MONTE CARLO STUDY OF LIPID

CHOLESTEROL INTERACTIONS

IN BIOMEMBRANES

BY

SHASHIKANT D. KALASKAR
Bachelor of Science
Poona University
Poona, India 1971
Master of Science Western Carolina University North Carolina, USA 1982

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1988

Thesis 1988°
$K 14 m$
cop. 2

MONTE CARLO STUDY OF LIPID

CHOLESTEROL INTERACTIONS
IN BIOMEMBRANES

Thesis approved:

ACKNOWLEDGEMENT

The author wishes to express his appreciation to his major advisor, Dr. H. L. Scott for his patience and help during the course of this study. Also I wish to thank Dr. Paul Westhaus and Dr. H. J. Harmon for their guidance. I wish to thank my friend Mr. Lokman Merican and Dr. Aslam Chaudhari for their help in computer and programming techniques. Thanks to my wife Shaila and daughters Anupama, Menaka for their love and encouragement.

TABLE OF CONTENTS
CHAPTER Page
I. INTRODUCTION 1
The Membrane Components. 1
Membrane Models 17
II. THEORY 23
III. RESULTS and DISCUSSIONS 38
BIBLIOGRAPHY 46
APPENDIX A - COMPUTER PROGRAM FOR THE CALCULATION OF THE average values of the order parameters 48
APPENDIX B - COMPUTER PROGRAM FOR THE CALCULATION OF THE WEIGHTED AVERAGES AND STANDARD DEVIATION. 73

LIST OF TABLES

Table Page
I. Standard deviation for the bonds on the cholesterol neighboring chains. 41
II Standard deviation for the bonds on all acyl chains. 42

LIST OF FIGURES

Figure Page

1. Some Typical Phospholipid Molecules 3
Some Typical Sphingolipid Molecules 4
2. Monolayers, Bilayers, Micelles and Vesicles 5
3. Trans and Gauche Configurations 7
4. Possible Hydrocarbon Chain Configurations
in a Membrane 8
5. Lipid Phase Transition 9
6. Sterols: Cholesterol Molecule 12
7. Orientation of Cholesterol in the Membrane Hydrogen Bonding 14
8. Effect of Cholesterol on lipid phase transition 16
9. Proteins in Membranes 18
10. Model Membranes 19
11. Modes of Mobility of Membrane Components 21
12. Flow Chart Displaying Monte Carlo Averaging Procedure 28
13. A Model of a Unit Cell 30
14. Gauche Rotation. 34
15. Plot of S_{n} vs. Bond Number for boundary lipids 39
16. Plot of S_{n} vs. Bond Number for lipid chains. 40

CHAPTER I

INTRODUCTION

The purpose of this study is to explore the nature of lipid cholesterol interactions in biomembranes, using the Monte Carlo method.

Our understanding of the membrane and its functions has evolved considerably. It is widely accepted now that a membrane is a two dimensional bimolecular array of molecules of lipids, proteins and in some cases cholesterol. It is about $50 \mathrm{~A}^{\mathrm{O}}$ thick. Biomembranes are usually curved continuously and form closed sacs. The major components of biomembranes, lipids and proteins, are present in the varying amounts, depending on the type of the membrane (1). The lipids and proteins have certain physical properties that determine the structural organization of the membrane.

The Membrane Components

Lipids : These are organic molecules that can be extracted from wet membranes by use of non polar solvents such as chloroform, benzene or ether. Membrane lipids are amphipathic i.e. a lipid molecule contains both hydrophobic (non-polar) and hydrophilic (polar) regions. These
regions are usually bridged by glycerol moiety or a sphinganine derivative. The most common lipids found in the eukaryotic membranes are phospholipids, glycolipids, sphingolipids and sterols. The last two classes are usually absent in the prokaryotic membranes. Figure 1 shows some typical lipid molecules.

The polar headgroups determine the affinity of the phospholipids for the water, whereas the acyl chains determine the solubility of these molecules in the solvents - polar or non polar. In an aqueous phase the amphipathic molecules reorient themselves so as to minimize unfavorable interactions between hydrocarbon chains and water. This leads to various arrangements that the lipid molecules assume in an aqueous phase (Figure 2). As seen in this figure the hydrophilic region always faces the aqueous environment and the hydrophobic region moves away from the aqueous zone.

The hydrophobic effect (2) has its origin in the strong attractive forces between water molecules. If the solute is to dissolve in the water, it must disrupt these strong attractive forces in favour of attractive forces between water and solute. This is why the ionic solutes readily dissolve in the water.

Apolar groups on the other hand, cause an extensive rearrangement of the neighboring water molecules. This ordering of molecules apparently leads to a decrease in entropy which is thermodynamically unfavorable. For this reason the solution of the apolar solvents in the

Figure 1. Some Typical Phospholipid Molecules.
(a) Phosphatidic Acid. (b) Phosphatidyl Choline. (c) Phophatidyl Ethanolamine. (d) Phosphatidyl Serine.

Figure 1. (continued) Sphingolipids and Glycolipids.
(a) Galactosyldiacylglycerol.
(b) Ceramide. (c) Sphingomylein.

(a)

WATER

(b)

WATER

WATER

(d)

Figure 2. (a) Monolayer. (b) Bilayer. (c) Micelles. (d) Vesicle.
water is resisted. The apolar groups - hydrocarbon chains of the lipid molecules cluster together, excluding water so as to minimize the free energy of the system. The hydrophobic nature of the lipid chains is thus an entropic consideration rather than any other specific interaction.

The geometry of hydrocarbon chains in their stretched form, called all trans configuration, forms a hydrophobic cylinder (Figure 3).

There is a rotation about $C-C$ bonds. In trans configuration the dihedral angle between C_{1} to C_{2} and C_{3} to C_{4} bonds is 180 degrees. For gauche rotation the most stable and thus lowest in energy, dihedral angles are 120 degrees and 240 degrees (i.e. -120 degrees).

Because of the steric strain the gauche confirmation is less stable by about 0.5 kcal/mole or more, than trans configuration. It is also possible to have two gauche rotations which produce a common chain configuration by rotating about one $C-C$ bond by 120 degrees then rotating either of the two next nearest neighbors by -120 degrees. This produces what is called a 'kink' in the chain. It is obvious that such kinks shorten the length of hydrocarbon chains and thereby increase the volume of the hydrophobic cylinder. The increase in temperature will allow more kinks in the acyl chains. Figure 4 shows some of the chain disorders that may take place in the membrane. At the lower temperatures however, when the phospholipids are in the solid

TRANS

GAUCHE

Figure 3: Trans and Gauche Configurations.

all TRANS TTT

GTTTG

KINK GTG

CIS-BOND

Figure 4. Possible Hydrocarbon Chain Configurations in a Membrane.

Figure 5. Lipid Phase Transition.
crystalline state the acyl chains are in fully stretched all trans state.

In the crystalline state the lipid molecules are packed together in an hexagonal array, with the acyl chains parallel to each other. If the temperature is increased the bilayers undergo distinct organizational changes, although the general structure of the membrane remains the same (Figure 5). At transition temperature the lipids change from crystalline solid state to the liquid gel state. The transition temperature depends on such factors as, type of phospholipid headgroup, acyl chain length (3), number of double bonds, their positions in the chains (4), and composition of the mixture of phospholipids. In general transition temperatures are higher for longer acyl chains and are lower for highly unsaturated acyl chains.

As seen in the Figure 5, below the transition temperature the acyl chains are predominantly in all trans state, parallel to each other but not perpendicular to the bilayer plane. The main transition is preceded by a pretransition which involves reorientation of chains from tilted to the perpendicular positions along with distortion of the bilayer by periodic ripple. Above the transition temperatures the kinks are introduced in the chains which decreases thickness of the bilayer and increases the area of the membrane. The hexagonal array is disrupted as well. The phase transition involves a small volume change (5). The change of pressure over temperature has been found (6) to be 00.44 atm per 1 degree Celsius, using Clausius-Claperon equation.

$$
\begin{equation*}
\Delta P / \Delta T=\Delta H /\left(T_{c}\left(V_{1}-V_{g}\right)\right) \tag{1}
\end{equation*}
$$

where $\Delta H=$ Enthalpy of Transition; $T_{c}=$ Transition Temperature and $\left(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{g}}\right)$) Change in volume of two phases. The volume change of $00.037 \mathrm{ml} / \mathrm{mg}$ is observed (7) at the main transition temperature 41.4 degree Celsius for Diapalmitoyl phosphatidylcholine water system. The phase transition in the lipid bilayers are studied by several experimental techniques such as calorimetry (8), X-ray diffraction (9) and spin label resonance (10).

Sterols: are a third major class of lipids, first two being phospholipids and glycolipids. In animal membranes cholesterol is a predominant sterol but in plant membrane it is rare.

A cholesterol molecule consists of a rigid sterol ring about 1.1 nm in length with a hydroxyl group attached at one end (Figure 6). At the other end of the sterol ring structure there is a flexible hydrocarbon chain about 0.8 nm long. Most phospholipid molecules whose acyl chains are at least $9-\mathrm{CH}_{2}$ units long can accommodate cholesterol molecules in bilayers. The molecule is inserted into the bilayer with its hydroxyl OH , group towards polar headgroup of lipids and its apolar hydrocarbon tail towards hydrophobic acyl chains of the bilayer. The plane of the sterol ring is thus perpendicular to the plane of the bilayer. The hydrocarbon tail of cholesterol - with two methyl groups at the end - is rather mobile and interacts with neighboring acyl chains. The molecule is inserted deeply into the bilayer to allow hydrogen bonding between

Figure 6. Sterols: Cholesterol Molecule.
oxygen of -OH group and oxygen of $\mathrm{C}=0$ group of the lipid molecule (Figure 7). The rigid ring structure of cholesterol prevents kinks from forming in neighboring acyl chains. This decreases the molecular area of the phospholipids. Thus the area of cholesterol-phospholipid (1:2) mixture is 25% lower than the direct sum of their areas (11). This is so called 'Condensing effect'. On the other hand, the hydrogen bonding causes the separation between the polar headgroups of the lipids, thus minimizing electrostatic interaction among them allowing greater freedom of mobility. Incorporation of cholesterol has long been controversial to the extent that some of the early models do not propose hydrogen bonding at all, a claim later refuted (13). The structure of cholesterol is rather significant to the membrane properties but less so for its incorporation into the bilayer.

The amount of cholesterol that can be incorporated in the bilayer without disrupting the membrane function has a upper limit. At >50 mole \% some sterol molecules will have no phospholipid neighbors and there are too many sterol-sterol interactions destabilizing the membrane. At about 10 mole \% cholesterol there is an increased rate of lateral diffusion of phospholipids. At about 22 mole \% cholesterol the regions of pure phospholipids and cholesterol disappear and the bilayer consists of closely packed clusters of cholesterol and lipids. Between. 33 to 50 mole \% of cholesterol both species are distributed randomly with some sterols separated by only one lipid molecule. The increase in the amount of cholesterol slowly abolishes the phase transition. (14,15)

Figure 7. Orientation of Cholesterol in the Membrane, Hydrogen Bonding.

The effect of increase in cholesterol on lipid phase transition is shown in Figure 8.

Temperature plays a key role in the lipid-cholesterol interactions. At the temperatures higher than the transition temperature cholesterol increases bilayer rigidity by ordering the fluid state lipids whereas below this temperature it increases fluidity of the solid state lipid by disordering them.

Proteins: The proteins associated with the membranes can be classified in a number of ways - The ease of separation from membrane, geometric structure or simply by their chemical contents.

Weakly bound proteins (peripheral, extrinsic proteins)- The proteins that can be isolated easily using strong salt solutions or EDTA solution. Such an isolation does not significantly disrupt the membrane structure. Cytochrome C found in the inner membrane of mitochondria is an example of peripheral protein.

Tightly bound proteins (Integral, Intrinsic proteins) - Proteins can be isolated by the use of detergents such as Sodium dodecyl sulfate, SDS. The isolation of integral proteins from the membrane causes a serious damage to the membrane structure. The integral proteins are firmly built into the membranes. Globular proteins are quite bulky. They consist of several loops of polypeptide chains. Fibrous proteins consist of a single strand of a polypeptide chain. Both, the globular

Figure 8. Effect of Cholesterol on lipid Phase Transition.
and the fibrous proteins may be transmembrane and therefore, integral proteins (Figure 9).

Proteins play key role in allowing passage of selective chemicals across the membrane. Specific proteins allow passage to a particular chemical species. Thus proteins too, like lipids, are found in the variety of kinds and amounts. The type and the amount of protein present depends on the function of the membrane in question. For example, inner mitochondrial membrane is highly active in its functions and therefore contains 25 different kinds of proteins which constitute 75\% of its weight. On the other hand, mylein which acts as an insulator contains only 20% protein by weight.

Membrane Models

The membrane components described in the previous section namely lipids, cholesterol and proteins are organized in a special manner so as to form a functional membrane. Several models have been proposed by various researchers. Of these, the 'fluid mosaic model' is now widely accepted (15). This model stresses the dynamic aspects of the membrane structure such as membrane fluidity. The extrinsic proteins are external but close to the membrane and may interact electrostatically with the polar headgroups of the lipids. The globular proteins in this model float surrounded by lipids (Figure 10).

A. GLOEULAR PROTEIN
B. FIEROUS PROTEIN
C. EXTRINSIC PROTEIN

Figure 9. Proteins in the Membranes.

Figure 10. Model Membranes.

The lipids surrounding the proteins are further classified as the 'annular lipids' which are nearest neighbors of the protein and form a 'ring' around it. The lipids that are further away from the proteins are called 'bulk lipids'. Interaction of lipids and proteins has been under intense investigation both by experimentalists and theorists. Among experimental techniques x-ray diffraction (16), freeze etch fracture (17), thermal differential calorimetry (18, 19) and spin label spectroscopy (20,21) have been used. On theoretical front, Monte Carlo simulation technique has been used by Scott (22), to study lipid-protein interaction.

The 'annular lipids' due to closeness of the proteins are more ordered and less mobile than the lipids in the bulk. Results of the ESR studies (20,21) indicated the existence of a single layer of lipids surrounding protein, cytochrome C oxidase. This result was further confirmed by theoretical models $(23,24)$. The 'annular lipids' though relatively less mobile do frequently exchange themselves with the bulk lipids. This exchange is called 'hopping frequency'. In the bulk lipids this exchange takes place rather rapidly as compare to the exchange between bulk lipids and annular lipids. This reduction in exchange is attributed to the existence of interaction between protein and boundary lipids.

Although general structure of the membrane is preserved, the membrane components themselves are in continuous motion. (Figure 11)

Figure 11. Modes of Mobility of Membrane Components.
(a) Lateral Diffusion of Lipid. (b) Rotational Diffusion of Lipid. (c) Rotational Diffusion of Protein. (d) Lateral Diffusion of Protein. (e) Side to Side Chain Motion. (f) Lipid Exchange. (g) Rotation about C-C Bond.
A). Lateral Diffusion: Phospholipid and protein molecules diffuse laterally in the plane of the bilayer.
B). Rotational Diffusion: Phospholipid and protein molecules rotate about their long axis.
C). Lipid flip-flop motion: The phospholipid molecules mutually exchange themselves within the bilayers, going from one half of the bilayer to the other. But this motion is extremely slow on the order of days, compared to lateral diffusion which takes place in matter of seconds.
D). Chain motion: Above transition temperatures T_{c}, several disorders are introduced in the chain due to rotation about $\mathrm{C}-\mathrm{C}$ bond. The various modes of motions of the membrane constituents along with their mutual interactions indeed form quite an intricate organization. This study attempts to investigate one important aspect, that of lipid cholesterol interaction by using Scott's method (22) of Monte Carlo simulation technique.

The following chapter describes the essentials of this technique. Following this, results and discussion are presented.

CHAPTER II

THEORY

The lipid cholesterol interaction study presented here is based on Monte Carlo simulation technique similar to one used by Scott (22) in his investigation of lipid protein interactions.

The Monte Carlo method is an efficient technique used to compute average quantities. In the present case we wish to calculate the average of the quantities called order parameters. This quantity, denoted by 'S' presents a measure of the interactions between the lipids and cholesterol by allowing us to find the extent to which the acyl chains are 'distorted' due the presence of a cholesterol molecule. The average order parameter $\langle\mathrm{Sn}\rangle$, is defined as:

$$
\begin{equation*}
\left\langle s_{n}\right\rangle=\left\langle 3 / 2 \cos ^{2} \theta_{n}-1 / 2\right\rangle \tag{2}
\end{equation*}
$$

Where θ_{n} represents the angular deviation of nth $C-C$ bond in an acyl chain, from its position while the chain is in all trans state. Thus, for example if the average value of the order parameters were 1.000 it would mean this particular bond did not deviate at all from its original all trans position. A smaller average value of the order parameters
would indicate greater degree of orientational disorder. The average values of the order parameters are thus expected to be in the range of 1 to 0 . The values of the order parameters for each bond averaged over all the chains is then plotted against bond numbers as an pictorial indication of the lipid-cholesterol interaction.

In statistical mechanics the average of observable quantities Ai within canonical ensemble is given by $(25,26)$.

$r_{i}=$ position vector of i th molecule, $E=$ total energy of the system, $T=$ Absolute temperature of the system and $k=$ Boltzmann constant, 1.987 cal/mole-Kelvin. But evaluation of such an integral is rather complex and thus calculation of $\langle A\rangle$ demands alternative, simpler method. The Metropolis Monte Carlo method (27) developed in 1953, provides an efficient procedure of calculating average quantities. This method can be briefly described as follows:

1) Construct a model of the system under consideration. The initial configuration of the particles in the system - positions of carbon atoms of lipids and cholesterol in this case - should be known and saved.
2) Calculate energy E_{o} of this initial configuration and save it. Note that this energy consists of potential energy due to gauche rotations about $C-C$ bonds plus sum of potential energies due to pairwise interactions between all atoms in all molecules.
3) Pick any particle--lipid molecule in this case- and translate it within the plane of the bilayer by a small distance $d r$.

$$
r_{i} \longrightarrow r_{i}+e d r_{i}
$$

where $r_{i}=$ co-ordinates of particle in question, $d r_{i}=$ maximum allowed displacement, $e=$ random number.
4) Pick a bond at random on this translated lipid molecule and perform gauch rotation about $\mathrm{C}-\mathrm{C}$ bond according to rotational probabilities.
5) Apply periodic boundary condition to find if any of the carbon atoms on this chain have been displaced outside the unit cell. Also check for the chain overlaps.
6) Calculate the energy E_{1} of this new configuration.
7) Calculate the energy change, $E=E_{1}-E_{0}$, due to translation and rotation of the chain. (In our model system the perturbent
cholesterol molecule is always held fixed in its position w.r.t. the origin, except its mobile hydrocarbon tail.)
8) If $E<0$ the transition is accepted and the lipid molecule is allowed to retain its new position. If $E>0$,then a quantity $\exp (-E / k T)$ is calculated.
9) The quantity $\exp (-E / k T)$ is compared to a random number RANF (28). $0<\operatorname{RANF}<1$. If $\exp (-E / k T)<$ RANF then the move is rejected and the chain is moved back to its previous position. If $\exp (-E / k T)>$ RANF then move is accepted.
10) Above procedure is carried out for a large number of steps.

In Metropolis Monte Carlo method the configurations are not chosen randomly but are selected such that the transition probability P_{ij}, between states i and j is proportional to a Boltzman factor, thus

$$
\begin{array}{ll}
P_{i j}=(1 / N) *\left(U_{i} / U_{j}\right) & i \neq j ; U_{i}>U_{j} \\
P_{i j}=(1 / N) & i=j ; U_{i}<U_{j} \\
P_{i i}=1-P_{i j} & \tag{7}
\end{array}
$$

where $\quad U_{i} \propto \exp \left(-E_{i} / k T\right)$

$$
\begin{equation*}
U_{j} \propto \exp \left(-E_{j} / k T\right) \tag{8}
\end{equation*}
$$

and $\quad N=$ number of states

Under these conditions

$$
\begin{equation*}
\langle A\rangle=\left(\sum_{i} A_{i} \exp \left(-E_{i} / k T\right)\right) /\left(\sum_{i} \exp \left(-E_{i} / k T\right)\right) \tag{9}
\end{equation*}
$$

simply reduces to arithmetic average. The average value of the quantity A at some step s is given by

where, n is the number of iterations carried out in the averaging process. In practice n is a large but finite number. Steps (8) and (9) above lead to selection of configurations that are lower in energy and thus eventually would take the system to its equilibrium state.

The average order parameter $\left\langle\mathrm{S}_{\mathrm{n}}\right\rangle$ for each bond number in all the chains is calculated by the procedure described above. For example, S_{3} is an average order parameter for bond number 3 on all 35 chains. The flow chart (Figure 12) summarizes the procedure laid above for calculation of the average order parameters. It should be noted that the small displacement $d r$ mentioned in the flow chart is chosen withsome consideration. If dr is too small then it will take long time for the system to reach equilibrium (wasting valuable computer time) and if dr is too large then too many moves will be rejected.

Figure 12. Flow Chart Displaying Monte Carlo Averaging Procedure.
hydrocarbon chains of the lipid molecules in this unit cell but one of the molecules namely molecule at the 22 nd site is replaced bycholesterol molecule. The cell dimension are chosen so as to have approximately 29 Angstrom square area per acyl chain, (not including area of cholesterol). This area corresponds to lipid bilayer area per chain in its fluid state (29). The choice of site number 22 is arbitrary and was chosen to create an asymmetric unit cell. The cholesterol molecule with its surrounding lipids forms an hexagonal array (29). (figure 13). The first and the next nearest neighbors of cholesterol are clearly defined at the beginning of the program. Co-ordinates of the carbon atoms in the sterol ring structure were calculated assuming rings to be planar. The molecule itself is anchored to the membrane at the third carbon (at which B-hydroxy group is located, Figure 6).

Thirty six hydrocarbon chains were then simulated - including 'tail' on the cholesterol ring - by use of rotation matrix operator. C-C bond length was taken to be $1.53 \mathrm{~A} .$, and bond angle 109.5 degrees. The C-C bond position vector RVEC has its components as the projections along x, y, z axes. Initially components of RVECs for all chains are set to be $(1.53,0,0)$. Next a rotation matrix operator ROT is defined,

$$
\operatorname{ROT}=\left[\begin{array}{ccc}
\operatorname{Cos} X & \operatorname{Sin} X \operatorname{Cox} Y_{i} & \operatorname{Sin} X \operatorname{Sin} Y_{i} \\
\operatorname{Sin} X & -\operatorname{Cos} X \operatorname{Cos} Y_{i} & -\operatorname{Cos} X \operatorname{Sin} Y_{i} \\
0 & -\operatorname{Sin} Y_{i} & \operatorname{Cos} Y_{i}
\end{array}\right]
$$

Figure 13. A Model of a Unit Cell.
where $X=70.5$ degrees (complementary angle of 109.5 degrees) and $Y i=$ gauche rotation angle $=+120$ or -120 degrees for bond i. But initially all the chains are desired to be in all trans state and so $Y i$ is 0 degrees for all bonds. Operator ROT then becomes,

$$
\text { ROT }=\left[\begin{array}{ccc}
\operatorname{Cos} X & \operatorname{Sin} X & 0 \tag{11}\\
\operatorname{Sin} X & -\operatorname{Cos} X & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The remaining chain i.e. x, y, z components of RVECs (giving positions of carbons on the chain) are obtained by successive application of the matrix operator.
$\left[\begin{array}{ccc}\operatorname{Cos} x & \operatorname{Sin} x & 0 \\ \operatorname{Sin} x & -\operatorname{Cos} x & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]$

The axes of these chains are not perpendicular to the $y-z$ plane. In order to achieve this, these chains should be tilted. Therefore, another rotation matrix operator RT is defined.

This operator operates on each component of RVECs to produce chains that are perpendicular to the $y z$ plane of the membrane.

$$
\left[\begin{array}{ccc}
\operatorname{Cos}(x / 2) & \operatorname{Sin}(x / 2) & 0 \tag{14}\\
\operatorname{Sin}(x / 2) & -\operatorname{Cos}(x / 2) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right]
$$

The chains simulated in this manner are in all trans state, their planes being parallel to $x-y$ plane. Each chain in our model is $16 \mathrm{CH}_{2}$ units long. The cholesterol tail is shorter, being only $6 \mathrm{CH}_{2}$ units long. This short chain is located on the 21st carbon atom of cholesterol. The chain is thus 'placed' on 21st atom simply by adding co-ordinates of 21st carbon to that of first carbon atom of the 'tail'.

Thus far a computer simulated model of the unit cell has been created, with 35 chains in all trans state and cholesterol molecule at the 22 nd site. This defines initial configuration of our system. The position co-ordinates of all carbon atoms are known and saved.

The total energy of each chain in this configuration can be computed by summing its internal energy due to any gauche rotations
about $\mathrm{C}-\mathrm{C}$ bonds and interaction energy between all carbon atoms of this chain and all other carbon atoms within interaction range, including those of cholesterol molecule.

$$
\begin{equation*}
E=E(i)+\sum_{C H_{2}^{\prime} s} \sum_{i \neq j} E\left(\left(\sigma / r_{i j}\right)^{12}-\left(\sigma / r_{i j}\right)^{6}\right) \tag{15}
\end{equation*}
$$

where $E(i)=$ internal energy due to gauche rotation (+120 or -120 deg.$)$ of bond number i. $E(i)=500$ cal/mole for single gauche rotation and $2500 \mathrm{cal} / \mathrm{mole}$ for successive gauche rotations.

The pairwise interaction is obtained by summing Van der Waal interaction energies over all pairs i.e. all CH_{2} 's of that chain and all other CH_{2} 's within interaction range. Here ϵ and σ are Van der Waal parameters, with their values $(30) \in=118 \mathrm{cal} / \mathrm{mole}$ and $\sigma=3.905 \mathrm{~A}$. , $r_{i j}=$ distance between CH_{2} 's on i th and j th chain - including those on chain number 22 - within the interaction range. The condition $i \neq j$ is imposed so as to avoid 'self energy' being calculated. The total energy of initial configuration is thus known.

At this stage we are ready to put the system in a new configuration. A chain is picked and it is translated through a small distance dr. Its long axis still being perpendicular to $y-z$ plane. On the same chain a bond is picked randomly according to the transition probability $P_{i j}$ between states i and j and gauche rotation is attempted. The positions of the carbon atoms of a lipid chain, before and after a

Figure 14. Gauche Rotation.
gauche rotation can be described in terms of a dihedral angle. Consider for example the atoms labelled as A, B, C, D in Figure 14. For the all trans configuration of this chain all four atoms A, B, C, D lie in one plane. More specifically the dihedral angle between the plane containing atoms A, B, C and the plane containing atoms B, C, D is 180 degrees. If a gauche rotation is performed about the bond joining atoms $B-C$, then the positions of atoms A, B, C remain unchanged. Atom D (and the subsequent atoms of this chain) will occupy new position as a result of gauche rotation. The dihedral angle between the plane containing atoms A, B, C and the plane containing atoms B, C, D is now 120°. Note that the first bond between $C_{1}-C_{2}$ remains fixed at all times i.e. it is never picked for attempting gauche rotation. The transition probability $P_{i j}$ can be calculated as follows.
(a) $\quad P_{i j}=P\left(t \rightarrow g^{+}\right)=P(t \rightarrow g-)=(1 / N) \exp (-E / k T)$
$=1 / 3 \exp ((-500 \mathrm{cal} / \mathrm{mole})) /((1.987 \mathrm{cal} / \mathrm{mole}-\mathrm{K})(300 \mathrm{~K})$
$=0.144$
(b) $\quad P_{g+\rightarrow t}=1 / 3$
(c) $\quad P_{t t}=1-2 / 3 \mathrm{epx}(-500 / 1.987 \mathrm{~T})$
(d) $\quad P_{g g^{-}}=1 / 3 \exp (-2200 / 1.98 \mathrm{~T})$
(e) $\quad P_{g^{+} \mathbf{g}^{+}}=1-1 / 3-1 / 3 \exp (-2200 / 1.987 \mathrm{~T})$

Energy of this new configuration is calculated as described previously (Equation 15). The energy difference between the previous (old) configuration and new configuration is calculated at this stage. Also, at this stage periodic boundary condition is applied. Following
which a subroutine CHECK, is devised in order to check overlap of two chains. If carbon atoms belonging to two chains come within a fixed hard-core diameter then they are said to overlap. If such an overlap occurs then the move is rejected and the chain is restored to its previous position. This makes saving the position co-ordinates very important in the program.

The energy difference ($\operatorname{DEL}\left(E_{i j}\right)$), between the previous configuration and the newly accepted one is then examined as follows.

If $\operatorname{DEL}\left(E_{i j}\right)<0$, then the new state is accepted. If $\operatorname{DEL}\left(E_{i j}\right)>0$ then a quantity $\exp \left(-\operatorname{DEL}\left(E_{i j}\right) / k T\right)$, let it be denoted by D, is calculated and compared to a random number RANF between 0 and 1.

If $D>$ RANF then new state is accepted and If $D<$ RANF the new state is rejected. Such a test ensures that each new configuration is chosen so that system as a whole will reach the equilibrium in a large but finite number of steps.

Following this an average order parameter is calculated for all 15 bonds of all chains.

All computations were performed at the Oklahoma State University Computer Center facilities using IBM mainframe machine. The random number generated by the computer program RANF was developed by J. p.

Chandler of the Computer Science Department. The results of our study
is presented in the next chapter followed by discussion.

CHAPTER III

RESULTS AND DISCUSSION

The results obtained by computer simulations are shown in Figures 15 and 16. The Tables in I and II show average values for the bond order parameter and the standard deviations of the bonds on cholesterol neighboring chains and all acyl chains respectively. Figure 15 shows graph of order parameter averaged over each bond in acyl chains neighboring cholesterol molecule versus bond number. Figure 16 shows values of order parameters for all chains plotted versus bond number. Each chain in our simulation had been $16 \mathrm{CH}_{2}$ units long.

Cholesterol ring structure was assumed to be planar although in reality the rings are 'puckered'. Yet our model is very close approximation of the actual molecule.

As mentioned eailier in Chapter II, the transition probabilities are propnitional to Boltzman factor $\exp \left(-E_{i j} / k T\right)$. The absolute temperature of the simulated model was chosen to be 300 K at all times. The rotational probabilities were thus proportional to $\exp \left(-E_{i j} / k T\right)$, with appropriate values of $E_{i j}$. Since the temperature enters in the calculation of the probabilities, one might suspect that it plays a

Figure 15. Plot of Sn vs. Bond Number for Boundary Lipids.

Average Order Parameters vs. Bond Numbers

Figure 16. Plot of Sn vs. Bond Number for Lipid Chains.

TABLE I
aVERAGE VALUES OF THE ORDER PARAMETERS AND THE STANDARD DEVIATIONS FOR THE BONDS ON THE CHOLESTEROL NEIGHBORING CHAINS.

Bond Number	$\left\langle\mathrm{S}_{\mathrm{n}}\right\rangle$	Standard Deviation
1	1.00000	$0.00000 \mathrm{E}+00$
2	0.88200	$0.98259 \mathrm{E}-02$
3	0.88867	$0.14815 \mathrm{E}-01$
4	0.76817	$0.18964 \mathrm{E}-01$
5	0.87461	$0.18454 \mathrm{E}-01$
6	0.71137	$0.51546 \mathrm{E}-01$
7	0.82461	$0.38985 \mathrm{E}-01$
9	0.73685	$0.42919 \mathrm{E}-01$
10	0.73435	$0.93022 \mathrm{E}-02$
11	0.77325	$0.74824 \mathrm{E}-01$
12	0.72262	$0.99968 \mathrm{E}-01$
13	0.71149	$0.33530 \mathrm{E}-01$
14	0.66078	$0.78854 \mathrm{E}-01$
15	0.52886	$0.33124 \mathrm{E}-01$

TABLE II
average values of the order parameters and the STANDARD DEVIATIONS FOR THE BONDS ON THE ALL ACYL CHAINS.

Bond Number	$\left\langle\mathrm{S}_{\mathrm{n}}\right\rangle$	Standard Deviation
1	1.00000	$0.00000 \mathrm{E}+00$
2	0.84918	$0.10306 \mathrm{E}-01$
3	0.87891	$0.93375 \mathrm{E}-02$
4	0.76051	$0.19716 \mathrm{E}-01$
5	0.89466	$0.14034 \mathrm{E}-01$
6	0.72296	$0.435117 \mathrm{E}-01$
7	0.84420	$0.35723 \mathrm{E}-01$
9	0.73252	0.32989 E 001
10	0.75443	$0.25289 \mathrm{E}-01$
11	0.79258	$0.85399 \mathrm{E}-01$
12	0.72546	$0.65777 \mathrm{E}-01$
13	0.71829	$0.29268 \mathrm{E}-01$
14	0.63105	$0.50648 \mathrm{E}-01$
15	0.53266	$0.43373 \mathrm{E}-01$

significant role in the outcome of the results. In fact, as found by Scott (22), the values of order parameters are not affected appreciably for two identical systems at different temperatures.

The Monte Carlo averages of the order parameters were found after 20,000 steps, where each step involves more of a single molecule. Although a large number of steps is desirable for more reliable results, it is believed that these averages are adequate, i.e. these values of S_{n} converge.

Superimposing plots shown in Figures 15 and 16 it is seen that there is very little difference in the order parameter profiles for the bulk and boundary lipids. This implies that the presence of a single cholesterol molecule in the unit cell simulated in our study did not affect the equilibrium of lipid chain states to a significant degree.

The length of a cholesterol molecule is about 19 angstroms. This includes the rigid ring structure (about 11 angstroms) and its tail (about 8 angstroms). The length of an acyl chain, in its all trans state, is also about the same. This was found by taking the product of the projection of the $\mathrm{C}-\mathrm{C}$ bond vector on the x axis (1.27 angstroms) and the number of bonds. The rigid ring structure should restrict the motion of first 8 to 9 bonds. This is implied by higher values of the order parameters. Remaining 6 to 7 bonds are less restricted and highly interact with the tail of the cholesterol. The values of the order parameters for these bonds declined rapidly (Figure 16).

As described in the flow chart (Figure 12) the acyl chains were translated in the plane of the bilayer before attempting gauche rotations. The principal axis of an acyl chain was still perpendicular to the plane of the bilayer. The side-to-side motion of the chains (Figure 11) was not included in our simulation, nor did we include rotational diffusion of acyl chains.

The effect of tilting of the chains on the order parameters has been studied (31). It is reasonable to expect that such motion will further enhance the interactions between CH_{2} groups on the neighboring chains. This will reduce the values of the order parameters. The values of the order parameters reflect the extent of disorder in the chains. Since an acyl chain is attached to the membrane surface at the carbon C_{1}, it is immobile. A first few top bonds show less disorder and tend to remain in their gauche states a longer time. The lower bonds being more free to rotate about $\mathrm{C}-\mathrm{C}$ bonds alter their rotational states frequently. Therefore, there is a consistent decline in the values of the order parameters. But because of the comparable lengths of the acyl chains and the cholesterol molecule, the chains are unable to fold themselves.

The principal conclusion derived from this study is that a single molecule of cholesterol situated among 6×6 array of lipid chains cannot affect the equilibrium of lipid states. This is why the order parameter profiles for the boundary lipids and the bulk lipids follow the same
pattern. This conclusion is consistent with the lipid-protein interaction study by Scott (22).

Increasing lipid-cholesterol ratio will increase computation time to some extent and complexity of the problem. It will be interesting to include at least one more cholesterol molecule in our simulation and observe some changes due to increased interactions.

SELECTED BIBLIOGRAPHY

(1) Baker, D. A. and Hall, H. L., Membranes and Ion Transport Longman, p. 6, Longman Press, New York (1977).
(2) Tanford, C., Hydrophobic Effect., John Wiley, New York (1973)
(3) Davis, P. J., Keough K. M., Biochemistry., 18, 1453-1459 (1979)
(4) Barton, P. C. and Gunstone F. D., J. Biol. Chem., 250, 4470-4476, 6, (1975)
(5) Liu, N. I., Kay, R. I., Biochemistry., 16, 3484-3486 (1977)
(6) Trudell, J. R., Chin, J. H., Cohen, E. N., Payan, D. G., Biochim Biophys. Acta., 373, 436-443 (1974).
(7) Nagle, J. F., Wilkinson, D. A., Biophys. J., 23, 159-175, (1978).
(8) Chapman, D., Williams, R. M., Ladbrook, B. D., Chem Phys Lipid., 1, 455, (1967)
(9) Eagleman, D. M., J. Mol, Biol., 58, 153 (1971).
(10) Hubell, W. L., McConnell, H. M., J. Amer Chem. Soc., 93, 314 (1971).
(11) Jain, M. K., Current Topics in Membrane Transport., p. 1-57, J. Wiley, New York (1975).
(12) Lucy, J. A., Biological Membranes., Academic Press., 238-240.
(13) Chapman, D., Quart. Rev. Biophys., 8, 185-235 (1975).
(14) Chapman, D., William, R. M., Biochim Biophys Acta., 150, 333-340 (1968)
(15) Singer, S. J. and Nicholson, G. L., Science., 175, 720-731 (1972)
(16) Eagleman, D. M., Rothman, J. E., J. Biol. Chem., 247,3694 (1972)
(17) Vail, W. J., Papahadjopoulous, D., Biochim. Biophys. Acta., 163, 301 (1968)
(18) Chapman, D., Urbina, J., Keough K. M., J. Biol. Chem. 249, 2512 (1974)
(19) Papahadjopolous, D., Moscarello, M., Eylar, E. H., Isac, T., Biochim. Biophys. Acta., 401, 317 (1975)
(20) Jost, A., Griffith, O. H., Capaldi, R. A., Vanderkooi, Biochim. Biophys. Acta., 311, 141, (1973)
(21) Jost, A., Griffith, O. H., Capaldi, R. A., Vanderkooi, G., Proc. Natl. Acad. Sci. U.S.A., 70, 480 (1973)
(22) Scott, H. L., Biochim. Biophys. Acta., 469, 264 (1977)
(23) Kleeman, W., McConnell, H. M., Biochim. Biophys. Acta., 419, 206 (1976)
(24) Marcelja S., Biophys. Acta., 455, 1 (1979)
(25) Binder, K., Monte Carlo methods in statistical physics., Verlag.
(26) Curro. J. G., J. Chem. Phys., 61, 3, 1203-1207, (1974)
(27) Metropolis, N., Rosenbluth, M. N., Teller, A. H., Teller, E., J. Chem. Phys., 21, 1087 (1953)
(28) Chandler, J. P., RANF, Oklahoma State University,, Computer Science Department
(29) Scott, H. L., Biochemistry, 25, 6122 (1986)
(30) Jorgensen, W. L., Madura, J. D., Swenson, C. J., J. Am. Chem. Soc., 106, 6638-6696 (1984)
(31) Peterson, N. 0., Chan, S. I., Biochemistry., 16, 2657-2667 (1977)

APPENDIX A

COMPUTER PROGRAM FOR THE CALCULATION OF THE AVERAGE VALUES OF THE ORDER PARAMETERS

I SN	1	
I SN	2	
I SN	3	
I SN	4	
I SN	5	
I SN	6	
I SN	7	
I SN	8	
I SN	9	
I SN	10	
I SN	11	
I SN	12	
ISN	13	
I SN	14	
ISN	15	
ISN	16	
		C

```
    MCNTE-CARLO SIMULATION PROGRAM FOR LIF:C CHOLESTEROL INTERACTION
    CHAIN NL::EER 22 IS CHOLESTEROL
    THIS FROGRA:: COMPUTES AN ORDER PARA:AETER WHICH IS A MEASURE
    of INTERACTION EETWEEN LIPID CHAINS ANO CHOLESTEROL MOLECULE
    IN A MEMERANE
    **..........ARAMETERS USED IN THIS PROGRAM****+*********
    ANG=CHAIN LONG AXIS ROTATION
    EKT = RECIPROCAL OF (BOLTZMAN CONST*TEMP)
    CROT = RANDOM NU:MBER FOR AXIAL ROTATION
    CPS = SAVED CAREON CO-ORDINATES
    CHK = SUEROUTINE :CHECKS OVERLAPS.CALCULATES ENERGY
    CP = CAREON POSITION
    CEL = ENERGY DIFFERENCE IN GAUCH TRANS CONFIGURATIONS
    EPK = LIPID CHOLESTEROL INTERACTION ENERGY
    EOLD = OLD LIPID CHOLESTEROL INTERACTION ENERGY
    ENE:H = NEN TOTAL ENERGY
    EOLD = OLD TOTAL ENERGY
    EVWD = VANDER WAALS ENERGY
    ESV = SAVED ENERGY
    EPIL = 6 - }12\mathrm{ ENERGY PARAMETER
    GASIN = SIN 120 DEGREES
    GACOS = COS 12O DEGREES
    GR = +1(+120 DEGREES ROTATION OF BOND)
    GS = SAVED CO-ORDINATES
    IRAN = CALLS TO RAN BEFORE PROG STARTS
    IPRT = PRINT INTERVAL
    IC.ICL = USED TO PICK BONDS FOR GAUCH ROTATIONS
    COMMONS CP(3,27,36),RVEC(3,27,36),NCHAIN,NLINK,SIZEY.SIZEZ,RC
    COMMON/LST/RANG,ILST,ULST,IDST
    COMMON/VDW/SIG.EPIL
    DIMENSION ROT(3,3), \triangleVEC(3,27),D(3),ROTN(3.3),ROTP(3,3)
    DIMENSION RVECH(3,4),CHP(3,4).TVEC(3,16,36)
    COMMON/CHK/KTR,JR,SY,SZ.SAVG(27).SSVG(27).NPP(36).NNP(36)
    COMMON/CHK/KTR,JR,SY,SZ,SAVG(27),SSVG(27).NPP(36).NNP(36)
    DIMENSION GS(27.36),ESV(36),VRND(36,-1.80),DPP(36)
    DIMENSION GR(27,36)
    DIMENSION NN(36,36), EVDW(36,36),RSV(3, 27, 36),CPS(3,27,36)
    DIMENSION IC(36),ICL(36),E(36),LRU(27),GASIN(3),GACOS(3)
    DIMENSION DCH(2,27),CHOL(3,27).DST(16).DOV(3)
        DIMENSION ENEW(36),EOLD(36)
    DIMENSION DEL(36).EPK(36),EPOLD(36),CMP(36),RT(3.3),CROT (36)
    PARAMETER(RAD=4.,RREP=7.05,T=300..NMAX=50.NMIN=0)
    PARAMETER(IPRT=25.IRAN=17.RRR=9.,RPEP=40.)
    ******SOME MORE PARAMETERS IN THIS FROGRAM
```

ISN	17
I SN	18
ISN	19
ISN	20
ISN	21
ISN	22
ISN	23
ISN	24
ISN	25
ISN	26
ISN	27
ISN	28
ISN	29
ISN	30

ISN	172	21	CONTINUE
ISN	173		DO $22 \mathrm{~J}=2.6 .2$
I SN	17.4		DO $22 \mathrm{~L}=1.6$
I SN	175		$U L=L+6^{*}(J-1)$
$15 N$	176		$X L=F L O A T(L-1)$
I SN	177		$X J=F \operatorname{LOAT}(\mathrm{U}-1)$
I SN	178		IF (JL.EQ. 22) GO TO 22
ISN	173		$C P(2.1 . U L)=D L L * X L+1.425$
ISN	180		$C P(3,1, U L)=R L Z+D L Z * X J$
I SN	18 :	22	CONT INUE
ISN	182		GO TO 48
ISN	183	15 C	CONTINUE
		C	USING ROTATION MATRICES SUCCESSIVELY INITIAL CHAIN POSITIONS
		c	are calculated.
		C	
I SN	184		REWIND 9
I SN	185		DO $15 \mathrm{~L}=1$. NCHAIN
I SN	186		READ (9,46)ANG(L)
I SN	187		IF (L .EQ. 22) THEN
ISN	188		IZ $1=21$
ISN	183		$122=27$
I SN	190		ELSE
ISN	191		I $21=1$
ISN	192		I $22=16$
I SN	193		ENDIF
ISN	194		DO $16 \mathrm{~J}=1, \mathrm{I} 22$
I SN	195		READ (9,45)(CP(K, U.L), RVEC(K, J,L), K=1.3), GR(U.L)
I SN	196	15	CONTINUE
ISN	197	45	FORMAT (7F12.6)
ISN	198	46	FORMAT (12.6)
ISN	199	48	CONTINUE
I SN	200		XDN = NMAX-NMIN
I SN	201		EKT $=1 . /(1.987 * T)$
ISN	202		
ISN	203	1233	
I SN	204		PRINT 1230
I SN	205	1230	
I SN	206		PRINT 1234.NMAX.NMIN, ILST, KSTART
I SN	207	1234	FORMAT (' . 4 (16.5X)//)
ISN	208		$P I=+3.14159265$
I SN	209		Y $1=2 . * P I / 3$.
ISN	210		$\mathrm{Y} 2=0$.
ISN	211		Y $3=5 . * Y 1$
ISN	212		$\operatorname{GASIN}(1)=\operatorname{SIN}(\mathrm{Y} 1)$
ISN	213		$\operatorname{GACos}(1)=\cos \left(Y_{1}\right)$
I SN	214		$\operatorname{GASIN}(2)=\operatorname{SIN}\left(Y_{2}\right)$
ISN	215		$\operatorname{GACOS}(2)=\operatorname{Cos}\left(Y_{2}\right)$
I SN	216		GASIN(3) $=\operatorname{SIN}\left(Y_{3}\right)$
I SN	217		$\operatorname{GACOS}(3)=\operatorname{Cos}(Y 3)$
ISN	218		$\mathrm{X}=70.5 * \mathrm{PI} / 180$.
I SN	219		$E S O=S I N(X)$
I SN	220		$E C O=\cos (x)$
ISN	221		ESOIV $=\operatorname{SIN}(-\mathrm{X})$
ISN	222		$E C O N=\operatorname{COS}(-\mathrm{x})$
ISN	223		$E S=\operatorname{SIN}(X / 2$.

I SN	278	7048	CONTINUE
$15 N$	279		$007019 \mathrm{IZ}=1.27$
ISN	280		007029 IW $=1.3$
ISN	281		CPS(IW,IZ.IY) $=$ CP(IW,IZ,IY)
I SN	282	70.29	CONTINUE
I SN	283	7019	CONT INUE
		CL*	*******
ISN	284		GO TO 150
I SN	285	6999	CONTINUE
ISN	286		$\operatorname{RVEC}(1,1, K)=1.53$
ISN	287		DO $6001 \mathrm{I}=2.3$
I SN	288	6001	RVEC (I, 1.K) $=0$.
ISN	289		DO $145 \mathrm{~J}=2$. NLINK
ISN	290		$L=v-1$
I SN	291		DO $147 \mathrm{I}=1.3$
I SN	292		RVEC(I, J,K) $=0$.
ISN	293		DO 6002 I $Y=1.3$
ISN	294	6002	RVEC(I, J.K) = RVEC(I,J.K)+RVEC(IY,L,K)*ROT(IY,I)
ISN	295	147	CONTINUE
ISN	296	145	CONTINUE
ISN	297		DO $6003 \mathrm{I}=1.3$
I SN	2.98		DO $6004 \mathrm{~J}=1 . \mathrm{NLINK}$
I SN	299	6004	$\operatorname{AVEC}(\mathrm{I} . \mathrm{U})=\operatorname{RVEC}(\mathrm{I}, \mathrm{J}, \mathrm{K})$
I SN	300	6003	CONT INUE
ISN	301		DO $148 \mathrm{I}=1.3$
I SN	302		DO $148 \quad J=1$. NLINK
I SN	303		RVEC(I.J.K) $=0$.
I SN	30.4		DO 6005 I $Y=1.3$
I SN	305	6005	
I SN	305	148	CONTINUE
ISN	307		DO $149 \mathrm{~J}=2 . \mathrm{NLINK}$
: SN	308		$\checkmark \cup=J-1$
I SN	309		DO $6006 \mathrm{I}=1.3$
I SN	310	6006	CP(I, J.K) = CP (I, JJ,K)+RVEC (I.JU,K)
I SN	311	149	CONTINUE
I SN	312	150	CONTINUE
I SN	313	140	CONTINUE
I SN	314	155	PRINT 1109
[SN	315	1109	FORMAT(18X.'INITIAL VALUES OF CP \& IG' ///)
I SN	316		DO 165 L=1.NCHAIN
ISN	317		$\mathrm{J} 1=1$
I SN	318		$\mathrm{J} 2=$ NLINK
ISN	319		IF(L.EQ.22)THEN
ISN	320		$\mathrm{J}_{1}=21$
ISN	321		$\mathrm{J} 2=27$
ISN	322		END IF
ISN	323		CO $165 \mathrm{~J}=\mathrm{J} 1 . \mathrm{J} 2$
I SN	324		PRINT 1110.(CP(K.U.L).K=1.3).GR(U.L)
ISN	325	$\begin{aligned} & 165 \\ & c \end{aligned}$	CONTINUE
		C	***** INITIAL CONFIGURATION IS PRINTED AT THIS STEP *****
		C	MEANS CARBON POSITIONS CP ARE PRINTED.XYZ CO-ORDINATES.
		C	
I SN	326	1110	FORMAT (5X, 4F12.5)
I SN	327	1114	FORMAT (5X, '1114'.I4.I4)
ISN	328	1115	FORMAT(5X, '1115'.I4.I4)

		C C C C	**** PICK A BOND ON CHAIN NO. LABELLED LROT AND "FLIP A COIN " TO MAKE A ROTATION OR NQT *+***
ISN	415		DO 1030 LROT $=1$. NCHAIN
ISN	416		IF (LROT.EQ. 22) THEN
ISN	417		[$21=21$
ISN	418		IZ2=27
ISN	419		ELSE
I SN	420		IZ $1=1$
I SN	421		$I Z 2=16$
ISN	422		NLINK=16
I SN	423		ENDIF
I SN	424		DEL $($ LROT $)=0$.
ISN	425		ITR=LROT
I SN	426		$K T R=L R O T$
ISN	427		FLIF = RANF (0)
I SN	428		IF(FLIP.LT.O.5)GO TO 6099
I SN	429		$X V=(1 Z 2-2)+$ RANF (O)
ISN	430		XVL $=(\mathrm{IZ2-3)*RANF}(0)$
ISN	431		IC (LROT) $=\operatorname{INT}(X V)+2$
ISN	432		ICL(LROT $)=\mathrm{IC}(\mathrm{LROT})+1+\mathrm{INT}(X V L)$
I SN	433		IF (ICL(LROT).GE.IZ2)GO TO 1025
$15 N$	434		LU=IC (LRDT)
ISN	435		$L L=I C L(L R O T)$
I SN	436		GR (LU, LROT) = GR (LU, LROT) + 1
ISN	437		IF (GR(LU, LROT) . GT . 1.1) GR (LU, LROT $)=-1$.
I SN	439		GR (LL, LROT) = GR (LL, LROT) - 1
I SN	440		$\mathrm{IF}(\mathrm{GR}(L L . L R O T) . L T .-1.1) \mathrm{GR}(\mathrm{LL} . \operatorname{LROT})=1$.
ISN	4.42		$A R=(G R(L L, L R O T)) * G R(L L, L R O T)$
I SN	4.3		$A S=G S(L L . L R O T) * G S(L L . L R O T)$
I SN	444		$B R=G R(L U, L R O T) * G R(L U, L R O T)$
I SN	445		$B S=G S(L U, L R O T) * G S(L U, L R O T)$
ISN	446		$D L=A R-A S$
I SN	447		$D U=B R-B S$
I SN	448		$R R L=G R(L L-1 . L R O T) * G R(L L-1 . L R O T)+G R(L L+1 . L R O T)+G R(L L+1 . L R O T)$
ISN	449		$R R U=G R(L U-1 . L R O T) * G R(L U-1 . L R O T)+G R(L U+1 . L R O T) * G R(L U+1, L R O T)$
ISN	450		$D E L(L R O T)=-500 . *(D L+D U)-2500 . *(D L * R R L+D U * R R U)$
ISN	451		GO TO 6099
ISN	452	1025	$L U=I C(L R O T)$
ISN	453		GR (LU.LROT $)=\mathrm{GR}(\mathrm{LU}$, LROT $)-1$.
I SN	454		IF (GR(LU. LROT).LT. -1.01) GR (LU, LROT $)=1$.
I SN	456		$B R=G R(L U, L R O T)+G R(L U . L R O T) ~$
I SN	457		ES=GS(LU,LROT)*GS(LU,LROT)
I SN	458		$R R U=G R(L U-1 . L R O T) * G R(L U-1 . L R O T)+G R(L U+1 . L R O T) * G R(L U+1 . L R O T)$
I SN	459		$D E L(L R O T)=-500 . *(B R-B S)-2500 . * R R U *(B R-R S)$
I SN	460	6099	CROT (LROT) = RANF (O)
I SN	461		IF (LROT.EQ. 22) GOTO 169
ISN	462		$C P(2,1, K T R)=C P(2,1, K T R)+.03 *(1 .-2 . * R A N F(0))$
ISN	463		$C P(3,1 . K T R)=C P(3,1 . K T R)+0.03 *(1 .-2 . * R A N F(0))$
		C	
		C	**** NEW CHAIN POSITIONS ARE CALCULATED AFTER ROTATION
		C	and translation of chain no.labelled lrot. ****
		C	
I SN	464	169	CONTINUE
I SN	465	170	ANGSV = ANG (ITR)

ISN	466		RVEC(2,1, ITR) $=0$.
ISN	467		$\operatorname{RVEC}(3,1, I T R)=0$.
ISN	468		$\triangle N G(I T R)=A N G(I T R)+0.03 \cdot P I *(1 .-2 .+\operatorname{CROT}(\mathrm{ITR}))$
ISN	$4 \mathrm{G9}$		$E P S=S I N(\triangle N G(I T R))$
ISN	470		$E P C=\operatorname{COS}(\triangle N G(I T R))$
I SN	471		$R T(1,1)=E C$
ISN	472		$\operatorname{RT}(2,1)=E S$
ISN	473		$\mathrm{RT}(3,1)=0$.
ISN	474		$R T(1,2)=-E S+E P C$
ISN	475		$R T(2.2)=E C \cdot E P C$
I SN	476		$R T(3.2)=E P S$
ISN	477		$R T(1.3)=E S * E P S$
ISN	478		$R T(2,3)=-E C+E P S$
I SN	479		$\operatorname{RT}(3,3)=E P C$
I SN	480		$\operatorname{RVEC}(1.1 .1 T R)=1.53$
ISN	481		DO $210 \mathrm{~J}=1 \mathrm{Z} 1+1.1 Z 2$
ISN	482		DO $200 \mathrm{~K}=1.3$
ISN	483		$L \mathrm{R}=\mathrm{J}-1$
I SN	484		RVEC(K, J,ITR) $=0$.
ISN	485		DO 6011 I $Y=1.3$
I SN	486	6011	$\operatorname{RVEC}(K, U, I T R)=R V E C(I Y, L R, I T R) * R O T(I Y, K)+R V E C(K, J, I T R)$
I SN	487	200	CONTINUE
ISN	488	210	CONT INUE
I SN	489		DO $206 \mathrm{~J}=\mathrm{IZ} 1+1$. IZ2-1
I SN	490		$\mathrm{J}!=122-\mathrm{J}$
ISN	491		$J_{2}=i Z 2+1-J$
I SN	492		IF(GR(J2.ITR).EO.O.)GOTO 206
I SN	493		XX1=.5*FLOAT(J1)
ISN	494		IXX1=2*INT (\times X 1)
ISN	495		$\operatorname{IF}(\mathrm{GR}(\mathrm{J} 2 . I T R) . E Q .+t .0) \quad \mathrm{N}=1$
ISN	497		$\operatorname{IF}(\mathrm{GR}(\mathrm{U} 2.1 T R) . E Q,-1.0) \mathrm{N}=3$
ISN	49.9		IF (IXX1.NE.J1)THEN
ISN	500		DO $806 \mathrm{~L}=\mathrm{J} 1+1 . \mathrm{IZ2-1}$
I SN	501		TVEC($2 . L . I T R)=\operatorname{RVEC}(2, L . I T R)$
ISN	502		$\operatorname{TVEC}(3 . L . I T R)=R V E C(3, L, I T R)$
I SN	503		$\operatorname{RVEC}(2, L . I T R)=\operatorname{TVEC}(2, L . I T R) * \operatorname{GACOS}(\mathrm{~N})+\operatorname{TVEC}(3 . L, I T R)+\operatorname{GASIN}(N)$
ISN	504		$\operatorname{RVEC}(3 . L . I T R)=\operatorname{TVEC}(3.1 . I T R) * \operatorname{GACOS}(N)-\operatorname{TVEC}(2 . L . I T R) * \operatorname{GASIN}(N)$
I SN	505	806	CONTINUE
ISN	506		ELSE
I SN	507		DO $807 \mathrm{~L}=\mathrm{V} 1, \mathrm{IZ2-1}$
ISN	508		DO $808 \mathrm{~K}=1.3$
ISN	509		$\operatorname{TVEC}(\mathrm{K}, \mathrm{L}, \mathrm{ITR})=\operatorname{RVEC}(\mathrm{K}, \mathrm{L}, \mathrm{ITR})$
I SN	510	808	CONTINUE
1 SN	511		OO 809 $K=1.3$
$15 N$	512		$\operatorname{RVEC}(\mathrm{K}, \mathrm{L} . \mathrm{ITR})=0.0$
ISN	513		DO 810 I $Y=1.3$
I SN	514	810	RVEC (K,L, ITR) = RVEC (K,L,ITR) + TVEC(IY,L,ITR)*ROTP (IY,K)
ISN	515	809	CONTINUE
ISN	516	807	CONT INUE
ISN	517		
I SN	518		$\operatorname{TVEC}(2 . L . I T R)=$ RVEC (2,L,ITR)
I SN	519		$\operatorname{TVEC}(3 . L . I T R)=R V E C(3, L, I T R)$
I SN	520		$\operatorname{RVEC}(2, L, I T R)=\operatorname{TVEC}(2 . L . I T R)+\operatorname{GACOS}(N)+\operatorname{TVEC}(3, L, I T R)+\operatorname{GASIN}(N)$
ISN	521		$\operatorname{RVEC}(3 . L . I T R)=\operatorname{TVEC}(3 . L . I T R) * \operatorname{GACOS}(\mathrm{~N})-\operatorname{TVEC}(2, L . I T R) * G A S I N(N)$
I SN	522	811	CONTINUE
ISN	523		DO $812 \mathrm{~L}=\mathrm{J} 1 . \mathrm{IZ2-1}$

		C	
		C	
		C	IF(KMC.EO.KMOV)GO TO 2300
		C	GO TO 2500
I SN	579		CALL CHECK(IFLAG.NN.ESV)
I SN	580		ENEW (ITR) $=0$.
I SN	581		$E D L D(I T R)=0$.
ISN	582		DO $350 \mathrm{~K}=1$. NCHAIN
ISN	583		EOLD (ITR) = EOLD (ITR) +EVDW (KTR, K)
ISN	584		ENEW (ITR) $=\operatorname{ENEW}(\mathrm{ITR})+\operatorname{ESV}(\mathrm{K})$
ISN	585	350	CONTINUE
		C	
		C	**** CHANGE IN ENERGY EXP(-DELTA E/KT) IS COMPARED
		C	WITH RANDOM No. To accept or revect the Change****
		C	
I SN	586		DEL $1=E N E W(I T R)-E O L D(I T R)+E P K(I T R)-E P O L D(I T R)$
ISN	587		DELT = (DEL $1-D E L(L R O T))+B K T$
I SN	588		IF(DELT.LE.O.) GO TO 400
ISN	589		IF (DELT.GT. 10.) GO TO 500
ISN	590		DDD $=E \times P(-D E L T)$
ISN	591	,	TST $1=$ RANF (0)
I SN	592		IF(DDD.LE.TST1)GO TO 500
I SN	593	400	DO 420 LE=1. NCHAIN
ISN	594		EVDW (KTR.LE) $=$ ESV(LE)
I SN	595	420	$E V D W(L E, K T R)=E V O W(K T R, L E)$
ISN	596		EPOLD (ITR) = EPK (ITR)
ISN	597		GO TO 2000
		C	
		C	RESET After revected move.
I SN	598	500	CONTINUE
I SN	599		DO 6098 IY=1.3
I SN	600		DO 6097 IZ $=121 . I Z 2$
I SN	601		$C P(I Y, I Z, K T R)=C P S(I Y, I Z, K T R)$
ISN	602	6097	RVEC(IY,IZ.KTR) $=$ RSV(IY,IZ.KTR)
ISN	603	C	CONTINUE
I SN	604		$\triangle N G(K T R)=\Delta N G S V$
ISN	605	600	IREU=IREJ+1
ISN	606		DO 601 IR = IZ1,IZ2
I SN	607	601	GR (IR.KTR) $=$ GS (IR,KTR)
ISN	608	2000	CONTINUE
ISN	609	1030	CONTINUE
ISN	610		DO $3150 \mathrm{KC}=1$. NCHAIN
ISN	611		IF (NNP (KC) . EQ . 1) Y $M P=Y D P+1$
I SN	613		$I F(N P D(K C) . E Q .1) X D P=X D P+1$.
ISN	615	3150	CONTINUE
ISN	616	2500	IF (LMC.LE.NMIN)GO TO 990
ISN	617	800	CALL CH2 (XPR, YPR)
ISN	613		IF (LMC.EQ.JPRT)GO TO 900
ISN	619		GO TO 990
ISN	620	900	PRINT 2900.KMC.LMC.IREJ
ISN	621	2900	FORMAT ('AFTER'.I7.' X 10 $\mathrm{X}^{\prime} .14 .^{\prime}$ (MC STEPS...IREJ='.I8/)
ISN	622		PRINT 3110
ISN	623	3110	FORMAT(VALUES OF CP \& IG: WRITE ON DISK'/)
ISN	624		REWIND 9
ISN	625		DO $950 \mathrm{~L}=1$. NCHAIN

ISN	626		IF (L.EQ. 22) THEN
I SN	627		$I Z 2=27$
ISN	628		ELSE
I SN	629		IZ2 $=16$
ISN	630		ENDIF
ISN	631		WRITE(9.46)ANG(L)
ISN	632		DO $950 \mathrm{~J}=1 . \mathrm{I} 22$
ISN	633		WRITE(9,45)(CP(K, U.L.).RVEC(K, J., L) , K= 1, 3) , GR (U,L)
ISN	634	950	CONTINUE
ISN	625		PRINT 3100
I SN	636	3100	FORMAT(ORDER PARAMETER PROFILE'/)
ISN	637		$F L M C=F L O A T(L M C)$
ISN	638		FNMIN=FLOAT (NMIN)
I SN	639		XDN = 10.* (FLMC-FNMIN)-9
I SN	640		YDN $=1 . /(($ NCHAIN -1$) *$ XDN $)$
I SN	641		DO 6096 IY = 1. LLINK
ISN	642	6095	SSVG(IY) =SAVG(IY)*YDN
ISN	643		PRINT 3200. (K, SSVG(K).K=4.LLINK)
I SN	644	$\begin{aligned} & 3200 \\ & c \end{aligned}$	FORMAT (5X.IA.5X,F12.6)
		C	WRITE (18.3412).(K, SSVG(K), K=1, LLINK)
		$C 3412$	FORMAT(5X.14.5X.F12.6)
ISN	645		$003140 \mathrm{JP}=1.15$
ISN	646		$Z N N(U P)=Y P R(U P) / Y D P$
I SN	647		ZPR(UP) $=X P R(J P) / X D P$
ISN	648	3140	CONTINUE
ISN	649		PRINT 3197
I SN	650		PRINT 3198.(2 PR(II).II $=1,15$)
ISN	65 ;		PRINT 3198, (ZNN(II), II = 1, 15)
ISN	652	3198	FORMAT (5X.9F10.5)
ISN	653	3197	FORMAT(25X.'ORDER PARAMETERS FOR CHOLESTEROL NEIGHBORS'/!)
I SN	654		$J P R T=J P R T+I P R T$
		c	
		C	***** LIPID-CHOL :VARIOUS INTERACTION ENERGIES
		C	EOLD. ENEW. EPK.EPOL D AND DELIENERGY DIFF
		C	getween gauch-trans config.)frinted here ****
		C	
ISN	655		PRINT 3199
ISN	656	3199	FORMAT (12X.'ENEW', 12X.'EOLD', 12X, 'EPK'. 12 X , 'EPOLD', 12X.'DEL'/)
I SN	657		DO $5000 \mathrm{~L}=1$. NCHA IN
ISN	658	5000	PRINT 4199.ENEW(L), EOLO(L), EPK(L).EPOLD(L), DEL (L)
ISN	659	4199	FORMAT ($5 \times .5 \mathrm{E} 16.6$)
ISN	660		IF (LMC.EO.NMAX)GO TO 1002
ISN	661	990	IF(LMC.EO.ULI)GO TO 992
$15 N$	662		GO TO 1000
ISN	663	992	DO 999 ILST $=1$. NCHAIN-1
ISN	664		DO 999 JLST $=I L S T+1$, NCHAIN
ISN	665	995	CALL CLIST
I SN	666		IF(IDST.EQ.1)GO TO 996
ISN	667		NN(ILST, JLST $)=0$
I SN	668		NN (ULST, ILST) $=0$
ISN	659		GO TO 999
ISN	670	996	NN(ILST, JLST) $=1$
ISN	671		NN(ULST, ILST) $=1$
ISN	672	999	CONT INUE


```
OOOOO
SUBROUTINE CHECK(IFLAG;NN.ESV)
COMMON CP(3, 27, 36),RVEC(3,27,36),NCHAIN,NLINK,SIZEY,SIZEZ,RC
COMMON/VDW/SIG.EPIL
COMMON/CHK/KTR,JR,SY,SZ,SAVG(27),SSVG(27),NPP(36),NNP(36)
DIMENSION NN(36,36), ESV(36)
DIMENSION DIF(3.27).DIST(27).DEL(3,27),RECIP(27),EVV(27)
IF(KTR.EO.22)THEN
IZ3=27
ELSE
IZ3=NLINK
ENDIF
DO 51 I=1.NCHAIN
IF(I.EO.22)THEN
IZ4=27
ELSE
IZ4=NLINK
ENDIF
ESV(I)=0.
IF(NN(KTR.I).EQ.O)GO TO 51
ENEW=O.
DO 50 JC=1.123
JCC=IZ3-JC+1
DO 8000 IZ=1.3
DO 8100 IY=1.IZ4
DIF(IZ,IY)=CP(IZ,UCC,KTR)-CP(IZ,IY,I)
DIF(IZ,IY)=ABS(DIF(IZ,IY))
8100
8000
CONTINUE
IF(I.EQ.KTR)GO TO 45
DO 38 J=1.IZ4
IF(DIF(2.U).GT.SY)DIF(2.U)=DIF(2.U)-SIZEY
IF(DIF(3.U).GT.SZ)DIF(3.U)=DIF(3.U)-SIZEZ
DIST(U)=0
DO 8200 IY=1.3
8200 DIST(U)=DIF(IY,U)*DIF(IY.U)+DIST(U)
38 CONTINUE
DO 41 IJ=1,IZ4
41 IF(DIST(IJ).LE.2.33)GO TO 150
GO TO 49
45 DO 48 JJ=1.IZ4
J=IZ4-JJ+1
JP=JCC+1
        JPP=JCC+2
    JM=JCC-1
        JMM=JCC -2
    IF(U.EQ.JP)GO TO 48
        IF(U.EQ.JPP)GO TO 48
    IF(U.EQ.JM)GO TO 48
```


ISN	50		IF (U.EO. JMM)GO TO 48
ISN	51		IF (J.EQ.UCE)GO TO 48
ISN	52		IF(DIF(2.J).GT.SY)OIF (2.J) $=$ DIF(2.J)-SIZEY
ISN	5.4		
ISN	56		$\operatorname{OIST}(J)=0$
ISN	57		DO 8900 Ir $=1.3$
ISN	58	8900	DIST(U)=DIF(IY, U)*DIF(IY.U)+DIST(U)
ISN	59		IF(DIST(J).LE.2.33)GO TO 150
ISN	60	48	continue
ISN	61		GO TO 50
ISN	62	49	EATT $=0$
ISN	63		DO 8300 IY=1.IZ4
ISN	64		$\operatorname{RECIP}(\mathrm{IY})=1 . / \mathrm{DIST}$ (IY)
ISN	65		$\operatorname{EVV}(\mathrm{IY})=(\mathrm{RECIP}(I Y) * S I G) * * 6-($ RECIP $(I Y) * S I G) * * 3$
ISN	66		$\operatorname{EVV}(\mathrm{IY})=E P I L+E V V(I Y)$
ISN	67	8300	EATT EAATT EVV(IY)
İN	68		ENEW=ENEW+EATT
ISN	69	50	CONTINUE
ISN	70		$\operatorname{ESV}(\mathrm{I})=$ ENEW
ISN	71		GO TO 51
ISN	72	150	$\operatorname{ESV}(\mathrm{I})=1 . \mathrm{E} 20$
I SN	73		GO TO 300
ISN	74	51.	continue
ISN	75	200	IFLAG $=0$
ISN	76	300	P.ETURN
ISN	77		END

のロロのロ

I SN	1		SUEROUTINE CLIST
I SN	2		COMMON CP $(3,27,36)$ ，RVEC $(3,27,36)$, NCHAIN，NLINK，SIZEY，SIZEZ，RC
I SN	3		COMMON／LST／RANG．ILST．JLST．IDST
I SN	4		COMMON／CHK／KTR．JR，SY，SZ，SAVG（ 27 ）．SSVG（ 27 ）
I SN	5		DIMENSION DDF（3．27），
ISN	6		$I=I L S T$
I SN	7		IDST $=0$
I SN	8		J＝JLST
ISN	9		DO 7000 IY $=1.3$
I SN	10		DO $7010 \mathrm{IZ}=1.16$
I SN	11		$\operatorname{DDF}(I Y, I Z)=C P(I Y, I Z, J)-C P(I Y, I Z . I)$
I SN	12	7010	$\operatorname{DDF}(I Y, I Z)=A B S(D D F(I Y, I Z))$
I SN	13	7000	CONTINUE
ISN	14		DO $40 \mathrm{~L}=1$ ，NLINK
ISN	15		IF（DDF（2．L）．GT．SY） $\operatorname{CDF}(2 . L)=\operatorname{DDF}(2 . L)-S I Z E Y$
ISN	17		$\operatorname{IF}(\operatorname{DDF}(3, L) . G T . S Z) D D F(3, L)=\operatorname{DDF}(3, L)-S I Z E Z$
ISN	19		DST $=0$ ．
ISN	20		DO 7020 IY $=1.3$
I SN	21	7020	$D S T=D S T+D D F(I Y, L) * D D F(I Y, L)$
I SN	22		IF（DST．LE．RANG）GO TO 45
ISN	23	40	CONTINUE
ISN	24		GO TO 50
ISN	25	45	IDST $=1$
ISN	26	50	CONTINUE
ISN	27		RETURN
ISN	28		END

のロのロの

ISN
ISN
I SN
I SN
I SN
ISN
ISN
ISN
ISN
ISN
I SN
I SN
I SN
I SN
ISN
I SN
ISN
I SN
I SN
I SN
I SN
I SN
I SN
ISN
ISN
I SN
I SN
I SN
ISN
I SN
ISN
ISN
ISN
ISN
ISN
I Siv
I SN
I SN
ISN
ISN
ISN
ISN
ISN
ISN
I SN
ISN
ISN
I SN
I SN
I SN ISN
I SN
ISN
I SN I SN
ののののロ

```
SUEROUTINE CH2(XPR,YPR)
```

SUEROUTINE CH2(XPR,YPR)
DIMENSION XPR(15),YPR(15)
DIMENSION XPR(15),YPR(15)
COMMON CP(3.27.36), RVEC(3,27.36),NCHAIN,NLINK.SIZEY.SIZEZ.RC
COMMON CP(3.27.36), RVEC(3,27.36),NCHAIN,NLINK.SIZEY.SIZEZ.RC
COMMMON/CHK/KTR.JR,SY,SZ,SAVG(27),SSVG(27).NPP(36),NNP(36)
COMMMON/CHK/KTR.JR,SY,SZ,SAVG(27),SSVG(27).NPP(36),NNP(36)
DIMENSION DLX(27:36),SO(27,36)
DIMENSION DLX(27:36),SO(27,36)
LLINK=NLINK-1
LLINK=NLINK-1
DO }70\quadU=1.NCHAI
DO }70\quadU=1.NCHAI
LLINK=15
LLINK=15
K1=1
K1=1
K2=LLINK
K2=LLINK
IF(U.EQ.22)THEN
IF(U.EQ.22)THEN
K1=21
K1=21
END IF
END IF
DO 70 K=K1.K2
DO 70 K=K1.K2
DLX(K,J)=RVEC (1,K,J)
DLX(K,J)=RVEC (1,K,J)
SO(K,U)=RVEC(2,K,U)*RVEC(2,K,J)+RVEC(`,K,U)+RVEC(3,K,J) SO(K,U)=RVEC(2,K,U)*RVEC(2,K,J)+RVEC(`,K,U)+RVEC(3,K,J)
CONTINUE
CONTINUE
DO 9000 IZ=1.36
DO 9000 IZ=1.36
I f=1
I f=1
I2=15
I2=15
IF(IZ.EO.22)THEN
IF(IZ.EO.22)THEN
Iq=21
Iq=21
I2=25
I2=25
END IF
END IF
DO 9100
DO 9100
DO 9100 IY=I1.I2
DO 9100 IY=I1.I2
SO(IY,IZ)=ABS(SO(IY,IZ))
SO(IY,IZ)=ABS(SO(IY,IZ))
SO(IY,IZ)=SORT(SO(IY.IZ))
SO(IY,IZ)=SORT(SO(IY.IZ))
SO(IY,IZ)=DLX(IY,IZ)/SO(IY.IZ)
SO(IY,IZ)=DLX(IY,IZ)/SO(IY.IZ)
SO(IY,IZ)=DLX(IY,IZ)/SO(IY,IZ)
SO(IY,IZ)=DLX(IY,IZ)/SO(IY,IZ)
SO(IY,IZ)=ATAN(SO(IY,IZ))
SO(IY,IZ)=ATAN(SO(IY,IZ))
SO(IY,IZ)=SO(IY,IZ)-.g55566
SO(IY,IZ)=SO(IY,IZ)-.g55566
SO(IY,IZ)=COS(SO(IY,IZ))
SO(IY,IZ)=COS(SO(IY,IZ))
SO(IY,IZ)=SO(IY,IZ)=SO(IY,IZ)
SO(IY,IZ)=SO(IY,IZ)=SO(IY,IZ)
SO(IY,IZ)=1.5*SO(IY,IZ)
SO(IY,IZ)=1.5*SO(IY,IZ)
SO(IY.IZ)=SO(IY.IZ)-0.5
SO(IY.IZ)=SO(IY.IZ)-0.5
CONTINUE
CONTINUE
DO 100 J=1. NCHAIN
DO 100 J=1. NCHAIN
L 1=1
L 1=1
L2=15
L2=15
IF(U.EQ.22)THEN
IF(U.EQ.22)THEN
LY=21
LY=21
L2=25
L2=25
END IF
END IF
-DO 100 L=L1,L2
-DO 100 L=L1,L2
SAVG(L)=SAVG(L)+50(L.J)
SAVG(L)=SAVG(L)+50(L.J)
IF(NPP(U).EQ.1.)XPR(L)=XPR(L)+SO(L.J)
IF(NPP(U).EQ.1.)XPR(L)=XPR(L)+SO(L.J)
IF(NNP(U).EO.1)YFR(L)=YPR(L)+SO(L.U)
IF(NNP(U).EO.1)YFR(L)=YPR(L)+SO(L.U)
CONTINUE
CONTINUE
RETURN
RETURN
END
END
K2=25
K2=25
NO70
NO70
SO(IY,IZ)=SORT (SO(IY

```
SO(IY,IZ)=SORT (SO(IY
```

```
のロのロロロ
**+**+***+*** SUSPROG CHOL, ********+*****************+*****+*+*
    SUBROUTINE CHOL 1(ROT,RT, AVEC)
    COMMON CP(3,27,36). FVEC(3,27,36),NSHAIN,NLINK,SIZEY,SIZEZ,RC
    DIMENSION ROT(3,3),RT(3,3),AVEC(3.27)
    K=22
    RVEC(1.21,K)=1.53
    DO 194 I =2,3
194 RVEC(I.21.K)=0.
    NLINCH=26
    DO 196 J=22,NLINCH
    L=J-1
    DO 198 I=1.3
    RVEC(I,U,K)=0.
    DO 200 IY=1.3
    RVEC(I.J.K)=RVEC(I.J,K)+RVEC(IY,L,K)*ROT(IY,I)
    200 CONTINUE
198 CONTINUE
198 CONTINUE
    CONTINUE 
    DO 2O4 J=21.NLINCH
2O4 AVEC(I,J)=RVEC(I,U,K)
2O2 CONTINUE
    DO 206 I=1.3
    DO 206 J=21.NLINCH
    RVEC(I, J.K)=0.
    DO 208 IY=1.3
    RVEC(I,J.K)=RVEC(I,J,K)+AVEC(IY,U)+RT(IY,I)
208 CONTINUE
206 CONTINUE
    CP(1.21.K)=9.59300
    CP(2.21,K)=20.054979
    DO 210 J=22,NLINCH
    JJ=v-1
    UJ=U-1
    DO 212 I=1.3
212 CP(I.U.K)=CP(I.JU.K)+RVEC(I.UJ.K)
210 CONTINUE
    RETURN
    END
```

I SN
ISN
I SN
ISN
I SN
ISN
I SN
I SN
I SN
ISN
ISN
ISN
ISN
ISN
ISN
I SN
I SN
I SN
ISN
I SN
I SN
I SN
ISN
ISN
ISN
ISN
I SN
ISN
I SN
ISN
ISN
I SN
I SN
ISN
I SN
ISN
ISN
ISN
I SN
ISN
ISN
ISN
ISN
ISN
I SN
I SN
ISN

The original Computer program 'Monte Carlo Simulation program for lipid-protein interaction' written by Dr. H. L. Scott was modified in the present study of lipid-cholesterol interaction

The following changes were made:

1) Comments were inserted to define all parameters.
2) DIMENSION statements were modified to suit the cholesterol molecule structure. (ISN 1-16)
3) DIMENSION statements were modified so as to accommodate longer acyl chains containing $15 \mathrm{C}-\mathrm{C}$ bonds each.
(ISN - 16)
4) Comments were introduced at appropriate places to clarify the main steps of the program.
5) Neighboring matrix of the cholesterol molecule was defined differently than in the earlier program. (ISN 49-67)
6) Coordinates of cholesterol molecules were included.
(ISN 68-148)
7) ISN 187 - 194 were added.
8) ISN 225-242 define two new rotation operations ROTN and ROTP.
9) ISN 316 - 325 were re-written to suit the cholesterol molecule.
10) ISN 352-373 were modified for cholesterol.
11) ISN 402-413 were re-written.
12) Necessary changes were made in the main loop so as to make it suitable for the present study concerning cholesterol rather than the protein model used earlier. (ISN 415 550)
13) ISN 699-702.
14) Sub-programs, CHECK and SUBROUTINE, were adjusted to accommodate longer acyl chains and the peculiar structure of the cholesterol molecule.
15) Sub-program, CHOL1, generates cholesterol 'tail'.

The structure of the main program is essentially the same, except the changes made so as to make it suitable for the present study of lipid-cholesterol interaction.

APPENDIX B

COMPUTER PROGRAM FOR THE CALCULATION

OF THE WEIGHTED AVERAGES AND THE STANDARD DEVIATIONS

		C *****A	program to calculate weighted averages. sto deviation.
I SN	1		IMPLICIT REAL (A-H, O-Z)
ISN	2		DIMENSION SUM1(15), SUM2(15).SUM3(15)
I SN	3		DIMENSION TOTAL(15),AVE(15).STDEV(20)
I SN	4		DIMENSION $X(15.6), Y(15.6) .2(15.6) . S O S U M(20) ~$
ISN	5		DIMENSION SOSUM1(20), SOSUM2(20), SOSUM3(20)
I SN	6	-	$N=17$
ISN	7		DO 10 IBOND $=1.15$
I SN	8		TSUM $1=0.00$
ISN	9		REAO (2,15) ($\times($ IBOND, L$), \mathrm{L}=1.6)$
I SN	10		WRITE (6, 16) (X (IBOND,L), L= 1,6)
I SN	11	15	FORMAT($6(F 7.5 .5 X)$)
ISN	12	16	FORMAT (1 H .6 (F7.5.5X))
I SN	13		DO $401 \mathrm{~L}=1.6$
ISN	14		TSUM $1=$ TSUM $1+$ X (IBOND, L) $=50$.
ISN	15	404	CONTINUE
ISN	16		SUM 1 (IBOND $)=$ TSUM 1
ISN	17	10	CONTINUE
I SN	18	18	FORMAT (5 (F7.5.5X))
ISN	19		DO 20 IBOND $=1.15$
I SN	20		TSUM2 $=0.00$
I SN	21		READ (2,18) (Y(IBOND, M) , M $=1.5$)
ISN	22		WRITE (6, 16)(Y(I8OND, M) , M=1,5)
I SN	23		DO $402 \mathrm{M}=1.5$
ISN	24		TSUM2 $=$ TSUM $2+Y($ IBOND,$M) * 100$.
ISN	25	402	CONTINUE
ISN	26		SUM2 (IBOND) = TSUM2
ISN	27	20	CONTINUE
ISN	28		DO 30 IBOND $=1.15$
I SN	29		TSUM3 $=0.00$
I SN	30		READ (2,15$)(\mathrm{Z}($ IBOND, N$), \mathrm{N}=1.6)$
ISN	31		WRITE (6, 16) ($\mathrm{Z}($ IBOND,N), $\mathrm{N}=1,6)$
ISN	32		DO $403 \mathrm{~N}=1.6$
ISN	33		TSUM3=TSUM3+Z(IBOND,N)*200.
I SN	34	403	CONTINUE
I SN	35		SUM3 (IBOND) = TSUM3
ISN	36	30	CONT INUE
I SN	37		DO 40 IBOND $=1.15$
I SN	38		TOTAL (IBOND) = SUM 1 (IBOND) +SUM2 (IBCND) + SUM3 (IBOND)
I SN	39		$A V E(I B O N D)=$ TOTAL (IBOND)/2000.
ISN	40	40	CONTINUE
I SN	41		DO 50 IBOND $=1.15$
ISN	42		DO $60 \mathrm{~J}=1.6$
I SN	43		PRINT 11.(X(IBOND, J)-AVE(IBOND))**2
ISN	44	11	FORMAT (', F14.6)
I SN	45	60	CONTINUE
ISN	46	50	CONTINUE
I SN	47		DO 70 IBOND $=1.15$
ISN	48		DO $80 \mathrm{~K}=1.5$
ISN	49		PRINT 22.(Y(IBOND.K)-AVE(IBOND) $)$ **2
ISN	50	22	FORMAT(. , F 14.6)
ISN	51	80	CONTINUE
I SN	52	70	CONTINUE
ISN	53		DO 71 IBOND $=1.15$
I SN	54		DO $81 \mathrm{I}=1.6$
I SN	55		PRINT 33, (2 (IBOND, I)-AVE (IBOND)) **2
I SN	56	33	FORMAT (\cdot, F14.6)
ISN	57	81	CONTINUE
ISN	58	71	CONTINUE
ISN	59		DO 12 IBOND $=1.15$
I SN	60		DO $13 \mathrm{~J}=1.6$
I SN	61		
ISN	62	13	CONTINUE
I SN	63	12	CONTINUE

ISN	64		DO 34 IBOND=1.15
ISN	65		
ISN	66		
ISN	67	35	CONTINUE
ISN	68	34	CONTINUE
ISN	59		DO 36 IBOND $=1.15$
ISN	70		
ISN	71		SOSUM3(IBOND) $=(2$ (IBOND. 1) $-\operatorname{AVE}$ (IBOND $)$)
ISN	72	37	CONTINUE
ISN	73	36	CONTINUE
ISN	7.4		
ISN	75		SOSUM (IBOND) = SOSUM $1(180 N O)+$ SOSUM2 (IEOND $)$ SOSUMO (IBONO)
ISN	76		PRINT 44, SQSUM(IBONO)
ISN	77	4.	FORMAT ($30 \mathrm{X}, \mathrm{F} 12.6$)
ISN	78	99	CONTINUE (SOSUM(IBOND) IBOND $=1$
ISN	79		PRINT 55.(SOSUM(IBOND).I8ONO $=1.15$)
I SN	80	55	FORMAT(20X.F8.5)
ISN	81		D 95 ISOND=1.15
I SN	82		STCEV(IBOND) $=($ SQSUM (IBUND $) /(N-1)) * * 0.5$
ISN	83		PRINT 98.STDEV(IBOND)
ISN	84	98	FORMAT(5X.F8.5/)
ISN	85	95	continue
ISN	86		PRINT 75
ISN	87	75	FORMAT(5X.'TOTAL'.7X.'AVERG'.7X.'SOSUM'.7X.'STDEV'/)
ISN	88		DO $400 \mathrm{IB}=1,15$
ISN	89		PRINT 85,TOTAL(IB).AVE(IB), SOSLiM(IB), STDEV(IB)
ISN	90	85	FORMAT(1H.4(E12.5))
ISN	91	400	cuntinue
ISN	92		STOP
I SN	93		END

VITA

Shashikant D. Kalaskar
Candidate for the Degree of
Master of Science

Thesis: MONTE CARLO STUDY OF LIPID CHOLESTEROL INTERACTIONS IN BIOMEMBRANES

Major Field: Physics
Biographical:
Personal Data: Born in Poona, India, September 28, 1948 the son of Mr . and Mrs. D. M. Kalaskar.

Education: High School diploma from Camp Education Society's high school in June, 1965; received Bachelor of Science degree in Chemistry (major), physics, mathematics (minor) from Poona University in June, 1971; received Bachelor of Education degree from Tilak College of Education, Poona University in June, 1975; received Master of Science degree in Chemistry (physical) from Western Carolina University, North Carolina, August, 1982.

Professional Experience: Science, Mathematics teacher, R.D. High School, Poona, India, 1971-1975; Science, Mathematics teacher, Trenchtown Comprehensive High School, Kingston, Jamaica (W.I.), 1975-1976; Physics, Mathematics Instructor, Holy Childhood High School, Kingston, Jamaica (W.I.), 1976-1979; Physics, Mathematics Instructor, Priory High School, Kingston, Jamaica, (W.I.), 1979-1980; Demonstrator of Physics, University of the West Indies, Department of Physics, 19781980; Mathematics, Physics Instructor Priory Adult Centre of Education (P.A.C.E.), 1976-1980; Graduate Teaching Assistant, Western Carolina University, Department of Chemistry, 19801982; Graduate Teaching Assistant, Oklahoma State University, Department of Chemistry, 1982-1983; Graduate Teaching Assistant, Oklahoma State University, Department of Physics, 1983-1987.

