF(ITER.EQ.O) WRITE(18,35) 

35 FORMAT(//10X,'MESH PARAMETER VALUES'/) 
WRITE(15,36) NNB,NNO 
IF(ITER.EQ.O) WRITE(18,36) NNB,NNO 

36 FORMAT(13X,5HNNB =,I4,/13X,5HNNO =,I4/) 
WRITE (15, 37) WW,NY,NAR 
IF (ITER.EQ.O) WRITE (18, 37) WW,NY,NAR 

37 FORMAT(13X,4HWW =,E12.5,/13X,4HNY =,I4,/13X,5HNAR =,I4/) 

WRITE (15, 38) ALBR,ALBRl,ALBR2 
IF (ITER.EQ. 0) WRITE (18, 38) ALBR,ALBRl,ALBR2 

38 FORMAT(13X,6HALBR =,E12.5,/15X,7HALBR1 =,E12.5,/15X, 

$ 7HALBR2 =,E12.5/) 
WRITE(15,39) NXB,NXB1,NXB2 
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c 

c 

IF(ITER.EQ.O) WRITE(18,39) NXB,NXB1,NXB2 

39 FORMAT(13X,SHNXB =,I4,/15X,6HNXB1 =,I4,/15X,6HNXB2 =,I4/) 
WRITE (15, 41) NEB,NEB1,NEB2,NEO 

IF(ITER.EQ.O) WRITE(18,41) NEB,NEB1,NEB2,NEO 

41 FORMAT(13X,SHNEB =,I4,/15X,6HNEB1 =,I4,/15X,6HNEB2 =,I4, 

$ //13X,SHNEO =,I4) 
WRITE (15, 2) 

IF(ITER.EQ.O) WRITE(18,2) 
2 FORMAT(///10X,25HNODAL DISPLACEMENT VALUES/ 

$ //10X,4HNODE,6X,12HX DEFLECTION,6X,12HY DEFLECTION, 

$ 6X,12HZ DEFLECTION) 

DO 6 I=1,NN 
WRITE(15,4) I,U(3*I-2),U(3*I-1),U(3*I) 

IF(ITER.EQ.O) WRITE(18,4) I,U(3*I-2),U(3*I-1),U(3*I) 

4 FORMAT(11X,I3,3X,E15.6,3X,E15.6,3X,E15.6) 

6 CONTINUE 

c ****************** 

C CALCULATION OF THE ELEMENT STRESS AND STRAIN COMPONENTS 

C AND THE PRINCIPAL STRESSES 

c ****************** 

c 

c 
C START OF THE ELEMENT LOOP 

c 
KK=1 

c 
C GENERATION OF THE NODAL DEGREES OF FREEDOM 

c 
12 DO 15 I=1,3 

J•NEL (KK, I) 

NS(3*I-2)=3*J-2 

NS(3*I-1)=3*J-1 
NS(3*I)::a3*J 
X(I)=XC (J) 
Y (I)=YC (J) 

15 Z(I)=ZC(J) 
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c 

c 

CALL LAMDA (KK) 

CALL TRNSMX 

C GENE~TION OF THE LOCAL COORDINATES 

c 

c 

c 

c 

JJ=l 
DO 60 I=l,9,3 
XYZ (I) =X (JJ) 

XYZ (I+1) =Y (JJ) 

XYZ(I+2)=Z(JJ) 
JJ=JJ+l 

60 CONTINUE 

DO 70 I=1,9 

STOR(I)=O.O 

DO 70 J=1,9 
70 STOR(I)•STOR(I)+T(I,J)*XYZ(J) 

JK=1 
DO 80 I,..1,3 
XL(I),..STOR(JK) 

YL(I)=STOR(JK+1) 

ZL(I)=STOR(JK+2) 

JK=JK+3 

80 CONTINUE 

C RETRIEVAL OF THE NODAL DISPLACEMENTS 

c 

c 

c 

DO 16 I=1,9,3 

NS1=NS(I) 

NS2=NS (I+1) 

UU(I)=U(NS1) 

16 UU(I+1)=U(NS2) 

CALL SANDS (KK) 

c ******************* 

C OUTPUT OF THE STRESS RESULTS TO FILE OUT. OAT 
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c ******************* 
c 

c 

c 

WRITE (15, 8) KK 
IF(ITER.EQ.O) THEN 

WRITE (18, 8) KK 
END IF 

8 FORMAT(/10X,'ELEMENT 1 ,I4) 
WRITE(15,20) STRA(1),STRE(1),S1,STRA(2),STRE(2),S2, 

$ ST.RA(3),STRE(3),TM,THM 

IF(ITER.EQ.O) WRITE(18,20) STRA(1),STRE(1),S1,STRA(2), 
$ STRE(2),S2,STRA(3),STRE(3),TM,THM 

20 FORMAT(15X,SHEXX =,E12.5,5X,SHSXX =,E12.5,5X,5HS1 =, 
$ El2.5/15X,SHEYY =,E12.5,5X,5HSYY 3 ,E12.5,5X,5HS2 =, 
$ E12.5/15X,SHGXY •,E12.5,5X,5HTXY •,E12.5,4X, 
$ 6HTMAX =,E12.5/59X,5HANGLE,F8.2,4H DEG) 

KK=KK+1 
IF (KK.LE.NE) GO TO 12 

c ******************* 
C CALCULATION OF NORMAL FORCES 

c ******************* 
c 

101 IROWS=3*(NNB+1)-2 
IROWF=3*NN 
DO 90 I•IROWS,IROWF 

FL(I)=O.O 
DO 90 J=1,NP 

FL(I)=FL(I)+GSM(I,J)*U(J) 

90 CONTINUE 
IF(IFLAG4.EQ.1) THEN 

WRITE (15, 361) 

DO 500 KN=NNB+1,NN 
IF (KN. LE. NNB+NYP1) ADIV (KN) =0. 0 
IF (KN. GT. NN-NYP1) ADIV (KN) ::::~~0 . 0 
WRITE (15, 363) KN,FEXT (KN) ,FRICTF (KN) ,ADIV(KN) 

500 CONTINUE 
WRITE(15,362) ITER 
GO TO 100 

END IF 
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c 

361 

362 
363 

$ 

FORMAT(/' NODE',SX,'SPREADING FORCE',SX,'FRICTION FORCE', 

SX, 'RATIO'/) 
FORMAT (/ 1 IN ITERATION NUMBER 1 , I 4) 
FORMAT(I4,7X,E12.5,8X,E12.5,6X,F6.4) 

c ****************** 
C SPREADING ANALYSIS 

c ****************** 
c 

95 ITER=ITER+1 
c 
c ******************* 
C CALCULATE SPREADING FORCES 
C APPLY SPREADING FORCES TO NODES ON ROLLER 
c ******************* 
c 

c 

290 DO 300 KN=NNB+NYP1+2,NN-NYP1 
IREM=MOD ( (KN-1) ,NYP1) 
IF(IREM.EQ.O) GO TO 300 
CALL FRICTN (KN) 
CALL APFORS (KN, ITER) 

300 CONI'INUE 
DO 302 KNl=NNB+2,NNB+NYP1 

FRICTF(KNl)=FRICTF(KNl+NYP1)/2.0 
CALL APFORS(KNl,ITER) 

302 CONI'INUE 
DO 304 KN2=NN-NYP1+2,NN 

FRICTF(KN2)=FRICTF(KN2-NYP1)/2.0 
CALL APFORS (KN2, ITER) 

304 CONTINUE 

c ******************* 
C SOLVE FOR NEW DISPLACEMENTS AND FORCES 

c ******************* 
c 

CALL SUBST(GTSM,IPIVOT,F,U,LOOPFL) 

c 
C CALCULATE NEW NORMAL FORCES 

c 
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c 

IROWS=3*(NNB+1)-2 
IROWF=3*NN 
DO 325 I=IROWS,IROWF 
FL(I)=O.O 

DO 325 J=1,NP 
FL(I)=FL(I)+GSM(I,J)*U(J) 

325 CONTINUE 

c ******************* 
C CHECK TO SEE IF SLIPPAGE OCCURRED 

c ******************* 
c 

c 

c 
c 

c 
c 

c 

c 

IFLAG3=0 
DO 350 KN=NNB+NYP1+2,NN-NYP1 

CALL FRICTN (KN) 

CALL CHKFOR(KN, IFLAG2) 
IREM=MOD ( (KN-1) , NYP1) 

IF(IREM.EQ.O) IFLAG2=1 
IF(IFLAG2.EQ.0) IFLAG3z1 

350 CONTINUE 

IF(ITER.GT.100) GO TO 520 
IF(IFLAG3.EQ.1) GO TO 95 

520 REWIND(15) 

IFLAG4=1 

GO TO 250 

100 CONTINUE 

110 STOP 
END 

c *************************************************************** 

c 
c 
c **************************** 

SUBROUTINE INPUTS 
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c **************************** 
c 

c 

PARAMETER(IMAXNN=231,IMAXNY=10) 

COMMON/ELMATX/ESM(9,9),X(3),Y(3),Z(3),D(3,3),GESM(9,9), 

$ GSM(3*IMAXNN,3*IMAXNN),GTSM(3*IMAXNN+120,3*IMAXNN+120) 

COMMON/MTL/EM,PR,TH,AMU 

COMMON/TLE/TITLE(20) 

COMMON/N/NP,NN,NE,NS(9),ICK(500),NSl,NS2,UU(9) 

COMMON/ELM/NEL(500,3),XC(IMAXNN),YC(IMAXNN),ZC(IMAXNN) 

COMMON/PARAM/NY, NYPl, WW, NAR 

COMMON/PARAM2/NNB,NNO,NEB,NEO 

COMMON/PARAM3/ALBR, NXB 

COMMON/PARAM4/RZERO,CAPR,Wl,W2,FORCE,WRAP 

COMMON/PARAM5/NXBl,NXB2,ALBRl,ALBR2,NEBl,NEB2 

c ****************** 

c ****************** 
c 
C DEFINITON OF THE INPUT VARIABLES FOR THIS PBOGRAM 

c 
c ****************** 

c ****************** 

C TITLE AND PARAMETERS 

c 
C TITLE - A DESCRIPTIVE STATEMENT OF THE PROBLEM 

C WW - WIDTH OF THE WEB 

C ALBR - LENGTH OF WEB BEFORE ROLLER 

C RZERO - ROLLER BASE RADIUS 

C CAPR- RADIUS OF CURVATURE OF CONCAVE ROLLER 

C NXB - NUMBER OF ELEMENTS IN X-DIR BEFORE ROLLER 

C NAR - NUMBER OF ELEMENTS AROUND ROLLER (MACHINE DIR) 

C NY - NUMBER OF ELEMENTS LATERALLY ACROSS ROLLER 

C TH - THICKNESS OF WEB 

C EM - MODULUS OF ELASTICITY OF WEB 

C W1 - ANGULAR VELOCITY OF WEB 

C FORCE - NODAL FORCE APPLIED TO END OF WEB 

C WRAP - ANGLE OF WRAP AROUND ROLLER 

C NN - NUMBER OF NODES 

C NE - NUMBER OF ELEMENTS 
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c 
C MATERIAL PROPERTIES AND THICKNESS 

c 
C EM - MODULUS OF ELASTICITY 

C PR - POISSON'S RATIO 

C TH - THICKNESS OF THE REGION 

. C AMU - COEFFICIENT OF FRICTION BETWEEN THE WEB AND ROLL 

c 
C NODAL COORDINATES 

c 
C XC (I) - X COORDINATES OF THE NODES IN NUMERICAL SEQUENCE 

C YC (I) - Y COORDINATES OF THE NODES IN NUMERICAL SEQUENCE 

C ZC (I) - Z COORDINATES OF THE NODES IN NUMERICAL SEQUENCE 

c 
C ELEMENT DATA 

c 
C N - ELEMENT NUMBER 

C NEL(N,I) -NUMERICAL VALUE OF NODE I 

C NEL (N, J) - NUMERICAL VALUE OF NODE J 

C NEL (N,K) - NUMERICAL VALUE OF NODE K 

c 
c ******************* 
C INPUT SECTION 

c ******************* 
c 
C INPUT OF THE TITLE CARD AND PARAMETERS 

c 
READ(10,3) TITLE 

3 FORMAT (20A3) 
READ(lO,*) ww 
READ(lO,*) ALBR 

READ(10,*) RZERO 
READ(lO,*) CAPR 

READ(lO,*) NXB 

READ(lO,*) NAR 

READ(lO,*) NY 

READ(lO,*) TH 

READ(lO,*) EM 

READ(lO,*) PR 

READ(lO,*) AMU 
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READ (10, *) Wl 

READ(10,*) FORCE 
READ(10,*) WRAP 

READ (10, *) NNB 

READ (10,*) NNO 

READ (10,*) NEB 

READ(10,*) NEO 
READ(10,*) NN 
READ(10,*) NE 
READ(10,*) NXB1 
READ(lO,*) NXB2 
READ(10,*) ALBRl 

READ(10,*) ALBR2 

READ(10,*) NEBl 
READ(10,*) NEB2 

c 
NP=3*NN 
NYP1=NY+1 

c 
C COMPARISON CHECK ·oF NN AND NE WITH THE VALUES USED 

C IN THE DIMENSION STATEMENTS 

c 
ISTOP=O 

c 
C CHECK NUMBER OF NODES 

c 

c 

IF(NN.LE.400) GO TO 15 
WRITE (15, 10) 

10 FORMAT(10X,'NUMBER OF NODES EXCEEDS 400'/ 

$ 10X,26HCHECK DIMENSION STATEMENTS/ 

$ 10X,20HEXECUTION TERMINATED) 

ISTOP=l 

C CHECK NUMBER OF ELEMENTS 

c 
15 IF(NE.LE.500) GO TO 25 

WRITE (15, 20) 
20 FORMAT(10X,'NUMBER OF ELEMENTS EXCEEDS 500'/ 

$ 10X,26HCHECK DIMENSION STATEMENTS/ 
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c 

$ 10X,20HEXECUTION TERMINATED) 

ISTOP=1 
25 IF(ISTOP.EQ.1) STOP 

C INPUT OF THE NODAL COORDINATES FROM FILE MESH.DAT 

c 
READ(10,*) (XC(I),YC(I),ZC(I),I=1,NN) 

c 
C INPUT AND ECHO PRINT OF ELEMENT DATA 

C CHECK TO SEE IF THE ELEMENTS ARE IN SEQUENCE 

c 

c 

NID=O 
DO 45 KK=1,NE 
READ(10,*) N, (NEL(N,I),I•1,3) 
IF ( (N-1) .NE.NID) WRITE (15, 42) N 

42 FORMAT(10X,7HELEMENT,I4,16H NOT IN SEQUENCE) 

NID=N 
45 CONTINUE 

C READ MESH PARAMETERS FROM FILE MESH.DAT 

c 

c 
c 

READ(10,*) W2 

c ******************* 
C ANALYSIS OF THE NODE NUMBERS 

c ******************* 

c 
C INITIALIZATION OF A CHECK VECTOR 

c 
DO 50 I=1,NN 

SO ICK(I)=O 

c 
C CHECK TO SEE IF ANY NODE NUMBER EXCEEDS NN 

c 

• 

DO 54 I=1,NE 
DO 52 J=-1,3 
K=NEL(I,J) 
ICK(K)=1 
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52 IF(K.GT.NN) WRITE(15,53) 
53 FORMAT(/,10X,4HNODE,I4,11H OF ELEMENT,I4, 

$ 13H EXCEEDS NN = ,I4) 
54 CONTINUE 

c 
C CHECK TO SEE IF ALL NODE NUMBERS THROUGH NN ARE INCLUDED 
c 

c 

c 
c 

DO 55 I=l,NN 

55 IF(ICK(I) .EQ.O) WRITE(15,56) I 
56 FORMAT(/10X,4HNODE,I4,15H DOES NOT EXIST) 

RETURN 

END 

c ******************************** 
SUBROUTINE ELS'.IMX (KK) 

c ******************************** 
c 

c 

PARAMETER ( IMAXNN=231 I IMAXNY=-1 0) 
COMHON/MTL/EM,PR,TH,AMU 
COMMON/GRAD/B(3,6),AR2 
COMMON/ELMATX/ESM(9,9),X(3),Y(3),Z(3),D(3,3),GESM(9,9), 

$ GSM(3*IMAXNN,3*IMAXNN),GTSM(3*IMAXNN+120,3*IMAXNN+l20),IELR 

COMMON/N/NP,NN,NE,NS(9),ICK(500),NSl,NS2,UU(9) 
COMMON/DUMM/DUM1(9,9),DUM2(9,9),DUM3(3,3*IMAXNN), 

$ DUM4(3,3*IMAXNN),DUM5(3*IMAXNN,3),DUM6(3*IMAXNN,3) 
COMMON/ELM/NEL(500,3),XC(IMAXNN),YC(IMAXNN),ZC(IMAXNN) 
COMMON/LOCAL/XYZ(9),STOR(9),XL(3),YL(3),ZL(3), 

$ FL (3*IMAXNN) 
DIMENSION C(6,3) 

C GENERATION OF THE B MATRIX 

c 
DO 20 I=1,3 
DO 20 J::a:1,6 

20 B(I,J)zO.O 
B(l,l)zYL(2)-YL(3) 
B(1,3)=YL(3)-YL(l) 
B(l,S)=YL(l)-YL(2) 
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c 

B(2,2)=XL(3)-XL(2) 

B(2,4)=XL(1)-XL(3) 
B(2,6)=XL(2)-XL(1) 

110 B(3,1)=B(2,2) 

B(3,2)=B.(1,1) 
B (3, 3) =B (2, 4) 

B(3,4)=B(1,3) 

B (3, 5) =B (2, 6) 
B (3, 6) =B (1, 5) 

C1=(Y(1)*Z(2)+Y(2)*Z(3)+Y(3)*Z(1)-Y(1)*Z(3)-
$ Y(2)*Z(1)-Y(3)*Z(2))**2 

C2=(Z(1)*X(2)+Z(2)*X(3)+Z(3)*X(1)-Z(1)*X(3)
$ Z(2)*X(1)-Z(3)*X(2))**2 

C3a(X(2)*Y(3)+X(3)*Y(1)+X(1)*Y(2)-X(2)*Y(1)
$ X(3)*Y(2)-X(1)*Y(3))**2 

AR2=SQRT(C1+C2+C3) 

C GENERATION OF THE MATERIALS PROPERTY MATRIX MATRIX 0 

c 

c 

c 

100 R=EM/(1.-PR**2) 
D(1,l)=R 

D(2,2)=0(1,1) 

0(3,3)•R*(1.0-PR)/2. 
0(1,2)-=PR*R 
D(2,1)sD(1,2) 

0(1,3)=-0.0 

0(3,1)=0.0 

D(2,3)=o.o· 

D(3,2)=0.0 

IF(IELR.EQ.1) RETURN 

C MATRIX MULTIPLICATION TO OBTAIN C = BT * 0 

c 
DO 22 I=1,6 
DO 22 J•1,3 

C(I,J)=O.O 

DO 22 K=1,3 

22 C(I,J)=C(I,J)+B(K,I)*O(K,J) 
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c 
C MATRIX MULTIPLICATION TO OBTAIN ESM 
c 

c 

c 

DO 27 I=l,6 
DO 27 J=l,6 

sUM=o.o 
DO 28 K=l,3 

28 SUM=SUM+C(I,K)*B(K,J) 
ESM(I,J)=SUM*TH/(2.*AR2) 

27 CONTINUE 

DO 55 Izl,9 

DO 50 J=1, 9 

50 DUMl(I,J)=O.O 
55 CONTINUE 

C EXPAND ELEMENT STIFFNESS MATRIX TO INCLUDE 

C THE OUT-OF-PLANE DEGREES OF FREEDOM 

c 

c 

c 

DO 65 I=-1,2 

DO 60 J=1, 6 

JJ=J 
IF((J.EQ.3).0R. (J.EQ.4)) JJ=J+1 

IF((J.EQ.5) .OR. (J.EQ.6)) JJ-J+2 

60 DUMl(I,JJ)=ESM(I,J) 

65 CONTINUE 

DO 75 I=4,5 

DO 70 J=1,6 

JJ=J 

IMl.=I-1 
IF((J.EQ.3).0R. (J.EQ.4)) JJ=J+l 

IF((J.EQ.5).0R. (J.EQ.6)) JJ=J+2 

70 DUMl(I,JJ)=ESM(IMl,J) 

75 CONTINUE 

DO 85 I=7,8 
DO 80 J=1,6 

JJ=J 
IM2=-I-2 
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c 

c 

c 
c 

IF((J.EQ.3) .OR. (J.EQ.4)) JJ=J+1 
IF((J.EQ.5) .OR. (J.EQ.6)) JJ=J+2 

80 DUM1(I,JJ)=ESM(IM2,J) 
85 CONTINUE 

DO 95 I•1,9 
DO 90 J=1,9 

90 ESM(I,J)=DUMl(I,J) 
95 CONTINUE 

RETURN 

END 

c ******************************** 
SUBROUTINE LAMDA (KK) 

c ******************************** 
c 

c 

c 

PARAMETER(IMAXNN•231,IMAXNY=10) 

COMMON/ELMATX/ESM(9,9),X(3),Y(3),Z(3),D(3,3),GESM(9,9), 
$ GSM(3*IMAXNN,3*IMAXNN),GTSM(3*IMAXNN+l20,3*IMAXNN+120),IELR 

COMMON/TMATX/AL(3,3),T(9,9),ALT(3,3),TT(9,9) 
COMMON/LAM/TEMP(3,3),ALN(3,3),ALNT(3,3) 

A.., ( (Y (2) -Y (1)) * (Z (3) -z (1)))- ( (Y (3) -Y (1)) * (Z (2) -z (1))) 
B=-((X(2)-X(1))*(Z(3)-Z(1)))+((X(3)-X(1))*(Z(2)-Z(1))) 
C=((X(2)-X(1))*(Y(3)-Y(1)))-((X(3)-X(1))*(Y(2)-Y(1))) 

IF ((A. EQ. 0 • ) • AND. (B. EQ. 0 . )) THEN 

CXX=1.0 

CXY=O.O 
CXZ=O.O 
CYX=O.O 

CYY=-1.0 

CYZ•O.O 
CZX=-0.0 

CZY""O.O 
CZZ=-1.0 
IF(KK.EQ.O) GO TO 100 
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c 

GO TO 5 
END IF 

C DIRECTION COSINES OF THE NORMAL Z 

c 

c 

CONST=SQRT(A**2+B**2+C**2) 

CZX=A/CONST 
CZY=B/CONST 

CZZ=C/CONST 

C DIRECTION COSINES OF X 

c 
C DETERMINE SIDE OF ELEMENT PARALLEL WITH GLOBAL X AXIS 

c 

c 

c 

c 

IF((Y(2)-Y(l)).EQ.0.) THEN 

XL=SQRT((X(2)-X(l))**2+(Y(2)-Y(l))**2+(Z(2)-Z(l))**2) 

CXX=(X(2)-X(l))/XL 

CXY-(Y(2)-Y(l))/XL 

CXZ=(Z(2)-Z(l))/XL 

GO TO 50 

END IF 

IF((Y(3)-Y(l)).EQ.0.) THEN 

XL=SQRT((X(3)-X(l))**2+(Y(3)-Y(l))**2+(Z(3)-Z(l))**2) 

CXX=(X(3)-X(l))/XL 

CXY=(Y(3)-Y(l))/XL 

CXZ=(Z(3)-Z(l))/XL 

GO TO 50 
END IF 

IF((Y(3)-Y(2)).EQ.0.) THEN 

XL=SQRT((X(3)-X(2))**2+(Y(3)-Y(2))**2+(Z(3)-Z(2))**2) 

CXX-(X(3)-X(2))/XL 

CXY=(Y(3)-Y(2))/XL 

CXZ=(Z(3)-Z(2))/XL 

GO TO 50 

END IF 

C DIRECTION COSINES OF Y 

c 
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c 

50 CYX=(CZY*CXZ)-(CZZ*CXY) 
CYY=-(CZX*CXZ)+(CZZ*CXX) 
IF(ABS(CYY-1.0).LE.0.00005) CYY=1.00 
CYZ=(CZX*CXY)-(CZY*CXX) 

C GENERATION OF THE LOCAL NODAL LAMDA MATRIX 

c 

c 

100 IF(KK.EQ.O) THEN 
TEMP(1,1)=ACOS(CXX) 

TEMP(1,2)=ACOS(CXY) 
TEMP(1,3)=ACOS(CXZ) 
TEMP(2,1)=ACOS(CYX) 

TEMP(2,2)=ACOS(CYY) 
TEMP(2,3)=ACOS(CYZ) 
TEMP(3,1)=ACOS(CZX) 

TEMP(3,2)=ACOS(CZY) 
TEMP(3,3)=ACOS(CZZ) 

RETURN 

END IF 

C GENERATION OF THE LAMDA MATRIX 

c 

c 

5 AL(1,1)-cxK 
AL(1,2)=CXY 

AL(1,3)-cxz 

AL(2,1)=CYX 

AL(2,2)=CYY 

AL (2, 3) =CYZ . 
AL(3,1)=CZX 
AL(3,2)=CZY 

AL(3,3)s:CZZ 

C GENERATION OF THE TRANSPOSE OF LAMDA 

c 

c 

DO 10 I•1,3 
DO 10 J=1,3 

10 ALT(J,I)=AL(I,J) 

RETURN 
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c 
c 

END 

c **************************** 
SUBROUTINE TRNSMX 

c **************************** 
c 

c 

PARAMETER (IMAXNN=231, IWJ<NY=lO) 
COMMON/ELMATX/ESM(9,9),X(3),Y(3),Z(3),D(3,3),GESM(9,9), 

$ GSM(3*IMAXNN,3*IMAXNN),GTSM(3*IMAXNN+l20,3*IMAXNN+l20),IELR 
COMMON/TMATX/AL(3,3),T(9,9),ALT(3,3),TT(9,9) 

C GENERATION OF THE TRANSFORMATION MATRIX T 
c 

DO 10 I=1,9 
DO 10 J=l,9 

10 T(I,J):o:O.O 

DO 15 I=1,3 
DO 15 J=-1,3 

15 T (I, J) =AL (I, J) 
c 

DO 20 I=4,6 
DO 20 J=-4,6 
IA=I-3 
Jl\=J-3 

20 T(I,J)=AL(IA,Jl\) 

c 
DO 30 I=7,9 
DO 30 J=7,9 

IB-I-6 
JB-J-6 

30 T(I,J)=AL(IB,JB) 

c 
C GENERATION OF THE TRANSPOSE OF T 

c 
DO 40 I=1,9 
DO 40 J=1,9 

40 TT (J, I) =T (I, J) 

c 
RETURN 
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c 
c 

END 

c ***************************** 

SUBROUTINE TRNSFM 
c ***************************** 
c 

c 

PARAMETER(IMAXNN=231,IMAXNYz10) 

COMMON/ELMATX/ESM(9,9),X(3),Y(3),Z(3),D(3,3),GESM(9,9), 

$ GSM(3*IMAXNN, 3*IMAXNN) ,GTSM(3*IMAXNN+120, 3*IMAXNN+120), IELR 

COMMDN/T.MATX/AL(3,3),T(9,9),ALT(3,3),TT(9,9) 
COMMON/DUMM/DUMl(9,9),DUM2(9,9),DUM3(3,3*IMAXNN), 

$ DUM4(3,3*IMAXNN),DUM5(3*IMAXNN,3),DUM6(3*IMAXNN,3) 

C MATRIX MULTIPLICATION TO OBTAIN DUM2 z TT * ESM 

c 

c 

DO 10 I=1,9 
DO 10 J=-1,9 
DUM2(I,J)=O.O 

DO 10 K=1,9 
10 DUM2(I,J)•DUM2(I,J)+TT(I,K)*ESM(K,J) 

C MATRIX MULTIPLICATION TO OBTAIN GLOBAL ELEMENT STIFFNESS MATRIX 

c 

c 

c 
c 

DO 20 I=-1,9 

DO 20 J=l,9 

GESM(I,J)=O.O 

DO 20 K=l,9 

20 GESM(I,J)=GESM(I,J)+DUM2(I,K)*T(K,J) 

RETURN 

END 

c ****************************** 
SUBROUTINE ASSEMB 

c ****************************** 

c 
PARAMETER(IMAXNN=231,IMAXNY=10) 
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COMMON/ELMATX/ESM(9,9),X(3),Y(3),Z(3),D(3,3),GESM(9,9), 
$ GSM(3*IMAXNN,3*IMAXNN),GTSM(3*IMAXNN+120,3*IMAXNN+120),IELR 

COMMON/N/NP,NN,NE,NS(9),ICK(500),NS1,NS2,UU(9) 
c 
C DIRECT STIFFNESS PROCEDURE 
c 

c 

c 
c 

DO 20 I=1,9 
IC=NS(I) 
DO 10 J=l,9 
JC=NS (J) 

10 GSM(IC,JC)=GSM(IC,JC)+GESM(I,J) 
20 CONTINUE 

RETURN 

END 

c ********************************* 
SUBROUTINE SKEWED (KN) 

c ********************************* 
c 

c 

PARAMETER (IMAXNN=231, IMAXNY=10) 
COMMON/ELMATX/ESM(9,9),X(3),Y(3),Z(3),D(3,3),GESM(9,9), 

$ GSM(3*IMAXNN,3*IMAXNN),GTSM(3*IMAXNN+120,3*IMAXNN+120),IELR 
COMMON/TMATX/AL(3,3),T(9,9),ALT(3,3),TT(9,9) 
COMMON/DUMM/DUM1(9,9),DUM2(9,9),DUM3(3,3*IMAXNN), 

$ DUM4(3,3*IMAXNN),DUM5(3*IMAXNN,3),DUM6(3*IMAXNN,3) 
COMMON/ELM/NEL(500,3),XC(IMAXNN),YC(IMAXNN),ZC(IMAXNN) 
COMMON/N/NP,NN,NE,NS(9),ICK(500),NS1,NS2,UU(9) 
COMMON/LAM/TEMP(3,3),ALN(3,3),ALNT(3,3) 
COMMON/PARAM/NY, NYPl, WW, NAR 

DIMENSION N(l2),NB(6),TEMP1(3,3),TEMP2(3,3) 

C CHECK TO SEE IF NODE KN IS ON A BOUNDARY 
C AND WHICH BOUNDARY IT IS ON 

c 
C ONE OF THE CORNERS 

c 
IF(KN.EQ.1) THEN 
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c 

c 

c 

c 

Nl=KN+l 

N2=KN 

N3=KN+NYP1 

GO TO 200 

END IF 

IF (KN.EQ.NYPl) THEN 

Nl=KN 

N2=KN-l 

N3=KN+NYP1 

GO TO 200 

END IF 

IF (KN.EQ. (NN-NY)) THEN 

N1:ooKN-NYP1 

N2=KN 

N3=KN+1 

GO TO 200 

END IF 

IF(KN.EQ.NN) THEN 

Nl=KN-NYP1 

N2=KN-1 

N3=KN 

GO TO 200 

END IF 

C FRONT EDGE 

c 

c 

IF ((KN.GT .1) .AND. (KN .LT .NYP1)) THEN 

NB (1)=KN 

NB(2)=KN+NYP1 

NB(3)=KN+1 

NB(4) ... NB(1) 

NB(S)=-KN-1 

NB (6) =NB (2) 

GO TO 400 

END IF 

C RIGHT-HAND EDGE 

152 



c 

c 

IF(YC(KN) .EQ.O.) THEN 

NB(l)=KN 

NB(2)=KN+NYP1 

NB (3)=KN+l 

NB (4) =KN-NYPl 

NB(5)::o:KN 

NB (6)=KN+l 

GO TO 400 

END IF 

C LEFT-HAND EDGE 
c 

c 

IF(YC(KN) .EQ.WW) THEN 

NB(l)=KN 

NB(2)=KN-1 

NB (3) =KN+NYPl 

NB ( 4) =KN-NYPl 

NB (5)=-KN-1 

NB (6)=-KN 

GO TO 400 

END IF 

C REAR EDGE 
c 

c 

c 

IF ( (I<N. GT. (NN-NY) ) • AND. (I<N. LT. NN) ) THEN 

NB (1) =I<N-NYPl 

NB (2)=I<N-l 

NB (3)=I<N 

NB ( 4) =I<N-NYPl 

NB(5)=-KN 

NB (6) =-I<N+l 

GO TO 400 

END IF 

GO TO 245 

C RECALL NODAL COORDINATES 

c 
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c 

c 

200 X(l)=XC(Nl) 
Y(l)=YC(Nl) 

Z(l)=ZC(Nl) 

X(2)=XC(N2) 
Y(2)=YC(N2) 
Z(2)=ZC(N2) 

X(3)=XC(N3) 
Y (3) =YC (N3) 
Z(3)=ZC(N3) 

KK=O 

CALL LAMDA (KK) 

C GENERATION OF LOCAL NODAL LAMDA MATRIX 

C FOR NODES ON ONE OF THE CORNERS 
c 

c 

c 

DO 20 I=1,3 
DO 20 J=z1,3 
AA-TEMJ? (I, J) 

ALN(I,J)-GOS(AA) 
IF(ABS(ALN(I,J)) .LE.O.OOOOl) ALN(I,J)=O.O 
ALNT(J,I)=ALN(I,J) 

20 CONTINUE 

GO TO 300 

C NODES NOT ON A BOUNDARY 

c 
245 N(l)=:KN 

N(2)=KN-l 

N (3) =:KN+NYPl 

N(4)=KN 

N(5)=N(3) 

N(6)=:KN+l 

N(7)=KN-NYP1 

N(8)=N(l) 

N(9)=:KN+l 

N(l0)=N(7) 

N(ll)=N(2) 

N(l2)=N(l) 
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c 

c 

KK=O 
IFLAG=O 
DO 210 I=l,3 
DO 210 J=1,3 

210 TEMP2(I,J)=O.O 

C CALCULATION OF AVERAGE NODAL LAMDA MATRIX 

C FOR NODES ONT ON A BOUNDARY 

c 

c 

JK=1 
DO 45 l?LNE=l, 4 
DO 40 I=l,3 
X (I) =XC (N (JK)) 

Y(I)=YC(N(JK)) 

Z(I}=ZC(N(JK)) 

JK=JK+1 
40 CONI'INUE 

CALL LAMDA (KK) 

DO 50 I=1,3 
DO 50 J•1,3 

50 TEMP2(I,J)=TEMP2(I,J)+TEMl?(I,J)*0.25 
45 CONI'INUE 

GO TO 250 

C CALCULATION OF AVERAGE NODAL LAMDA MATRIX 

C FOR NODES ON ONE OF THE EDGES 

c 
c 

c 

400 KK=O 
DO 401 I•l,3 
DO 401 J=1,3 

401 TEMP1(I,J)=O.O 

JJ=1 
DO 420 l?LNE=1, 2 
DO 410 I=1,3 
X (I} =XC (NB (JJ)) 
Y(I)=YC(NB(JJ)) 
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c 

Z (I) =ZC (NB (JJ) ) 
JJ=JJ+1 

410 CONTINUE 
CALL LAMDA (KK) 
DO 405 I=1,3 
DO 405 J=1,3 

405 TEMP1(I,J)=TEMP1(I,J)+TEMP(I,J)*0.5 
420 CONTINUE 

IFLAG=1 

C GENERATION OF THE AVERAGE NODAL LAMDA MATRIX AND ITS TRANSPOSE 
c 

c 

250 DO 60 I=1,3 
DO 60 J=1,3 
IF (IFLAG.EQ. 0) AB=aTEMP2 (I, J) 
IF(IFLAG.EQ.1) AB=TEMP1(I,J) 
ALN(I,J)~S(AB) 

IF(ABS(ALN(I,J)).LE.0.00001) ALN(I,J)=O.O 
ALNT(J,I)=ALN(I,J) 

60 CONTINUE 

c ******************* 
C PRE-MULTIPLY ROWS BY LAMDA 
c ******************* 
c 

c 

300 DO 80 I=1,3 
IF(I.EQ.1) IROW=3*KN-2 

IF(I.EQ.2) IROW=3*KN-1 
IF(I.EQ.3) IROW=3*KN 

DO 80 J=1,NP 
80 DUM3(I,J)=GSM(IROW,J) 

C MATRIX MULTIPLICATION TO OBTAIN DUM4 = ALN * DUM3 

c 

c 

DO 90 I=-1,3 
DO 90 J•1,NP 
DUM4(I,J)=O.O 
DO 90 K=1,3 

90 DUM4(I,J)=DUM4(I,J)+ALN(I,K)*DUM3(K,J) 
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C CHANGE BACK TO GSM = DUM4 

c 

c 

DO 100 I=1,3 
IF(I.EQ.1) I2ROW=3*KN-2 

IF(I.EQ.2) I2ROW=3*~-1 
IF(I.EQ.3) I2ROW=3*KN 

DO 100 J=1,NP 

100 GSM(I2ROW,J)=DUM4(I,J) 

c ******************* 
C POST-MULTIPLY COLUMNS BY TRANSPOSE OF LAMDA 

c ******************* 

c 

c 

DO 110 J=-1, 3 
IF(J.EQ.1) ICOL=3*KN-2 

IF(J.EQ.2) ICOL=3*KN-1 

IF(J.EQ.3) ICOL=3*KN 
DO 110 I=1,NP 

110 DUMS(I,J)=GSM(I,ICOL) 

C MATRIX MULTIPLICATION TO OBTAIN DUM6 a DUMS * ALNT 

c 

c 

DO 120 I=l,NP 

DO 120 J=-1,3 

DUM6(I,J)=O.O 

DO 120 K=l,3 

120 DUM6(I,J)=DUM6(I,J)+DUMS(I,K)*ALNT(K,J) 

C CHANGE BACK TO GTSM = DUM6 

c 

c 

DO 130 J=1,3 

IF(J.EQ.1) I2COL=3*KN-2 

IF(J.EQ.2) I2COL=3*KN-1 

IF(J.EQ.3) I2COL=3*KN 

DO 130 I=1,NP 
130 GSM(I,I2COL)-DUM6(I,J) 

DO 150 I=1,NP 
DO 150 J=1, NP 
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c 

c 
c 

150 GTSM(I 1 J)=GSM(I 1 J) 

RETURN 
END 

c *********************************** 
SUBROUTINE MODIFY(LOOPFL) 

c *********************************** 
c 
c 

c 

PARAMETER(IMAXNN=231 1 IMAXNY=l0) 
COMMON/ELMATX/ESM(9 1 9) 1 X(3) 1 Y(3) 1 Z(3) 1 D(3,3) 1 GESM(9 1 9) 1 

$ GSM(3*IMAXNN,3*IMAXNN),GTSM(3*IMAXNN+l20,3*IMAXNN+l20) 1 IELR 
COMMON/DOF/F(3*IMAXNN+l20),U(3*IMAXNN+l20) 1 STRA(6) 1 STRE(6) 1 

$ THM,TM,Sl,S2 
COHMON/N/NP 1 NN,NE,NS(9),ICK(500)~NS1 1 NS2 1 UU(9) 

COMMON/PARAM/NY, NYPl I ww I NAR 
COMMON/PARAM2/NNB,NN01 NEB,NEO 
COMMON/MODIF/NEWID(l20),TMPDSP(ll0) 

c ******************* 
C INPUT OF THE NODAL FORCE VALUES FROM FILE FORCE. CAT 
c ******************* 
c 
C NV - NODE NUMBER 

C IDOF - DEGREE OF FREEDOM OF THE FORCE 
C VF - VALUE OF THE FORCE 

c 
C INPUT IS TEBMINATED BY INPUTTING A ZERO VALUE FOR NV 

c 

c 

IF (LOOPFL. EQ .1) THEN 
LIMVAL=o3* (NNB+NYPl) 

ELSE 

LIMVAL=oNP+NAR*NY 
END IF 

C READ IN VALUES AND PLACE IN FORCE VECTOR F 

c 
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C ALSO EXTEND FORCE VECTOR WITH ZERO DISPLACEMENTS VALUES TO 

C COMPENSATE FOR ADDITIONAL CONSTRAINTS 

c 

c 

c 
c 

DO 2 I=l,LIMVAL 

2 F(I)=O.O 

IF (LOOPFL. EQ. 1) THEN 

5 READ(l2,*) NV,IDOF,VF 

IF(NV.GT.O) THEN 

F(IDOF)=VF 

GO TO 5 

END IF 

END IF 

c ******************* 

C INl?UT OF THE PRESCRIBED NODAL VALUES AND CONSTRAINTS 

C FROM FILE CONSTR. DAT 

c ******************* 

c 
C NV - NODE NUMBER 

C IDOF - DEGREE OF FREEDOM OF THE KNOWN DISPLACEMENT 

C VD - VALUE OF THE DISPLACEMENT 

c 
C INl?UT IS TEBMINATED BY INPUTTING A ZERO VALUE FOR NV 

c 
C EXTEND DISPLACEMENT VECTOR WITH ZERO FORCE VALUES TO COMPENSATE 

C FOR ADDITIONAL CONSTRAINTS 

c 

IF (LOOPFL. GE. 2) THEN 

DO 37 I=Nl?+1,LIMVAL 

U(I)=O.O 

37 CONTINUE 

END IF 

C READ IN Z AND SYMMETRIC Y DOFS FOR ENTRY APRON 

C - THIS IS USED FOR ALL RUNS 

c 
41 READ (14, *) NV, IDOF, VD 

IF (NV.GT.O) THEN 
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c 

c 
c 

CALL SUBMOD(NV,IDOF,VD,LIMVAL) 

GO TO 41 

END IF 

WRITE(20,12) LOOPFL 

12 FORMAT(2X,I4) 

C READ IN VALUES FOR 1ST PRELIMINARY RUN 

c 
C READ IN X CONSTRAINTS FOR 1ST ROW ON APRON 

c 

c 

IF (LOOPFL.EQ.1) THEN 

44 READ(17,*) NV,IDOF,VD 

WRITE (20, 13) NV,IDOF, VD 

IF (NV.GT.O) THEN 

CALL SUBMOD(NV,IDOF,VD,LIMVAL) 

GO TO 44 

END IF 

13 FORMAT(2X,I4,2X,I4,F14.10) 

REWIND (14) 

READ(14,*) JUNK 

RETURN 

END IF 

C VALUES FOR FINAL RUN 

c 
C READ IN UA DISPL FOR 1ST ROW 

c 

IF (LOOPFL. GE. 2) THEN 

46 READ (17, *) NV, IDOF, VD 

WRITE(20,13) NV,IDOF,VD 

IF(NV.GT.O) THEN 

CALL SUBMOD(NV,IDOF,VD,LIMVAL) 

GO TO 46 

END IF 

C READ IN Z AND SYMMETRIC Y CONSTRAINTS OVER ROLLER 

47 READ(14,*) NV,IDOF,VD 

IF (NV ._GT. 0) THEN 
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c 

CALL SUBMOD(NV,IDOF,VD,LIMVAL) 

GO TO 47 

END IF 

C READ IN M.D. DISPLACEMENTS OVER ROLLER 

C - ADD DIFFERENTIAL STRAIN DISPL ADJUSTMENTS 

c 

c 

DO 48 IK=1,NY1?1 

DO 49 IL=1,NAR+1 

READ (14, *) NV, IDOF I VD 

VD=VD+TMPDSP(IK) 

CALL SUBMOD(NV,IDOF,VD,LIMVAL) 

49 CONTINUE 

48 CONTINUE 

END IF 

C LOCK Y-DISPLACEMENTS TOGETHER OVER ROLLER 

c 
C INITIALIZE ALL MATRIX EXTENSION ENTRIES TO ZERO 

c 
100 DO 120 JJ=NP+1, NP+NAR*NY 

DO 125 KK=1,NP+NAR*NY 

GTSM(JJ,KK)=O.O 

125 CONTINUE 

120 CONTINUE 

c 
DO 130 LL=1,NP 

DO 135 MM=NP+1,NP+NAR*NY 

GTSM(LL,M-1)=0.0 

135 CONTINUE 

130 CONTINUE 

c 
C READ IN VALUES FROM CONSTR. OAT 

c ID - CONTROLLING NODE ON FIRST ROW OF ROLLER 

c IDOF - CORRESPONDING DEGREE OF FREEDOM 

c ID1 - NODE TO BE LOCKED IN 

c IDOF1 - DEGREE OF FREEDOM OF NODE ID1 

c 
DO 200 N=1,NAR*NY 
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c 
c 

READ(l4 1 *) ID 1 IDOF,IDl,IDOFl 
NEWID(N)=IDOFl 
GTSM(NP+N1 IDOF)=l.O 
GTSM(IDOF 1 NP+N)=l.O 
GTSM(NP+N,IDOFl)=-1.0 
GTSM(IDOFl,NP+N)~-1.0 

200 CONTINUE 
RETURN 
END 

c *********************************** 
SUBROUTINE SUBMOD (NV 1 IDOF, VD, LIMVAL) 

c *********************************** 
c 
c 

c 

c 

P~TER(IMAXNN•231 1 IMAXNY=l0) 

. COMMON/ELMATX/ESM(9,9) 1 X(3),Y(3),Z(3),D(3,3) 1 GESM(9,9) 1 

$ GSM(3*IMAXNN,3*IMAXNN),GTSM(3*IMAXNN+l20,3*IMAXNN+l20),IELR 
COMMON/DOF/F(3*IMAXNN+l20),U(3*IMAXNN+l20) 1 STRA(6) 1 STRE(6) 1 

$ THM1 'IM,Sl,S2 
COHMON/N/NP,NN,NE,NS(9),ICK(500) 1 NSl,NS2,UU(9) 

COMMON/PARAM/NY' I NYPl, ww I NAR 

COMMON/PARAM2/NNB 1 NNO,NEB,NEO 
COMMON/MODIF/NEWID(l20),TMPDSP(l10) 

U(IDOF)=VD 

C MODIFICATION OF GLOBAL STIFFNESS MATRIX 'GTSM' 
C AND GLOBAL FORCE VECTOR 

c 
C SET COEFFICIENTS OF ROW IDOF EQUAL TO ZERO 

c 

c 

DO 50 J ... l,LIMVAL 

IF(J.EQ.IDOF) GO TO 50 
GTSM(IDOF,J)=O.O 

50 CONTINUE 

C REPLACE IDOF COMPONENT IN FORCE VECTOR 
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c 

c 

c 

c 
c 
c 

F(IDOF)=GTSM(IDOF,IDOF)*VD 

IF(GTSM(IDOF,IDOF).EQ.O.O) GTSM(IDOF,IDOF)=l.O 

DO 60 I=l,LIMVAL 
IF(I.EQ.IDOF) GO TO 60 
F(I)zF(I)-GTSM(I,IDOF)*VD 
GTSM(I,IDOF)=O.O 

60 CONTINUE 

RETURN 
END 

c ******************************* 
SUBROUTINE SANDS (KK) 

c ******************************* 
c 

c 

PARAMETER(IMAXNN=231,IMAXNY~10) 

COMMON/GRAD/B(3,6),AR2 
COMMON/ELMATX/ESM(9,9),X(3),Y(3),Z(3),D(3,3),GESM(9,9), 

$ GSM(3*IMAXNN,3*IMAXNN),GTSM(3*IMAXNN+120,3*IMAXNN+120),IELR 
COMMON/DOF/F(3*IMAXNN+120),U(3*IMAXNN+120),STRA(6),STRE(6), 

$ THM,TM,Sl,S2 
COMMON/N/NP,NN,NE,NS(9),ICK(500),NSl,NS2,UU(9) 

COMMON/ELM/NEL(500,3),XC(IMAXNN),YC(IMAXNN),ZC(IMAXNN) 
COMMON/LOCAL/XYZ(9),STOR(9),XL(3),YL(3),ZL(3), 

$ FL (3*IMAXNN) 

C CALCULATION OF THE STRAIN VECTOR STRAIN = B * U 

c 
CALL ELSTMX (KK) 
DO 30 I=1,3 
STRA(I)=O.O 

DO 30 K=l,6 
KA=K 
IF ( (K.EQ. 3) .OR. (K.EQ. 4)) KA=K+l 
IF ( (K.EQ. 5) .OR. (K.EQ. 6)) KA=K+2 

30 STRA(I)=STRA(I)+B(I,K)*UU(KA)/AR2 
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c 
C CALCULATION OF THE STRESS VECTOR STRESS = D * STRAIN 

c 

c 

DO 40 I=1,3 

STRE(I)•O.O 
DO 40 K=1,3 

40 STRE(I)•STRE(I)+D(I,K)*STRA(K) 

C CALCULATION OF THE PRINCIPAL STRESSES 

c 

c 

c 
c 

AA=(STRE(1)+STRE(2))/2. 
AB=SQRT(((STRE(1)-STRE(2))/2.)**2+STRE(3)**2) 

S1=AA+AB 
S2•AA-AB 
'IM=oAB 
IF(ABS(STRE(1)-STRE(2)).LT.0.001) GO TO 50 

AC=ATAN2(2.*STRE(3),STRE(1)-STRE(2)) 

TBM-((180./3.14159265)*AC)/2. 

GO TO 100 

50 TEM-90.0 

100 RETURN 
END 

c ************************************************** 

SUBROUTINE FACTOR(W,IPIVOT,IFLAG,LOOPFL) 

c ************************************************** 

c 

c 
C INPUTS 

PARAMETER(IMAXNN=231,IMAXNY=10) 

COMMON/N/NP,NN,NE,NS(9),ICK(500),NS1,NS2,UU(9) 

COMMON/PARAM/NY, NYP1, WW, NAR 
COMMON/PARAM2/NNB,NNO,NEB,NEO 

INTEGER IPIVOT(3*IMAXNN+120) 

REAL D(3*IMAXNN+120),W(3*IMAXNN+120,3*IMAXNN+120) 

C W - ARRAY CONTAINING THE MATRIX TO BE FACTORED 

C N - ORDER OF THE MATRIX 
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c 

c 

c 

IF(LOOPFL.EQ.1) THEN 

LIMVAL=3* (NNB+NYP1) 

ELSE 
LIMVAL=NP+NAR*NY 

END IF 

N=LIMVAL 

IFLAG=o1 

C INITIALIZE IPIVOT,D 

c 

c 

DO 9 I,..1,N 

IPIVOT(I)=I 
RQWMAX:ooO. 

DO 5 J,..1,N 

5 ROWMAX=AMAX1(ROWMAX,ABS(W(I,J))) 

IF (ROWMAX. EQ. 0. ) THEN 

IFLAG=O 

RQWMAXz1. 

END IF 

9 D(I)=ROWMAX 

IF(N.LE.1) GO TO 30 

C FACTORIZATION 

c 
DO 20 K=1,N-1 

c 
C DETERMINE PIVOT ROW, THE ROW I STAR 

c 
COLMAX=ABS(W(K,K))/D(K) 

ISTAR=K 

DO 13 I=K+1,N 

AWIKOD=ABS(W(I,K))/D(I) 

IF (AWIKOD . GT. COLMAX) THEN 

COLMAX=AWIKOD 

I STAR= I 
END IF 

13 CONTINUE 

IF (COLMAX. EQ. 0 • ) THEN 
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c 

IFLAG=O 

ELSE 
IF(ISTAR.GT.K) THEN 

C MAKE K THE PIVOT ROW BY INTERCHANGING IT WITH 

C THE CHOSEN ROW ISTAR 

c 

c 

IFLAG=-IFLAG 
I=IPIVOT (ISTAR) 

IPIVOT(ISTAR)=IPIVOT(K) 

IPIVOT(K)=I 

TEMP=D (ISTAR) 

D (ISTAR) =D (K) 

D(K)::o:TEMP 

DO 15 J=1,N 

TEMP=W (I STAR, J) 
W(ISTAR,J).W(K,J) 

15 W(K,J)=TEMP 

END IF 

C ELIMINATE X(K) FROM ROWS K=1, •..• ,N 

c 

c 

c 
c 

16 DO 19 I=K+1,N 
W(I,K)ZW(I,K)/W(K,K) 

RATIO=W(I,K) 

DO 19 J=K+1,N 

W(I,J)=W(I,J)-RATIO*W(K,J) 

19 CONTINUE 

END IF 

20 CONTINUE 

' 
IF(W(N,N) .EQ.O.) IFLAG=O 

30 RETURN 

END 

c ******************************************** 

SUBROUTINE SUBST(W,IPIVOT,B,X,LOOPFL) 

c ******************************************** 
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c 

c 

c 

c 

c 

c 

PARAMETER(IMAXNN=231,IMAXNY=l0) 
COMMDN/N/NP,NN,NE,NS(9),ICK(500),NS1,NS2,UU(9) 
COMMON/PARAM/NY, NYPl, WW, NAR 

COMMON/PARAM2/NNB,NNO,NEB,NEO 
INTEGER IPIVOT(3*IMAXNN+120) 

REAL B(3*IMAXNN+120),X(3*IMAXNN+120), 
$ W(3*IMAXNN+120,3*IMAXNN+l20) 

IF(LOOPFL.EQ.l) THEN 

LIMVAL==3* (NNB+NYP1) 
ELSE 

LIMVAL==NP+NAR*NY 
END IF 

N•LIMVAL 
IF(N.LE.l) THEN 
X(l)•B(l)/W(1,1) 

RETURN 

END IF 

IP=IPIVOT(1) 
X(l)aB(IP) 

DO 15 I=2,N 

SUM=-0. 
DO 14 Jzl, I-1 

14 SUM=W(I,J)*X(J)+SUM 

Il?=Il?IVOT (I) 

15 X(I)=B(IP)-SUM 

X(N)=X(N)/W(N,N) 

DO 20 I=N-1,1,-1 
SUM=O. 
DO 19 J=I+1,N 

19 SUM=W(I,J)*X(J)+SUM 
20 X(I)=(X(I)-SUM)/W(I,I) 

RETURN 

END 
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c 
c 
c ************************************* 

SUBROUTINE FRICTN ('KN) 
c ************************************* 
c 

c 

PARAMETER(IMAXNN=23l,IMAXNY=l0) 
COMMON/MTL/EM,PR,TH,AMU 
COMMON/LOCAL/XYZ(9),STOR(9),XL(3),YL(3),ZL(3), 

$ FL (3*IMAXNN) 
COMMON/ANGL/SLOPE,FRICTF(IMAXNN),FEXT(IMAXNN),ADIV(IMAXNN), 

$ CONST(IMAXNN) 

C CALCULATE FRICTION FORCE 
c 

c 

c 
c 

FRICTF('KN)=FL(3*KN)*AMU 

RETURN 
END 

c ********************************** 
SUBROUTINE APFORS('KN,ITER) 

c ********************************** 
c 

c 

PARAMETER (IMAXNN=23l, IMAXNY=lO) 
COMMON/MTL/EM,PR,TH,AMU 
COMMON/DOF/F(3*IMAXNN+120),U(3*IMAXNN+120),STRA(6),STRE(6), 

$ THM,TM,Sl,S2 
COMMON/ANGL/SLOPE,FRICTF(IMAXNN),FEXT(IMAXNN),ADIV(IMAXNN), 

$ CONST(IMAXNN) 

C APPLY SP:READING FORCE TO NODE 'KN IN Y-DIRECTION 
c 

c 

AITER•FLOAT (ITER) 
IDOF==3*'KN-l 
IF(ITER.EQ.l) FEXT(KN)=O.O 
FEXT ('KN) =FEXT (KN) + (1. /AITER) * (FRICTF ('KN) -FEXT (KN) ) 
F(IDOF)=FEXT(KN) 
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c 

RETURN 

END 

. c ****************************************** 
SUBROUTINE CHKFOR (KN, IFLAG2) 

c ****************************************** 
c 

c 

c 

PARAMETER(IMAXNN=231,IMAXNY=10) 
COMMON/LOCAL/XYZ(9),STOR(9),XL(3),YL(3),ZL(3), 

$ FL (3*IMAXNN) 
COMMON/ANGL/SLOPE,FRICTF(IMAXNN),FEXT(IMAXNN),ADIV(IMAXNN), 

$ CONST(IMAXNN) 

IFLAG2=1 

C CHECK TO SEE IF THE RATIO OF SPREADING FORCE TO FRICTION FORCE 
C IS WITHIN THE SPECIFIED LIMITS 
c 

c 

ADIV (KN) =FEXT (KN) /FRICTF (KN) 
IF( (ADIV(KN) .LT.0.9800) .OR. (ADIV(KN) .GT.1.02)) IFLAG2=0 

RETURN 

END 
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