INTERVAL MATHEMATICS AND
 LINEAR PROGRAMMING APPLICATIONS

By
ZEYNEP AYSEGUL KARACAL
"
Bachelor of Science
Middle East Technical University Ankara, Turkey
1982

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for
the Degree of MASTER OF SCIENCE May 1988

Thesis

$$
\begin{aligned}
& 1988 \\
& K 18
\end{aligned}
$$

$$
\begin{aligned}
& K 18 i \\
& \operatorname{cop.2}
\end{aligned}
$$

Thesis Approved:

PREFACE

```
This thesis surveys the application of interval arithmetic to linear programming problems and presents an algorithm for solution of interval linear programming problems.
I would like to express my thanks to ny advisor Dr. J.P. Chandler for his intelligent guidance and encouragement.
I am also thankful to my other comittee members Dr . Folk and Dr. Hedrick for their advice.
I am very grateful to my husband, Cem, and my parents, Mr. and Mrs. Izgu for their constant support, encouragement and understanding.
I wish to dedicate this thesis to my daughter, Sila Gizem who made everything so worthwhile.
```


TABLE OF CONTENTS

Chapter Page
I. INTRDDUCTION 1
II. INTERVAL ARITHMETIC AND A SURVEY OF APPLICATIONS OF INTERVAL ARITHMETIC 4
III. LINEAR PROGRAMMING 20
IV. A METHOD FOR THE SOLUTION OF INTERVAL LINEAR PROGRAMMING PROBLEMS 34
V. TESTING 43
VI. SUMMARY AND CONCLUSIONS 48
VII. SUGGESTIONS FOR FURTHER STUDY 51
BIBLIOGRAPHY 52
APPENDIX A - DEFINITIONS 56
APPENDIX B - PROGRAM LISTING 58

LIST OF TABLES

Table Page
I. Sign analysis of multiplication 8II. Determination of bounds formultiplication operation 13
III. Computation of objective function at extreme points 22
IV. Basic variables and ratios 30

LIST OF FIGURES

Figure Page

1. Intersection and Union of Two Intervals 5
2. Representation of Rounding Endpoints 12
3. A Nonconvex Solution Space 17
4. Solution Space 21
5. Graphical Representation of Solution Space 30
6. Unbounded Solution 32
7. Alternative Optimal Solution 33
8. Adjacent Extreme Points 38
9. Flowchart of the Algorithm 42
10. Solution Space of Test Problem 1 44
11. Optimum Solution of Test Problem 1 45

CHAPTER I

INTRODUCTION

Interval mathematics is a branch of applied mathematics. It has grown during the past two decades. Applications of interval mathematics which have been reported to date include diverse areas such as mathematical programming, operator equations, algebraic systems, even the re-entry of a spaceship into the earth's atmosphere.

In recent years there has been a growing interest in developing methods to solve interval Linear Programming (LP) problems. Various approaches have been suggested. Many of these approaches are based on methods already available for LP.

At present there is a considerable interest in the applications of interval mathematics to various areas including linear programming. A survey of recent developments in applications of interval mathematics is presented in chapter II. A summary of interval arithmetic operations and realization of interval operations on a computer are also given in chapter II. Chapter III gives an algebraic procedure for solving linear problems called simplex method. The geometric interpretation of the problem, and necessary iterations are presented with examples.

A linear programming problem is in the form of T Maximize C x Subject to

$$
A x \leqslant b \quad, \quad x \geqslant 0
$$

The solution of this system can be obtained by using well-known simplex method. But the solution of LP problem may not be straight forward if the parameters are intervals. When the constraint set has only lower and upper bounds, LP problem is called Interval Programming problem. The problem becomes even more complex when all parameters are intervals. Interval Linear Programming problem can be defined as Maximize PZ Subject to
$A Z \leq B$
where, A is mxm matrix with interval coefficents, B is m dimensional interval vector, and P is n dimensional interval vector.

In the light of acquired knowledge from literature survey, Krawczyk's method [40] which obtains an interval vector containing exact solution to ILP from an approximate solution of LP problem is studied. The cases which

Krawczyk's method gives up or terminates are examined. Necessary modification is added to prevent the algorithm from giving up with no results.

To find the solution set for a given system, a software package based on FORTRAN is developed. Also a small interval package containing basic operations (*,/,+,-) is written to perform interval arithmetic operations on a

[^0]
CHAPTER II

INTERVAL ARITHMETIC AND A SURVEY OF APPLICATIONS OF INTERVAL ARITHMETIC

Finite arithmetic in computers and increasing demand of computers caused the development of a structure called interval analysis or , later, interval mathematics. Interval analysis is a new branch of applied mathematics. It is an approach to computing which treats an interval of real numbers as a new kind of number represented by a pair of real numbers. An arithmetic introduced for such numbers is called interval arithmetic.

An interval is defined by its endpoints X, \bar{X}, where $\underline{X} \leqslant \bar{X}$. Thus, $X=[\underline{X}, \bar{X}]$. A Real number a is defined with the degenerate interval [a,a] having equal lower and upper endpoints; the term degenerate comes from the topological definition of a degenerate set as being a set consisting of a single point. The space of real numbers is regarded as a subspace of the space of intervals when the real number is defined as a degenerate interval. Thus, interval arithmetic includes real arithmetic as a special case. In other words, an interval number is a set of real' numbers. Therefore, set theoretic operations can be applied to intervals. .

Two intervals are equal if their corresponding endpoints are equal. Thus $X=Y$ if $\underline{X}=\underline{Y}$ and $\bar{X}=\bar{Y}$.

The intersection of two intervals X and Y is empty, if either $\underline{X}>\bar{Y}$ or $\bar{X}<\underline{Y}$. The intersection of two interval is $X \cap Y=[\max (\underline{X}, \underline{Y}), \min (\bar{X}, \bar{Y})]$.

Figure 1 presents the geometric interpretation of intersection of two intervals. The intervals $X=[-1,4]$ and $Y=[2,6]$ will be used for numerical examples. So the intersection of $X \cap Y=[2,4]$ (See Figure 1.a).

If two intervals X and Y have nonempty intersection, their union is

$$
X \cup Y=[\min (\underline{X}, \underline{Y}), \max (\bar{X}, \bar{Y})] .
$$

As it can be interpretted from Figure 1.c, $X U Y=[-1,6]$.
Set inclusion can be defined for intervals as

$$
X \subseteq Y \text { if and only if } \underline{Y} \leqslant \underline{X} \text { and } \bar{X} \leqslant \bar{Y}
$$

a)

b)

c)

Figure 1. Intersection and Union of Two Intervals

The width of an interval is defined by

$$
w(X)=\bar{X}-\underline{X} \quad(e \cdot g \cdot W(X)=4-(-1)=5)
$$

the width of interval vector $X=(X, X, \ldots, X)$ is

$$
\left.w(X)=\max \left(w(X), w\left(X_{2}\right), \ldots, \ldots, X_{n}\right)\right)
$$

Absolute value of an interval is

$$
|X|=\max (|\underline{X}|,|\bar{X}|) \quad \text { (e.g. }|X|=\max (|-1|,|4|)=4) .
$$

Midpoint of an interval is

$$
m(X)=(\underline{X}+\bar{X}) / 2, \text { for given } X m(X) \text { is }(-1+4) / 2=1.5
$$

The vector norm for interval vectors $X=(X, X, \ldots, X)$ is

$$
||x||=\max (|X|, \ldots,|X|)
$$

The rules of interval arithmetic are given in [32] and [33]. Let X and Y be intervals. The sum of two intervals is again an interval.

$$
X+Y=[a, b]+[c, d]=[a+c, b+d]
$$

As an example $X+Y=[-1,4]+[2,6]=[1,10]$.
The negative of an interval is defined as

$$
-X=-[a, b]=[-b,-a] \text {. Therefore the difference of }
$$

two interval is

$$
\begin{aligned}
& X-Y=X+[-Y]=[\underline{X}-\bar{Y}, \bar{X}-\underline{Y}] \text { for example } \\
& X-Y=[-1,4]+[-6,-2]=[-7,2]
\end{aligned}
$$

Before going further, it is beneficial to explain one shortcomings of interval arithmetic. Interval arithmetic has no additive inverse. If an interval $X=[a, b]$ is subtracted from itself, the result is

$$
X-X=[a-b, b-a]
$$

That is, $X-X \neq[0,0]$, different from the expected result (unless $a=b$), for example $X=[-1,4]$ and $X-X=[-5,5]$. This kind of shortcoming causes interval arithmetic to produce nonsharp bounds. In general, if a given interval X occurs more than once in a computation, results are more likely to fail to be sharp. A generalized interval arithmeic which reduces this effect is introduced by Hansen [20].

The product of two intervals, X.Y, is again an interval whose endpoints can be computed from

$$
\begin{aligned}
& X * Y=\min (\underline{X} \underline{Y}, \underline{X} \bar{Y}, \bar{X} \underline{Y}, \bar{X} \bar{Y}) \\
& X * Y=\max (\underline{X} \underline{Y}, \underline{X} \bar{Y}, \bar{X} \underline{Y}, \bar{X} \bar{Y})
\end{aligned}
$$

The reciprocal of an interval is

$$
1 / X=[1 / \bar{X}, 1 / \underline{X}] \text { if } \underline{X}>0 \text { or } \bar{X}<0
$$

If an interval X contains zero the set of $1 / X$ is unbounded and can not be represented as an interval.

The quotient of two intervals can be defined as $X / Y=X *(1 / Y)$ if O is not contained in Y.

The operation * and / can be simplified computationally
by examining the signs of endpoints. The results for multiplication which are reduced to 9 cases are given in Table I.

TABLE I
SIGN ANALYSIS OF MULTIPLICATION

Case no	A	B	A * B
	[$\mathrm{A}, \overline{\mathrm{A}}]$	[$\mathrm{B}, \overline{\mathrm{B}}$]	=
1	$[\geqslant 0, \geqslant 0]$	$[\geqslant 0, \geqslant 0]$	$[\underline{A} * \underline{B}, \bar{A} * \bar{B}]$
2	$[<0, \geqslant 0]$	$[\geqslant 0, \geqslant 0]$	$[\underline{A} * \bar{B}, \bar{A} * \bar{B}]$
3	$[\leqslant 0, \leqslant 0]$	$[\geqslant 0, \geqslant 0]$	[$\underline{A} * \overline{\mathrm{~B}}, \overline{\mathrm{~A}} * \underline{B}]$
4	$[\leqslant 0, \leqslant 0]$	$[<0, \geqslant 0]$	[$\underline{A} * \overline{\mathrm{~B}}$, $\underline{A} * \underline{B}$]
5	$[\geqslant 0, \geqslant 0]$	$[<0, \geqslant 0]$	[$\overline{\mathrm{A}} * \underline{\mathrm{~B}}, \overline{\mathrm{~A}} * \overline{\mathrm{~B}}$]
6	$[\geqslant 0, \geqslant 0]$	$[\leqslant 0, \leqslant 0]$	[$\overline{\mathrm{A}} * \underline{B}, \underline{A} * \overline{\mathrm{~B}}]$
7	$[<0, \geqslant 0]$	$[\leqslant 0, \leqslant 0]$	[$\bar{A} * \underline{B}, \underline{A} * \underline{B}]$
8	$[\leqslant 0, \leqslant 0]$	$[\leqslant 0, \leqslant 0]$	$[\bar{A} * \bar{B}, \underline{A} * \underline{B}]$
9	$[<0, \geqslant 0]$	$[<0, \geqslant 0]$	$[\min (\underline{A} \bar{B}, \bar{A} \underline{B}), \max (\underline{A} \underline{B}, \bar{A} \bar{B})]$

In Table I, the notation $\leqslant 0$ means the endpoint is negative. Similarly the notation $\geqslant 0$ means that the endpoint is positive. For example the multiplication of X and Y can be computed from case 2 where

$$
X * Y=[-1,4] *[2,6]=[-6,24] .
$$

All above operations contain real (infinite precision) arithmetic. Therefore they can not be implemented on a computer. In practice, real arithmetic on computers is impossible using floating point instructions because of limited precision and roundoff errors. When real arithmetic operations are carried on a computer, computations will be
done in floating point arithmetic. Real numbers are approximated by floating point systems with a fixed number of digits in the mantissa. Any real number y can be written as

$$
y=+d_{1} d_{2} \ldots d_{s} d_{s+1} \cdots \beta^{e}
$$

The IBM 3081 system which is used in this research represents y by chopping of all digits after the first s to get

$$
f I(y)=+d_{1} d_{2} \ldots . d_{s} \beta
$$

where $s=6$ (for single precision) $\beta=16$ and $-64<e<63$. The unit roundoff error is defined

1-s
$E P S=\beta$
if y is a real number, then floating point y can be defined $f 1(y)=y(1+\delta) \quad$ where $|\delta| \leqslant$ EPS.

It is possible to find intervals containing the exact arithmetic results. Even if a mathematical equation can be solved exactly, it will still give an approximate description of the behavior of the real system which the mathematical equation is supposed to model. Basically, problems can be divided into two categories, problems with inexact and with exact initial data. In the first category, usually data are allowed to vary over an interval. In the category of problems where exact initial data are given, interval analysis is used to develop methods which generate convergent sequences of bounds converging to the solutions under comparatively weak conditions. When performing
interval arithmetic on a digital computer, it is necessary to deal with roundoff error. When performing calculations, the basic properties of solutions such as monotonicty of sequential inclusion or convergency are assumed to be preserved. Therefore, the treatment of the machine interval arithmetic is limited to the realization of the interval operations on computer. Under these conditions , if interval arithmetic operations are performed just by plugging endpoints into equations, the procedure will be imprecise and will often produce much more pessimistic results than necessary. To overcome this deficiency, computer interval arithmetic is developed and its properties are discussed in [15],[27], and [47]. In order to perform computer interval arithmetic directed rounding, which has two parts (upward and downward directed rounding), is introduced in [47]. If x is a real number, upward rounding maps x to the smallest machine representable number greater than or equal to x. Downward rounding maps x to the greatest machine representable number less than or equal to x. To illustrate the distinction between interval arithmetic and computer interval arithmetic, the following example is taken from [31]. Let

$$
\begin{aligned}
X= & {\left[-.613 * 10^{-2},-.610 * 10^{-2}\right] } \\
& Y=\left[+.100 * 10^{1},+.300 * 10^{1}\right] \\
& Z=X(1+1 / Y)
\end{aligned}
$$

Z can be computed using exact interval arithmetic.

$$
\begin{aligned}
Z & =X(1+1 /[1,3]) \\
Z & =X(1+[1 / 3,1]) \\
& =X[4 / 3,2] \\
& =\left[-.1226 * 10^{-1},-.8133 \ldots * 10^{-2}\right]
\end{aligned}
$$

When Z is computed using computer interval arithmetic based on 3 decimal digit mantissas and floating number
representation , Z will be

$$
\begin{aligned}
& 1=\left[+.100 * 10^{1},+.100 * 10^{\prime}\right], \\
& 1 / Y\left[+.333 * 10^{0},+.100 * 10^{1}\right], \\
& 1+1 / Y\left[+.133 * 10^{1},+.200 * 10^{1}\right], \\
& X(1+1 / Y)\left[-.123 * 10^{-1},-.811 * 10^{-2}\right] .
\end{aligned}
$$

Therefore the final result contains the exact value of Z. Unfortunately these kinds of developments are mostly machine dependent. Another obstacle to experimentation with interval arithmetic is that supporting software may not be available. Realization of computer interval arithmetic in Algol 60 can be found in [1]. Since there are no software and hardware support for performing computer interval arithmetic, tje bounds of interval is expanded by EPS that is computed in a subroutine. An interval $X=[a, b]$, if $a \geqslant 0$, will be represented on computer

$$
X=[a *(1-E P S), b *(1+E P S)]
$$

Thus, the lower bound will be shifted to left by epsilon*a and upper bound will be shifted to right by epsilon*b. Figure 2 represents different possibilities of rounding endpoints of an interval.

Figure 2. Representation of rounding endpoints

This representation is not valid for the overflow and underflow cases. But it is enough to perform operations used in this study. An operation for an interval wil
$[a, b] \odot[c, d]=[a \subset c(1 \pm E P S), b \odot d(1 \pm E P S)]$ For multiplication and division, the determination of bounds are not so trivial. The signs of the resulting interval must be considered by calculating end points. Table II shows how to expand the bounds of the resulting interval for multiplication operation. One drawback of this approach is unnecessary expansion of the width of the result interval when the result of the end point calculation was already a machine representable number.

TABLE II
DETERMINATION OF BOUNDS FOR MULTIPLICATION OPERATION

```
[A, B] * [C, D] = [E, F] Implementation on the Computer
Sign of E Sign of F
-------------------------------------------------------------------
    \geqslant0 E0 [1 - EPS] F[1 + EPS]
    < < < 0
    E [1 + EPS]
    F [1 - EPS]
    < 0 \geqslant0
    E [1 + EPS]
    F[1 + EPS]
```

Since this approach will be used in the application of interval arithmetic to linear programming models, the worst case(representation of exact numbers) will not happen because of the characteristics of the model and coefficents.

A small interval arithmetic package containing only four arithmetic operations (*, /, +, -) is developed. This package employs the approach mentioned above. Each operation must be performed by a call on one of the subprograms. This means that the user must parse every expression himself and write his program to perform the calculation. Each subprogram requires lower and upper bounds of two intervals, and returns lower and upper bounds of the result interval and an error flag whenever it is necessary.

An interval matrix is a matrix whose coefficents are intervals. Let A and B be two mxn interval matrices with coefficients $A_{i j}$ and $B_{i_{j}}$, respectively. Then,
$A \pm B=\left(A_{i j}+B_{i j}\right)$
defines an interval matrix addition and subtraction, respectively. Let A be an mxr interval matrix and let B be an rxn matrix. Then,

$$
A \times B=\left(\sum_{S=1}^{r} A_{i S} B_{S j}\right)
$$

defines an interval matrix multiplication.
Some useful properties for operations on interval matrices are given below.
$A+B=B+A$
$A+(B+C)=(A+B)+C$
$A+0=0+A=A \quad$ zero matrix
$A \quad I=I A=A \quad I=$ Unit matrix
$(A+B) C \quad A C+B C$
$C(A+B) \quad C A+C B$
$(A+B) C_{B}=A C_{R}+B C_{R}$
$C_{R}(A+B)=C_{R} A+C_{R} B$
where C_{k} is a real (point) matrix.
The starting point for the application of interval mathematics was to automate computational error analysis. But during the past two decades, interval mathematics has grown to include a much broader range of topics. The applications of interval arithmetic ranges from purely theoretical topics to computational methods, even computer architecture. Thus, it is impossible to give a complete representation and description of what has been developed recently under interval analysis or summarize all
applications of interval mathematics. In this chapter, only the basic methods of interval arithmetics and remarkable applications will be mentioned.

The main objectives of the application of interval mathematics to computing are to find sets containing unknown solutions, to make these sets as small as possible, and to do all this as efficiently as possible. To achieve these objectives, point-to-point mappings are replaced by set-to-set mappings.

Some of the interval algorithms are extensions of corresponding real algorithms. On the other hand, some of them are very different. For example, many interval algorithms use the intersection of two intervals while there is no corresponding operation for real numbers.

Although interval arithmetic is known for real numbers, many of the properties and results for real interval arithmetic can be carried over to a complex interval arithmetic. The arithmetic in complex space that reduces to real arithmetic is introduced and the properties of this arithmetic are discussed in [43]. A method using circular arithmetic for finding the complex zeros of polynomials with error bounds is presented by Gargantini [S].

There has been a rapid development of new methods used for nonlinear problems. Various studies done for nonlinear equations and nonlinear optimization are discussed in [21],[23],[25],[31] and [45].

Hansen [18] has been developed a method to invert an interval matrix. He defined the set

$$
\left(A^{I}\right)^{-1}=\left\{A^{-1}: a_{i J} \in\left[A_{i J}, \bar{A}_{i J}\right] \supset A A^{-1}=I\right\}
$$ and computed $\left(A^{I}\right)^{-1}$ approximately and thus, bounded the errors due to roundoff. Hansen's method minimizes the loss of accuracy inherent in direct use of interval arithmetic. First, the problem is solved approximately in ordinary mathematic. Then, it is reduced to a problem in which the solution is this approximate solution plus small quantities.

Interval mathematics is applied to linear algebraic systems in the form of

$$
\mathrm{Ax}=\mathrm{b} .
$$

Direct methods such as Gaussian elimination and indirect (iterative) methods are discussed in [31]. In an iterative method, the sequence of intervals is generated

$$
X(k+1)=\{Y b+E X(k)\} X(k), k=0,1,2, \ldots
$$

with

$$
X(0)=[-1,1]\|Y b\| /(1-E) \quad, \quad i=1,2, \ldots n
$$

if $\|E\|<1$, where $E=I-Y A$ and Y is an approximate inverse of $m(A)$. The sequence will converge in a finite number of steps to an interval vectorcontaining the set of solutions to Ax=b. Gay[13] discussed different methods for solving linear equations $A x=b$ where A is an interval matrix and b is an interval vector. He proposed the ways of finding $x \subset \mathbb{R}^{n}$ such that

$$
x^{*}=\left\{G^{-1} h: \underline{A} \leqslant G \leqslant \bar{A} \underline{b} \leqslant h \leqslant \bar{b}\right\} \subset x
$$

Oettli [34] shows that x^{*} is the union of at most 2 convex polyhedra. When A and b have interval components, the solution set may be complicated and nonconvex. The following system is an example of nonconvex, star shaped solution space.

Where $A=\left(\begin{array}{cc}{\left[\begin{array}{ll}{[} & 2,4] \\ {[-2,1]} \\ {[-1,2]} & {[2,4]}\end{array}\right)} & b=\binom{[-2,2]}{[-2,2]}\end{array}\right.$
The solution space is shown in Figure 3.

Figure 3. A nonconvex Solution Space

Finally, the applications of interval mathematics to linear programming problems will be considered. In literature an interval version of a linear programming problem is defined as

Maximize $\quad c^{\top} \mathbf{x}$
s.to
$b^{-} \leqslant A x \leqslant b^{+}$
where the matrix A, vectors b^{-}, b^{+}and c are given. There are several algorithms available that are primal or dual. A primal algorithm is developed in [19] to solve interval programming. The algorithm starts with a feasible solution and produces an extreme point to an interval problem resulting a better objective value. Then the algorithm proceeds by moving along adjacent extreme points until an optimal extreme point is generated. A detailed comparison of the simplex method for linear programming problem with the primal algorithm of [3] has been made and resulted that the algorithms are identical in the sense that the same sequence of extreme points can be generated by either algorithm [17]. The difference between methods is strategic in terms of choosing variables and resolving ties in the case of degeneracy. A dual method, SUBOPT, is developed by Ben_Israel and Robers [40]. Actually interval programming problems can be solved by ordinary linear programming. It has been claimed that interval programming problems occurs frequently enough in applications and to convert them to ordinary LP problems may increase the problem size. Also
interval pogramming focuses attention on the role of bounds on the variables in a given model. Stewart [45] developed a revised simplex method to find the upper bounds for maximization problem.

So far linear programming problems with the constraints having upper and the lower bounds are considered. Although various aspects of rounding errors in linear programming received attention, LP problems whose parameters (both in constraints and in the objective function, are prescribed by intervals has not received much attention. Krawczyk [26] has applied interval mathematics methods to the simplex method for solving LP problem whose parameters are intervais. Necessary and sufficient conditions for strong solvability of interval linear programming problems are dicussed by Rohn[42]. A duality theorem and optimality criterion are also developed by Rohn[41].

CHAPTER III

LINEAR PROGRAMMING

Abstract

Linear pprogramming problem is the minimization or the maximization of a linear function overa polyhedral set $[$ see Appendix AJ. In other words ,it is to find the way of efficient allocation of limited resources to known activities with the desired objective value. The functions representing constraints and the objective are linear.

A Linear Programming problem is in the form of $\operatorname{Min}(\operatorname{Max}) C^{\top} x$ subject to $x \in S$.

The set S is called the constraint set and $c x$ is called the objective function. Although the well kown simplex method is used for solving LP problems, a graphical method is helpful for demonstrating basic concepts. Let's start with the following system. $\operatorname{Max} x_{0}=4 * X_{1}+3 * X_{2}$ s. to $$
\begin{align*} 2 * X 1+3 * X 2 & \leqslant 6 \tag{1}\\ 2 * X 1+X 2 & \leqslant 4 \tag{2}\\ X 1, X 2 & \geqslant 0 . \end{align*}
$$

Figure 4 shows the solution space which is bounded by constraints 1 and 2.

Figure 4. Solution Space

Every point within or on the boundaries of the area ABCD satisfies all the constraints. The optimum solution will be the point which maximizes objective function. In Figure 4, the contour lines of objective function are plotted. If x is increased beyond 9, the contour will not pass through feasible region. So $x=9$ gives the optimum resultant point $x=(1.5,1)$. The value of objective function will be $x=4(1.5)+3(1)=9$.

Corner points of feasible region are known as extreme points. The optimum will be always found at one of those extreme points. Table IV shows the values of objective function at extreme points.

TABLE III
COMPUTATION OF OBJECTIVE FUNCTION AT EXTREME POINTS

Corner point	Coordinatee	Objective Function	
A	$X 1=0$	$\mathrm{X} 2=0$	0
B	$\mathrm{X} 1=2$	$\mathrm{X} 2=0$	8
C	$\mathrm{X} 1=1.5 \mathrm{X} 2=1$	9	
D	$\mathrm{X} 1=0$	$\mathrm{X} 2=2$	6

For this problem,it is enough to evaluate objective function at the extreme point s and find the best result. But it is not a practical procedure for higher dimensions and a large number of variables.

To start with the simplex method, the solution space must be represented by the standard form [see Appendix A]. The standard form of the problem is
$\operatorname{Max} x_{0}=4 * X_{1}+3 * X_{2}$
s. to $2 * \mathrm{XI}_{1}+3 * \mathrm{X}_{2}+\mathrm{X3}=6$
$2 \mathrm{X1}+\mathrm{X} 2+\mathrm{X} 4=4$
$X i \geqslant 0 \quad i=1, \ldots 4$
X3 and X4 are known as, slack variables. Now the system has two equations in four unknowns. The basic solution for a set of m linear equation in n unknowns is found by setting $n-m$ variables to zero and solving the m equation m unknown system. $n-m$ variables are called nonbasic, m variables are
called basic variables.
In matrix definition the problem can be formulated as follow:

$$
A x=b
$$

where A is an mxm matrix and b is m vector. For the given problem,

$$
A=\left(\begin{array}{llll}
2 & 3 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{6}{4}
$$

After rearranging the columns of A, let $A=[B, N]$ where B is mxm invertible matrix and N is $m x(n-m)$ matrix and the solution point is

$$
x=\left[\begin{array}{l}
x_{i 3} \\
x_{N}
\end{array}\right] \quad \text { where } \quad \begin{aligned}
& x=B^{-1} b \\
& x=0
\end{aligned}
$$

x is called basic feasible soluiton if $x \geqslant 0$. B matrix is known as basic matrix (or basis), N is called nonbasic matrix. The components of x_{B} vector are called nonbasic variables.

Let's consider the matrix A,

$$
A=\left[a_{1}, a_{2}, a_{3}, a_{4}\right]=\left[\begin{array}{llll}
2 & 3 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right]
$$

Basic solution will correspond to finding $B_{2 \times 2}$ with $B^{-1} b>0$. All possible combinations of $a_{1}, a_{2}, a_{3}, a_{4}$ which gives 2×2 invertible matrix must be computed. Those computations are shown below.

$$
\text { 1. } B=\left[a_{1}, a_{2}\right]=\left[\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right]
$$

$$
x_{B}=B^{-1} b=\left[\begin{array}{rr}
-1 / 4 & 3 / 4 \\
2 / 4 & -2 / 4
\end{array}\right]\left[\begin{array}{l}
6 \\
4
\end{array}\right]=\left[\begin{array}{c}
6 / 4 \\
1
\end{array}\right] \quad x \quad=\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]=0
$$

2. $B=\left[a_{1}, a_{3}\right]=\left[\begin{array}{ll}2 & 1 \\ 2 & 0\end{array}\right]$

$$
x_{B}=\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]=B^{-1} b=\left[\begin{array}{cc}
0 & 1 / 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
6 \\
4
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \quad x \quad=\left[\begin{array}{l}
x_{2} \\
x_{4}
\end{array}\right]=0
$$

3. $B=\left[a_{1}, a_{4}\right]=\left[\begin{array}{ll}2 & 0 \\ 2 & 1\end{array}\right]$

$$
x_{B}=\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]=B^{-1} b=\left[\begin{array}{cc}
1 / 2 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
6 \\
4
\end{array}\right]=\left[\begin{array}{c}
3 \\
-2
\end{array}\right] \quad x \quad=\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]=0
$$

4. $B=\left[a_{2}, a_{3}\right]=\left[\begin{array}{ll}3 & 1 \\ 1 & 0\end{array}\right]$

$$
x_{B}=\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right] \cdot B^{-1} b=\left[\begin{array}{cc}
0 & 1 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
6 \\
4
\end{array}\right]=\left[\begin{array}{c}
4 \\
-6
\end{array}\right] \quad x \quad=\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]=0
$$

5. $B=\left[a_{2}, a_{4}\right]=\left[\begin{array}{ll}3 & 0 \\ 1 & 1\end{array}\right]$

$$
x_{B}=\left[\begin{array}{l}
x_{2} \\
x_{4}
\end{array}\right]=B^{-1} b=\left[\begin{array}{rr}
1 / 3 & 0 \\
-1 / 3 & 1
\end{array}\right]\left[\begin{array}{l}
6 \\
4
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \quad x \quad=\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]=0
$$

6. $B=\left[a_{3}, a_{4}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
x_{B}=\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]=B^{-1} b=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
6 \\
4
\end{array}\right]=\left[\begin{array}{l}
6 \\
4
\end{array}\right] \quad x \quad=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0
$$

The points corresponding to $1,2,5,6$ are basic feasible solutions. The points obtained by 3 and 4 are not feasible, because they violate nonnegativity restrictions.

Therefore four basic feasible solutions are

$$
x_{1}=\left[\begin{array}{c}
1.5 \\
1 \\
0 \\
0
\end{array}\right] \quad x_{2}=\left[\begin{array}{l}
2 \\
0 \\
2 \\
0
\end{array}\right] \quad x_{3}=\left[\begin{array}{l}
0 \\
2 \\
0 \\
2
\end{array}\right] \quad x_{4}=\left[\begin{array}{l}
0 \\
0 \\
6 \\
4
\end{array}\right]
$$

When these solutions are projected in E^{2}, the following points will be obtained.

$$
x_{1}=\left[\begin{array}{c}
1.5 \\
1
\end{array}\right] \quad x_{2}=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \quad x_{3}=\left[\begin{array}{l}
0 \\
2
\end{array}\right] \quad x_{4}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

These points are actually extreme points that are found graphically. In general number of basic feasible solutions is less than or equal to

$$
\binom{n}{m}=\frac{n!}{m!(n-m)!}
$$

For example problemnumber of basic feasible solutions computed from above equation is 6 .

Since the number of basic feasible soluiotns is bounded by $C(n, m)$, all basic feasible solutions may be listed and the one with the best objective function value may be chosen. This procedure is not practical and satisfactory for many reasons. First of all the number of basic feasible solutions may be very large. Second, this procedure does not give an information about the problem's nature whether it is bounded or not. Also the feasible region may be empty. In that case this stituation is not realized until all computations of $B \quad b$ are done. Therefore the simplex method is the best way. It moves from one extreme point to another extreme point with a better objective function value and discovers whether the feasible region is empty or not. The foundation of simplex method is to find a new basic feasible solution with a better objective value.

Consider the following LP problem.

$$
\begin{array}{ll}
\operatorname{Max} & c^{\top} x \\
\text { s. to } & A x=b, \quad x \geqslant 0
\end{array}
$$

$\left(B^{-1} b>0\right)^{\top}$ is an initial basic feasible solution with objective value z_{0} is given by

$$
z_{0}=c\left(B^{-1} b \quad 0\right)^{\top}=C_{B} B^{-1} b
$$

Since $b=A x=B x_{B}+N x_{N}$, then

$$
\begin{aligned}
& x_{B}=B^{-1} b-B^{-1} N x_{N} \\
& x_{B}=B^{-1} b-\sum B^{-1} a_{J} x_{J}
\end{aligned}
$$

Let's substitute z_{c} and x_{B} into objective function. We find $z=c x$

$$
\begin{aligned}
& =c_{B} x_{S}+c_{n i} x_{N} \\
& =c_{B}\left(B^{-1} b-\sum B^{-1} a_{J} x_{J}\right)+\sum c_{J} x_{J} \\
& =z_{c}-\sum\left(z_{J}-c_{J}\right) x_{J}
\end{aligned}
$$

where $z_{J}=C_{B} B^{-1} a_{J}$ for each nonbasic variables. Since we are maximizing, it will be to our benefit to increase x_{J} from zero whenever $z_{J}-c_{J}<0$. Therefore we have to find the most negative $z_{J}-c_{J}$ value (suppose it is $z_{k}-c_{k}$). If x_{k} is increased, the current basic variables must be modified. Let $x_{B}=B^{-1} b-B^{-1} a_{k} x_{k}, y_{k}=B^{-1} a$ and $b=B^{-1} b$, then we can write basis variables as follows.

$$
x_{B}=\left(\begin{array}{l}
x_{B 1} \\
x_{B 2} \\
\cdot \\
\dot{x}_{B r} \\
\dot{x}_{B m} \\
x_{B m}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
\cdot \\
\dot{b} \\
\dot{b} \\
b_{m}
\end{array}\right)-\left(\begin{array}{l}
y_{1 k} \\
y_{2 k} \\
\cdot \\
\dot{y}_{r k} \\
\dot{y_{m k}}
\end{array}\right) x_{k}
$$

As it could be observed from above equation, x_{k} can not be increased infinitely. Because nonnegativity restrictions must be considered. In order to be able to preserve nonnegativity, x_{k} can be increased until the first point in
the basis drops to zero (assume it is x). This point can be calculated from the following equation.

$$
b_{r} / y_{r k}=\underset{1 \leqslant i \leqslant m}{ } \quad \operatorname{minimum~}_{i}\left\{b_{i} / y_{k} \quad: y_{i k}>0\right\}=x_{k}
$$

x_{k} is called the entering variable, $X_{B r}$ which drops to zero first is called blocking or leaving variable.
Let. $A=\left[\begin{array}{llll}2 & 3 & 1 & 0 \\ 2 & 1 & 0 & 1\end{array}\right]$ and $B=\left[a_{3}, a_{4}\right]$ and $z_{c}=0$.

$$
x_{B}=\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]=B^{-1} b=\left[\begin{array}{l}
6 \\
4
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

In order to improve this basic feasible soluiton, $z_{j}-c_{j}$
values for nonbasic variables must be calculated.

$$
\begin{aligned}
z_{1}-c_{1} & =c_{B} B^{-1} a_{1}-c_{1} \\
& =(000)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
2
\end{array}\right]-4 \\
& =-4
\end{aligned}
$$

$$
z_{2}-c_{2}=c_{13} B^{-i} a_{2}-c_{2}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
0 & 0
\end{array}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]-3 \\
& =-3
\end{aligned}
$$

Since $z_{1}-c_{1}$ is the most negative, the solution will be

$$
\begin{aligned}
& x_{B}=B^{-1} b-B^{-1} a_{1} x_{1} \\
& {\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
6 \\
4
\end{array}\right]-\left[\begin{array}{l}
2 \\
2
\end{array}\right] x_{1}}
\end{aligned}
$$

The value of x_{1} will be 2 and $x_{4}=0$. The new basis $x_{B}=\left(x_{3}, x_{i}\right)^{\top}$ with the objective value is 8 . This procedure can be repeated until all $z_{j}-c_{j} \geqslant 0$, then the optimum z^{*} will be obtained.

All necessary background about simplex method was given
in previous pages. The steps of simplex method are given below.

STEP 1: Define variables and write mathematical statement of the problem.

STEP 2: Put the problem in standart form.
STEP 3: Add or subtract slack variables.
STEP 4: Assemble the coefficients into an initial
simplex tableau. If an initial basis is present go to step 6 , otherwise go to step 5.

STEP 5: If a complete identity matrix is not visible in the initial tableau, append the missing unit vectors to the tableau and associate with very high cost in the objective function (M-Technique).

STEP 6: Evaluate the solution represented therein, as to whether it is optimal. Calculate $z_{j}-c_{j}$ for each column vector.

STEP 7: If all $z_{j}-c_{J}$ are nonnegative (for maximization problem), or nonpositive (for minimization) stop. Otherwise identify a column vector with a nonterminal $z_{j}-c_{j}$ as a vector to come into the basis (say P_{k})

STEP 8: Calculate the ratios $b_{i} / y_{i j}$ for each $y_{i k}$ and choose the smallest $i=r$, replace variable k with variable r.

STEP 9: If $a_{r k}$ is the pivotal element and $a_{i j}$ is the updated value of $a_{i_{j}}$ the iteration will be accomplished this way.

$$
a_{r J}^{\prime}=a_{r J} / a_{r k}
$$

$$
a_{i J}^{\prime}=a_{i J}-a_{i k} a_{r J}^{\prime}
$$

Actually the above calculation is the process of creating a unit vector in column k with $a_{r k}^{\prime}=1$. It can be done by elementary row operations.

The example problem is solved by using simplex method. Step 1 \& 2: Mathematical model

```
Max 4*X1 + 3**2
s.to 2*X1 + 3* X2 \leqslant 6
2*X1 + X2 \leqslant 4 , X1,X2 \geqslant0
```

Step 3:

$$
\begin{aligned}
& \text { Max } 4 * X 1+3 * X 2 \\
& \text { s.to } 2 * X 1+3 * X 2+X 3 \quad X_{2}+X_{2} \leqslant 4 \\
& 2 * X 1+X i \quad \geqslant 0, i=1, \ldots 4
\end{aligned}
$$

Step4: Initial Simplex Tableau
Iteration 1:

| Basic | X1 | X2 | X3 | X4 | Solution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x_{0} | -4 | -3 | 0 | 0 | 0 |
| X3 | 2 | 3 | 1 | 0 | 6 |
| X 4 | 2 | 1 | 0 | 1 | 4 |

The graphical representation of of solution space is given in Figure 5.

Figure 5. Graphical Representaion of Solution Space

Step 5: The initial solution is x_{3} and x_{4}.
Step 6 \& 7:
An initial basic feasible solution is at point a with $x_{1}=x_{2}=0$ and $x_{3}=6, x_{4}=4$. Entering variable is the most negative coefficient in row x_{0} from iteration $1 . X 1$ is the entering variable with the value of -4 . Table V represents basic variables with the ratios.

TABLE IV
BASIC VARIABLES AND RATIOS

Basic Var.	Solution	R1	Ratio
$X 3$	6	2	$6 / 2=3$
$X 4$	4	2	$4 / 2=2$

Since the ratio corresponding to the basic variable $X 4$ is minimum, $X 4$ is the leaving variable. The coefficient at the intersection of column $X 1$ and row $X 4$ is selected as pivot element.

Iteration 2:

Basic	1	X1	X2	X3	X4	Solution
X0	0	-1	0	2	8	
X3	0	2	1	-1	2	
X1	1	$1 / 2$	0	$1 / 2$	2	

Iteration 3:

The coefficient of X 2 is still negative , therefore X2 will be the entering variable and X3 will be leaving variable.

Basic	1	$X 1$	$X 2$	$X 3$	$X 4$	1	Solution
x_{0}	0	0	$1 / 2$	$1 / 2$	9		
$X 2$	0	1	$1 / 2$	$-1 / 2$	1		
X1	1	0	$-1 / 4$	$3 / 4$	$3 / 2$		

Since all coefficients are nonnegative, the optimum is reached with $X 1=1.5, \quad X 2=1$ and $z=9$.

As it was mentioned before, the simplex method gives information about the nature of the problem. The solution is said to be degenerate when one or more basic variables becomes zero. An unbounded solution can occur when the solution space is unbounded. In that case the value of the objective function can be increased indefinitely. This case
is illustrated in Figure 6.

Figure 6. Unbounded Solution

Alternative optimal solution occurs when the objective function is parallel to a binding constraint. In such cases, problem has an infinite number of solutions with each solution yielding the same value of the objective function. Figure 7 an illustrates alternative optimal solution.

Figure 7. Alternative Optimal Solution

Finally, nonexisting feasible solution occurs when the solution space is empty. In that case there is no point that satisfies all constraints.

CHAPTER IV

A METHOD FOR THE SOLUTION OF INTERVAL LINEAR PROGRAMMING PROBLEMS

Abstract

A linear programming problem is the minimization or maximization of a linear function over a polyhedral set [see Appendix A]. The simplex method, which exploits extreme points and directions of the polyhedral set defining the problem, is widely used for the solution of LP problems. In this chapter, the solution of interval linear programming problem whose parameters are intervals will be discussed.

An interval linear programming problem is

Maximize PZ subject to $A Z \leqslant B$

where A is mxm interval matrix, P is n dimensional interval vector and B is m dimensional interval vector. The problem is to find an interval vector Z which contains the set of solutions to the above problem.

Before attempting to solve the problem, the solvability of the problem should be known. There are two ways to check this property. One is to apply the simplex methodto solve any LP problem which is a subsystem of a given ILP problem. The other one is to check all extremal subsytemsto determine
whether they are feasible [see Appendix A]. The second approach requires checking of 2^{p} extremal subsystem (p is the number of rows of the matrix A).

The method developed by Krawczyk [26] consists of four parts:
(i) INITIAL APPROXIMATE SOLUTION
(i1) TEST FOR BASIS CHANGE
(iii) ALGORITHM FOR SOLUTION
(土v) TEST FOR NONNEGATIVITY
(i) INITIAL APPROXIMATE SOLUTION

To find an initial basis, an approximate solution is required. Particular matrices $p \in P, b \in B$ and $A_{r} \in A$ must be chosen. The problem for this particular selection will be

$$
\begin{array}{ll}
\operatorname{Maximize} & p x \\
\text { subject to } A x=b
\end{array}
$$

$x \geqslant 0$
where A_{p} is mxm real matrix, p and bare real vectors. \bar{Z} is the solution of above problem.

Let S be the index set of all basis variables of the solution z. After rearranging x vector, let $x^{\top}=\left(x^{\prime}, x^{\prime \prime}\right)$. x^{\prime} is an m dimensional vector consisting of basis components of n dimensional vector x. Similarly $x^{\prime \prime}$ is $n-m$ dimensional vector consisting of all nonbasis components of x.

The following notations are used.
A_{r}^{\prime} denotes an mxm matrix consisting of basis columns of A_{r} $A_{r}^{\prime \prime} m x(n-m)$ matrix consisting of the nonbasis columns of A_{r}

```
A' mxm interval matrix consisting of basis columns of A
A" mx(n-m) interval matrix consisting of nonbasis columns
    of A
P' m dimensional interval vector consisting of objective
    coefficients of basis variables
Pn (n-m) dimensional interval vector consisting of
    objective coefficients of nonbasis variables
p\prime m dimensional real vector of basis variables of p
p" (n-m) dimensional real vector
A'
A }\mp@subsup{}{}{\top
(ii) TEST FOR BASIS CHANGE
```

To check the applicability of the method to a given problem, it must be determined that the set of all solutions has the same basis as \bar{z}.

To determine the possible basis changes, $z_{J}-c_{J}$ values for all nonbasic variables must be calculated. Consider the following linear programming problem,

$$
\begin{array}{ll}
\text { Maximize } & a=c \quad x \\
\text { subject to } & A_{\Gamma} x=b \\
& x \geqslant 0
\end{array}
$$

There is a basic feasible solution. The objective value z is given by

$$
z_{0}=c\binom{\left(A_{r}^{\prime}\right)^{-1} b}{0}=c^{\prime}\left(A_{r}^{\prime}\right)^{-1} b
$$

The objective function can be written in terms of

$$
\begin{aligned}
Q & =c x \\
& =c^{\prime} x^{\prime}+c^{n} x^{n}
\end{aligned}
$$

$$
Q=z_{0}-\sum\left(z_{J}-c_{J}\right) x_{J}
$$

where $z_{J}=c^{\prime} A_{\Gamma}^{-1} a_{J}$ and a_{J} is the jth column of A_{r}^{\prime} matrix. The basis changes can be tested by checking the values of $z_{J}-c_{J} \cdot s$. For a maximization problem, if all $z_{j}-C_{j}$'s are greater than zero, then the optimum is reached. The test is basically the interval version of the $z_{J}-c_{J}$ test.

It is possible to find an interval vector V containing the set of solutions of $\left.\left(A_{r}\right)^{\prime}\right)^{\top}=p^{\prime}$ for all $A_{r}^{\prime} \in A^{\prime}$ and $p^{\prime} \in P^{\prime}$. The method of Moore [31] for solution of linear systems is used to solve $\left(A_{i}^{\prime}\right)^{\top} v=p^{\prime}$. The interval solution vector V can be obtained from the following formula.

$$
\begin{aligned}
& v(k+1)=\left\{Y P^{\prime}+E v(k)\right\} \cap V^{(k)} \quad k=0,1,2, \ldots \\
& v_{i}(0)=[-1,1]| | Y P^{\prime}| | /(1-||E||) \quad i=1,2, \ldots n
\end{aligned}
$$

where $Y=\left(m\left(A^{\prime}\right)\right)^{-1}, E=I-Y A^{\prime}$.
It has been explained and proved that if ||I - Y $A^{\prime}| |$ < the system has unique solution x for A and P, and the sequence V converges after a finite number of steps. For a given system, $z_{J}-c_{J}$ for nonbasic variables can be written as

$$
z_{J}-c_{J}=p^{\prime}\left(A_{\Gamma}^{\prime}\right)^{-1} a_{J}-P n
$$

where a_{J} is the j th column of $\left(A^{\prime \prime}\right)^{\top}$ and $P^{\prime}\left(A_{r}^{\prime}\right)^{-1}=V$. If $\left(A^{n}\right)^{\top} V-P^{n}>0$, the optimum is reached and the set of solutions has the same basis as z. A problem arises when they do not have the same basis. In that case, the method
terminates.

If at least one of the $z_{J}-c_{J}<0$, there is a possibility of improvement in the objective function. By choosing the most negative $z_{J}-c_{J}$ value, the nonbasic variable (x_{k}) which will enter the basis can be determined. Now, the only problem left is to choose the leaving variable which will become nonbasic. The method suggested here to select the leaving variable is to find all of the adjacent extreme points, and eliminate the extreme points not containing x_{k}. If there is more than one left, the one resulting in the best objective value is chosen. Figure 8 shows the adjacent points and better objective value.

Figure 8. Adjacent Extreme Poinnts

AP1 and AP2 are the vertices adjacent to the solution, and AP1 has a better objective value.

After determining the basis change, the A_{r}^{\prime} matrix can be rearranged to contain the new basis and used in the rest of the algorithm.

(iii) ALGORITHM FOR SOLUTION

Suppose that z^{\prime} is the solution of $A_{r}^{\prime} z^{\prime}=b^{\prime}$ for $A_{i}^{\prime} \in A^{\prime}$ and $b^{\prime} \in B^{\prime}$. Solve this specific system of $A_{r}^{\prime} z^{\prime}=b^{\prime}$ and let \bar{z}^{\prime} be an approximate solution of $A_{-}^{\prime} z^{\prime}=b^{\prime}$. The approximate inverse of the matrix A_{Γ}^{\prime} which was used in the initial solution is the matrix Y.

The set of solutions to the interval linear programming problem is contained in the interval vector Z, computed as follows.

$$
\begin{array}{ll}
z_{i}=\bar{z}_{i}+q[-1,1] & \text { (basis components of } z) . \\
z^{\prime \prime}=0 & \text { (nonbasis components of } z \text {) }
\end{array}
$$

where, $q=\left(||Y||| | A^{\prime} \bar{Z}^{\prime}-B| |\right) /(1-R)$.

$$
R=\left\|I-Y A^{\prime}\right\|<1
$$

The formula for the computation of Z was developed and proved by Krawczyk [26]. The derivation of the formulas is given below.

The given system

$$
A z=B
$$

has an exact solution when

$$
A_{1} z_{1}=b
$$

or

$$
A_{1} z_{1}-b=0
$$

It has an approximate solution when

$$
\begin{equation*}
A_{1} \tilde{z}_{1}-b=d \tag{1}
\end{equation*}
$$

where, $A, \in A$ and $b \in B$

$$
A_{1} \tilde{z}_{1}-b-A_{1} z_{1}+b=d
$$

$$
A_{1}\left(\tilde{z}_{1}-z_{1}\right)=d
$$

$$
\begin{equation*}
\tilde{z}_{1}-z_{1}=A_{1}^{-1} d \tag{2}
\end{equation*}
$$

- By using the properties of interval, absolute value and matrix norm, it is possible to show that

$$
1 \times 1<\|x 11, \quad\| x\|<\| x \|
$$

and

$$
||\mathrm{Ax}\|<\| \mathrm{A}|| \mid 1 \mathrm{x} \|
$$

where x is a real vector and X is an interval vector. Therefore,

$$
\left|\widetilde{z}_{1}-z_{1}\right|<\| A^{-1}| || | d| |
$$

since $\quad R=I-Y A$. Then, $A^{-1}=(I-R)^{-i} Y$ and

$$
\begin{equation*}
\|A||<\| Y|| /(1-||R| 1) \tag{3}
\end{equation*}
$$

substituting equations (1) and (3) into equation (2)

$$
\begin{aligned}
& \tilde{z}_{1}-z_{1}<\frac{1|Y|| |\left|A z_{1}-B\right| 1}{(1-||R| 1)}=q \\
& \tilde{z}_{1}-q<z_{1}<\tilde{z}_{1}+q
\end{aligned}
$$

Therefore, initial solution $z^{\prime} 0$) can be written as
$\left.z^{(}\right)=\tilde{z}_{1}+q[-1,1]$
for basis components. It is possible to find a narrower interval vector containing the set of solutions with the following formula. Set $z^{(0)}=z^{\prime}$,

$$
z^{(K+1)}=z^{(K)} \cap\left\{Y B+\left(I-Y A^{\prime}\right) z^{K}\right\}
$$

The iterations will yield a nested sequence of interval vectors and converge in a finite number of steps when they are performed with limited precision on a computer. After the kth step the final solution will be
$z=z^{(k)}$
(iv) TEST FOR NONNEGATIVITY

For most practical problems, the variables represent physical quantities. Therefore, they must be nonnegative. Also, the simplex method is designed to solve linear programming where the variables are nonnegative. The nonnegativity of the solution vector Z must be checked.

Termination Criterion

For any iterative interval method which produces a nested sequence of intervals whose end points are represented by finite precision numbers on computer, a natural stopping criterion exists. Since the sequence will converge in a finite number of steps, the elements z^{k} of the sequence $\left\{z^{k}\right\}$ can be computed until the condition $z^{k+1}=z^{k}$ is reached. The flowchart given in Figure 9 is the summary of the steps of the algorithm.

Figure 9. Flow Chart of The Algorithm

TESTING

Test Problem 1.

Maximize [0.95, 1.05]*X1 + [2.85, 3.15]*X2
Subject to
$[0.95,1.05] * \mathrm{X} 1+[0.95,1.05] * \mathrm{X} 2<[5.7,6.3]$
$[-1.05,-0.95] * \mathrm{X1}+[1.9,2.1] * \mathrm{X} 2<[7.6,8.4]$
The LP problem solved by simplex method is
Maximize X1 + 3*X2
Subject to

$$
\begin{aligned}
X 1+X 2 & \leqslant 6 \\
-X 1+2 * X 2 & \leqslant 8, \quad \text { all } X_{i} \geqslant 0
\end{aligned}
$$

The solution space is shown in figure 10.

Figure 10 - Solution Space of Test Problem 1

The initial solution from simplex method is $X 1=4 / 3$ and $X 2=14 / 3$ $R=11 I-Y A 11=0.11667032$ $q=1.15660477$

The initial interval vector is

$$
z^{\prime} c_{1}=\left(\begin{array}{ll}
{[0.173395157,} & 2.48660469] \\
{[3.50339508,} & 5.81660461]
\end{array}\right)
$$

After six iterations, the sequence converges. The optimum solution is

$$
z=\left(\begin{array}{lll}
{[0.545046389,} & 2.12162113] \\
{[4.10096264,} & 5.23237324]
\end{array}\right)
$$

The boundaries of optimum solution is shown in figure 11.

If points A, B, C, D are computed graphically, their values are
$A=(0.648910411$,
4.779661017)
$B=(1.473684211$,
5. 157894737)
$C=$ (2.008354219,
4.623224728)
$D=(1,206349206$,
4. 222222222)

When the two solutions are compared, it can be observed that the computer solution is very close to the graphical solution. The difference between the results is due to roundoff error.

Test Problem 2.

Maximize $[2.85,3.15] \mathrm{X1}+[0.95,1.05] \mathrm{X} 2+[2.85,3.15] \mathrm{X} 3$
Subject to
$[1.9,2.1] * X_{1}+[0.95,1.02] * X 2+[0.95,1.05] * X 3 \leqslant[1.9,2.1]$
$[0.95,1.05] * X 1+[1.9,2.1] * X 2+[2.85,3.15] * X 3 \leqslant[4.75,5.25]$
$[1.9 .2 .1] * X 1+[1.9,2.1] * \mathrm{X} 2+[0.95,1.05] * \mathrm{X} 3 \leqslant[5.7,6.3]$
all Xi $\geqslant 0$
The LP problem ueed to obtain an initial solution is Maximize $\quad 3 \times 1+X 2+3 \times 3$

Subject to

$$
\begin{array}{r}
2 * X 1+X 2+X 3 \leqslant 2 \\
X 1+2 * X 2+3 * X 3 \leqslant 5 \\
2 * X 1+2 * X 2+X 3 \leqslant 6 \\
X i \geqslant 0 \text { for } i=1,2,3
\end{array}
$$

The solution vector is

$$
X_{s}=\left(\begin{array}{c}
0.2 \\
0 \\
1.6 \\
0 \\
0 \\
4.0
\end{array}\right)
$$

$\mathrm{R}=0.17$ and
$q=1.28675270$
The initial interval solution is

$$
z=\left(\begin{array}{c}
{[-1.08675194,} \\
0 \\
{[0.313245000,} \\
0.88675000] \\
0 \\
{[2.713247000,}
\end{array}\right)
$$

After five iteration, the optimum interval is reached as

$$
Z=\left(\begin{array}{c}
{[0,0.440287650]} \\
0 \\
{[1.3154,1.8446]} \\
0 \\
0 \\
{[3.6854,}
\end{array}\right)
$$

CHAPTER VI

SUMMARY AND CONCLUSIONS

In the previous chapters and in the program, the residual matrix $R=(I-Y A)$ and norm of $R(\|R\|)$ are computed before we really start the algorithm. The necessary condition was $\|R\|<1$. The width of the intervals affects the R. It was observed that whenever elements of A matrix has large intervals, it is quite possible to get $R>1$. It is true that even if one interval in the matrix has width> 1 , the norm of R will be greater than one. But if $\|R\|$ <1, then for any real matrix $R_{R} \subset E$ it is possible to use power series representation

$$
\left(I-R_{R}\right)^{-1}=I+R_{R}+R_{R}^{2}+\ldots
$$

and

$$
\left(I-R_{R}\right)<1+\|R\|^{i}+\|R\|^{2}+\ldots \ldots \leqslant 1 /(1-\|R\|) .
$$

For n dimensional problems it is possible to get an \|R\| value greater than one, while the simplex problem has an optimum solution. Therefore it may not be possible to find an interval solution for the given problem.

The second point is the test of the basis. In the original algorithm, whenever the test for basis check fails, the algorithm terminates without trying to find an alternative solution. This weakness is corrected by moving
the basis to an adjacent point having better objective value. Therefore the modified method has high possibility of leading to the final solution.

The interval linear programming problem can be applied all linear programming problems, eapecially if their data are not certain. It is always possible to find physical models that may require the application of interval linear programming. In real life, most of the modele developed for real physical system use approximations or estimations. Therefore their parameters and data can not be represented precisely. Interval linear programming is a good way to observe the system behaviour within given limits. The computer program written for the solution of interval linear programming problems can be used for n-dimensional cases with slight modifications. The small interval arithmetic package is very useful and portable eventhough it contains only basic operations. It can be uaed in any program whenevr an interval arithmetic operation becomes necessary.

Basic applications of interval arithmetic and developed methods are discussed in Chapter II. Most of the areas are open to discussion. Most of the studies done so far have concentrated on achieving the most efficient ways to find sharp upper and lower bounds on the solutions.

It may sound like that all computations should be carried out using interval techniques. In fact only interval methods really provide the tools which are helpful in
analyzing computational errors, finding upper and lower bounds on set of solutions and providing termination criteria for iterative methods.

SUGGESTIONS FOR FURTHER STUDY

Since interval mathematics is a new and growing area of applied mathematics, there have been many studies done in different areas of interval mathematice. But regardless of the class of application and study, the common point is the search for efficient ways of computation of intervale by machines. Studies in computer hardware and software can be done to find efficient representations of intervals. Also it has been observed that previously developed interval packages are quite slow. When the precision is vital, it is necessary and important to use intervals to eliminate roundoff errors. The interval arithmetic package can be modified to fit the available compiler or operations can be performad by using assembler language.

Also, the effects of changes of the model parameters can be studied. Partiaularly changing the endpoints of intervals , a kind of sensitivity analysis can be applied to study the behaviour of the model under different conditions.

BIBLIOGRAPGHY

(1) Alafeld, Gotz and Jurgen Herzberger. Introduction to Interval Computations. New York: Academic Press Inc., 1983. Paris: Herman , 1970.

Gay, David M. "Perturbation Bounds for Nonlinear Equations." SIAM J. Numer. Anal. 18(1981), pp. 654-663.

Gay, David M. "Solving Linear Interval Equations." SIAM J. Numer. Anal. 19(1982), pp. 858-870.

Gibb, Allan. "Procedures for Range Arithmetic." Comm. of ACM. 4 (1961), pp. 319-320.

Good, Donald I. and R. L. London. "Computer Interval Arithmetic: Definition and Proof of Correct Implementation." J. of ACM. 17(1970, pp.603-612.

Gregory, Robert Todd. Error-Free Computation: Why It Is Needed and Methods for Doing It. Huntington, New York: Robert E. Krieger Publishing Co., Inc., 1980.

Gunn, E. A. and G. J. Anders. "A Comparison of Interval Linear Programming with the Simplex Method." Linear Alqebra and Appl. 38(1981), pp. 149-159.

Hansen, Eldon. "Interval Mathematic in Matrix Computations, Part I. "SIAM J. Numer. Anal. 2(1965), pp. 308-320.

Hansen, Eldon and R. Smith. "Interval Arithmetic in Matrix Computations, Part II." SIAM J. Numer. Anal. $\underline{4}^{(1967)}$) pp. 1-9.

Hansen, Eldon. "A Generalized Interval Arithmetic." Interval Mathematics. Ed. Karl Nickel. Heidelberg: Springer-Verlag, 1975, pp. 7-18.

Hansen, Eldon. "interval Forms of Newton's Method." Computing. 20(1978), pp. 153-163.

Jansen, P. and P. Weidner. "High Accuracy Arithmetic
Software- Some Tests of the ACRITH Problem-Solving Routines." ACM Trans. Math. Software. 12(1986), pp. 62-70.

Jones, S. T. "Locating Safe Starting Regions for Iterative Method: A Heuristic Algorithm. " Interval Mathematics 1980. Ed. Karl L. E. Nickel. New York: Academic Press Inc., 1980, pp. 377-386.

King, J. T. Introductions to Numerical Computation. New York: McGraw-Hill Book Co., Inc., 1984.
(25) Kioutelidis, J.B. "Algorithmic Error Estimation for Approximate Solutions of Nonlinear Systems of Equations." Computing. 19(1978), pp. 313-320.
(26) Krawczyk, R. "Fehlerabschatzung bei Linearer Optimierung." Interval Mathematics. Ed. Karl Nickel. Heidelberg: Springer-Verlag, 1975.
(27) Kulish, U. "An Axiomatic Approach to Rounded Computations." Numer. Math. 18(1971), pp. 1-17.
(28) Kulish, U. and W. Miranker. Computer Arithmetic in Theory and Practise. New York: Academic Press, Inc., 1981.
(29) Luenberger, David G. Linear and Nonlinear Programming. Massachussets: Addison-Wesley Publishing Co., 1984.
(30) Moore, Ramon E. Interval Analysis. Englewood Cliffs, N. J. : Prentice-Hall, Inc., 1966.

Moore, Ramon E. Methods and Application of Interval Analysis. Philadelphia: Society for Industrial and Applied Mathematics, 1979.
(32) Moore, Ramon E. and J. B. Kiostelidis. "A Simple Test for Accuracy of Approximate Solutions to Nonlinear (or Linear) Systems." SIAM J. Numer. Anal. 17(1980), pp. 521-529.
(33) Moore, Ramon E. "New Results on Nonlinear Systems." Interval Mathematics 1980. Ed. Karl L. E. Nickel. New York: Academic Press Inc., 1980.
(34) Dettli, W. "On the Solution Set of a Linear System with Inaccurate Coefficiente." SIAM J. Numer. Anal 2(1965), pp. 115-118.
(35) Ortega, James M. Numerical Analysis- A Second Course. New York: Academic Press, Inc., 1972.
(36) Pachner, Jaroslav. Handbook of Numerical Analysis Applications. New York: McGraw-Hill Book Co., Inc., 1984.
(37) Rall, L. B. "Interval Methods for Fixed-Point Problems." Numer. Funct. Anal. and Optimiz. g(1987), pp.35-59.
(38)
(44) Shampine, Lawrence F. and Richard C. Allen, Jr. Numerical Computing. Philadelphia: W. B. Saunders Co., Inc., 1973.
(46) Taha, Hamdy. Operations Research an Introduction. 2nd ed. New York: MacMillan Publishing Co., Inc., 1976.
(47) Yohe, J.M. "A Reasonably Portable Package." ACM Trans. Math. Software. S(1979), pp. 50-63.

APPENDIX A

DEFINITIONS

Definition 1

Polyhedral Set
A nonempty set S in E_{n} is called a polyhedral set if it is the inter section of a finite number of closed half spaces, that is, $S=\left\{x: p_{i}^{i} x<\alpha i\right.$ for $\left.i=1,2, \ldots, m\right\}$, where p_{i} is a nonzero vector and χ_{i} is a scalar for $i=1,2, \ldots, m$.

Definition 2

Extremal Subsystem
For any $A_{r} \in A$ and $b \in B$, a system

$$
A_{5} x=b
$$

is called a subsystem of an interval linear system $A x=B$. A subsystem is called an external subsystem of $A x=B \quad i f$ for each $i=1, \ldots ., m$, its ith equation has either the form $(A x)_{i}=\bar{B}$ or the form $(\bar{A} x)_{i}=B$.

Definition 3

Standart Form

All constraints are equations except for the nonnegativity constraints which remain inequalities ($\geqslant 0$). The right-hand side of each element is nonnegative. All variables are nonnegative . Objective function is of the maximization or the minimization type.

APPENDIX B

PROGRAM LISTING


```
        DATA (BP(I),I=1,2)/5.8,8.1/ 
        DATA (IBASIS(I),I= 1,2)/1,2/
        DATA (ZS(I),I=1,4)/1.33,4.66,2*0.0/
        DATA ( (B(I,1,K),K=1,2).I=1.2),5.7,6.3.7.6.8.4/
        DATA ((P(I, 1,K),K=1,2),I=1,4)/0.95,1.05,2.85,3.15,4*0.0/
        DATA (NB(I),I=1,2)/3,4/
        DATA (PS(I,1),I=1,2)/1.0,3.0/
        DATA (BS(I).I=1,2)/6.0.8.0/
        MD=2
        ND=4
C READ INITIAL MATRIX AA
        DO 79 I=1,MD
            DO 79 J=1,ND
                DO 79 K=1,2
                    READ(5,3)AA(I,U,K)
                        FORMAT(F12.6)
    79 CONTINUE
c
C
    READ THE mATRIX USED IN SIMPLEX FOR INITIAL SOLUTION
    DO 300 I=1,MD
            DO 300 J=1,ND
                READ(5,3)MAT(I,U)
    3OO CONTINUE
        L=O
        k=0
        DO 310 J=1,ND
            DO 311 N=1.MD
                IF(U.EQ.IBASIS(N)) THEN
                    L=L+1
                    DO 312 I=1.MD
                    ARP(I,L)=MAT(I,U)
                    CONTINUE
                    GO TO 310
                ENDIF
311 CONTINUE
            k=k+1
            DO 313 I=1,MD
                ANB (I,K)=MAT(I,U)
    313 CONTINUE
    310 CONTINUE
c
c READ INTERVAL MATRIX A
    DO 7O I=1,MD
            DO 70 J=1,MD
                DO 70*K=1,2
                    A(I,U,K)=AA(I,IBASIS(U),K)
                    IM(I,U,K)=0.0
70 CONTINUE
        DO 78 I=1,MD
            DO 78 J=1,(ND-MD)
                DO 78 K=1,2
    00000160
    00000170
    00000172
    0 0 0 0 0 1 7 6
    00000177
    00000178
    00000200
    00000203
    00000204
    00000205
    00000206
    00000207
    00000208
    00000209
    00000210
    00000211
    00000212
    00000213
    00000214
    00000215
    00000216
    00000217
    00000218
    00000219
    00000220
    00000221
    00000222
    0 0 0 0 0 2 2 3
    00000224
    00000225
    00000226
    00000227
    00000228
    00000229
    00000230
    00000231
    00000232
    00000233
    C0000234
    00000235
    00000236
    00000237
    00000293
    00000294
    00000295
    00000296
    00000297
    00000298
    00000299
    00000300
    00000301
    00000310
    00000310
    00000330
```

```
                    ADP(I,U,K)=AA(I,NB(J),K) 00000340
```



```
    DO 71 I=1,MD
        DO 71 K=1.2
            IM(I,I,K)=1.0
    CONTINUE
    DO 575 I=1,MD
        DO 575 K=1,2
            PP(I,1,K)=P(IBASIS(I),1,K)
    575 CONTINUE
    DO 576 I=1,(ND-MD)
        DO 576 K=1,2
            PDP(I, 1,K)=P(NB(I ), 1,K)
        CONTINUE
C CALL FINEPS TO FIND EPS
    CALL FINEPS(EPS)
C
    DO 400 I=1,MD
        DO 400 J=1,MD
            ARPT}(U,I)=ARP(I,U
            AT(U,I,1)=A(I, U,1)
            AT(U,I,2)=A(I,U,2)
    CONTINUE
    DO 401 I=1,MD
        401 I=1,MD (ND-MD)
            ADPT}(U,I,1)=\operatorname{ADP}(I,U,1
            ADPT}(U,I,2)=\operatorname{ADP}(I,U,2
    4 0 1
    CONTINUE
    DO 402 I=1,MD
        DO 402 J=1,MD
            . TEMP(I,U)=(AT(I,J,1)+AT(I,U,2))/2 .
    4O2 CONTINUE
C C CALL IMSL ROUTINE LINV2F TO GET INVERSE OF TEMP
    IA =2
    N=2
        IDGT=3
        CALL LINV2F(TEMP,N,IA,TI,IDGT,WKAREA,IER)
C
C CALL TEST ROUTINE TO TEST THE APPLICABILITY OF ALGORITHM
C TO GIVEN SPECIFIC SYSTEM
    CALL TEST(ARPT,ADPT,PS,PDP,TI,GOON,MD,ND,IND)
    IF(GOON.AND..TRUE.) GO TO 900
    PRINT *,,*** TEST FAILED ***,
    IF(IND.LT.O) GO TO }99
    PRINT *,' SET OF SOLUTIONS DO NOT HAVE THE SAME BASIS'
    PRINT *,'*** ALGORITHM CAN NOT BE APPLIED ***'
C C FIND ADJACENT EXTREME POINTS
    DO 315 I=1,MD
    00000360
    00000370
    00000380
    00000390
00000391
00000392
00000393
00000394
00000395
00000396
00000397
00000398
00000400
0 0 0 0 0 4 1 0
00000420
00000430
00000440
00000445
00000446
00000447
00000448
00000449
00000451
00000453
00000460
00000470
00000480
00000490
00000500
00000510
00000520
00000521
00000522
00000523
00000524
00000525
00000526
00000527
00000530
00000532
00000533
00000534
00000540
00000511
00000542
00000543
00000544
00000544
00000546
0000005455
00000555
00000565
00000575
00000585
```

```
315
            TB(I)=IBASIS(I)
        K=0
        M=1
        N=2
        IA=2
        IDGT=2
        DD 320 I=1,MD
            DO 321 J=1,(ND-MD)
                TB(I)=NB(U)
C
BUILD BASIS MATRIX
C
        DO 322 I 1=1,MD
            DO 322 I2=1,MD
                            TBAS(I2,I1)=MAT(I2,TB(I1))
        CONTINUE
        DO 323 I1=1,MD
            EP(I1)=BS(I1)
C
C CALL IMSL ROUTINE TO FIND THE BASIS VARIABLES
C
    CALL LEQT2F(TBAS,M,N,IA,EP,IDGT,WKAREA,IER)
        IFL=1
        DO 325 I 1=1,MD
            IF(EP(I1).LT.O.O) THEN
                IFL=O
                    GO TO 321
                ENDIF
        CONTINUE
        IF(IFL.GT.O)THEN
            K=K+1
            FIND=0
            DO 326 I 1=1,MD
                    IF(TB(I1).EQ.IND) FIND=1
                EXTP(K,I 1)=TB(I1)
            CONTINUE
        ENDIF
        IF(FIND.GT.O)THEN
            OBJ=0.O
            DO 350 I 1=1,MD
                    OBU=PS(TB(I 1),1)*EP(I1) +OBU
3 5 0
            CONTINUE
            IF (OBU.GT. MAX)THEN
                        MAX=OBU
                        LEAVE=K
                    DO 355 I2=1,MD
                    ZS(I2)=EP(I2)
                    ENDIF
                            ENDIF
        CONTINUE
                        TB(I)=IBASIS(I)
320 CONTINUE
    DO 390 II=1,K
        PRINT *,(EXTP(II, JJ), JJ=1,MD)
3 9 0 ~ C O N T I N U E
    IF(FIND.GT.O) THEN
```

00000595
00000605
00000606 00000607 00000608 00000609 00000615 00000625 00000635 00000636 00000645 00000646 00000655 00000665 00000675 00000685 00000695 00000705 00000715 00000725 00000726 00000735 00000745 00000755 00000765 00000775 00000785 00000795 00000805 00000815 00000825 00000835 00000845 00000855 00000865 00000875 00000885 00000895 00000905 00000915 00000925 00000935 00000945 00000955 00000965 00000975 00000385 00000995 00000996 00001005 00001015 00001025 00001026 00001027 00001028 00001029

```
C CHANGE THE BASIS
        K=LEAVE
        DO 360 I = 1,MD
            IBASIS(I)=EXTP(K,I)
        DO 361. I= 1,MD
            DO 361 }J=1,M
                ARP(U,I)=MAT(U,IBASIS(I))
    361 CONTINUE
        GO TO 370
        ELSE
            PRINT *,'LEAVING VARIABLE IS NOT ADJACENT TO THE SOLUTION'
            GO TO 999
        ENDIF
    900 PRINT *,'*** TEST SUCEEDED ***'
        PRINT *.,*** ALGORITHM CAN BE APPLIED ***'
C
C SOLVE AR'Z=B'
C COPY BP INTO ZP
C
    370 DO 72 I=1,MD
            ZP(I)=BP(I)
        M=1
        N=2
        IA=2
        IDGT=2
C
C CALL IMSL ROUTINE LEQT2F TO SOLVE AR'Z=B'
    CALL LEQT2F(ARP,M,N,IA,ZP,IDGT,WKAREA,IER)
    PRINT *,'IER MAIN=',IER,'IDGT=',IDGT
    PRINT *,', THE SOLUTION OF AR.Z=B,
            DO 111 I=1,MD
                    WRITE(6,122) ZP(I)
    122 FORMAT(1OX,F12.6)
    111 CONTINUE
C CALL IMSL ROUTINE LINV2F TO GET INVERSE OF A'
C
    IA=2
    N=2
    IDGT=3
    CALL LINV2F(ARP,N,IA,Y,IDGT,WKAREA,IER)
    PRINT *,' THE INVERSE OF A ,
    DO 133 I=1,MD
                            PRINT *, (Y(I,J),J=1,MD)
    133 CONTINUE
C
C Calculate ya
    CALL RIMUL (Y,MD,MD,A,AI)
    PRINT *,', MULTIPLICATION OF Y.A,
    DO 144 I=1,MD
        DO 145 J=1,MD
```

 00001035
 00001045
00001055
00001056
00001065
00001075
00001075
00001085
00001085
00001095
00001105
00001115
00001116
00001117
00001117
0001118
00001119
00001120
00001121
00001122
00001123
00001124
00001125
00001126
00001127
00001127
00001128
00001128
00001129
00001130
00001131
00001132
00001133
00001134
00001135
00001136
00001137
00001138
00001138
00001139
00001139
00001140
00001141
00001142
00001143
00001144
00001144
00001145
00001145
00001146
00001147
00001148
00001149
00001150
00001150
00001151
00001151
00001152
00001153
00001154
00001155
00001155
00001156
00001156
00001157
00001158
00001159
00001160
00001161

```
            PRINT *,AI(I,U,1),' ',AI(I,N,2) 00001162
    145 CONTINUE,, (I,U,1),' ,AI(I,J,2)
            PRINT *,',
144 CONTINUE ,
144 CONTINUE ,
            DO 73 J=1,MD
            CALL SUBI(IM(I,U,1),IM(I,U,2),AI(I,U,1),AI(I,U,2),TEMP1,
        *TEMP2)
            AI (I, U, 1)=TEMP 1
            AI(I,U,1)=TEMP1
        CONTINUE
        PRINT *, , AI=I-YA ,
        DO 166 I=1,MD
            PRINT *,((AI(I,J,K),K=1,2),J=1,MD)
c
C C C AI=I-YA', R=|I-YA'|
    CALL IMNORM(AI,MD,MD,R)
    PRINT *,'R=',R
    PRINT *,'R='.R
        PRINT *,'****ERROR***'
            GO TO 999
            ENDIF
C c calculate ||y|
        CALL RMNORM(Y,MD,MD,NORMY)
        PRINT *,' THE NORM OF Y =',NORMY
C
C calculate a'z'
CALL IRMUL(ZP,MD,1,A,AZ)
C CALCULATE (AZ'-B)
        DO 74 I=1,MD
            AZ(I, 1, 1)=AZ(I, 1,1)-B(I, 1,2)
            AZ(I,1,2)=AZ(I,1,2)-B(I,1,1)
        74 CONTINUE
C
        CALL IMNORM(AZ,MD,1,T)
        PRINT *,'T =',
C
c calculate Q
C
    Q=(NORMY*T)/(1-R)
PRINT *,' Q = ',Q
C
C CALCulate z
    DO 77 I=1,MD
        Z(0,I,1,1)=ZS(IBASIS(I))-Q
        Z(O,I,1,2)=2S(IBASIS(I))+Q
    0 0 0 0 1 1 6 3
    00001164
    00001165
        00001167
00001168
0 0 0 0 1 1 6 9
00001170
00001171
00001172
73
00001173
00001174
00001175
```

```
166 CONTINUE
```

```
166 CONTINUE
```

```
C
00001176
00001177
00001178
00001179
00001180
00001181
0 0 0 0 1 1 8 2
00001183
00001184
00001185
00001186
00001187
00001188
0 0 0 0 1 1 9 0
00001200
00001210
00001220
00001230
00001240
00001241
00001250
00001251
00001260
00001270
00001280
00001290
00001300
00001310
00001320
00001330
00001340
00001341
00001350
00001350
00001360
00001370
00001380
00001390
00001400
00001410
00001420
00001430
00001440
```



```
C 00001890
C 00001891
C************************************************************************ 00001892
```



```
C THIS ROUTINE FINDS THE UNIT ROUNDOFF ERROR,EPS. 00001894
C}0000189
C************************************************************************** 00001896
C 00001897
            SUBROUTINE FINEPS 00001898
            X=1.0
00001898
11 X=X/2.0 00001900
    IF(1.O+X.GT.1.O) GO TO 11 00001901
    EPS=2.0*X 00001902
    *)
    END 00001904
```

```
C}0000190
C*********************************************************************}0000190
C TEST ROUTINE - THIS ROUTINE TESTS THE BASIS CHANGE
C IND: INDICE OF THE MOST NEGATIVE ZU-CJ
C OK : FLAG FOR TEST SUCCESS
C ARPT(*,*) : TRANSPOSE OF ARP
C ADPT(*,*.2) : TRANSPOSE OF ADP
C Y(*,*): INVERSE OF ARPT
C V(*,*,1,2) : SOLUTION OF (ARP.V=PDP)
C
C********************************************************************
    SUBROUTINE TEST(ARPT, ADPT,PS,PDP,Y,OK,MD,ND,IND)
    REAL E(2,2),PS(MD,1),PDP((ND-MD),1,2), ARPT(MD,MD),
    *YP(2,1),EV(2,1,2),V(0:20,2,1,2),Y(MD,MD),ADPT((ND-MD),MD, 2)
    * ,T(2),TEMP(2,1,2)
    LOGICAL OK
C
    PRINT *,'******** TEST ROUTINE *********'
    PRINT **'
    DO 405 I=1,MD
                            PRINT *,(Y(I, j), v=1,MD)
    4O5 CONTINUE
C
C A}=YA
    CALL RMUL(Y,MD,MD,ARPT,E)
    PRINT *,' ** Y*ARPT=E
    DO 418 I=1,MD
        PRINT *,(E(I,U), U=1,MD)
    418 CONTINUE
    PRINT *,' I-YARPT'
    DO 406 I=1,MD
        DD 40G J=1,MD
            IF (I.EQ.U) THEN
                E(I,J)=1.-E(I,J)
                ELSE
                    E(I,U)=-E(I,U)
                ENDIF
                PRINT *,E(I,U)
    406 CONTINUE
C E =A
C R IS THE NORM OF E
    CALL RMNORM(E,MD,MD,R)
    PRINT *,'R=',R
    IF (R.GT.1) GO TO 499
C
    YP=Y*PS
    CALL RMUL(Y,MD,1,PS,YP)
00001907
00001908
00001909
00001910
00001911
00001912
00001913
00001914
00001915
00001916
00001917
00001918
00001919
00001920
00001930
00001960
0 0 0 0 1 9 8 0
00001990
00002010
00002020
00002030
00002030
00002031
00002040
00002050
00002051
00002052
00002053
00002054
00002055
00002056
00002070
00002080
00002080
00002081
00002082
00002083
00002084
00002085
00002086
00002130
00002140
00002150
00002150
00002151
00002152
00002152
00002170
00002180
00002181
00002182
00002183
00002190
```

C		
C	P IS THE NORM OF Y	00002191
C	P IS THE NORM OF YP	00002192
	CALL RMNORM (YP MD $1, \mathrm{P}$)	0 OOO2 193
	$T M P=P /(1 .-R)$	00002200
	PRINT * , 'TMP = ' , TMP	00002210
	PRINT , TMP = , TMP	00002220
C	$V(0)=(-1,1) P /(1-R)$	00002221
C	$V(0)=(-1,1) P /(1-R)$	00002222
		00002223
	DO $407 \mathrm{I}=1, \mathrm{MD}$ (V (0, $1,1,1)=-$ MMP	00002230
	$V(0, I, 1,1)=-$ TMP	00002240
	$V(0, I, 1,2)=T M P$	00002250
407	CONT INUE	
C		00002260
C	CALCULATE $\quad V(K+1)=\{Y . P S+E . V(K)\}+V(K)$	00002261
C	CaLCULATE $V(K+1)=\{Y . P S+E . V(K)\}+V(K)$	00002270
	DO $410 \mathrm{I}=1,20$	00002280
	DO $419 \mathrm{~J}=1 . \mathrm{MD}$	00002290
	$\operatorname{EV}(\mathrm{U}, 1.1)=0.0$	$\begin{aligned} & 00002291 \\ & 00002292 \end{aligned}$
	$\operatorname{EV}(\mathrm{U}, 1,2)=0.0$	00002293
419	CONTINUE	00002294
	DO $414 \mathrm{~J}=1, \mathrm{MD}$	00002295
	DO $414 \quad J=1, M D$	00002296
		00002297
	DO $413 L=1,2$, ${ }^{\text {a }}$	00002298
413	T(L) $=\mathrm{E}(\mathrm{U}, \mathrm{K}) * V(\mathrm{I}-1, \mathrm{~K}, 1, \mathrm{~L})$	00002299
	IF (T(1).GT.T(2)) THEN	00002300
	$T P=T(1)$	00002301
	$T(1)=T(2)$	00002302
	T ${ }^{T}(2)=T P$	00002303
	ENDIF	00002304
	$\operatorname{EV}(\cup, 1,1)=T(1)+\operatorname{EV}(\mathrm{U}, 1,1)$	00002305
	$\operatorname{CONT} \operatorname{EV}(U, 1,2)=T(2)+\operatorname{EV}(\mathrm{U}, 1,2)$	00002306
414	CONTINUE	00002307
	DO $411 \mathrm{~J}=1$, MD	00002310
	DO $411 \mathrm{~K}=1,2$	00002320
	CONTINUE $\operatorname{EV}^{(U, 1, K)=E V}(U, 1, K)+Y P(U, 1)$	00002330
C	CONTINUE	00002340
C	INTERSECTION OF TWO INTERVALS	00002341
C	INTERSECTION OF TWO INTERVALS	00002342
	DO $412 \mathrm{~J}=1$, MD	00002343
	CALL INTER $(V(I-1,4,1,1), V(I-1, \downarrow, 1,2)$ EV $(1,1,1)$ EV $(1,1,2)$	00002350
		00002360
412	CONTINUE ${ }^{\text {c }}$	00002370
C		00002380
C	COMPARE TWO INTERVALS	00002381
C	COMPARE TWO INTERVALS	00002382
	CALL CMP (V,I,OK, MD)	00002383
	K=I CMP $(V, I, O K, M D)$	00002390
C	K=1	00002400
C	IF $\mathrm{V}(\mathrm{K})=\mathrm{V}(\mathrm{K}+1)$ THEN TERMINATE	00002401
C	IF $V(K)=V(K+1)$ THEN TERMINATE.	00002402
	IF (OK . AND..TRUE.) GO TO 460	00002403
410	CONTINUE .AND..TRUE.) GO TO 460	00002410
	PRINT *, NO CONVERGENCE FOR V	00002420
	PRINT*, NO CONVERGENCE FOR V	00002430

00002700
$\mathrm{C} * * *+* 00002710$
C 00002720
C THIS ROUTINE IS FOR THE MULTIPLICATION OF TWO REAL 00002721
MATRICES 00002722
C $A(M, M) * B(M, N)=C(M, N) \quad 00002723$
C 00002724
$\mathrm{C} * 00002725$
SUBROUTINE RMUL(A,M,N,B,C) 00002726
REAL $A(M, M), B(M, N), C(M, N) \quad 00002727$
DO $699 I=1, M \quad 00002728$
DO $699 \mathrm{~J}=1, \mathrm{~N} 00002729$
$\begin{array}{ll}C(I, J)=0.0 & 00002730 \\ \text { DO } 700 \quad I=1, M & 00002731\end{array}$
DO $700 \mathrm{~J}=1, \mathrm{M} 00002732$
DO $700 \mathrm{~K}=1, N \quad 00002733$
$C(I, K)=C(I, K)+A(I, U) * B(J, K) \quad 00002734$
700 CONTINUE 00002735 RETURN 00002736 END 00002737

00002738
00002739
00002740
00002741
00002742
00002743
00002744
00002745
00002746
00002747
00002750
00002760
00002761
00002770
00002780


```
C}0000381
C******************************************************************************}0000382
C IT FINDS THE DIFFERENCE OF TWO INTERVAL MATRIX 00003821
C A(*,*,2)-B(*,*,2)=C(*,*,2) 00003822
C
        SUBROUTINE SUBM(A,B,M,C) 00003840
        REAL A(M,M,2),B(M,M,2),C(M,M,2) 00003850
            DO 30 I=1,M
                DO 3O J=1,M 00003870
                    CALL SUBI(A(I,U,1).A(I,U,2),B(I,J,1),B(I,U,2). 
        * C(I,U,1),C(I,U,2))}00000389
30
            CONTINUE
                0 0 0 0 3 9 0 0
        RETURN
    00003910
    END
00003920
```

C		00003930
		00003940
C		00003950
C MULTIPLICATION OF TWO INTERVAL		00003960
C	$\operatorname{INT}(\mathrm{R}, \mathrm{S}) * \operatorname{INT}(\mathrm{~T}, \mathrm{U})=\mathrm{INT}(\mathrm{E}, \mathrm{F})$	00003961
C		00003970
C	********************************	00003971
	SUBROUTINE MULI (R,S,T,U,E,F)	00003980
	REAL A,B,C,D,E,F,X	00003990
	$A=R$	00004000
	$B=S$	00004010
	$C=T$	00004020
	$\mathrm{D}=\mathrm{U}$	00004030
C		00004031
C	TEST SIGN OF ENDPOINTS	00004032
		00004033
	IF (A.LT.O.O) THEN	00004040
	IF(C.GE.O.O) THEN	00004050
C		00004051
C	A <0 AND $\mathrm{C}>0$	00004052
		00004053
	$\mathrm{X}=\mathrm{C}$	00004060
	$C=A$	00004070
	A $=\mathrm{X}$	00004080
	$X=0$	00004090
	$D=B$	00004100
	$B=X$	00004110
	GO TO 40	00004120
	ENDIF	00004130
C		00004131
C	$A<O$ AND $C<0$	00004132
C		00004133
	GO TO 41	00004140
	ENDIF	00004150
C		00004151
C	$A>0 \quad A N D \quad C>0$	00004152
C		00004153
	IF (C.GE.O.O) THEN	00004160
	$E=A * C$	00004170
	$\mathrm{F}=\mathrm{B} * \mathrm{D}$	00004180
	GO TO 49	00004190
	ENDIF	00004200
C		00004201
C	$A>0$ AND $C<0$	00004202
C		00004203
40	- $\mathrm{E}=\mathrm{B} * \mathrm{C}$	00004210
C		00004211
C	$\mathrm{D}>0$	00004212
C		00004213
	IF (D.GE.O.O) THEN	00004220
	$F=B * D$	00004230
	GO TO 49	00004240

ENDIF		00004250
41	$F=A * D$	00004260
	GO TO 49	00004270
	IF (B.GT.O.O) THEN	00004280
	IF' (D.GT.O.O) THEN	00004290
C		00004291
C	$A<O, B>O$ AND $C<O, D>O$	00004292
C		00004293
	$X=A * D$	00004300
	$Y=B * C$	00004310
	$\mathrm{E}=\mathrm{MIN}(X, Y)$	00004320
	$X=A * C$	00004330
	$Y=B * D$	00004340
	$F=\operatorname{MAX}(X, Y)$	00004350
	GO TO 49	00004360
	ENDIF	00004370
C		00004371
C	$A<O \quad B>O$ AND $C<0 \quad D<O$	00004372
C		00004373
	$\mathrm{E}=\mathrm{B} * \mathrm{C}$	00004380
	$F=A * C$	00004390
	GO TO 49	00004400
	ENDIF	00004410
C		00004411
C	$A<0 \quad B<0$	00004412
C		00004413
	$F=A * C$	00004420
	IF (D.LE.O.O) THEN	00004430
	$E=B * D$	00004440
	GO TO 49	00004450
	ENDIF	00004460
	$E=A * D$	00004470
49	CONTINUE	00004480
	CALL ENLINT(E,F)	00004481
	RETURN	00004482
	END	00004483


```
C
00004510
C*********************************************************************** 00004520
C MULTIPIINTION 00004530
C MULTIPLICATION OF TWO INTERVAL MATRIX 00004531
C 00004532
C************************************************************************ 00004533
C
SUBROUTINE MULIM(A,M1,II,M,N,B,C)
        REAL A(M1,M,2),B(O:20,M,N,2),C(M1,N,2),TEMP1,TEMP2 00004550
        DO 5O I=1,M1
    00004560
            DO 5O J=1,N
                    C(I,J,1)=0.0 00004580
    00004570
                    C(I,U,2)=0.O
00004590
5 0
        CONTINUE
        CONTINUE 
            DO 51 J=1,M
        00004600
        00004610
                    00004620
                    DO 52 K=1,N 00004630
                        CALL MULI(A(I, U,1),A(I,J,2),B(II,U,K,1),B(II,J,K,2),00004640
                            TEMP1,TEMP2) 00004650
                                    TEMP1,TEMP2)
                                    C(I,K,2)=C(I,K,2)+TEMP2 00004670
52 CONTINUE 00004680
51 CONTINUE 00004690
        RETURN
0 0 0 0 4 7 0 0
    END
0 0 0 0 4 7 1 0
```


vita 2
 Zeynep Aysegul Karacal
 Candidate for the Degree of
 Master of Science

Thesis: INTERVAL MATHEMATICS AND LINEAR PROGRAMMING APPLICATIONS

Major Field: Computing and Information Science
Biographical:
Personal Data: Born in Istanbul, Turkey, March 1, 1960, the daughter of Mr. and Mirs. R.O. Izgu.

Education: Graduated from Ankara Fen Lisesi, Ankara, Turkey, in June 1977; received Bachelor of Science Degree in Industrial Engineering from Middle East Technical University, Ankara, Turkey in June 1982; completed requirements for the Master of Science Degree in Computer Science at Oklahoma State University, Stillwater, Oklahoma in May 1988.

Professional Experience: Research Assistant, Industrial Engineering Department, Middle East Technical University, June 1982, to April 1984.

[^0]: computer and this package is used in the software whenever an interval operation becomes necessary.

 A study of Krawczyk's method for the solution of interval linear programming problems and modification of the method is presented in chapter IV. The performance of the modified method is tested using test problems given in chapter V. Necessary mathematical definitions are given in Appendix A. Appendix B contains program listing.

