
ABSTRACTION AND SPECIFICATION

OF LOCAL AREA NETWORKS

By

Chang-Hyun Jo
(f

Bachelor of Economics

Sung Kyun Kwan University

Seoul, Korea

1984

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1988

ABSTRACTION AND SPECIFICATION

OF LOCAL AREA NETWORKS

Thesis Approved:

Thesis Advisor

071

Dean of the GraduateCollege

ACKNOWLEDGMENTS

I wish to express sincere appreciation to my advisor,

Dr. D. D. Fisher for his warm encouragement and helpful

advisement throughout my graduate study. I extend sincere

thanks to committee member, Dr. K. M. George who provided

valuable suggestions and comments on this thesis. I would

also like to express my gratitude to Dr. J. P. Chandler for

his invaluable support and advisement. The helpful comments

of Dr. c. Hutchens on LANs are also sincerely appreciated.

I am also grateful to Dr. M. samadzadeh for his warm and

constant guidance.

Throughout my life, my parents provided constant

support and understanding without which this thesis could

never have been done.

My deepest appreciation is extended to my wife, Ae-

Kyung and to my sons, Hyun-Soo and Jin-Soo for their

patience and love.

iii

Chang-Hyun Jo
osu
July, 1988

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. ABSTRACT SPECIFICATION 4

2.1 Abstraction . . 0 4
2.2 Specification 0 . . . 5
2.3 Abstract Data Types . . . 0 0 0 . 5

2.3.1 Data Types . 0 . 0 0 0 0 . . 0 0 . 5
2.3.2 Abstract Data Types . 0 6

2.4 The Characteristics of Abstraction 0 0 0 . 7
2.4.1 Data Abstraction 0 0 . 0 0 0 0 0 . 8
2.4.2 Procedural Abstraction 0 0 . 0 . . 8
2.4.3 Behavioral Abstraction . . . 0 8

2.5 Abstract Specifications 0 0 0 0 . 0 0 0 . 8
2.5.1 Algorithmic Specification 0 0 . 9
2.5.2 Operational Specification . 0 . . 0 10
2.5.3 Logical Specification 0 0 10
2.5.4 Functional Specification 0 10
2.5.5 Algebraic Specification 10

2.6 Abstract Model 0 0 . . 0 . . 0 0 11
2.7 Abstract Specification 0 0 0 11

III. LOCAL AREA NETWORKS . 0 . . 0 . 0 . 0 . 13

3.1 Purpose of LAN 0 . . 0 0 . 0 . . 0 13
3.2 LAN Standards 0 . 0 0 14
3.3 LAN Topologies 0 0 . 15

3.3.1 Ring Topology . 0 0 0 . 17
3.3.2 Bus Topology 0 . 0 . 0 . . 17
3.3.3 Star Topology • 0 . 0 . 0 . . . 17

3.4 LAN Transmission Media 0 0 0 0 0 . 17
3.5 LAN Architecture 0 0 0 0 0 0 0 . 18
3.6 Internetwork Communication 0 0 0 20

IV. ABSTRACTION OF LOCAL AREA NETWORKS 22

4.1 Abstract Model of LAN . 0 . . 0 0 0 0 0 . 24
4.2 The Formal Model of LAN Communication 27
4.3 The Formal Model of LAN Objects 0 31

iv

Chapter Page

V. SPECIFICATION FOR LAN ABSTRACTION • . . • . 34

VI.

VII.

5.1 LAN Abstract Specification Template
5.2 LAN Abstract Specification Examples

LAN ABSTRACT SPECIFICATION APPLICATION

6.1
6.2

Application to OSI Model LAN •
Application to DOD Model LAN

CONCLUSIONS .

BIBLIOGRAPHY •

APPENDIXES .

APPENDIX A - OSI MODEL ABSTRACT MODULES

APPENDIX B - DOD MODEL ABSTRACT MODULES

v

34
36

48

48
54

57

59

63

64

71

LIST OF FIGURES

Figure

1. Abstract Modeling ...•.

2. Data Communication Model

3. Seven-Layer OSI Reference Model .

4. Network Topologies

5. LAN Architecture

6. Homogeneous Inter-Network .

7. Heterogeneous Inter-Network .

8. Inter-Network Data Packet Format

9. Communication System

10. LAN Abstract Modeling .

11. Inter-Layer Communication Relation Graph

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Inter-Layer Communication Relation Matrix .

Formal Model of LAN . . .

LAN Abstract Specification Template .

Relations among Object Modules
Abstract Specification for OSU LAN
Abstract Specification for LAN Status .
Abstract Specification for Object File . .
Abstract Specification for Object Message .
Abstract Specification for Object Batch Job

Abstract Specification for Object PDU . . .
Abstract Specification for Object Buffer .

vi

. .

.

. .

.

. .

.

. .

. .

.

.

.

.

.

Page

11

13

14

16

19

21

21

21

23

24

25

26

32

35

36

39

40

41

42

43

44

45

Figure

23. Relations between Service and Abstraction .

24. Operations in connection-Mode Service .

25. LAN communication Service

26.

27.

28.

Trace of Service

DOD Communication Architecture for LAN

Trace of DOD Communication

vii

Page

47

50

51

53

55

56

CHAPTER I

INTRODUCTION

An abstraction is a methodology for program

construction. A large program problem can be decomposed

into a number of small programs called modules. Abstraction

is a way to do decomposition. Using an abstraction

methodology, complicated objects can be simplified by

decomposing the original objects into sub-modules until we

can abstract each module as a specific function. We use

here three kinds of abstractions [Liskov 1986]. Data types

are the kinds of data such as integer, real, logical and

character. Data objects are the elements in the set of

data. Data structures consist of the operations applicable

to the data objects and the data objects themselves. An

abstract data type is a the mathematical model with a

collection of operations defined on the data objects

[Cleaveland 1986] [Guttag 1980]. Data abstraction allows us

to defer decisions about a data structure during

implementation until the data structure is fully specified.

A procedural abstraction is a mapping from the arguments to

the results with possible modification of some of the

arguments. A behavioral or a functional abstraction is a

description of the behaviors of modules when they are

1

invoked. An abstraction is intangible. We have some

difficulties to understand what an abstraction is, without

any description. The specification is this description. A

specification is the only tangible record of an

abstraction.

2

A local area network(LAN) is a communications network

that provides interconnection of a variety of data

communicating devices within a small area [Stallings 1987].

LAN makes possible a form of computing that is distributed

in several ways and provides several communications media

and channels for data, images, and voice communication.

Specification for a computer network protocol is a

formal description of its service function. Recently, a few

papers introduced the specification, testing and

verification techniques for distributed systems and

communication protocols [Gehani 1986] [Lam 1984] [Sunshine

1981]. Those are formally described by Petri Net models,

attributed grammars and some dedicated languages. However,

those are not machine-readable, hence they cannot be

normally used as input to design automation or simulation

of network systems.

In this paper, we use the abstraction methodology to

describe local area networks. This work includes an

abstract model for a LAN and the specification of LAN

communication protocols using a specification template

developed based on the LAN abstract model. The advantage of

such an approach is that the specification could be

3

machine-readable. In LAN abstraction, we discuss the

functional properties of a data structure and its

operations, then specify it in abstract template

constructs. This paper includes an abstract specification

of the functional capabilities of its physical components,

the data structure, the nature of control and information

flow between components in local area networks. Chapter 2

deals with general concepts for abstraction and

specification. Chapter 3 provides an overview of local area

network. Chapter 4 introduces LAN abstract model and the

formal model of LAN communication and objects. Chapter 5

presents the specification template and its examples.

Further applications of abstract specification to OSI model

LAN and DOD model LAN are shown in Chapter 6. This paper

ends with the conclusions in Chapter 7.

CHAPTER II

ABSTRACT SPECIFICATION

2.1 Abstraction

An abstraction provides a systematic tool used in

classifying and solving problems. Abstraction is a

mathematical modeling of the system. Discussion about

abstraction is also becoming abstract. To avoid this

abstraction, a formal or an informal model is used. The

functions of the system are fixed and are already defined.

The complexity of the functions, however, is beyond

comprehension of the users who manipulate the system

functions and even the implementors who facilitate the

system. Using abstraction, complexity is reduced and the

problem is generalized in the process of reducing the

redundancy and omitting irrelevant details and

reconstructing ambiguous flow. A good abstraction is well

balanced between the level of the abstraction and its

complexity. It must also have a good balance between the

machine dependent modeling and the machine independent

modeling. Some abstractions are portable if they can be

implemented on several independent systems without losing

compatibility. The harmonious abstraction between the

4

logical environment and the physical environment is a very

difficult problem.

2.2 Specification

Specification for a computer network protocol is a

formal description of its service function. A number of

communication protocol specification techniques are as

follows [Gehani 1986] [Guttag 1978] [Sunshine 1981]:

1) abstract machine model,

2) formal languages model,

3) Petri Nets model,

4) abstract data types.

Not only can abstract machine automata diagram easily

network structures [Bachmann 1978], but Petri Nets also

describe well abstract concurrent systems [Merlin 1979]

[Keller 1976]. However, those are not machine-readable,

hence they cannot be normally used as input to design

automation or simulation of network systems. Here we show

how to use abstraction methodologies for the specification

of communication systems in terms of local area networks

which can be a machine-readable input for network software

design with some proper modification.

2.3 Abstract Data Types

2.3.1 Data Types

Data types are specific programming language

5

6

constructs used to describe and define data structures. A

type is a set of values. A data type is a set of values and

a set of operations on the values. Types specify how to

interpret the values. The relationships between the

different types depend on the point of view. Every object

belongs to exactly one type, however, objects of one type

can represent objects of other types. Types are helpful to

understand objects and to detect errors. (Type checking is

one of the most powerful error detection capabilities of a

compiler.)

2.3.2 Abstract Data Types

Abstract data types(ADT) were probably the most

important advance in programming languages during the

1970's [Cleaveland 1986] [Guttag 1980]. The major

conceptual idea of ADT is to separate the use of a type

from the representation and implementation of a type. The

use of a type should depend on the set of values and

operations. It should not depend on either its

representation or its implementation. The use of data types

can be specified by the syntax and semantics. The languages

provide a rich syntax for expressing data types and ADT. An

abstract data type may have various implementations.

Interchangeability of implementations is another merit of

abstract data types. Since it is not necessary that the

application programmer need to know the encapsulated

algorithms, it is only necessary for him to learn how to

specify the interface parameters which is generally a much

simpler task. This encapsulation is a major merit of

abstract data types.

2.4 The Characteristics of Abstraction

7

Abstraction provides a way of organizing and designing

programs that are both more reliable and easier to change.

We cannot call just a collection of related procedures a

data abstraction. A merit for using abstraction is the

inter-changeability of implementation. If a more efficient

implementation is found it can readily be substituted for

the older implementation. Three kinds of abstractions are

used for an abstraction here. Those are data abstraction,

procedural abstraction and behavioral abstraction. Liskov

[1986] describes well about data abstraction and procedural

abstraction. But how does behavioral abstraction differ

from those two kinds of abstraction? Behavioral abstraction

is a high level language like description of an invoked

module which consists of data abstraction and procedural

abstraction. When such a module is invoked, necessary

operations are held spontaneously. If the abstract module

is invoked as a main module, such an abstraction is

absolutely necessary. An abstraction consists of two

parts. The first part is the specification and the second

one is the implementation. In this paper, we introduce the

specification scheme with an abstraction model of a LAN,

and then we show how this specification technique is used

for the implementation.

2.4.1 Data Abstraction

Data abstraction consists of a set of objects and a

set of operations characterizing the behavior of the

objects. Data abstraction separates the use of a data type

from the implementation of a data type.

2.4.2 Procedural Abstraction

A procedure provides a transformation from input

arguments to output arguments. Procedural abstraction

allows us to explain data objects in terms of input and

output parameters.

2.4.3 Behavioral Abstraction

8

Behavioral abstraction specifies the behaviors of

invoked modules in which both data abstraction and

procedural abstraction are composed. When each module is

invoked by calling its quantifiers, its functional behavior

is defined by its behavioral abstraction.

2.5 Abstract Specifications

A specification says exactly what a data type is and

how its operation behaves. This information enables a

programmer to implement the data type and the operation,

and it enables users to use the data type and the

operations. Precision and communication are the two most

9

important qualities of specifications to understand and to

interpret; specifications must be precise and unambiguous.

Specifications are used to communicate between the user and

the implementor. Natural language is easier to read but not

precise, and most formal languages are precise but

difficult to read. Precision and readability are

conflicting goals of abstract specifications. Abstract

specification provides a means for defining abstractions.

There are are several methods for defining abstractions

including the following [Cleaveland 1986].

1) Algorithmic specification

2) Operational specification

3) Logical specification

4) Functional specification

5) Algebraic specification

Now let us illustrate how to define the abstractions

in terms of each specification.

2.5.1 Algorithmic Specification

The algorithmic specification can define the data

types and the operations as a plain English sentence which

is a brief and precise description.

Operations
SENDMSG(destin_proc_id)

Exceptions

send a message to the system buffer, and
change the state.

sendmsg : when dead state, no operation occurs and output error
message.

2.5.2 Operational Specification

The operational specification is the most high_level

language like implementation.

Data types
system_msg_buffer
Operations
SEND_MSGCproc_id)

array[1 •• max_que_sizel of character;

system_msg_buffer[msg_nol = sending_msg;

2.5.3 Logical Specification

10

Logical specifications use input and output assertions

written in predicative calculus to describe the conditions

before and after execution of statements and procedures.

Parameter : destin_proc_id;
Invariant Assertion : state ·= dead_state;
Output Assertions :
SEND_MSG : (system_msg_queue= sending_msg)"(status

ready_to_send);

2.5.4 Functional Specification

Functional specifications describe the output in terms

of input using mathematical constructions such as sets,

functions, and sequences for representing objects

traditionally.

system_msg_buffer = set of messages;
SENDMSG : message x system_msg_buffer ·> system_ms~_buffer;

2.5.5 Algebraic Specification

The algebraic approach views data types as algebra,and

to specify a type the axioms that describe such an algebra

can be used.

11

Axioms
RECEIVE MSG (STATUS_CHK (SYSTEM_MSG_OUE (STATUS_CHK (SEND_MSG)) ••)
= message;

2.6 Abstract Model

In the context of a formal model, the abstraction for

a certain problem solving can be done as illustrated in

Figure 1.

object
problem

object
problem solving

I I
====+====================================+====

I I
object

abstract
model

object
------ abstract

specification

object
implementation

Figure 1. Abstract Modeling

Properly combining all of the above methods to specify

abstractions, we give an abstract model of LAN for its

communication and its objects in Chapter 4 after we review

some LAN models in Chapter 3.

2.7 Abstract Specification

The abstract specification describes how all the

operations work. It can be a procedural abstraction and it

12

may be represented by a programming language. An abstract

specification may be implemented in various ways. The

inter-changeability of certain implementations and the

encapsulation of data objects are the major motivations of

the abstraction. The abstract specification of LAN systems

are shown in Chapter 5 and 6.

CHAPTER III

LOCAL AREA NETWORKS

3.1 Purpose of LAN

A local area network is a communications network that

provides interconnection of a variety of data communicating

devices within a small area [Stallings 1987]. The main

purpose of a LAN is for distributed computing and resource

sharing among associated devices. LAN makes possible a form

of computing that is distributed in several ways and

provides several communications media and channels for

data, images, and voice communication [Figure 2].

+-
1 +-----------+

Image, graphic
converter -+

I +-----------+
I LAN +----

station I
data -----j st~on I

+-----------+
I
+-

voice
digital

coderjdecoder

+-----------+
I

-+

Figure 2. Data Communication Model

13

14

3.2 LAN Standards

In general LAN computers from different vendors are

different from each other, thus it is desirable to have a

set of standards for LAN. All specifications for LAN in

this paper try to follow the OSI(Open systems

Interconnection) Reference Model standardized by

International Organization for Standardization(ISO) and

IEEE 802 LAN standards. The OSI Reference Model [ISO 1981]

contains the following seven layers [Figure 3].

Layer

Application

Presentation

Session

Transport

Network

Data Link

Physical

System(i)
+-------+
I I
+-------+
I I
+-------+
I I
+-------+
I I
+-------+
I I
+-------+
I I
+-------+
I I
+---+---+

I

<------------->
peer to peer

protocol
interrelation

physical
interconnection

system(j)
+-------+
I I
+-------+
I I
+-------+
I I
+-------+
I I
+-------+
I I
+-------+
I I
+-------+
I I
+---+---+

I
===

Figure 3. Seven-Layer OSI Reference Model

Protocols are the rules that communicating processes

follow when they exchange messages and control information.

15

The protocols specify the format of the data and control

information and give the procedures that the sender and

receiver follow. Protocols are characterized by a cost and

a reliability.

3.3 LAN Topologies

Topology refers to the way in which the end points, or

stations, attached to the network are interconnected. The

common LAN topologies are the following [Figure 4].

1) Ring network

2) Bus network

3) Star network

4) Tree network

5) Mesh network

Among those topologies, the standardizations of LAN

focus on the bus, ring and star topologies. Bus networks

use the Carrier Sense Multiple Access with Collision

Detection (CSMA/CD) scheme, while the ring network uses

token passing scheme. A transmission scheme says how to

control the transmission of traffic in a network. Two

transmission techniques are used for the bus topology:

baseband and broadband. Baseband uses digital signaling on

twisted pair wire or coaxial cable. Baseband transmission

is bidirectional. A broadband scheme allows many different

stations to have messages in the network at the same time.

Broadband uses analog signaling on coaxial cable. It covers

much greater distance than baseband. But unlike baseband,

16

broadband is unidirectional transmission scheme. The ring

topology is major alternative of the bus topology. The ring

consists of a number of repeaters connected on

unidirectional transmission links. Data are transmitted in

packets and transferred sequentially around a ring.

Ring +------- node -------+
I I

node node
I I +------- node -------+

Bus node node node
I I I
+----------+--------~+

Star node
I

node ----- node ----- node
I

node

Tree node --+
+-- node --+

node --+ +-- node
+-- node --+

node --+

Mesh node -------- node
I I I

I I node
node -------- node I

I I I
node -------- node

Figure 4. Network Topologies

17

3.3.1 The Ring Topology

A ring network consists of nodes that are connected by

transmission links to form a series of nodes in a

link(loop).

3.3.2 The Bus Topology

The nodes are attached to a bus that provides a

bidirectional transmission facility.

3.3.3 The Star Topology

All nodes are connected to a centralized controller in

which nodes exchange data through the central node.

3.4 LAN Transmission Media

The transmission medium is the physical path between

transmitter and receiver. The media used for local area

networks are twisted pair, coaxial cable and optical fiber.

A twisted pair is used for normal voice communication.

Twisted pair can be a low-cost solution for a small

network, but the transmission distance for signals on

twisted pair is relatively short without the aid of

repeaters. A coaxial cable can be used for transmitting

both analog video and digital data signals. Coaxial cable

has a much wider bandwidth. The shield on a coaxial cable

is used to reduce noise intrusion. Since it is easy to

.install and it supplies a higher transmission speed, it is

18

widely used in Cable TV industry. Optical fiber media is

now used in LAN systems with several advantages over other

media. It has lower power loss, and greater bandwidth

potential. But optical fiber is more expensive than other

transmission medium.

3.5 LAN Architecture

Computer networks consist of the host and the subnets.

The subnets include the switching elements and the

transmission line. Most computer networks are organized in

layers or levels, each built upon its predecessor level. A

computer network consists of two layers, a physical

communication level and a virtual communication level. The

virtual communication level is divided into several layers

like the OSI model. Each layer performs a certain task and

provides services for the next layer. The set of

interaction rules between the layers is called a protocol.

The functions performed by each layer are the following.

1) Initiation of entity interaction

2) Data transmission

3) Data manipulation

4) Information control

5) Interaction termination

Figure 5 shows a typical LAN architecture.

Typical LAN: VAX printer HP storage

NIU NIU NIU NIU

I I I I +-----+--------+--------+--------+-----+

physical medium

+-----+--------+--------+--------+-----+
I I I I

NIU NIU NIU NIU

Personal Computer
LAN:

PC PC PC PC

hard
disk

floppy
disk

printer modem

NIU: Network Interface Unit

Figure 5. LAN Architecture

remote
main frame

19

20

3.6 Internetwork Communication

Sometimes it is necessary that a LAN access another

network like a nation-wide network as well as another LAN.

A network interface unit(NIU) implements and provides an

interface capability for interconnection between nodes in

different LANs. It acts as a communication controller. A

network interface unit can support several communication

terminals. An intermediate node which provides an interface

between a LAN and another LAN or a WAN(Wide Area Network)

for communication is called a bridge or a gateway. A bridge

consists of two network interface units linked together. A

bridge serves as a connector to connect separate

homogeneous networks [Figure 6]. A gateway is also a device

for connecting two systems that use different protocols

[Figure 7]. It behaves as a protocol converter. Thus a

bridge may not change the format of protocol content while

a gateway may modify the protocol format. An example of an

inter-network data packet is given in Figure 8. The inter­

network protocol has responsibility for multiplexing and

demultiplexing a data packet. The well known inter-network

protocol is Internet Protocol(IP) which was developed by

ISO and by DOD and it is used with Transmission Control

Protocol(TCP). IP provides a connectionless data transfer

service to other IP users.

21

host host
\ I

---------- bridge +-+ LAN +-+ +-+ LAN +-+ bridge
I

station
\
station

host

station

Figure 6. Homogeneous Inter-network

\ +-+ LAN +-+ gateway ---
1

gateway +-+ LAN +-+

Figure 7. Heterogeneous Inter-network

I

\

+---+
IH LAN id station id user data IT

+---+
IH inter-network data packet header
IT inter-network data packet trailer

Figure 8. Inter-Network Data Packet Format

host

station

CHAPTER IV

ABSTRACTION OF LOCAL AREA NETWORKS

Using protocols, two users can communicate with each

other from different LAN stations [Figure 9]. Protocols

involve interactions with users or programs in order to get

certain functions performed. How these functions are

actually performed by the protocol is not really of

concern; only the end result matters. The users regard the

protocols as black boxes. Each protocol level makes use of

the services provided by the next lower level. Data

transmission is accomplished by passing data between

adjacent lsyers. We call this an inter-layer transmission.

In this chapter, we discuss an abstract modeling of LAN

communication using such an inter-layer data transmission.

A formal model of LAN data objects are also described.

22

user(i)

operation I · in

v I
+---------- -+---------- -+

network
operating

systems
protocols

+---------- -+---------- -+

station(i) I
v

Layers

user(j)

operation I · out
v I

+-----------+-----------+

user
interface
commands

inter­
network

softwares

+-----------+-----------+

I station(j)
v

+============+==================================+============+
physical medium

Figure 9. Communication System

23

24

4.1 Abstract Model of LAN

LAN abstract model consists of an abstraction of LAN

communication and a formal model for LAN objects. A LAN

abstraction can be modelled as illustrated in Figure 10. In

this section we describe basic concepts for LAN abstact

modeling. Then the formal model of abstract LAN

communication in terms of inter-layer transmission and

abstract modeling for data object used in a LAN are

followed in the next sections.

LAN
problem

LAN
problem solving

I I
=======+=================================+=========

I I
LAN

abstract
model

LAN
abstract

specification

LAN
implementation

Figure 10. LAN Abstract Modeling

In the layer set of L, there are upward and downward

inter-layer communication relations. Suppose L is an

ordered set of layers, and let R represent an inter-layer

communication relation on the set L. Thus R is

R = { (Li, Lj) 1 <= i,j <= n }

where Li, Lj e L,

1 < i, j .. < n, j = i ± 1,

n is the number of layers,

25

and the meaning of the ordered pair(Li, Lj)

is that layer Li communicates with layer

~-

The directed graph representation of the bidirectional

inter-layer communication relations R(Li,Lj) is the

following [Figure 11].

<--
-->

<-­
Ln-1 -->

<--.
-->

Figure 11. Inter-Layer Communication Relation Graph

For a particular local area network, the matrix

representation M of these relations is

M(i,j) = 1 (true) if R(i,j) e R or

o (false) if R(i,j) ' R

for all Li,Lj e L(an ordered set of layers),

26

and (Li)R(Lj) <=> (Lj)R(Li) since the inter-layer

communication relation shows the symmetric property in

the matrix [Figure 12].

L1 L2 L3 L4 L5 L6 L7

L1 0 1 0 0 0 0 0

L2 1 0 1 0 0 0 0

L3 0 1 0 1 0 0 0

L4 0 0 1 0 1 0 0

L5 0 0 0 1 0 1 0

L6 0 0 0 0 1 0 1

L7 0 0 0 0 0 1 0

Figure 12. Inter-Layer Communication Relation Matrix

In LAN, the services are provided by interfaces

between adjacent layers. To transfer data or control

information, it is transferred to the next layer by

invocation of the services of the next layer with given

primitives. Transmitted data reaches the physical layer,

and is delivered to a destination entity through the

transmission medium. Upward service invocations are then

invoked until the data finally arrives at the user

interface layer in the destination entity. Now let us

define the formal model of LAN communication in terms of

such inter-layer service communication.

4.2 The Formal Model of LAN Communication

27

The formal model of LAN communication is defined in

terms of inter-layer service communication described above.

We need the following definitions:

1) L represents an ordered set of layers

{ lnr Ln-1' ••• , Lj, Li, ••• , L1}

where In is the highest layer and L1 is the

lowest layer;

2) I I represents inter-layer communication-flow

concatenation

(left-associative and non-commutative binary

operator);

3) $$ represents inter-node physical connection;

4) ## represents inter-network communication

connection;

5) %% represents inter-network converter

{ gateway, bridge };

28

6) R = { (Li, Lj) I 1 <= i,j <= n and i = j ± 1 }

inter-layer communication relationship between

layers Li,Lj.

The meaning of the ordered pair (Li, Lj) is that

layer Li communicates with layer Lj;

7) D = { downward transmission, upward

transmission } ;

8} An ordered pair (r,d) where r e R and d e D is

called a transmission.

Definition 2.1

Communication in a homogeneous LAN can be represented

by the string:

«Ln, Ln-1>' R) II «Ln-1' Ln-2>' R) II · · · · · II
((Lj, Li), R) II II ((L3, L2), R) II
((L2, L1), R) $$ ((L1, L2), R) I I ((L2, L3), R)

II····· II ((Ln-1' Ln>, R)

Communication in a heterogeneous LAN can be

represented by the string:

((Ln, Ln-1), R) II ((Ln-1' Ln-2), R) II II
((Lj' Li), R) II II ((L3' L2) ' R) II
((L2' L1), R) ## %% ## ((L1 , L2) , R) II
((L2, L3)' R) II II (<Lro-1' Lro) ' R)

where (i) n,m > o, n and m need not be same and

(ii) %%(inter-network converter) may have

some protocol layers.

29

Definition 2.2

Let T R x T -> { Ts, Te, Tr }

T = Ts if transmission is successful,

Te if an error occurs,

Tr if re-transmission is needed.

(Tr eventually is either Ts of Te.)

with the property, T distributes over 'I I' in a

communication.

With the above definition of T we have the following:

if c = sl 1 1 s2 I I •••••

where si = ((Li,Li±l),d),

then T(C) = T(Sl) II T(S2) II · · ·. · ·

Definition 2.3

A communication consists of a series of transmissions,

such a communication can be defined by the concatenation of

inter-layer transmissions:

The operation 'I I' can be defined for values ofT as

follows:

Ts II Ts = Ts,

Ts II Tr = Tr,

Ts II Te = Te,

undefined otherwise

where left-associative and non-commutative

binary operator 'I I' means inter-layer

communication-flow concatenation.

We deduce the result of whole communication from

substitution of partial inter-layer transmissions. If we

have a communication of

Ts II Tr II T (Si) II T (Sj)

By substitution, it would be

Tr II T(Si) II T(Sj)

If Tr is eventually Te, then the string is

Te II T(Si) II T(Sj) ...•.

30

Here, we do not have any definition for (Te I I ...),
it means such a transmission is out of the question; Note

that the transmission to the next adjacent layers is

impossible after the transmission error between the certain

layers. Non-definition stands for an impossible

transmission or a transmission error. The result of the

above transmission is

Te

which indicates a transmission error.

What is the valid communication in terms of the data

transmission T? A communication is successful if and only

if a transmission stream reduced to Ts. If we have the

transmissions

Ts II Tr II T (Si) II T (Sj) •.••

in a certain communication, such transmissions can be

reduced by substitution of transmission definitions.

Tr I I T(Si) I I T(Sj) ••.•

such a communication may result in

Ts II T(Si) II T(Sj)

Ts

31

which means a valid communication with the re-transmission

during the data transmissions.

So far, we have defined an abstract LAN model using

the mathematical modeling methodologies. In the next

section we discuss the formal model of LAN objects.

4.3 The Formal Model of LAN Objects

Now we introduce the formal model of LAN objects

[Figure 13]. Data packet, file, message buffer and status

vector are the LAN objects. The model is based on the

elements of a LAN such as communication layers, topology,

transmission medium, data structure of LAN objects and

communication details.

In this LAN formal model, the topologies and media

used in a LAN can be defined in 'TOPOLOGY' and 'MEDIUM'.

'DATA STRUCTURE' defines the data and data type used in a

LAN structure. 'COMMUNICATION LAYERS' shows a LAN structure

which consists of several layers. Transmission scheme, the

functions of layers, and the primitives used with the

layers can be described in 'COMMUNICATION DETAIL'. In

Figure 13, '->' and '<-' mean downward and upward

transmissions respectively.

32

ABSTRACT LAN

TOPOLOGY => topology_list
topology_list => { ring, bus, star }

=> medium list MED:IUM
medium list => { coaxial cable, fiber optic cable,

twisted pairs }

DATA STRUCTURE => data list
data list => data : data_type

LAYERS => layer_list COMMUN:ICAT:ION
layer_list => { Ln, Ln-1' .•• , L;, Li,

Ln : nighest laye~
Li, Lj : middle layers
L1 : physical layer

COMMUN:ICAT:ION DETAIL => communication flow
communication flow => { <Ln, Ln-1' { ->,

(.. , . . , { ->,
(Lj' Li, { ->,
(.. , .. , { ->,
(L2, L1, { ->,

END ABSTRACT LAN

Figure 13. Formal Model of LAN

• • • ' L1 }

<- }) ,
<- }) ,
<- }) ,
<- }) ,
<- }) }

Using this model, we introduce the LAN abstract

specification template in which the LAN objects and their

functions can be described [Figure 14 in Chapter 5]. The

relationship between the LAN formal model and the LAN

abstract specification template is that the LAN

specification template is an instance of the LAN formal

model. LAN specification template is high level language

like. Each object or protocol can be specified using this

template. Each specified template can be implemented in a

module. Topology and medium in a formal model for a LAN can

be specified in this template. To specify communication

detail, necessary interface operations are modulized in a

template.

33

CHAPTER V

SPECIFICATION FOR LAN ABSTRACTION

Now we combine properly abstract specifications which

have been shown in Chapter 2, LAN in Chapter 3, and LAN

abstraction and formal model of LAN in Chapter 4.

5.1 LAN Abstract Specification Template

Using the LAN formal model, we introduce the high­

level language like LAN abstraction template for specifying

LAN objects. Figure 14 shows a template for an abstract

specification which is associated with a LAN. There are

seven dimensions in the space of an abstract specification

for a LAN. A dimension of the network abstraction space

relates to the distinction between structures and

behaviors. The header 'ABSTRACT LAN' introduces an abstract

object name and 'OVERVIEW' defines an overall description

and describes the operations with the objects. 'TOPOLOGY'

shows all the possible topologies in the network structure

and 'MEDIUM' specifies possible transmission media. 'DATA

STRUCTURE' shows all the data objects and their types used

in the module. 'INTERFACE' lists all the operations used

for the interface in the object. 'OPERATION' specifies each

operation involved in the abstract object. 'BEHAVIOR'

34

35

describes the inherited functional behaviors of the modules

when they are invoked. It is similar to the high-level

language descriptions. A template ends with 'END

ABSTRACT LAN' trailer. Examples are shown in the next

sections.

ABSTRACT LAN object_name

OVERVIEW

TOPOLOGY

MEDIUM

abstract description of this module

possible topologies
(ring I bus I tree I star)

possible media
(twisted pair I coaxial cable I
optical fiber)

DATA STRUCTURE

INTERFACE

OPERATION

BEHAVIOR

END ABSTRACT LAN

data objects : data types

interface operations

operation : procedural description

functional abstraction of the object
behavior

Figure 14. LAN Abstract Specification Template

5.2 LAN Abstract Specification Examples

Any object in a LAN can be specified in the LAN

abstract specification template. The following example of

36

an abstract specification for a subset of object modules to

implement a LAN includes abstract modules named osu_lan,

status, file, message, batch_job, pdu and buffer. Figure 15

shows the relations among these object modules by

constructing a graph.

service application transmission

+--> file --+
I I
+--> message --+ +--> pdu --+
I I I I

osu lan --+ +-> + +--> +
I I I I
+--> batch_job --+ +--> buffer --+
I I
+--> status --+

+-------+--------- iterations --------------------+

Figure 15. Relations among Object Modules

In Figure 15, 'A -> B' means that the module A may

call module B to request services or applications.

37

In this example 'osu_lan' LAN abstract module can be

interpreted to be a main module for implementation [Figure

16].

Actually, the application of abstract specification

template to the logical or physical model leads to some

problems. Not all the spaces can be specified well all the

time. Then we left such a space as not applicable.

Also sometimes, we need access to LAN system status

information. Then the module 'status' can be used (Figure

17].

The application layer of LAN supports file transfer

(Figure 18], message transmission [Figure 19], and

distributed batch jobs [Figure 20].

As we mentioned, there are seven layers in the OSI

Reference Model. There is no direct communication between

the peer layers except for the physical layer.

Communication between applications need services of the

lower layers. In the most common way, the data transmission

between two entities is accomplished by both encapsulation

and segmentation. A header is appended to or detached from

the data as it is passed by each layer. The application

layer of the receiving entity regains the same data type

that the application layer of sending entity sent. This

formatted data is called PDU(protocol data unit). PDU can

be specified as shown in Figure 21.

In each layer and especially in the physical layer,

the data to be transmitted may be delayed due to

synchronization. A buffer is used for that purpose. Any

waiting data can be buffered if necessary. The abstract

module 'buffer' is called at that time [Figure 22].

38

39

ABSTRACT LAN osu lan

OVERVIEW
LAN is an abstract representation of the
communication model used in a small area. Using
set_up and shut_down, the object LAN is feasible.
The communication between users at different
stations can occur in a LAN. By calling the LAN
abstract modules, the communication is
accomplished.

TOPOLOGY

MEDIUM

ring, star, bus

coaxial cable, fiber optic cable,
twisted pairs

DATA STRUCTURE

INTERFACE

OPERATION

BEHAVIOR

END ABSTRACT LAN

service type : service data type,
user_id-: integer type,
power, busy, idle : boolean type,
user() : function type.

set_up, service, shut_down, user.

set_up
service

PROC() RETURN(boolean);
PROC(service_type)

RETURN(boolean);
PROC() RETURN(boolean);
PROC(user_id)

RETURN(boolean);

shut down
user

initialize;

do while (power= on);

if (user(user id))
busy; -

I* set status *I
osu_lan.set_up();

: I* lan invocation *I
osu lan.service();

: - I* call application *I
osu_lan.shut_down();

: I* lan relinquish *I
else idle;

I* set status *I
end;

Figure 16. Abstract Specification for osu LAN

40

ABSTRACT LAN status

OVERVIEW

Status vector informs us of the current status of
the LAN system. The status shows the current
status of the assigned process-id and the change
allows a process to change its current status.

TOPOLOGY

MEDIUM

DATA STRUCTURE

INTERFACE

OPERATION

not applicable

not applicable

status_vector : bit array type,
process_id : integer type.

look_status, change_status.

look status PROC(process id)
RETURN(status_vector);

PROC(process_id, status_vector)
RETURN(status_vector);

change_status

BEHAVIOR

END ABSTRACT LAN

Figure 17. Abstract Specification for LAN Status

41

ABSTRACT LAN file

OVERVIEW

In LAN, the files can be created or deleted by
each entity and can be transmitted to each other
and also copied among the entities in the LAN
communication.

TOPOLOGY
not applicable

MEDIUM
not applicable

DATA STRUCTURE

file : logical records of the basic types,
source : integer type,
destination : integer type.

INTERFACE create file, delete file, copy_file,
send_file, recv_file.

OPERATION

create file
delete-file
copy_file
send file

recv file

BEHAVIOR

END ABSTRACT LAN

PROC(file) RETURN(pointer);
PROC(file) RETURN(boolean);
PROC(file) RETURN(pointer);
PROC(source,destination,file)

RETURN(boolean);
PROC(source,destination,file)

RETURN(pointer);

Figure 18. Abstract Specification for Object File

42

ABSTRACT LAN message

OVERVIEW

Electronic mail can be created or deleted by each
entity and can be transmitted to each other and
also copied among the processes in the LAN.

TOPOLOGY
not applicable

MEDIUM
not applicable

DATA STRUCTURE

message : record type or file type,
source : integer type,
destination : integer type.

INTERFACE create_msg, delete_msg, copy_msg,
send_msg, recv_msg.

OPERATION

create_msg
delete_msg
copy_msg
send_msg

recv_msg

BEHAVIOR

END ABSTRACT LAN

PROC(message) RETURN(pointer);
PROC(message) RETURN(boolean);
PROC(message) RETURN(pointer);
PROC(source, destination, message)

RETURN(boolean);
PROC(source, destination, message)

RETURN(pointer);

Figure 19. Abstract Specification for Object Message

ABSTRACT LAN batch_job

OVERVIEW

In LAN, the batch processing job is possible
among the processes in the LAN.

TOPOLOGY
not applicable

MEDIUM
not applicable

DATA STRUCTURE

job : logical structure of record type or file
type,

source : integer type,
destination : integer type,
host : integer type,
station : integer type.

INTERFACE send_job, recv_job, run job.

OPERATION

43

send_job

recv_job

run_job

PROC(source, destination, job)
RETURN(boolean);

PROC(source, destination, job)
RETURN(pointer);

PROC(host, station, job)
RETURN(boolean);

BEHAVIOR

END ABSTRACT LAN

Figure 20. Abstract Specification for Object Batch_job

ABSTRACT LAN pdu(protocol data unit)

OVERVIEW

The pdu is the data format used to transmit
information among the processes in the LAN.

TOPOLOGY
applicable to all

MEDIUM
applicable to all

DATA STRUCTURE

data·: pointer to pdu,
pdu : < header : bit type,

data control : bit type,
information : record type,
trailer : bit type >,

layer integer type.

44

INTERFACE attach_header, detach_header, gen_header.

OPERATION

attach header

detach header

gen_header

BEHAVIOR

END ABSTRACT LAN

PROC(gen header :
PROC(layer, data))

RETURN(data);
PROC(layer, data)

RETURN (data) ~
PROC(layer, data)

RETURN(pointer);

Figure 21. Abstract Specification for Object PDU

Here we can see the procedure gen_header is used as

the parameter of the procedure attach header.

ABSTRACT LAN buffer

OVERVJ:EW

The buffer is for the buffering the information
or the data inserted for synchronization when
they are transmitted so that they are finally
removed from a buffer for delivery.

TOPOLOGY
applicable to all

MEDJ:UM
applicable to all

DATA STRUCTURE

buffer : pointer type,
data : pointer type.

:INTERFACE insert, remove.

OPERATJ:ON

insert : PROC(data, buffer) RETURN(pointer);
remove PROC(data, buffer) RETURN(boolean);

BEHAVJ:OR

END ABSTRACT LAN

45

Figure 22. Abstract Specification for Object Buffer

46

So far, we have specified some objects which can be

implemented in a particular local area network. To do this,

we left the abstraction for the protocols of each layer in

LAN. The abstract specifications for the protocols in the

existing LAN model are given in Chapter 6 and Appendixes.

Now we confront the question of how we can use these

abstraction modules. Figure 23 shows the relationship

between the LAN abstract modules specified above and the

service operations necessary in a certain LAN. In this

figure, 1 -> A.B 1 means a function call to an abstract

module for LAN object 1 A1 using its interface operation as

a qualifier 'B 1 •

service operation

system initiation -->

request service -->

status control -->

application

message transfer -->

file transfer -->

batch_job -->

synchronization -->

pdu manipulation -->

system termination -->

47

abstract operation

osu_lan.set_up

osu lan.service

status.look status
status.change_status

message.create_msg
message.send_msg
message.recv_msg

file.create file
file.send file
file.recv-file

batch_job.send_job
batch_job.recv_job
batch_job.run_job

buffer.insert
buffer.remove

pdu.attach_header
pdu.detach_header

osu lan.shut down - -

Figure 23. Relations between Service and Abstraction

Combining all these LAN abstract modules, now we show

how this LAN abstraction methodology can be applied to the

existing LAN standard protocols. The details are provided

in the next chapter.

CHAPTER VI

LAN ABSTRACT SPECIFICATION APPLICATION

6.1 Application to OSI Model LAN

In a multivendor LAN environment, LAN standards are

necessary to achieve compatibility. While the LAN related

device companies have tried to collaborate for standards

with some constraints for standardization such as economic

interests, information security and political

considerations, some users are also developing their own

implementations using the LAN standards. It rids users of

unnecessarily expensive and inefficient implementations.

Among them, two big users are General Motors and Boeing

company. General Motors developed a specification for

communication standards in factory environment called

Manufacturing Automation Protocol(MAP) [Kaminski 1986) and

Boeing addressed a specification of communication network

standards for the technical and office environment called

Technical and Office Protocols(TOP) [Farowich 1986). The

application of the TOP includes electronic mail, word

processing, file transfer, database management and

distributed batch jobs. Here, we show how the specification

of the abstraction associated with the LAN standard

48

49

protocol like MAP or TOP can be actually implemented in the

LAN simulation program or LAN software using the abstract

specification modules with some proper modifications. The

IEEE 802.5 Token Ring and MAC protocol and its service

function are used for the specification of the physical

layer and the IEEE 802.2 Logical Link Control service and

protocol are used for the specification of the data link

layer. In this LAN specification, however, the network,

transportation, session and presentation layers are

supposed to be included in application layer. There is

relatively tight relationship among these layers of the OSI

model and those are not well defined for LAN. Each

communication entity has its own protocol layers. With each

of these, the abstractions for its service functions are

specified in Appendix A. Also, we use some of the

associated objects specified in the previous chapter which

are necessary in a LAN system. The upper-level-layer

abstraction in Appendix A shows the LAN application layer

abstraction. Among the corresponding sub-layers in a

certain local area network, the data link layer corresponds

with the application layer as the highest sub-layer. Such

IEEE 802.2 logical link control layer is shown in data­

link-control abstraction in Appendix A. With LLC layer, we

need a lowest layer protocol such as the IEEE 802.5 token

ring. We need its peer MAC services and physical layer

specifications. Abstractions of these are also specified in

Appendix A.

50

Using abstraction modules, we show an example of

implementation. In connection-mode service, a service

following the user application operation in a communication

system consists of three phases [Stallings 1987]: {1)

connection establishment, (2) data transfer ,and {3)

connection release. In Figure 24, we show how the LAN

abstract module works with the possible operations when the

connection-mode service is offered in a LAN. Data

transmission is one of the operations. The numbers on this

figure are associated with those in Figure 25.

service operation abstract operation

system initiation osu_lan.set_up()

service request osu_lan.service(type)

in lan.service

connection establishment application.a_associate.request() --> (1)
application.a_associate.confirm() <-- (2)

+-> data transfer

+--(loop)

connection release

application.a_data.request()
application.a_data.confirm()

application.a_release.request()
application.a_release.confirm()

system termination osu_lan.shut_down()

--> (3)

<-- (4)

--> (5)

<-- (6)

Figure 24. Operations in Connection-Mode Service

51

Figure 25 shows the peer entity operations with above

operations. The numbers should be matched with peer

operations(refer to Figure 24 also).

user(i)

service I request
v

<system initiation> -->
<request service> -->
<status check> -->

-->

<in application>
+-----+-----+
I I

<connection establishment>
a_associate.request --> (1) -->
a_associate.confirm <-- (2) <--

<data transfer(loop)>
a_data.request --> (3) -->
a_data.confirm <-- (4) <--

<connection release>
a_release.request --> (5) -->
a release.confirm <-- (6) <--

I I
+-----+-----+

<system termination> -->

station(i)

user(j)

service I response
v

osu lan.set up
osu-lan.serVice
status.look status
status.change_status

+-----+-----+
I I

a associate.indication
a=associate.response

a data.indication
a_data.response

a release.indication
a=release.response

I I
+-----+-----+

osu lan.shut down - -

station(j)
v v

+======+============================+======+

Figure 25. LAN Communication Service

52

Now we examine the trace of service in detail when a

LAN is invoked and requested to transfer data. Most of the

codes consist of functional module call using abstracted

module which specifies its function in abstract

specification model and the associated codes. Figure 26

shows which service is necessary and how abstract module

can be called. In this figure, the 11 ->" sign means abstract

module calling.

53

lan invoked:
-> osu_lan.set_up; I* lan invocation *I

service requested:
-> osu_lan.service;

status check:
-> status.look_status;
-> status.change_status;

connection mode service:
try connection establishment:
from sender:

I* application *I

-> application.a associated.request; I* from sender */
-> link.dl_connect.request;
-> ring.ma_unitdata.request;
-> ring.ph_data.request;

goes through physical medium to peer entity(receiver):
-> ring.ph_data.indication; /* to receiver *I
-> ring.ma unitdata.indication;
-> link.dl-connect.indication;
-> application.a_associate.indication;

in receiver entity, response connection:
-> application.a associate.response;
-> link.dl_connect.response;
-> ring.ma_unitdata.request;
-> ring.ph_data.request;

to sender again:
-> ring.ph_data.indication;
-> ring.ma unitdata.indication;
-> link.dl-connect.confirm;
-> application.a_associate.confirm;
-> status.change_status;

connection established:

data transfer service:

-> message.send_msg;

-> pdu.attach_header;

-> buffer.insert;

connection release:
: (similar codes)

lan freed:
-> osu_lan.shut_down;

Figure 26. Trace of service

54

6.2 Application to DOD Model LAN

We have thought about the specification of OSI model

LAN abstraction. We apply abstract specification model to

another LAN structure, namely, the TCP/IP model. To do

this, we show how this model can be applied to DOD computer

network which uses TCP/IP as sub-layer protocols. The

TCP/IP are mandatory for use in DOD packet switching

networks [Defense 1983]. TCP provides similar services as

the transport layer does in OSI model. It provides reliable

connection-oriented communication between processes in

networks. TCP requires IP as sub-layer protocol. The IP

provides services to transport layer and relies on the

services of the lower-layer protocols. For LAN, IEEE 802

standards can be a model of such lower-layer. Figure 27

shows DOD communication architecture for LAN. Abstract

specification for DOD LAN Model is in Appendix B.

Process layer

Host-to-Host

Internet

Network Access

+-----------+
FTP

+-----------+
I TCP I
+-----------+
I IP I
+-----------+
I IEEE 802 I

for LAN
+-----------+

application
presentation
session

transport

network

data link
physical

Figure 27. DOD Communication Architecture for LAN

55

56

How can DOD LAN abstraction modules be used? Figure 28

shows how abstract modules are invoked to offer the

services in a DOD LAN model.

Service requested from port sender to port receiver:
for connection establishment:

from sender:
-> ulp.active_open(); /* ulp: Upper Level Protocols */
-> tcp.active_open(); /* tcp: Trans Control Protocol*/
-> ip.send /* ip : Internet Protocol */
-> llc.connect.request();

/* llc: Lower Level Protocols */
control data goes through internet:
-> ulp.wait(connection established);

from receiver:
-> ulp.active_open(); or ulp.passive_open();
similar codes:

open matching:
connection established:

for data transfer:

from sender:
-> ulp.send_data();
-> tcp. send() ;
-> ip. send();
-> llc.data.request();
data goes through physical medium:
to receiver:
-> llc.data.response();
-> ip.deliver();
-> tcp.deliver();
-> ulp.deliver(};
data transferred:
acknowledgment:

connection termination:
similar codes:

Figure 28. Trace of DOD Communication

CHAPTER VII

CONCLUSIONS

We have shown the abstraction methodology and its use

in the specification of local area networks. We have

presented a formal model for LAN communication in terms of

the inter-layer transmission and an abstract LAN

specification template. Using this abstract specification

template, all levels of communication protocols are

defined. Each of these is an abstract module which contains

each service function of each protocol layer. An abstract

module also can define an object used in a LAN system. To

use each object, its abstract module is called. Data,

procedural and behavioral abstractions of the LAN objects

are specified with this object module. How the abstract

specification can be used when it is implemented is

illustrated by tracing the service function calling and

showing the inter-relations between the abstract modules.

The OSI Basic Reference Model and IEEE 802 LAN standard

protocols have been chosen as examples for LAN abstract

specifications. The same abstraction model has been applied

to TCP/IP in DOD packet switching network model for showing

the usability and compatibility of the abstraction model.

LAN simulation using this abstract specification is

57

58

one of the possible topics for research. To do this

implementation, the selection of the proper programming

language and the other decisions such as the process state

transition, data packet format, error condition and the

buffer size considering the LAN performance are

prerequisite. The selection of a high-level language for

the implementation of a LAN abstract specification module

is also a topic for research. Other research topics include

network operating systems, network software and network

user interface commands with their interpreter and compiler

using their abstract specification schemes.

BIBLIOGRAPHY

Berntsen, J.A., Davin, J.R., Pitt,D. A., and Sullivan, N.G.
MAC layer interconnection of IEEE 802 local area
networks. Computer Networks and ISDN Systems 10,
5(1985), 259-273.

Berztiss, A. T. and Thatte, s. Specification and
implementation of abstract data types. Advances in
Computers, 22(1983) Academic Press, 295-353.

Blumer, T. P. and Tenney, R. L. A formal specification
technique and implementation method for protocols.
Computer Networks 6, 3(1982), 201-217.

Bochmann, G. v., Finite state description of communication
protocols. Computer Networks 2, 4/5(1978), 361-372.

Bochmann, G. v. and Sunshine, c. A. Formal methods in
communication protocol design. IEEE Trans. on Comm.
COM-28, 4(1980), 624-631.

Cleaveland, J. c. An Introduction to Data Types.
Addison-Wesley Publishing Co.(1986).

Comer, Douglas. Operating System Design - Vol. 2.
Internetworking with Xinu. Prentice-Hall, Inc.(1987).

Dasgupta, s. Computer design and description languages.
Advances in Computers,21(1982),Academic Press, 91-154.

Derfler, F. J. Jr. and Stallings, W. A Manager's Guide to
Local Networks. Prentice-Hall, Inc., NJ(1983).

Defense Communication Agency. Military Standard: Internet
Protocol. MIL-STD-1777(1983) ., Transmission Control
Protocol. MIL-STD-1778(1983) ., File Transfer Protocol.
MIL-STD-1780(1984) ., Simple Mail Transfer Protocol.
MIL-STD-1781{1984)., Telnet Protocol. MIL-STD-1782
{1984).

Ehrich, H.-D. on the theory of specification,
implementation, and parametrization of abstract data
types. JACM, Vol.29, No.1(January 1982), 206-227.

59

Engels, c., Pletat, U., and Ehrich H.-D. An operational
semantics for specifications of abstract data types
with error handling. Acta Informatica 19, 3(1983),
235-253.

Farowich, s. A. Communicating in the technical office.
IEEE Spectrum Vol.23(April 1986), 63-67.

Gehani, N. and McGettrick, A. D. Software Specification
Techniques. Addison-Wesley, International Computer
Science Series(1986) ·

Graube, M. and Mulder, M. c. Local area networks.
IEEE Computer, Vol.17, No.10(0ct. 1984), 242-247.

Guttag, J. v. and Horning J. J. The algebraic
specification of abstract data types.
Acta Informatica 10, 1(1978), 27-52.

60

Guttag, J. v., Horowitz, E. and Musser, D. R. Abstract
data types and software validation. Comm. of the ACM
21, 12(1978), 1048-1064.

Guttag, John v. Notes on type abstraction(Version 2).
IEEE Trans. on Software Eng., Vol.SE-6, 1(Jan. 1980),
13-32.

Hawe, B., Kirby, A. and Lauck, A. An architecture for
transparently interconnecting IEEE 802 LAN.
DEC-TR-322, Digital Equipment Corporation(1984).

Hawe, W. R. and Varghese, G. Extended local area network
management principles.
DEC-TR-324, Digital Equipment Corporation(1984).

ISO/TC97/SC16. Data Processing - Open Systems
Interconnection - Basic Reference Model.
ISO/TC97/SC16, ANSI, 1430 Broadway, New York, NY.
Computer Networks 5,1(1981), 81-118.

Kaminski, M. A. Jr. Protocols for communicating in the
factory. IEEE Spectrum Vol.23(April 1986), 56-62.

Keller, R. M. Formal verification of parallel programs.
Comm. of the ACM 19, 7(1976), 371-384.

Kessler, G. Ethernet vs. IEEE 802.3.
LAN Magazine(July 1987).

Kummer, P., Tasker, R., Linge, N. and Ball, E. A protocol­
less scheme for bridging between IEEE 802 Local Area
Networks. Computer Networks and ISDN Systems 12,
2(1987), 81-87.

Lam, Simon S. Tutorial: Principles of Communication and
Networking Protocols. IEEE Computer Society, IEEE
Catalog No. EH0216-2 (1984).

Liskov, B. and Guttag J.

61

Abstraction and Specification in Program Development.
The MIT Press, McGraw-Hill Book Co.(1986).

Liskov, B. and Zilles, s. Specification techniques for
data abstractions. IEEE Trans. on Software Eng.
1,1{1975), 9-19.

Mclean, J. A formal method for the abstract specification
of software. JACM, Vol.31,No.3(July 1984), 600-627.

McQuillan, J. M.
of history.

Local network technology and the lessons
Computer Networks 4,5(1980), 235-238.

Merlin, P. M. Specification and validation of protocols.
IEEE Trans. on Comm. COM-27, 11(1979), 1671-1680.

Milner, Robin. A Calculus of Communicating Systems.
Springer-Verlag, Berlin, Lecture Notes in Computer
Science 92(1980).

Nourani, C. F.
Abstract implementations and their correctness proofs.
JACM, Vol.30,No.2(April 1983), 343-359.

Saltzer, J. H., Pogran, K. T. and Clark, D. D.
Why a ring? Computer Networks 7,4(1983), 223-231.

Sincovec, R. F. and Wiener, R. s. Data Structures using
Modula-2. John Wiley & Sons, New York{1986).

Stallings, William. Data and Computer Communications.
Macmillan Publishing Co. New York{1985).

Stallings, William. Handbook of Computer-Communications
Standards. Vol.1 The Open Systems Interconnection(OSI)
Model and OSI-Related Standards, Vol.2 Local Networks
Standards and Vol.3 Department of Defense(DOD)
Protocol Standards. Macmillan Publishing Co. New York
(Vol.1,2 : 1987, Vol.3 : 1988).

Stallings, William. Local networks.
Computing Survey, Vol.16,No.1(March 1984),3-41.

Stallings, William. Local Networks. 2nd Ed.
Macmillan Publishing Co. New York{1987).

Stallings, William. Tutorial: Local Network Technology.
2nd Ed. IEEE Computer Society, IEEE catalog No.
EH0234-5 {1985).

62

Sunshine, c. A. and Dalal, Y. K. Connection management in
Transport protocols. Computer Networks 2, 6(1978),
454-473.

Sunshine, c. A. Formal Modeling of Communication
Protocols. ISI/RR-81-89, USC(March 1981).

Sunshine, c. A. Formal techniques for protocol
specification and verification. Tutorial: Principles
of communication and networking protocols. IEEE
Computer Society(ISBN 0-8186-0582-0), (1984), 467-473.

Tanenbaum, A. S. Computer Networks.
Prentice-Hall, New Jersey(1981).

Tanenbaum, A. s. Network protocols. ACM Computing
Surveys, Vol.13 ,No.4 (December 1981), 453-489.

Wirsing, M. , Pepper, P. , Partsch, H. , Dosch, W. , and Broy,
M. On hierarchies of abstract data types.
Acta Informatica 20,1(1983), 1-33.

APPENDIXES

63

APPENDIX A

OSI MODEL ABSTRACT MODULES

64

65

For upper level layer(ISO Application Layer):

ABSTRACT LAN application

OVERVIEW
Application layer is the highest layer in a
network system. Application layer offers the
service of user oriented high level protocol such
as electronic mail, a file transfer, and remote
job manipulation.

TOPOLOGY ring

MEDIUM twisted pair

DATA STRUCTURE
pdu : pointer type, calling p_id : integer type,
called p_id : integer type,
application_context : pointer type,
responding p_id : integer type, result: bit type,
user_information : bit type.

INTERFACE
a_associate.request,
a_associate.response,
a_data.request,
a_data.response,
a_release.request,
a_release.response,

OPERATION

a associate.indication,
a-associate.confirm,
a-data. indication,
a-data.confirm,
a-release.indication,
a=release.confirm,

PROC a_associate.request(calling p_id : INTEGER;
called p id : INTEGER;
application_context : POINTER) ;

PROC a_associate.indication(calling p_id :
INTEGER; called p_id : INTEGER;
application context: POINTER);

PROC a_associate.response(responding p_id
INTEGER; application_context: POINTER;
result: BIT);

PROC a_associate.confirm(responding p_id :
INTEGER; application_context: POINTER;
result: BIT);

PROC a data.request(calling p id : INTEGER;
-called p_id : INTEGER;-pdu : POINTER);

PROC a data.indication(calling p id : INTEGER;
-called p id : INTEGER; pdu : POINTER);

PROC a_data.response(calling p_id : INTEGER;
called p_id : INTEGER; result: BIT) ;

PROC a_data.confirm(calling p_id : INTEGER;
called p_id : INTEGER; result : BIT);

PROC a_release.request(user_information: BIT);
PROC a_release.indication(user_information:BIT);

66

PROC a_release.response(user_information : BIT;
result : BIT);

PROC a_release.confirm(user_information : BIT;
result : BIT);

BEHAVIOR

prologue;

switch

case(a_associate.request)
link.dl_connect.request;

case(a_associate.indication)
while (busy = status.look_status) wait();
application.a_associate.response;

case(a_associate.response)
link.dl_connect.response;

case(a_associate.confirm)
status.change_status(source_address, ready);
status.change status(destination address,

ready); - -

case(a_data.request)
while((Aend_of_data)&(error))

segment data into pdu;
link.dl_data.request;
wait(a_data.confirm); /* confirm ACK */
retransmit or error;

case(a_data.indication)
application.a_data.response;/* response ACK */

case(a_data.response)
link.dl_data.response;

case(a_release.request)
link.dl_disconnect.request;

case(a_release.indication)
status.change status(process id,idle);
application.a=release.response;

case(a_release.response)
link.dl_disconnect.response;

case(a_release.confirm)
status.change_status(process_id,ready);

case(null)
idle state;

end_switch;

epilogue;

END ABSTRACT LAN

67

For data link controlCIEEE 802.2 Logical Link Control):

ABSTRACT LAN link /* IEEE 802.2 */

OVERVIEW
Logical link control(LLC) is the highest layer in
a single local area network architecture. LLC
layer provides connection oriented service
between LLC users across a MAC controlled link.

TOPOLOGY ring

MEDIUM twisted pair

DATA STRUCTURE
pdu : pointer type, source_address: integer type,
destination_address : integer type,
priority : integer type, data pointer type,
amount : integer type, status : bit type.

INTERFACE
dl_connect.request,
dl_connect.response,
dl_data.request,

dl connect.indication,
dl-connect.confirm,
dl-data.indication,
dl-data.confirm,
dl-disconnect.indication,

dl data.response,
dl=disconnect.request,

OPERATION
PROC dl_connect.request(source_address :

INTEGER; destination address : INTEGER;
priority: INTEGER);-

PROC dl connect.indication(source address :
INTEGER; destination address : INTEGER;
priority: INTEGER);-

PROC dl connect.response(source address :
INTEGER; destination address : INTEGER;
priority: INTEGER);-

PROC dl connect.confirm(source address :
INTEGER; destination address INTEGER;
priority: INTEGER);-

PROC dl_data.request(source_address INTEGER;
destination address : INTEGER ;
data : POINTER) ;

PROC dl_data.indication(source_address
INTEGER; destination_address : INTEGER;
data : POINTER) ;

PROC dl_data.response(source_address : INTEGER;
destination address:INTEGER; status:BIT};

PROC dl_data.confirm(source_address : INTEGER;
destination_address:INTEGER; status:BIT);

68

PROC dl_disconnect.request(source_address :
INTEGER; destination_address:INTEGER);

PROC dl disconnect.indication(source address :
INTEGER; destination address:INTEGER);

PROC dl_reset.request(source_address : INTEGER;
destination_address:INTEGER);

PROC dl_reset.indication(source_address :
INTEGER; destination address:INTEGER);

PROC dl reset.response(source address : INTEGER;
destination address:INTEGER);

PROC dl reset.confirm(source address : INTEGER;
destination address:INTEGER);

PROC dl_connection:flowcontrol.request
(source address : INTEGER;
destination_address:INTEGER;
amount: INTEGER);

PROC dl connection flowcontrol.indication

BEHAVIOR

- -
(source address : INTEGER;
destination_address:INTEGER;
amount : INTEGER) ;

prologue;

switch

. .
case(dl_connect.request) I (dl_data.request)

ring.ma_unitdata.request;

case(dl_connect.indication) I
application.a_associate.indication;

case(dl_connect.response) I (dl_data.response)
ring.ma_unitdata.request;

case(dl_connect.confirm)
application.a_associate.confirm;

case(dl data.indication)
application.a data.indication;

case(dl data.confirm)
application.a_data.confirm; . .

case(null)
idle state;

end_switch;

epilogue;

END ABSTRACT LAN

For medium access controlCIEEE 802.5 MAC)
and physical layerCIEEE 802.5 Token Ring>:

69

ABSTRACT LAN ring /* IEEE 802.5 */

OVERVIEW
The token ring medium access control(MAC)
protocol is for token topology. MAC protocol,
service, and physical layer is specified.

TOPOLOGY ring only

MEDIUM shielded twisted pair

DATA STRUCTURE
pdu : pointer type, frame_control : bit type,
source_address : integer type, symbol : bit type,
destination_address : integer type,
m sdu : pointer type, frame control : bit type,
reception_status : bit type~
service_class : integer type,
transmission status : bit type.

INTERFACE
ma_unitdata.request, ma_unitdata.indication,
ma unitdata.status,
ph=data.request, ph_data.indication,
ph data.confirmation.

OPERATION

PROC

PROC

PROC

PROC
PROC
PROC

ma_unitdata.request(frame_control: BIT;
destination_address: INTEGER;
m sdu : POINTER;
service class : INTEGER) ;

ma unitdata.indication
(frame control: BIT;
destination address: INTEGER;
source address : INTEGER
m sdu :. POINTER;
reception status: BIT);

ma_unitdata.status (transmission_status:
BIT; service_class : INTEGER);

ph_data.request(symbol: BIT);
ph_data.indication(symbol: BIT);
ph_data.confirmation(symbol: BIT);

BEHAVIOR

prologue;

switch

case{ma unitdata.request)
ring.ph_data.request(symbol);

case(ma unitdata.indication)
if-{connection establishment)

if (connection request)
link.dl connect.indication;

if (connection_response)
link.dl connect.confirm;

if {data transfer)
if (data_request)

link.dl data.indication;
if (data_response)

link.dl_data.confirm;

case{ph_data.request)
goes through media to entity;
ring.ph_data.indication;

case(ph_data.indication(symbol))
ring.ma_unitdata.indication;

case{null)
idle state;

end_ switch;

epilogue;

END ABSTRACT LAN

70

APPENDIX B

DOD MODEL ABSTRACT MODULES

71

72

For upper level layer(process layer):

ABSTRACT LAN ulp(upper level protocol)

OVERVIEW

ULP is high level protocol like file transfer
protocols. FTP(File Transfer Protocol) supports
file transfer between processes in communication
networks. It provides high level service
associated with the next lower transport layer
protocols.

TOPOLOGY

MEDIUM

ring, bus, star

twisted pair, coaxial cable, fiber optic
cable

DATA STRUCTURE

source address : integer type,
destination address : integer type,
file : pointer to record type
source_port : integer type,
destination_port : integer type,
local_connection_name : integer type,
data : pointer to record type,
data_length : integer type,
connection state : integer type,
description : integer type,
passivejactive_flag : boolean type,
closejabort_flag : boolean type.

INTERFACE
connection, send data, termination, check_status,
open ID, open failure, open success,
deliver_data,-closing, terminate,
status_response, error.

OPERATION

PROC connection(source_port : INTEGER;
destination_port : INTEGER;
passivejactive_flag : BIT) ;

PROC send_data(local_connection_name : INTEGER;
data: POINTER);

PROC termination(local connection name: INTEGER;
close/abort flag-: BIT);

PROC check status(local connection name
- INTEGER) ; -

PROC open_ID(local_connection_name : INTEGER;
source_port : INTEGER;
destination_port : INTEGER) ;

PROC open_failure(local_connection_name
INTEGER) ;

PROC open_success(local_connection_name :
INTEGER);

PROC deliver data(local connection name :
- INTEGER; data : POINTER;

data_length : INTEGER) ;

73

PROC closing(local_connection_name : INTEGER);
PROC terminate(local_connection_name : INTEGER;

description : INTEGER) ;
PROC status_response(

local connection name : INTEGER;
source_port : INTEGER;
destination_port : INTEGER;
connection_state: INTEGER);

PROC error(local connection name : INTEGER;
description : INTEGER) ;

BEHAVIOR

prologue;

switch

/* service request */
case(connection) /* connection establishment */

if(passive)
tcp.passive_open();

if(active)
tcp.active_open();

wait(connection_established);

case(send_data) /* connection maintenance */
tcp.send();

case(termination) /* connection termination */
if(close)

tcp.close();
if(abort)

tcp.abort();
wait(connection_terminated) ;

case(check_status)
tcp.status();

/* connection status */

74

/* service response */
case(open_ID) /* connection establishment */

connection_ assigned;

case(open_failure)
failure_of_Active_Open;

case(open_success)
completion_of_pending_Open_request;

case(deliver_data)
/* connection maintenance */

acknowledgment;

case(closing) /* connection termination */
connection closed;

case(terminate)-
connection_aborted;

case(status_response)
/* current connection info.*/

current_connection_status;

case(error)
error_process(retry

case(null)
idle state;

end_switch;

epilogue;

END ABSTRACT LAN

/* error case */
abort);
/* null service */

75

For TCPCTransmission Control Protocol):

ABSTRACT LAN tcp

OVERVIEW

TCP is connection oriented transport protocol
for use in packet-switched communication networks
in which data transfer is reliable, ordered,
full_duplex, and flow controlled.

TOPOLOGY

MEDIUM

ring, bus, star

twisted pair, coaxial cable, fiber optic
cable

DATA STRUCTURE

source_port : integer type,
destination_port : integer type,
local_connection_name : integer type,
data : pointer to record type,
data_length : integer type,
connection_state : integer type,
description : integer type.

INTERFACE

/* service request primitives */
passive_open, active_open,
send, allocate, close, abort, status
/* service response primitives*/
open_ID, open_failure, open_success,
deliver, closing, terminate, status_response,
error.

OPERATION

PROC

PROC

PROC

PROC
PROC
PROC
PROC

PROC

passive_open(source_port : INTEGER;
destination_port : INTEGER) ;

active_open(source_port : INTEGER;
destination_port : INTEGER) ;

send(local connection name : INTEGER;
data: POINTER);-

close(local connection name : INTEGER);
abort(local:connection:name : INTEGER);
status(local_connection_name : INTEGER);
open_ID(local_connection_name : INTEGER;

source_port : INTEGER;
destination_port: INTEGER);

open_failure(local_connection_name
INTEGER) ;

PROC open success(local connection name :
- INTEGER) ; -

PROC deliver(local connection name : INTEGER;
data ! POINTER; data_length :
INTEGER);

76

PROC closing(local_connection_name : INTEGER);
PROC terminate(local_connection_name : INTEGER;

description : INTEGER) ;
PROC status_response(

local_connection_name : INTEGER;
source_port : INTEGER;
destination_port : INTEGER;
connection state : INTEGER) ;

PROC error(local connection name : INTEGER;
description : INTEGER) ;

BEHAVIOR

prologue;

switch

I* service request primitives *I

case(passive_open)
ip.send();

I* listen for connection attempt *I

case(active_open)
ip. send();

case(send)
ip.send();

case(close)
ip.send();

I* request connection *I

I* transfer data *I

I* close connection gracefully *I

case(abort)
ip.send();

case(status)
ip.send();

I* close connection abruptly *I

I* query connection status *I

77

/* service response primitives */
/* ulp : Upper Level Protocols */
case(deliver)

if(open_ID)
ulp. open ID () ;

- /* informs len assigned */
if(open failure)

ulp.open_failure();
/* failure of Active Open */

if(open_success)
ulp.open_success();

/* completion of Open request*/
if(deliver)

ulp.deliver(); /*arrival of data*/
if(closing)

ulp.closing();
/* peer ULP issued a CLOSE */

if(terminate)
ulp.terminate();

/* remote connection reset */
if(status response)

ulp.status_response();

if(error)
ulp.error();

/* current status */

/* illegal service request */
case(null)

idle state;

end_switch;

epilogue;

END ABSTRACT LAN

78

For IP(Internet Protocol):

ABSTRACT LAN ip

OVERVIEW

IP supports the interconnection of communication
sub_networks. IP provides services to the upper
transport layer protocols and relies on the
services of the lower network layer protocols.

TOPOLOGY

MEDIUM

ring, bus, star

twisted pair, coaxial cable, fiber optic
cable

DATA STRUCTURE

source_port : integer type,
destination_port : integer type,
local_connection_name : integer type,
data : pointer to record type,
data_length : integer type,
connection_state : integer type,
description : integer type.

INTERFACE

send, deliver.

OPERATION

PROC send(source address : INTEGER;
destination_address : INTEGER;
data_length : INTEGER;
data : POINTER) ;

PROC deliver(source_address : INTEGER;
destination_address : INTEGER;
data_length : INTEGER;
data : POINTER) ;

BEHAVIOR

prologue;

switch

case(send)
if((active_open) I (passive_open))

llc.connect.request();

79

/* llc : Low Level Protocols */
if(send data)

llc.data.request();

if((close) I (abort))
llc.disconnect.request();

if(status)
llc.status.request();

case(deliver)
if ((open_ID) I

(open_failure)
(open_success)
(deliver data)
(close) T
(abort)
(status response)
(error))
tcp.deliver();

case(null)
idle state;

end_ switch;

epilogue;

END ABSTRACT LAN

80

For sub layers:

Similar codes with IEEE 802 LAN and the OSI Reference
Model in Appendix A.

VITA

Chang-Hyun Jo

Candidate for the Degree of

Master of Science

Thesis: ABSTRACTION AND SPECIFICATION OF LOCAL AREA
NETWORKS

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Pusan, Korea, April 25, 1958,
the son of Soon-Kyu and Boon-Sun Jo.

Education: Graduated from Myong Ji Senior High
School, Seoul, Korea, in February, 1976; received
Bachelor of Economics in Statistics from Sung
Kyun Kwan University, Seoul, Korea, in February,
1984; completed requirements for the Master of
Science degree at Oklahoma State University in
July,1988.

Professional Experience: Software Engineer,
Electronic Research Lab., Hyo sung Corp., Seoul,
Korea, December, 1983, to April, 1985; Teaching
Assistant, Department of Computing and
Information Sciences, Oklahoma State University,
August, 1987, to July, 1988;

