
INTERVAL MATHEMATICS AND

LINEAR PROGRAMMING APPLICATIONS

Ey

ZEYNEP AYSEGUL KARACAL
1/

Bachelor of Science

Middle East Technical University

Ankara,Turkey

1982

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May 1988

TJ"'~es;s

19 ~8'
K IZ~
C.op . .J..

INTERVAL MATHEMATICS AND

LINEAR PROGRAMMING APPLICATIONS

Thesis Approved:

c

Dean of Graduate College

ii

1.:10;~576

PREFACE

This thesis surveys the application of interval

arithmetic to linear programming problems and presents an

algorithm for solution of interval linear programming

problems.

I would like to express my thanks to my advisor Dr.

J.P. Chandler for his intelligent guidance and

encouragement.

I am also thankful to my other comittee members Dr.

Folk and Dr. Hedrick for their advice.

I am very grateful to my husband,Cem, and my parents,

Mr. and Mrs. Izgu for their constant support, encouragement

and understanding.

I wish to dedicate this thesis to my daughter, S1la

Gizem who made everything so worthwhile.

iii

Chapter

I.

II.

III.

IV.

TABLE OF CONTENTS

INTRODUCTION

INTERVAL ARITHMETIC AND A SURVEY OF
APPLICATIONS OF INTERVAL ARITHMETIC • .

LINEAR PROGRAMMING

A METHOD FOR THE SOLUTION OF INTERVAL
LINEAR PROGRAMMING PROBLEMS

V. TESTING

VI. SUMMARY AND CONCLUSIONS •

VII. SUGGESTIONS FOR FURTHER STUDY .

BIBLIOGRAPHY

APPENDIX A - DEFINITIONS

APPENDIX B - PROGRAM LISTING

iv

Page

1

4

20

34

43

48

51

52

56

58

Table

I.

II.

III.

IV.

LIST OF TABLES

Sign analysis of multiplication

Determination of bounds for
multiplication operation •

Computation of objective function
at extreme points

Basic variables and ratios .

v

Page

8

13

22

30

Figure

1.

2.

3.

4.

5.

6.

. 7.

8.

9.

10.

11.

LIST OF FIGURES

Intersection and Union of Two Intervals

Representation of Rounding Endpoints .

A Noncanvex Solution Space

Solution Space .

Graphical Representation of Solution Space .

Unbounded Solution .

Alternative Optimal Solution .

Adjacent Extreme Paints

Flowchart of the Algorithm

Solution Space of Test Problem 1 .

Optimum Solution a£ Test Problem 1

vi

Page

5

12

17

21

30

32

33

38

42

44

45

CHAPTER I

INTRODUCTION

Interval mathematics is a branch o£ applied

mathematics. It has grown during the past two decades.

Applications o£ interval mathematics which have been

reported to date include diverse areas such as mathematical

programming, operator equations, algebraic systems, even the

re-entry o£ a spaceship into the earth's atmosphere.

In recent years there has been a growing interest in

developing methods to solve interval Linear Programming (LP)

problems. Various approaches have been suggested. Many o£

these approaches are based on methods already available for

LP.

At present there is a considerable interest in the

applications o£ interval mathematics to various areas

including linear programming. A survey o£ recent

developments in applications o£ interval mathematics is

presented in chapter II. A summary o£ interval arithmetic

operations and realization o£ interval operations on a

computer are also given in chapter II. Chapter III gives an

algebraic procedure £or solving linear problems called

simplex method. The geometric interpretation o£ the problem~

and necessary iterations are presented with examples.

1

2

A linear programming problem is in the £arm o£
T

Maximize C x

Subject to
Ax~ b X ~ 0

The solution o£ this system can be obtained by using

well-known simplex method. But the solution o£ LP problem

may not be straight £orward i£ the parameters are intervals.

When the constraint set has only lower and upper bounds, LP

problem is called Interval Programming pr9blem. The problem

becomes even more complex when all parameters are intervals.

Interval Linear Programming problem can be de£ined as

Maximize PZ
Subject to

AZ ~ B

where, A is mxm matrix with interval coe££icents, B is m

dimensional interval vector, and P is n dimensional interval

vector.

In the light o£ acquired knowledge £rom literature

survey, Krawczyk's method [40J which obtains an interval

vector containing exact solution to ILP £rom an approximate

solution o£ LP problem is studied. The cases which

Krawczyk's method gives up or terminates are examined.

Necessary modi£ication is added to prevent the algorithm

from giving up with no results.

To find the solution set for a given system, a

software package based on FORTRAN is developed. Also a small

interval package containing basic operations (*,!,+,-) is

written to perform interval arithmetic operations on a

computer and this package is used in the so£tware whenever

an interval operation becomes necessary.

A study o£ Krawczyk's method £or the solution o£

interval linear programming problems and modi£ication o£

the method is presented in chapter IV. The per£ormance o£

the modi£ied method is tested using test problems given in

chapter V. Necessary mathemat~cal de£initions are given in

Appendix A. Appendix B contains program listing.

3

CHAPTER II

INTERVAL ARITHMETIC AND A SURVEY OF

APPLICATIONS OF INTERVAL ARITHMETIC

Finite arithmetic in computers and increasing demand o£

computers caused the development o£ a structure called

interval analysis or ,later, interval mathematics. Interval

analysis is a new branch o£ applied mathematics. It is an

approach to computing which treats an interval o£ real

numbers as a new kind o£ number represented by a pair o£

real numbers. An arithmetic introduced £or such numbers is

called interval arithmetic.

An interval is de£ined by its endpoints ..X. , X , where

X E X . Thus, X = [~. X]. A Real number a is de£ined

with the degenerate interval [a,a] having equal lower and

upper endpoints; the term degenerate comes £rom the

topological de£inition o£ a degenerate set as being a set

consisting o£ a single point. The space o£ real numbers is

regarded as a subspace o£ the space o£ intervals when the

real number is de£ined as a degenerate interval. Thus,

interval arithmetic includes real arithmetic as a special

case. In other words, an interval number is a set o£ real'

numbers. There£ore, set theoretic operations can be applied

to intervals.

4

5

Two intervals are equal i£ their corresponding endpoints

are equal. Thus X = Y i£ Jl = :f._ and X = Y.

The intersection o£ two intervals X and Y is empty, i£

either X > Y or X < Y . The intersection o£ two interval is

xnv = r max<lf,X:> , min<X,Y> J.

Figure 1 presents the geometric interpretation o£

intersection o£ two intervals. The intervals X=[-1,4] and

Y=[2,6J will be used £or numerical examples.So the

intersection o£ X n Y = [2, 4 J < See Figure 1. a >.

I£ two intervals X and Y have nonempty intersection,

their union is

X U Y = [min (X, !) , max< X, Y) J.

As it can be interpretted £rom Figure l.c, XUY = (-1,6J.

a)

b)

c)

Set inclusion can be de£ined £or intervals as

X C Y i£ _and only i£ J_ ~ .X and X ~ Y.

xn Y

.K :f._ X y

X f'\ "'(::: ¢

X x y y

-I .2. XUY 4 6

X y x y

Figure 1. Intersection and Union of Two Intervals

6

The width o£ an interval is de£ined by

w<X> = X- X <e.g. W<X>= 4-<-1>=5 > ,

the width o£ interval vector X= <X ,X , ... ,X is
1 2 n

w < X) = max < w < X) , w < X > , •••• , w < X)) .
1 2 n

Absolute value o£ an interval is

I X I = max< I X I , I X I > (e.g. lXI= max< 1-11,141 >=4>.

Midpoint o£ an interval is

m<X> = <X+ X>/2, £or given X m<X> is <-1+4)/2=1.5.

The vector norm £or interval vectors X= <X ,X , ••. ,X)
1 2 n

is
I I X I I = max (I X I , , I X I) .

1 n
The rules o£ interval arithmetic are given in [32J and

[33J. Let X and Y be intervals. The sum o£ two intervals is

again an interval.

X+ Y = [a,bJ + [c,dJ = [a+c, b+dJ

As an example X+ Y= [-1,4]+[2,6] = [1,10].

The negative o£ an interval is de£ined as

-X= -[a,bJ = [-b,-aJ. There£ore the di££erence o£

two interval is

X - Y = X + [-YJ = [X-Y X-Y J £or example

X -Y = E-1,4J+[-6,-2J = E-7,2J.

Be£ore going £urther, it is bene£icial to explain one

shortcomings o£ interval arithmetic. Interval arithmetic has

no additive inverse. I£ an interval X = [a,bJ is subtracted

£rom itsel£ , the result is

X - X = [a-b , b-al.

That is, X - X j [O,OJ, di££erent £rom the expected result

<unless a=b) ,£or example X= [-1,4J and X-X= [-5,5J • This

kind o£ shortcoming causes interval arithmetic to produce

nonsharp bounds. In general, i£ a given interval X occurs

more than once in a computation, results are more likely to

£ail to be sharp. A generalized interval arithmeic which

reduces this e££ect is introduced by Hansen [20J.

The product o£ two intervals, X.Y, is again an interval

whose endpoints can be computed £rom

xv
X*Y = max< XY , xY , XY XY

The reciprocal o£ an interval is

1/X = [1/X , 1/K J i£ X > 0 or X (0.

I£ an interval X contains zero the set o£ 1/X is unbounded

and can not be represented as an interval.

The quotient o£ two intervals can be de£ined as

X/Y = X*<l!Y> i£ 0 is not contained in Y.

The operation * and I can be simpli£ied computationally

by examining the signs o£ endpoints. The results £or

multiplication which are reduced to 9 cases are given in

Table I.

7

8

TABLE I

SIGN ANALYSIS OF .MULTIPLICATION

A B A * B
Case no

r~, A l [~, BJ =
1 [~ 0, >; Ol [~ 0,~ 0] [~*~ , A*B J

2 [< 0,~ Ol [~ 0,~ OJ [A*B , A*B]

3 [~ 0,~ OJ [~ 0, >,- OJ [A*B , A*B J

4 [~ 0,~ Ol [< 0,~ Ol [.A*B , .h*!! J

5 [~ 0,~ OJ [< 0,~ OJ [A*B , A*B]

6 [~ 0,~ OJ [~ 0,~ OJ [A*B , A*B J

7 [< 0,~ OJ [~ 0,~ OJ [A*B , .!!*~

8 [~ 0,~ OJ [~ o.~ OJ [A*B , h.*!!]

9 [< 0, ~ OJ [< 0, ~ OJ [min<~B,A~>,max(~~,AB>J

In Table I, the notation ~ 0 means the endpoint is negative.

Similarly the notation ~ 0 means that the endpoint is

positive. For example the multiplication of X and Y can

be computed from case 2 where

X * Y = [-1,4] *[2,61 = [-6,24J.

All above operations contain real (infinite precision)

arithmetic. Therefore they can not be implemented on a

computer. In practice, real arithmetic on computers is

impossible using floating point instructions because of

limited precision and roundoff errors. When real arithmetic

operations are carried on a computer, computations will be

9

done in £loating point arithmetic. Real numbers are

approximated by £loating point systems with a £ixed number

a£ digits in the mantissa. Any real number y can be written

as

y = + .d d ..•.. d d
1 2 s s+l

The IBM 3081 system which is used in thjs research ~epre-

sents y by chopping a£ all digits a£ter the £irst s to get

e
£l(y) = +.d d •.•.. d 0

1 2 s .
where s = 5 (£or single precision) ~ = 15 and -64 < e < 53.

The unit roundo££ error is de£ined
1-s

EPS = (3

i£ y is a real number, then £loating point y can be de£ined

£l<y> = y<l +o> where I & I ~ EPS.

It is possible to f'ind intervals containing the exact

arithmetic results. Even i£ a mathematical equation can be

solved exactly, it will still give an approximate

description a£ the behavior a£ the real system which the

mathematical equation is s~pposed to model. Basically,

problems can be divided into two categories, problems with

inexact and with exact initial data. In the £irst category,

usually data are allowed to vary over an interval. In the

category o£ problems where exact initial data are given,

interval analysis is used to develop methods which generate

convergent sequences a£ bounds converging to the solutions

under comparatively weak conditions. When perf'orming

interval arithmetic on a digital computer, it is necessary

to deal with roundo££ error. When per£orming calculations,

the basic properties o£ solutions such as monotonicty o£

sequential inclusion or convergency are assumed to be

preserved. There£ore, the treatment o£ the machine interval

arithmetic is limited to the realization o£ the interval

operations on computer. Under these conditions , i£ interval

arithmetic operations are per£ormed just by plugging

endpoints into equations , the procedure will be imprecise

and will o£ten produce much more pessimistic results than

necessary. To overcome this de£iciency , computer interval

arithmetic is developed and its properties are discussed

in [15J, [27J, and [47). In order to per£orm computer

interval arithmetic directed rounding, which has two parts

< upward and downward directed rounding), is introduced in

[47). If x is a real number, upward rounding maps x to the

smallest machine representable number greater than or equal

to x. Downward rounding maps x to the greatest machine

representable number less than or equal to x.To illustrate

the distinction between interval arithmetic and computer

interval arithmetic , the £allowing example is taken £rom

[3,1 J. Let
-2. -2

X= [-.613*10 -.610*10]

I I
y :: [+, 100*10 , +, 300*10]

Z = X<1 + 1/Y)

Z can be computed using exact interval arithmetic.

z = X<1 + 1/[1,3])

z = X<1+[1/3,1J>

= X[4/3,2J
-I -2

= [·-. 1226*10 -. 8133 .•• *10]

When Z is computed using computer interval arithmetic based

on 3 decimal digit mantissas and floating number

representation , Z will be
I I

1 = [+,100*10, +,100*10],

0
1/Y [+.333*10

I
+, 100*10],

I I
1+ 1/Y [+, 133*10 , +, 200*10],

XC1+1/Y)
_,

[-.123*10
-2.

-.811*10].

Therefore the final result contains the exact value of Z.

11

Unfortunately these kinds of developments are mostly machine

dependent. Another obstacle to experimentation with interval

arithmetic is that supporting software may not be available.

Realization of computer interval arithmetic in Algol 60 can

be found in [1]. Since there are no software and hardware

support for performing computer interval arithmetic , tje

bounds of interval is expanded by EPS that is computed in a

subroutine. An interval X= [a,bl ,if a~ 0, will be

represented on computer

X= Ea*<1-EPS>, b*Cl+EPS>l.

Thus, the lower bound will be shifted to left by epsilon*a

and upper bound will be shifted to right by epsilon*b.

Figure 2 represents different possibilities of rounding

endpoints of an interval.

12

X=[a*<l-EPS>,b*(l+EPS>l

0 a b
X =[a*(l+EPS>,b*Cl+EPS>l

a 0 b

X =[a*(l+EPS>,b*Cl-EPS>J
a b 0

Figure 2. Representation of rounding endpoints

This representation ~s not valid for the overflow and

underflow cases. But it is enough to perform operations

used in this study. An operation for an interval wil

[a, bl Q [c, dl = [a0 c (1 ~ EPS>, b Q d <1 ~ EPS> J

For multiplication and division, the determination of bounds

are not so trivial. The signs of the resulting interval must

be considered by calculating end points. Table II shows how

to expand the bounds of the resulting interval for

multiplication operation. One drawback of this approach is

unnecessary expansion of the width of the result interval

when the result of the end point calculation was already a

machine representable number.

13

TABLE II

DETERMINATION OF BOUNDS FOR MULTIPLICATION OPERATION

[A, BJ * [C, DJ = [E, FJ Implementation on the Computer

Sign o:f E Sign of F

~ 0 ~ 0 E [1 - EPSJ F [1 + EPSl

< 0 < 0 E [1 + EPSJ F [1 - EPSJ

< 0 ~ 0 E (1 + EPSJ F [1 + EPSJ

Since this approach will be used in the application o:f

interval arithmetic to linear programming models, the worst

case<representation of exact numbers) will not happen

because of the characteristics o:f the model and coefficents.

A small interval arithmetic package containing only

four arithmetic operations <*, I, +, -) is developed. This

package employs the approach mentioned above. Each operation

must be per:formed by a call on one o:f the subprograms. This

means that the user must parse every expression himsel:f and

write his program to per:form the calculation. Each

subprogram requires lower and upper bounds o:f two intervals,

and returns lower and upper bounds o:f the result interval

and an error :flag whenever it is necessary.

An interval matrix is a matrix whose coe:f:ficents are

intervals. Let A and B be two mxn interval matrices with

coef:ficients and B1_ , respectively. Then,
J

14

A ! B = (A + B
ij ij

defines an interval matrix addition and subtraction,

respectively. Let A be an mxr interval matrix and let B be

an rxn matrix. Then,
r

AxB = (r_
S=i

A.
IS

defines an interval matrix multiplication.

Some useful properties for operations on interval

matrices are given below.

A + B = B + A

A + <B + C> = <A + B> + C

A + 0 = 0 + A = A zero matrix

A I = I A = A I = Unit matrix

<A + B> C A C + B C

C <A + B> C A + C B

where CR is a real <point) matrix.

The starting point for the application of interval

mathematics was to automate computational error analysis.

But during the past two decades, interval mathematics has

grown to include a much broader range of topics. The

applications of interval arithmetic ranges from purely

theoretical topics to computational methods, even computer

architecture. Thus, it is impossible to give a complete

representation and description of what has been developed

recently under interval analysis or summarize all

applications of interval mathematics. In this chapter, only

the basic methods of interval arithmetics and remarkable

applications will be mentioned.

15

The main objectives of the application of interval

mathematics to computing are to find sets containing unknown

solutions, to make these sets as small as possible, and to

do all this as efficiently as possible. To achieve these

objectives, point-to-point mappings are replaced by

set-to-set mappings.

Some of the interval algorithms are extensions of

corresponding real algorithms. On the other hand, some of

them are very different. For example, many interval

algorithms use the intersection of two intervals while

there is no corresponding operation for real numbers.

Although interval arithmetic is known for real numbers,

many of the properties and results for real interval

arithmetic can be carried over to a complex interval

arithmetic. The arithmetic in complex space that reduces to

real arithmetic is introduced and the properties of this

arithmetic are discussed in [43]. A method using circular

arithmetic for finding the complex zeros of polynomials with

error bounds is presented by Gargantini [9].

There has been a rapid development of new methods used

for nonlinear problems. Various studies done for nonlinear

equations and nonlinear optimization are discussed in

[21J, [23J, [25J, [311 and [45].

16

Hansen [18J has been developed a method to invert an

interval matrix. He de£ined the set

.I. -1 -1
<A) = { A

I -I and computed <A) approximately and thus, bounded the

errors due to roundo££. Hansen's method minimizes the loss

of accuracy inherent in direct use of interval arithmetic.

First, the problem is solved approximately in ordinary

mathematic. Then ,it is reduced to a problem in which the

solution is this approximate solution plus small quantities.

Interval mathematics is applied to linear algebraic

systems in the £arm o£

Ax = b.

Direct methods such as Gaussian elimination and indirect

<iterative) methods are discussed in [31]. In an iterative

method, the sequence o£ intervals is generated

X 1 1"" + 1 1 = { Yb + EX 1 k , } n X 1 k , k=O, 1, 2, •••

with

xco, = C-1,1JIIYbllt<1- E > i=1,2, .•. n

i£ II E!l < 1, where E= I-YA and Y is an approximate inverse o£

m<A>. The seq~ence will converge in a £inite number a£ steps

to an interval vectorcontaining the set o£ solutions to

Ax=b. Gay[13J discussed di££erent methods £or solving linear

equations Ax=b where A is an interval matrix and b is an

interval vector. He proposed the ways of finding x C: ~n

such that

A ~ G ~A b ~ h ~ b }C::x

17

Oettli [34) shows that x• is the union o£ at most 2

convex polyhedra. When A and b have interval components, the

solution-set may be complicated and nonconvex. The £allowing

system is an example o£ nonconvex, star shaped solution

space.

Ax = b
where

(
[2,4) [-2,11)

A =
[-1,2] [2, 4]

I

The solution space is shown in Figure 3.

(- 3_ 4)

\---~·,"'· --------" ------"" ___ ·::... ·.,
- --------, ...

-------------·. --------

b .([-2,21 \
v-2, 2])

(4, 3)

---· ------->----------'t------··-----~--f------------;.z:_ ___________________ _

/~= --1 ____ \\\

/ -l"'--- '\\
~~~ \ 

t ~\ 
~ 

x, 

(- 4,-3) 

( 3, -4) 

Figure 3. A nonconvex Solution Space 



Finally, the applications of interval mathematics to 

linear programming problems will be considered. In 

literature an interval version of a linear programming 

problem is defined as 

Maximize 

s.to 

T 
C X 

b 
T 

~ Ax ~ b 

where the matrix A, vectors b b+ and c are given. There 

are several algorithms available that are primal or dual. 

A primal algorithm is developed in [l9J to solve interval 

programming. The algorithm starts with a feasible solution 

and produces an extreme point to an interval problem 

resulting a better objective value. Then the algorithm 

proceeds by moving along adjacent extreme points until an 

18 

optimal extreme point is generated. A detailed comparison of 

the simplex method for linear programming problem with the 

primal algorithm of [3] has been made and resulted that the 

algorithms are identical in the sense that the same sequence 

of extreme points can be generated by either algorithm 

[17]. The difference between methods is strategic in terms 

of choosing variables and resolving ties in the case of 

degeneracy. A dual method , SUBOPT , is developed by 

Ben Israel and Robers E40J. Actually interval programming 

problems can be solved by ordinary linear programming . It 

has been claimed that interval programming problems occurs 

frequently enough in applications and to convert them to 

ordinary LP problems may increase the problem size. Also 



interval pogramming focuses attention on the role of bounds 

on the variables in a given model. Stewart [45J developed a 

revised simplex method to find the upper bounds for 

maximization problem. 

19 

So far linear programming problems with the constraints 

having upper and the lower bounds are considered. Although 

various aspects of rounding errors in linear programming 

received attention, LP problems whose parameters (both in 

constraints and in the objective function ) are prescribed 

by intervals has not received much attention. Krawczyk [26J 

has applied interval mathematics methods to the simplex 

method for solving LP problem whose parameters are 

intervals.Necessary and sufficient conditions for strong 

solvability of interval linear programming problems are 

dicussed by Rohn[42J. A duality theorem and optimality 

criterion are also developed by RohnE41J. 



CHAPTER III 

LINEAR PROGRAMMING 

Linear pprogramming problem is the minimization or the 

maximization of a linear function avera polyhedral set [ see 

Appendix AJ. In other words ,it is to find the way of 

efficient allocation of limited resources to known 

activities with the desired objective value. The functions 

representing constraints and the objective are linear. 

A Linear Programming problem is in the form of 

Min <Max> 

subject to 

T 
C X 

X ~ 5. 

The set S is called the constraint set and c x is called the 

objective function. Although the well kown simplex method is 

used for solving LP problems, a graphical method is helpful 

for demonstrating basic concepts. Let's start with the 

following system. 

s.to 

( 1 ) 

X2 ~ 4 (2) 

X1,X2 ~ 0. 

Figure 4 shows the solution space which is bounded by 

constraints 1 and 2. 

20 



\ 

\ 
\ 

A \ 
\ 

\ 
\ \ 

\~· (.2) 

\ ' ) 

Figure 4. Solution Space 

x, 

Every point within or on the boundaries o£ the area 

21 

ABCD satis£ies all the constraints.The optimum solution will 

be the point which maximizes objective £unction. In Figure 

4~ the contour lines o£ objective function are plotted. If x 

is increased beyond 9, the contour will not pass through 

£easible region. So x = 9 gives the optimum resultant point 

x = (1.5,1). The value o£ objective function will be 

X = 4(1.5)+3(1) = 9. 

Corner points of £easible region are known as extreme 

points. The optimum will be always found at one of those 

extreme points. Table IV shows the values of objective 

function at extreme points. 



TABLE III 

COMPUTATION OF OBJECTIVE FUNCTION AT EXTREME POINTS 

Corner point 

A 

B 

c 

D 

Coordinates 

Xl=O 

X1=2 

X2=0 

X2=0 

Xl=l. 5 X2=1 

Xl=O X2=2 

Objective Function 

0 

B 

9 

6 

22 

For this problem,it is enough to evaluate objective £unction 

at the extreme point s and find the best result. But it is 

not a practical procedure £or higher dimensions and a large 

number of variables. 

To start with the simplex method ,the solution space 

must be represented by the standard £orm [see Appendix AJ. 

The standard £orm of the problem is 

Max Xo = 4*Xl + 3*X2 

s.to 

2X1 + X2 

= 6 

+ X4 = 4 

Xi ~ 0 

X3 and X4 are known as,slack variables. Now the system has 

two equations in £our unknowns. The basic solution for a set 

of m linear equation in n unknowns is £ound by setting n-m 

variables to zero and solving the m equation m unknown 

system. n-m variables are called nonbasic , m variables are 



23 

called basic variables. 

In matrix definition the problem can be formulated as 

follow; 

Ax = b 

where A is an mxm matrix and b is m vector. For the given 

problem, 

A = (: 
3 1 

1 0 

After rearranging the columns of A, let A = [B,NJ where B 

is mxm invertible matrix and N is mx<n-m> matrix and the 

solution point is 

where X 

X = 0. 

x is called basic feasible soluiton if x >, 0 • B matrix is 

known as basic matrix ( or basis) , N is called nonbasic 

matrix. The components of x8 vector are called nonbasic 

variables. 

Let's consider the matrix A, 

A~ [a ,a ,a ,a ] = l-
2 

1 2 3 4 2 

3 1 

1 0 

Basic solution will correspond to £inding 
-I 

B2 x2. with B b>O. 

All possible combinations o£ a 1 ,a2 ,a3 ,a4 which gives 2x2 

invertible matrix must be computed. Those computations are 

shown below. 

1. 



2. 

3. 

4. 

5. 

6. 

B = ~J 
X = 

B 
B-1 b = fo 

11 

B = [a a ] = [22 I ' 4 

' 

XB = [ x, l = B-1 
X4j 

b = [ 1/2 
-1 

B = [a a ] = [3 1.. , 3 
1 

r l -i 
X =ix 2 1. B b = 

B l X .3~ 

B = [ a2 , a -4 J = [~ 

~] 
[ 0 1l r6 1 = 1 4.1 1 -3 l 4 J _-6 

i] 
X 

The points corresponding to 1,2,5,6 are basic feasible 

solutions . The points obtained by 3 and 4 are not 

= 0 
0 

= 0 
0 

24 

= 0 
0 

= 0 
0 

feasible, because they violate nonnegativity restrictions. 

Therefore four basic feasible solutions are 

When these solutions are projected in E2 , the following 

points will be obtained. 



These points are actually extreme points that are found 

graphically. In general number of basic feasible solutions 

is less than or equal to 

n! 

m!(n-m>! 

For example problemnumber of basic feasible solutions 

computed from above equation is 6. 

25 

Since the number of basic feasible soluiotns is bounded 

by C<n,m>, all basic feasible solutions may be listed and 

the one with the best objective function value may be 

chosen. This procedure is not practical and satisfactory 

for many reasons. First of all the number of basic feasible 

solutions may be very large. Second, this procedure does 

not give an information about the problem's nature whether 

it is bounded or not. Also the feasible region may be empty. 

In that case this stituation is not realized until all 

computations of B b are done. Therefore the simplex method 

is the best way. It moves from one extreme point to another 

extreme point with a better objective function value and 

discovers whether the feasible region is empty or not. The 

foundation of simplex method is to find a new basic feasible 

solution with a better objective value. 

Consider the following LP problem. 

Max cTx 

s.to Ax = b , X >, 0 



26 

-r 
<B b)Q)T is an initial basic feasible solution with 

objective value Zo is given by 

z 0 = c < B-1 b Q)T 

Since b=Ax = Bx 6 + NxN , then 

-I -I 
NxN X& = B b - B 

B-1 ) -I 

XB = b - B a1 x.J 

Let's substitute z and XB into objective function. We find 
C' 

z = ex 

= Cb X 6 + Cri XN 

= cB ( B-l b - L 8-1 aJ XJ ) + 2._ c:r x3 

(z_- c_)x ... 
,J ..J ...1 

where z.:r 
-I = csB aj for each nonbasic variables. Since we are 

maximizing , it will be to our benefit to increase xJ from 

zero whenever z -c < 0. Therefore we have to find the most .r J 

negative zJ-cJ value (suppose it is zk-ck). If xk is 

increased, the current basic variables must be modified. 
-I 

Let xB = B 
-I 

b - B 
-I 

y: = B 
k 

a 

can write basis variables as follows. 

I 
= I 
\ 

\ 
) -

-I 
and b = B b, then. we 

As it could be observed from above equation , xk can not be 

increased infinitely. Because nonnegativity restrictions 

must be considered. In order to be able to preserve 

nonnegativity , xk can be increased until the first point in 



the basis drops to zero <assume it is x ). This point can 

be calculated £rom the £allowing equation. 

b /y r r·k 
= minimum {b. /y k 

I I 

l~i~m 

x~ is called the entering variable, X which drops to zero 
Br 

first is called blocking or leaving variable. 

Let [: 
3 1 :land A = B = [a , a J and z0 =0. 
1 0 3 .<t 

J 

= r x31 = 
~ , 

[: 
-I [: l - x, I_ 

B b = X 

- . X2 j-l x4 j 
In order to improve this basic feasible soluiton , 

values for nonbasic variables· must be calculated. 
_, 

z, - c = c 8 B at - c, 
' 

= ( 0 0 , r 1 ol 
[; J - 4 

Lo 1j 
= -4 

-i 
~ - c.2. = ce, B a2 - c2 ... ·' "'-

= (0 0) [~ ~] [~] - 3 

:: -3 

.. 
z -c . 

.T 3 

Since z 1 -c 1 is the most negative , the solution will be 

The value of x 1 will be 2 and x4 = 0. The new basis 
T 

xB. <x3 ,xi) with the objective value is B. This procedure 

can be repeated until 

will be obtained. 

all z.-c.~·O, then the optimum z* 
J :J 

27 

All necessary background about simplex method was given 



28 

in previous pages. The steps of simplex method are given 

below. 

STEP 1: Define variables and write mathematical 

statement of the problem. 

STEP 2: Put the problem in standart form. 

STEP 3: Add or subtract slack variables. 

STEP 4: Assemble the coefficients into an initial 

simplex tableau. If an initial basis is present go to step 

6, otherwise go to step 5. 

STEP 5: If a complete identity matrix is not visible in 

the initial tableau ,append the missing unit vectors to the 

tableau and associate with very high cost in the objective 

function ( M-Technique). 

STEP 6: Evaluate the solution represented therein,as to 

whether it is optimal. Calculate z. -c. for each column 
1' J 

vector. 

STEP 7: If all zs-~ are nonnegative (for maximization 

problem), or nonpositive (for minimization) stop. Otherwise 

identify a column vector with a nonterminal z -c as a 
j' :I 

vector to come into the basis< say Pk ) 

STEP B: Calculate the ratios b· /y~. for each Y,· K. and 
I oK 

choose the smallest i=r ,replace variable k with variable r. 

STEP 9: If a~k is the pivotal element and ai­
.J 

is the 

updated value of aiJ the iteration will be accomplished this 

way. 

a 
I.J 

= a 
•J 

Ia . 
rk 



29 

, 
ai;r = ai:r - a,.k a r:r 

Actually the above calculation is the process of creating a 

unit vector in column k with 
I 

a .. k = 1. It can be done by 

elementary row operations. 

The example problem is solved by using simplex method. 

Step 1 & 2: Mathematical model 

Max 4+X1 + 3+X2 

2+X1 + X2 ~ 4 X1,X2 ~0 

Step 3: 

s.to 2+X1 + 3*X2 + X3 ~ 6 

2+X1 + X2 + X4 ~ 4 

Xi ~ 0 ,i=1, .. 4 

Step4: Initial Simplex Tableau 

Iteration 1: 

Basic X1 X2 X3 X4 Solution 

Xo -4 -3 0 0 0 

X3 2 3 1 0 6 

X4 2 1 0 1 4 

The graphical representation of of solution space is given 

in Figure 5. 



30 

D 

XI 

Figure 5. Graphical Representaion of Solution Space 

Step 5: The initial solution is x 3 and x4 

Step 6 & 7: 

An initial basic feasible solution is at point a with 

negative coefficient in row Xo from iteration 1. Xl is the 

entering variable with the value of -4. Table V represents 

basic variables with the ratios. 

TABLE IV 

BASIC VARIABLES AND RATIOS 

Basic Var. Solution Xl Ratio 

X3 2 6/2 = 3 

X4 4 2 4/2 = 2 * 



Since the ratio corresponding to the basic variable X4 is 

minimum, X4 is the leaving variable. The coefficient at the 

intersection of column Xl and row X4 is selected as pivot 

element. 

Iteration 2: 

Basic Xl 

xo 0 

X3 0 

X1 1 

Iteration 3: 

The coefficient 

be the 

Basic 

Xo 

X2 

X1 

entering 

X1 

0 

0 

1 

X2 

-1 

2 

1/2 

of X2 is 

variable 

X2 

0 

1 

0 

X3 

0 

1 

0 

still 

and X3 

X3 

1/2 

1/2 

-1/4 

X4 

2 

-1 

1/2 

negative 

will be 

X4 

1/2 

-1/2 

3/4 

Solution 

8 

2 

2 

, therefore X2 will 

leaving variable. 

Solution 

9 

1 

3/2 

Since all coefficients are nonnegative, the optimum is 

reached with X1=1.5, X2= 1 and z=9. 

31 

As it was mentioned before, the simplex method gives 

information about the nature of the problem. The solution is 

said to be degenerate when one or more basic variables 

becomes zero. An unbounded solution can occur when the 

solution space is unbounded. In that case the value of the 

objective function can be increased indefinitely. This case 



is illustrated in Figure 6. 

I 
\ 

\ 

\ 

\ 

' 

I 

\ 

L... 
L-ON Tuu{2. U NES C ~ 

0 i3J£C TII.IE 'FUNC IIC:N 

Figure 6. Unbounded Solution 

X..j 

Alternative optimal solution occurs when the objective 

function is parallel to a binding constraint. In such cases~ 

problem has an infinite number of solutions with each 

solution yielding the same value of the objective function. 

Figure 7 an illustrates alternative optimal solution. 

32 



XJ.. 

' 

I 
I 

0 B S.fCT' 11 E: "FUN'-Tl ON 

LON I ou l2S 

XI 

Figure 7. Alternative Optimal Solution 

Finally ,nonexisting £easible solution occurs when the 

solution space is empty. In that case there is no point 

that satis£ies all constraints. 

33 



CHAPTER IV 

A METHOD FOR THE SOLUTION OF INTERVAL LINEAR 

PROGRAMMING PROBLEMS 

A linear programming problem is the minimization or 

maximization of a linear function over a polyhedral set [see 

Appendix AJ. The simplex method, which exploits extreme 

points and directions of the polyhedral set defining the 

problem, is widely used for the solution of LP problems. In 

this chapter, the solution of interval linear programming 

problem whose parameters are intervals will be discussed. 

An interval linear programming problem is 

Maximize 

subject to 

PZ 

AZ ~ B 

where A is mxm interval matrix, P is n dimensional interval 

vector and B is m dimensional interval vector. The problem 

is to find an interval vector Z which contains the set of 

solutions to the above problem. 

Before attempting to solve the problem, the solvability 

of the problem should be known. There are two ways to check 

this property. One is to apply the simplex methodto solve 

any LP problem which is a subsystem of a given ILP problem. 

The other one is to check all extremal subsytemsto determine 

34 



35 

whether they are feasible [see Appendix AJ. The second 

approach requires checking of 2P extremal subsystem ( p is 

the number of rows of the matrix A>. 

The method developed by Krawczyk [26J consists of four 

parts: 

(i) INITIAL APPROXIMATE SOLUTION 

<ii) TEST FOR BASIS CHANGE 

(iii) ALGORITHM FOR SOLUTION 

(iv> TEST FOR NONNEGATIVITY 

(i) INITIAL APPROXIMATE SOLUTION 

To find an initial basis, an approximate solution is 

required. Particular matrices p e P , b € B and ArE A must 

be chosen. The problem for this particular selection will be 

Maximize px 

subject to A x = b 

X ~ 0 

where Ar is mxm real matrix , p and b are real vectors. z is 

the solution of above problem. 

Let S be the index set of all basis variables of the 

solution z. After rearranging x vector, let xT = x' , x" > • 

x' is an m dimensional vector consisting of basis campo-

nents of n dimensional vector x. Similarly x" is n-m dimen-
. 

sional vector consisting of all nonbasis components of x. 

/.' r 

The following notations are used. 

denotes an mxm matrix consisting of basis columns of A. r 

mx<n-m> matrix consisting of the nonbasis columns of A1 



36 

~ mxm interval matrix consisting of basis columns of A 

A" mx<n-m) interval matrix consisting of nonbasis columns 

of A 
I 

P m dimensional interval vector consisting of objective 

coefficients of basis variables 

P" <n-m) dimensional interval vector consisting of 

objective coefficients of nonbasis variables 

p m dimensional real vector of basis variables of p 

p" (n-m) dimensional real vector 
,T 

Ar transpose of A~ 
T 

A" transpose of A" 

(ii) TEST FOR BASIS CHANGE 

To check the applicability of the method to a given 

problem, it must be determined that the set of all solutions 

has the same basis as z. 

To determine the possible basis changes, z - c values :r J 

for all nonbasic variables must be calculated. Consider the 

following linear programming problem, 

Maximize Q = C X 

subject to 

There is a basic feasible solution. The objective value z 

is given by 

Zo = c 

The objective function can be written in terms of 

Q = ex 

= C
1 X 1 + C" X" 



where 

Q = zo 

' -I = c A .... a_ and 
J 

as is the jth column ox 

37 

matrix. The basis changes can be tested by checking the 

values ox - c_'s. For a maximization 
.; 

problem, ii 

all ZJ - CJ 's are greater than zero, then the optimum is 

reached. The test is basically the interval version ox 

the zj - cs test. 

It is possible to xind an interval vector V containing 

the set ox solutions ox (A/ ) T v = p' xor all 

I 

p'E P . The method ox Moore [31] xor solution ox linear 

systems is used to solve <A( )T v = p. The interval 

solution vector V can be obtained xrom the xollowing 

formula. 

vck+l1 = { y p' ..- E vck1 } () vck1 k=O, 1, 2, •. 

v. c C 1 = [ -1, 1] I I Y P 1 I I I ( 1 - I IE I I ) 
I 

i=1,2, .• ,n 

where Y = < m <A;) -I 
) , E = I - Y A' • 

, 
It has been explained and proved that ii I II - Y AI I < 1, 

the system has unique solution x xor A and p , and the 

sequence V converges axter a finite number of steps. For a 

given system , z - c for nonbasic variables can be written 
3 j 

as 

I ' -1 
z~ - c = p <A > a_ - P" ..., J r J 

where a_ is the jth column ox 
..) 

<A" >T and 
. ; -1 
, <A ) P r = v. 

If <A"~ V- P" > 0, the optimum is reached and the set of 

solutions has the same basis as z. A problem arises when 

they do not have the same basis. In that case, the method 



terminates. 

If at least one of the z_ - c_ < 0, there is a 
..J .J 

possibility of improvement in the objective function. By 

choosing the most negative zy - cJ value, the nonbesic 

variable (xk) which will enter the basis can be determined. 

Now, the only problem left is to choose the leaving variable 

which will become nonbasic. The method suggested here to 

select the leaving variable is to find ell of the adjacent 

extreme points, and eliminate the extreme points not 

containing xk. If there is more than one left, the one 

resulting in the best objective value is chosen. Figure 8 

shows the adjacent points and better objective value. 

X2 

t 

.1.---------------------~"---=-~ X I 

Figure 8. Adjacent Extreme Poinnts 

38 



39 

AP1 and AP2 are the vertices adjacent to the solution, and 

AP1 has a better objective value. 

After determining the basis change, the A~ matrix can 

be rearranged to contain the new basis and used in the rest 

of the algorithm. 

(iii> ALGORITHM FOR SOLUTION 

Suppose that z' is the solution of 
; ; ; 

Ar z = b for 

Solve this specific system of A; z' = b' 

-1 I I b,l and let z be an approximate solution of Arz = The 

" approximate inverse of the matrix Ar which was used in the 

initial solution is the matrix Y. 

The set of solutions to the interval linear programming 

problem is contained in the interval vector Z, computed as 

follows. 

Z; = zi + q [ -1, 1] <basis components of z) 

Z" = 0 (nonbasis components of z) 

where. q = ( I I Y I I I -' IIA z- Bll> I <1- R>. 

R = I I I - YA" I I < 1 

The formula for the computation of Z was developed and 

proved by Krawczyk [26]. The derivation of the formulas is 

given below. 

The given system 

A z = B 

has an exact solution when 

A1 z 1 = b 

or A I z, -- b = 0. 



40 

It has an approximate solution when 

·"'-' 

AI z, - b = d ( 1) 

where, A E: A 
\ 

and bGB 
.-1 

A, z, - b - A, z, + b = d 
,_. 

A, <z, - z I ) = d 

r.J -I 
z, - z, = A, d ( 2) 

By using the properties o£ interval, absolute value and 

matrix norm, it is possible to show that 

I X I< II X II, II x II< II X II 

and 

I I Ax I I < I I A I I I I x I I 

where x is a real vector and X is an interval vector. 

There£ ore, 

,-..J 

z, - z 1 I < I I A- 1 I I I I d II 

since R = I - Y A . Then, and 

II A II< II Y II/ <1- II R II) 

substituting equations (!) and <3> into equation <2> 

II Y It I I A z 1 - B I I 
- z, < = q 

<1-IIRII) 

,"'-' 

z, - q < z. < z, + q 

There£ore, initial solution z 1 0 1 can be written as 
-.J 

= z, + q [-1, 1] 

£or basis components. It is possible to £ind a narrower 

interval vector containing the set o£ solutions with the 

following formula. Set I = z , 

z<k* 11 = z<K.In { YB +<I- YA'> zi<} 

(3) 



The iterations will yield a nested sequence o£ interval 

vectors and converge in a £inite number o£ steps when they 

are per£ormed with limited precision on a computer. A£ter 

the kth step the £inal solution will be 

z = zck) 

<iv) TEST FOR NONNEGATIVITY 

For most practical problems, the variables represent 

physical quantities. There£ore, they must be nonnegative. 

Also, the simplex method is designed to solve linear 

programming where the variables are nonnegative. The 

nonnegativity of the solution vector Z must be checked. 

Termination Criterion 

41 

For any iterative interval method which produces a 

nested sequence o£ intervals whose end points are 

represented by finite precision numbers on computer, a 

natural stopping criterion exists. Since the sequence will 

converge in a finite number of steps, the elements zk of the 

sequence { zk} can be computed until the condition zk+l = zk 

is reached. The flowchart given in Figure 9 is the summary 

of the steps of the algorithm. 



FLOWCHART OF THE ALGORITHM 

(START J 
I 

Solve the LP by simplex method 
z is the solution. 

Construct matricies A', A", P', P" 
A .. ', A .. " 

42 

~ Find adjacent 

Calculate R 

~ 
----z;~ 
i Calcula:te q · l 

I' 

Calculate z<o> 

Calculate zc k 1 

_ zk+l .~· 

I =-2... I 
\}· 

Figure 9. Flow Chart 0£ The Algorithm 

points 

l. 
Construct new 
basis 

.J 
Arrange A,.. , 



CHAPTER V 

TESTING 

Test Problem 1. 

Maximize [0.95, 1.05l*X1 + [2.85, 3.15l*X2 

Subject to 

[0.95, 1.05l*Xl + [0.95, 1.05l*X2 < [5.7, 6.31 

[-1.05,-0.95l*X1 + [1.9, 2.1l*X2 < [7.6, 8.41 

The LP problem solved by simplex method is 

Maximize Xl + 3*X2 

Subject to 

Xl + X2 ~ 6 

-Xl + 2*X2 ~ 8 , all Xi ~ 0 

The solution space is shown in figure 10. 

43 



6 7 
x, 

Figure 10 - Solution Space o£ Test Problem 1 

The initial solution £rom simplex method is 

Xl = 4/3 and X2 = 14/3 

R = I II- Y A I I = 0.11667032 

q = 1. 15660477 

The initial interval vector is 

= ( 
[0.173395157, 

[ 3. 50339508 , 

2.486604691 ) 

5.81660461] 

A£ter six iterations, the sequence converges. The optimum 

solution is 

z = 
( [ 0. 545046389 , 

l (4.10096264 

2. 12162113] \ 

5.23237324] ) 

The boundaries o£ optimum solution is shown in £igure 11. 

44 



X 1' 2.1 

I 
I 

\ 

!_...... 

! 

J 
L 

I 

*X 5 

z, 
Figure 11 - Optimum Solution o£ Test Problem 

·> 
X; 

1 

I£ points A, B, C, D are computed graphically, their 

values are 

A = (0.648910411, 4.779661017) 

B = <1.473684211, 5.157894737) 

c = (2.008354219, 4.623224728) 

D = <1,206349206, 4.222222222> 

When the two solutions are compared, it can be observed that 

the computer solution is very close to the graphical 

solution. The di££erence between the results is due to 

roundo:f:f error. 

45 



L:.6 

Test Problem 2. 

Maximize (2.85,3.15lX1 + [0.95,1.05lX2 + C2.85,3.15lX3 

Subject to 

C1.9,2.1l*X1 + C0.95,1.02l*X2 + C0.95,1.05l*X3 ~ [1.9,2.11 

C0.95,1.05J*X1 + [1.9,2.1l*X2 + C2.85,3.15l*X3~ (4.75,5.251 

C1.9,2.1l*X1 + C1.9,2.1l*X2 + C0.95,1.05l*X3 .~ (5.7,6.31 

all Xi ~ 0 

The LP problem used to obtain an initial solution is 

Maximize 3X1 + X2 + 3X3 

Subject to 

2*X1 + X2 + X3 ~ 2 

Xi ~ 0 for i=1, 2, 3 

The solution vector is 0.2 \ 0 
Xs = 1.6 I 

I 
0 I 

0 i 
I 

\ 4.0 I \ 

R = 0.17 and 

q =1. 28675270 

The initial interval solution is 

z = 

I r-1.08675194, 1.48675251] \ 

( [0.313245000, ;2.BB675000J I 
\ [2.713247000, 5.28675000] 



After five iteration, the optimum interval is reached as 

z = 
(

' [0, 0.440287650] \ 

[ L 3154,: L 8446] I 
\\ 0 J 

[3.6854, 4.37351; 

47 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

In the previous chapters and in the program , the 

residual matrix R=CI-YA> and norm of R C~RI/> are computed 

before we really start the algorithm. The necessary 

condition was JjR II < 1. The width of the intervals affects 

the R .It was observed that whenever elements of A matrix 

has large intervals , it is quite possible to get R > 1 . 

It is true that even if one interval in the matrix has 

width> 1 ~ the norm of R will be greater than one. But if II RJj 

< 1 , then for any real matrix RR C E it is possible to use 

power series representation 
-1 2 

( I - RR ) = I + RA + RA + •••• 
and 

For n dimensional problems it is possible to get an~RU 

value greater than one , while the simplex problem has an 

optimum solution. Therefore it may not be possible to find 

an interval solution for the given problem. 

The second point is the test of the basis. In the 

original algorithm, whenever the test for basis check fails, 

the algorithm terminates without trying to find an 

alternative solution. This weakness is corrected by moving 

48 



49 

the basis to an adjacent paint having better objective 

value. There£ore the madi£ied method has high possibility o£ 

leading to the £inal solution. 

The interval linear programming problem can be applied 

all linear programming problems, especially i£ their data 

are not certain. It is always possible to £ind physical 

models that may require the application a£ interval linear 

programming. In real li£e , most a£ the models developed £or 

real physical system use approximations or estimations. 

Therefore their parameters and data can not be represented 

precisely. Interval linear programming is a goad way to 

observe the system behaviour within given limits. The 

computer program written £or the solution o£ interval linear 

programming problems can be used for n-dimensianal cases 

with slight modi£ications. The small interval arithmetic 

package is very useful and portable eventhough it contains 

only basic operations. It can be used in any program whenevr 

an interval arithmetic operation becomes necessary. 

Basic applications of interval arithmetic and developed 

methods are discussed in Chapter II. Mast a£ the areas are 

open to discussion. Mast of the studies dane sa £ar have 

concentrated an achieving the mast ef£icient ways to £ind 

sharp upper and lower bounds an the solutions. 

It may sound like that all computations should be 

carried out using interval techniques. In fact only interval 

methods really provide the tools which are helpful in 



analyzing computational errors, finding upper and lower 

bounds on set of solutions and providing termination 

criteria for iterative methods. 

50 



CHAPTER VII 

SUGGESTIONS FOR FURTHER STUDY 

Since interval mathematics is a new and growing area o£ 

applied mathematics, there have been many studies done in 

di££erent areas o£ interval mathematics. But regardless o£ 

the class o£ application and study , the common point is the 

search £or e££icient ways o£ computation o£ intervals by 

machines. Studies in computer hardware and so£tware can be 

done to £ind e££icient representations o£ intervals. Also it 

has been observed that previously developed interval 

it is packages are quite slow. When the precision is vital 

necessary and important to use intervals to eliminate 

roundo££ errors. The interval arithmetic package can be 

modi£ied to £it the available compiler or operations can be 

performed by using assembler language. 

Also, the effects o£ changes o£ the model parameters 

can be studied. Particularly changing the endpoints o£ 

intervals , a kind o£ sensitivity analysis can be applied to 

study the behaviou~ o£ the model under dif£erent conditions. 

51 



BIBLIOGRAPGHY 

(1) Alafeld, Gotz and Jurgen Herzberger. Introduction to 
Interval Computations. New York: Academic Press 
Inc. , 1983. 

(2) Bazaraa, Mokhtar S. and John J. Jarvis. Linear 
Programming and Network Flows. New York: John 
Willey and Sons, 1977. 

(3) Charnes, A. D. Granat, F. Granat. "A Primal Algorithm 
for Interval Linear-Programming Problems. " Linear 
Algebra and Appl. 17<1977>, pp. 65-78 

(4) Conte, S.D and Carl de Boor. Elementary Numerical 
Analysis. 3rd Ed. , New York: McGraw-Hill Book Co. , 
Inc., 1980. 

(5) Dewer, J.K.S. "Procedure for Interval Arithmetic." 
Computer Journal, 14<1971>, pp. 447-450 

<6> Dwyer, Paul S. Linear Computations. New York: John 
Wiley and Sons Inc., 1951. 

<7> Fishburn, Peter C. Interval Orders and Interval 
Graphs. New York: John Wiley and Sons Inc., 1985. 

(8) Forsythe, George and C. B. Moler. Computer Solution of 
Linear Algebraic Systems. Englewood Cliffs,N.J: 
Prentice Hall Inc., 1967. 

<9> Gargantini, I. "Further Applications of Circular 
Arithmetic: Schroder-like Algorithms with Error 
Bounds for Finding Zeros of Polynomials. "SIAM J. 
Numer. Anal. 15<1978), pp. 497-510. 

(10) Gass, Saul I. Linear Programming Methods and 
Applications. New York: McGraw-Hill Book Co., 
Inc. , 1969. 

<11) Gastinel, Noel. Linear Numerical Analysis. 
Paris: Herman , 1970. 

52 



<12) Gay, David M. "Perturbation Bounds £or Nonlinear 
Equations." SIAM J. Numer. Anal. 18<1981>, 

pp. 654-663. 

(13) Gay, David M. "Solving Linear Interval Equations." 
SIAM J. Numer. Anal. 19<1982>, pp.858-870. 

<14) Gibb, Allan. "Procedures £or Range Arithmetic." 
Comm. of ACM. ~(1961), pp.319-320. 

(15) Good, Donald I. and R. L. London. "Computer Interval 
Arithmetic: Definition and Proo£ of Correct 
Implementation." J. o£ ACM. 17(1970, pp.603-612. 

(16> Gregory, Robert Todd. Error-Free Computation: Why It 
Is Needed and Methods for Doing It. 
Huntington, New York: Robert E. Krieger 
Publishing Co., Inc., 1980. 

53 

<17> Gunn, E. A. and G. J. Anders. "A Comparison of Interval 
Linear Programming with the Simplex Method." 
Linear Algebra and Appl. 38<1981>, pp. 149-159. 

<18> Hansen, Eldon. "Interval Mathematic in Matrix 
Computations, Part I. "SIAM J. Numer. Anal. 
£<1965), pp. 308-320. 

<19) Hansen, Eldon and R. Smith. "Interval Arithmetic in 
Matrix Computations, Part II." SIAM J. Numer. 
Anal. ~(1967), pp. 1-9. 

<20) Hansen, Eldon. "A Generalized Interval Arithmetic." 
Interval Mathematics. Ed. Karl Nickel. 
Heidelberg: Springer-Verlag , 1975, pp. 7-18. 

<21) Hansen, Eldon. "interval Forms of Newton's MethQd." 
Computing. 20<1978>, pp. 153-163. 

<22> Jansen, P. and P. Weidner. "High Accuracy Arithmetic 

So£tware- Some Tests of the ACRITH Problem-Solving 
Routines." ACM Trans. Math. So£tware. 12(1986), 
pp. 62-70. 

<23) Jones, S. T. "Locating Sa£e Starting Regions £or 
Iterative Method: A Heuristic Algorithm." 
Interval Mathematics 1980. Ed. Karl L.E. Nickel. 
New York: Academic Press Inc., 1980, pp. 377-386. 

<24) King, J. T.Introductions to Numerical Computation. 
New York: McGraw-Hill Book Co., Inc., 1984. 



<25) Kioutelidis, J.B. "Algorithmic Error Estimation £or 
Approximate Solutions o£ Nonlinear Systems o£ 
Equations." Computing. 19(1978>, pp. 313~320. 

<26) Krawczyk, R. "Fehlerabschatzung bei Linearer 
Optimierung." Interval Mathematics. Ed. Karl 
Nickel. Heidelberg: Springer-Verlag, 1975. 

(27> Kulish, U. "An Axiomatic Approach to Rounded 
Computations." Numer. Math. 18<1971>, pp. 1-17. 

C28l Kulish, U. and W. Miranker. Computer Arithmetic in 
Theory and Practise. New York: Academic Press, 
Inc., 1981. 

54 

(29) Luenberger, David G. Linear and Nonlinear Programming. 
Massachussets: Addison-Wesley Publishing Co., 
1984. 

(30) Moore, Ramon E. Interval Analysis. Englewood Cli££s, 
N.J.: Prentice-Hall, Inc., 1966. 

C31l Moore, .Ramon E. Methods and Application o£ Interval 
Analysis. Philadelphia: Society £or Industrial 
and Applied Mathematics, 1979. 

<32) Moore, Ramon E. and J.B. Kiostelidis. "A Simple Test 
£or Accuracy o£ Approximate Solutions to Nonlinear 
Cor Linear) Systems." SIAM J. Numer. Anal. 
17<1980), pp. 521-529. 

C33l Moore, Ramon E. "New Results on Nonlinear Systems." 
Interval Mathematics 1980. Ed. Karl L.E. Nickel. 
New York: Academic Press Inc., 1980. 

(34) Oettli, W. "On the Solution Set o£ a Linear System 
with Inaccurate Coe££icients." SIAM J. Numer. Anal 
6_(1965), pp. 115-118. 

<35) Ortega, James M. Numerical Analysis- A Second Course. 
New York: Academic Press, Inc., 1972. 

<36) Pachner, Jaroslav. Handbook o£ Numerical Analysis 
Applications. New York: McGraw-Hill Book Co., 
Inc. , 1984. 

(37) Rall, L.B. "Interval Methods £or Fixed-Point 
Problems. " Numer. Funct. Anal. and Optimiz. 
~<1987), pp.35-59. 



(38) Rice, John R. Numerical Methods, Sa£tware, and 
Analysis. New York: McGraw-Hill Book Ca., Inc., 
1983. 

55 

(39) Ris, F.N. "Tools £or the Analysis a£ Interval 
Arithmetic." Interval Arithmetic. Ed. Karl Nickel. 
Heidelberg: Springer-Verlag, 1975, pp. 75-98. 

<40) Robers, Philip d. and Adi Ben-Israel. "A Suboptimi­
zation Method £or Interval Linear Programming: 
A New Method £or Linear Programming. " Linear 
Algebra and Appl. ~(1970>, pp. 383-405. 

<41> Rohn, J. "Duality in Interval Linear Programming." 
Interval Mathematics 1980. Ed. Karl Nickel. 
New York: Academic Press Inc., 1980. 

<42) Rohn, J. "Strong Solvability a£ Interval Linear 
Programming Problems." Computing. 26(1981>, 
pp. 79-82. 

<43) Rokne, J. and P. Lancaster, "Complex Interval 
Arithmetic." Camm. ACM. 14(1971>, pp. 111-112. 

(44) Shampine, Lawrence F. and Richard C. Allen,Jr. 
Numerical Computing. Philadelphia: W.B. Saunders 
Co., Inc., 1973. 

<45> Stewart, N.F "Interval Arithmetic £or Guaranteed 
Bounds in Linear Programming." JOTA. 12<1973>, 
pp. 1-5. 

C46) Taha, Hamdy. Operations Research an Introduction. 
2nd ed. New York: MacMillan Publishing Co., Inc., 
1976. 

(47) Yohe, J.M. "A Reasonably Portable Package." 
ACM Trans. Math. Sa£tware. ~(1979>, pp. 50-63. 



APPENDIX A 

DEFINITIONS 

56 



Definition 1 

Polyhedral Set 

A nonempty set S in En is called a polyhedral set if 

it is the inter section of a finite number of closed half 

spaces, that is, 
-i s= {X: P(. X <o4.j for i=1,2, ... ,m }, 

where p 1 is a nonzero vector an.d d..- is a scalar for 
I 

i=1,2, .• ,m. 

Definition 2 

Extremal Subsystem 

For any A,_ E. A and b € B, a system 

is called a subsystem of an interval linear system A x = B. 

A subsystem is called an external subsystem of A X = 8 if 

for each i=l, .... ,m, its ith equation has either the form 

A x ), = 8 or the form 
t 

( A X ) ~ = B. 
' 

Definition 3 

Standart Form 

All constraints are equations except for the 

nonnegativity constraints which remain inequalities <~0). 

The right-hand side of each element is nonnegative. All 

variables are nonnegative • Objective function is of the 

maximization or the minimization type. 

57 



APPENDIX B 

PROGRAM LISTING 

58 



c 
c 

c 
c 
c 
c 
c 
c 

PREPARED BY: 
ZEYNEP AYSEGUL KARACAL 

REFERENCES: RAMON E. MOORE , R. KRAWCZYK 

DECEMBER, 1987 

00000061 
00000062 
00000063 
00000064 
00000065 
00000066 
00000067 
00000068 
00000069 

C*******~~*************************************************:t****~****** 00000070 
00000071 
00000072 
00000073 
00000074 
00000075 

c 
c 
c 
c 
c 

THIS PROGRAM IS FOR THE SOlUTION OF INTERVAL LINEAR PROGRAMMNIG 
PROBLEMS. IT USES INTERVAL ARITHMETIC OPERATIONS(ADDITION, 
SUBTRACTION,MULTIPLICATION AND DIVISION). 

C********************************************************************•* 00000076 
00000077 
00000078 
00000079 
00000080 
00000081 
00000082 
00000083 
00000084 
00000085 
00000086 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

A(',*,2) 
AI(*,*,2) 
IM(*,'".2) 
ARP(*,*) 
BP(*) 
8(*,1,2) 
Z('",*,1,2) 
PP(*,1.2) 

PDP ( *, 1. 2) 

ADP(*,*,2) 
ZS(*) 
AA(*,*,2) 
MAT(*,*). 
!BASIS(*) 
P('", 1,2) 
MD 
ND 
PS(*) 

INTERVAL MATRIX CONSISTING BASIS COLUMNS 
INVERSE OF A 
!DENT ITY MATRIX 
REAL MATRIX OF BASIS VARIABLES 
RIGHT HAND SIDE USED IN SIMPLEX 
INTERVAL RIGHT HAND SIDE 
SOLUTION VECTOR 
INTERVAL VECTOR CONTAINING ONLY OBJECTIVE 
COEFFICENTS OF BASIS VARIABLES 
INTERVAL VECTOR CONTAINING OBJECTIVE COEFFICENTS 
NONBASIS VARIABLES 
INTERVAL MATRIX OF NONBASIS VARIABLES 
SOLUTION OF SIMPLEX METHOD 
INTERVAL CONSTRAINT MATRIX 
REAL CONSTRAINT MATRIX USED IN SIMPLEX 
SET OF INDICES OF BASIS VARIABLES 
INTERVAL VECTOR OF OBJECTIVE FUNCTION 
NUMBER OF ROWS IN A 
NUMBER OF VARIABLES INCLUDING SLACKS 
OBJECTIVE FUNCTION OF SIMPLEX PROBLEM 

OF 00000037 
00000088 
00000089 
00000090 
00000091 
00000092 
00000093 
00000094 
00000095 
00000096 
00000097 
00000098 

C********************************************************************** 00000099 
00000100 
00000101 
00000102 
00000103 
00000110 

c 
c 

LOGICAL CHECK,GOON 
REAL A ( 2, 2, 2) , A I ( 2, 2, 2) , I M ( 2, 2, 2) , YB ( 2, 1 , 2) , ZM ( 2, 1 , 2) , AZ ( 2, 1 , 2) , 

* ARP ( 2, 2) , BP ( 2) , ZP ( 2) , Y ( 2, 2) , B ( 2, 1 , 2) , Z ( 0: 20, 2 , 1 , 2) , BB ( 2) , 
*WKAREA(18),NORMY,PP(2,1,2),PDP(2, 1,2).ADP(2,2,2),ZS(4) 
'",TEMP(2,2),TI(2.2),ADPT(2,2,2),AA(2,4,2),P(4,1,2),ARPT(2,2) 
* , P S ( 2 , 1 ) , AT ( 2 , 2 . 2 ) , A V ( 2 , 1 , 2 ) . MAT ( 2 , 4 ) , TB ( 2 ) , TBA S ( 2 , 2 ) , 
*BS(2),EP(2),EXTP(6,2),ANB(2,2) 

INTEGER IBASIS(2),NB(2),M,N,IDGT 
COMMON EPS 

00000121 
00000122 
00000123 
00000124 
00000125 
00000126 

59 



c 

DATA (BP(1),1=1,2)/5.8,8. 1/ 
DATA (IBASIS(I),I=1,2)/1,2/ 
DATA (ZS(I),I=1,4)/1.33,4.66,2*0.0/ 
DATA ( ( B (I, 1, K), K= 1, 2). I= 1. 2) /5. 7, 6. 3, 7. 6, 8. 4/ 
DATA ((P(I,1,K),K=1,2),!=1,4)/0.95,1.05,2.85,3.15,4*0.0/ 
DATA (NB(I),I=1,2)/3,4/ 
DATA (PS(I,1),!=1,2)/1.0,3.0/ 
DATA (BS(I),I=1,2)/6.0,8.0/ 

MD=2 
ND=4 

C READ INITIAL MATRIX AA 
c 

c 

DO 79 I=1,MD 
DO 79 J=1,ND 

DO 79 K=1,2 
READ(5,3)AA(I,J,K) 

3 FORMAT(F12.6) 
79 CONTINUE 

C READ THE MATRIX USED IN SIMPLEX FOR INITIAL SOLUTION 
c 

c 

DO 300 I = 1 , MD 
DO 300 J=1,ND 

REA0(5,3)MAT(I,J) 
300 CONTINUE 

L=O 
K=O 
DO 310 J=1,ND 

DO 31 1 N= 1 , MD 
IF(J.EQ.IBASIS(N)) THEN 

L=L+1 
DO 312 I= 1 , MD 

ARP(I,L)=MAT(I,J) 
312 CONTINUE 

GO TO 310 
END IF 

311 CONTINUE 
K=K+1 
DO 313 I = 1 , MD 

ANB(I,K)=MAT(I,J) 
313 CONTINUE 
310 CONTINUE 

C READ INTERVAL MATRIX A 
c 

DO 70 I=1,MD 
DO 70 J=1,MD 

DO 70•K=1,2 
A(I,J,K)=AA(I,IBASIS(J),K) 
IM(I,J,K)=O.O 

70 CONTINUE 
DO 78 I=1,MD 

DO 78 J=1,(ND-MD) 
DO 78 K=1,2 

00000140 
00000150 
00000160 
00000170 
0000017~ 

00000176 
00000177 
00000178 
00000200 
00000203 
00000204 
00000205 
00000206 
00000207 
00000208 
00000209 
00000210 
00000211 
00000212 
00000213 
00000214 
00000215 
00000216 
00000217 
00000218 
00000219 
00000220 
00000221 
00000222 
00000223 
000002.24 
00000225 
00000226 
00000227 
00000228 
00000229 
00000230 
00000231 
00000232 
00000233 
00000234 
00000235 
00000236 
00000237 
00000293 
00000294 
00000295 
00000296 
00000297 
00000298 
00000299 
00000300 
00000301 
00000310 
00000320 
00000330 

60 



c 

ADP(I,J,K)=AA(I.NB(J),K) 
78 CONTINUE 

DO 71 I= 1, MD 
DO 7 1 f~ = 1 , 2 

IM(I,I,K)=1.0 
71 CONTINUE 

DO 575 I=1,MD 
DO 575 K=1,2 

PP(I.1,K)=P(IBASIS(I), 1,K) 
575 CONTINUE 

DO 576 I=1,(ND-MD) 
DO 576 K=1,2 

PDP ( I , 1 , K) = P ( NB ( I ) , 1 , K ) 
576 CONTINUE 

C CALL FINEPS TO FIND EPS 
c 

c 

c 

CALL FINEPS(EPS) 

DO 400 I = 1 , MD 
DO 400 J= 1 , MD 

ARPT(J.I)=ARP(I,J) 
AT ( J. I, 1) =A (I, J, 1 ) 
AT(J, I ,2)=A( I ,J,2) 

400 CONTINUE 
DO 401 I= 1 , MD 

DO 401 J=1,(ND-MD) 
ADPT ( J, I, 1) =ADP (I , J, 1) 
ADPT(J,I,2)=ADP(I,J,2) 

401 CONTINUE 
DO 402 I=1,MD 

DO 402 J=1 ,MD 
. , TEMP ( I , J) = (AT ( I , J, 1 ) +AT (I , J, 2) ) /2. 

402 CONTINUE 

C C~LL IMSL ROUTINE LINV2F TO GET INVERSE OF TEMP 
c 

c 

IA=2 
N=2 
IDGT=3 
CALL LINV2F(TEMP,N,IA,TI,IDGT,WKAREA,IER) 

C CALL TEST ROUTINE TO TEST THE APPLICABILITY OF ALGORITHM 
C TO GIVEN SPECIFIC SYSTEM 
c 

c 

c 

CALL TEST(ARPT,ADPT,PS,PDP,TI,GOON,MD,ND,IND) 

IF(GOON.AND .. TRUE.) GO TO 900 
PRINT *, '*** TEST FAILED ***' 
IF(IND.LT.O) GO TO 999 
PRINT *,' SET OF SOLUTIONS DO NOT HAVE THE SAME BASIS' 
PRINT *, '*** ALGORITHM CAN NOT BE APPLIED ***' 

C FIND ADJACENT EXTREME POINTS 
c 

DO 3 1 5 I = 1 , MD 

00000340 
00000350 
00000360 
00000370 
00000380 
00000390 
00000391 
00000392 
00000393 
00000394 
00000395 
00000396 
00000397 
00000398 
00000400 
00000410 
00000420 
00000430 
00000440 
00000445 
00000446 
00000447 
00000448 
00000449 
00000451 
00000452 
00000453 
00000460 
00000470 
00000480 
00000490 
00000500 
00000510 
00000520 
00000521 
00000522 
00000523 
00000524 
00000525 
00000526 
00000527 
00000530 
00000532 
00000533 
00000534 
00000540 
00000541 
00000542 
00000543 
00000544 
00000545 
00000546 
00000555 
00000565 
00000575 
00000585 

61 



c 

315 TB(I)=IBASIS(I) 
K=O 
M=1 
N=2 
IA=2 
IDGT=2 
DO 320 I=1,MD 

DO 321 u=1,(ND-MD) 
TB(I)=NB(J) 

C BUILD BASIS MATRIX 
c 

322 

DO 322 I 1=1,MD 
DO 322 I2=1,MD 

TBAS(I2,I1)=MAT(I2,TB(I1)) 
CONTINUE 

323 
c 

00 323 I 1 = 1 , MD 
EP( I 1 )=BS(I 1) 

c 
c 

CALL IMSL ROUTINE TO FIND THE BASIS VARIABLES 

CALL LEQT2F(TBAS,M,N,IA,EP,IDGT,WKAREA,IER) 
IFL=1 
DO 325 I 1 = 1, MD 

IF(EP(I1).LT.O.O) THEN 
IFL=O 
GO TO 321 

END IF 
325 CONTINUE 

IF(IFL.GT.O)THEN 
K=K+1 
FIND=O 
DO 326 I 1 = 1 , MD 

IF(TB(I1).EO.IND) FIND=1 
EXTP(K,I1)=TB(I1) 

326 CONTINUE 
END IF 
IF(FIND.GT.O)THEN 

OBJ=O.O 
DO 350 I1=1,MD 

OBJ=PS(TB( I 1), 1 )*EP( I 1 )+OBJ 
350 CONTINUE 

IF(OBJ.GT.MAX)THEN 
MAX=OBJ 
LEAVE=K 
DO 355 I2=1,MD 

355 ZS(I2)=EP(I2) 
END IF 
END IF 

321 CONTINUE 
TB( I )=IBASIS(I) 

320 CONTINUE 
DO 390 II=1,K 

PRINT *,(EXTP(II,JJ),JJ=1,MD) 
390 CONTINUE 

IF(FIND.GT.O) THEN 

00000595 
00000605 
00000606 
00000607 
00000608 
00000609 
00000615 
00000625 
00000635 
00000636 
00000645 
00000646 
00000655 
00000665 
00000675 
00000685 
00000695 
00000705 
00000715 
00000725 
00000726 
00000735 
00000745 
00000755 
00000765 
00000775 
00000785 
00000795 
00000805 
00000815 
00000825 
00000835 
00000845 
00000855 
00000865 
00000875 
00000885 
00000895 
00000905 
00000915 
00000925 
00000935 
00000945 
00000955 
00000965 
00000975 
00000985 
00000995 
00000996 
00001005 
00001015 
00001025 
00001026 
00001027 
00001028 
00001029 

62 



c 
C CHANGE THE BASIS 
c 

c 

K~LEAVE 

DO 360 I~ 1, MD 
360 IBASIS(I)~EXTP(K,I) 

DO 36 1 I~ 1 , MD 
DO 361 J=1,MD 

ARP(J,I)~MAT(J,IBASIS(I)) 
361 CONTINUE 

GO TO 370 
ELSE 

PRINT *,'LEAVING VARIABLE IS NOT ADJACENT TO THE SOLUTION' 
GO TO 999 

END IF 
900 PRINT *, '*** TEST SUCEEDED ***' 

PRINT *. '*** ALGORITHM CAN BE APPLIED ***' 

C SOLVE AR'Z=B' 
c 
C COPY BP INTO ZP 
c 

c 

370 
72 

DO 72 I= 1, MD 
ZP(I)=BP(I) 

M~1 

N~2 

IA~2 

IDGT=2 

C CALL IMSL ROUTINE LEQT2F TO SOLVE AR'Z=B' 
c 

122 
1 1 1 

c 

CALL LEQT2F(ARP,M,N.IA,ZP,IDGT,WKAREA,IER) 
PRINT *, 'IER MAIN=' ,IER, 'IDGT=',IDGT 
PRINT *,' THE SOLUTION OF AR.Z=B ' 

DO 1 1 1 I ~ 1 , MD 
WRITE(6,122) ZP(I) 
FORMAT(10X,F12.6) 

CONTINUE 

c 
c 

CALL IMSL ROUTINE LINV2F TO GET INVERSE OF A' 

IA~2 

N~2 

IDGT~3 

CALL LINV2F(ARP,N,IA,Y,IDGT,WKAREA,IER) 
PRINT *,' THE INVERSE OF A 
DO 133 I~ 1 , MD 

PRINT *.(Y(I,J),J=1,MD) 
133 CONTINUE 

c 
C CALCULATE YA' 
c 

CALL RIMUL(Y,MD,MD,A,AI) 
PRINT*,' MULTIPLICATION OF Y.A 
DO 144 I~ 1 , MD 

DO 145 J=1,MD 

00001035 
00001045 
00001055 
00001056 
00001065 
00001075 
00001085 
00001095 
00001105 
00001115 
00001116 
00001117 
00001118 
00001119 
00001120 
00001121 
00001122 
00001123 
00001124 
00001125 
00001126 
00001127 
00001128 
00001129 
00001130 
00001131 
00001132 
00001133 
00001134 
00001135 
00001136 
00001137 
00001138 
00001139 
00001140 
00001141 
00001142 
00001143 
00001144 
00001145 
00001146 
00001147 
000011..;8 
00001149 
00001150 
00001151 
00001152 
00001153 
00001 154 
00001155 
00001156 
00001157 
00001158 
00001159 
00001160 
00001161 

63 



PRINT *,Al(I,J,1),' ',AI(I,J,2) 
145 CONTINUE 

PRINT *,' ' 
144 CONTINUE 

DO 73 I=1 ,MD 
DO 73 J=1,MD 

CALL SU8I(IM(I,J,1),IM(I,J,2),AI(I,J,1),AI(I,J,2),TEMP1, 
*TEMP2) 

A I ( I , J, 1 ) =TEMP 1 
AI(I,J,2)=TEMP2 

73 CONTINUE 
PRINT *, ' AI=I-YA 
DO 166 I= 1 , MD 

P R I NT * , ( ( A I l I , J , K ) , K = 1 , 2 ) , J = 1 , MD ) 
166 CONTINUE 

c 
C AI=I-YA' , R=I!I-YA'II 
c 

c 

CALL IMNORM(AI,MD,MD,R) 
PRINT *, 'R=' ,R 
IF(R.GT. 1.0) THEN 

PRINT *,'***ERROR***' 
GO TO 999 
END IF 

c CALCULATE I lVI I 
c 

CALL RMNORM(Y,MD,MD,NORMY) 
PRINT *,' THE NORM OF Y =',NORMY 

c 
C CALCULATE A'Z' 
c 

CALL IRMUL(ZP,MD,1,A,AZ) 
c 
C CALCULATE (AZ'-8) 
c 

c 

DO 74 I= 1, MD 
AZ (I, 1 , 1) =AZ (I, 1 , 1 ) -8 (I, 1, 2) 
AZ(I, 1,2)=AZ(I,1,2)-B(I,1,1) 

74 CONTINUE 

c CALCULATE I jAZ'-81 I 
c 

c 

CALL IMNORM(AZ,MD,1,T) 
PRINT *, 'T =' ,T 

C CALCULATE Q 
c 

c 

Q=(NORMY*T)/(1-R) 
PRINT *,' Q = ',Q 

C CALCULATE Z 
c 

DO 77 I= 1, MD 
Z(O,I,1,1)=ZS(IBASIS(I))-Q 
Z(O,I,1,2)=ZS(IBASIS(I))+Q 

00001162 
00001163 
00001164 
00001165 
00001166 
00001167 
00001168 
00001169 
00001170 
00001171 
00001172 
00001173 
00001174 
00001175 
00001176 
00001177 
00001178 
00001179 
00001180 
00001181 
00001182 
00001183 
00001184 
00001185 
00001186 
00001187 
00001188 
00001190 
00001200 
00001210 
00001220 
00001230 
00001240 
00001241 
00001250 
00001251 
00001260 
00001270 
00001280 
00001290 
00001300 
00001310 
00001320 
00001330 
00001340 
00001341 
00001350 
00001360 
00001370 
00001380 
00001390 
00001400 
00001410 
00001420 
00001430 
00001440 

64 



PRINT -t,Z(O,I,1,1),Z(O,I,1.2) 
77 CONTINUE 

c 
C CALCULATE Z(K+1) 
C CALCULATE YB 
c 

c 

CALL RIMUL(Y,M0,1,B,YB) 
DO 90 I=1,20 

CALL MULIM(AI,MD,I-1,MD.1,Z,ZM) 

C CALCULATE YB+((I-YA')Z'=ZM) 

DO 91 J=1,MD 
DO 91 K=1,2 

ZM(J, 1,K)=ZM(J,1,K)+YB(J,1,K) 
91 CONTINUE 

DO 93 J=1,MD 
CALL INTER ( Z ( I - 1 , J , 1 , 1 ) , Z ( I - 1 , J , 1 , 2 ) , ZM ( J , 1 , 1 ) , ZM ( J , 1 , 2 ) , 

* Z (I , J, 1 , 1 ) , Z (I , d, 1 , 2), IF :_AG) 
PRINT*, 'IFLAGa',IFLAG 

98 CONTINUE 
CALL CMP(Z,I,CHECK,MD) 
PRINT *,' CHECK=' ,CHECK 
IF(CHECK.AND .. TRUE.) GO TO 100 
K=I 

90 CONTINUE 
PRINT *,' NO SUCCESS 

100 DO 200 I=1,K+1 
DO 20 1 J = 1 , MD 

WRITE ( 6, 101 ) Z ( I , J, 1 , 1 ) , Z ( I , J, 1 , 2) 
101 FORMAT(10X,F12.6,10X.F12.6) 
201 CONTINUE 

PRINT *,' ------------------------' 
200 CONTINUE 

PRINT ~, '*****~*******-****~******************' 

PRINT *, '** . THE OPTIMAL SOLUTION **' 
DO 203 I= 1 . MD 

PRINT *, ( Z ( K+ 1 , I , 1 , J) , J= 1 , 2) 
203 CONTINUE 

PRINT *. '***********~********************~***' 
999 CONTINUE 

STOP 
E.ND 

65-

00001450 
00001460 
00001480 
00001490 
00001500 
00001501 
00001510 
00001520 
00001530 
00001540 
00001550 
00001551 
00001560 
00001570 
00001580 
00001590 
00001600 
ooooH;1o 
00001620 
00001630 
00001640 
00001650 
00001660 
00001670 
00001680 
00001690 
00001700 
00001710 
00001720 
00001730 
00001740 
00001750 
00001760 
00001770 
00001771 
00001772 
00001773 
00001774 
00001775 
00001776 
00001780 
00001790 
00001800 



c 
C********************************************************************* 
C********************************************************************* 
C SUBROUTINES ** 
C********************************************************************* 
C********************************************************************* 
c 
c 
c 
C********************************************************************* 
c 
C THIS ROUTINE CHANGES THE ENDPOINTS OF AN INTERVAL BY GIVEN 
C PERCENTAGE. 
C A : LOWER POINT OF INTERVAL 
C B : HIGHER POINT OF INTERVAL 
C PERC : PERCENTAGE OF CAHNGE 
C CM = - OR + 
C INT(A,8) + CM.PERC(INT(A,B)) 
c 
C******************************************************************** 
c 
c 

SUBROUTINE CHANGE(A,B,CM,PERC) 
INTEGER CM 
WIDTH=B-A 
POFW=(WIDTH*PERC)/2. 
IF(CM.LT.O) THEN 

A=A+POFW 
8=8-POFW 

ELSE 
A=A-POFW 
B=B+POFW 

END IF 
RETURN 
END 

00001810 
00001820 
00001830 
00001840 
00001850 
00001860 
00001861 
00001862 
00001863 
00001864 
00001865 
00001866 
00001867 
00001868 
00001869 
00001870 
00001871 
00001872 
00001873 
00001874 
00001875 
00001876 
00001877 
00001878 
00001879 
00001880 
00001881 
00001882 
00001883 
00001884 
00001885 
00001886 
00001887 
00001888 
00001889 

66 



c 
c 
C**********************************************~*~********~******~~**** 

c 
C THIS ROUTINE FINDS THE UNIT ROUNDOFF ERROR,EPS. 
c 
c~******"************************************************T.****~*******T* 

c 
SUBROUTINE FINEPS 
X= 1 .0 

11 X=X/2.0 
IF ( 1. 0+ X . GT. 1 . 0) GO TO 11 
EPS=2.0*X 
RETURN 
END 

67 

00001890 
00001891 
00001892 
00001893 
00001894 
00001895 
00001896 
00001897 
00001898 
00001899 
00001900 
00001901 
00001902 
00001903 
00001904 



c 

c 
C TEST ROUTINE - THIS ROUTINE TESTS THE BASIS CHANGE 
C IND : INDICE OF THE MOST NEGATIVE ZJ-CJ 
C OK : FLAG FOR TEST SUCCESS 
C ARPT ( *, *) : TRANSPOSE OF ARP 
C ADPT ( *, *, 2) : TRANSPOSE OF ADP 
C Y(*,*): INVERSE OF ARPT 
C V(*,*,1,2): SOLUTION OF (ARP.V=PDP) 
c 
C**************************************************************-

SUBROUTINE TEST(ARPT,ADPT,PS,PDP,Y,OK,MD,ND,IND) 
REAL E(2,2),PS(MD, 1),PDP((ND-MD),1.2),ARPT(MD,MD), 

* YP ( 2, 1 ) , EV ( 2, 1 , 2) , V ( 0: 20, 2, 1 , 2) , Y (MD, MD) , ADPT ( (NO -MD) , MD, 2) 
* , T ( 2) , TEMP ( 2, 1 , 2) 

c 

405 
c 
c 
c 

LOGICAL OK 

PRINT *, '******* 
PRINT *,' 
DO 405 I=1,MD 

PRINT *, ( Y (I, d), J= 1, MD) 
CONTINUE 

A=YAT 

CALL RMUL(Y,MD,MD,ARPT,E) 
PRINT *,' ** Y*ARPT=E 
DO 4 1 8 I = 1 , MD 

PRINT *,(E(I,J),J=1,MD) 
418 CONTINUE 

PRINT*,' I-YARPT' 
DO 406 I=1,MD 

DO 406 J=1,MD 
IF (I .EO.J) THEN 

E(I,J)=1.-E(I,J) 
ELSE 

E(I,J)=-E(I,J) 
ENDIF 
PRINT *,E(I,J) 

406 CONTINUE 
c 
C E=A 
C R IS THE NORM OF E 
c 

c 

CALL RMNORM(E,MD,MD,R) 
PRINT *, 'R=' ,R 
IF (R.GT.1) GO TO 499 

C YP=Y*PS 
c 

CALL RMUL(Y,MD,1,PS,YP) 

********' 

00001905 
00001906 
00001907 
00001908 
00001909 
00001910 
00001911 
00001912 
00001913 
00001914 
00001915 
00001916 
00001917 
00001918 
00001919 
00001920 
00001930 
00001960 
00001980 
00001990 
00002010 
00002020 
00002030 
00002031 
00002040 
00002050 
00002051 
00002052 
00002053 
00002054 
00002055 
00002056 

. 00002070 
00002080 
00002081 
00002082 
00002083 
00002084 
00002085 
00002086 
00002130 
00002140 
00002150 
00002151 
00002152 
00002160 
00002170 
00002180 
00002181 
00002182 
00002183 
00002190 

68 



c 
c 
c 

c 
c 
c 

407 
c 
c 
c 

419 

413 

414 

411 
c 
c 
c 

412 
c 
c 
c 

c 
c 
c 

410 

P IS THE NORM OF YP 

CALL RMNORM(YP,MD,1,P) 
TMP=P/(1.-R) 
PRINT *, 'TMP=' ,TMP 

V(O)=( ~1. I )P/( 1-R) 

DO 407 I= 1 , MO 
V(O, I, 1, 1 )=-TMP 
V(O.I,1,2)=TMP 

CONTINUE 

CALCULATE V(K+1)={Y.PS + E.V(K)}+ V(K) 

* 

00 410 I=1,20 
DO 419 u=1,MO 

EV(u, 1·.1 )=0.0 
EV(u,1,2)=0.0 

CONTINUE 

DO 414 u=1,MD 
DO 414 K=1,MD 

DO 413 L=1,2 
T(L)=E(u,K)*V(I-1,K,1,L) 

IF(T(1).GT.T(2)) THEN 
TP=T(1) 
T(1)=T(2) 
T(2)=TP 

ENDIF 
EV(u,1, 1)=T(1)+EV(u,1,1) 
EV(u,1,2)=T(2)+EV(u,1,2) 

CONTINUE 
DO 411 u=1,MD 

DO 411 K= 1, 2 
EV(u,1,K)=EV(u,1,K)+YP(u,1) 

CONTINUE 

TAKE INTERSECTION OF TWO INTERVALS 

DO 412 u=1,MD 
CALL INT,ER( V(I -1. u, 1, 1). V(I -1, u. 1. 2), EV( u, 1, 1), EV( u. 1, 2), 

V(I. u, 1, 1), V( I, u, 1, 2), IF) 
CONTINUE 

COMPARE TWO INTERVALS 

CALL CMP(V,I,OK~MD) 
K=I 

IF V(K)=V(K+1) THEN TERMINATE. 

IF(OK .AND .. TRUE.) GO TO 460 
CONTINUE 
PRINT *,' NO CONVERGENCE FOR V ' 

00002191 
00002192 
0')0(!2193 
00002200 
00002210 
00002220 
00002221 
00002222 
00002223 
00002230 
00002240 
00002250 
00002260 
00002261 
00002270 
00002280 
00002290 
00002291 
00002292 
00002293 
00002294 
00002295 
00002296 
00002297 
00002298 
00002299 
00002300 
00002301 
00002302 
00002303 
00002304 
00002305 
00002306 
00002307 
00002310 
00002320 
00002330 
00002340 
00002341 
00002342 
00002343 
00002350 
00002360 
00002370 
00002380 
00002381 
00002382 
00002383 
00002390 
00002400 
00002401 
00002402 
00002403 
00002410 
00002420 
00002430 

69 



GO TO 499 
460 CONTINUE 

470 

DO 470 I= 1, K 
PRINT *, '*** ITERATION ',I 
DO 470 J=1,MD 

PRINT * , ( V ( I , J , 1 , K ) , K = 1 , 2 ) 
CONTINUE 
CALL MULIM(ADPT,(ND-MD),K,MD,1,V,TEMP) 
DO 475 I=1,(ND-MD) 

CALL SUB! (TEMP (I, 1, 1 ) , TEMP (I , 1, 2), PDP (I, 1 , 1), PDP (I, 1, 2), 
* TEMP 1 , TEMP2) 

475 
c 

TEMP ( I , 1 , 1 ) =TEMP 1 
TEMP(I,1,2)=TEMP2 

CONTINUE 

C TEST IF A"V-P" >= 0 
c 

c 

OK=.TRUE. 
MIN= 1.0 
DO 476 I=1,(ND-MD) 

IF(TEMP(I,1,2).LT.O~O) THEN 
IF(TEMP(I,1,2).LT.MIN) THEN 

C FIND THE MOST NEGATIVE A"V-P" 
c 

MIN=TEMP( I. 1, 2) 
IND=I 

END IF 
OK=.FALSE. 

END IF 
476 CONTINUE 

GO TO 477 
499 IND=-1 
477 CONTINUE 

PRINT *, '************** END OF TEST ROUTINE *************~*' 

RETURN 
END 

00002440 
00002450 
00002460 
00002470 
00002480 
00002490 
00002500 
00002510 
00002520 
00002530 
00002540 
00002550 
00002560 
00002570 
00002580 
00002590 
00002600 
00002611) 
0000261j 
00002620 
00002630 
00002631 
00002632 
00002633 
00002634 
00002635 
00002636 
00002637 
00002640 
00002641 
00002650 
00002651 
00002652 
00002660 
00002670 
00002680 
00002690 

70 



C***+*************************************************-********~******** 
c 
C THIS ROUTINE IS FOR THE MULTIPLICATION OF TWO REAL 
C MATRICES 
C A(M,M)*B(M,N)= C(M,N) 
c 
C********************************************T**********~************** 

SUBROUTINE RMUL(A,M,N,B,C) 
REAL A(M,M),B(M,N),C(M,N) 
DO 699 I= 1, M 

DD699u=1,N 
699 C(l,u)=O.O 

00 700 I=1.M 
DO 700 u= 1, M 

DO 700 K=1,N 
C(I.K)=C(I,K)+A(I,u)*B(u,K) 

700 CONTINUE 
RETURN 
END 

00002700 
00002710 
00002720 
00002721 
00002722 
00002723 
00002724 
00002725 
00002726 
00002727 
00002728 
00002729 
00002730 
00002731 
00002732 
00002733 
00002734 
00002735 
00002736 
00002737 

71 



c 
C****~******~****~**********************~********************** 

c 
C THIS ROUTINE CALCULATES THE DIFFERENCE OF TWO INTERVALS, 
C (A,B)-(C,D) = (E,F) 
c 
C***~********************************************************** 

SUBROUTINE SUBI(A,B,C,D,E,F) 
REAL A,B,C,D.E,F 
COMMON EPS 

END 

E=(A-D) 
F=(B-C) 
CALL ENLINT(E,F) 
RETURN 

00002738 
00002739 
00002740 
00002741 
00002742 
00002743 
00002744 
00002745 
0000274G 
00002747 
00002750 
00002760 
00002761 
00002770 
00002780 

72 



c 
c~*********~~***~*********~*****~*********************************~**Y 

c 
C THIS ROUTINE IS FOR THE ADDITIONOF TWO INTERVALS 
C (A,B)+(C,D) = (E,F) 
c 
C*~***********************************************************~******* 

c 
SUBROUTINE ADDI(A,B,C,D,E,F) 
COMMON EPS 

E=A+C 
F=B+D 
CALL ENLINT(E,F) 
RETURN 
END 

00002781 
00002782 
00002783 
00002784 
00002785 
00002786 
00002787 
00002788 
00002789 
00002790 
00002791 
00002792 
00002793 
00002794 
00002795 

73 



c 
c•~********************************************~****************~*~*** 

c 
C THIS ROUTINE PERFORMS COMPARISON OF TWO INTERVAL 
C SOLUTION VECTOR 
C A(I.*.*,2) AND A(I-1,*.*.2) 
c 
C*~************************************-******************************* 

SUBROUTINE CMP(A,II,CHK,MD) 
LOGICAL CHK,FLG(10) 
REAL A(0:20,MD.1,2) 

DEL=0.000001 
I=II 
DO 300 v= 1, MD 

DELTA 1 "'ABS (A (I , v. 1 , 1 ) -A (I- 1 , v. 1 . 1 ) ) 
DELTA2,ABS(A(I,v,1,2)-A(I-1,v. 1,2)) 
FLG(J),DELTA1.LT.DEL.AND.DELTA2.LT.DEL 

300 CONTINUE 
CHK=.TRUE. 
DO 301 I=1,MD 

CHK=CHK.AND.FLG(I) 
301 CONTINUE 

RETURN 
END 

00002796 
00002800 
00002810 
00002811 
00002812 
00002813 
00002814 
00002815 
00002820 
00002830 
00002840 
00002841 
00002850 
00002860 
00002870 
00002880 
00002890 
00002900 
00002910 
00002920 
00002930 
00002940 
00002950 
00002960 

74 



c 
C********************************************************************** 
c 
C MULTIPLICATION OF INTERVAL MATRIX WITH REAL MATRIX 
C AP(~.*.2) * R(*,*) = C(*.*,2) 
c 
C******************************************•*************************** 

c 

SUBROUTINE IRMUL(R,M,N,AP.C) 
DIMENSION R(M ),AP(M,M,2),C(M.N,2).TEMP(2) 
COMMON EPS 
DO 82 I=1.M 

DO 82 d=1,N 
DO 82 K= 1 • 2 . I. 

C(I.J,K)=O.O 
82 CONTINUE 

DO 80 I= 1. M 
DO 80 J=1,M 

DO 81 L=1,2 
81 TEMP(L)=AP(I.J,L)*R(J) 

C CHECK ENDPOINTS 
C IF LEFT ENDPOINT > RIGHT ENDPOINT , REVERSE ENDPOINTS 
c 

80 CONTINUE 
RETURN 
END 

IF(TEMP(1).GT.TEMP(2))THEN 
TMP=TEMP( 1) 
TEMP ( 1 ) =TEMP ( 2) 
TEMP(2)=TMP 
ENDIF 

C(I, 1,1)=TEMP(1)+C(I. 1, 1) 
C(I, 1,2)~TEMP(2)+C(I. 1,2) 
CALL ENLINT(C(l, 1, 1),C(I, 1,2)) 

00002970 
00002980 
00002990 
00002991 
00002992 
00002993 
00002994 
00003000 
00003010 
00003011 
00003020 
00003030 
00003040 
00003050 
00003060 
00003070 
00003080 
00003090 
00003100 
00003101 
00003102 
00003103 
00003104 
00003110 
00003120 
00003130 
00003140 
00003150 
00003160 
00003170 
00003175 
00003180 
00003190 
00003200 

75 



c 
C*~~***************************************************************~*~ 
c 
C MULTIPLICATION OF REAL MATRIX WITH INTERVAL MATRIX 
C R(*,*) * AP(*,*,2) = C(*,*,2) 
c 
C********************************************************************* 
c 

c 

SUBROUTINE RIMUL(R.M,N,AP,C) 
REAL R(M,M),AP(M,N,2),C(M,N.2),TMP,TEMP(2) 
COMMON EPS 
DO 7 I=1,M 

DO 7 t..l= 1. N 
DO 7 K=1,2 

C(I,t..I,K)=O.O 
7 CONTINUE 

DO 5 I= 1. M 
D05t..I=1,M 

·Do 5 K= 1, N 
DO 6 L= 1. 2 

6 TEMP(L)=R(I;J)*AP(J,K,L) 

C IF LEFT ENDPOINT > RIGHT ENDPOINT . REVERSE ENDPOINTS 
c 

IF(TEMP(1).GT.TEMP(2)) THEN 
TMP=TEMP(1) 
TEMP(1)=TEMP(2) 
TEMP(2)=TMP 
ENDIF 

C ( I , K , 1) =TEMP ( 1 ) + C ( I , K , 1 ) 
C(I.K,2)=TEMP(2)+C(I,K,2) 

CALL ENLINT(C(I,K,1),C(I,K,2)) 
5 CONTINUE 

RETURN 
END 

00003210 
00003220 
00003221 
00003222 
000032:.13 
00003230 
00003231 
00003232 
00003240 
00003250 
00003251 
00003260 
00003270 
00003280 
00003290 
00003300 
00003310 
00003320 
00003330 
00003340 
00003350 
00003351 
00003352 
00003353 
00003360 
00003370 
00003380 
00003390 
00003400 
00003410 
00003420 
00003425 
00003430 
00003440 
00003450 

76 



c 
C********************************************************************** 

00003460 
00003470 
00003480 
00003481 
00003482 
00003483 
00003484 
00003485 
00003486 
00003487 

c 
C IT CALCULATES THE MATRIX NORM OF AN INTERVAL MATRIX 
C A(*,*,2): INTERVAL MATRIX 
C M :ROW DIMENSION 
C N : COLUMN DIMENSION 
C. ROWSUM: SUMMATION OF MAXIMUM ENDPOINTS OF INTERVALS 
C NRM : NORM OF MATRIX 
c 
C***********************************************************************00003488 
c 00003489 

1 1 
c 
c 
c 
c 

SUBROUTINE IMNORM(A,M,N,NRM) 00003490 
REAL A(M,N,2),NRM,MX,ROWSUM 00003500 

NRM=O.O 00003510 
00 10 I=1,M 00003520 

ROWSUM=O.O 00003530 
DO 11 J=1,N 00003540 

IF(ABS(A(I,J,1)).GT.ABS(A(I,J,2)))THEN 00003550 
MX=ABS(A(I,J, 1)) 00003560 

ELSE 
MX=ABS(A(I,J,2)) 

END IF 
ROWSUM=ROWSUM+MX 

CONTINUE 

00003570 
00003580 
00003590 
00003600 
00003610 

FINO THE MAXIMUM ROWSUM AND ASSIGNED TO NRM 
NRM IS THE MATRIX NORM 

00003611 
00003612 
00003613 
00003614 
00003620 
00003630 

IF (ROWSUM.GT.NRM) 
CONTINUE 

RETURN 
END 

NRM=ROWSUM 

00003640 
00003650 

77 



c 
C**************************************************************~****** 
c 
C THIS SUBROUTINE CALCULATES THE MATRIX NORM OF A GIVEN REAL MATRIX 
C NPM : MATRIX NORM 
C A(*, .. ) : REAL MATRIX 
c 
C*********~*********************************************************** 

c 

SUBROUTINE RMNORM(A,M,N,NRM) 
REAL A(M,N),NRM 

NRM=O.O 
DO 20 I=1,M 

ROWSUM=O.O 
DO 21 o.J=1,N 

C FIND ROW SUM OF EACH ROW 
c 

ROWSUM=ROWSUM+ABS(A(I,o.J)) 
21 CONTINUE 

c 
C ASSIGN MAXIMUM ROWSUM TO NRM 
c 

IF (ROWSUM.GT.NRM) NRM=ROWSUM 
20 CONTINUE 

RETURN 
END 

00003660 
00003670 
00003680 
00003681 
00003682 
00003683 
00003684 
00003685 
00003690 
00003700 
00003710 
00003720 
00003730 
00003740 
00003741 
00003742 
00003743 
00003750 
00003760 
00003761 
00003762 
00003763 
00003770 
00003780 
00003790 
00003800 

78 



c 

C IT FINDS THE DIFFERENCE OF TWO INTERVAL MATRIX 
C A(*,*,2) - 8(~.*.2) ~ C(*.~.2) 
c 
C****************************************************************~***** 

SUBROUTINE SUBM(A,B,M,C) 
REAL A(M,M,2),B(M,M,2),C(M,M,2) 

DO 30 I= 1 ,M 
DO 30 J= 1, M 

CAlL SUB I ( A (I , J , 1 ) • A (I , J , 2 ) , B (I , J , 1 ) , B (I , J , 2 ) , 
C(l ,J,1) ,C(I ,J,2)) 

30 CONTINUE 
RETURN 
END 

00003810 
00003820 
00003821 
00003822 
00003830 
00003831 
00003840 
00003850 
00003860 
00003870 
00003!$80 
00003890 
00003900 
00003910 
00003920 

79 



c 
C*****~**********************************************************~T**** 
c 
C MULTIPLICATION OF TWO INTERVAL 
C INT(R,S)*INT(T,U) = INT(E,F) 
c 
C********************************************************************* 

c 

SUBROUTINE MULI(R,S,T,U,E,F) 
REAL A,B,C,D,E,F,X 
A=R 
B=S 
C=T 
D=U 

C TEST SIGN OF ENDPOINTS 
c 

c 

IF (A.LT.O.O) THEN 
IF(C.GE.O.O) THEN 

C A<O AND C>O 
c 

c 

X=C 
C=A 
A=X 
X=D 
D=B 
B=X 
GO TO 40 
END IF 

C A <0 AND C<O 
c 

c 

GO TO 41 
END IF 

C A >0 AND C>O 
c 

c 

IF (C.GE.O.O) THEN 
E=A*C 
F=B*D 
GO TO 49 
ENDIF 

C A > 0 AND C < 0 
c 

40 E=B*C 
c 
C D > 0 
c 

IF (D.GE.O.O) THEN 
F=B*D 
GO TO 49 

00003930 
00003940 
00003950 
00003960 
00003961 
00003970 
00003971 
00003980 
00003990 
00004000 
00004010 
00004020 
00004030 
00004031 
00004032 
00004033 
00004040 
00004050 
00004051 
00004052 
00004053 
00004060 
00004070 
00004080 
00004090 
00004100 
00004110 
00004120 
00004130 
00004131 
00004132 
00004133 
00004140 
00004150 
00004151 
00004152 
00004153 
00004160 
00004170 
00004180 
00004190 
00004200 
00004201 
00004202 
00004203 
00004210 
00004211 
00004212 
00004213 
00004220 
00004230 
00004240 

80 



81 

END IF 00004250 
F=A*D 00004260 
GO TO 49 00004270 

41 IF (B.GT.O.O) THEN 00004280 
IF' (O. GT .0. O) THEN 00004290 

c 00004291 
c A < 0 .B >0 AND C<O ,0>0 00004292 
c 00004293 

X~A*O 00004300 
Y=B*C 00004310 
E=MIN(X,Y) 00004320 
X=A*C 00004330 
Y=B*D 00004340 
F=MAX(X, Y) 00004350 
GO TO 49 00004360 
END IF 00004370 

c 00004371 
c A<O B>O AND C<O 0<0 00004372 
c 00004373 

E=B*C 00004380 
F=A*C 00004390 
GO TO 49 00004400 

ENDIF 00004410 
c 00004411 
c A<O B<O 00004412 
c 00004413 

F=A*C 00004420 
IF (D.LE.O.O) THEN 00004430 

E=B*D 00004440 
GO TO 49 00004450 
END IF 00004460 

E=A*D 00004470 
49 CONTINUE 00004480 

CALL ENLINT(E,F) 00004481 
RETURN 00004482 
END 00004483 



c 
C ENLARGE INTERVAL WITH EPS 
c 
C********************************************************************** 
c 
C THIS ROUTINES ENLARGES INTERVAL BOUNDARIES BY EPSILON AMOUNT 
c 
C*********************************************+.************************ 
c 

SUBROUTINE ENLINT(E,F) 
COMMON EPS 
IF(E.GT.O.O) THEN 

E=E*(1.-EPS) 
ELSE 

E=E*( 1. +EPS) 
END IF 
IF(F.GT.O.O) THEN 

F=F*( 1. +EPS) 
ELSE 

F=F*{1.-EPS) 
END IF 
RETURN 
END 

00004484 
00004485 
00004486 
00004487 
00004488 
00004489 
00004490 
00004491 
00004492 
00004493 
00004494 
00004495 
00004496 
00004497 
00004498 
00004499 
00004500 
00004501 
00004502 
00004503 
00004504 
00004505 
00004506 

82 



83 

c 00004510 
C*************~************************************************~****** 00004520 
c 00004530 
C MULTIPLICATION OF TWO INTERVAL MATRIX 00004531 
c 00004532 
C****~**********************~***************************************** 00004533 
c 00004534 

SUBROUTINE MULIM(A,M1,II,M,N,B,C) 00004540 
REAL A(M1,M,2),8(0:20,M,N,2),C(M1,N,2),TEMP1,TEMP2 00004550 

DO 50 I=1,M1 00004560 
DO 50 J=1,N 00004570 

C(I,J,1)=0.0 00004580 
C(I,J,2)=0.0 00004590 

50 CONTINUE 00004600 
DO 51 I=1,M1 00004610 

DO 51 J=1,M 00004620 
DO 52 K=1,N 00004630 

CALL MULI(A(I,J, 1),A(I,J,2),B(II,J,K,1),B(II,J,K,2),00004640 
* TEMP1,TEMP2) 00004650 

C(I,K,1)=C(I,K, 1)+TEMP1 00004660 
C(I,K,2)=C(I,K,2)+TEMP2 00004670 

52 CONTINUE 00004680 
51 CONTINUE 00004690 

RETURN 00004700 
END 00004710 



c 
C*************************************************************·***~*~** 

c 
C DIVISION OF TWO INTERVAL 
c 
C INT(A,B)/INT(C,D)=INT(A,B)*1/INT(C,D) = INT(E,F) 
C INT(C,D) SHOULD NOT CONTAIN ZERO 
c 
C*****************************************************~*************** 

c 

c 

SUBROUTINE DIVI(A,B,C,D,E,F,ERR) 
ERR=O 

C CHECK INVALID INTERVAL 
c 

c 

IF(A.GT.B.OR.C.GT.D) THEN 
ERR=1 
PRINT *• 'INVALID PARAMEfERS' 
GO TO 899 

END IF 

C DIVISION IS NOT DEFINED FOR INTERVALS CONTAINING ZERO 
c 

c 

IF(C.LE.O.O) THEN 
IF(D.GE.O.O) THEN 

ERR=2 
PRINT *,'INTERVAL CONTAINS ZERO' 
GO TO 899 

END IF 
END IF 

C TAKE RECIPROCAL OF THE INTERVAL 
c 

TEMP=C 
C= 1 . /D 
D= 1. /TEMP 
CALL MULI(A,B,C,D,E,F) 

899 CONTINUE 
RETURN 
END 

00004711 
00004712 
00004713 
00004714 
00004715 
00004716 
00004717 
00004718 
00004719 
00004720 
00004721 
00004722 
00004723 
00004724 
00004725 
00004726 
00004727 
00004728 
00004729 
00004730 
00004731 
00004732 
00004733 
00004734 
00004735 
00004736 
00004737 
00004738 
00004739 
00004740 
00004741 
oooo~-:-'2 
00004743 
00004744 
00004745 
00004746 
00004747 
00004748 
00004749 
00004750 

84 



c 
C****~*-****************************************************+****~~:*~**~ 

c 
c 
c 
c 
c 
c 
c 

THIS ROUTINE TAKES THE INTERSECTION OF TWO INTERVALS 

A c B D 
+++++++ 
INTERSECTION OF INT(A,B) AND INT(C,D) 

C********************************************************•************* 
c 

c 

SUBROUTINE INTER(A,B,C,D,E.F.IFL) 
IFL=O 

C INTERVALS ARE DISJOINT 
c 

IF(A.GT.D )IFL=1 
IF(C.GT.B)IFL=2 
IF(IFL.GT.O) GO TO 60 
E=MAX(A,C) 
F=MIN(B,D) 

60 CONTINUE 
RETURN 
END 

00004751 
00004752 
00004753 
00004754 
00004755 
00004756 
00004757 
00004758 
00004759 
00004760 
00004761 
00004762 
00004763 
00004764 
00004765 
00004766 
00004770 
00004780 
00004790 
00004800 
00004810 
00004820 
00004830 
00004840 

85 



VITA 2.; 
Zeynep Aysegul Karacal 

Candidate for the Degree of 

Master of Science 

Thesis: INTERVAL MATHEMATICS AND LINEAR PROGRAMMING 
APPLICATIONS 

MaJor Field:· Computing and Information Science 

Biographical: 

Personal Data: Born in Istanbul, Turkey, March 1, 
1960, the daughter of Mr. and Mrs. R.O. Izgu. 

~ducatlon: Graduated from Ankara Fen Lisesi,Ankara, 
Turkey, in June 1977; received Bachelor of 
Science Degree in Industrial Engineering from 
Middle East Technical University, Ankara, Turkey 
in June 1982; completed requirements for the 
Master of Science Degree in Computer Science at 
Oklahoma State University, Stillwater, Oklahoma 
in May 1988. 

Professional Experience: Research Assistant, 
Industrial Engineering Department, Middle East 
Technical University, June 1982, to April 1984. 


