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CHAPTER I 

INTRODUCTION 

Computer science can be defined as the study of data, 

its representation, and its transformation by a digital 

computer [1]. Although there are many things involved in 

writing computer programs to solve an application problem, 

the building blocks of most computer programs [2], namely, 

the data structures and algorithms are most important, and 

affect the computational efficiency significantly. 

In fact, there is an intimate connection between the 

structuring of data and the synthesis of algorithms. The 

structures are collections of variables,connected in various 

ways; while an algorithm is a finite set of instructions 

which accomplish a particular task. An algorithm may operate 

on multiple data structures; on the other hand, more than 

one algorithm may operate on a data structure. Therefore, 

for any given problem, we will specify a suitable data 

structure and give an applicable algorithm which operates on 

that structure. Actually, the data structure and the algori

thm are so tightly connected that they should be considered 

as a unit, neither one making sense without the other. 

In the last two decades the study of data structures 

and algorithm analysis has been very active. The development 
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of new data structures and new techniques for analyzing 

algorithms has greatly helped the growth in the fields of 

network and graph theory [3], database design [4-11], and 

file and index organizations [12-14], etc. At the same time, 

the structure performance and algorithm complexity have been 

widely evaluated and discussed [15-27], in order that some 

efficient algorithms can be found corresponding to some sig

nificant structures in applications. Thus, the analysis of 

complexity (more specifically, the complexity of a given 

algorithm on a specified data structure) is always an impor

tant research topic in computing and data processing. 

Complexity Analysis 

Basically, there have been two ways to evaluate the 

complexity of an algorithm that occurs with operations on a 

data structure [3]. First, we measure the complexity by the 

length of the program. This measure has interesting theore

tical uses [28,29], however, it is static in nature since 

the complexity is independent of the input data. On the 

other hand, the performance of common data structures are 

often evaluated and compared based on their responses to 

certain data operations. The required running time or stora

ge space, which are functions of the input size, serve as a 

dynamic measure of the algorithm on a data structure. In 

practice, the running time is more significant in cost and 

complexity analysis, because most of the algorithms have a 

space bound that is a linear function of the input data [3]. 
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Running Time Analysis 

If we use a parameter n to characterize the inputs 

andjor outputs, then the running time of an algorithm can be 

represented by a function, f(n) [1]. 

Definition: f(n) = Q(g(n)) iff there exist two constants c 

and n0 such that 

If (n) I <= c * r g (n) ! I for all n >= no I 

where g(n) is also a function of parameter n. Common func-

tion classes for g(n) include polynomial, logarithmic, expo-

nential, and products of members from different classes as 

discussed by Horowitz et. al. [1] and Aho et. al. [2]. 

When we say that the computing time of an algorithm is 

Q(g(n)) we mean that its execution of n data operations 

takes no more than a positive constant times the g(n) for n 

sufficiently large. Thus, the running time function f(n) 

provides a mathematical description of the data structual 

performance and algorithm efficiency. 

However, it is important to know that the running time 

estimate depends strongly on the analysis technique applied. 

Different methods result in the variation of complexity 

estimation. Tarjan [3] presented three analysis methods of 

running time available for different applications: the 

worst-case, the average-case, and the amortized analysis. 

The worst-case method has been widely applied in comp-

lexity analysis because it is simple and it provides a per-
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formance guarantee. For a worst-case estimate, the running 

time is calculated as t~e sum of the worst-case times of all 

the individual operations. But this measure is not so rea

listic and it may give an overly pessimistic estimate of the 

actual performance if the worst case occurs rarely. 

The average-case analysis of running time is another 

common method. The analysis is carried out based on probabi

listic assumptions and the running time is averaged over the 

possible operations. However, such an analysis is generally 

much harder than the worst-case method because of the diffi

cult in determining the probability distribution that accu

rately reflects reality. 

In most data structure applications, some particular 

algorithms, such as a sequence of search, insertion, dele

tion, and updating, are repeatly applied. For these situa

tions, the amortized analysis by which we average the run

ning time per operation over a worst-case sequence of opera

tions, combines aspects of the two former methods and has 

proven to be more realistic than worst-case analysis and 

more robust than average-case analysis. 

Amortized Analysis 

The amortized running time analysis is a newly develo

ped technique. It is especially appropriate in complexity 

analysis of a variety of data structures, where a sequence 

of operations rather than a single operation is always per-
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formed and the total running time for that operation se

quence is of interest. 

5 

The concept of amortization was we~l explained by 

Tarjan [30]. He used the "banker's" view and the 

"physicist's" view to analyze the running time of operations 

on a data structure. In the former case, the computer user 

acts as a customer of a bank. Initially there is no credit 

in the user's account. The credits reflecting the amortized 

operation time are then deposited into or withdrawn from the 

account according to the operation sequence. Finally, an 

account balance is available from which the upper and lower 

bounds of performance of that data structure can be obtain

ed. While from the physicist's view, the change of states in 

a data structure due to a sequence of operations can be 

imagined as the energy change in a water tank system [31], 

where a pump is used to increase the potential energy by 

pumping water to a higher level and a generator is used to 

produce electrical energy by allowing the higher level water 

to flow down. It is clearly seen that a potential function 

is generally needed in amortization analysis, to present 

either the account balance in the banker's view or the sys

tem potential energy in the physicist's view. The major 

advantages of the amortization analysis is that it not only 

provides more exact measures of running time for known 

algorithms but also suggests some new algorithms, which 

might be more efficient in an amortized rather than a worst

case sense. In last five years, this method has been applied 



to evaluate a number of data structures and algorithms, such 

as list data structures, paging rules (30,32], various bal

anced search trees [33-36], heap operations [37,38], and 

database view schemas [39], etc. 

A thorough literature survey shows, however, that sev

eral classes of potential functions exist and that the po

tential functions were chosen freely in each application. 

For example, we can use the number of inversions in updating 

as the potential function for list structures and use either 

the height or the number of internal nodes for different 

tree structures. No paper has been found which concerns the 

principles andjor limitations in selecting the potential 

function for common data structures. It was believed [30] 

that the more astute the choice, the more informative the 

amortized time estimate. Such an arbitrariness, however, 

probably makes difficulties in complexity comparison and 

thus obstructs the application of this new method. There

fore, there is a growing demand from the designers and 

users, who conduct complexity analysis, to systematically 

analyze the potential function, since it plays the most 

important role in determining the amortized running time. 

Research Objective 

The objective of this research is twofold: to explore 

the possibilities as well as the limitations of different 

potential functions in amortized analysis, and to evaluate 

the amortized perform~nce by using these potential functions 
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for typical accessing and updating algorithms on several 

data structures. The idea is to identify classes of poten

tial functions which best support complexity analysis for 

each specified data struc.ture. This investigation is the 

first known attempt to discuss the role of potential func

tions. Furthermore, it will also provide us added insight 

into the performances of some useful data structures. 

Fisher [33] summarized Tarjan•s theory and suggested 

three promising potential functions from many candidates, 

for easy implementation and calculation. They are the rank, 

the sum children including itself, and the log sum. Fisher 

and Hu [34] also proposed to use the height as structure 

potential. These four classes of potential functions are 

defined and analyzed for each of the following data 

structures: linear lists, balanced search trees (including 

the HB[l]-tree, Red-Black tree, and B-tree), and heaps 

(including the pairing heap and self-adjusting heap). In 

each case, the typical operation algorithms are presented. 

Then the amortized complexities are analyzed based on each 

potential function. By comparing the limitations of these 

potential functions, an optimal procedure of amortization 

analysis is possible for each data structure analyzed. 

Chapter II reviews previous work on amortization for 

relevant data structures. The four selected potential func

tions are presented in chapter III. Chapters IV, V, and VI 

develop amortized measures for typical operation algorithms 

in lists, balanced search trees, and heap structures, re-
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spectively. In chapter VII, the influence of potential 

functions on structure performance is discussed. Also, the 

amortized computational complexities of these data struc

tures are compared with the worst-case results in applica

tions. Chapter VIII includes conclusions and suggestions 

for further study. 
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CHAPTER II 

LITERATURE SURVEY 

In this chapter, we survey investigations on amortized 

performance analysis. Since most fundamental work in this 

area was developed by Tarjan, we first outline his theory of 

amortization. On this base, we review the amortization in 

several data structures. Finally, we summarize the potential 

functions analyzed in different situations. 

Amortized Computational Complexity 

Amortization is a new method in analysis of computat

ional complexity for data structures. According to Tarjan 

[3, 30], amortization can be defined as an "averaging" 

algorithm that averages the running times of operations in a 

sequence over the sequence and is appropriate in many uses 

of data structures where particular algorithms are repeat

edly applied. 

As stated in the chapter I, Tarjan used two views, the 

banker's view and the physicist's view, to explain the con

cept of amortization. In both cases, the state of a physical 

data structure can be represented by a variable called the 

potential function. This function, viewed as either the 

current account balance or the potential energy level, is 
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operation-dependent and, thus, can be described mathemati-

cally. 

Tarj an defined such a potential function cp that maps 

any configuration D of a data structure into a real number 

q)(D) called the potential of D. The amortized time of an 

operation is: 

10 

a= t + C¢(D')- </>(D)) ( 2. 1) 

where t = the actual time of the operation 

D = data structure configuration before operation 

D' = data structure configuration after operation 

With this definition, the total amortized cost due to 

any sequence of k operations can be obtained as 

(2.2) 

where a· = amortized time of the ith operation J. 

ti = actual time of the ith operation 

¢o = data structure potential before the k operations 

reflecting the initial configuration 

¢f = data structure potential after the k operations 

reflecting the final configuration 

Eq. (2.2) states that the total amortized time (or the 

sum of amortized times) equals the total time of the k 

operations plus the net increase in data structure potent

ial, caused by the operations, from the initial to the final 
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configuration. In most cases of interest the initial potent

ial is zero and the potential is always nonnegative. In such 

a situation the total amortized time serves as an upper 

bound of the total running time. 

Amortized Updating Cost 

The amortized method is receiving more attention today. 

In last five years, many cost-related problems have been 

analyzed by using the amortized concept, including updating 

cost of "Move-to-Front" algorithm in linear lists[30,32,44], 

updating in (2,3) trees, (a,b) trees, and Red-Black trees 

[17,19,32,36], sequential insertions into AVL-trees [35,41] 

and B-trees [33,34], pairing heaps [37] and self-organizing 

heaps [38,39], and for view complexity of relational data

bases [40]. 

Linear List Amortization 

A linear list is a simple data structure. Tarjan [30] 

discussed the amortized behavior on a stack, a simple form 

of the list structure, from the physicist's view. The 

potential of a stack can be defined as the number of items 

contained in the stack. Suppose initially the stack contains 

i items and then K pops and one push are carried out. The 

stack potential changes from i to (i - K + 1). Thus, m such 

operations take at most 

((K + 1) + (i- K + 1) - i ) * m = 2 * m (steps) 

which gives an amortized time Q(1) per operation. 



Many researchers analyzed the cost of self-organizing 

(or self-adjusting) sequential operating algorithms for the 

list. Tarjan [30] and Sleator [32] considered an abstract 

data structure consisting of a table of n items, under the 

sequential operations of accessing k specified items. This 

problem is also called the dictionary problem. We assume 

that the data table is represented by a linear list whose 

items are in arbitrary order. Three kinds of operations are 

usually allowed: 

OP1 . access (i): locate the ith item in the list 

OP2 . insert (i): insert the ith item into the list 

OP3 . delete (i): delete the ith item from the list 

12 

To access an item, we scan the list from the front 

until locating the item (Fig.la). To insert an item, we scan 

the entire list to verify that the item is not already 

present and then insert it at the rear of the list (Fig.lb). 

To delete an item, we scan the list from the front to find 

the item and then delete it (Fig.lc). Thus, the cost of the 

various operations can be defined as follows. Accessing or 

deleting the ith item in the list costs i; inserting a new 

item costs n+l, where n is the size of the list before the 

insertion. 

After each operation, we may want to rearrange the list 

by swapping pairs of consecutive items in order to speed up 

later operations and reduce the total running time. There 

are three proposed swapping heuristics: 



Before Operation 

{-_.. 
1 2 3 

(a) Access 

{--~__. 

1 2 3 

(c) Deletion 

Front 

} 
n 

} 
n 

Rear 

After Operation 

{ ... .. ·} 
1 2 3 n 

{. .. } 
1 2 3 n-1 

Front Rear 

Figure 1. Linear List Operations 
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front 

{ . i . • • • ; 
i 

(a) Move-to-Front (MF) 

{ . . . . t . 
Ll 

i-1 i i+l 

(b) Transpose (T) 

• •• 

J ••• 

l rr t 
[ ... 

• • • 

t t i 

rear . . . } 

. . . } 

(non-increasing frequency count) 

(c) Frequency Count (FC) 

Figure 2. Three Swapping Rules in Linear List 
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1. Move-to-Front (MF): after accessing or inserting an item, 

move it to the front of the list, without changing the 

relative order of the other items (Fig.2a). 

2. Transpose (T): after accessing or inserting any item 

other than the first on the list, exchange it with the 

immediately preceding item (Fig.2b). 

3. Frequency Count (FC): maintain a frequency count for each 

item (initially set to zero); increase the count of an 

item by 1 whenever it is inserted or accessed; reduce 

its count to zero when it is deleted; maintain the list 

so that the items are in nonincreasing order by 

cumulative frequency count (Fig.2c). 

The swapping cost is defined as follows. Immediately 

after an access or insertion of an item i, allow i to be 

moved freely to any position closer to the front of the 

list. Any other exchange, called a paid exchange, costs 1 

unit. Our final goal is to find an optimal algorithm (oper

ation plus swapping) , from the three list maintainance 

heuristics described above. 

Rivest [42] showed that transpose costs less than move

to front in a list with n fixed items and without exchanges. 

However, Bitner [15] discovered that move-to-front performs 

much better in practice. He suggested that move-to-front 

converges much faster to its asymptotic behavior if the list 

is random initially. Bentley and McGeoch [43] tested the 

various update rules empirically on real data. Their tests 
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showed that transpose is inferior to frequency count but 

move-to-front is competitive with frequency count and some

times better. This reveals that some real sequences have a 

high locality of reference, which move-to-front, but not 

frequency count, exploits. Bentley and McGeoch also studied 

the amortized complexity for cases of a fixed list of n 

items on which only accesses are permitted. They compared 

the three updating rules (MF,T,and FC) with a static algori

thm, called decreasing frequency (DF), which minimizes the 

total access cost among algorithms that do not rearrange the 

list. Let s be any sequence of access operations and C(s) be 

the total cost of all the accesses. Bentley and McGeoch 

proved that CMF(s) <= 2 * c0F(s) if MF's initial list con

tains the items in order by first access. Frequency count 

but not transpose shares this property. Sleator and Tarjan 

.[32] applied the concept of potential function, as described 

in the previous section, to generalize Bentley and McGeoch's 

results. 

Consider running an arbitrary algorithm A and the move

to-front heuristic MF in parallel on an arbitrary operation 

sequence, starting with the same initial list for both meth

ods. We define as the potential function the number of in

versions in MF's list with respect to A's list. For any two 

lists containing the same items, an inversion in one list 

with respect to the other is an unordered pair of items, i, 

j, such that i occurs anywhere before j in MF's list and 

anywhere after j in A's list (as shown in Fig.3a), or that i 



occurs before j in A's list and after j in MF's list (as 

shown in Fig.3b). Here we use a standard example list to 

illustrate the calculation of list potential function. In 

17 

Fig.3c, two lists contain the same items but are under diff-

erent algorithms, so the item orders are different. The in-

version number for each item j (j=l, ... ,n) in MF's list can 

be calculated by using either the method shown in Fig.3a or 

that in Fig.3b. We call the inversion number before j as the 

potential of item j, then the sum of all the item potentials 

is the list potential. For the standard example, both meth-

ods lead to a list potential of 20. 

If the initial A's and MF's lists are empty, the ini-

tial MF's configuration has zero potential {zero inversion); 

and the final configuration has a nonnegative potential 

{more inversions). Thus, by Eq. {2.2), we know that the ac

tual cost to MF of a sequence of k operations is bounded by 

the sum of the operations'amortized times. That is 

<= (2.3) 

Using number of inversions as the potential function, 

we have the amortized operation times for the MF rule as 

follows. 



18 

i 
A j --

MF ( . j -----i 

( a ) i before j in MF's and after j in A's 

i 
A ( . . j 

MF j ----i 

(b) i after j in MF's and before j in A's 

A (a e j o g 1 n r t x) 

MF (1 e n 0 X j a t g r) 

by method ( a ) 

II 0 1 0 2 0 4 6 1 4 2 ~ I! = q>C D ) = 2 0 

by method (b) 

II 5 1 4 2 5 1 0 2 0 0 ~f!=cp( D) =20 

(c) item and list potentials 

Figure 3. List Potentials in terms of Number 
of Inversions 
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access i a· <= 2 * iA - 1 (2.4) l. 

delete i ai <= iA <= 2 * iA - 1 (2. 5) 

insert i ai <= 2 * (n+l) - 1 = 2 * iA I - 1 (2. 6) 

where iA = position of item i in A's list 

iA'= position of item i in A's list after insertion 

n = list size before insertion 

To prove these amortized costs (inequalities 2.4, 2.5, 

and 2.6), we consider an access by both algorithms A and MF 

to an item i. Let the position of i be iA in A's list and be 

iMF in MF's list (Fig.4a). Also let xi be the inversion num

ber (potential) of i. Then the number of items preceding i 

in both lists is (iMF - 1 ~ xi). This not only means that 

moving i to the front of MF's list creats (iMF - 1 - xi) in

versions and destroys xi other inversions, but also indi

cates that (iMF - xi) <= iA. Thus, the amortized time for 

access operation is proved as 

ai = ti + </J (D') - ¢(D) 

= iMF + (¢;(D) + iMF - 1 - xi -xi ) - ¢ (D) 

= 2 * (iMF - xi) - 1 

<= 2 * iA - 1 

In the standard example, we access item a, so iMF=7, 

iA=l, xi=6; after MF of a, the list potential changes from 

20 to 14 (Fig.4b). Then the amortized access time is 

ai = ti + L:a ¢ = iMF - 6 = 7 - 6 = 1 

<= 2 * iA - 1 = 1 
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The above analysis for access operation applies virtu

ally unchanged to a deletion and an insertion. Deletion cre

ates no inversions but still destroys xi inversions, so 

In the case of an insertion, iA=n changes to iA'=n+1, 

the variation of inversions is the same as that in an access 

operation; so 

ai <= 2 * (n+1) - 1 = 2 * iA' - 1 

Inequalities (2.4), (2.5), and (2.6) show that the 

amortized time per operation ai is at most (2 * iA - 1). 

Furthermore, when A does a free exchange (move i in A's list 

to left/front), the inversion number reduces at least one; 

when A does a paid exchange (move i in A's list to right 

;rear), the inversion number increases at most one. Thus, 

for any algorithm A and any sequence of k operations start

ing with the empty list, 

where c = total operation cost excluding paid exchanges 

X = number of paid exchanges 

F = number of free exchanges 

(2.7) 

Using the standard example, we insert the ten items 

sequentially into an initially empty list. CA is the sum 

from one to ten and equals 110. k is ten. If A does no ex

change, then XA=FA=O, potential increase is 20. So, 



eMF = 2.. ai = 2 ti + ~¢> = 110 + 20 

<= 2 * eA - k = 220 - 10 
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If A does XA free exchanges and FA paid exchanges, then 

eMF = 2. a i = 110 + 2 0 + XA - FA 

Since A can be any algorithm including algorithms that 

base their behavior on advance knowledge of the entire sequ-

ence of operations, we know that the performance of MF for 

the current list condition is within a factor of 2 of that 

by an optimum algorithm. Relation {2.7) is a very strong 

result, which implies the average-case optimality result for 

move-to-front heuristics. No analogus result holds for 

transpose or for frequency count. 

By using the same potential function, the amortized 

costs of MF for several different situations are also 

available. When the initial set is nonempty, and MF and A 

begin with different lists, the cost bound is 

n 
where I = initial number of inversions, <= { 2 ) 

{2.8) 

If the insertion position i rather than the length n of 

the list is the cost of an insertion, the result is similar 

to relation {2.7). 



Also, we consider the modified MF method by which the 

accessed or inserted item at position i is moved at least 

(i/d - 1) units closer to the front, then the cost bound is 
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(2.9) 

where d = integer larger than or equal to 1. 

Finally, if we count free exchanges in the MF, the cost 

bound is 

k 
= 2 * 2. a· 

i=l ~ 

(2.10) 

The above results show that, by amortized complexity 

analysis, the move-to-front is generally the best rule for 

linear list sequential operations as it has a total cost 

within a constant factor of the minimum cost. The constant 

is 4 if we do not allow free exchanges in updating or 2 if 

we do. Since the theoretical results are well supported by 

Bentley and McGeoch's experiments, Sleator and Tarjan 

believed that the amortized complexity is a more robust and 

more realistic measure for all list update rules than 

asymptortic average-case complexity. 

Search Tree Amortization 

Search trees provide a way of representing static or 

dynamically changing sorted data sets. If the ordering among 

items is important, a search tree is the data structure of 
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choice [44]. Search trees can be unbalanced or balanced, as 

shown in Figs.Sa and Sb, respectively. While an unbalanced 

t~ee has some long paths and some short ones, a balanced 

tree has all leaves at approximately the same depth. The 

standard way to make search tree operations efficient in the 

worst case is to impose a balance condition that forces the 

depth of an n-node tree to be Q(log n). This requires strong 

local balance information at each tree node and rebalancing 

the tree after (or during) each update operation. In the so

called standard balanced trees, the update transformations 

all take place along a single path in the tree, from the 

root to the leaf. Therefore, the worst-case time for an in

sertion or deletion is n(log n). In this section, we brief

ly survey previous results concerning amortization of some 

search tree structures. 

(2,3)-Trees 

A (2,3)-tree is a height-balanced tree such that 2 or 

3-way branching takes place at every internal node, and all 

external nodes occur on the same level. An internal node 

with 2-way branching is called a 2-node, and one with 3-way 

branching a 3-node. The (2,3) tree is a data structure which 

allows both fast accessing and fast updating of sorted in

formation [17]. An example of a (2,3) tree is given in 

Fig.6a. It is easy to see that the height h of a (2,3)-tree 

with n external nodes can be expressed as 

(2.11) 
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Brown and Tarjan [17] analyzed the cost of sequences of 

operations on (2,3)-trees. Generally, (2,3)-trees are used 

to represent a sorted list of length n so that a search for 

any item in the list takes Q(log n) steps or unit times. 

Once the position to insert a new item or to delete an old 

one has been found through a search, the insertion or dele

tion can be performed in additional Q(log n) steps. But 

there are several applications of (2,3)-trees in which the 

regularity of successive insertions or deletions allow 

searches to proceed faster than Q(log n), such as to imple

ment a priority queue in a sorted list. 

One way to represent a sorted list using a (2,3)-tree 

is shown in Fig.6b. The elements of the list are assigned to 

the external nodes of the tree, with key values of the list 

elements increasing from left to right. Keys from the list 

elements are also assigned to internal nodes of the tree in 

a "symmetric" order analogous to that of binary search 

trees. More precisely, each internal node is assigned one 

key for each of its subtrees other than the rightmost, this 

key being the largest which appears in an external node of 

the subtree. Therefore, each key except the largest is shown 

in an internal node, and by starting from the root of the 

tree we can locate any element of the list in O(log n) 

steps, using a generalization of binary tree search. 

We define insertion as the addition of a new external 

node at a given position in the tree, excluding the search 
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(a) a (2,3)-tree 

(b) a (2,3)-tree for sorted lists 

Figure 6. Illustration of a (2,3)-Tree [17] 
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operation. Insertion is a·ccomplished by a sequence of node 

expansions and splittings, as shown by the example in Fig.7. 

When a new external node is attached to a terminal node p, 

this node expands to accomdate the extra edge. If p was a 2-

node prior to the expansion., it is now a 3-node, and the in-

sertion is complete. If p was a 3-node prior to expansion, 

it is now a 4-node (Fig.7a), which is not allowed in a 

(2,3)-tree; therefore, p is split into a pair of 2-nodes 

(Fig.7b). This split causes an expansion of p's parent 

(Fig.7c), and the process repeats until either a 2-node ex-

pands into a 3-node or the root is split. Any individual in-

sertion into a (2,3)-tree initially of size n can cause up 

to log2 (n) splittings of internal nodes to take place. 

Therefore, if k consecutive insertions are made, the total 

number of splits is bounded by 0(k*log2 (n)) in the worst

case. On the other hand, in the amortized case, the k inser-

tions require a maximum of (fn/2l+k) splits, because each 

split generates a new internal node and the number of inter-

nal nodes is initially at least f(n-1)/21 and finally at 

most (n+k)-1. More precisely, if the positions of the newly

inserted nodes in the resulting tree are p1 < p 2 < p 3 < < 

pk, then the number of node splittings which take place dur

ing the insertions is bounded by 

k 
Cs <= 2 ( rlog2 (n+k)] + .Z [log2 (Pi - Pi-1 + 1) 1) 

i=l 
( 2. 12) 
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(a) Insert 

(b) Split l 

(c) Expansion in parent nodes 

Figure 7. Insertion into a (2,3)-Tree [17] 
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Assuming the tree in Fig.7 originally has 9 nodes. Four 

new nodes 3, 6, a, and 11 are inserted sequentially, as 

shown in Fig.7d. Then 

or 

cs ~ [9/2] + 4 

Cs <= 2(log2 (9+4))+log2 (6-3+1)+log2 (8-6+1)+log2 (11-8+1) 

<= 13 

<= 15 (worst-case, k*log2 (n)) 

Similarly, we define the deletion operation as the 

elimination of a specified external node from the (2,3)

tree, as shown by Fig.a. The first step of a deletion is to 

remove the external node being deleted (Fig.8a). If the par

ent of this node was a 3-node before the deletion, it be

comes a 2-node and the operation is complete. If the parent 

was a 2-node, it is now a 1-node (Fig.8b), which is notal

lowed in a (2,3)-tree; hence some additional changes are re

quired to restore the tree. If the 1-node is the root of the 

tree, it can simply be deleted; if the 1-node has a 3-node 

as a parent or as a sibling, then a local rearrange-ment 

eliminates the 1-node and completes the deletion. Otherwise 

we fuse the 1-node with its sibling 2-node; this creates a 

3-node with a 1-node as parent (Fig.8c). We then must repeat 

the transformations until the 1-node is eliminated (Fig.8d). 

Consider a sequence of k (k <= n) deletions from a (2,3)

tree of a initial size n, the number of node fusings which 

takes place during the deletions is bounded by 
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(a) Delete 

(b) 

(c) Fuse 

(d) Eliminate 1-node again 

Figure 8. Deletion in A (2,3)-Tree [17] 



33 

k 
cf <= 2 ( [log2 (n) J + ~ [log2 (Pi - Pi-l + 1) J) 

~=1 
( 2. 13) 

When both insertions and deletions. are present in a se-

quence of operations, there are cases in which O(log n) 

steps are required for each operation in the sequence. Brown 

and Tarjan considered the case that k insertions and p dele

tions take place in separate parts of the n-node tree. They 

divided the sequence of p deletions into disjoint epochs. 

Intuitively epochs represent intervals during which inser

tions do not interact directly with deletions. Let Pi denote 

the number of deletions during the ith epoch, ki the number 

of insertions during this epoch, and mi the tree size at the 

start of the epoch. The first deletion of epoch i costs 

Q(log mi); the final Pi-1 deletions cost Q(pi+log(mi)) since 

they operate on a section of the left path that is unaf

fected by insertions. Hence the total cost of the deletions 

in epoch i is Q(li+log(mi)). While the insertion cost is 

ki-l = Q(log(mi)). It means the cost at i epoch is 

(Pi+ ki_1), so the total cost of these epochs is 

CT = Q(k + p) (2.14) 

Eq. (2.14) gives an Q(l) amortized time per update, 

which shows that the Q(log(n)) worst-case bound on indi-

vidual insertions and deletions in a (2,3)-tree is overly 

pessimistic. But this bound does not hold for intermixed in-



sertions and deletions. The potential function was not dis

cussed in this analysis. 

(a,b)-Trees 
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An (a,b)-tree is a data structure more general than the 

(2,3)-trees. Each node of an (a,b)-tree has at least a and 

at most b sons. Huddleston and Mehlhorn (19] called this 

data structure as a class of weak B-trees, and they analyzed 

the cost of sequences of intermixed insertions and deletions 

when the (a,b)-trees satisfy the condition of b >= 2a. 

Although they thought their result was the worst case cost, 

Huddleston and Mehlhorn did amortized analysis by using a 

bank savings account paradigm to simulate the operation se

quence. 

Insertion and deletion into (a,b)-trees are quite simi

lar to the corresponding operations in (2,3)-trees and B

trees. An insertion means the addition of a new leaf 

(external node) at a given position in the tree and it is 

accomplished by a sequence of node expansions and node 

splittings, terminating when the (a,b)-tree is balanced. For 

a = 2 and b = 4, the insertion of a new rightmost leaf into 

a (2,4)-tree is shown in Fig.9. A deletion means the pruning 

of an existing leaf at a given position in the tree followed 

by a sequence of node shrinkings and node fusings and ended 

by possibly one node sharing. The deletion of a leftmost 

leaf in a (2,4)-tree is shown in Fig.lO. Deletion has two 

parameters, the sharing threshold t which specifies when to 
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Insertion into an (a,b)-Tree 
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Figure 10. Deletion in an (a,b)-Tree 
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36 

~ lu~ing 



37 

fuse or share, and s which specifies how many sons to shift 

when sharing. In (a,b)-trees, any values of the parameters t 

and s in (0 <= t <= b+1-2a) and (1 <= s <= t+1) gives a cor

rect rebalancing algorithm. Huddleston and Mehlhorn [19] 

considered two algorithms as follows. 

Algorithm 1: uses s = [(p+1)/2] and t = p+s-1 thus moves the 

arities of the balanced nodes as far away from 

the critical values a and b as possible and 

invests in the future (p is the hysteresis of 

(a,b)-trees, p = [b/2] -a). 

Algorithm 2: uses s = 1 and t = o thus shares whenever 

possible and terminates rebalancing as soon as 

possible. 

We define a savings account V for any (a,b)-tree T. 

Then V(T) is the sum of all V(x), where xis a node ofT. 

Then, consider an arbitrary sequence of k intermixed inser

tions and deletions into an (a,b)-tree. Since initially the 

tree is empty, V(T0 ) = o. By algorithm 1, after k'th inser

tion or deletion, we have 

(2.15) 

where Bk = the total number of rebalancing operations 

(splittings, fusings, and sharings) 

Thus, 

Bk >= ( 1/p ) * k (2.16) 



By algorithm 2, the account balance after the k'th 

operation satisfies 
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0 <= V(Tk) <= k - ( 2/3 ) * Bk 

Thus, 

(2.17) 

Bk >= ( 3/2 ) * k (2.18) 

In either case, the amortized number of node splittings 

and fusings (or say the average cost of rebalancing) is 0(1) 

per operation instead of Q(log n), provided that b >= 2a and 

that the (a,b)-tree is initially empty. 

Red-Black Trees 

A red-black tree is a binary search tree in which each 

internal node can be thought of as either red or black. The 

tree is balanced by satisfying the following color con

straints: 

1. all leaves (external nodes) are black; 

2. black constraint: all paths from the root to a leaf 

contain the same number of black nodes; 

3. red constraint: every red node except for the root has a 

black parent node. 

Fig.11 presents a typical red-black search tree. The 

required rebalancing can be performed by either a bottom-up 

algorithm or a top-down algorithm. 

Tarjan [36] and Chen [31] indicated two main advantages 

of the top-down update method, compared with the bottom-up 



Figure 11. A Red-Black Search Tree [36] 
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algorithm. However, only the algorithm proposed by Tarjan 

[30,36], which is globally top-down but locally bottom-up, 

requires .Q(l) rotations and color changes in the amortized 

case for top-down insertion and deletion in red-black trees. 

Tarjan used both the banker's view [30,31] and the 

physicist's potential in analyzing the insertion and dele

tion updating. This method proceeds from the root down along 

the access path, while maintaining the invariant that the 

"starred" node is black and has at least one black son. To 

do this, we first set the root as the "starred" node X and 

change it to black if it is red or change both i~s children 

to black if they are both red. Then we walk from this node X 

down along the access path, until one of the following cases 

is encountered. 

Case (1): a black node, say Y, with a black son is 

reached; then replace the "starred" node X by Y and walk 

down again. 

Case (2): an external node is reached, then perform the 

bottom-up insertion until the "starred" node X is reached. 

For bottom-up insertion, we first replace the appropriate 

leaf by an internal node having two leaves, one containing 

the new item to be inserted and the other containing the 

item in the replaced node. The key of the new internal node 

is the minimum of the items in its two children. We color 

the new internal node red (See Fig.12a). This procedure pre

serves the black constraint but may violate the red con-



0 
(a) 

r r-
or 

c('o .. 0¢ 
( c ) /root 7 

(d/'- .. ~ 
(e) ¢- .... ~ 
X 

X 

1 

1 

0 

Figure 12. Insertion Operations into· 

Red-Black Trees [36] 
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straint. So we go up to check X's parent P(X), P(X) 's sib

ling P' (X), and X's grandparent G(X). If a red node X has 

both red P(X) and P'(X), we color them both black and color 

the G(X) red (Fig.l2b). This will cause a new violation of 

the red constraint if G(X) 's parent is red. We just repeat 

the recoloring step until no new violation is created or a 

red node x has a red parent P(X) that is the toot or whose 

sibling is black. To eliminate the last violation we apply 

the appropriate one of the transformations in Figures 12c, 

12d and 12e. 

42 

Case (3): four successive black nodes, each with two 

red children, are reached along the top-down access path 

(Figs.l2f and 12g). Let Z be the bottom-most black node. 

Color Z red and its two sons black, and then proceed the 

bottom-up insertion steps. Two possible situations are shown 

in Figs.l2f and 12g, respectively. In Fig.l2f, only color 

changes occur and this takes three applications of Fig.l2b; 

while in Fig.l2g, color changes followed possibly by a rota

tion and color change as in Fig.l2c or 12d. The top-down 

procedure is continued by replacing the "starred" node X by 

the child of Z along the access path and continuing to walk 

down. 

Now we can discuss the amortized complexity bound for 

the above algorithm in a red-black tree. From the banker's 

view, we assign o, 1, or 2 credits to each black node ac

cording to whether it has 1, o, or 2 red children, respec

tively. Only black nodes have credits. While from the physi-
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cist's view, we call the assigned credits for each black 

node the potential of that node. Then the savings account 

balance is the sum of credits deposited or withdrawn, or the 

potential of the tree is the sum of the potentials of all 

its nodes. The total actual cost of a sequence of update op

erations (algorithm complexity) is the total amortized cost 

minus the net increase in account balance (or tree poten

tial) over the sequence. 

Consider the account balance and potential values in 

insertion process. Case (1) does not change the tree, so the 

account balance (or tree potential) does not change either. 

In case (2), the insertion of a new item means to withdraw 

one credit (decrease potential by one), and the recolor and 

move-up (Fig.l2g) means to withdraw one credit (decrease 

potential by one). In case (3), the single rotation 

(Fig.l2d) or the double rotation (Fig.l2e) spends at most 

two credits (deposit potential by two) . Initially the ac

count balance has Q(n) credits (Q(n) tree potential) • After

wards, a constant number of rotations andjor color changes 

is performed in case (2) or case (3), which means that the 

amortized cost of an insertion is Q(l) if we ignore the 

constant factor (36]. Two examples are presented in 

Figs.l3a and 13b. 

Deletion in a red-black tr~e is more complicated. How

ever, with the help of the short node concept introduced by 

Tarjan [36], we can perform the top-down deletion very simi-
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lar to ·insertion and conclude the same result that the amor

tized cost of a deletion is Q(l). 

HBfll-Trees 

Another kind of balanced binary search tree is height 

balanced trees (HB[k]-trees) which are balanced by their 

height. The generalized case is an HB[k]-tree, which has the 

property that, for every node, the heights of the right and 

left subtrees differ by at most an integer k. An HB[l]-tree 

is also called an AVL-tree. The update algorithms for stan

dard HB[k]-trees and AVL-trees are discussed by Knuth [45] 

and Chen [31], for weight leaf AVL-tree by Vaishnavi [41]. 

However, amortization was not used to analyze the algo

rithms. 

Mehlhorn and Tsakalidis [35] analyzed the amortized 

behavior of AVL-trees under sequences of insertions by in

vestigating the termination segment of the search paths dur

ing rebalancing. Their analysis can be described as follows. 

Let v be any internal node in an AVL-tree and let height(v) 

be the length of the longest path from v to a leaf. Let L(v) 

and R(v) be the left and right subtrees of the AVL-tree, 

respectively, so that v is the root of both L(v) and R(v), 

as illustrated in Fig.14a. If we define a parameter hb(v) to 

represent the height balance of node v, that is 

hb(v) = Height(R(v)) - Height(L(v)) (2.19) 
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Then according to the definition of an AVL-tree, hb(v) 

will be +1, o, or -1. We say node v is balanced (unbalanced) 

if hb(v) is 0(+1 or -1). 

In addition, for every insertion, we specify a critical 

node which is the last unbalanced node on the search path 

from the root. Let v 0 , v 1 , ... , vk be a path from the root 

v 0 to a leaf vk in an AVL-tree (Fig.14b); i be the minimal 

node position such that hb(vi)=hb(vi+1)= ..• =hb(vk)=O. Then, 

for i >= 1, node vi_1 is the critical node of the path, be

low which every node on the path is balanced. The critical 

path is from vi to vk with a length of (k-i). Fori= 0 

there is no critical node and the insertion causes a height 

increase of the tree. 

Basically, for each insertion, there are three steps 

associated with five operations (OP1 , OP2 , ... , OP5), and the 

total numbers of each operation are x1 , x2 , ... , x5 . When a 

new leaf is inserted at a given location, the old leaf at 

that location is replaced by an internal node with two 

leaves. Then the nodes on the critical path are changed from 

balanced to unbalanced (from hb=O to hb=+1 or -1). This step 

(balance change, OP1) is called A6 by Knuth [45]. Finally, 

rebalancing is completed by absorption (OP2), single rota

tion (OP3) or double rotation (OP4) at the critical node vi-

1 (if i >= 1), or by tree height increase (OP5 ) if no criti

cal node exists. 

Similar to that described for (2,3), (a,b), and red

black trees, we consider a sequence of k insertions into an 
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initially empty AVL-tree T0 • After the ith insertion includ

ing necessary rebalancings (0 <= i <= k), the tree is Ti. 

Every insertion terminates in an absorption (OP2), single 

rotation (OP3) or double rotation (OP4), or height increase 

(OP5), that is 

(2.20) 

where Xj =the total number of OPj ( j = 2,3,4,5). 

Therefore, the operation cost depends mainly upon x1 , 

which is the total number of node balance changes in step 

A6 . To estimate x1 , we first express x1 in terms of the 

total length of all the critical paths di (0 <= i <= k), 

(2.21) 

Then we define the total number of unbalanced nodes in 

AVL-tree Ti to be Val(Ti), which can be estimated for opera

tions OP1 , OP2 , OP3 , and OP4 . Suppose an AVL-tree Ti-l is 

changed to Ti, after the ith insertion into the left subtree 

of the critical node vi-l and followed by one of the follow

ing operations, 

oP2 : absorption operation as shown in Fig.l5a, the number 

of unbalanced nodes in tree Ti is 

(2.22) 

OP3 : single rotation as shown in Fig.l5b, 
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(2.23) 

OP4 : double rotation which is analogous to OP3 . 

OP5 : height increase as shown in Fig.l5c, 

(2.24) 

(here di equals to the root height of tree Ti) . 

Thus, after applying the recursive Eqs. (2.22), (2.23), 

and (2.24) k times and combining Eqs.(2.20) and (2.21), we 

have the total rebalancing number (length) x1 after k inser

tions, 

(2.25) 

Knuth [45] proved that the number of unbalanced nodes 

in an AVL-tree with k leaves is about 0.618(k-l), hence 

x1 <= 2.618 k (2.26) 

This result implies that the amortized cost is Q(l) 

per insertion into an AVL-tree. 

Heap Amortization 

The heap or priority queue is a more complicated tree 

structure consisting of a collection of items, each with an 

associated real-valued key [3]. Items in the tree are ar

ranged in heap-order (Fig.l6) so that the root of the tree 

always contains an item of minimum key and this item can be 

found in 0 (1) time by accessing the root .(operation 
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Figure 16. An Endogenous Heap-Order Tree [37] 



53 

FINDMIN). Other possible heap operations include INSERT, 

DELETEMIN, MAKEHEAP, DELETE, and MELD, etc. Fisher [33] sum

marized several heap implementations for different applica

tions, such as 

1. the d-heap for use when few unmeldable heaps are needed, 

2. the leftist heap for use when several meldable heaps are 

needed, 

3. the Fibonacci heap for use in improved network 

optimization algorithms, 

4. the pairing heap which is an improvment of the Fibonacci 

heap and is self-adjusting in nature, 

5. the self-adjusting heap, also called skew heap, for 

simple, fast, and space-saving applications. 

Although the operations of these heaps have been well 

discussed previously, the complexity analysis from the view 

of amortization is very limited, covering only the pairing 

heap [37] and self-adjusting [38]. 

Pairing Heaps 

The pairing heap is a new heap form developed by 

Fredman, Sedgewick, Sleator, and Tarjan, intended to be 

competitive with the Fibonacci heap in efficiency and easy 

to implement and fast in practice. The basic operations in a 

pairing heap h are as follows. 



OP1 . MAKEHEAP(h): create a new empty heap called h. 

OP2 . FINDMIN(h) : return the root of the heap h. 
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OP3 • INSERT(x,h): construct a one node tree containing x and 

link it with h. 

OP4 • MELD(h1 ,h2): return the heap formed by linking two 

heaps h1 and h2 • (h1 and h 2 are destroyed) 

OP5 . DECREASEKEY(b,x,h): decrease the key of item x in h by 

subtracting the positive real number b. 

OP6 . DELETEMIN(h): delete an item of minimum key from h and 

return it (if h empty, return null). 

OP7 . DELETE(x,h): delete item x from h which contains the x 

previously. 

The pairing heap algorithm is obtained by using the 

pairing method to combine trees and choosing the trees to be 

paired carefully. We arrange the children of each node in 

the order that they were attached by linking operations, 

with the first child being the one most recently attached. 

This ordering of children is independent of key order in the 

heap. To perform the operation OP4 (DELETEMIN), we first re

move the root and link the first and second remaining sub

trees, then link the third and fourth subtrees, and so on. 

If the original root had an odd number of subtrees, one 

remains unlinked. Then we link each remaining subtree to the 

last one, working from the next-to-last back to the first, 

in the opposite order to that of the pairing pass, as shown 

in Fig.l7a. In this way, the pairing heap can provide as 



efficient updating as that provided by Fibonacci heaps. The 

pairing heap can also be built up in another way as illus

trated in Fig.l7b. After the first pairing path the subtrees 

are connected backwards~ The resulting heap is tall and 

akinny so that the following DELETEMIN operation is even 

faster. We call these two pairing ways as method A and B, 

respectively. 

Fredman et al [37] used the potential technique and 

provided a partial amortized analysis for those operations 

on pairing heaps. Their results were described by Fisher 

[33] in more detail. Define the potential of a node x with 

d children in a n-node heap h to be 

where 

c.j x = 1 - min { dx, .Jn; } (2.27) 

dx = the number of successors of node x, 

nx = the number of internal nodes in the subtree 

rooted at node x. 

The potential for h is 

¢ = 2... o/ x = Z. ( 1 - min { dx, 
xeh xEh 

} ) (2.28) 

The potential function of both the nodes and the heap 

are indicated in Fig.l7b and 17c for a sample heap of 17 

items, using either method A or method B. Now we use this 

potential function to analyze the amortized cost of the 

DELETEMIN operation, which includes the actual time and po

tential change during this process. Suppose K trees remain 
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l PAIRING AFTER ROOT DELETION 

2 ~ 

1 COMBINING 
RIGHT- TO-LEFT 

2 

(a) A DELETEMIN Operation in a Pairing Heap [37] 

Figure 17. Pairing Heap Operation 
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(b) Potential function by pairing method B 
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(c) Potential function by method A 
Figure 17. Continued. 
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after the DELETEMIN. The actual time of the DELETEMIN is 

Q(K) . We ignore the constant factor and have the time as 

t = 1 + l K I 2 J = 1 + ( number of Link operations in 

Pairing path ) (2.29) 

The potential change due to the DELETEMIN operation in

cludes two parts : removing the root node causes at most 

zfff potential increase and linking trees causes at most 

(LKI2J-JE) potential decrease. Therefore, the amortized 

time of DELETEMIN is 

a=t+(C/>f-C/Jo 

= o (1 + L K I 2 J + 2 J1i + ( Ji1 - L K I 2 J ) ) 

= 0 ( .rn) (2.30) 
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It is seen that the number of subsequent relinks after 

deleting the minimum item 1 in Fig.l7b is different than 

that in Fig.l7c, although the heap potential function is the 

same in both cases. Using method B results in less subtrees 

so that the relink is faster; while the shorter, fatter heap 

produced by method A has more subtrees to be linked, leading 

to a pessimistic amortized time Q( ~ ) . Therefore, 

Fredman et. al. tried another form, the log size, as the po

tential function. Let the size S(x) of a node x in a binary 

tree be the number of nodes including x itself in its sub

tree. Then we use the log S(x) to represent the potential 

of node x so that every node in an n-node tree has a poten

tial between 0 and log n, as shown in Fig.l8a. The paten-
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tial of a heap h (a set of trees) is the total potentials of 

all the nodes in the tree. 

The amortized costs of most heap operations except the 

DELETEMIN (OP6) can be easily estimated based on this poten

tial function. MAKEHEAP and FINDMIN have 0(1) amortized 

time bound because the heap potential is not changed by 

these operations. INSERT, MELD, and DECREASEKEY have 

Q(log n) amortized time bound, since each of these operations 

causes the potential to increase at most 

(Fig.l8b). 

Q(1+log n) 

To consider the DELETEMIN operation (removing the root, 

then pairwise combining the remaining trees), we still use 

Eq.(2.29) to estimate the actual time; but the potential 

change due to links in this operation is analyzed as fol

lows. 

We first estimate the potential change caused by the 

first-pass link (pairing), illustrtated in Fig.l9. In this 

figure, A, B, and C are subtrees; a, b, c, x, and y are 

nodes. 

The initial potential is 

¢0 =log (S(a)) +log (S(b)) +log (S(c)) 

+log (1 + S(b) + S(c)) 

+log (1 + S(a) + 1 + S(b) + S(c)) 

The final potential is, 

(2.31) 



log 2 
log2 0 

0 

logl=O 

2-node tree 8-node tree 

(a) node potentials 

0 

0 

(b) potential increase due to MELD 

Figure 18. Log Size as Potential Function 
in Pairing !leaps [33] 
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1 LINK 

Figure 19. LINK during DELETEMIN [37] 
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¢f =log (S(a)) +log (S(b)) +log (S(c)) 

+log (1 + S(a) + S(b)) 

+log (1 + S(c) + 1 + S(a) + A(b)) 

Therefore, the increase of potential is 

¢f- C/Jo =log (1 + S(a) + S(b)) 

-log (1 + S(b) + S(c)) 
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(2.32) 

(2.33) 

This potential increase is proved [33] to be bounded by 

¢f - ¢0 <= 2 * log (S(a) + S(b) + S(c) + 2) 

- 2 *log (S(c)) - 2 (2.34) 

In case that the last link operation during the first 

pass has an empty subtree c, the potential increase is 

bounded by 

¢ f - ¢ 0 = log ( 1 + S (a) + S (b) ) - log ( 1 + S (b) ) 

<= 2 * log (S(a) + S(b) + 2) (2.35) 

We sum the bound (2.34) of potential increase over K 

first-pass links and obtain a total bound of 2*(log(n)-2*K-

2) • 

The other potential changes that take place during the 

DELETEMIN are a decrease of log(n) due to removing the orig

inal root node and an increase of at most log(n-1) due to 

the second pass (combining remaining trees) . Since the num

ber of links performed during second-pass is at most·as 

great as that during the first-pass, we obtain the amortized 

time of DELETEMIN as 
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TABLE I 

AMORTIZED COSTS OF PAIRING HEAP OPERATIONS 

Operation Conjectural Weaker 
estimation estimation 

OP1 Make heap 0 (1) 0 ( 1) 

OP2 Find min 0 ( 1) 0(1) 

OP3 Insert 0 ( 1) O(log n) 

OP4 Meld 0 ( 1) O(log n) 

OP5 Decrease key 0 ( 1) O(log n) 

OP6 Delete min O(log n) O(log n) 

OP7 Delete 0(1og n) O(log n) 



a=t+¢f-¢o 

<= (1 + 2*K + 2*log n- 2*K + 2- log n + log(n- 1)) 

= Q(log n) (2.36) 

The amortized costs of pairing heap operations are 

listed in Table I. Also listed is a conjectural result 

which gives 0(1) for INSERT, MELD, and DECREASEKEY. 

Self-adjusting heaps 
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Standard kinds of data structures, such as the many 

varieties of balanced trees, are specifically designed so 

that the worst-case time per operation is small. Such effi

ciency is achieved by imposing an explicit structure con

straint that must be maintained during update. However, 

maintaining such a structural constraint consumes both run

ning time and storage space, and even tends to produce com

plicated updating algorithms with many cases. With the 

self-adjusting data structure, during each access or update 

operation we allow the data structure to be in an arbitrary 

state and adjust the structure in a simple, uniform way in

stead of imposing any explicit structural constraint (38]. 

Fisher discussed both the advantages and the disadvantages 

in using the self-adjusting data structure. One thing im

portant is that the self-adjusting data structure is effi

cient in only an amortized sense. That means if the amor

tized running time is the complexity measure of interest (as 

it is always true in application), we can guarantee that the 



self-adjusting structure is at least as efficient as bal

anced structures. 

Sleator and Tarjan [38] analyzed amortized behavior of 

a self-adjusting form of heap, called a skew heap. The 

operations allowed are MAKEHEAP, FINDMIN, INSERT, DELETEMIN, 

and MELD, with the same definitions as those described for 

the pairing heap. However, the fundamental operation on 

skew heaps is melding, which combines two disjoint heaps 

into one. To perform MELD in a self-adjusting heap as shown 

in Fig.20, we merge the right paths of the two heaps and 

then swap the left and right children of every node on the 

merge path except the lowest. This makes the potentially 

long right path formed by the merge into a left path. 
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To analyze the amortized time for skew heap operations, 

Sleator and Tarjan used the node weight to define the poten

tial. So the potential of a skew heap is the total number 

of right heavy nodes it contains. The meanings of heavy and 

right are explained as follows. 

For any node x in a binary tree, we define the weight 

wt(x) as the number of descendants of x (including x it

self). Any nonroot node xis heavy if wt(x) > wt(p(x))/2, or 

it is light if otherwise. A nonroot node is right if it is 

a right child, or it is left otherwise. 

With these definitions, we know that any node has at 

most one heavy child and that any path in a skew heap, and 

in particular any path traversed during melding, contains 

only Q(log n) light nodes. 
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5) 

A 

Figure 20. A MELD of Two Skew Heaps [38] 
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Similar to the analysis for operations in pairing 

heaps, we estinate that the amortized time of a MAKEHEAP or 

a FINDMIN operation in self-adjusting heaps is 0(1), since 

the heap potential does not change. But the times of the 

other four operations depend on the cost of MELD. 

Consider a meld of two heaps h1 and h2 , containing n1 

and n2 items, respectively. Let n be the total item number 

in the two heaps. To measure the MELD time, we charge one 

unit per node on the merge path so that the amortized time 

of a MELD operation is the number of nodes on the merge path 

plus the potential change. Since the number of light nodes 

on the right path is at most Llog n1J for h1 and at most 

Llog n2J for h2 (Fig.21), the number of nodes on the merge 

path is bounded by 

t <= 2 + L log n1 J + K1 + L log n2 J + K2 

<= 1 + 2 * L log n J + K1 + K2 

where K1 = number of heavy nodes on right path of h 1 

K2 = number of heavy nodes on right path of h2 

(2.37) 

Obviously, the number of heavy nodes on the right path 

after melding is at most L log n J . Hence, the amortized 

time of a MELD is given by 

a = t + ¢ f - ¢o 

<= ( 1 + 2 * l log n J + K1 + K2) 

+ ( L log n J - K1 - K2) = Q(log n) (2.38) 
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Figure 21. Analysis of Right Heavy Nodes in ~ELD [38] 



OP1 

OP2 

OP3 

OP4 

OP6 

OP7 

TABLE II 

AMORTIZED COSTS OF SELF-ADJUSTING 
HEAP OPERATIONS 

Operation Bottom-Up 

Make heap 0 ( 1) 

Find min 0 ( 1) 

Insert 0 ( 1) 

Meld 0 (1) 

Delete min O(log n) 

Delete O(log n) 
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Top-Down 

0 ( 1) 

0 ( 1) 

O(log n) 

O(log n) 

O(log n) 

O(log n) 



The bound for INSERT or DELETEMIN follows immediately 

from the bound of MELD and is alse Q(log n) . 
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Sleator and Tarjan also developed a bottom-up melding 

algorithm in self-adjusting heaps, which reduces the amor

tized time of INSERT and MELD to Q(l). But the bottom-up 

skew heap requires a more complicated potential function 

than the one defined in the above heap algorithm (the top

down skew heap) . The heap potential is defined to be the 

number of right heavy nodes in the heap plus twice the num

ber of right light nodes on the major path (the right path 

descending from the root) and the minor path (the right path 

descending from the left child of the root). 

Table II summarizes the amortized complexity for both 

top-down and bottom-up skew heaps. These results scratch 

the possibility of using different potential functions to 

study the amortized behaviors for self-adjusting heaps. 



CHAPTER III 

POTENTIAL FUNCTIONS 

The thorough literature survey in chapter II shows that 

the amortized analysis is an appreciable measure of algo

rithm complexity for data structures, because in most appli

cations of data structures a sequence of operations rather 

than a single operation is frequently encountered. Amorti

zation is a performance evaluation method that sums the to

tal cost of the sequential operations and then averages the 

running time per operation over the sequence. This method 

can yield complexity measures both more realistic and more 

robust than that of the worst-case and average-case methods. 

However, the time complexity for a single operation from the 

sequence can be much greater than the amortized time which 

implies that amortized bounds may not be appropriate for 

real time applications. 

Although the definition of amortization is simple and 

straightforward, the amortized costs of updating operations 

in different data structures have been determined quite dif

ferently, such as the epoch interval approach in (2,3)

trees, the savings account method in (a,b)-trees, and the 

total terminal segment length in AVL-trees, etc. Among all 

the published investigations, Tarjan's theory is most funda-
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mental and mathematically precise considered either from 

banker's view or from physicist's view. The general ap

proach is to define a potential function q; (D) which re

flects the configuration of a data structure and then to es

timate the amortized cost by calculating the potential 

change due to the operation. The amortized time thus pro

vides an upper bound on the actual running time. 
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The utility of this method, however, strongly depends 

on the ability to choose a potential function that results 

in small amortized times for the operations. Although in 

recent years, several potential functions have been success

fully used by Tarjan et. al., such as the inversion numbers 

in self-adjusting lists, node credits in red-black trees, 

log size in pairing heaps, and number of right heavy nodes 

in self-adjusting heaps, the discussion of selecting a suit

able potential function for each structure is limited. The 

potential function method has not been widely applied to 

search trees. To measure the performance accurately and to 

promote the amortization method, the possibilities and limi

tations of various potential functions for different data 

structures need to be explored. 

Fisher [33] summarized Tarjan's theory and indicated 

that, among many possible ones, there are three classes of 

potential functions which have more promise because of easy 

implementation and calculation. These three potential func

tions are the rank of item or node, sum children, and log 

sum children. Another potential function, the height in 



structure, was also proposed by Fisher and Hu [34] for the 

same reason. Let x be an item or a node in a data structure 

T, the four potential functions can be described as fol-

lows: 

(PFl) rank(x) 

Define a rank(x) for each x and use it to represent the po

tential of x (Fig.22a), then the potential of structure Tis 

the sum of all the item potentials and expressed as 

n 
= ~ Rank(xi) 

i=l 
( 3. 1) 

This is a generized method since the rank(x) can be de

fined in any possible ways such that the potential function 

can be easily determined. Some examples are the access fre

quency, inversion number, height difference, etc. 

(PF2) sum x's children including x itself 

This method is a special case of the rank method. For each 

x, find out its size S(x), where S(x) is the number of x's 

children including x itself, and use S(x) to represent the 

potential of x (Fig.22b). Then T's potential is the sum of 

all the potentials of x and expressed as 

¢s<T) ( 3 • 2) 

73 



rank(x 2 ) 

rank(x 1 ) 

(a) Rank Potential 

(b) Sum Children Potential 

(c) Log Sum Potential 

d(n)= 
d(x4 ) 

(d) Height Potential n 

rank(x 3 ) 

Figure 22. Four Selected Potential Functions 
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(PF3) log sum 

Use log S(x) instead of S(x) to represent the potential of 

x, where S(x) is the size of x defined as above(Fig.22c); 

and the potential of T is expressed as 

n 
= ~ log S (xi) 

i=l 

(PF4) height 

(3.3) 

Use the structure height d(n) to represent the potential of 

T, where d(n) is a function of items or nodes in the struc-

ture (Fig.22d). 

( 3 • 4) 

In the next three chapters, the amortized complexities 

of updating operations in linear list, balanced search 

trees, and heaps are analyzed based on these four potential 

functions. 
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CHAPTER IV 

LINEAR LIST DATA STRUCTURES 

Operations 

A list is a sequence of arbitrary elements, some of 

which may be repeated. We represent a list q by an array [x] 

and denote the q by 

where 

q == [ xl, x2, • . • , Xn ] 

xi == arbitrary array element representing an item i 

in the list 

Element x1 is the head of the list (first entered 

element) and xn is the tail (last entered element) . Both x1 

and xn are ends of list q. There are three fundamental 

operations on lists (3]: 

Access: given a q and an integer i, access and return the 

ith element q[i]==xi; if i<l or i>n, return Null; 

Sublist: given a q and two integers i and j within the 

range of 1 ton, return q[i, ... ,j]=xi, ... ,xj; 

Concatenation: given two lists q=[x1 , ... ,xnJ and r=[y1 , ... , 

Yml, then return q&r = [x1 , ... ,xn,y1 , ... ,ymJ· 

The insertion and deletion in lists can be performed by 

appropriate combinations of sublist and concatenation. 
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Especially important are six special cases of the three 

basic operations that manipulate the two ends of a list: 

Access head: given a q, access and return q[l]=x1 ; 

Push: add a new item p to the tail of q, and return 

q&p = [xl, .•. ,xn,pJ; 

Pop: remove the tail item q[n]=xn, return q=[x1 , .. ,xn_1 J. 

Access tail: access and return q[n]=xn; 

Inject: add a new item p to the head of q, and return 

p&q = [p,x1 , •.. xnJ; 

Eject: remove the head item q[l]=x1 , return q=[x2 , .. ,xnJ· 

A linear list can be called a stack, a queue, a deque, 

or an output-restricted deque depending on the operations 

allowed by the structure. The various list types are defined 

as follows. 

Stack: allows access tail, push, and pop (Fig.23a). 

Queue: allows access tail, inject, and pop (Fig.23b). 

Deque: allows all six operations. 

output-restricted Deque: allows all operations except eject. 

To concentrate on the amortized complexity, we analyze 

the stack and queue only. For insertion and deletion, the 

stack acts in a last-in/first-out manner; while the queue 

functions in a first-in/first-out manner. But these two 

structures allow similar updating operations, such as access 

tail, push(at the tail) or inject(at the head), and pop. If 
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we allow swapping after updating, the list becomes a self

adjusting structure. 

Amortized Complexity 

With the array representation of a stack (or queue) 

illustrated in Fig.23, it is clear that each operation takes 

Q(l) time, no matter what average method is applied. We 

are interested in the amortized costs for a sequential 

operations. First we use the rank potential to analyze the 

cost. One kind of rank is the inversion number which serves 

as the list potential in Tarjan's analysis. However, this 

rank method needs the comparison between two algorithms 

(such as the move-to-front and an optimal algorithm) and 

leads to a relative cost estimation. To simplify our 

analysis and to determine the absolute cost, we use the 

frequency count as the item rank. We maintain a frequency 

count (FC) for each item in the list, as shown in Fig.24a. 

Initially the FC is set to zero. Increase the count of an 

item by one whenever it is accessed or pushed (injected); 

reset its count to zero when it is popped. This count 

represents the rank of the item, and the list potential is 

the sum of all the item ranks. Assume a sequence of 

operations consists of k pushes (injects), p pops, and t 

operations of access tail; further, assume the sequential 

operations are carried out in an arbitrary time interval. 

Then, the potential change after the operations can be 

expressed by Eq. (4.1), 
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¢R = ¢R(D') - ¢ R(D) 

= k - p + t ( 4. 1) 

where C/JR(D) = list potential before operations 

</JR (D') = list potential after operations 

Eq. (4.1) implies that an amortized time per operation 

is Q(l) which is independent of the initial stack configu-

ration, since 

aR = ( 2. ti + 4¢) I ( 2: ti) 

= (k+p+t+k-p+t)/(k+p+t) <= 2 (4.2) 

An example is that we sequentially insert four items 

(a,e,i, and o) into a stack, then pop the last two items, 

and finally access the tail (Fig.24a). The stack initially 

contains three items: x, y, and z. The initial potential is 

assumed to be 3. The total potential increases 3 and the 

amortized cost is 

7 
.:2: a·= 
i=l ~ 

7 
~ t. + 4¢ = 4 + 2 + 1 + 3 = 10 
i=l ~ 

which gives an amortized cost Q{l) per operation. 

The methods of sum children and log sum children, as 

described in chapter II, are more complicated here, because 

any item xi's size S{xi) is dependent upon its position i in 

the stack {Fig.24b and c) .In the case of using sum children, 

the potential change due to updating is 
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¢s = ¢ sCD') - ¢ s(D) 

nf no 
=z:. i-z i 

i=l i=l 

= (k-p)*(k-p+2*no+l)/2 

where n0 = initial item number in stack 

nf = final item number in stack 

z = nf - n0 = k-p >= 1. 

The amortized time per operation is 

as= 1 + (k-p)*(k-p+2*no+l)/(2*(k+p+t)) 

= 1 + (Z+2*no+l)/(2*(1+2*p/Z+t/Z)) 

= f 1 ( n 0 , z ) 

Eq. (4.4) shows that the amortized cost is not a 

constant but a function of initial configuration n0 and 

actual operations z. Eq. (4.4) is calculated based on 

(4.3) 

(4.4) 

different z (1 to 1000) and p (10 to 200) values, with n0=o. 

Results are shown in Fig.25. The as increases rapidly with 

z, the difference between push and pop frequencies. The 

example illustrated in Fig.24b shows that the potential 

increment is (15-6)=9 when n0=3. But it will be only 3 if 

n 0=o. 
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In the case of using log sum as potential function, the 

potential change is 



83 

= lg i 

= (4.5) 

Thus, the amortized time a is determined by Eq. (4.6), 

aL = 1 + lg((n0+Z) !/n0!)/(k+p+t) 

= f 2 ( n 0 , z ) ( 4. 6) 

Eq. (4.5) is also calculated for Z values up to 1000 

with n 0=o. The computational results, plotted on Fig.25, 

show that this method provides a much better estimation than 

that by sum children method. However, the cost is still a 

function of parameters n0 , Z, and p. When either large 

numbers of operations occur, or the initial stack size is 

large, the amortized estimate is pessimistic. 

Now we consider the potential function expressed in 

terms of height. We use the number of items contained by the 

list to represent the height (potential) (Fig.24d). So the 

potential change after k pushes, p pops, and t access tails, 

is 

¢H= ¢H(D')- ¢H(D) 

= k - p 

and the amortized time per operation is 

aH = 1 + (k-p)/(k+p+t) <= 2 

which gives an 0(1) complexity. 

Results from the above four potential analyses are 

(4.7) 

(4.8) 

listed in Table III for comparison. It is seen that both the 
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Figure 25. Amortized Time vs. List Operations when 
using Sum Children and Log Sum Methods 
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sum children and the log sum potentials are not suitable for 

list structures; while the other two methods, the rank 

(using frequency count) and the height (using item number), 

can provide Q(1) complexity estimations for sequential 

operations in stacks or queues. 

We can use the standard data set analyzed in chapter II 

to further demonstrate these results. That is, we sequent

ially insert a set of items, a, e, i, o, g, 1, n, r, t, and 

x, into an initially empty stack. In this case, k equals 10. 

The amortized time per insertion, therefore, is 7 by using 

sum children as potential (Eq.4.4); while the other three 

potentials give the same cost, 2, under this condition. The 

example results are also listed in Table III to compare with 

the predicted costs. 

Finally, we use the rank potential to analyze the move

to-front algorithm for the example in Fig.24. After each 

push (inject) or access tail, the frequency count increases 

one; the item just accessed or pushed is then moved to the 

head, this transaction also adds one to the frequency count 

(Fig.26). Thus, 

eMF = 2.. ai = 2 ti + .A¢ = 7 + 7 = 14 

<= 2*CA = 20 

where CA = 10, the total cost of algorithm without 

move-to-front. 

This result agrees with Tarjan's analysis which is 

mentioned in chapter II. 
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TABLE III 

AMORTIZED COMPLEXITY OF LIST OPERATIONS 

Potential 
Change 

k - p + t 

Ck-pl Ck-p+2n0+1l 
2 -

EXAMPLE 

Amortized Time 
per Operation Predicted Actual 

0(1) 2.0 1.3 

11 7 

lg( (n0+k-p) !Jn0 !) 2 2 

k- p 0(1) 2 2 



CHAPTER V 

BALANCED SEARCH TREES 

A search tree containing one item per internal node is 

usually used to represent a sorted data set. Basic opera

tions for maintaining a sorted set are access, insertion, 

and deletion. In this chapter, we analyze the amortized 

complexity of three typical different balanced search trees 

-- the HB[l]-tree, red-black tree, and B-tree under a 

sequence of insertions. The HB[l]-tree is sometimes called 

as an AVL-tree, and the result is easy to extend to genera

lized HB[k]-trees. The red-black tree is also a binary 

structure, but is balanced by color constraints. The B-tree 

is a very effective structure for file organization. It is 

not a binary tree but has variable node degrees (each node 

can have more than one key). For each tree structure, we 

examine the amortized cost of rebalancing in bottom-up 

insertions by using the four potential functions. This 

analysis method can be similarly applied to top-down 

algorithms and other operations. 
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HB[l]-Trees 

Operations 

The structure of an HB[l]-tree (AVL-tree) was well 

described by Knuth (45]. We use the same definition as that 

stated in chapter II for AVL-trees, and use the updating 

algorithm described by Chen (31]. An HB[l]-tree satisfies: 

1. hb(v) = !Height (R(v)) -Height (L(v)) 1 < = 1 

where vis any internal node); 

2. right and left subtrees R(v). and L(v), respectively, are 

also HB(l]-trees. 

To insert a new item into an HB[l]-tree, first we carry 

out a binary search to find out the proper place for it, and 

attach a new leaf node in which the new item is stored 

(Fig.27a). The hb of the new node is always set to zero. 

Then we perform necessary rebalancing steps if there is any 

violation of the height balance constraints. The bottom-up 

algorithm of rebalancing an HB[l]-tree (k = 1) after an 

insertion is illustrated in Fig.27 and explained as follows. 

1. Examine whether the current node v is a critical node 

(a critical node satisfies lhb(v) 1 = k + 1 ) • If it 

is true, go to step (3); otherwise, go to step (2). 

2. Examine whether v's parent P(v) sat~sfies 

k >= hb (P(v)) > 0 and vis the left child of P(v) (or 

symmetric variant) • If the test is true, update 
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if hb(v)=2 step(3) 
1 step(2) 

stop 

move-up 
step(l) 

stop 

Figure 27. Bottom-Up Insertion Algorithm for AVL-Trees 



hb(P(v)) and stop (Fig.27b); otherwise, update hb(P(v)), 

let P(v) be current node v and go back to step (1). 

(Fig. 27c). 

3. Examine whether hb(v) = k + 1 and k >= hb(R(v)) > o 

(or symmetric variant) . If the test is true, perform a 

single rotation, update hb(v) and stop (Fig. 27d); 

otherwise, perform a double rotation, update hb(v), and 

stop (Fig. 27e). 

The above procedures are for rebalancing general HB[k]

trees and apply to AVL-trees with k = 1. 

Amortized Complexity 

As we did for the list structure, we analyze the 

amortized cost of a sequence of insertions based on four 

potential functions which reflect the structure configura

tion. 

First, we need to estimate two variables in a binary 

tree of n leaves (or internal nodes): m which is the maximum 

number of nodes at each level of the tree and h which is the 

maximum number of levels in the tree, or say height. These 

maximums provides an upper bound in our amortized analysis. 

Here we assume a positive integer j can be determined such 

that 2j-l <= n < 2j. Consider a binary tree of n arbitrary 

leaves (Fig.28). From the definition of binary trees, it is 

known that the n leaves at base level can construct at most 

r n 1 21 l internal nodes at the first level, and these 

first level nodes can construct at most r n 1 22 1 nodes at 
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Figure 28. Height Estimation of an AVL-Tree 



second level. While at the heighest level, only one root 

node exists, that is m = 1 = r n I 2j 1· Therefore, 

the maximum node number at any level i (0 <= i <= j) can be 

written as 

mi <= r n I 2i 1 ( 5 .1) 

Since the level i increases from o to j, it implies 

that the tree height is bounded by 

h = j + 1 (5.2) 

where j satisfies that 

j - 1 <= log 2 n < j ( 5. 3) 

For the rank potential function, we define the level of 

each node in an HB[l]-tree as its rank. That is, the rank of 

the root is j and the rank of any node at level i is i. 

Thus, the rank of a tree with n items is the sum of all n 

node ranks and can be calculated as follows. 

j 
= Z. r n I 2i 1 * i 

i=1 

j 
<= n * j * ~ ( 1 1 2i ) = n * j * ( 1 - ll2j ) 

i=1 

<= n * j (5.4) 

Then the amortized cost per insertion is bounded by 

Eq.(5.5) 
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aR= ( Zti +4¢R> In 

<= 1 + j ' 

= Q(log2 n) 
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(5.5) 

We examine this result by inserting the sample data set 

[a, e, i, o, g, 1, n, r, t, x]. The process of step-by-step 

insertion and rebalancing is illustrated in Fig.29. The 

tree potential function is also listed. As a result, the 

total potential increase is 37, and the amortized cost is 

10 10 
.:E. ai = .:E. ti + L:l</> r = 10 + 21 = 31 
i=1 i=1 

which gives an per insertion cost of 0(log2n). 

To apply the potential functions of sum children and 

log sum children, we also need to estimate the maximum size 

of a node. It is easy to determine in a binary tree, as the 

node at level i has at most two children nodes at level 

(i-1). Since the size of node xis the sum of its children 

including itself, then fori= o, 1, 2, .•. , j, 

si <= 2 * si_1 + 1 = 2 * (2i - 1) + 1 

= 2i+1 - 1 ( 5. 6) 

Combining the upper bounds of m, h, and si, we have the 

potential function estimation in terms of sum children for n 

sequential insertions into an HB[1]-tree, 

j 
¢ s <= ~ r n I 2 i 1 * ( 2 i + 1 - 1 > 

i=O 
(5.7) 
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where j is determined by (5.3). 

The amortized cost per insertion thus is 

j 
r n I 2i 1 (2i+1 - 1)) as <= 1 + ( :E * I n 

i=O 

= 1 + 2 * j <= 1 + 2 * (log 2 n + 1) 

= 0( log2 n) (5.8) 

The case of using log sum as potential function can be 

similarly analyzed. The only difference here is the maximum 

size of each node at level i is given by 

lg si <= lg (2i+1 - 1) (5.9) 

Thus,the tree-potential increment after n insertions is 

j 
= (/JL <= z._ 

i=O 
r n I 2i 1 * lg (2i+1 - 1) 

which gives an amortized cost per insertion as 

j 
<= 1 + ~ (lg 2 i+1 I 2i) 

i=O 

(5.10) 

= 0(1) (5.11) 

The last case of potential function is to use the 

height. From the upper bound of h (Eqs.(5.2) and (5.3)), we 

directly obtain 
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TABLE IV 

AMORTIZED COMPLEXITY OF SEQUENTIAL 
INSERTIONS IN HB[1]-TREES 

EXAMPLE 

Amortized Time 
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Potential 
Functions 

Potential 
Change per Operation Predicted Actual 

<I>R 

<l>s 

j 
% fn/2i1 * i 
i=1 

0(1) 

~ rn/2il*lg(2i+1-1) 0(1) 
i=1 

0(1) 

4.32 3.1 

8.64 8.1 

2 1. 65 

2 1.5 



</>H = h <= j + 1 

<= r log 2 n l + 2 

Therefore, the per operation cost is 

aH <= 1 + ( r log 2 n l + 2) I n <= 3 

= 0(1) 
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( 5. 12) 

(5.13) 

The above analysis is summarized and listed in Table 

IV. We use the standard data set to illustrate these 

complexity estimations for AVL-trees. The variation in each 

of the four potential functions is indicated in Fig.29 for 

every updating step. The amortized time per insertion is 

8.1, 1.68 and 1.5 when using sum children, log sum, and 

height potential, respectively, as compared with the 

predicted values in Table IV. 

Red-Black Trees 

Operations 

A red-black tree is a binary search tree which is 

balanced according to three color constraints defined in 

chapter II. The procedure of bottom-up insertion in red

black trees has been well described by Fisher [33] and Chen 

[31]. Here we restate it as follows. 

The first step in insertion into a red-black tree is to 

search at the leaf level and find a proper position for the 

new item to be inserted as we did in AVL-trees. Then we 

replace the external node by a subtree consisting of one 



internal node and two external children, one containing the 

new item and the other containing the item in the original 

external node. The key of the new internal node is the 

smaller one of its two children. This insertion step is 

represented by case (a) in Fig.30. 

100 

After the new item is inserted, the tree may need to be 

rebalanced to satisfy the color balance condition. The new 

internal node v is always colored red. This preserves the 

black constraint but may violate red constraint. So if v's 

parent P(v) is black, recoloring stops. Otherwise, perform 

the following two color rebalancing steps according to four 

possible cases (b), (c), (d), or (e). 

1. if the red node v has a red parent P(v), whose sibling 

P' (v) is also red, then recolor both P(v) and P' (v) 

black, also recolor v•s grandparent P(P(v)) red (case 

(b) in Fig.30). However, if P(P(P(v))) is still red, 

then let P(P(v)) be node v and repeat this step until no 

red violation occurs or conditions in step 2 are met. 

2. if the red node v has a red parent P(v) which is just the 

root node,color P(v) black and stop (case(c) in Fig.30); 

otherwise, it means that red node v has a red P(v) and a 

black P' (v). If v is the left child of P(v) and P(v) 

has a right black P' (v) (or symmetric variant), perform 

a single right rotation and stop (case (d) in Fig.30). 

If v is the right child of P(v) and P(v) has a right 

black P'(v) (or symmetric variant), perform a double 

right rotation and stop (case (e) in Fig.30). 
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Amortized Complexity 

It is seen from the above procedures that the bottom-up 

insertion terminates in case (c), (d), and (e). Only case(b) 

may be not terminating and recoloring can at most occur 

along a path from a node at base level until the root node, 

or can terminate in case (d) or (e) . 

Tarjan [36] once used a special case of the potential 

for amortized analysis of red-black trees. In his method, 

each black internal node is assigned a potential of one, 

zero, or two if the node has no, one, or two red children, 

respectively. Then the potential of a tree is the sum of 

the potentials of its black nodes. Here we refine Tarjan's 

result by calling such black node potential as the rank of 

the black node. With this potential definition, we know 

that the rank of a subtree can increase at most two in 

either case (d) or case (e); decrease one every time for 

case (b); and remain unchanged for case (c). These changes 

of subtree rank are indicated beside the black nodes in 

Fig.JO. 

From the operation procedures described above, we 

analyze the rank potential change in each possible recolor

ing process as follows. 

1. Case (b) repeated m times and stop at case (c). This 

leads to a decrease in tree rank potential. That is 

<Vco•) - <Pco) = m * (-1) + 0 (5.14) 
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Figure 30. Bottom-Up Insertion Algorithm for 

Red-Black Trees 
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2. Case (b) repeated m times and stop at either case (d) or 

case (e). The rank increment is at most one when m = 1. 

That is 

¢co•) - <t>co) = (-1) + 2 = 1 (5.15) 

Since in n sequential insertions there are at most n 

such recoloring cases, the total rank increment is bounded 

by n, 

(5.16) 

Thus, the amortized cost per operation is given by 

aR = ( 2 ti + .a¢ R) I n 

= 0(1) 

<= 2 

(5.17) 

The other three classes of potential function are all 

height-related. The maximum node number and maximum node 

size at each level are the same as that in AVL-trees. But 

the height difference between two subtrees of any node in a 

red-black tree is at most 2. We consider the worst case, 

all insertions occur at a regular position, say the leftmost 

of a tree as shown in Fig.31. The recoloring process termi

nates in case (c), (b), or (d). Because of the red cons

traint, there is at most one insertion which is rebalanced 

without applying case (d) and results in a subtree height 

difference of two, such as the 6th insertion in Fig.31. One 

more insertion at this position certainly leads to case (d) 
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and each application of a single rotation in case (d) redu

ces the height of this subtree by one. Thus, the maximum 

height difference is two, and the red-black tree height is 

bounded by 
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h <= j + 2 (5.18) 

where j is defined by inequality (5.5) 

Combining the h (maximum number of levels) with the 

upper bounds of node number and node size at each level, the 

tree potential in terms of sum children can be obtained as 

rA j+1 . . 
~ <= 2: r n I 2 1 1 * C 2 1 + 1 - 1) s . l.=O 

and the amortized cast per insertion is 

j+l 
2i 1 (2i+l - l)) as <= 1 + ( :E. r n I * I n 

i=O 

<= l + 2 * (j + l) 

<= 1 + 2 * (log 2 n + 2) 

= Q( log2 n) 

In the case of using log sum children, the tree 

potential increment after n insertions is bounded by 

j+1 
¢L <= Z.. f n I 2i 1 * lg (2i+1 - 1) 

i=O 

and the amortized cost per insertion is 

(5.19) 

(5.20) 

(5.21) 
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j+1 
(lg(2i+1 2i) aL <= 1 + :£. - 1) I 

i=O 
j+1 

(lg 2i+1 I 2i) <= 1 + z 
i=O 

= 0(1) (5.22) 

Based on the analysis of maximum height 

tree built up by n sequential insertions, we 

C/JH = h <= j + 2 

<= r log 2 n l + 3 

and the amortized cost per insertion is 

aH <= 1 + ( r log 2 n l + 3) I n <= 4 

= 0(1) 

of a red-black 

have 

(5.23) 

(5.24) 

The amortized complexity of n sequential insertions 

into a red-black tree is summarized in Table V for later 

comparison. The insertion of our example data set is demon-

strated in Fig.32, with the four potential function values 

indicated at each step. The total potential change and 

amortized time per insertion are also calculated. The a is 

1.7, 8.2, 1.79, and 1.6 in the four cases, respectively, 

below that predicted values shown in Table v. 
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Figure 32. Continued 



Potential 
Functions 

<t>R 

TABLE V 

AMORTIZED COMPLEXITY OF SEQUENTIAL 
INSERTIONS IN RED-BLACK TREES 

EXAMPLE 

Amortized Time 
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Potential 
Change per Operation Predicted Actual 

n 0(1) 2 1.7 

11 8.2 

0(1) 2 1.8 

r log2n 1 + 3 0 (1) 4 1.6 



B - Trees 

Operations 

The B-tree data structure proposed by Bayer and 

McCreight [46] is an effective method for organizing an 
' external file. Comer [16] indicated that B-trees have 

110 

become a standard for file organization. However, variations 

of B-trees abound, and the literature on B-tree is not 

uniform in its use of terms relating to B-trees. Since the 

B-tree is a multiway search tree instead of binary tree as 

described previously, here we need to restate the defini-

tions of order and leaf (external node) of a B-tree, which 

were addressed in [45] and [46], respectively. Then we can 

describe the properties of a B-tree formally defined by Folk 

[ 14] • 

Definition : the order of a B-tree is the maximum number of 

children that a node can have; the leaf (external node) in 

a B-tree is a node at the lowest level of keys. Then a 

B-tree of order m satisfied the following six properties. 

1. Each internal node has at most m children. 

2. Each internal node except the leaves and possibly the 

root has at least r m 1 2 l children. 

3. The root node has at least two children (unless it is a 

leaf). 

4. All the leaves appear on the same (the lowest) level. 

5. A nonleaf node (internal node) with k children contains 



(k - 1) keys. 

6. Each leaf contains at least ( r m I 2 1 - 1) keys but no 

more than (m - 1) keys. 

In a B-tree, a node consists of an ordered sequence of 

keys and a set of pointers. A bottom-up insertion of a new 

key requires a two-step process. First, a search proceeds 

from the root to locate the proper leaf position for inser

tion. Then the insertion is performed, and balance is res

tored by a procedure which moves from the leaf back toward 

the root. 
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An example of inserting a new key is illustrated in 

Fig.33, where each node in a B-tree of order 5 contains 

between ( r 5/2 1 - 1 ) and (5 - 1) keys. From Fig.33, it 

is seen that when inserting the key 11 57 " the search 

terminates unsuccessfully at the fourth leaf. Since the 

leaf can accommodate another key, the new key 11 57 11 is simply 

inserted, yielding the B-tree shown in Fig.33b. If a key 

11 72 11 were inserted, however, complications would arise 

because the appropriate leaf node is full. Overfull nodes 

can be restructured by equalization, either one way or two 

way, followed by node splitting if the equlization is 

unsuccessful. Another approach is to split the overfull 

node directly. The left (or right) adjacent leaf node (one 

way equalization) is checked, if the node has some spaces, 

then the key from parent moves into the "unfull" sibling 

node and keys from the overfull node are distributed among 
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the two nodes with the appropriate key placed into the 

parent node as shown in Fig.33c and 33d. The equalization 

procedure delays spliting unt~l the sibling node(s) is (are) 

full. This strategy increases space utilization and minimi-

zes the number of levels in the tree. Node splitting as 

means of restructuring overfull nodes splits the right(left) 

half off as new node, and sends the median key upward one 

level for parent node insertion, which serves as a separator 

presented in Fig.34. Usually the parent node will accommo

date an additional key, thus the insertion process termina-

tes. If the parent node happens to be full too, then the 

restructuring process is applied again. In the worst case, 

splitting propagates all the way to the root and the tree 

grows in height by one level. 

Amortized Complexity 

From the definition of B-trees, it is known that each 

internal node in a B-tree can contain several children (at 

least r m/2 l and at most m) instead of two in a binary 

tree. This uncertainty makes it difficult to use either for 

HB[l]-trees or for red-black trees as node rank in B-trees. 

Here, we try to modify another rank definition proposed by 

Tarjan [30] and others [33} for binary trees and heap 

structures. This node rank method is defined as follows. 

l o, if v is an external node, 
rank (v) = (5.25) 

1 + min{ranks of v's children}, otherwise 



(a) A B-tree of Order 5. Number 57 is being 
inserted. 

(b) The Same Tree. Number 72 is being Inserted. 

Figure 33. Illustration of Single Insertion 
into a B-Tree 
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(a) A leaf and its ancestor in a 8-Tree 

before spliting. 

(b) The same subtree after insertion of "72". 

Figure 34. Process of Splitting 
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That is, the rank of any node except leaves is the mi

nimum of its children's ranks plus one (to reflect itself). 

Thus, the node rank can be easily determined as each node at 

level i will gave a rank of i based on this definition. We 

construct a B-tree shown in Fig. 35, where the leaf level is 

level zero and the root level is level (d- 1), making a 

total of d levels in height. To obtain the tree rank poten

tial, we need to determine the height of a B-tree containing 

n keys. We use the following calculation for the consistency 

of notation in this study and reach the same answer given by 

Folk et. al. [14]. 

Consider that a B-tree with n keys has (n + 1) descen

dants from its leaf level. There are at most r (n+l) I 2 l 

leaves. The maximum height occurs when each internal node 

(including the root) has minimum number of keys, leading to 

the maximum node number at level i is 

zi = r (n+l) I 2 l I < r m I 2 l i) (5.26) 

Hence, at the root level, 

1 <= zd-1 = r (n+1) I 2 l I < r m I 2 1 d-1) (5.27) 

whi9h gives the maximum height 

d <= 1 + log r m/2 1 C (n+l) 1 2) (5.28) 

From this height upper bound, we can estimate the four 

potential functions in a B-tree built up by n sequential 



insertions. Using the node rank defined above, the tree 

potential is bounded by 

d-i 
¢R <= ~ zi * i 

i=O 

<= ((n + 1) I 2) * (d- 1) I (m I 2) 

<= (n + 1) * (d - 1) I m (5.29) 

where d is the height, a function of tree order m and key 

number n expressed by inequality (5.28), 

The amortized cost per operation is 

aR <= 1 + (d - 1) 1 m = 0(1) (if m >> d) (5.30) 

In the case of using sum children method, the maximum 

size of each node at level i is 

i 
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si <= z. mk 
k=O 

(5.31) 

Therefore, the tree potential is 

cPs<= 
d-1 
:;£ zi * si * (m - 1) 
i=O 

d-1 
<= ((n + 1)12) 2 (mi- 1)1(m- 1) 

i=O 

<= (n + 1) * 2d-1 

and the amortized cost per insertion is 

as <= 1 + 2d-1 + 2d-1 I n 

= 0 (log2n) 

(5.32) 

(5.33) 
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Using the log sum method, the tree potential becomes 

¢L <= 
d-1 i 
;E zi * lg ( 2" mk * (m - 1)) 
i=O k=O 

d-1 
I i> <= ((n + 1) I 2) * lg m * .z i I (I m12 

i=O 

<= (n + 1) * 1g m * (d - 1) (5.34) 

and the amortized cost per operation is bounded by 

aL <= 1 + lg m * (d - 1) * (1 + 1ln) 

= 0 (1) (5.35) 

The last case of potential function is to use the tree 

height expressed by inequality (5.28), 

¢H = d <= 1 + log r m I 2 l ( (n + 1) I 2) (5.36) 

Thus, the per operation cost is bounded by 

aH <= 1 + d j n = 0(1) (if n >> d) (5.37) 

The above analysis indicates that the amortized comple-

xity for B-tree is basically not a constant but varies with 

the tree size n and tree rank m (shown in Table VI) . The 

values of aR (5.30), a5 (5.33), aL (5.35), and aH (5.37) are 

calculated for wide ranges of nand m, and plotted on Fig.36 

to show the dependence of amortized complexity on these tree 

parameters. It is found that the tree height has most 

promise because of its stability over a wide range of n. 
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The standard data set is also used to check the cost 

estimation. The process of sequential insertions of these 

set is shown in Fig.31 with the values of four potential 

functions calculated at each step. The actual costs are all 

below the estimated costs, as compared in Table VI. 
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Potential 
Functions 

TABLE VI 

AMORTIZED COMPLEXITY OF SEQUENTIAL 
INSERTIONS IN B-TREES 

122 

EXAMPLE 

Potential 
Change 

(n+1)*(d-1)/m 

(n+1)*2d-1 

Amortized Time 
per Operation 

0 (1) 

(n+1)*lgm*(d-1)/m 0 (1) 

d 0 (1) 

Predicted Actual 

1.819 1.4 

3.75 2.9 

1.43 1.2 

1. 35 1.3 



CHARTER VI 

HEAP STRUCTURES 

A heap is an abstract data structure consisting of a 

collection of items, each with an associated real-valued 

key. Five different heap implementations were presented in 

chapter II. In this chapter, we examine the amortized 

complexity of sequential operations in two other heap struc

tures: the pairing heap and the self-adjusting heap. Al

though the amortized behavior of both these heaps has been 

analyzed in the past [33, 37, 38], the potential function 

used previously is different from the four that we are 

discussing now and seems more complicated. Furthermore, 

since one potential function was chosen for each heap, the 

effect of potential functions on the amortized complexity is 

not available. These tasks become the target of this study. 

Pairing Heaps 

Operations 

The pairing heap can be represented by an endogenous 

heap-ordered tree. It is an improvement of the Fibonacci 

heap, obtained by using the pairing method to combine trees 

and choosing the trees to be paired carefully. Like other 

heap structures, a pairing heap allows fundamental opera-

123 
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tions, such as MAKEHEAP, FINDMIN, INSERT, MELD, DECREASEKEY, 

and DELETE. The insertion that we are especially interested 

in at this stage is a process which first constructs a one 

node tree to contain the new item being inserted, and then 

links (or melds) it with another heap. In Chapter II, we 

already presented two pairing ways: method A and B. 

Specifically, for a set of items to be inserted sequentially 

into a pairing heap using method A, individual items are 

pairly linked and then these pairs are melded together. 

This process is illustrated in Fig.38a, where n arbitrary 

items are linked into r n/2 1 pairs (if n is an odd number, 

one item remains unlinked). Each pair is a subtree of the 

final heap. We link the first and second subtrees, then the 

third and fourth, and so on. By using method B, as shown in 

Fig.38b, after the first pairing path, the subtrees are 

linked pairly from the rear to the front. In either cases, 

totally r n 1 22 1 higher subtrees can be constructed in 

this step. After several repeated steps, one heap contain

ing all the n items is built up. We call the resulting data 

structure the pairing heap. It is seen that the linking is 

an essential part of the insertion operation. When we com

bine two heap-ordered subtrees, we use linking by making the 

root of smaller key the parent of the root of larger key to 

ensure that the final tree is in heap-order. 
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(a) using method A 

Figure 38. A Pairing Heap Built up by n Items 
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Amortized Complexity 

According to the above pairing procedures, we can 

analyze the amortized complexity for inserting n items into 

a heap by knowing the relation between the heap size and the 

link frequency. We consider the final heap containing n 

items is built up by r n12 l pairly linking of subtrees. As 

illustrated in Fig.39a, an individual subtree grows from 

level o (as an one node tree) to level d (final heap). The 

maximum node number for a subtree at level i is 2i, while 

there are maximum r n I 2i l such subtrees. Since at level 

d there is only one final tree left, the maximum heap depth 

is 

d <= r log 2 n l + 1 (6.1) 

We define the rank of each node in a n-item heap as its 

level rank, as we did for B-trees. In a n-item heap there 

are ( r n/2 l - 1) nodes at the second level after r nl2 l 

pairly linking. One node becomes the root. Thus the heap 

potential in terms of rank is bounded by 

¢ R <= d + ( r n/2 1 - 1) * (d-1) + r nl2 l * (d-2) 

<= d + 2 * ( r nl 2 l ) * ( d - 1) - ( d - 1) 

= 2 * ( r n I 2 l > * (d - 1) + 1 

and the amortized cost per operation is 

aR <= 1 + din + d - 1 = d + d/n 

= Q(d) 

= Q(log 2 n) 

(6.2) 

(6.3) 



128 

The method of sum children, and consequently the log 

sum approach, is more difficult here because the size of 

each subtree needs to be determined iteratively. In Fig.39a, 

the maximum size of a subtree at each level is indicated. 

Suppose we have an arbitrary tree Tk consisting of a root 

and three subtrees Ta, Tb, and Tc (with size Sa, Sb,and Sc), 

shown in Fig.39b. The root rank is 

(6.4) 

and the total rank potential of Tk is 

(6.5) 

where j = a, b, c. 

This means the size of a tree of level d can be ex-

pressed based on the sizes of lower level trees, as shown in 

Fig.39a, 

d z ( 2d-i * 2i-l ) 
i=l 

= 
d 
~ 2d-l 
i=l 

= d * 2d-l (6.6) 

Substituting (6.6) into (6.5), and considering the 

total size of a d-level heap, we obtain the potential as 

( d + 2 ) * 2d-l (6.7) 



Therefore, the amortized time per operation is 

a5 <= 1 + ( d + 2 ) * 2d-1 1 n 

= 0(d) 

= O(log 2 n) 

129 

(6.8) 

Consequentially, the potential in terms of log sum 

children including itself can be obtained; 

cpL <= ~ 2d-i * lg( 2i-1 ) + lg( 2d ) 
1=1 

d 
<= 2d * lg2 * ~ ( i-1 )l2i + d * lg2 

i=l 

= lg2 * ( 2d+2 + d ) 

and the amortized time per operation is 

aL <= 1 + lg2 * ( 2d+2 + d ) 1 n 

= 0 (1) 

Finally, the potential in terms of heap height is 

determined by relation (6.1), 

¢ H = d = r log 2 n 1 + 1 

and the amortized time per operation is 

aH <= 1 + r log 2 n 1 I n + lin 

= 0 (1) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

Results from the above analysis agree with that 

obtained by Fredman, Sedgewick, Sleator, and Tarjan [37], to 
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Potential 
Functions 

TABLE VII 

AMORTIZED COMPLEXITY OF SEQUENTIAL 
INSERTIONS IN PAIRING HEAPS 

132 

EXAMPLE 

Potential 
Change 

2*rn/2l*(d-l)+l 

(d+2) * 2d-l 

lg2 * (2d+2 + d) 

d 

Amortized Time 
per Operation 

O(log2n) 

0(1) 

0(1) 

Predicted Actual 

3.6 3.5 

4.4 4.3 

2.1 1.2 

1.43 1.4 
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show that the amortized complexity for insertion in pairing 

heaps is Q(log 2 n) in most cases. However, the present 

study further shows that by using either the log sum or the 

height potential, the insert costs Q(l) which is a con

jecture unproved by Fredman et al. (shown in Table VII). we 

demonstrate our analysis by using the standard data set 

(Fig.40). The four potentials are calculated at each step. 

The final actual cost in each case is also listed in Table 

VII to compare with the theore-tical estimate. 

Self-Adjusting Heaps 

The self-adjusting heap is a data structure that gua

rantees efficiency on basis of amortized complexity measure 

by adjusting the structure during each update operation 

instead of maintaining an explicit balance constraint. The 

pairing heap also can be considered as a form of self-adjus

ting structure due to the pairing step in updating. However, 

a typical self-adjusting heap analyzed here is the one 

recently developed by Sleator and Tarjan [38], and called 

skew heap which swaps the structure after every updating to 

speed up later operations, just like the move-to front 

algorithm in a linear list. 

Operations 

The skew heap can be represented by a heap-ordered 

binary tree. That is, the nodes in a binary tree are 

ordered in such a way that if P(v) is the parent of v, then 



key(P(v)) < key(v). A skew heap allows basic operations 

such as MAKEHEAP, FINDMIN, INSERT, DELETEMIN, and MELD. It 

also can be updated in either a top-down approach or a 

bottom-up approach. In this section we examine the effect 

of potential functions on skew heaps and use the top-down 

insertion as our analysis target. The process of insertion 

in a top-down skew heap is best described as follows. 

1. Make item v into a one node heap h. 

2. Meld h1 with another heap h 2 by 
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(a) merging the right paths of h1 and h 2 in heap order, 

(b) Swapping the left and right children of every node on 

the merge path except the lowest. 

Therefore, the meld operation is the major part of an 

insertion process and is shown in Fig.41, where the merge 

path is indicated. 

Amortized Complexity 

Sleator and Tarjan [38] used a potential function of 

heavy right nodes to show that the insertion costs (log2n) 

in top-down skew heap, because the length of the right path 

in a skew heap (which is a self-adjusting form of the 

leftist trees) of n nodes is at most r log 2 n 1 . The time 

for the meld is bounded by a constant times the length of 

the merge path. Actually the depth of a skew heap in the 

illness case after n insertions is bounded by 

d <= n (6.13) 
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Assume that the root is at level 1 and the lowest level 

is d. The maximum number of nodes at any level i, therefore, 

is 2i-1 . If we define the rank of a node by the number of 

levels where the node exists, then the root rank is d; the 

node at lowest level ranks 1; and the node at level i is 

(d- i + 1). Thus, the total rank potential of the heap is 

obtained as 

cpR <= 
d 

2i-1 .:E * (d - i + 1) 
i=O 

d 
2i-1 

d 
2i-1 = (d + 1) z - ::£ i * i=1 i=1 

d 
2d-i 2d 

d 
2i = :£ i * = * ~ i I 

i=1 i=1 

<= 2d 

This gives the amortized cost per operation as 

aR <= 1 + 2d 1 n 

= 0 (log 2 n) 

(6.14) 

(6.15) 

Since the skew heap is represented by a binary tree, 

the maximum size of a node at level i (refer Fig.29) can be 

expressed as 

S· = 2 * S• 1 + 1 = 2i+1 - 1 
~ ~-

(6.16) 

Therefore, the total heap size is bounded by 



<P s <= 
d 
~ r n I 2i 1 * (2i+1 - 1) 
i=O 

which implies that the amortized time per operation is 

a 8 <= 1 + 2 * d = 0 (d) 

= O(n) 
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(6.17) 

(6.18) 

While the total heap potential in terms of log sum 

children is bounded by 

<PL <= 
d 
~ r n I 2i 1 * lg(2i+1 - 1) 
i=O 

which gives the amortized time as 

d 
aL <= 1 + ~ lg ( 2 i + 1 - 1) I 2 i 

i=O 

d 
<= 1 + ::E lg(2i+1) I 2i 

i=O 

= 0 (1) 

(6.19) 

(6.20) 

Finally, we use the height (6.13) to estimate the heap 

potential after n insertions, 

cpH = d <= n (6.21) 

Thus, the amortized time per insertion is 

aH <= 1 + n I n <= 2 

= 0 (1) (6.22) 
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TABLE VIII 

AMORTIZED COMPLEXITY OF SEQUENTIAL INSERTIONS 
IN SELF-ADJUSTING HEAPS 

EXAMPLE 

Amortized Time 
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Potential 
Functions 

Potential 
Change per Operation Predicted Actual 

O(n) 4.46 3.9 

0(1) 1.5 1.3 

d 0(1) 1.45 1.4 
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An example of a self-adjusting heap is built up by 

sequentially inserting the standard data set which consists 

of ten items (Fig.42). The four potential functions are 

calculated at each step. In each case the predicted cost is 

compared with the actual value as shown in Table VIII. It 

is found that there is a good match between the two. 



CHAPTER VII 

COMPARISON AND DISCUSSION 

In chapter IV, V, and VI, we analyzed the amortized 

computational complexity of some'basic updating algorithms 

on linear lists, balanced search trees, and heap data struc

tures, respectively. The main tool is to define a potential 

function that can map the configuration of the data struc

ture into a real number before and after operations. Then 

the amortized cost of an operation can be determined based 

on the variation of the potential function. Four classes of 

potential functions have been applied in the analysis of the 

same operation, each gives an amortized complexity as summa

rized by a table for the corresponding data structure. To 

further understand the amortized analysis for algorithms and 

data structures, we compare these results and discuss the 

effect of potential function on amortized analysis. In 

addition the amortized costs are compared with that from 

worst-case analysis. 

We summarize the amortized cost per operation in 

Table IX. For linear list structure, the 'a' reflects the 

computational complexity of an arbitrary sequence of opera

tions including push (or inject), pop, and access on a stack 

(or a queue). For both balanced search trees and heap 

141 
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structures, the 'a' is the complexity of a sequence of in

sertions into the AVL-trees (HB[l]-trees), red-black trees, 

B-trees, pairing heaps, and self-adjusting he~ps. The 

rebalance in these trees and heaps is performed by bottom-up 

algorithm except in the self-adjusting heap in which the 

top-down algorithm is employed. From Table IX, we have the 

following comparisons. 

1. The potential function used in amortized analysis does 

affect the computation complexity. Among the four po

tential functions, the log sum and the structure height 

are more promising than the other two for they provide 

the smallest amortized time of 0(1) for ~equential 

operations in both the tree and heap structures analyz

ed. In most tree structures, the height potential can be 

easily determined. However, it may be hard to estimate 

for some structures, such as the self-adjusting heaps. 

In this case, other potential functions should be 

considered, especially the log sum potential. 

2. The rank potential we analyzed gives good results for 

linear list (frequency count), red-black tree (number of 

red sons), and B-tree (1 +min. children's rank). This 

method is more flexible since its utility depends on 

the choice of the rank of each node. Sometimes this 

potential function is the same as the sum children and 

the log sum children, if we define the node rank in that 

way. But we choose the rank method because it is 

general and can include many other variables, such as 
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the right heavy nodes, etc. 

3. The sum children including itself and the log sum chil

dren are two similar potential functions. These two 

potentials are not suitable for linear list operations 

because they give the amortized times that are not 

constant but vary with the operation frequencies. The 

advantage of using these two methods is that the node 

size(sum children including the node itself, or log this 

size) usually can be determined easily. 

4. our results are compared with that obtained by Tarjan et. 

al. and shown in Table IX. It can be seen that all the 

amortized costs based on the four potential functions 

are in agreement with Tarjan's results except the aR 

(using frequency count as rank potential) for HB[l]

trees. The potential of both the log sum and the str

ucture height even give better cost estimations for 

HB[l]-trees, pairing heaps, and self-adjusting heaps. 

5. The correctness of our results are also demonstrated by 

using a standard data set for each data structure. From 

the comparison between the actual value and the cost 

predicted based on each potential function, we find that 

the current analysis of potential function does provide 

a correct measure of amortized complexity. 

6. In worst-case analysis, we sum the worst-case times of 

the individual operations. In conventional applications 

a search for any item in a n-node binary tree, which has 

a depth of at least log2 n, takes Q(log n) steps. Once 
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the position to insert a new item or delete an old one 

has been found, the insertion or deletion can be comple

ted in Q(log n) additional steps for rebalancing, either 

starting from the root and proceeding towards the leaves 

(top-down algorithm) or starting from the leaf level and 

walking up towards the root (bottom-up algorithm). 

Therefore, one can guarantee anQ(log n) worst-case com

plexity for sequential insertions. According to the 

theory of amortization, the amortized cost is not only 

an upper bound of actual operation time but also an 

estimation better than the worst-case measure. This is 

proved by the present study, because the results shown 

in Table IX areO(l) in many cases and at most Q(log n) 

in remaining cases. 

7. Therefore, amortized analysis provides a suitable 

approach for estimating the performance of sequential 

operation algorithms in data structures. The basic 

procedure of amortized analysis consists of choosing a 

proper potential function which can reflect the configu

ration of the structure at any operation interval and 

determining the total increment in potential function. 

Based on the present study, the structure height is an 

optimal class of potential function to be chosen. 



TABLE IX 

SUMMARY OF EFFECT OF POTENTIAL FUNCTIONS 
ON AMORTIZED COMPLEXITY FOR SEQUENTIAL 

INSERTIONS IN DATA STRUCTURES 

Amortized 
Cost 

145 

Tarjan's 

Rank Sum log sum Height results 
Data Struc. 

LIST 

BALAN-

Linear 0(1) 
list 

HB[1] 0 ( 1) 

children 

0 (1) 

0(1) 

CED -------------------------------------------------------

SEARCH Red- 0(1) 

TREES 
Black 

B 0(1) 

Pair- O(log2n) O(log2n) 
ing 

0 (1) 0 {1) 0 {1) 

0 (1) 0(1) 

0(1) 

HEAPS -------------------------------------------------------

Self- O{log2n) 
Adj. 

O(n) 0 (1) 



CHAPTER VIII 

SUMMARY, CONCLUSIONS, AND SUGGESTIONS 

FOR FURTHER STUDY 

Summary and Conclusions 

Using amortized computational complexity to judge the 

performance of data structure algorithms is a new approach 

developed by Tarjan and promoted by many others. It is 

motivated by the observations that in most data structure 

applications a sequence of operations are encountered and 

that there are usually some correlations among these opera

tions. By averaging the running time per operation ·over a 

worst-case sequence of operations (reflected by data struc

ture configuration), it is possible to obtain a time bound 

smaller than the worst-case cost and, consequently, to 

provide a more accurate estimation on dynamic performance of 

data structures. 

In the present study, the situation of amortization in 

linear lists, balanced search trees, and heap structures is 

thoroughly reviewed. Four classes of potential functions in 

these data structures are analyzed and the corresponding 

amortized costs are calculated. Several conclusions from 

this study are summarized as follows. 
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1. It is found that among all the published investigations 

on amortization, Tarjan's theory is the most fundamental 

and precise one that can be formulated mathematically 

and applied to any data structures. 

2. The concept of potential function proposed by Tarjan for 

physicist's view analysis can also be extended to the 

banker's view in order to have an uniform analysis. The 

potential function is useful because it can reflect the 

change of data structure configuration caused by opera

tions; however, it has not been analyzed carefully in 

the past. The level of difficulty of amortization 

depends on the potential function used in analysis. 

3. Four potential functions -- node rank, sum children 

including itself, log sum, and structure height -- are 

proposed and analyzed in the present study for each of 

the three data structures : lists, trees, and heaps. In 

each case, the potential function is formulated and the 

amortized cost per operation is calculated. 

4. The results show that the log sum and the height are the 

two better ones among the four potential functions for 

the tree and heap structures analyzed. For any structure 

whose height is determinable, the height method is to be 

considered. The sum children potential usually gives the 

worst estimation, because of its overestimation and un

constant characteristics. The efficiency of node rank 

depends on the definition of rank. This approach is 



flexible but may fail if the rank is determined inco

rrectly. 

5. A standard data set is used as an example for the 

amortized analysis of each case. The actual amortized 

costs are well below the predicted values. 

6. The amortized analysis based on the four potential 

functions agree with Tarjan's result for most cases. 

The results from the log sum and the height potential 

are even better than Tarjan's estimation for HB[l]

trees, pairing heaps, and self-adjusting heaps. 

7. We must be careful in choosing the potential function 

for a specific data structure and its updating 

algorithm. 

a. This study also proves that the amortized cost based on 

potential function analysis is a measure better than 

that by worst-case analysis because the former is at 

most (log n) in some cases but (1) in most other 

cases analyzed. 
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suggestions 

The most obvious suggestion for further study is to 

analyze more complicated operation sequences that are 

realistic in data structure applications, such as the 

intermixed operations including arbitrary access, insertion, 

and deletion in trees and arbitrary combination of meld, 

delete min, insertion, etc. in heaps. Although the analysis 

method can possibly be similar,there will be more derivation 

effort and more intense mathematical analysis. 

Another suggestion is to explore the possibility of 

other classes of potential functions. It will be a great 

achievement to have a more clear guidance for choosing the 

potential function in major data structures. 

Finally, there are some other data structures (such as 

the self-adjusting trees) and algorithms (such as the top

down algorithm in trees and bottom-up algorithm in heaps) to 

be analyzed from the view of amortization. The choice of 

potential function to use in these studies is also important 

and to be investigated. 
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